logfs: constify logfs_block_ops structures
[deliverable/linux.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 struct vm_fault *vmf)
36 {
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
41 int err;
42
43 f2fs_balance_fs(sbi);
44
45 sb_start_pagefault(inode->i_sb);
46
47 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
48
49 /* block allocation */
50 f2fs_lock_op(sbi);
51 set_new_dnode(&dn, inode, NULL, NULL, 0);
52 err = f2fs_reserve_block(&dn, page->index);
53 if (err) {
54 f2fs_unlock_op(sbi);
55 goto out;
56 }
57 f2fs_put_dnode(&dn);
58 f2fs_unlock_op(sbi);
59
60 file_update_time(vma->vm_file);
61 lock_page(page);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
65 unlock_page(page);
66 err = -EFAULT;
67 goto out;
68 }
69
70 /*
71 * check to see if the page is mapped already (no holes)
72 */
73 if (PageMappedToDisk(page))
74 goto mapped;
75
76 /* page is wholly or partially inside EOF */
77 if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
78 i_size_read(inode)) {
79 unsigned offset;
80 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
81 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
82 }
83 set_page_dirty(page);
84 SetPageUptodate(page);
85
86 trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 /* fill the page */
89 f2fs_wait_on_page_writeback(page, DATA);
90
91 /* wait for GCed encrypted page writeback */
92 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94
95 /* if gced page is attached, don't write to cold segment */
96 clear_cold_data(page);
97 out:
98 sb_end_pagefault(inode->i_sb);
99 return block_page_mkwrite_return(err);
100 }
101
102 static const struct vm_operations_struct f2fs_file_vm_ops = {
103 .fault = filemap_fault,
104 .map_pages = filemap_map_pages,
105 .page_mkwrite = f2fs_vm_page_mkwrite,
106 };
107
108 static int get_parent_ino(struct inode *inode, nid_t *pino)
109 {
110 struct dentry *dentry;
111
112 inode = igrab(inode);
113 dentry = d_find_any_alias(inode);
114 iput(inode);
115 if (!dentry)
116 return 0;
117
118 if (update_dent_inode(inode, inode, &dentry->d_name)) {
119 dput(dentry);
120 return 0;
121 }
122
123 *pino = parent_ino(dentry);
124 dput(dentry);
125 return 1;
126 }
127
128 static inline bool need_do_checkpoint(struct inode *inode)
129 {
130 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
131 bool need_cp = false;
132
133 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
134 need_cp = true;
135 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
136 need_cp = true;
137 else if (file_wrong_pino(inode))
138 need_cp = true;
139 else if (!space_for_roll_forward(sbi))
140 need_cp = true;
141 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
142 need_cp = true;
143 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
144 need_cp = true;
145 else if (test_opt(sbi, FASTBOOT))
146 need_cp = true;
147 else if (sbi->active_logs == 2)
148 need_cp = true;
149
150 return need_cp;
151 }
152
153 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
154 {
155 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
156 bool ret = false;
157 /* But we need to avoid that there are some inode updates */
158 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
159 ret = true;
160 f2fs_put_page(i, 0);
161 return ret;
162 }
163
164 static void try_to_fix_pino(struct inode *inode)
165 {
166 struct f2fs_inode_info *fi = F2FS_I(inode);
167 nid_t pino;
168
169 down_write(&fi->i_sem);
170 fi->xattr_ver = 0;
171 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
172 get_parent_ino(inode, &pino)) {
173 fi->i_pino = pino;
174 file_got_pino(inode);
175 up_write(&fi->i_sem);
176
177 mark_inode_dirty_sync(inode);
178 f2fs_write_inode(inode, NULL);
179 } else {
180 up_write(&fi->i_sem);
181 }
182 }
183
184 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
185 {
186 struct inode *inode = file->f_mapping->host;
187 struct f2fs_inode_info *fi = F2FS_I(inode);
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 nid_t ino = inode->i_ino;
190 int ret = 0;
191 bool need_cp = false;
192 struct writeback_control wbc = {
193 .sync_mode = WB_SYNC_ALL,
194 .nr_to_write = LONG_MAX,
195 .for_reclaim = 0,
196 };
197
198 if (unlikely(f2fs_readonly(inode->i_sb)))
199 return 0;
200
201 trace_f2fs_sync_file_enter(inode);
202
203 /* if fdatasync is triggered, let's do in-place-update */
204 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
205 set_inode_flag(fi, FI_NEED_IPU);
206 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
207 clear_inode_flag(fi, FI_NEED_IPU);
208
209 if (ret) {
210 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
211 return ret;
212 }
213
214 /* if the inode is dirty, let's recover all the time */
215 if (!datasync) {
216 f2fs_write_inode(inode, NULL);
217 goto go_write;
218 }
219
220 /*
221 * if there is no written data, don't waste time to write recovery info.
222 */
223 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
224 !exist_written_data(sbi, ino, APPEND_INO)) {
225
226 /* it may call write_inode just prior to fsync */
227 if (need_inode_page_update(sbi, ino))
228 goto go_write;
229
230 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
231 exist_written_data(sbi, ino, UPDATE_INO))
232 goto flush_out;
233 goto out;
234 }
235 go_write:
236 /* guarantee free sections for fsync */
237 f2fs_balance_fs(sbi);
238
239 /*
240 * Both of fdatasync() and fsync() are able to be recovered from
241 * sudden-power-off.
242 */
243 down_read(&fi->i_sem);
244 need_cp = need_do_checkpoint(inode);
245 up_read(&fi->i_sem);
246
247 if (need_cp) {
248 /* all the dirty node pages should be flushed for POR */
249 ret = f2fs_sync_fs(inode->i_sb, 1);
250
251 /*
252 * We've secured consistency through sync_fs. Following pino
253 * will be used only for fsynced inodes after checkpoint.
