f30b11e2240e170e8d6dfe7fd6a395e02344f212
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
34
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
37
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
44
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
48
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
52
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54 {
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
59 }
60
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
65 {
66 int res;
67
68 retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
75
76 return res;
77 }
78
79 static void mnt_free_id(struct vfsmount *mnt)
80 {
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
84 }
85
86 /*
87 * Allocate a new peer group ID
88 *
89 * mnt_group_ida is protected by namespace_sem
90 */
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
92 {
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
95
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97 }
98
99 /*
100 * Release a peer group ID
101 */
102 void mnt_release_group_id(struct vfsmount *mnt)
103 {
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
106 }
107
108 struct vfsmount *alloc_vfsmnt(const char *name)
109 {
110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 if (mnt) {
112 int err;
113
114 err = mnt_alloc_id(mnt);
115 if (err) {
116 kmem_cache_free(mnt_cache, mnt);
117 return NULL;
118 }
119
120 atomic_set(&mnt->mnt_count, 1);
121 INIT_LIST_HEAD(&mnt->mnt_hash);
122 INIT_LIST_HEAD(&mnt->mnt_child);
123 INIT_LIST_HEAD(&mnt->mnt_mounts);
124 INIT_LIST_HEAD(&mnt->mnt_list);
125 INIT_LIST_HEAD(&mnt->mnt_expire);
126 INIT_LIST_HEAD(&mnt->mnt_share);
127 INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 INIT_LIST_HEAD(&mnt->mnt_slave);
129 atomic_set(&mnt->__mnt_writers, 0);
130 if (name) {
131 int size = strlen(name) + 1;
132 char *newname = kmalloc(size, GFP_KERNEL);
133 if (newname) {
134 memcpy(newname, name, size);
135 mnt->mnt_devname = newname;
136 }
137 }
138 }
139 return mnt;
140 }
141
142 /*
143 * Most r/o checks on a fs are for operations that take
144 * discrete amounts of time, like a write() or unlink().
145 * We must keep track of when those operations start
146 * (for permission checks) and when they end, so that
147 * we can determine when writes are able to occur to
148 * a filesystem.
149 */
150 /*
151 * __mnt_is_readonly: check whether a mount is read-only
152 * @mnt: the mount to check for its write status
153 *
154 * This shouldn't be used directly ouside of the VFS.
155 * It does not guarantee that the filesystem will stay
156 * r/w, just that it is right *now*. This can not and
157 * should not be used in place of IS_RDONLY(inode).
158 * mnt_want/drop_write() will _keep_ the filesystem
159 * r/w.
160 */
161 int __mnt_is_readonly(struct vfsmount *mnt)
162 {
163 if (mnt->mnt_flags & MNT_READONLY)
164 return 1;
165 if (mnt->mnt_sb->s_flags & MS_RDONLY)
166 return 1;
167 return 0;
168 }
169 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
170
171 struct mnt_writer {
172 /*
173 * If holding multiple instances of this lock, they
174 * must be ordered by cpu number.
175 */
176 spinlock_t lock;
177 struct lock_class_key lock_class; /* compiles out with !lockdep */
178 unsigned long count;
179 struct vfsmount *mnt;
180 } ____cacheline_aligned_in_smp;
181 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
182
183 static int __init init_mnt_writers(void)
184 {
185 int cpu;
186 for_each_possible_cpu(cpu) {
187 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 spin_lock_init(&writer->lock);
189 lockdep_set_class(&writer->lock, &writer->lock_class);
190 writer->count = 0;
191 }
192 return 0;
193 }
194 fs_initcall(init_mnt_writers);
195
196 static void unlock_mnt_writers(void)
197 {
198 int cpu;
199 struct mnt_writer *cpu_writer;
200
201 for_each_possible_cpu(cpu) {
202 cpu_writer = &per_cpu(mnt_writers, cpu);
203 spin_unlock(&cpu_writer->lock);
204 }
205 }
206
207 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
208 {
209 if (!cpu_writer->mnt)
210 return;
211 /*
212 * This is in case anyone ever leaves an invalid,
213 * old ->mnt and a count of 0.
214 */
215 if (!cpu_writer->count)
216 return;
217 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 cpu_writer->count = 0;
219 }
220 /*
221 * must hold cpu_writer->lock
222 */
223 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 struct vfsmount *mnt)
225 {
226 if (cpu_writer->mnt == mnt)
227 return;
228 __clear_mnt_count(cpu_writer);
229 cpu_writer->mnt = mnt;
230 }
231
232 /*
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
238 * a filesystem.
239 */
240 /**
241 * mnt_want_write - get write access to a mount
242 * @mnt: the mount on which to take a write
243 *
244 * This tells the low-level filesystem that a write is
245 * about to be performed to it, and makes sure that
246 * writes are allowed before returning success. When
247 * the write operation is finished, mnt_drop_write()
248 * must be called. This is effectively a refcount.
249 */
250 int mnt_want_write(struct vfsmount *mnt)
251 {
252 int ret = 0;
253 struct mnt_writer *cpu_writer;
254
255 cpu_writer = &get_cpu_var(mnt_writers);
256 spin_lock(&cpu_writer->lock);
257 if (__mnt_is_readonly(mnt)) {
258 ret = -EROFS;
259 goto out;
260 }
261 use_cpu_writer_for_mount(cpu_writer, mnt);
262 cpu_writer->count++;
263 out:
264 spin_unlock(&cpu_writer->lock);
265 put_cpu_var(mnt_writers);
266 return ret;
267 }
268 EXPORT_SYMBOL_GPL(mnt_want_write);
269
270 static void lock_mnt_writers(void)
271 {
272 int cpu;
273 struct mnt_writer *cpu_writer;
274
275 for_each_possible_cpu(cpu) {
276 cpu_writer = &per_cpu(mnt_writers, cpu);
277 spin_lock(&cpu_writer->lock);
278 __clear_mnt_count(cpu_writer);
279 cpu_writer->mnt = NULL;
280 }
281 }
282
283 /*
284 * These per-cpu write counts are not guaranteed to have
285 * matched increments and decrements on any given cpu.
286 * A file open()ed for write on one cpu and close()d on
287 * another cpu will imbalance this count. Make sure it
288 * does not get too far out of whack.
289 */
290 static void handle_write_count_underflow(struct vfsmount *mnt)
291 {
292 if (atomic_read(&mnt->__mnt_writers) >=
293 MNT_WRITER_UNDERFLOW_LIMIT)
294 return;
295 /*
296 * It isn't necessary to hold all of the locks
297 * at the same time, but doing it this way makes
298 * us share a lot more code.
299 */
300 lock_mnt_writers();
301 /*
302 * vfsmount_lock is for mnt_flags.
303 */
304 spin_lock(&vfsmount_lock);
305 /*
306 * If coalescing the per-cpu writer counts did not
307 * get us back to a positive writer count, we have
308 * a bug.
309 */
310 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
313 "count: %d\n",
314 mnt, atomic_read(&mnt->__mnt_writers));
315 /* use the flag to keep the dmesg spam down */
316 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
317 }
318 spin_unlock(&vfsmount_lock);
319 unlock_mnt_writers();
320 }
321
322 /**
323 * mnt_drop_write - give up write access to a mount
324 * @mnt: the mount on which to give up write access
325 *
326 * Tells the low-level filesystem that we are done
327 * performing writes to it. Must be matched with
328 * mnt_want_write() call above.
329 */
330 void mnt_drop_write(struct vfsmount *mnt)
331 {
332 int must_check_underflow = 0;
333 struct mnt_writer *cpu_writer;
334
335 cpu_writer = &get_cpu_var(mnt_writers);
336 spin_lock(&cpu_writer->lock);
337
338 use_cpu_writer_for_mount(cpu_writer, mnt);
339 if (cpu_writer->count > 0) {
340 cpu_writer->count--;
341 } else {
342 must_check_underflow = 1;
343 atomic_dec(&mnt->__mnt_writers);
344 }
345
346 spin_unlock(&cpu_writer->lock);
347 /*
348 * Logically, we could call this each time,
349 * but the __mnt_writers cacheline tends to
350 * be cold, and makes this expensive.
351 */
352 if (must_check_underflow)
353 handle_write_count_underflow(mnt);
354 /*
355 * This could be done right after the spinlock
356 * is taken because the spinlock keeps us on
357 * the cpu, and disables preemption. However,
358 * putting it here bounds the amount that
359 * __mnt_writers can underflow. Without it,
360 * we could theoretically wrap __mnt_writers.
