b09fa23abe53fa8cc985d2cd69b82679f7565594
[deliverable/linux.git] / fs / jffs2 / readinode.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: readinode.c,v 1.143 2005/11/07 11:14:41 gleixner Exp $
11 *
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/crc32.h>
19 #include <linux/pagemap.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/compiler.h>
22 #include "nodelist.h"
23
24 /*
25 * Check the data CRC of the node.
26 *
27 * Returns: 0 if the data CRC is correct;
28 * 1 - if incorrect;
29 * error code if an error occured.
30 */
31 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
32 {
33 struct jffs2_raw_node_ref *ref = tn->fn->raw;
34 int err = 0, pointed = 0;
35 struct jffs2_eraseblock *jeb;
36 unsigned char *buffer;
37 uint32_t crc, ofs, len;
38 size_t retlen;
39
40 BUG_ON(tn->csize == 0);
41
42 if (!jffs2_is_writebuffered(c))
43 goto adj_acc;
44
45 /* Calculate how many bytes were already checked */
46 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
47 len = ofs % c->wbuf_pagesize;
48 if (likely(len))
49 len = c->wbuf_pagesize - len;
50
51 if (len >= tn->csize) {
52 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
53 ref_offset(ref), tn->csize, ofs);
54 goto adj_acc;
55 }
56
57 ofs += len;
58 len = tn->csize - len;
59
60 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
61 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
62
63 #ifndef __ECOS
64 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
65 * adding and jffs2_flash_read_end() interface. */
66 if (c->mtd->point) {
67 err = c->mtd->point(c->mtd, ofs, len, &retlen, &buffer);
68 if (!err && retlen < tn->csize) {
69 JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
70 c->mtd->unpoint(c->mtd, buffer, ofs, len);
71 } else if (err)
72 JFFS2_WARNING("MTD point failed: error code %d.\n", err);
73 else
74 pointed = 1; /* succefully pointed to device */
75 }
76 #endif
77
78 if (!pointed) {
79 buffer = kmalloc(len, GFP_KERNEL);
80 if (unlikely(!buffer))
81 return -ENOMEM;
82
83 /* TODO: this is very frequent pattern, make it a separate
84 * routine */
85 err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
86 if (err) {
87 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
88 goto free_out;
89 }
90
91 if (retlen != len) {
92 JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
93 err = -EIO;
94 goto free_out;
95 }
96 }
97
98 /* Continue calculating CRC */
99 crc = crc32(tn->partial_crc, buffer, len);
100 if(!pointed)
101 kfree(buffer);
102 #ifndef __ECOS
103 else
104 c->mtd->unpoint(c->mtd, buffer, ofs, len);
105 #endif
106
107 if (crc != tn->data_crc) {
108 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
109 ofs, tn->data_crc, crc);
110 return 1;
111 }
112
113 adj_acc:
114 jeb = &c->blocks[ref->flash_offset / c->sector_size];
115 len = ref_totlen(c, jeb, ref);
116 /* If it should be REF_NORMAL, it'll get marked as such when
117 we build the fragtree, shortly. No need to worry about GC
118 moving it while it's marked REF_PRISTINE -- GC won't happen
119 till we've finished checking every inode anyway. */
120 ref->flash_offset |= REF_PRISTINE;
121 /*
122 * Mark the node as having been checked and fix the
123 * accounting accordingly.
124 */
125 spin_lock(&c->erase_completion_lock);
126 jeb->used_size += len;
127 jeb->unchecked_size -= len;
128 c->used_size += len;
129 c->unchecked_size -= len;
130 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
131 spin_unlock(&c->erase_completion_lock);
132
133 return 0;
134
135 free_out:
136 if(!pointed)
137 kfree(buffer);
138 #ifndef __ECOS
139 else
140 c->mtd->unpoint(c->mtd, buffer, ofs, len);
141 #endif
142 return err;
143 }
144
145 /*
146 * Helper function for jffs2_add_older_frag_to_fragtree().
147 *
148 * Checks the node if we are in the checking stage.
149 */
150 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
151 {
152 int ret;
153
154 BUG_ON(ref_obsolete(tn->fn->raw));
155
156 /* We only check the data CRC of unchecked nodes */
157 if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
158 return 0;
159
160 dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
161 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
162
163 ret = check_node_data(c, tn);
164 if (unlikely(ret < 0)) {
165 JFFS2_ERROR("check_node_data() returned error: %d.\n",
166 ret);
167 } else if (unlikely(ret > 0)) {
168 dbg_readinode("CRC error, mark it obsolete.\n");
169 jffs2_mark_node_obsolete(c, tn->fn->raw);
170 }
171
172 return ret;
173 }
174
175 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
176 {
177 struct rb_node *next;
178 struct jffs2_tmp_dnode_info *tn = NULL;
179
180 dbg_readinode("root %p, offset %d\n", tn_root, offset);
181
182 next = tn_root->rb_node;
183
184 while (next) {
185 tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
186
187 if (tn->fn->ofs < offset)
188 next = tn->rb.rb_right;
189 else if (tn->fn->ofs >= offset)
190 next = tn->rb.rb_left;
191 else
192 break;
193 }
194
195 return tn;
196 }
197
198
199 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
200 {
201 jffs2_mark_node_obsolete(c, tn->fn->raw);
202 jffs2_free_full_dnode(tn->fn);
203 jffs2_free_tmp_dnode_info(tn);
204 }
205 /*
206 * This function is used when we read an inode. Data nodes arrive in
207 * arbitrary order -- they may be older or newer than the nodes which
208 * are already in the tree. Where overlaps occur, the older node can
209 * be discarded as long as the newer passes the CRC check. We don't
210 * bother to keep track of holes in this rbtree, and neither do we deal
211 * with frags -- we can have multiple entries starting at the same
212 * offset, and the one with the smallest length will come first in the
213 * ordering.