254 */
255 try_to_fix_pino(inode);
256 clear_inode_flag(fi, FI_APPEND_WRITE);
257 clear_inode_flag(fi, FI_UPDATE_WRITE);
258 goto out;
259 }
260 sync_nodes:
261 sync_node_pages(sbi, ino, &wbc);
262
263 /* if cp_error was enabled, we should avoid infinite loop */
264 if (unlikely(f2fs_cp_error(sbi)))
265 goto out;
266
267 if (need_inode_block_update(sbi, ino)) {
268 mark_inode_dirty_sync(inode);
269 f2fs_write_inode(inode, NULL);
270 goto sync_nodes;
271 }
272
273 ret = wait_on_node_pages_writeback(sbi, ino);
274 if (ret)
275 goto out;
276
277 /* once recovery info is written, don't need to tack this */
278 remove_dirty_inode(sbi, ino, APPEND_INO);
279 clear_inode_flag(fi, FI_APPEND_WRITE);
280 flush_out:
281 remove_dirty_inode(sbi, ino, UPDATE_INO);
282 clear_inode_flag(fi, FI_UPDATE_WRITE);
283 ret = f2fs_issue_flush(sbi);
284 out:
285 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286 f2fs_trace_ios(NULL, 1);
287 return ret;
288 }
289
290 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
291 pgoff_t pgofs, int whence)
292 {
293 struct pagevec pvec;
294 int nr_pages;
295
296 if (whence != SEEK_DATA)
297 return 0;
298
299 /* find first dirty page index */
300 pagevec_init(&pvec, 0);
301 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
302 PAGECACHE_TAG_DIRTY, 1);
303 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
304 pagevec_release(&pvec);
305 return pgofs;
306 }
307
308 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
309 int whence)
310 {
311 switch (whence) {
312 case SEEK_DATA:
313 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
314 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
315 return true;
316 break;
317 case SEEK_HOLE:
318 if (blkaddr == NULL_ADDR)
319 return true;
320 break;
321 }
322 return false;
323 }
324
325 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
326 {
327 struct inode *inode = file->f_mapping->host;
328 loff_t maxbytes = inode->i_sb->s_maxbytes;
329 struct dnode_of_data dn;
330 pgoff_t pgofs, end_offset, dirty;
331 loff_t data_ofs = offset;
332 loff_t isize;
333 int err = 0;
334
335 mutex_lock(&inode->i_mutex);
336
337 isize = i_size_read(inode);
338 if (offset >= isize)
339 goto fail;
340
341 /* handle inline data case */
342 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
343 if (whence == SEEK_HOLE)
344 data_ofs = isize;
345 goto found;
346 }
347
348 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
349
350 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
351
352 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
353 set_new_dnode(&dn, inode, NULL, NULL, 0);
354 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
355 if (err && err != -ENOENT) {
356 goto fail;
357 } else if (err == -ENOENT) {
358 /* direct node does not exists */
359 if (whence == SEEK_DATA) {
360 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
361 F2FS_I(inode));
362 continue;
363 } else {
364 goto found;
365 }
366 }
367
368 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
369
370 /* find data/hole in dnode block */
371 for (; dn.ofs_in_node < end_offset;
372 dn.ofs_in_node++, pgofs++,
373 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
374 block_t blkaddr;
375 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
376
377 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
378 f2fs_put_dnode(&dn);
379 goto found;
380 }
381 }
382 f2fs_put_dnode(&dn);
383 }
384
385 if (whence == SEEK_DATA)
386 goto fail;
387 found:
388 if (whence == SEEK_HOLE && data_ofs > isize)
389 data_ofs = isize;
390 mutex_unlock(&inode->i_mutex);
391 return vfs_setpos(file, data_ofs, maxbytes);
392 fail:
393 mutex_unlock(&inode->i_mutex);
394 return -ENXIO;
395 }
396
397 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
398 {
399 struct inode *inode = file->f_mapping->host;
400 loff_t maxbytes = inode->i_sb->s_maxbytes;
401
402 switch (whence) {
403 case SEEK_SET:
404 case SEEK_CUR:
405 case SEEK_END:
406 return generic_file_llseek_size(file, offset, whence,
407 maxbytes, i_size_read(inode));
408 case SEEK_DATA:
409 case SEEK_HOLE:
410 if (offset < 0)
411 return -ENXIO;
412 return f2fs_seek_block(file, offset, whence);
413 }
414
415 return -EINVAL;
416 }
417
418 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
419 {
420 struct inode *inode = file_inode(file);
421
422 if (f2fs_encrypted_inode(inode)) {
423 int err = f2fs_get_encryption_info(inode);
424 if (err)
425 return 0;
426 }
427
428 /* we don't need to use inline_data strictly */
429 if (f2fs_has_inline_data(inode)) {
430 int err = f2fs_convert_inline_inode(inode);
431 if (err)
432 return err;
433 }
434
435 file_accessed(file);
436 vma->vm_ops = &f2fs_file_vm_ops;
437 return 0;
438 }
439
440 static int f2fs_file_open(struct inode *inode, struct file *filp)
441 {
442 int ret = generic_file_open(inode, filp);
443
444 if (!ret && f2fs_encrypted_inode(inode)) {
445 ret = f2fs_get_encryption_info(inode);
446 if (ret)
447 ret = -EACCES;
448 }
449 return ret;
450 }
451
452 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
453 {
454 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
455 struct f2fs_node *raw_node;
456 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
457 __le32 *addr;
458
459 raw_node = F2FS_NODE(dn->node_page);
460 addr = blkaddr_in_node(raw_node) + ofs;
461
462 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
463 block_t blkaddr = le32_to_cpu(*addr);
464 if (blkaddr == NULL_ADDR)
465 continue;
466
467 dn->data_blkaddr = NULL_ADDR;
468 set_data_blkaddr(dn);
469 invalidate_blocks(sbi, blkaddr);
470 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
471 clear_inode_flag(F2FS_I(dn->inode),
472 FI_FIRST_BLOCK_WRITTEN);
473 nr_free++;
474 }
475
476 if (nr_free) {
477 pgoff_t fofs;
478 /*
479 * once we invalidate valid blkaddr in range [ofs, ofs + count],
480 * we will invalidate all blkaddr in the whole range.
