cifs: Allow passwords which begin with a delimitor
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #ifdef CONFIG_HARDWALL
90 #include <asm/hardwall.h>
91 #endif
92 #include <trace/events/oom.h>
93 #include "internal.h"
94 #include "fd.h"
95
96 /* NOTE:
97 * Implementing inode permission operations in /proc is almost
98 * certainly an error. Permission checks need to happen during
99 * each system call not at open time. The reason is that most of
100 * what we wish to check for permissions in /proc varies at runtime.
101 *
102 * The classic example of a problem is opening file descriptors
103 * in /proc for a task before it execs a suid executable.
104 */
105
106 struct pid_entry {
107 char *name;
108 int len;
109 umode_t mode;
110 const struct inode_operations *iop;
111 const struct file_operations *fop;
112 union proc_op op;
113 };
114
115 #define NOD(NAME, MODE, IOP, FOP, OP) { \
116 .name = (NAME), \
117 .len = sizeof(NAME) - 1, \
118 .mode = MODE, \
119 .iop = IOP, \
120 .fop = FOP, \
121 .op = OP, \
122 }
123
124 #define DIR(NAME, MODE, iops, fops) \
125 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
126 #define LNK(NAME, get_link) \
127 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
128 &proc_pid_link_inode_operations, NULL, \
129 { .proc_get_link = get_link } )
130 #define REG(NAME, MODE, fops) \
131 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
132 #define INF(NAME, MODE, read) \
133 NOD(NAME, (S_IFREG|(MODE)), \
134 NULL, &proc_info_file_operations, \
135 { .proc_read = read } )
136 #define ONE(NAME, MODE, show) \
137 NOD(NAME, (S_IFREG|(MODE)), \
138 NULL, &proc_single_file_operations, \
139 { .proc_show = show } )
140
141 /*
142 * Count the number of hardlinks for the pid_entry table, excluding the .
143 * and .. links.
144 */
145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
146 unsigned int n)
147 {
148 unsigned int i;
149 unsigned int count;
150
151 count = 0;
152 for (i = 0; i < n; ++i) {
153 if (S_ISDIR(entries[i].mode))
154 ++count;
155 }
156
157 return count;
158 }
159
160 static int get_task_root(struct task_struct *task, struct path *root)
161 {
162 int result = -ENOENT;
163
164 task_lock(task);
165 if (task->fs) {
166 get_fs_root(task->fs, root);
167 result = 0;
168 }
169 task_unlock(task);
170 return result;
171 }
172
173 static int proc_cwd_link(struct dentry *dentry, struct path *path)
174 {
175 struct task_struct *task = get_proc_task(dentry->d_inode);
176 int result = -ENOENT;
177
178 if (task) {
179 task_lock(task);
180 if (task->fs) {
181 get_fs_pwd(task->fs, path);
182 result = 0;
183 }
184 task_unlock(task);
185 put_task_struct(task);
186 }
187 return result;
188 }
189
190 static int proc_root_link(struct dentry *dentry, struct path *path)
191 {
192 struct task_struct *task = get_proc_task(dentry->d_inode);
193 int result = -ENOENT;
194
195 if (task) {
196 result = get_task_root(task, path);
197 put_task_struct(task);
198 }
199 return result;
200 }
201
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 int res = 0;
205 unsigned int len;
206 struct mm_struct *mm = get_task_mm(task);
207 if (!mm)
208 goto out;
209 if (!mm->arg_end)
210 goto out_mm; /* Shh! No looking before we're done */
211
212 len = mm->arg_end - mm->arg_start;
213
214 if (len > PAGE_SIZE)
215 len = PAGE_SIZE;
216
217 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218
219 // If the nul at the end of args has been overwritten, then
220 // assume application is using setproctitle(3).
221 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 len = strnlen(buffer, res);
223 if (len < res) {
224 res = len;
225 } else {
226 len = mm->env_end - mm->env_start;
227 if (len > PAGE_SIZE - res)
228 len = PAGE_SIZE - res;
229 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 res = strnlen(buffer, res);
231 }
232 }
233 out_mm:
234 mmput(mm);
235 out:
236 return res;
237 }
238
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
242 int res = PTR_ERR(mm);
243 if (mm && !IS_ERR(mm)) {
244 unsigned int nwords = 0;
245 do {
246 nwords += 2;
247 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 res = nwords * sizeof(mm->saved_auxv[0]);
249 if (res > PAGE_SIZE)
250 res = PAGE_SIZE;
251 memcpy(buffer, mm->saved_auxv, res);
252 mmput(mm);
253 }
254 return res;
255 }
256
257
258 #ifdef CONFIG_KALLSYMS
259 /*
260 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261 * Returns the resolved symbol. If that fails, simply return the address.