214 *
215 * Returns 0 if the node was inserted
216 * 1 if the node is obsolete (because we can't mark it so yet)
217 * < 0 an if error occurred
218 */
219 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
220 struct jffs2_readinode_info *rii,
221 struct jffs2_tmp_dnode_info *tn)
222 {
223 uint32_t fn_end = tn->fn->ofs + tn->fn->size;
224 struct jffs2_tmp_dnode_info *insert_point = NULL, *this;
225
226 dbg_readinode("insert fragment %#04x-%#04x, ver %u\n", tn->fn->ofs, fn_end, tn->version);
227
228 /* If a node has zero dsize, we only have to keep if it if it might be the
229 node with highest version -- i.e. the one which will end up as f->metadata.
230 Note that such nodes won't be REF_UNCHECKED since there are no data to
231 check anyway. */
232 if (!tn->fn->size) {
233 if (rii->mdata_tn) {
234 /* We had a candidate mdata node already */
235 dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
236 jffs2_kill_tn(c, rii->mdata_tn);
237 }
238 rii->mdata_tn = tn;
239 dbg_readinode("keep new mdata with ver %d\n", tn->version);
240 return 0;
241 }
242
243 /* Find the earliest node which _may_ be relevant to this one */
244 this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
245 if (!this) {
246 /* First addition to empty tree. $DEITY how I love the easy cases */
247 rb_link_node(&tn->rb, NULL, &rii->tn_root.rb_node);
248 rb_insert_color(&tn->rb, &rii->tn_root);
249 dbg_readinode("keep new frag\n");
250 return 0;
251 }
252
253 /* If we add a new node it'll be somewhere under here. */
254 insert_point = this;
255
256 /* If the node is coincident with another at a lower address,
257 back up until the other node is found. It may be relevant */
258 while (tn->overlapped)
259 tn = tn_prev(tn);
260
261 dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
262
263 while (this) {
264 if (this->fn->ofs > fn_end)
265 break;
266 dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
267 this->version, this->fn->ofs, this->fn->size);
268
269 if (this->version == tn->version) {
270 /* Version number collision means REF_PRISTINE GC. Accept either of them
271 as long as the CRC is correct. Check the one we have already... */
272 if (!check_tn_node(c, this)) {
273 /* The one we already had was OK. Keep it and throw away the new one */
274 dbg_readinode("Like old node. Throw away new\n");
275 jffs2_kill_tn(c, tn);
276 return 0;
277 } else {
278 /* Who cares if the new one is good; keep it for now anyway. */
279 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
280 /* Same overlapping from in front and behind */
281 tn->overlapped = this->overlapped;
282 jffs2_kill_tn(c, this);
283 dbg_readinode("Like new node. Throw away old\n");
284 return 0;
285 }
286 }
287 if (this->version < tn->version &&
288 this->fn->ofs >= tn->fn->ofs &&
289 this->fn->ofs + this->fn->size <= fn_end) {
290 /* New node entirely overlaps 'this' */
291 if (check_tn_node(c, tn)) {
292 dbg_readinode("new node bad CRC\n");
293 jffs2_kill_tn(c, tn);
294 return 0;
295 }
296 /* ... and is good. Kill 'this'... */
297 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
298 tn->overlapped = this->overlapped;
299 jffs2_kill_tn(c, this);
300 /* ... and any subsequent nodes which are also overlapped */
301 this = tn_next(tn);
302 while (this && this->fn->ofs + this->fn->size < fn_end) {
303 struct jffs2_tmp_dnode_info *next = tn_next(this);
304 if (this->version < tn->version) {
305 tn_erase(this, &rii->tn_root);
306 dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
307 this->version, this->fn->ofs,
308 this->fn->ofs+this->fn->size);
309 jffs2_kill_tn(c, this);
310 }
311 this = next;
312 }
313 dbg_readinode("Done inserting new\n");
314 return 0;
315 }
316 if (this->version > tn->version &&
317 this->fn->ofs <= tn->fn->ofs &&
318 this->fn->ofs+this->fn->size >= fn_end) {
319 /* New node entirely overlapped by 'this' */
320 if (!check_tn_node(c, this)) {
321 dbg_readinode("Good CRC on old node. Kill new\n");
322 jffs2_kill_tn(c, tn);
323 return 0;
324 }
325 /* ... but 'this' was bad. Replace it... */
326 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
327 dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
328 jffs2_kill_tn(c, this);
329 return 0;
330 }
331 /* We want to be inserted under the last node which is
332 either at a lower offset _or_ has a smaller range */
333 if (this->fn->ofs < tn->fn->ofs ||
334 (this->fn->ofs == tn->fn->ofs &&
335 this->fn->size <= tn->fn->size))
336 insert_point = this;
337
338 this = tn_next(this);
339 }
340 dbg_readinode("insert_point %p, ver %d, 0x%x-0x%x, ov %d\n",
341 insert_point, insert_point->version, insert_point->fn->ofs,
342 insert_point->fn->ofs+insert_point->fn->size,
343 insert_point->overlapped);
344 /* We neither completely obsoleted nor were completely
345 obsoleted by an earlier node. Insert under insert_point */
346 {
347 struct rb_node *parent = &insert_point->rb;
348 struct rb_node **link = &parent;
349
350 while (*link) {
351 parent = *link;
352 insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
353 if (tn->fn->ofs > insert_point->fn->ofs)
354 link = &insert_point->rb.rb_right;
355 else if (tn->fn->ofs < insert_point->fn->ofs ||
356 tn->fn->size < insert_point->fn->size)
357 link = &insert_point->rb.rb_left;
358 else
359 link = &insert_point->rb.rb_right;
360 }
361 rb_link_node(&tn->rb, &insert_point->rb, link);
362 rb_insert_color(&tn->rb, &rii->tn_root);
363 }
364 /* If there's anything behind that overlaps us, note it */
365 this = tn_prev(tn);
366 if (this) {
367 while (1) {
368 if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
369 dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
370 this, this->version, this->fn->ofs,
371 this->fn->ofs+this->fn->size);
372 tn->overlapped = 1;
373 break;
374 }
375 if (!this->overlapped)
376 break;
377 this = tn_prev(this);
378 }
379 }
380
381 /* If the new node overlaps anything ahead, note it */
382 this = tn_next(tn);
383 while (this && this->fn->ofs < fn_end) {