481 */
482 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
483 F2FS_I(dn->inode)) + ofs;
484 f2fs_update_extent_cache_range(dn, fofs, 0, len);
485 dec_valid_block_count(sbi, dn->inode, nr_free);
486 set_page_dirty(dn->node_page);
487 sync_inode_page(dn);
488 }
489 dn->ofs_in_node = ofs;
490
491 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
492 dn->ofs_in_node, nr_free);
493 return nr_free;
494 }
495
496 void truncate_data_blocks(struct dnode_of_data *dn)
497 {
498 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
499 }
500
501 static int truncate_partial_data_page(struct inode *inode, u64 from,
502 bool cache_only)
503 {
504 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
505 pgoff_t index = from >> PAGE_CACHE_SHIFT;
506 struct address_space *mapping = inode->i_mapping;
507 struct page *page;
508
509 if (!offset && !cache_only)
510 return 0;
511
512 if (cache_only) {
513 page = f2fs_grab_cache_page(mapping, index, false);
514 if (page && PageUptodate(page))
515 goto truncate_out;
516 f2fs_put_page(page, 1);
517 return 0;
518 }
519
520 page = get_lock_data_page(inode, index, true);
521 if (IS_ERR(page))
522 return 0;
523 truncate_out:
524 f2fs_wait_on_page_writeback(page, DATA);
525 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
526 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
527 set_page_dirty(page);
528 f2fs_put_page(page, 1);
529 return 0;
530 }
531
532 int truncate_blocks(struct inode *inode, u64 from, bool lock)
533 {
534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
535 unsigned int blocksize = inode->i_sb->s_blocksize;
536 struct dnode_of_data dn;
537 pgoff_t free_from;
538 int count = 0, err = 0;
539 struct page *ipage;
540 bool truncate_page = false;
541
542 trace_f2fs_truncate_blocks_enter(inode, from);
543
544 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
545
546 if (lock)
547 f2fs_lock_op(sbi);
548
549 ipage = get_node_page(sbi, inode->i_ino);
550 if (IS_ERR(ipage)) {
551 err = PTR_ERR(ipage);
552 goto out;
553 }
554
555 if (f2fs_has_inline_data(inode)) {
556 if (truncate_inline_inode(ipage, from))
557 set_page_dirty(ipage);
558 f2fs_put_page(ipage, 1);
559 truncate_page = true;
560 goto out;
561 }
562
563 set_new_dnode(&dn, inode, ipage, NULL, 0);
564 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
565 if (err) {
566 if (err == -ENOENT)
567 goto free_next;
568 goto out;
569 }
570
571 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
572
573 count -= dn.ofs_in_node;
574 f2fs_bug_on(sbi, count < 0);
575
576 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
577 truncate_data_blocks_range(&dn, count);
578 free_from += count;
579 }
580
581 f2fs_put_dnode(&dn);
582 free_next:
583 err = truncate_inode_blocks(inode, free_from);
584 out:
585 if (lock)
586 f2fs_unlock_op(sbi);
587
588 /* lastly zero out the first data page */
589 if (!err)
590 err = truncate_partial_data_page(inode, from, truncate_page);
591
592 trace_f2fs_truncate_blocks_exit(inode, err);
593 return err;
594 }
595
596 int f2fs_truncate(struct inode *inode, bool lock)
597 {
598 int err;
599
600 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
601 S_ISLNK(inode->i_mode)))
602 return 0;
603
604 trace_f2fs_truncate(inode);
605
606 /* we should check inline_data size */
607 if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
608 err = f2fs_convert_inline_inode(inode);
609 if (err)
610 return err;
611 }
612
613 err = truncate_blocks(inode, i_size_read(inode), lock);
614 if (err)
615 return err;
616
617 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
618 mark_inode_dirty(inode);
619 return 0;
620 }
621
622 int f2fs_getattr(struct vfsmount *mnt,
623 struct dentry *dentry, struct kstat *stat)
624 {
625 struct inode *inode = d_inode(dentry);
626 generic_fillattr(inode, stat);
627 stat->blocks <<= 3;
628 return 0;
629 }
630
631 #ifdef CONFIG_F2FS_FS_POSIX_ACL
632 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
633 {
634 struct f2fs_inode_info *fi = F2FS_I(inode);
635 unsigned int ia_valid = attr->ia_valid;
636
637 if (ia_valid & ATTR_UID)
638 inode->i_uid = attr->ia_uid;
639 if (ia_valid & ATTR_GID)
640 inode->i_gid = attr->ia_gid;
641 if (ia_valid & ATTR_ATIME)
642 inode->i_atime = timespec_trunc(attr->ia_atime,
643 inode->i_sb->s_time_gran);
644 if (ia_valid & ATTR_MTIME)
645 inode->i_mtime = timespec_trunc(attr->ia_mtime,
646 inode->i_sb->s_time_gran);
647 if (ia_valid & ATTR_CTIME)
648 inode->i_ctime = timespec_trunc(attr->ia_ctime,
649 inode->i_sb->s_time_gran);
650 if (ia_valid & ATTR_MODE) {
651 umode_t mode = attr->ia_mode;
652
653 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
654 mode &= ~S_ISGID;
655 set_acl_inode(fi, mode);
656 }
657 }
658 #else
659 #define __setattr_copy setattr_copy
660 #endif
661
662 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
663 {
664 struct inode *inode = d_inode(dentry);
665 struct f2fs_inode_info *fi = F2FS_I(inode);
666 int err;
667
668 err = inode_change_ok(inode, attr);
669 if (err)
670 return err;
671
672 if (attr->ia_valid & ATTR_SIZE) {
673 if (f2fs_encrypted_inode(inode) &&
674 f2fs_get_encryption_info(inode))
675 return -EACCES;
676
677 if (attr->ia_size <= i_size_read(inode)) {
678 truncate_setsize(inode, attr->ia_size);
679 err = f2fs_truncate(inode, true);
680 if (err)
681 return err;
682 f2fs_balance_fs(F2FS_I_SB(inode));
683 } else {
684 /*
685 * do not trim all blocks after i_size if target size is
686 * larger than i_size.