361 */
362 put_cpu_var(mnt_writers);
363 }
364 EXPORT_SYMBOL_GPL(mnt_drop_write);
365
366 static int mnt_make_readonly(struct vfsmount *mnt)
367 {
368 int ret = 0;
369
370 lock_mnt_writers();
371 /*
372 * With all the locks held, this value is stable
373 */
374 if (atomic_read(&mnt->__mnt_writers) > 0) {
375 ret = -EBUSY;
376 goto out;
377 }
378 /*
379 * nobody can do a successful mnt_want_write() with all
380 * of the counts in MNT_DENIED_WRITE and the locks held.
381 */
382 spin_lock(&vfsmount_lock);
383 if (!ret)
384 mnt->mnt_flags |= MNT_READONLY;
385 spin_unlock(&vfsmount_lock);
386 out:
387 unlock_mnt_writers();
388 return ret;
389 }
390
391 static void __mnt_unmake_readonly(struct vfsmount *mnt)
392 {
393 spin_lock(&vfsmount_lock);
394 mnt->mnt_flags &= ~MNT_READONLY;
395 spin_unlock(&vfsmount_lock);
396 }
397
398 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
399 {
400 mnt->mnt_sb = sb;
401 mnt->mnt_root = dget(sb->s_root);
402 return 0;
403 }
404
405 EXPORT_SYMBOL(simple_set_mnt);
406
407 void free_vfsmnt(struct vfsmount *mnt)
408 {
409 kfree(mnt->mnt_devname);
410 mnt_free_id(mnt);
411 kmem_cache_free(mnt_cache, mnt);
412 }
413
414 /*
415 * find the first or last mount at @dentry on vfsmount @mnt depending on
416 * @dir. If @dir is set return the first mount else return the last mount.
417 */
418 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
419 int dir)
420 {
421 struct list_head *head = mount_hashtable + hash(mnt, dentry);
422 struct list_head *tmp = head;
423 struct vfsmount *p, *found = NULL;
424
425 for (;;) {
426 tmp = dir ? tmp->next : tmp->prev;
427 p = NULL;
428 if (tmp == head)
429 break;
430 p = list_entry(tmp, struct vfsmount, mnt_hash);
431 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
432 found = p;
433 break;
434 }
435 }
436 return found;
437 }
438
439 /*
440 * lookup_mnt increments the ref count before returning
441 * the vfsmount struct.
442 */
443 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
444 {
445 struct vfsmount *child_mnt;
446 spin_lock(&vfsmount_lock);
447 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
448 mntget(child_mnt);
449 spin_unlock(&vfsmount_lock);
450 return child_mnt;
451 }
452
453 static inline int check_mnt(struct vfsmount *mnt)
454 {
455 return mnt->mnt_ns == current->nsproxy->mnt_ns;
456 }
457
458 static void touch_mnt_namespace(struct mnt_namespace *ns)
459 {
460 if (ns) {
461 ns->event = ++event;
462 wake_up_interruptible(&ns->poll);
463 }
464 }
465
466 static void __touch_mnt_namespace(struct mnt_namespace *ns)
467 {
468 if (ns && ns->event != event) {
469 ns->event = event;
470 wake_up_interruptible(&ns->poll);
471 }
472 }
473
474 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
475 {
476 old_path->dentry = mnt->mnt_mountpoint;
477 old_path->mnt = mnt->mnt_parent;
478 mnt->mnt_parent = mnt;
479 mnt->mnt_mountpoint = mnt->mnt_root;
480 list_del_init(&mnt->mnt_child);
481 list_del_init(&mnt->mnt_hash);
482 old_path->dentry->d_mounted--;
483 }
484
485 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
486 struct vfsmount *child_mnt)
487 {
488 child_mnt->mnt_parent = mntget(mnt);
489 child_mnt->mnt_mountpoint = dget(dentry);
490 dentry->d_mounted++;
491 }
492
493 static void attach_mnt(struct vfsmount *mnt, struct path *path)
494 {
495 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
496 list_add_tail(&mnt->mnt_hash, mount_hashtable +
497 hash(path->mnt, path->dentry));
498 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
499 }
500
501 /*
502 * the caller must hold vfsmount_lock
503 */
504 static void commit_tree(struct vfsmount *mnt)
505 {
506 struct vfsmount *parent = mnt->mnt_parent;
507 struct vfsmount *m;
508 LIST_HEAD(head);
509 struct mnt_namespace *n = parent->mnt_ns;
510
511 BUG_ON(parent == mnt);
512
513 list_add_tail(&head, &mnt->mnt_list);
514 list_for_each_entry(m, &head, mnt_list)
515 m->mnt_ns = n;
516 list_splice(&head, n->list.prev);
517
518 list_add_tail(&mnt->mnt_hash, mount_hashtable +
519 hash(parent, mnt->mnt_mountpoint));
520 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
521 touch_mnt_namespace(n);
522 }
523
524 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
525 {
526 struct list_head *next = p->mnt_mounts.next;
527 if (next == &p->mnt_mounts) {
528 while (1) {
529 if (p == root)
530 return NULL;
531 next = p->mnt_child.next;
532 if (next != &p->mnt_parent->mnt_mounts)
533 break;
534 p = p->mnt_parent;
535 }
536 }
537 return list_entry(next, struct vfsmount, mnt_child);
538 }
539
540 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
541 {
542 struct list_head *prev = p->mnt_mounts.prev;
543 while (prev != &p->mnt_mounts) {
544 p = list_entry(prev, struct vfsmount, mnt_child);
545 prev = p->mnt_mounts.prev;
546 }
547 return p;
548 }
549
550 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
551 int flag)
552 {
553 struct super_block *sb = old->mnt_sb;
554 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
555
556 if (mnt) {
557 if (flag & (CL_SLAVE | CL_PRIVATE))
558 mnt->mnt_group_id = 0; /* not a peer of original */
559 else
560 mnt->mnt_group_id = old->mnt_group_id;
561
562 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
563 int err = mnt_alloc_group_id(mnt);
564 if (err)
565 goto out_free;
566 }
567
568 mnt->mnt_flags = old->mnt_flags;
569 atomic_inc(&sb->s_active);
570 mnt->mnt_sb = sb;
571 mnt->mnt_root = dget(root);
572 mnt->mnt_mountpoint = mnt->mnt_root;
573 mnt->mnt_parent = mnt;
574
575 if (flag & CL_SLAVE) {
576 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
577 mnt->mnt_master = old;
578 CLEAR_MNT_SHARED(mnt);
579 } else if (!(flag & CL_PRIVATE)) {
580 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
581 list_add(&mnt->mnt_share, &old->mnt_share);
582 if (IS_MNT_SLAVE(old))
583 list_add(&mnt->mnt_slave, &old->mnt_slave);
584 mnt->mnt_master = old->mnt_master;
585 }
586 if (flag & CL_MAKE_SHARED)
587 set_mnt_shared(mnt);
588
589 /* stick the duplicate mount on the same expiry list
590 * as the original if that was on one */
591 if (flag & CL_EXPIRE) {
592 if (!list_empty(&old->mnt_expire))
593 list_add(&mnt->mnt_expire, &old->mnt_expire);
594 }
595 }
596 return mnt;
597
598 out_free:
599 free_vfsmnt(mnt);
600 return NULL;
601 }
602
603 static inline void __mntput(struct vfsmount *mnt)
604 {
605 int cpu;
606 struct super_block *sb = mnt->mnt_sb;
607 /*
608 * We don't have to hold all of the locks at the
609 * same time here because we know that we're the
610 * last reference to mnt and that no new writers
611 * can come in.
612 */
613 for_each_possible_cpu(cpu) {
614 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
615 if (cpu_writer->mnt != mnt)
616 continue;
617 spin_lock(&cpu_writer->lock);
618 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
619 cpu_writer->count = 0;
620 /*
621 * Might as well do this so that no one
622 * ever sees the pointer and expects
623 * it to be valid.
624 */
625 cpu_writer->mnt = NULL;
626 spin_unlock(&cpu_writer->lock);
627 }
628 /*
629 * This probably indicates that somebody messed
630 * up a mnt_want/drop_write() pair. If this
631 * happens, the filesystem was probably unable
632 * to make r/w->r/o transitions.