262 */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 unsigned long wchan;
266 char symname[KSYM_NAME_LEN];
267
268 wchan = get_wchan(task);
269
270 if (lookup_symbol_name(wchan, symname) < 0)
271 if (!ptrace_may_access(task, PTRACE_MODE_READ))
272 return 0;
273 else
274 return sprintf(buffer, "%lu", wchan);
275 else
276 return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279
280 static int lock_trace(struct task_struct *task)
281 {
282 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
283 if (err)
284 return err;
285 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
286 mutex_unlock(&task->signal->cred_guard_mutex);
287 return -EPERM;
288 }
289 return 0;
290 }
291
292 static void unlock_trace(struct task_struct *task)
293 {
294 mutex_unlock(&task->signal->cred_guard_mutex);
295 }
296
297 #ifdef CONFIG_STACKTRACE
298
299 #define MAX_STACK_TRACE_DEPTH 64
300
301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
302 struct pid *pid, struct task_struct *task)
303 {
304 struct stack_trace trace;
305 unsigned long *entries;
306 int err;
307 int i;
308
309 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
310 if (!entries)
311 return -ENOMEM;
312
313 trace.nr_entries = 0;
314 trace.max_entries = MAX_STACK_TRACE_DEPTH;
315 trace.entries = entries;
316 trace.skip = 0;
317
318 err = lock_trace(task);
319 if (!err) {
320 save_stack_trace_tsk(task, &trace);
321
322 for (i = 0; i < trace.nr_entries; i++) {
323 seq_printf(m, "[<%pK>] %pS\n",
324 (void *)entries[i], (void *)entries[i]);
325 }
326 unlock_trace(task);
327 }
328 kfree(entries);
329
330 return err;
331 }
332 #endif
333
334 #ifdef CONFIG_SCHEDSTATS
335 /*
336 * Provides /proc/PID/schedstat
337 */
338 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
339 {
340 return sprintf(buffer, "%llu %llu %lu\n",
341 (unsigned long long)task->se.sum_exec_runtime,
342 (unsigned long long)task->sched_info.run_delay,
343 task->sched_info.pcount);
344 }
345 #endif
346
347 #ifdef CONFIG_LATENCYTOP
348 static int lstats_show_proc(struct seq_file *m, void *v)
349 {
350 int i;
351 struct inode *inode = m->private;
352 struct task_struct *task = get_proc_task(inode);
353
354 if (!task)
355 return -ESRCH;
356 seq_puts(m, "Latency Top version : v0.1\n");
357 for (i = 0; i < 32; i++) {
358 struct latency_record *lr = &task->latency_record[i];
359 if (lr->backtrace[0]) {
360 int q;
361 seq_printf(m, "%i %li %li",
362 lr->count, lr->time, lr->max);
363 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
364 unsigned long bt = lr->backtrace[q];
365 if (!bt)
366 break;
367 if (bt == ULONG_MAX)
368 break;
369 seq_printf(m, " %ps", (void *)bt);
370 }
371 seq_putc(m, '\n');
372 }
373
374 }
375 put_task_struct(task);
376 return 0;
377 }
378
379 static int lstats_open(struct inode *inode, struct file *file)
380 {
381 return single_open(file, lstats_show_proc, inode);
382 }
383
384 static ssize_t lstats_write(struct file *file, const char __user *buf,
385 size_t count, loff_t *offs)
386 {
387 struct task_struct *task = get_proc_task(file_inode(file));
388
389 if (!task)
390 return -ESRCH;
391 clear_all_latency_tracing(task);
392 put_task_struct(task);
393
394 return count;
395 }
396
397 static const struct file_operations proc_lstats_operations = {
398 .open = lstats_open,
399 .read = seq_read,
400 .write = lstats_write,
401 .llseek = seq_lseek,
402 .release = single_release,
403 };
404
405 #endif
406
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 unsigned long totalpages = totalram_pages + total_swap_pages;
410 unsigned long points = 0;
411
412 read_lock(&tasklist_lock);
413 if (pid_alive(task))
414 points = oom_badness(task, NULL, NULL, totalpages) *
415 1000 / totalpages;
416 read_unlock(&tasklist_lock);
417 return sprintf(buffer, "%lu\n", points);
418 }
419
420 struct limit_names {
421 char *name;
422 char *unit;
423 };
424
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 [RLIMIT_DATA] = {"Max data size", "bytes"},
429 [RLIMIT_STACK] = {"Max stack size", "bytes"},
430 [RLIMIT_CORE] = {"Max core file size", "bytes"},