687 */
688 truncate_setsize(inode, attr->ia_size);
689 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
690 }
691 }
692
693 __setattr_copy(inode, attr);
694
695 if (attr->ia_valid & ATTR_MODE) {
696 err = posix_acl_chmod(inode, get_inode_mode(inode));
697 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
698 inode->i_mode = fi->i_acl_mode;
699 clear_inode_flag(fi, FI_ACL_MODE);
700 }
701 }
702
703 mark_inode_dirty(inode);
704 return err;
705 }
706
707 const struct inode_operations f2fs_file_inode_operations = {
708 .getattr = f2fs_getattr,
709 .setattr = f2fs_setattr,
710 .get_acl = f2fs_get_acl,
711 .set_acl = f2fs_set_acl,
712 #ifdef CONFIG_F2FS_FS_XATTR
713 .setxattr = generic_setxattr,
714 .getxattr = generic_getxattr,
715 .listxattr = f2fs_listxattr,
716 .removexattr = generic_removexattr,
717 #endif
718 .fiemap = f2fs_fiemap,
719 };
720
721 static int fill_zero(struct inode *inode, pgoff_t index,
722 loff_t start, loff_t len)
723 {
724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
725 struct page *page;
726
727 if (!len)
728 return 0;
729
730 f2fs_balance_fs(sbi);
731
732 f2fs_lock_op(sbi);
733 page = get_new_data_page(inode, NULL, index, false);
734 f2fs_unlock_op(sbi);
735
736 if (IS_ERR(page))
737 return PTR_ERR(page);
738
739 f2fs_wait_on_page_writeback(page, DATA);
740 zero_user(page, start, len);
741 set_page_dirty(page);
742 f2fs_put_page(page, 1);
743 return 0;
744 }
745
746 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
747 {
748 int err;
749
750 while (pg_start < pg_end) {
751 struct dnode_of_data dn;
752 pgoff_t end_offset, count;
753
754 set_new_dnode(&dn, inode, NULL, NULL, 0);
755 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
756 if (err) {
757 if (err == -ENOENT) {
758 pg_start++;
759 continue;
760 }
761 return err;
762 }
763
764 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
765 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
766
767 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
768
769 truncate_data_blocks_range(&dn, count);
770 f2fs_put_dnode(&dn);
771
772 pg_start += count;
773 }
774 return 0;
775 }
776
777 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
778 {
779 pgoff_t pg_start, pg_end;
780 loff_t off_start, off_end;
781 int ret = 0;
782
783 if (f2fs_has_inline_data(inode)) {
784 ret = f2fs_convert_inline_inode(inode);
785 if (ret)
786 return ret;
787 }
788
789 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
790 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
791
792 off_start = offset & (PAGE_CACHE_SIZE - 1);
793 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
794
795 if (pg_start == pg_end) {
796 ret = fill_zero(inode, pg_start, off_start,
797 off_end - off_start);
798 if (ret)
799 return ret;
800 } else {
801 if (off_start) {
802 ret = fill_zero(inode, pg_start++, off_start,
803 PAGE_CACHE_SIZE - off_start);
804 if (ret)
805 return ret;
806 }
807 if (off_end) {
808 ret = fill_zero(inode, pg_end, 0, off_end);
809 if (ret)
810 return ret;
811 }
812
813 if (pg_start < pg_end) {
814 struct address_space *mapping = inode->i_mapping;
815 loff_t blk_start, blk_end;
816 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
817
818 f2fs_balance_fs(sbi);
819
820 blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
821 blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
822 truncate_inode_pages_range(mapping, blk_start,
823 blk_end - 1);
824
825 f2fs_lock_op(sbi);
826 ret = truncate_hole(inode, pg_start, pg_end);
827 f2fs_unlock_op(sbi);
828 }
829 }
830
831 return ret;
832 }
833
834 static int __exchange_data_block(struct inode *inode, pgoff_t src,
835 pgoff_t dst, bool full)
836 {
837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 struct dnode_of_data dn;
839 block_t new_addr;
840 bool do_replace = false;
841 int ret;
842
843 set_new_dnode(&dn, inode, NULL, NULL, 0);
844 ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
845 if (ret && ret != -ENOENT) {
846 return ret;
847 } else if (ret == -ENOENT) {
848 new_addr = NULL_ADDR;
849 } else {
850 new_addr = dn.data_blkaddr;
851 if (!is_checkpointed_data(sbi, new_addr)) {
852 dn.data_blkaddr = NULL_ADDR;
853 /* do not invalidate this block address */
854 set_data_blkaddr(&dn);
855 f2fs_update_extent_cache(&dn);
856 do_replace = true;
857 }
858 f2fs_put_dnode(&dn);
859 }
860
861 if (new_addr == NULL_ADDR)
862 return full ? truncate_hole(inode, dst, dst + 1) : 0;
863
864 if (do_replace) {
865 struct page *ipage = get_node_page(sbi, inode->i_ino);
866 struct node_info ni;
867
868 if (IS_ERR(ipage)) {
869 ret = PTR_ERR(ipage);
870 goto err_out;
871 }
872
873 set_new_dnode(&dn, inode, ipage, NULL, 0);
874 ret = f2fs_reserve_block(&dn, dst);
875 if (ret)
876 goto err_out;
877
878 truncate_data_blocks_range(&dn, 1);
879
880 get_node_info(sbi, dn.nid, &ni);
881 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
882 ni.version, true);
883 f2fs_put_dnode(&dn);
884 } else {
885 struct page *psrc, *pdst;
886
887 psrc = get_lock_data_page(inode, src, true);
888 if (IS_ERR(psrc))
889 return PTR_ERR(psrc);
890 pdst = get_new_data_page(inode, NULL, dst, false);
891 if (IS_ERR(pdst)) {
892 f2fs_put_page(psrc, 1);
893 return PTR_ERR(pdst);
894 }
895 f2fs_copy_page(psrc, pdst);
896 set_page_dirty(pdst);
897 f2fs_put_page(pdst, 1);
898 f2fs_put_page(psrc, 1);
899
900 return truncate_hole(inode, src, src + 1);
901 }
902 return 0;
903
904 err_out:
905 if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