633 */
634 WARN_ON(atomic_read(&mnt->__mnt_writers));
635 dput(mnt->mnt_root);
636 free_vfsmnt(mnt);
637 deactivate_super(sb);
638 }
639
640 void mntput_no_expire(struct vfsmount *mnt)
641 {
642 repeat:
643 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
644 if (likely(!mnt->mnt_pinned)) {
645 spin_unlock(&vfsmount_lock);
646 __mntput(mnt);
647 return;
648 }
649 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
650 mnt->mnt_pinned = 0;
651 spin_unlock(&vfsmount_lock);
652 acct_auto_close_mnt(mnt);
653 security_sb_umount_close(mnt);
654 goto repeat;
655 }
656 }
657
658 EXPORT_SYMBOL(mntput_no_expire);
659
660 void mnt_pin(struct vfsmount *mnt)
661 {
662 spin_lock(&vfsmount_lock);
663 mnt->mnt_pinned++;
664 spin_unlock(&vfsmount_lock);
665 }
666
667 EXPORT_SYMBOL(mnt_pin);
668
669 void mnt_unpin(struct vfsmount *mnt)
670 {
671 spin_lock(&vfsmount_lock);
672 if (mnt->mnt_pinned) {
673 atomic_inc(&mnt->mnt_count);
674 mnt->mnt_pinned--;
675 }
676 spin_unlock(&vfsmount_lock);
677 }
678
679 EXPORT_SYMBOL(mnt_unpin);
680
681 static inline void mangle(struct seq_file *m, const char *s)
682 {
683 seq_escape(m, s, " \t\n\\");
684 }
685
686 /*
687 * Simple .show_options callback for filesystems which don't want to
688 * implement more complex mount option showing.
689 *
690 * See also save_mount_options().
691 */
692 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
693 {
694 const char *options = mnt->mnt_sb->s_options;
695
696 if (options != NULL && options[0]) {
697 seq_putc(m, ',');
698 mangle(m, options);
699 }
700
701 return 0;
702 }
703 EXPORT_SYMBOL(generic_show_options);
704
705 /*
706 * If filesystem uses generic_show_options(), this function should be
707 * called from the fill_super() callback.
708 *
709 * The .remount_fs callback usually needs to be handled in a special
710 * way, to make sure, that previous options are not overwritten if the
711 * remount fails.
712 *
713 * Also note, that if the filesystem's .remount_fs function doesn't
714 * reset all options to their default value, but changes only newly
715 * given options, then the displayed options will not reflect reality
716 * any more.
717 */
718 void save_mount_options(struct super_block *sb, char *options)
719 {
720 kfree(sb->s_options);
721 sb->s_options = kstrdup(options, GFP_KERNEL);
722 }
723 EXPORT_SYMBOL(save_mount_options);
724
725 #ifdef CONFIG_PROC_FS
726 /* iterator */
727 static void *m_start(struct seq_file *m, loff_t *pos)
728 {
729 struct proc_mounts *p = m->private;
730
731 down_read(&namespace_sem);
732 return seq_list_start(&p->ns->list, *pos);
733 }
734
735 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
736 {
737 struct proc_mounts *p = m->private;
738
739 return seq_list_next(v, &p->ns->list, pos);
740 }
741
742 static void m_stop(struct seq_file *m, void *v)
743 {
744 up_read(&namespace_sem);
745 }
746
747 struct proc_fs_info {
748 int flag;
749 const char *str;
750 };
751
752 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
753 {
754 static const struct proc_fs_info fs_info[] = {
755 { MS_SYNCHRONOUS, ",sync" },
756 { MS_DIRSYNC, ",dirsync" },
757 { MS_MANDLOCK, ",mand" },
758 { 0, NULL }
759 };
760 const struct proc_fs_info *fs_infop;
761
762 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
763 if (sb->s_flags & fs_infop->flag)
764 seq_puts(m, fs_infop->str);
765 }
766
767 return security_sb_show_options(m, sb);
768 }
769
770 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
771 {
772 static const struct proc_fs_info mnt_info[] = {
773 { MNT_NOSUID, ",nosuid" },
774 { MNT_NODEV, ",nodev" },
775 { MNT_NOEXEC, ",noexec" },
776 { MNT_NOATIME, ",noatime" },
777 { MNT_NODIRATIME, ",nodiratime" },
778 { MNT_RELATIME, ",relatime" },
779 { 0, NULL }
780 };
781 const struct proc_fs_info *fs_infop;
782
783 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
784 if (mnt->mnt_flags & fs_infop->flag)
785 seq_puts(m, fs_infop->str);
786 }
787 }
788
789 static void show_type(struct seq_file *m, struct super_block *sb)
790 {
791 mangle(m, sb->s_type->name);
792 if (sb->s_subtype && sb->s_subtype[0]) {
793 seq_putc(m, '.');
794 mangle(m, sb->s_subtype);
795 }
796 }
797
798 static int show_vfsmnt(struct seq_file *m, void *v)
799 {
800 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
801 int err = 0;
802 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
803
804 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
805 seq_putc(m, ' ');
806 seq_path(m, &mnt_path, " \t\n\\");
807 seq_putc(m, ' ');
808 show_type(m, mnt->mnt_sb);
809 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
810 err = show_sb_opts(m, mnt->mnt_sb);
811 if (err)
812 goto out;
813 show_mnt_opts(m, mnt);
814 if (mnt->mnt_sb->s_op->show_options)
815 err = mnt->mnt_sb->s_op->show_options(m, mnt);
816 seq_puts(m, " 0 0\n");
817 out:
818 return err;
819 }
820
821 const struct seq_operations mounts_op = {
822 .start = m_start,
823 .next = m_next,
824 .stop = m_stop,
825 .show = show_vfsmnt
826 };
827
828 static int show_mountinfo(struct seq_file *m, void *v)
829 {
830 struct proc_mounts *p = m->private;
831 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
832 struct super_block *sb = mnt->mnt_sb;
833 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
834 struct path root = p->root;
835 int err = 0;
836
837 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
838 MAJOR(sb->s_dev), MINOR(sb->s_dev));
839 seq_dentry(m, mnt->mnt_root, " \t\n\\");
840 seq_putc(m, ' ');
841 seq_path_root(m, &mnt_path, &root, " \t\n\\");
842 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
843 /*
844 * Mountpoint is outside root, discard that one. Ugly,
845 * but less so than trying to do that in iterator in a
846 * race-free way (due to renames).
847 */
848 return SEQ_SKIP;
849 }
850 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
851 show_mnt_opts(m, mnt);
852
853 /* Tagged fields ("foo:X" or "bar") */
854 if (IS_MNT_SHARED(mnt))
855 seq_printf(m, " shared:%i", mnt->mnt_group_id);
856 if (IS_MNT_SLAVE(mnt)) {
857 int master = mnt->mnt_master->mnt_group_id;
858 int dom = get_dominating_id(mnt, &p->root);
859 seq_printf(m, " master:%i", master);
860 if (dom && dom != master)
861 seq_printf(m, " propagate_from:%i", dom);
862 }
863 if (IS_MNT_UNBINDABLE(mnt))
864 seq_puts(m, " unbindable");
865
866 /* Filesystem specific data */
867 seq_puts(m, " - ");
868 show_type(m, sb);
869 seq_putc(m, ' ');
870 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
871 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
872 err = show_sb_opts(m, sb);
873 if (err)
874 goto out;
875 if (sb->s_op->show_options)
876 err = sb->s_op->show_options(m, mnt);
877 seq_putc(m, '\n');
878 out:
879 return err;
880 }
881
882 const struct seq_operations mountinfo_op = {
883 .start = m_start,
884 .next = m_next,
885 .stop = m_stop,
886 .show = show_mountinfo,
887 };
888
889 static int show_vfsstat(struct seq_file *m, void *v)
890 {
891 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
892 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
893 int err = 0;
894
895 /* device */
896 if (mnt->mnt_devname) {
897 seq_puts(m, "device ");
898 mangle(m, mnt->mnt_devname);
899 } else
900 seq_puts(m, "no device");
901
902 /* mount point */
903 seq_puts(m, " mounted on ");
904 seq_path(m, &mnt_path, " \t\n\\");
905 seq_putc(m, ' ');
906
907 /* file system type */
908 seq_puts(m, "with fstype ");
909 show_type(m, mnt->mnt_sb);
910
911 /* optional statistics */
912 if (mnt->mnt_sb->s_op->show_stats) {
913 seq_putc(m, ' ');
914 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
915 }
916
917 seq_putc(m, '\n');
918 return err;
919 }
920
921 const struct seq_operations mountstats_op = {
922 .start = m_start,
923 .next = m_next,
924 .stop = m_stop,
925 .show = show_vfsstat,
926 };
927 #endif /* CONFIG_PROC_FS */
928
929 /**
930 * may_umount_tree - check if a mount tree is busy
931 * @mnt: root of mount tree
932 *
933 * This is called to check if a tree of mounts has any
934 * open files, pwds, chroots or sub mounts that are
935 * busy.