384 this->overlapped = 1;
385 dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
386 this->version, this->fn->ofs,
387 this->fn->ofs+this->fn->size);
388 this = tn_next(this);
389 }
390 return 0;
391 }
392
393 /* Trivial function to remove the last node in the tree. Which by definition
394 has no right-hand -- so can be removed just by making its only child (if
395 any) take its place under its parent. */
396 static void eat_last(struct rb_root *root, struct rb_node *node)
397 {
398 struct rb_node *parent = rb_parent(node);
399 struct rb_node **link;
400
401 /* LAST! */
402 BUG_ON(node->rb_right);
403
404 if (!parent)
405 link = &root->rb_node;
406 else if (node == parent->rb_left)
407 link = &parent->rb_left;
408 else
409 link = &parent->rb_right;
410
411 *link = node->rb_left;
412 /* Colour doesn't matter now. Only the parent pointer. */
413 if (node->rb_left)
414 node->rb_left->rb_parent_color = node->rb_parent_color;
415 }
416
417 /* We put this in reverse order, so we can just use eat_last */
418 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
419 {
420 struct rb_node **link = &ver_root->rb_node;
421 struct rb_node *parent = NULL;
422 struct jffs2_tmp_dnode_info *this_tn;
423
424 while (*link) {
425 parent = *link;
426 this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
427
428 if (tn->version > this_tn->version)
429 link = &parent->rb_left;
430 else
431 link = &parent->rb_right;
432 }
433 dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
434 rb_link_node(&tn->rb, parent, link);
435 rb_insert_color(&tn->rb, ver_root);
436 }
437
438 /* Build final, normal fragtree from tn tree. It doesn't matter which order
439 we add nodes to the real fragtree, as long as they don't overlap. And
440 having thrown away the majority of overlapped nodes as we went, there
441 really shouldn't be many sets of nodes which do overlap. If we start at
442 the end, we can use the overlap markers -- we can just eat nodes which
443 aren't overlapped, and when we encounter nodes which _do_ overlap we
444 sort them all into a temporary tree in version order before replaying them. */
445 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
446 struct jffs2_inode_info *f,
447 struct jffs2_readinode_info *rii)
448 {
449 struct jffs2_tmp_dnode_info *pen, *last, *this;
450 struct rb_root ver_root = RB_ROOT;
451 uint32_t high_ver = 0;
452
453 if (rii->mdata_tn) {
454 dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
455 high_ver = rii->mdata_tn->version;
456 rii->latest_ref = rii->mdata_tn->fn->raw;
457 }
458 #ifdef JFFS2_DBG_READINODE_MESSAGES
459 this = tn_last(&rii->tn_root);
460 while (this) {
461 dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
462 this->fn->ofs+this->fn->size, this->overlapped);
463 this = tn_prev(this);
464 }
465 #endif
466 pen = tn_last(&rii->tn_root);
467 while ((last = pen)) {
468 pen = tn_prev(last);
469
470 eat_last(&rii->tn_root, &last->rb);
471 ver_insert(&ver_root, last);
472
473 if (unlikely(last->overlapped))
474 continue;
475
476 /* Now we have a bunch of nodes in reverse version
477 order, in the tree at ver_root. Most of the time,
478 there'll actually be only one node in the 'tree',
479 in fact. */
480 this = tn_last(&ver_root);
481
482 while (this) {
483 struct jffs2_tmp_dnode_info *vers_next;
484 int ret;
485 vers_next = tn_prev(this);
486 eat_last(&ver_root, &this->rb);
487 if (check_tn_node(c, this)) {
488 dbg_readinode("node ver %x, 0x%x-0x%x failed CRC\n",
489 this->version, this->fn->ofs,
490 this->fn->ofs+this->fn->size);
491 jffs2_kill_tn(c, this);
492 } else {
493 if (this->version > high_ver) {
494 /* Note that this is different from the other
495 highest_version, because this one is only
496 counting _valid_ nodes which could give the
497 latest inode metadata */
498 high_ver = this->version;
499 rii->latest_ref = this->fn->raw;
500 }
501 dbg_readinode("Add %p (v %x, 0x%x-0x%x, ov %d) to fragtree\n",
502 this, this->version, this->fn->ofs,
503 this->fn->ofs+this->fn->size, this->overlapped);
504
505 ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
506 if (ret) {
507 /* Free the nodes in vers_root; let the caller
508 deal with the rest */
509 JFFS2_ERROR("Add node to tree failed %d\n", ret);
510 while (1) {
511 vers_next = tn_prev(this);
512 if (check_tn_node(c, this))
513 jffs2_mark_node_obsolete(c, this->fn->raw);
514 jffs2_free_full_dnode(this->fn);
515 jffs2_free_tmp_dnode_info(this);
516 this = vers_next;
517 if (!this)
518 break;
519 eat_last(&ver_root, &vers_next->rb);
520 }
521 return ret;
522 }
523 jffs2_free_tmp_dnode_info(this);
524 }
525 this = vers_next;
526 }
527 }
528 return 0;
529 }
530
531 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
532 {
533 struct rb_node *this;
534 struct jffs2_tmp_dnode_info *tn;
535
536 this = list->rb_node;
537
538 /* Now at bottom of tree */
539 while (this) {
540 if (this->rb_left)
541 this = this->rb_left;
542 else if (this->rb_right)
543 this = this->rb_right;
544 else {
545 tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
546 jffs2_free_full_dnode(tn->fn);
547 jffs2_free_tmp_dnode_info(tn);
548
549 this = rb_parent(this);
550 if (!this)
551 break;
552
553 if (this->rb_left == &tn->rb)
554 this->rb_left = NULL;
555 else if (this->rb_right == &tn->rb)
556 this->rb_right = NULL;
557 else BUG();
558 }
559 }
560 list->rb_node = NULL;
561 }
562
563 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
564 {
565 struct jffs2_full_dirent *next;
566
567 while (fd) {
568 next = fd->next;
569 jffs2_free_full_dirent(fd);
570 fd = next;
571 }
572 }
573
574 /* Returns first valid node after 'ref'. May return 'ref' */
575 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
576 {
577 while (ref && ref->next_in_ino) {
578 if (!ref_obsolete(ref))
579 return ref;
580 dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
581 ref = ref->next_in_ino;
582 }
583 return NULL;
584 }
585
586 /*
587 * Helper function for jffs2_get_inode_nodes().