906 dn.data_blkaddr = new_addr;
907 set_data_blkaddr(&dn);
908 f2fs_update_extent_cache(&dn);
909 f2fs_put_dnode(&dn);
910 }
911 return ret;
912 }
913
914 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
915 {
916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
918 int ret = 0;
919
920 for (; end < nrpages; start++, end++) {
921 f2fs_balance_fs(sbi);
922 f2fs_lock_op(sbi);
923 ret = __exchange_data_block(inode, end, start, true);
924 f2fs_unlock_op(sbi);
925 if (ret)
926 break;
927 }
928 return ret;
929 }
930
931 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
932 {
933 pgoff_t pg_start, pg_end;
934 loff_t new_size;
935 int ret;
936
937 if (offset + len >= i_size_read(inode))
938 return -EINVAL;
939
940 /* collapse range should be aligned to block size of f2fs. */
941 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
942 return -EINVAL;
943
944 f2fs_balance_fs(F2FS_I_SB(inode));
945
946 if (f2fs_has_inline_data(inode)) {
947 ret = f2fs_convert_inline_inode(inode);
948 if (ret)
949 return ret;
950 }
951
952 pg_start = offset >> PAGE_CACHE_SHIFT;
953 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
954
955 /* write out all dirty pages from offset */
956 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
957 if (ret)
958 return ret;
959
960 truncate_pagecache(inode, offset);
961
962 ret = f2fs_do_collapse(inode, pg_start, pg_end);
963 if (ret)
964 return ret;
965
966 /* write out all moved pages, if possible */
967 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
968 truncate_pagecache(inode, offset);
969
970 new_size = i_size_read(inode) - len;
971 truncate_pagecache(inode, new_size);
972
973 ret = truncate_blocks(inode, new_size, true);
974 if (!ret)
975 i_size_write(inode, new_size);
976
977 return ret;
978 }
979
980 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
981 int mode)
982 {
983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984 struct address_space *mapping = inode->i_mapping;
985 pgoff_t index, pg_start, pg_end;
986 loff_t new_size = i_size_read(inode);
987 loff_t off_start, off_end;
988 int ret = 0;
989
990 ret = inode_newsize_ok(inode, (len + offset));
991 if (ret)
992 return ret;
993
994 f2fs_balance_fs(sbi);
995
996 if (f2fs_has_inline_data(inode)) {
997 ret = f2fs_convert_inline_inode(inode);
998 if (ret)
999 return ret;
1000 }
1001
1002 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1003 if (ret)
1004 return ret;
1005
1006 truncate_pagecache_range(inode, offset, offset + len - 1);
1007
1008 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1009 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1010
1011 off_start = offset & (PAGE_CACHE_SIZE - 1);
1012 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1013
1014 if (pg_start == pg_end) {
1015 ret = fill_zero(inode, pg_start, off_start,
1016 off_end - off_start);
1017 if (ret)
1018 return ret;
1019
1020 if (offset + len > new_size)
1021 new_size = offset + len;
1022 new_size = max_t(loff_t, new_size, offset + len);
1023 } else {
1024 if (off_start) {
1025 ret = fill_zero(inode, pg_start++, off_start,
1026 PAGE_CACHE_SIZE - off_start);
1027 if (ret)
1028 return ret;
1029
1030 new_size = max_t(loff_t, new_size,
1031 (loff_t)pg_start << PAGE_CACHE_SHIFT);
1032 }
1033
1034 for (index = pg_start; index < pg_end; index++) {
1035 struct dnode_of_data dn;
1036 struct page *ipage;
1037
1038 f2fs_lock_op(sbi);
1039
1040 ipage = get_node_page(sbi, inode->i_ino);
1041 if (IS_ERR(ipage)) {
1042 ret = PTR_ERR(ipage);
1043 f2fs_unlock_op(sbi);
1044 goto out;
1045 }
1046
1047 set_new_dnode(&dn, inode, ipage, NULL, 0);
1048 ret = f2fs_reserve_block(&dn, index);
1049 if (ret) {
1050 f2fs_unlock_op(sbi);
1051 goto out;
1052 }
1053
1054 if (dn.data_blkaddr != NEW_ADDR) {
1055 invalidate_blocks(sbi, dn.data_blkaddr);
1056
1057 dn.data_blkaddr = NEW_ADDR;
1058 set_data_blkaddr(&dn);
1059
1060 dn.data_blkaddr = NULL_ADDR;
1061 f2fs_update_extent_cache(&dn);
1062 }
1063 f2fs_put_dnode(&dn);
1064 f2fs_unlock_op(sbi);
1065
1066 new_size = max_t(loff_t, new_size,
1067 (loff_t)(index + 1) << PAGE_CACHE_SHIFT);
1068 }
1069
1070 if (off_end) {
1071 ret = fill_zero(inode, pg_end, 0, off_end);
1072 if (ret)
1073 goto out;
1074
1075 new_size = max_t(loff_t, new_size, offset + len);
1076 }
1077 }
1078
1079 out:
1080 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1081 i_size_write(inode, new_size);
1082 mark_inode_dirty(inode);
1083 update_inode_page(inode);
1084 }
1085
1086 return ret;
1087 }
1088
1089 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1090 {
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1093 loff_t new_size;
1094 int ret = 0;
1095
1096 new_size = i_size_read(inode) + len;
1097 if (new_size > inode->i_sb->s_maxbytes)
1098 return -EFBIG;
1099
1100 if (offset >= i_size_read(inode))
1101 return -EINVAL;
1102
1103 /* insert range should be aligned to block size of f2fs. */
1104 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1105 return -EINVAL;
1106
1107 f2fs_balance_fs(sbi);
1108
1109 if (f2fs_has_inline_data(inode)) {
1110 ret = f2fs_convert_inline_inode(inode);
1111 if (ret)
1112 return ret;
1113 }
1114
1115 ret = truncate_blocks(inode, i_size_read(inode), true);
1116 if (ret)
1117 return ret;
1118
1119 /* write out all dirty pages from offset */
1120 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1121 if (ret)
1122 return ret;
1123
1124 truncate_pagecache(inode, offset);