936 */
937 int may_umount_tree(struct vfsmount *mnt)
938 {
939 int actual_refs = 0;
940 int minimum_refs = 0;
941 struct vfsmount *p;
942
943 spin_lock(&vfsmount_lock);
944 for (p = mnt; p; p = next_mnt(p, mnt)) {
945 actual_refs += atomic_read(&p->mnt_count);
946 minimum_refs += 2;
947 }
948 spin_unlock(&vfsmount_lock);
949
950 if (actual_refs > minimum_refs)
951 return 0;
952
953 return 1;
954 }
955
956 EXPORT_SYMBOL(may_umount_tree);
957
958 /**
959 * may_umount - check if a mount point is busy
960 * @mnt: root of mount
961 *
962 * This is called to check if a mount point has any
963 * open files, pwds, chroots or sub mounts. If the
964 * mount has sub mounts this will return busy
965 * regardless of whether the sub mounts are busy.
966 *
967 * Doesn't take quota and stuff into account. IOW, in some cases it will
968 * give false negatives. The main reason why it's here is that we need
969 * a non-destructive way to look for easily umountable filesystems.
970 */
971 int may_umount(struct vfsmount *mnt)
972 {
973 int ret = 1;
974 spin_lock(&vfsmount_lock);
975 if (propagate_mount_busy(mnt, 2))
976 ret = 0;
977 spin_unlock(&vfsmount_lock);
978 return ret;
979 }
980
981 EXPORT_SYMBOL(may_umount);
982
983 void release_mounts(struct list_head *head)
984 {
985 struct vfsmount *mnt;
986 while (!list_empty(head)) {
987 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
988 list_del_init(&mnt->mnt_hash);
989 if (mnt->mnt_parent != mnt) {
990 struct dentry *dentry;
991 struct vfsmount *m;
992 spin_lock(&vfsmount_lock);
993 dentry = mnt->mnt_mountpoint;
994 m = mnt->mnt_parent;
995 mnt->mnt_mountpoint = mnt->mnt_root;
996 mnt->mnt_parent = mnt;
997 m->mnt_ghosts--;
998 spin_unlock(&vfsmount_lock);
999 dput(dentry);
1000 mntput(m);
1001 }
1002 mntput(mnt);
1003 }
1004 }
1005
1006 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1007 {
1008 struct vfsmount *p;
1009
1010 for (p = mnt; p; p = next_mnt(p, mnt))
1011 list_move(&p->mnt_hash, kill);
1012
1013 if (propagate)
1014 propagate_umount(kill);
1015
1016 list_for_each_entry(p, kill, mnt_hash) {
1017 list_del_init(&p->mnt_expire);
1018 list_del_init(&p->mnt_list);
1019 __touch_mnt_namespace(p->mnt_ns);
1020 p->mnt_ns = NULL;
1021 list_del_init(&p->mnt_child);
1022 if (p->mnt_parent != p) {
1023 p->mnt_parent->mnt_ghosts++;
1024 p->mnt_mountpoint->d_mounted--;
1025 }
1026 change_mnt_propagation(p, MS_PRIVATE);
1027 }
1028 }
1029
1030 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1031
1032 static int do_umount(struct vfsmount *mnt, int flags)
1033 {
1034 struct super_block *sb = mnt->mnt_sb;
1035 int retval;
1036 LIST_HEAD(umount_list);
1037
1038 retval = security_sb_umount(mnt, flags);
1039 if (retval)
1040 return retval;
1041
1042 /*
1043 * Allow userspace to request a mountpoint be expired rather than
1044 * unmounting unconditionally. Unmount only happens if:
1045 * (1) the mark is already set (the mark is cleared by mntput())
1046 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1047 */
1048 if (flags & MNT_EXPIRE) {
1049 if (mnt == current->fs->root.mnt ||
1050 flags & (MNT_FORCE | MNT_DETACH))
1051 return -EINVAL;
1052
1053 if (atomic_read(&mnt->mnt_count) != 2)
1054 return -EBUSY;
1055
1056 if (!xchg(&mnt->mnt_expiry_mark, 1))
1057 return -EAGAIN;
1058 }
1059
1060 /*
1061 * If we may have to abort operations to get out of this
1062 * mount, and they will themselves hold resources we must
1063 * allow the fs to do things. In the Unix tradition of
1064 * 'Gee thats tricky lets do it in userspace' the umount_begin
1065 * might fail to complete on the first run through as other tasks
1066 * must return, and the like. Thats for the mount program to worry
1067 * about for the moment.
1068 */
1069
1070 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1071 lock_kernel();
1072 sb->s_op->umount_begin(sb);
1073 unlock_kernel();
1074 }
1075
1076 /*
1077 * No sense to grab the lock for this test, but test itself looks
1078 * somewhat bogus. Suggestions for better replacement?
1079 * Ho-hum... In principle, we might treat that as umount + switch
1080 * to rootfs. GC would eventually take care of the old vfsmount.
1081 * Actually it makes sense, especially if rootfs would contain a
1082 * /reboot - static binary that would close all descriptors and
1083 * call reboot(9). Then init(8) could umount root and exec /reboot.
1084 */
1085 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1086 /*
1087 * Special case for "unmounting" root ...
1088 * we just try to remount it readonly.
1089 */
1090 down_write(&sb->s_umount);
1091 if (!(sb->s_flags & MS_RDONLY)) {
1092 lock_kernel();
1093 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1094 unlock_kernel();
1095 }
1096 up_write(&sb->s_umount);
1097 return retval;
1098 }
1099
1100 down_write(&namespace_sem);
1101 spin_lock(&vfsmount_lock);
1102 event++;
1103
1104 if (!(flags & MNT_DETACH))
1105 shrink_submounts(mnt, &umount_list);
1106
1107 retval = -EBUSY;
1108 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1109 if (!list_empty(&mnt->mnt_list))
1110 umount_tree(mnt, 1, &umount_list);
1111 retval = 0;
1112 }
1113 spin_unlock(&vfsmount_lock);
1114 if (retval)
1115 security_sb_umount_busy(mnt);
1116 up_write(&namespace_sem);
1117 release_mounts(&umount_list);
1118 return retval;
1119 }
1120
1121 /*
1122 * Now umount can handle mount points as well as block devices.
1123 * This is important for filesystems which use unnamed block devices.
1124 *
1125 * We now support a flag for forced unmount like the other 'big iron'
1126 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1127 */
1128
1129 asmlinkage long sys_umount(char __user * name, int flags)
1130 {
1131 struct nameidata nd;
1132 int retval;
1133
1134 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1135 if (retval)
1136 goto out;
1137 retval = -EINVAL;
1138 if (nd.path.dentry != nd.path.mnt->mnt_root)
1139 goto dput_and_out;
1140 if (!check_mnt(nd.path.mnt))
1141 goto dput_and_out;
1142
1143 retval = -EPERM;
1144 if (!capable(CAP_SYS_ADMIN))
1145 goto dput_and_out;
1146
1147 retval = do_umount(nd.path.mnt, flags);
1148 dput_and_out:
1149 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1150 dput(nd.path.dentry);
1151 mntput_no_expire(nd.path.mnt);
1152 out:
1153 return retval;
1154 }
1155
1156 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1157
1158 /*
1159 * The 2.0 compatible umount. No flags.