588 * It is called every time an directory entry node is found.
589 *
590 * Returns: 0 on succes;
591 * 1 if the node should be marked obsolete;
592 * negative error code on failure.
593 */
594 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
595 struct jffs2_raw_dirent *rd, size_t read,
596 struct jffs2_readinode_info *rii)
597 {
598 struct jffs2_full_dirent *fd;
599 uint32_t crc;
600
601 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
602 BUG_ON(ref_obsolete(ref));
603
604 crc = crc32(0, rd, sizeof(*rd) - 8);
605 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
606 JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
607 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
608 jffs2_mark_node_obsolete(c, ref);
609 return 0;
610 }
611
612 /* If we've never checked the CRCs on this node, check them now */
613 if (ref_flags(ref) == REF_UNCHECKED) {
614 struct jffs2_eraseblock *jeb;
615 int len;
616
617 /* Sanity check */
618 if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
619 JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
620 ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
621 jffs2_mark_node_obsolete(c, ref);
622 return 0;
623 }
624
625 jeb = &c->blocks[ref->flash_offset / c->sector_size];
626 len = ref_totlen(c, jeb, ref);
627
628 spin_lock(&c->erase_completion_lock);
629 jeb->used_size += len;
630 jeb->unchecked_size -= len;
631 c->used_size += len;
632 c->unchecked_size -= len;
633 ref->flash_offset = ref_offset(ref) | REF_PRISTINE;
634 spin_unlock(&c->erase_completion_lock);
635 }
636
637 fd = jffs2_alloc_full_dirent(rd->nsize + 1);
638 if (unlikely(!fd))
639 return -ENOMEM;
640
641 fd->raw = ref;
642 fd->version = je32_to_cpu(rd->version);
643 fd->ino = je32_to_cpu(rd->ino);
644 fd->type = rd->type;
645
646 if (fd->version > rii->highest_version)
647 rii->highest_version = fd->version;
648
649 /* Pick out the mctime of the latest dirent */
650 if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
651 rii->mctime_ver = fd->version;
652 rii->latest_mctime = je32_to_cpu(rd->mctime);
653 }
654
655 /*
656 * Copy as much of the name as possible from the raw
657 * dirent we've already read from the flash.
658 */
659 if (read > sizeof(*rd))
660 memcpy(&fd->name[0], &rd->name[0],
661 min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
662
663 /* Do we need to copy any more of the name directly from the flash? */
664 if (rd->nsize + sizeof(*rd) > read) {
665 /* FIXME: point() */
666 int err;
667 int already = read - sizeof(*rd);
668
669 err = jffs2_flash_read(c, (ref_offset(ref)) + read,
670 rd->nsize - already, &read, &fd->name[already]);
671 if (unlikely(read != rd->nsize - already) && likely(!err))
672 return -EIO;
673
674 if (unlikely(err)) {
675 JFFS2_ERROR("read remainder of name: error %d\n", err);
676 jffs2_free_full_dirent(fd);
677 return -EIO;
678 }
679 }
680
681 fd->nhash = full_name_hash(fd->name, rd->nsize);
682 fd->next = NULL;
683 fd->name[rd->nsize] = '\0';
684
685 /*
686 * Wheee. We now have a complete jffs2_full_dirent structure, with
687 * the name in it and everything. Link it into the list
688 */
689 jffs2_add_fd_to_list(c, fd, &rii->fds);
690
691 return 0;
692 }
693
694 /*
695 * Helper function for jffs2_get_inode_nodes().
696 * It is called every time an inode node is found.
697 *
698 * Returns: 0 on success;
699 * 1 if the node should be marked obsolete;
700 * negative error code on failure.