1125
1126 pg_start = offset >> PAGE_CACHE_SHIFT;
1127 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1128 delta = pg_end - pg_start;
1129 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1130
1131 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1132 f2fs_lock_op(sbi);
1133 ret = __exchange_data_block(inode, idx, idx + delta, false);
1134 f2fs_unlock_op(sbi);
1135 if (ret)
1136 break;
1137 }
1138
1139 /* write out all moved pages, if possible */
1140 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1141 truncate_pagecache(inode, offset);
1142
1143 if (!ret)
1144 i_size_write(inode, new_size);
1145 return ret;
1146 }
1147
1148 static int expand_inode_data(struct inode *inode, loff_t offset,
1149 loff_t len, int mode)
1150 {
1151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1152 pgoff_t index, pg_start, pg_end;
1153 loff_t new_size = i_size_read(inode);
1154 loff_t off_start, off_end;
1155 int ret = 0;
1156
1157 f2fs_balance_fs(sbi);
1158
1159 ret = inode_newsize_ok(inode, (len + offset));
1160 if (ret)
1161 return ret;
1162
1163 if (f2fs_has_inline_data(inode)) {
1164 ret = f2fs_convert_inline_inode(inode);
1165 if (ret)
1166 return ret;
1167 }
1168
1169 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1170 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1171
1172 off_start = offset & (PAGE_CACHE_SIZE - 1);
1173 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1174
1175 f2fs_lock_op(sbi);
1176
1177 for (index = pg_start; index <= pg_end; index++) {
1178 struct dnode_of_data dn;
1179
1180 if (index == pg_end && !off_end)
1181 goto noalloc;
1182
1183 set_new_dnode(&dn, inode, NULL, NULL, 0);
1184 ret = f2fs_reserve_block(&dn, index);
1185 if (ret)
1186 break;
1187 noalloc:
1188 if (pg_start == pg_end)
1189 new_size = offset + len;
1190 else if (index == pg_start && off_start)
1191 new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
1192 else if (index == pg_end)
1193 new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
1194 off_end;
1195 else
1196 new_size += PAGE_CACHE_SIZE;
1197 }
1198
1199 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1200 i_size_read(inode) < new_size) {
1201 i_size_write(inode, new_size);
1202 mark_inode_dirty(inode);
1203 update_inode_page(inode);
1204 }
1205 f2fs_unlock_op(sbi);
1206
1207 return ret;
1208 }
1209
1210 static long f2fs_fallocate(struct file *file, int mode,
1211 loff_t offset, loff_t len)
1212 {
1213 struct inode *inode = file_inode(file);
1214 long ret = 0;
1215
1216 /* f2fs only support ->fallocate for regular file */
1217 if (!S_ISREG(inode->i_mode))
1218 return -EINVAL;
1219
1220 if (f2fs_encrypted_inode(inode) &&
1221 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1222 return -EOPNOTSUPP;
1223
1224 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1225 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1226 FALLOC_FL_INSERT_RANGE))
1227 return -EOPNOTSUPP;
1228
1229 mutex_lock(&inode->i_mutex);
1230
1231 if (mode & FALLOC_FL_PUNCH_HOLE) {
1232 if (offset >= inode->i_size)
1233 goto out;
1234
1235 ret = punch_hole(inode, offset, len);
1236 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1237 ret = f2fs_collapse_range(inode, offset, len);
1238 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1239 ret = f2fs_zero_range(inode, offset, len, mode);
1240 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1241 ret = f2fs_insert_range(inode, offset, len);
1242 } else {
1243 ret = expand_inode_data(inode, offset, len, mode);
1244 }
1245
1246 if (!ret) {
1247 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1248 mark_inode_dirty(inode);
1249 }
1250
1251 out:
1252 mutex_unlock(&inode->i_mutex);
1253
1254 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1255 return ret;
1256 }
1257
1258 static int f2fs_release_file(struct inode *inode, struct file *filp)
1259 {
1260 /* some remained atomic pages should discarded */
1261 if (f2fs_is_atomic_file(inode))
1262 commit_inmem_pages(inode, true);
1263 if (f2fs_is_volatile_file(inode)) {
1264 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1265 filemap_fdatawrite(inode->i_mapping);
1266 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1267 }
1268 return 0;
1269 }
1270
1271 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1272 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1273
1274 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1275 {
1276 if (S_ISDIR(mode))
1277 return flags;
1278 else if (S_ISREG(mode))
1279 return flags & F2FS_REG_FLMASK;
1280 else
1281 return flags & F2FS_OTHER_FLMASK;
1282 }
1283
1284 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1285 {
1286 struct inode *inode = file_inode(filp);
1287 struct f2fs_inode_info *fi = F2FS_I(inode);
1288 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1289 return put_user(flags, (int __user *)arg);
1290 }
1291
1292 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1293 {
1294 struct inode *inode = file_inode(filp);
1295 struct f2fs_inode_info *fi = F2FS_I(inode);
1296 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1297 unsigned int oldflags;
1298 int ret;
1299
1300 ret = mnt_want_write_file(filp);
1301 if (ret)
1302 return ret;
1303
1304 if (!inode_owner_or_capable(inode)) {
1305 ret = -EACCES;
1306 goto out;
1307 }
1308
1309 if (get_user(flags, (int __user *)arg)) {
1310 ret = -EFAULT;
1311 goto out;
1312 }
1313
1314 flags = f2fs_mask_flags(inode->i_mode, flags);
1315