1160 */
1161 asmlinkage long sys_oldumount(char __user * name)
1162 {
1163 return sys_umount(name, 0);
1164 }
1165
1166 #endif
1167
1168 static int mount_is_safe(struct nameidata *nd)
1169 {
1170 if (capable(CAP_SYS_ADMIN))
1171 return 0;
1172 return -EPERM;
1173 #ifdef notyet
1174 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1175 return -EPERM;
1176 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1177 if (current->uid != nd->path.dentry->d_inode->i_uid)
1178 return -EPERM;
1179 }
1180 if (vfs_permission(nd, MAY_WRITE))
1181 return -EPERM;
1182 return 0;
1183 #endif
1184 }
1185
1186 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1187 int flag)
1188 {
1189 struct vfsmount *res, *p, *q, *r, *s;
1190 struct path path;
1191
1192 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1193 return NULL;
1194
1195 res = q = clone_mnt(mnt, dentry, flag);
1196 if (!q)
1197 goto Enomem;
1198 q->mnt_mountpoint = mnt->mnt_mountpoint;
1199
1200 p = mnt;
1201 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1202 if (!is_subdir(r->mnt_mountpoint, dentry))
1203 continue;
1204
1205 for (s = r; s; s = next_mnt(s, r)) {
1206 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1207 s = skip_mnt_tree(s);
1208 continue;
1209 }
1210 while (p != s->mnt_parent) {
1211 p = p->mnt_parent;
1212 q = q->mnt_parent;
1213 }
1214 p = s;
1215 path.mnt = q;
1216 path.dentry = p->mnt_mountpoint;
1217 q = clone_mnt(p, p->mnt_root, flag);
1218 if (!q)
1219 goto Enomem;
1220 spin_lock(&vfsmount_lock);
1221 list_add_tail(&q->mnt_list, &res->mnt_list);
1222 attach_mnt(q, &path);
1223 spin_unlock(&vfsmount_lock);
1224 }
1225 }
1226 return res;
1227 Enomem:
1228 if (res) {
1229 LIST_HEAD(umount_list);
1230 spin_lock(&vfsmount_lock);
1231 umount_tree(res, 0, &umount_list);
1232 spin_unlock(&vfsmount_lock);
1233 release_mounts(&umount_list);
1234 }
1235 return NULL;
1236 }
1237
1238 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1239 {
1240 struct vfsmount *tree;
1241 down_write(&namespace_sem);
1242 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1243 up_write(&namespace_sem);
1244 return tree;
1245 }
1246
1247 void drop_collected_mounts(struct vfsmount *mnt)
1248 {
1249 LIST_HEAD(umount_list);
1250 down_write(&namespace_sem);
1251 spin_lock(&vfsmount_lock);
1252 umount_tree(mnt, 0, &umount_list);
1253 spin_unlock(&vfsmount_lock);
1254 up_write(&namespace_sem);
1255 release_mounts(&umount_list);
1256 }
1257
1258 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1259 {
1260 struct vfsmount *p;
1261
1262 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1263 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1264 mnt_release_group_id(p);
1265 }
1266 }
1267
1268 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1269 {
1270 struct vfsmount *p;
1271
1272 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1273 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1274 int err = mnt_alloc_group_id(p);
1275 if (err) {
1276 cleanup_group_ids(mnt, p);
1277 return err;
1278 }
1279 }
1280 }
1281
1282 return 0;
1283 }
1284
1285 /*
1286 * @source_mnt : mount tree to be attached
1287 * @nd : place the mount tree @source_mnt is attached
1288 * @parent_nd : if non-null, detach the source_mnt from its parent and
1289 * store the parent mount and mountpoint dentry.
1290 * (done when source_mnt is moved)
1291 *
1292 * NOTE: in the table below explains the semantics when a source mount
1293 * of a given type is attached to a destination mount of a given type.
1294 * ---------------------------------------------------------------------------
1295 * | BIND MOUNT OPERATION |
1296 * |**************************************************************************
1297 * | source-->| shared | private | slave | unbindable |
1298 * | dest | | | | |
1299 * | | | | | | |
1300 * | v | | | | |
1301 * |**************************************************************************
1302 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1303 * | | | | | |
1304 * |non-shared| shared (+) | private | slave (*) | invalid |
1305 * ***************************************************************************
1306 * A bind operation clones the source mount and mounts the clone on the
1307 * destination mount.
1308 *
1309 * (++) the cloned mount is propagated to all the mounts in the propagation
1310 * tree of the destination mount and the cloned mount is added to
1311 * the peer group of the source mount.
1312 * (+) the cloned mount is created under the destination mount and is marked
1313 * as shared. The cloned mount is added to the peer group of the source
1314 * mount.
1315 * (+++) the mount is propagated to all the mounts in the propagation tree
1316 * of the destination mount and the cloned mount is made slave
1317 * of the same master as that of the source mount. The cloned mount
1318 * is marked as 'shared and slave'.
1319 * (*) the cloned mount is made a slave of the same master as that of the
1320 * source mount.
1321 *
1322 * ---------------------------------------------------------------------------
1323 * | MOVE MOUNT OPERATION |
1324 * |**************************************************************************
1325 * | source-->| shared | private | slave | unbindable |
1326 * | dest | | | | |
1327 * | | | | | | |
1328 * | v | | | | |
1329 * |**************************************************************************
1330 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1331 * | | | | | |
1332 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1333 * ***************************************************************************
1334 *
1335 * (+) the mount is moved to the destination. And is then propagated to
1336 * all the mounts in the propagation tree of the destination mount.
1337 * (+*) the mount is moved to the destination.
1338 * (+++) the mount is moved to the destination and is then propagated to
1339 * all the mounts belonging to the destination mount's propagation tree.
1340 * the mount is marked as 'shared and slave'.
1341 * (*) the mount continues to be a slave at the new location.
1342 *
1343 * if the source mount is a tree, the operations explained above is
1344 * applied to each mount in the tree.
1345 * Must be called without spinlocks held, since this function can sleep
1346 * in allocations.
1347 */
1348 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1349 struct path *path, struct path *parent_path)
1350 {
1351 LIST_HEAD(tree_list);
1352 struct vfsmount *dest_mnt = path->mnt;
1353 struct dentry *dest_dentry = path->dentry;
1354 struct vfsmount *child, *p;
1355 int err;
1356
1357 if (IS_MNT_SHARED(dest_mnt)) {
1358 err = invent_group_ids(source_mnt, true);
1359 if (err)
1360 goto out;
1361 }
1362 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1363 if (err)
1364 goto out_cleanup_ids;
1365
1366 if (IS_MNT_SHARED(dest_mnt)) {
1367 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1368 set_mnt_shared(p);
1369 }
1370
1371 spin_lock(&vfsmount_lock);
1372 if (parent_path) {
1373 detach_mnt(source_mnt, parent_path);
1374 attach_mnt(source_mnt, path);
1375 touch_mnt_namespace(current->nsproxy->mnt_ns);
1376 } else {
1377 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1378 commit_tree(source_mnt);
1379 }
1380
1381 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1382 list_del_init(&child->mnt_hash);
1383 commit_tree(child);
1384 }
1385 spin_unlock(&vfsmount_lock);
1386 return 0;
1387
1388 out_cleanup_ids:
1389 if (IS_MNT_SHARED(dest_mnt))
1390 cleanup_group_ids(source_mnt, NULL);
1391 out:
1392 return err;
1393 }
1394
1395 static int graft_tree(struct vfsmount *mnt, struct path *path)
1396 {
1397 int err;
1398 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1399 return -EINVAL;
1400
1401 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1402 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1403 return -ENOTDIR;
1404
1405 err = -ENOENT;
1406 mutex_lock(&path->dentry->d_inode->i_mutex);
1407 if (IS_DEADDIR(path->dentry->d_inode))
1408 goto out_unlock;
1409
1410 err = security_sb_check_sb(mnt, path);
1411 if (err)
1412 goto out_unlock;
1413
1414 err = -ENOENT;
1415 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1416 err = attach_recursive_mnt(mnt, path, NULL);
1417 out_unlock:
1418 mutex_unlock(&path->dentry->d_inode->i_mutex);
1419 if (!err)
1420 security_sb_post_addmount(mnt, path);
1421 return err;
1422 }
1423
1424 /*
1425 * recursively change the type of the mountpoint.
1426 * noinline this do_mount helper to save do_mount stack space.
1427 */
1428 static noinline int do_change_type(struct nameidata *nd, int flag)
1429 {
1430 struct vfsmount *m, *mnt = nd->path.mnt;
1431 int recurse = flag & MS_REC;
1432 int type = flag & ~MS_REC;
1433 int err = 0;
1434
1435 if (!capable(CAP_SYS_ADMIN))
1436 return -EPERM;
1437
1438 if (nd->path.dentry != nd->path.mnt->mnt_root)
1439 return -EINVAL;
1440
1441 down_write(&namespace_sem);
1442 if (type == MS_SHARED) {
1443 err = invent_group_ids(mnt, recurse);
1444 if (err)
1445 goto out_unlock;
1446 }
1447
1448 spin_lock(&vfsmount_lock);
1449 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1450 change_mnt_propagation(m, type);
1451 spin_unlock(&vfsmount_lock);
1452
1453 out_unlock:
1454 up_write(&namespace_sem);
1455 return err;
1456 }
1457
1458 /*
1459 * do loopback mount.
1460 * noinline this do_mount helper to save do_mount stack space.
1461 */
1462 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1463 int recurse)
1464 {
1465 struct nameidata old_nd;
1466 struct vfsmount *mnt = NULL;
1467 int err = mount_is_safe(nd);
1468 if (err)
1469 return err;
1470 if (!old_name || !*old_name)
1471 return -EINVAL;
1472 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1473 if (err)
1474 return err;
1475
1476 down_write(&namespace_sem);
1477 err = -EINVAL;
1478 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1479 goto out;
1480
1481 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1482 goto out;
1483
1484 err = -ENOMEM;
1485 if (recurse)
1486 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1487 else
1488 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1489
1490 if (!mnt)
1491 goto out;
1492
1493 err = graft_tree(mnt, &nd->path);
1494 if (err) {
1495 LIST_HEAD(umount_list);
1496 spin_lock(&vfsmount_lock);
1497 umount_tree(mnt, 0, &umount_list);
1498 spin_unlock(&vfsmount_lock);
1499 release_mounts(&umount_list);
1500 }
1501
1502 out:
1503 up_write(&namespace_sem);
1504 path_put(&old_nd.path);
1505 return err;
1506 }
1507
1508 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1509 {
1510 int error = 0;
1511 int readonly_request = 0;
1512
1513 if (ms_flags & MS_RDONLY)
1514 readonly_request = 1;
1515 if (readonly_request == __mnt_is_readonly(mnt))
1516 return 0;
1517
1518 if (readonly_request)
1519 error = mnt_make_readonly(mnt);
1520 else
1521 __mnt_unmake_readonly(mnt);
1522 return error;
1523 }
1524
1525 /*
1526 * change filesystem flags. dir should be a physical root of filesystem.