701 */
702 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
703 struct jffs2_raw_inode *rd, int rdlen,
704 struct jffs2_readinode_info *rii)
705 {
706 struct jffs2_tmp_dnode_info *tn;
707 uint32_t len, csize;
708 int ret = 1;
709 uint32_t crc;
710
711 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
712 BUG_ON(ref_obsolete(ref));
713
714 crc = crc32(0, rd, sizeof(*rd) - 8);
715 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
716 JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
717 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
718 jffs2_mark_node_obsolete(c, ref);
719 return 0;
720 }
721
722 tn = jffs2_alloc_tmp_dnode_info();
723 if (!tn) {
724 JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
725 return -ENOMEM;
726 }
727
728 tn->partial_crc = 0;
729 csize = je32_to_cpu(rd->csize);
730
731 /* If we've never checked the CRCs on this node, check them now */
732 if (ref_flags(ref) == REF_UNCHECKED) {
733
734 /* Sanity checks */
735 if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
736 unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
737 JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
738 jffs2_dbg_dump_node(c, ref_offset(ref));
739 goto free_out;
740 }
741
742 if (jffs2_is_writebuffered(c) && csize != 0) {
743 /* At this point we are supposed to check the data CRC
744 * of our unchecked node. But thus far, we do not
745 * know whether the node is valid or obsolete. To
746 * figure this out, we need to walk all the nodes of
747 * the inode and build the inode fragtree. We don't
748 * want to spend time checking data of nodes which may
749 * later be found to be obsolete. So we put off the full
750 * data CRC checking until we have read all the inode
751 * nodes and have started building the fragtree.
752 *
753 * The fragtree is being built starting with nodes
754 * having the highest version number, so we'll be able
755 * to detect whether a node is valid (i.e., it is not
756 * overlapped by a node with higher version) or not.
757 * And we'll be able to check only those nodes, which
758 * are not obsolete.
759 *
760 * Of course, this optimization only makes sense in case
761 * of NAND flashes (or other flashes whith
762 * !jffs2_can_mark_obsolete()), since on NOR flashes
763 * nodes are marked obsolete physically.
764 *
765 * Since NAND flashes (or other flashes with
766 * jffs2_is_writebuffered(c)) are anyway read by
767 * fractions of c->wbuf_pagesize, and we have just read
768 * the node header, it is likely that the starting part
769 * of the node data is also read when we read the
770 * header. So we don't mind to check the CRC of the
771 * starting part of the data of the node now, and check
772 * the second part later (in jffs2_check_node_data()).
773 * Of course, we will not need to re-read and re-check
774 * the NAND page which we have just read. This is why we
775 * read the whole NAND page at jffs2_get_inode_nodes(),
776 * while we needed only the node header.
777 */
778 unsigned char *buf;
779
780 /* 'buf' will point to the start of data */
781 buf = (unsigned char *)rd + sizeof(*rd);
782 /* len will be the read data length */
783 len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
784 tn->partial_crc = crc32(0, buf, len);
785
786 dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
787
788 /* If we actually calculated the whole data CRC
789 * and it is wrong, drop the node. */
790 if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
791 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
792 ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
793 goto free_out;
794 }
795
796 } else if (csize == 0) {
797 /*
798 * We checked the header CRC. If the node has no data, adjust
799 * the space accounting now. For other nodes this will be done
800 * later either when the node is marked obsolete or when its
801 * data is checked.
802 */
803 struct jffs2_eraseblock *jeb;
804
805 dbg_readinode("the node has no data.\n");
806 jeb = &c->blocks[ref->flash_offset / c->sector_size];
807 len = ref_totlen(c, jeb, ref);
808
809 spin_lock(&c->erase_completion_lock);
810 jeb->used_size += len;
811 jeb->unchecked_size -= len;
812 c->used_size += len;
813 c->unchecked_size -= len;
814 ref->flash_offset = ref_offset(ref) | REF_NORMAL;
815 spin_unlock(&c->erase_completion_lock);
816 }
817 }
818
819 tn->fn = jffs2_alloc_full_dnode();
820 if (!tn->fn) {
821 JFFS2_ERROR("alloc fn failed\n");
822 ret = -ENOMEM;
823 goto free_out;
824 }
825
826 tn->version = je32_to_cpu(rd->version);
827 tn->fn->ofs = je32_to_cpu(rd->offset);
828 tn->data_crc = je32_to_cpu(rd->data_crc);
829 tn->csize = csize;
830 tn->fn->raw = ref;
831 tn->overlapped = 0;
832
833 if (tn->version > rii->highest_version)
834 rii->highest_version = tn->version;
835
836 /* There was a bug where we wrote hole nodes out with
837 csize/dsize swapped. Deal with it */
838 if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
839 tn->fn->size = csize;
840 else // normal case...
841 tn->fn->size = je32_to_cpu(rd->dsize);
842
843 dbg_readinode("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
844 ref_offset(ref), je32_to_cpu(rd->version), je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
845
846 ret = jffs2_add_tn_to_tree(c, rii, tn);
847
848 if (ret) {
849 jffs2_free_full_dnode(tn->fn);
850 free_out:
851 jffs2_free_tmp_dnode_info(tn);
852 return ret;
853 }
854 #ifdef JFFS2_DBG_READINODE_MESSAGES
855 dbg_readinode("After adding ver %d:\n", tn->version);
856 tn = tn_first(&rii->tn_root);
857 while (tn) {
858 dbg_readinode("%p: v %d r 0x%x-0x%x ov %d\n",
859 tn, tn->version, tn->fn->ofs,
860 tn->fn->ofs+tn->fn->size, tn->overlapped);
861 tn = tn_next(tn);
862 }
863 #endif
864 return 0;
865 }
866
867 /*
868 * Helper function for jffs2_get_inode_nodes().
869 * It is called every time an unknown node is found.
870 *
871 * Returns: 0 on success;
872 * 1 if the node should be marked obsolete;
873 * negative error code on failure.