1316 mutex_lock(&inode->i_mutex);
1317
1318 oldflags = fi->i_flags;
1319
1320 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1321 if (!capable(CAP_LINUX_IMMUTABLE)) {
1322 mutex_unlock(&inode->i_mutex);
1323 ret = -EPERM;
1324 goto out;
1325 }
1326 }
1327
1328 flags = flags & FS_FL_USER_MODIFIABLE;
1329 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1330 fi->i_flags = flags;
1331 mutex_unlock(&inode->i_mutex);
1332
1333 f2fs_set_inode_flags(inode);
1334 inode->i_ctime = CURRENT_TIME;
1335 mark_inode_dirty(inode);
1336 out:
1337 mnt_drop_write_file(filp);
1338 return ret;
1339 }
1340
1341 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1342 {
1343 struct inode *inode = file_inode(filp);
1344
1345 return put_user(inode->i_generation, (int __user *)arg);
1346 }
1347
1348 static int f2fs_ioc_start_atomic_write(struct file *filp)
1349 {
1350 struct inode *inode = file_inode(filp);
1351 int ret;
1352
1353 if (!inode_owner_or_capable(inode))
1354 return -EACCES;
1355
1356 f2fs_balance_fs(F2FS_I_SB(inode));
1357
1358 if (f2fs_is_atomic_file(inode))
1359 return 0;
1360
1361 ret = f2fs_convert_inline_inode(inode);
1362 if (ret)
1363 return ret;
1364
1365 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1366 return 0;
1367 }
1368
1369 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1370 {
1371 struct inode *inode = file_inode(filp);
1372 int ret;
1373
1374 if (!inode_owner_or_capable(inode))
1375 return -EACCES;
1376
1377 if (f2fs_is_volatile_file(inode))
1378 return 0;
1379
1380 ret = mnt_want_write_file(filp);
1381 if (ret)
1382 return ret;
1383
1384 if (f2fs_is_atomic_file(inode)) {
1385 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1386 ret = commit_inmem_pages(inode, false);
1387 if (ret)
1388 goto err_out;
1389 }
1390
1391 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1392 err_out:
1393 mnt_drop_write_file(filp);
1394 return ret;
1395 }
1396
1397 static int f2fs_ioc_start_volatile_write(struct file *filp)
1398 {
1399 struct inode *inode = file_inode(filp);
1400 int ret;
1401
1402 if (!inode_owner_or_capable(inode))
1403 return -EACCES;
1404
1405 if (f2fs_is_volatile_file(inode))
1406 return 0;
1407
1408 ret = f2fs_convert_inline_inode(inode);
1409 if (ret)
1410 return ret;
1411
1412 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1413 return 0;
1414 }
1415
1416 static int f2fs_ioc_release_volatile_write(struct file *filp)
1417 {
1418 struct inode *inode = file_inode(filp);
1419
1420 if (!inode_owner_or_capable(inode))
1421 return -EACCES;
1422
1423 if (!f2fs_is_volatile_file(inode))
1424 return 0;
1425
1426 if (!f2fs_is_first_block_written(inode))
1427 return truncate_partial_data_page(inode, 0, true);
1428
1429 return punch_hole(inode, 0, F2FS_BLKSIZE);
1430 }
1431
1432 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1433 {
1434 struct inode *inode = file_inode(filp);
1435 int ret;
1436
1437 if (!inode_owner_or_capable(inode))
1438 return -EACCES;
1439
1440 ret = mnt_want_write_file(filp);
1441 if (ret)
1442 return ret;
1443
1444 f2fs_balance_fs(F2FS_I_SB(inode));
1445
1446 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1447 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1448 commit_inmem_pages(inode, true);
1449
1450 mnt_drop_write_file(filp);
1451 return ret;
1452 }
1453
1454 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1455 {
1456 struct inode *inode = file_inode(filp);
1457 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458 struct super_block *sb = sbi->sb;
1459 __u32 in;
1460
1461 if (!capable(CAP_SYS_ADMIN))
1462 return -EPERM;
1463
1464 if (get_user(in, (__u32 __user *)arg))
1465 return -EFAULT;
1466
1467 switch (in) {
1468 case F2FS_GOING_DOWN_FULLSYNC:
1469 sb = freeze_bdev(sb->s_bdev);
1470 if (sb && !IS_ERR(sb)) {
1471 f2fs_stop_checkpoint(sbi);
1472 thaw_bdev(sb->s_bdev, sb);
1473 }
1474 break;
1475 case F2FS_GOING_DOWN_METASYNC:
1476 /* do checkpoint only */
1477 f2fs_sync_fs(sb, 1);
1478 f2fs_stop_checkpoint(sbi);
1479 break;
1480 case F2FS_GOING_DOWN_NOSYNC:
1481 f2fs_stop_checkpoint(sbi);
1482 break;
1483 case F2FS_GOING_DOWN_METAFLUSH:
1484 sync_meta_pages(sbi, META, LONG_MAX);
1485 f2fs_stop_checkpoint(sbi);
1486 break;
1487 default:
1488 return -EINVAL;
1489 }
1490 return 0;
1491 }
1492
1493 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1494 {
1495 struct inode *inode = file_inode(filp);
1496 struct super_block *sb = inode->i_sb;
1497 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1498 struct fstrim_range range;
1499 int ret;
1500
1501 if (!capable(CAP_SYS_ADMIN))
1502 return -EPERM;
1503
1504 if (!blk_queue_discard(q))
1505 return -EOPNOTSUPP;
1506
1507 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1508 sizeof(range)))
1509 return -EFAULT;
1510
1511 range.minlen = max((unsigned int)range.minlen,
1512 q->limits.discard_granularity);
1513 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1514 if (ret < 0)
1515 return ret;
1516
1517 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1518 sizeof(range)))
1519 return -EFAULT;
1520 return 0;
1521 }
1522
1523 static bool uuid_is_nonzero(__u8 u[16])
1524 {
1525 int i;
1526
1527 for (i = 0; i < 16; i++)
1528 if (u[i])
1529 return true;
1530 return false;
1531 }
1532
1533 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1534 {
1535 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1536 struct f2fs_encryption_policy policy;
1537 struct inode *inode = file_inode(filp);