1527 * If you've mounted a non-root directory somewhere and want to do remount
1528 * on it - tough luck.
1529 * noinline this do_mount helper to save do_mount stack space.
1530 */
1531 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1532 void *data)
1533 {
1534 int err;
1535 struct super_block *sb = nd->path.mnt->mnt_sb;
1536
1537 if (!capable(CAP_SYS_ADMIN))
1538 return -EPERM;
1539
1540 if (!check_mnt(nd->path.mnt))
1541 return -EINVAL;
1542
1543 if (nd->path.dentry != nd->path.mnt->mnt_root)
1544 return -EINVAL;
1545
1546 down_write(&sb->s_umount);
1547 if (flags & MS_BIND)
1548 err = change_mount_flags(nd->path.mnt, flags);
1549 else
1550 err = do_remount_sb(sb, flags, data, 0);
1551 if (!err)
1552 nd->path.mnt->mnt_flags = mnt_flags;
1553 up_write(&sb->s_umount);
1554 if (!err)
1555 security_sb_post_remount(nd->path.mnt, flags, data);
1556 return err;
1557 }
1558
1559 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1560 {
1561 struct vfsmount *p;
1562 for (p = mnt; p; p = next_mnt(p, mnt)) {
1563 if (IS_MNT_UNBINDABLE(p))
1564 return 1;
1565 }
1566 return 0;
1567 }
1568
1569 /*
1570 * noinline this do_mount helper to save do_mount stack space.
1571 */
1572 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1573 {
1574 struct nameidata old_nd;
1575 struct path parent_path;
1576 struct vfsmount *p;
1577 int err = 0;
1578 if (!capable(CAP_SYS_ADMIN))
1579 return -EPERM;
1580 if (!old_name || !*old_name)
1581 return -EINVAL;
1582 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1583 if (err)
1584 return err;
1585
1586 down_write(&namespace_sem);
1587 while (d_mountpoint(nd->path.dentry) &&
1588 follow_down(&nd->path.mnt, &nd->path.dentry))
1589 ;
1590 err = -EINVAL;
1591 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1592 goto out;
1593
1594 err = -ENOENT;
1595 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1596 if (IS_DEADDIR(nd->path.dentry->d_inode))
1597 goto out1;
1598
1599 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1600 goto out1;
1601
1602 err = -EINVAL;
1603 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1604 goto out1;
1605
1606 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1607 goto out1;
1608
1609 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1610 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1611 goto out1;
1612 /*
1613 * Don't move a mount residing in a shared parent.
1614 */
1615 if (old_nd.path.mnt->mnt_parent &&
1616 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1617 goto out1;
1618 /*
1619 * Don't move a mount tree containing unbindable mounts to a destination
1620 * mount which is shared.
1621 */
1622 if (IS_MNT_SHARED(nd->path.mnt) &&
1623 tree_contains_unbindable(old_nd.path.mnt))
1624 goto out1;
1625 err = -ELOOP;
1626 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1627 if (p == old_nd.path.mnt)
1628 goto out1;
1629
1630 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1631 if (err)
1632 goto out1;
1633
1634 /* if the mount is moved, it should no longer be expire
1635 * automatically */
1636 list_del_init(&old_nd.path.mnt->mnt_expire);
1637 out1:
1638 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1639 out:
1640 up_write(&namespace_sem);
1641 if (!err)
1642 path_put(&parent_path);
1643 path_put(&old_nd.path);
1644 return err;
1645 }
1646
1647 /*
1648 * create a new mount for userspace and request it to be added into the
1649 * namespace's tree
1650 * noinline this do_mount helper to save do_mount stack space.
1651 */
1652 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1653 int mnt_flags, char *name, void *data)
1654 {
1655 struct vfsmount *mnt;
1656
1657 if (!type || !memchr(type, 0, PAGE_SIZE))
1658 return -EINVAL;
1659
1660 /* we need capabilities... */
1661 if (!capable(CAP_SYS_ADMIN))
1662 return -EPERM;
1663
1664 mnt = do_kern_mount(type, flags, name, data);
1665 if (IS_ERR(mnt))
1666 return PTR_ERR(mnt);
1667
1668 return do_add_mount(mnt, nd, mnt_flags, NULL);
1669 }
1670
1671 /*
1672 * add a mount into a namespace's mount tree
1673 * - provide the option of adding the new mount to an expiration list
1674 */
1675 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1676 int mnt_flags, struct list_head *fslist)
1677 {
1678 int err;
1679
1680 down_write(&namespace_sem);
1681 /* Something was mounted here while we slept */
1682 while (d_mountpoint(nd->path.dentry) &&
1683 follow_down(&nd->path.mnt, &nd->path.dentry))
1684 ;
1685 err = -EINVAL;
1686 if (!check_mnt(nd->path.mnt))
1687 goto unlock;
1688
1689 /* Refuse the same filesystem on the same mount point */
1690 err = -EBUSY;
1691 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1692 nd->path.mnt->mnt_root == nd->path.dentry)
1693 goto unlock;
1694
1695 err = -EINVAL;
1696 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1697 goto unlock;
1698
1699 newmnt->mnt_flags = mnt_flags;
1700 if ((err = graft_tree(newmnt, &nd->path)))
1701 goto unlock;
1702
1703 if (fslist) /* add to the specified expiration list */
1704 list_add_tail(&newmnt->mnt_expire, fslist);
1705
1706 up_write(&namespace_sem);
1707 return 0;
1708
1709 unlock:
1710 up_write(&namespace_sem);
1711 mntput(newmnt);
1712 return err;
1713 }
1714
1715 EXPORT_SYMBOL_GPL(do_add_mount);
1716
1717 /*
1718 * process a list of expirable mountpoints with the intent of discarding any
1719 * mountpoints that aren't in use and haven't been touched since last we came
1720 * here
1721 */
1722 void mark_mounts_for_expiry(struct list_head *mounts)
1723 {
1724 struct vfsmount *mnt, *next;
1725 LIST_HEAD(graveyard);
1726 LIST_HEAD(umounts);
1727
1728 if (list_empty(mounts))
1729 return;
1730
1731 down_write(&namespace_sem);
1732 spin_lock(&vfsmount_lock);
1733
1734 /* extract from the expiration list every vfsmount that matches the
1735 * following criteria:
1736 * - only referenced by its parent vfsmount
1737 * - still marked for expiry (marked on the last call here; marks are
1738 * cleared by mntput())
1739 */
1740 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1741 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1742 propagate_mount_busy(mnt, 1))
1743 continue;
1744 list_move(&mnt->mnt_expire, &graveyard);
1745 }
1746 while (!list_empty(&graveyard)) {
1747 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1748 touch_mnt_namespace(mnt->mnt_ns);
1749 umount_tree(mnt, 1, &umounts);
1750 }
1751 spin_unlock(&vfsmount_lock);
1752 up_write(&namespace_sem);
1753
1754 release_mounts(&umounts);
1755 }
1756
1757 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1758
1759 /*
1760 * Ripoff of 'select_parent()'
1761 *
1762 * search the list of submounts for a given mountpoint, and move any
1763 * shrinkable submounts to the 'graveyard' list.
1764 */
1765 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1766 {
1767 struct vfsmount *this_parent = parent;
1768 struct list_head *next;
1769 int found = 0;
1770
1771 repeat:
1772 next = this_parent->mnt_mounts.next;
1773 resume:
1774 while (next != &this_parent->mnt_mounts) {
1775 struct list_head *tmp = next;
1776 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1777
1778 next = tmp->next;
1779 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1780 continue;
1781 /*
1782 * Descend a level if the d_mounts list is non-empty.