874 */
875 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
876 {
877 /* We don't mark unknown nodes as REF_UNCHECKED */
878 if (ref_flags(ref) == REF_UNCHECKED) {
879 JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
880 ref_offset(ref));
881 JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
882 je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
883 je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
884 jffs2_mark_node_obsolete(c, ref);
885 return 0;
886 }
887
888 un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
889
890 switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
891
892 case JFFS2_FEATURE_INCOMPAT:
893 JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
894 je16_to_cpu(un->nodetype), ref_offset(ref));
895 /* EEP */
896 BUG();
897 break;
898
899 case JFFS2_FEATURE_ROCOMPAT:
900 JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
901 je16_to_cpu(un->nodetype), ref_offset(ref));
902 BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
903 break;
904
905 case JFFS2_FEATURE_RWCOMPAT_COPY:
906 JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
907 je16_to_cpu(un->nodetype), ref_offset(ref));
908 break;
909
910 case JFFS2_FEATURE_RWCOMPAT_DELETE:
911 JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
912 je16_to_cpu(un->nodetype), ref_offset(ref));
913 jffs2_mark_node_obsolete(c, ref);
914 return 0;
915 }
916
917 return 0;
918 }
919
920 /*
921 * Helper function for jffs2_get_inode_nodes().
922 * The function detects whether more data should be read and reads it if yes.
923 *
924 * Returns: 0 on succes;
925 * negative error code on failure.
926 */
927 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
928 int needed_len, int *rdlen, unsigned char *buf)
929 {
930 int err, to_read = needed_len - *rdlen;
931 size_t retlen;
932 uint32_t offs;
933
934 if (jffs2_is_writebuffered(c)) {
935 int rem = to_read % c->wbuf_pagesize;
936
937 if (rem)
938 to_read += c->wbuf_pagesize - rem;
939 }
940
941 /* We need to read more data */
942 offs = ref_offset(ref) + *rdlen;
943
944 dbg_readinode("read more %d bytes\n", to_read);
945
946 err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
947 if (err) {
948 JFFS2_ERROR("can not read %d bytes from 0x%08x, "
949 "error code: %d.\n", to_read, offs, err);
950 return err;
951 }
952
953 if (retlen < to_read) {
954 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
955 offs, retlen, to_read);
956 return -EIO;
957 }
958
959 *rdlen += to_read;
960 return 0;
961 }
962
963 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
964 with this ino. Perform a preliminary ordering on data nodes, throwing away
965 those which are completely obsoleted by newer ones. The naïve approach we
966 use to take of just returning them _all_ in version order will cause us to
967 run out of memory in certain degenerate cases. */
968 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
969 struct jffs2_readinode_info *rii)
970 {
971 struct jffs2_raw_node_ref *ref, *valid_ref;
972 unsigned char *buf = NULL;
973 union jffs2_node_union *node;
974 size_t retlen;
975 int len, err;
976
977 rii->mctime_ver = 0;
978
979 dbg_readinode("ino #%u\n", f->inocache->ino);
980
981 /* FIXME: in case of NOR and available ->point() this
982 * needs to be fixed. */
983 len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
984 buf = kmalloc(len, GFP_KERNEL);
985 if (!buf)
986 return -ENOMEM;
987
988 spin_lock(&c->erase_completion_lock);
989 valid_ref = jffs2_first_valid_node(f->inocache->nodes);
990 if (!valid_ref && f->inocache->ino != 1)
991 JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
992 while (valid_ref) {
993 /* We can hold a pointer to a non-obsolete node without the spinlock,
994 but _obsolete_ nodes may disappear at any time, if the block
995 they're in gets erased. So if we mark 'ref' obsolete while we're
996 not holding the lock, it can go away immediately. For that reason,
997 we find the next valid node first, before processing 'ref'.
998 */
999 ref = valid_ref;
1000 valid_ref = jffs2_first_valid_node(ref->next_in_ino);
1001 spin_unlock(&c->erase_completion_lock);
1002
1003 cond_resched();
1004
1005 /*
1006 * At this point we don't know the type of the node we're going
1007 * to read, so we do not know the size of its header. In order
1008 * to minimize the amount of flash IO we assume the header is
1009 * of size = JFFS2_MIN_NODE_HEADER.
1010 */
1011 len = JFFS2_MIN_NODE_HEADER;
1012 if (jffs2_is_writebuffered(c)) {
1013 int end, rem;
1014
1015 /*
1016 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1017 * but this flash has some minimal I/O unit. It is
1018 * possible that we'll need to read more soon, so read
1019 * up to the next min. I/O unit, in order not to
1020 * re-read the same min. I/O unit twice.