431 [RLIMIT_RSS] = {"Max resident set", "bytes"},
432 [RLIMIT_NPROC] = {"Max processes", "processes"},
433 [RLIMIT_NOFILE] = {"Max open files", "files"},
434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 [RLIMIT_AS] = {"Max address space", "bytes"},
436 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 [RLIMIT_NICE] = {"Max nice priority", NULL},
440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 unsigned int i;
448 int count = 0;
449 unsigned long flags;
450 char *bufptr = buffer;
451
452 struct rlimit rlim[RLIM_NLIMITS];
453
454 if (!lock_task_sighand(task, &flags))
455 return 0;
456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 unlock_task_sighand(task, &flags);
458
459 /*
460 * print the file header
461 */
462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 "Limit", "Soft Limit", "Hard Limit", "Units");
464
465 for (i = 0; i < RLIM_NLIMITS; i++) {
466 if (rlim[i].rlim_cur == RLIM_INFINITY)
467 count += sprintf(&bufptr[count], "%-25s %-20s ",
468 lnames[i].name, "unlimited");
469 else
470 count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 lnames[i].name, rlim[i].rlim_cur);
472
473 if (rlim[i].rlim_max == RLIM_INFINITY)
474 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 else
476 count += sprintf(&bufptr[count], "%-20lu ",
477 rlim[i].rlim_max);
478
479 if (lnames[i].unit)
480 count += sprintf(&bufptr[count], "%-10s\n",
481 lnames[i].unit);
482 else
483 count += sprintf(&bufptr[count], "\n");
484 }
485
486 return count;
487 }
488
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 long nr;
493 unsigned long args[6], sp, pc;
494 int res = lock_trace(task);
495 if (res)
496 return res;
497
498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 res = sprintf(buffer, "running\n");
500 else if (nr < 0)
501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 else
503 res = sprintf(buffer,
504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 nr,
506 args[0], args[1], args[2], args[3], args[4], args[5],
507 sp, pc);
508 unlock_trace(task);
509 return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512
513 /************************************************************************/
514 /* Here the fs part begins */
515 /************************************************************************/
516
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 struct task_struct *task;
521 int allowed = 0;
522 /* Allow access to a task's file descriptors if it is us or we
523 * may use ptrace attach to the process and find out that
524 * information.
525 */
526 task = get_proc_task(inode);
527 if (task) {
528 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 put_task_struct(task);
530 }
531 return allowed;
532 }
533
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 int error;
537 struct inode *inode = dentry->d_inode;
538
539 if (attr->ia_valid & ATTR_MODE)
540 return -EPERM;
541
542 error = inode_change_ok(inode, attr);
543 if (error)
544 return error;
545
546 setattr_copy(inode, attr);
547 mark_inode_dirty(inode);
548 return 0;
549 }
550
551 /*
552 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
553 * or euid/egid (for hide_pid_min=2)?
554 */
555 static bool has_pid_permissions(struct pid_namespace *pid,
556 struct task_struct *task,
557 int hide_pid_min)
558 {
559 if (pid->hide_pid < hide_pid_min)
560 return true;
561 if (in_group_p(pid->pid_gid))
562 return true;
563 return ptrace_may_access(task, PTRACE_MODE_READ);
564 }
565
566
567 static int proc_pid_permission(struct inode *inode, int mask)
568 {
569 struct pid_namespace *pid = inode->i_sb->s_fs_info;
570 struct task_struct *task;
571 bool has_perms;
572
573 task = get_proc_task(inode);
574 if (!task)
575 return -ESRCH;
576 has_perms = has_pid_permissions(pid, task, 1);
577 put_task_struct(task);
578
579 if (!has_perms) {
580 if (pid->hide_pid == 2) {
581 /*
582 * Let's make getdents(), stat(), and open()
583 * consistent with each other. If a process
584 * may not stat() a file, it shouldn't be seen
585 * in procfs at all.