1783 */
1784 if (!list_empty(&mnt->mnt_mounts)) {
1785 this_parent = mnt;
1786 goto repeat;
1787 }
1788
1789 if (!propagate_mount_busy(mnt, 1)) {
1790 list_move_tail(&mnt->mnt_expire, graveyard);
1791 found++;
1792 }
1793 }
1794 /*
1795 * All done at this level ... ascend and resume the search
1796 */
1797 if (this_parent != parent) {
1798 next = this_parent->mnt_child.next;
1799 this_parent = this_parent->mnt_parent;
1800 goto resume;
1801 }
1802 return found;
1803 }
1804
1805 /*
1806 * process a list of expirable mountpoints with the intent of discarding any
1807 * submounts of a specific parent mountpoint
1808 */
1809 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1810 {
1811 LIST_HEAD(graveyard);
1812 struct vfsmount *m;
1813
1814 /* extract submounts of 'mountpoint' from the expiration list */
1815 while (select_submounts(mnt, &graveyard)) {
1816 while (!list_empty(&graveyard)) {
1817 m = list_first_entry(&graveyard, struct vfsmount,
1818 mnt_expire);
1819 touch_mnt_namespace(mnt->mnt_ns);
1820 umount_tree(mnt, 1, umounts);
1821 }
1822 }
1823 }
1824
1825 /*
1826 * Some copy_from_user() implementations do not return the exact number of
1827 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1828 * Note that this function differs from copy_from_user() in that it will oops
1829 * on bad values of `to', rather than returning a short copy.
1830 */
1831 static long exact_copy_from_user(void *to, const void __user * from,
1832 unsigned long n)
1833 {
1834 char *t = to;
1835 const char __user *f = from;
1836 char c;
1837
1838 if (!access_ok(VERIFY_READ, from, n))
1839 return n;
1840
1841 while (n) {
1842 if (__get_user(c, f)) {
1843 memset(t, 0, n);
1844 break;
1845 }
1846 *t++ = c;
1847 f++;
1848 n--;
1849 }
1850 return n;
1851 }
1852
1853 int copy_mount_options(const void __user * data, unsigned long *where)
1854 {
1855 int i;
1856 unsigned long page;
1857 unsigned long size;
1858
1859 *where = 0;
1860 if (!data)
1861 return 0;
1862
1863 if (!(page = __get_free_page(GFP_KERNEL)))
1864 return -ENOMEM;
1865
1866 /* We only care that *some* data at the address the user
1867 * gave us is valid. Just in case, we'll zero
1868 * the remainder of the page.
1869 */
1870 /* copy_from_user cannot cross TASK_SIZE ! */
1871 size = TASK_SIZE - (unsigned long)data;
1872 if (size > PAGE_SIZE)
1873 size = PAGE_SIZE;
1874
1875 i = size - exact_copy_from_user((void *)page, data, size);
1876 if (!i) {
1877 free_page(page);
1878 return -EFAULT;
1879 }
1880 if (i != PAGE_SIZE)
1881 memset((char *)page + i, 0, PAGE_SIZE - i);
1882 *where = page;
1883 return 0;
1884 }
1885
1886 /*
1887 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1888 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1889 *
1890 * data is a (void *) that can point to any structure up to
1891 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1892 * information (or be NULL).
1893 *
1894 * Pre-0.97 versions of mount() didn't have a flags word.
1895 * When the flags word was introduced its top half was required
1896 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1897 * Therefore, if this magic number is present, it carries no information
1898 * and must be discarded.
1899 */
1900 long do_mount(char *dev_name, char *dir_name, char *type_page,
1901 unsigned long flags, void *data_page)
1902 {
1903 struct nameidata nd;
1904 int retval = 0;
1905 int mnt_flags = 0;
1906
1907 /* Discard magic */
1908 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1909 flags &= ~MS_MGC_MSK;
1910
1911 /* Basic sanity checks */
1912
1913 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1914 return -EINVAL;
1915 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1916 return -EINVAL;
1917
1918 if (data_page)
1919 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1920
1921 /* Separate the per-mountpoint flags */
1922 if (flags & MS_NOSUID)
1923 mnt_flags |= MNT_NOSUID;
1924 if (flags & MS_NODEV)
1925 mnt_flags |= MNT_NODEV;
1926 if (flags & MS_NOEXEC)
1927 mnt_flags |= MNT_NOEXEC;
1928 if (flags & MS_NOATIME)
1929 mnt_flags |= MNT_NOATIME;
1930 if (flags & MS_NODIRATIME)
1931 mnt_flags |= MNT_NODIRATIME;
1932 if (flags & MS_RELATIME)
1933 mnt_flags |= MNT_RELATIME;
1934 if (flags & MS_RDONLY)
1935 mnt_flags |= MNT_READONLY;
1936
1937 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1938 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1939
1940 /* ... and get the mountpoint */
1941 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1942 if (retval)
1943 return retval;
1944
1945 retval = security_sb_mount(dev_name, &nd.path,
1946 type_page, flags, data_page);
1947 if (retval)
1948 goto dput_out;
1949
1950 if (flags & MS_REMOUNT)
1951 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1952 data_page);
1953 else if (flags & MS_BIND)
1954 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1955 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1956 retval = do_change_type(&nd, flags);
1957 else if (flags & MS_MOVE)
1958 retval = do_move_mount(&nd, dev_name);
1959 else
1960 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1961 dev_name, data_page);
1962 dput_out:
1963 path_put(&nd.path);
1964 return retval;
1965 }
1966
1967 /*
1968 * Allocate a new namespace structure and populate it with contents
1969 * copied from the namespace of the passed in task structure.
1970 */
1971 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1972 struct fs_struct *fs)
1973 {
1974 struct mnt_namespace *new_ns;
1975 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1976 struct vfsmount *p, *q;
1977
1978 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1979 if (!new_ns)
1980 return ERR_PTR(-ENOMEM);
1981
1982 atomic_set(&new_ns->count, 1);
1983 INIT_LIST_HEAD(&new_ns->list);
1984 init_waitqueue_head(&new_ns->poll);
1985 new_ns->event = 0;
1986
1987 down_write(&namespace_sem);
1988 /* First pass: copy the tree topology */
1989 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1990 CL_COPY_ALL | CL_EXPIRE);
1991 if (!new_ns->root) {
1992 up_write(&namespace_sem);
1993 kfree(new_ns);
1994 return ERR_PTR(-ENOMEM);;
1995 }
1996 spin_lock(&vfsmount_lock);
1997 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1998 spin_unlock(&vfsmount_lock);
1999
2000 /*
2001 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2002 * as belonging to new namespace. We have already acquired a private
2003 * fs_struct, so tsk->fs->lock is not needed.
2004 */
2005 p = mnt_ns->root;
2006 q = new_ns->root;
2007 while (p) {
2008 q->mnt_ns = new_ns;
2009 if (fs) {
2010 if (p == fs->root.mnt) {
2011 rootmnt = p;
2012 fs->root.mnt = mntget(q);
2013 }
2014 if (p == fs->pwd.mnt) {
2015 pwdmnt = p;
2016 fs->pwd.mnt = mntget(q);
2017 }
2018 if (p == fs->altroot.mnt) {
2019 altrootmnt = p;
2020 fs->altroot.mnt = mntget(q);
2021 }
2022 }
2023 p = next_mnt(p, mnt_ns->root);
2024 q = next_mnt(q, new_ns->root);
2025 }
2026 up_write(&namespace_sem);
2027
2028 if (rootmnt)
2029 mntput(rootmnt);
2030 if (pwdmnt)
2031 mntput(pwdmnt);
2032 if (altrootmnt)
2033 mntput(altrootmnt);
2034
2035 return new_ns;
2036 }
2037
2038 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2039 struct fs_struct *new_fs)
2040 {
2041 struct mnt_namespace *new_ns;
2042
2043 BUG_ON(!ns);
2044 get_mnt_ns(ns);
2045
2046 if (!(flags & CLONE_NEWNS))
2047 return ns;
2048
2049 new_ns = dup_mnt_ns(ns, new_fs);
2050
2051 put_mnt_ns(ns);
2052 return new_ns;
2053 }
2054
2055 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2056 char __user * type, unsigned long flags,
2057 void __user * data)
2058 {
2059 int retval;
2060 unsigned long data_page;
2061 unsigned long type_page;
2062 unsigned long dev_page;
2063 char *dir_page;
2064
2065 retval = copy_mount_options(type, &type_page);
2066 if (retval < 0)
2067 return retval;
2068
2069 dir_page = getname(dir_name);
2070 retval = PTR_ERR(dir_page);
2071 if (IS_ERR(dir_page))
2072 goto out1;
2073
2074 retval = copy_mount_options(dev_name, &dev_page);
2075 if (retval < 0)
2076 goto out2;
2077
2078 retval = copy_mount_options(data, &data_page);
2079 if (retval < 0)
2080 goto out3;
2081
2082 lock_kernel();
2083 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2084 flags, (void *)data_page);
2085 unlock_kernel();
2086 free_page(data_page);
2087
2088 out3:
2089 free_page(dev_page);
2090 out2:
2091 putname(dir_page);
2092 out1:
2093 free_page(type_page);
2094 return retval;
2095 }
2096
2097 /*
2098 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2099 * It can block. Requires the big lock held.