1021 */
1022 end = ref_offset(ref) + len;
1023 rem = end % c->wbuf_pagesize;
1024 if (rem)
1025 end += c->wbuf_pagesize - rem;
1026 len = end - ref_offset(ref);
1027 }
1028
1029 dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1030
1031 /* FIXME: point() */
1032 err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1033 if (err) {
1034 JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err);
1035 goto free_out;
1036 }
1037
1038 if (retlen < len) {
1039 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1040 err = -EIO;
1041 goto free_out;
1042 }
1043
1044 node = (union jffs2_node_union *)buf;
1045
1046 /* No need to mask in the valid bit; it shouldn't be invalid */
1047 if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1048 JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1049 ref_offset(ref), je16_to_cpu(node->u.magic),
1050 je16_to_cpu(node->u.nodetype),
1051 je32_to_cpu(node->u.totlen),
1052 je32_to_cpu(node->u.hdr_crc));
1053 jffs2_dbg_dump_node(c, ref_offset(ref));
1054 jffs2_mark_node_obsolete(c, ref);
1055 goto cont;
1056 }
1057 if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1058 /* Not a JFFS2 node, whinge and move on */
1059 JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1060 je16_to_cpu(node->u.magic), ref_offset(ref));
1061 jffs2_mark_node_obsolete(c, ref);
1062 goto cont;
1063 }
1064
1065 switch (je16_to_cpu(node->u.nodetype)) {
1066
1067 case JFFS2_NODETYPE_DIRENT:
1068
1069 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent)) {
1070 err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1071 if (unlikely(err))
1072 goto free_out;
1073 }
1074
1075 err = read_direntry(c, ref, &node->d, retlen, rii);
1076 if (unlikely(err))
1077 goto free_out;
1078
1079 break;
1080
1081 case JFFS2_NODETYPE_INODE:
1082
1083 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode)) {
1084 err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1085 if (unlikely(err))
1086 goto free_out;
1087 }
1088
1089 err = read_dnode(c, ref, &node->i, len, rii);
1090 if (unlikely(err))
1091 goto free_out;
1092
1093 break;
1094
1095 default:
1096 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node)) {
1097 err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1098 if (unlikely(err))
1099 goto free_out;
1100 }
1101
1102 err = read_unknown(c, ref, &node->u);
1103 if (err == 1) {
1104 jffs2_mark_node_obsolete(c, ref);
1105 break;
1106 } else if (unlikely(err))
1107 goto free_out;
1108
1109 }
1110 cont:
1111 spin_lock(&c->erase_completion_lock);
1112 }
1113
1114 spin_unlock(&c->erase_completion_lock);
1115 kfree(buf);
1116
1117 f->highest_version = rii->highest_version;
1118
1119 dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1120 f->inocache->ino, rii->highest_version, rii->latest_mctime,
1121 rii->mctime_ver);
1122 return 0;
1123
1124 free_out:
1125 jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1126 jffs2_free_full_dirent_list(rii->fds);
1127 rii->fds = NULL;
1128 kfree(buf);
1129 return err;
1130 }
1131
1132 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1133 struct jffs2_inode_info *f,
1134 struct jffs2_raw_inode *latest_node)
1135 {
1136 struct jffs2_readinode_info rii;
1137 uint32_t crc;
1138 size_t retlen;
1139 int ret;
1140
1141 dbg_readinode("ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink);
1142
1143 memset(&rii, 0, sizeof(rii));
1144
1145 /* Grab all nodes relevant to this ino */
1146 ret = jffs2_get_inode_nodes(c, f, &rii);
1147
1148 if (ret) {
1149 JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1150 if (f->inocache->state == INO_STATE_READING)
1151 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1152 return ret;
1153 }
1154
1155 ret = jffs2_build_inode_fragtree(c, f, &rii);
1156 if (ret) {
1157 JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1158 f->inocache->ino, ret);
1159 if (f->inocache->state == INO_STATE_READING)
1160 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1161 jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1162 /* FIXME: We could at least crc-check them all */
1163 if (rii.mdata_tn) {
1164 jffs2_free_full_dnode(rii.mdata_tn->fn);
1165 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1166 rii.mdata_tn = NULL;
1167 }
1168 return ret;
1169 }
1170
1171 if (rii.mdata_tn) {
1172 if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1173 f->metadata = rii.mdata_tn->fn;
1174 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1175 } else {
1176 jffs2_kill_tn(c, rii.mdata_tn);
1177 }
1178 rii.mdata_tn = NULL;
1179 }
1180
1181 f->dents = rii.fds;
1182
1183 jffs2_dbg_fragtree_paranoia_check_nolock(f);
1184
1185 if (unlikely(!rii.latest_ref)) {
1186 /* No data nodes for this inode. */
1187 if (f->inocache->ino != 1) {
1188 JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1189 if (!rii.fds) {
1190 if (f->inocache->state == INO_STATE_READING)
1191 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1192 return -EIO;
1193 }
1194 JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1195 }
1196 latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1197 latest_node->version = cpu_to_je32(0);
1198 latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1199 latest_node->isize = cpu_to_je32(0);
1200 latest_node->gid = cpu_to_je16(0);
1201 latest_node->uid = cpu_to_je16(0);
1202 if (f->inocache->state == INO_STATE_READING)
1203 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1204 return 0;
1205 }
1206
1207 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1208 if (ret || retlen != sizeof(*latest_node)) {
1209 JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1210 ret, retlen, sizeof(*latest_node));
1211 /* FIXME: If this fails, there seems to be a memory leak. Find it. */
1212 up(&f->sem);
1213 jffs2_do_clear_inode(c, f);
1214 return ret?ret:-EIO;
1215 }
1216
1217 crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1218 if (crc != je32_to_cpu(latest_node->node_crc)) {
1219 JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1220 f->inocache->ino, ref_offset(rii.latest_ref));
1221 up(&f->sem);
1222 jffs2_do_clear_inode(c, f);
1223 return -EIO;
1224 }
1225
1226 switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1227 case S_IFDIR:
1228 if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1229 /* The times in the latest_node are actually older than
1230 mctime in the latest dirent. Cheat. */
1231 latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1232 }
1233 break;
1234
1235
1236 case S_IFREG:
1237 /* If it was a regular file, truncate it to the latest node's isize */
1238 jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1239 break;
1240
1241 case S_IFLNK:
1242 /* Hack to work around broken isize in old symlink code.