1538
1539 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1540 sizeof(policy)))
1541 return -EFAULT;
1542
1543 return f2fs_process_policy(&policy, inode);
1544 #else
1545 return -EOPNOTSUPP;
1546 #endif
1547 }
1548
1549 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1550 {
1551 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1552 struct f2fs_encryption_policy policy;
1553 struct inode *inode = file_inode(filp);
1554 int err;
1555
1556 err = f2fs_get_policy(inode, &policy);
1557 if (err)
1558 return err;
1559
1560 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1561 sizeof(policy)))
1562 return -EFAULT;
1563 return 0;
1564 #else
1565 return -EOPNOTSUPP;
1566 #endif
1567 }
1568
1569 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1570 {
1571 struct inode *inode = file_inode(filp);
1572 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1573 int err;
1574
1575 if (!f2fs_sb_has_crypto(inode->i_sb))
1576 return -EOPNOTSUPP;
1577
1578 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1579 goto got_it;
1580
1581 err = mnt_want_write_file(filp);
1582 if (err)
1583 return err;
1584
1585 /* update superblock with uuid */
1586 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1587
1588 err = f2fs_commit_super(sbi, false);
1589
1590 mnt_drop_write_file(filp);
1591 if (err) {
1592 /* undo new data */
1593 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1594 return err;
1595 }
1596 got_it:
1597 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1598 16))
1599 return -EFAULT;
1600 return 0;
1601 }
1602
1603 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1604 {
1605 struct inode *inode = file_inode(filp);
1606 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1607 __u32 sync;
1608
1609 if (!capable(CAP_SYS_ADMIN))
1610 return -EPERM;
1611
1612 if (get_user(sync, (__u32 __user *)arg))
1613 return -EFAULT;
1614
1615 if (f2fs_readonly(sbi->sb))
1616 return -EROFS;
1617
1618 if (!sync) {
1619 if (!mutex_trylock(&sbi->gc_mutex))
1620 return -EBUSY;
1621 } else {
1622 mutex_lock(&sbi->gc_mutex);
1623 }
1624
1625 return f2fs_gc(sbi, sync);
1626 }
1627
1628 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1629 {
1630 struct inode *inode = file_inode(filp);
1631 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1632 struct cp_control cpc;
1633
1634 if (!capable(CAP_SYS_ADMIN))
1635 return -EPERM;
1636
1637 if (f2fs_readonly(sbi->sb))
1638 return -EROFS;
1639
1640 cpc.reason = __get_cp_reason(sbi);
1641
1642 mutex_lock(&sbi->gc_mutex);
1643 write_checkpoint(sbi, &cpc);
1644 mutex_unlock(&sbi->gc_mutex);
1645
1646 return 0;
1647 }
1648
1649 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1650 {
1651 switch (cmd) {
1652 case F2FS_IOC_GETFLAGS:
1653 return f2fs_ioc_getflags(filp, arg);
1654 case F2FS_IOC_SETFLAGS:
1655 return f2fs_ioc_setflags(filp, arg);
1656 case F2FS_IOC_GETVERSION:
1657 return f2fs_ioc_getversion(filp, arg);
1658 case F2FS_IOC_START_ATOMIC_WRITE:
1659 return f2fs_ioc_start_atomic_write(filp);
1660 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1661 return f2fs_ioc_commit_atomic_write(filp);
1662 case F2FS_IOC_START_VOLATILE_WRITE:
1663 return f2fs_ioc_start_volatile_write(filp);
1664 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1665 return f2fs_ioc_release_volatile_write(filp);
1666 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1667 return f2fs_ioc_abort_volatile_write(filp);
1668 case F2FS_IOC_SHUTDOWN:
1669 return f2fs_ioc_shutdown(filp, arg);
1670 case FITRIM:
1671 return f2fs_ioc_fitrim(filp, arg);
1672 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1673 return f2fs_ioc_set_encryption_policy(filp, arg);
1674 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1675 return f2fs_ioc_get_encryption_policy(filp, arg);
1676 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1677 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1678 case F2FS_IOC_GARBAGE_COLLECT:
1679 return f2fs_ioc_gc(filp, arg);
1680 case F2FS_IOC_WRITE_CHECKPOINT:
1681 return f2fs_ioc_write_checkpoint(filp, arg);
1682 default:
1683 return -ENOTTY;
1684 }
1685 }
1686
1687 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1688 {
1689 struct inode *inode = file_inode(iocb->ki_filp);
1690
1691 if (f2fs_encrypted_inode(inode) &&
1692 !f2fs_has_encryption_key(inode) &&
1693 f2fs_get_encryption_info(inode))
1694 return -EACCES;
1695
1696 return generic_file_write_iter(iocb, from);
1697 }
1698
1699 #ifdef CONFIG_COMPAT
1700 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1701 {
1702 switch (cmd) {
1703 case F2FS_IOC32_GETFLAGS:
1704 cmd = F2FS_IOC_GETFLAGS;
1705 break;
1706 case F2FS_IOC32_SETFLAGS:
1707 cmd = F2FS_IOC_SETFLAGS;
1708 break;
1709 default:
1710 return -ENOIOCTLCMD;
1711 }
1712 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1713 }
1714 #endif
1715
1716 const struct file_operations f2fs_file_operations = {
1717 .llseek = f2fs_llseek,
1718 .read_iter = generic_file_read_iter,
1719 .write_iter = f2fs_file_write_iter,
1720 .open = f2fs_file_open,
1721 .release = f2fs_release_file,
1722 .mmap = f2fs_file_mmap,
1723 .fsync = f2fs_sync_file,
1724 .fallocate = f2fs_fallocate,
1725 .unlocked_ioctl = f2fs_ioctl,
1726 #ifdef CONFIG_COMPAT
1727 .compat_ioctl = f2fs_compat_ioctl,
1728 #endif
1729 .splice_read = generic_file_splice_read,
1730 .splice_write = iter_file_splice_write,
1731 };
This page took 0.068053 seconds and 5 git commands to generate.