2100 */
2101 void set_fs_root(struct fs_struct *fs, struct path *path)
2102 {
2103 struct path old_root;
2104
2105 write_lock(&fs->lock);
2106 old_root = fs->root;
2107 fs->root = *path;
2108 path_get(path);
2109 write_unlock(&fs->lock);
2110 if (old_root.dentry)
2111 path_put(&old_root);
2112 }
2113
2114 /*
2115 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2116 * It can block. Requires the big lock held.
2117 */
2118 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2119 {
2120 struct path old_pwd;
2121
2122 write_lock(&fs->lock);
2123 old_pwd = fs->pwd;
2124 fs->pwd = *path;
2125 path_get(path);
2126 write_unlock(&fs->lock);
2127
2128 if (old_pwd.dentry)
2129 path_put(&old_pwd);
2130 }
2131
2132 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2133 {
2134 struct task_struct *g, *p;
2135 struct fs_struct *fs;
2136
2137 read_lock(&tasklist_lock);
2138 do_each_thread(g, p) {
2139 task_lock(p);
2140 fs = p->fs;
2141 if (fs) {
2142 atomic_inc(&fs->count);
2143 task_unlock(p);
2144 if (fs->root.dentry == old_root->dentry
2145 && fs->root.mnt == old_root->mnt)
2146 set_fs_root(fs, new_root);
2147 if (fs->pwd.dentry == old_root->dentry
2148 && fs->pwd.mnt == old_root->mnt)
2149 set_fs_pwd(fs, new_root);
2150 put_fs_struct(fs);
2151 } else
2152 task_unlock(p);
2153 } while_each_thread(g, p);
2154 read_unlock(&tasklist_lock);
2155 }
2156
2157 /*
2158 * pivot_root Semantics:
2159 * Moves the root file system of the current process to the directory put_old,
2160 * makes new_root as the new root file system of the current process, and sets
2161 * root/cwd of all processes which had them on the current root to new_root.
2162 *
2163 * Restrictions:
2164 * The new_root and put_old must be directories, and must not be on the
2165 * same file system as the current process root. The put_old must be
2166 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2167 * pointed to by put_old must yield the same directory as new_root. No other
2168 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2169 *
2170 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2171 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2172 * in this situation.
2173 *
2174 * Notes:
2175 * - we don't move root/cwd if they are not at the root (reason: if something
2176 * cared enough to change them, it's probably wrong to force them elsewhere)
2177 * - it's okay to pick a root that isn't the root of a file system, e.g.
2178 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2179 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2180 * first.
2181 */
2182 asmlinkage long sys_pivot_root(const char __user * new_root,
2183 const char __user * put_old)
2184 {
2185 struct vfsmount *tmp;
2186 struct nameidata new_nd, old_nd;
2187 struct path parent_path, root_parent, root;
2188 int error;
2189
2190 if (!capable(CAP_SYS_ADMIN))
2191 return -EPERM;
2192
2193 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2194 &new_nd);
2195 if (error)
2196 goto out0;
2197 error = -EINVAL;
2198 if (!check_mnt(new_nd.path.mnt))
2199 goto out1;
2200
2201 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
2202 if (error)
2203 goto out1;
2204
2205 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
2206 if (error) {
2207 path_put(&old_nd.path);
2208 goto out1;
2209 }
2210
2211 read_lock(&current->fs->lock);
2212 root = current->fs->root;
2213 path_get(&current->fs->root);
2214 read_unlock(&current->fs->lock);
2215 down_write(&namespace_sem);
2216 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
2217 error = -EINVAL;
2218 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2219 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
2220 IS_MNT_SHARED(root.mnt->mnt_parent))
2221 goto out2;
2222 if (!check_mnt(root.mnt))
2223 goto out2;
2224 error = -ENOENT;
2225 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
2226 goto out2;
2227 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
2228 goto out2;
2229 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2230 goto out2;
2231 error = -EBUSY;
2232 if (new_nd.path.mnt == root.mnt ||
2233 old_nd.path.mnt == root.mnt)
2234 goto out2; /* loop, on the same file system */
2235 error = -EINVAL;
2236 if (root.mnt->mnt_root != root.dentry)
2237 goto out2; /* not a mountpoint */
2238 if (root.mnt->mnt_parent == root.mnt)
2239 goto out2; /* not attached */
2240 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2241 goto out2; /* not a mountpoint */
2242 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2243 goto out2; /* not attached */
2244 /* make sure we can reach put_old from new_root */
2245 tmp = old_nd.path.mnt;
2246 spin_lock(&vfsmount_lock);
2247 if (tmp != new_nd.path.mnt) {
2248 for (;;) {
2249 if (tmp->mnt_parent == tmp)
2250 goto out3; /* already mounted on put_old */
2251 if (tmp->mnt_parent == new_nd.path.mnt)
2252 break;
2253 tmp = tmp->mnt_parent;
2254 }
2255 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2256 goto out3;
2257 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2258 goto out3;
2259 detach_mnt(new_nd.path.mnt, &parent_path);
2260 detach_mnt(root.mnt, &root_parent);
2261 /* mount old root on put_old */
2262 attach_mnt(root.mnt, &old_nd.path);
2263 /* mount new_root on / */
2264 attach_mnt(new_nd.path.mnt, &root_parent);
2265 touch_mnt_namespace(current->nsproxy->mnt_ns);
2266 spin_unlock(&vfsmount_lock);
2267 chroot_fs_refs(&root, &new_nd.path);
2268 security_sb_post_pivotroot(&root, &new_nd.path);
2269 error = 0;
2270 path_put(&root_parent);
2271 path_put(&parent_path);
2272 out2:
2273 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2274 up_write(&namespace_sem);
2275 path_put(&root);
2276 path_put(&old_nd.path);
2277 out1:
2278 path_put(&new_nd.path);
2279 out0:
2280 return error;
2281 out3:
2282 spin_unlock(&vfsmount_lock);
2283 goto out2;
2284 }
2285
2286 static void __init init_mount_tree(void)
2287 {
2288 struct vfsmount *mnt;
2289 struct mnt_namespace *ns;
2290 struct path root;
2291
2292 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2293 if (IS_ERR(mnt))
2294 panic("Can't create rootfs");
2295 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2296 if (!ns)
2297 panic("Can't allocate initial namespace");
2298 atomic_set(&ns->count, 1);
2299 INIT_LIST_HEAD(&ns->list);
2300 init_waitqueue_head(&ns->poll);
2301 ns->event = 0;
2302 list_add(&mnt->mnt_list, &ns->list);
2303 ns->root = mnt;
2304 mnt->mnt_ns = ns;
2305
2306 init_task.nsproxy->mnt_ns = ns;
2307 get_mnt_ns(ns);
2308
2309 root.mnt = ns->root;
2310 root.dentry = ns->root->mnt_root;
2311
2312 set_fs_pwd(current->fs, &root);
2313 set_fs_root(current->fs, &root);
2314 }
2315
2316 void __init mnt_init(void)
2317 {
2318 unsigned u;
2319 int err;
2320
2321 init_rwsem(&namespace_sem);
2322
2323 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2324 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2325
2326 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2327
2328 if (!mount_hashtable)
2329 panic("Failed to allocate mount hash table\n");
2330
2331 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2332
2333 for (u = 0; u < HASH_SIZE; u++)
2334 INIT_LIST_HEAD(&mount_hashtable[u]);
2335
2336 err = sysfs_init();
2337 if (err)
2338 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2339 __func__, err);
2340 fs_kobj = kobject_create_and_add("fs", NULL);
2341 if (!fs_kobj)
2342 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2343 init_rootfs();
2344 init_mount_tree();
2345 }
2346
2347 void __put_mnt_ns(struct mnt_namespace *ns)
2348 {
2349 struct vfsmount *root = ns->root;
2350 LIST_HEAD(umount_list);
2351 ns->root = NULL;
2352 spin_unlock(&vfsmount_lock);
2353 down_write(&namespace_sem);
2354 spin_lock(&vfsmount_lock);
2355 umount_tree(root, 0, &umount_list);
2356 spin_unlock(&vfsmount_lock);
2357 up_write(&namespace_sem);
2358 release_mounts(&umount_list);
2359 kfree(ns);
2360 }
This page took 0.076046 seconds and 4 git commands to generate.