1243 Remove this when dwmw2 comes to his senses and stops
1244 symlinks from being an entirely gratuitous special
1245 case. */
1246 if (!je32_to_cpu(latest_node->isize))
1247 latest_node->isize = latest_node->dsize;
1248
1249 if (f->inocache->state != INO_STATE_CHECKING) {
1250 /* Symlink's inode data is the target path. Read it and
1251 * keep in RAM to facilitate quick follow symlink
1252 * operation. */
1253 f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
1254 if (!f->target) {
1255 JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize));
1256 up(&f->sem);
1257 jffs2_do_clear_inode(c, f);
1258 return -ENOMEM;
1259 }
1260
1261 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1262 je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
1263
1264 if (ret || retlen != je32_to_cpu(latest_node->csize)) {
1265 if (retlen != je32_to_cpu(latest_node->csize))
1266 ret = -EIO;
1267 kfree(f->target);
1268 f->target = NULL;
1269 up(&f->sem);
1270 jffs2_do_clear_inode(c, f);
1271 return -ret;
1272 }
1273
1274 f->target[je32_to_cpu(latest_node->csize)] = '\0';
1275 dbg_readinode("symlink's target '%s' cached\n", f->target);
1276 }
1277
1278 /* fall through... */
1279
1280 case S_IFBLK:
1281 case S_IFCHR:
1282 /* Certain inode types should have only one data node, and it's
1283 kept as the metadata node */
1284 if (f->metadata) {
1285 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1286 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1287 up(&f->sem);
1288 jffs2_do_clear_inode(c, f);
1289 return -EIO;
1290 }
1291 if (!frag_first(&f->fragtree)) {
1292 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1293 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1294 up(&f->sem);
1295 jffs2_do_clear_inode(c, f);
1296 return -EIO;
1297 }
1298 /* ASSERT: f->fraglist != NULL */
1299 if (frag_next(frag_first(&f->fragtree))) {
1300 JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1301 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1302 /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1303 up(&f->sem);
1304 jffs2_do_clear_inode(c, f);
1305 return -EIO;
1306 }
1307 /* OK. We're happy */
1308 f->metadata = frag_first(&f->fragtree)->node;
1309 jffs2_free_node_frag(frag_first(&f->fragtree));
1310 f->fragtree = RB_ROOT;
1311 break;
1312 }
1313 if (f->inocache->state == INO_STATE_READING)
1314 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1315
1316 return 0;
1317 }
1318
1319 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
1320 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1321 uint32_t ino, struct jffs2_raw_inode *latest_node)
1322 {
1323 dbg_readinode("read inode #%u\n", ino);
1324
1325 retry_inocache:
1326 spin_lock(&c->inocache_lock);
1327 f->inocache = jffs2_get_ino_cache(c, ino);
1328
1329 if (f->inocache) {
1330 /* Check its state. We may need to wait before we can use it */
1331 switch(f->inocache->state) {
1332 case INO_STATE_UNCHECKED:
1333 case INO_STATE_CHECKEDABSENT:
1334 f->inocache->state = INO_STATE_READING;
1335 break;
1336
1337 case INO_STATE_CHECKING:
1338 case INO_STATE_GC:
1339 /* If it's in either of these states, we need
1340 to wait for whoever's got it to finish and
1341 put it back. */
1342 dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1343 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1344 goto retry_inocache;
1345
1346 case INO_STATE_READING:
1347 case INO_STATE_PRESENT:
1348 /* Eep. This should never happen. It can
1349 happen if Linux calls read_inode() again
1350 before clear_inode() has finished though. */
1351 JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1352 /* Fail. That's probably better than allowing it to succeed */
1353 f->inocache = NULL;
1354 break;
1355
1356 default:
1357 BUG();
1358 }
1359 }
1360 spin_unlock(&c->inocache_lock);
1361
1362 if (!f->inocache && ino == 1) {
1363 /* Special case - no root inode on medium */
1364 f->inocache = jffs2_alloc_inode_cache();
1365 if (!f->inocache) {
1366 JFFS2_ERROR("cannot allocate inocache for root inode\n");
1367 return -ENOMEM;
1368 }
1369 dbg_readinode("creating inocache for root inode\n");
1370 memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1371 f->inocache->ino = f->inocache->nlink = 1;
1372 f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1373 f->inocache->state = INO_STATE_READING;
1374 jffs2_add_ino_cache(c, f->inocache);
1375 }
1376 if (!f->inocache) {
1377 JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1378 return -ENOENT;
1379 }
1380
1381 return jffs2_do_read_inode_internal(c, f, latest_node);
1382 }
1383
1384 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1385 {
1386 struct jffs2_raw_inode n;
1387 struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1388 int ret;
1389
1390 if (!f)
1391 return -ENOMEM;
1392
1393 init_MUTEX_LOCKED(&f->sem);
1394 f->inocache = ic;
1395
1396 ret = jffs2_do_read_inode_internal(c, f, &n);
1397 if (!ret) {
1398 up(&f->sem);
1399 jffs2_do_clear_inode(c, f);
1400 }
1401 kfree (f);
1402 return ret;
1403 }
1404
1405 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1406 {
1407 struct jffs2_full_dirent *fd, *fds;
1408 int deleted;
1409
1410 jffs2_clear_acl(f);
1411 jffs2_xattr_delete_inode(c, f->inocache);
1412 down(&f->sem);
1413 deleted = f->inocache && !f->inocache->nlink;
1414
1415 if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1416 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1417
1418 if (f->metadata) {
1419 if (deleted)
1420 jffs2_mark_node_obsolete(c, f->metadata->raw);
1421 jffs2_free_full_dnode(f->metadata);
1422 }
1423
1424 jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1425
1426 if (f->target) {
1427 kfree(f->target);
1428 f->target = NULL;
1429 }
1430
1431 fds = f->dents;
1432 while(fds) {
1433 fd = fds;
1434 fds = fd->next;
1435 jffs2_free_full_dirent(fd);
1436 }
1437
1438 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1439 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1440 if (f->inocache->nodes == (void *)f->inocache)
1441 jffs2_del_ino_cache(c, f->inocache);
1442 }
1443
1444 up(&f->sem);
1445 }
This page took 0.250413 seconds and 5 git commands to generate.