586 */
587 return -ENOENT;
588 }
589
590 return -EPERM;
591 }
592 return generic_permission(inode, mask);
593 }
594
595
596
597 static const struct inode_operations proc_def_inode_operations = {
598 .setattr = proc_setattr,
599 };
600
601 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
602
603 static ssize_t proc_info_read(struct file * file, char __user * buf,
604 size_t count, loff_t *ppos)
605 {
606 struct inode * inode = file_inode(file);
607 unsigned long page;
608 ssize_t length;
609 struct task_struct *task = get_proc_task(inode);
610
611 length = -ESRCH;
612 if (!task)
613 goto out_no_task;
614
615 if (count > PROC_BLOCK_SIZE)
616 count = PROC_BLOCK_SIZE;
617
618 length = -ENOMEM;
619 if (!(page = __get_free_page(GFP_TEMPORARY)))
620 goto out;
621
622 length = PROC_I(inode)->op.proc_read(task, (char*)page);
623
624 if (length >= 0)
625 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
626 free_page(page);
627 out:
628 put_task_struct(task);
629 out_no_task:
630 return length;
631 }
632
633 static const struct file_operations proc_info_file_operations = {
634 .read = proc_info_read,
635 .llseek = generic_file_llseek,
636 };
637
638 static int proc_single_show(struct seq_file *m, void *v)
639 {
640 struct inode *inode = m->private;
641 struct pid_namespace *ns;
642 struct pid *pid;
643 struct task_struct *task;
644 int ret;
645
646 ns = inode->i_sb->s_fs_info;
647 pid = proc_pid(inode);
648 task = get_pid_task(pid, PIDTYPE_PID);
649 if (!task)
650 return -ESRCH;
651
652 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
653
654 put_task_struct(task);
655 return ret;
656 }
657
658 static int proc_single_open(struct inode *inode, struct file *filp)
659 {
660 return single_open(filp, proc_single_show, inode);
661 }
662
663 static const struct file_operations proc_single_file_operations = {
664 .open = proc_single_open,
665 .read = seq_read,
666 .llseek = seq_lseek,
667 .release = single_release,
668 };
669
670 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
671 {
672 struct task_struct *task = get_proc_task(file_inode(file));
673 struct mm_struct *mm;
674
675 if (!task)
676 return -ESRCH;
677
678 mm = mm_access(task, mode);
679 put_task_struct(task);
680
681 if (IS_ERR(mm))
682 return PTR_ERR(mm);
683
684 if (mm) {
685 /* ensure this mm_struct can't be freed */
686 atomic_inc(&mm->mm_count);
687 /* but do not pin its memory */
688 mmput(mm);
689 }
690
691 file->private_data = mm;
692
693 return 0;
694 }
695
696 static int mem_open(struct inode *inode, struct file *file)
697 {
698 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
699
700 /* OK to pass negative loff_t, we can catch out-of-range */
701 file->f_mode |= FMODE_UNSIGNED_OFFSET;
702
703 return ret;
704 }
705
706 static ssize_t mem_rw(struct file *file, char __user *buf,
707 size_t count, loff_t *ppos, int write)
708 {
709 struct mm_struct *mm = file->private_data;
710 unsigned long addr = *ppos;
711 ssize_t copied;
712 char *page;
713
714 if (!mm)
715 return 0;
716
717 page = (char *)__get_free_page(GFP_TEMPORARY);
718 if (!page)
719 return -ENOMEM;
720
721 copied = 0;
722 if (!atomic_inc_not_zero(&mm->mm_users))
723 goto free;
724
725 while (count > 0) {
726 int this_len = min_t(int, count, PAGE_SIZE);
727
728 if (write && copy_from_user(page, buf, this_len)) {
729 copied = -EFAULT;
730 break;
731 }
732
733 this_len = access_remote_vm(mm, addr, page, this_len, write);
734 if (!this_len) {
735 if (!copied)
736 copied = -EIO;
737 break;
738 }
739
740 if (!write && copy_to_user(buf, page, this_len)) {
741 copied = -EFAULT;
742 break;
743 }
744
745 buf += this_len;
746 addr += this_len;
747 copied += this_len;
748 count -= this_len;
749 }
750 *ppos = addr;
751
752 mmput(mm);
753 free:
754 free_page((unsigned long) page);
755 return copied;
756 }
757
758 static ssize_t mem_read(struct file *file, char __user *buf,
759 size_t count, loff_t *ppos)
760 {
761 return mem_rw(file, buf, count, ppos, 0);
762 }
763
764 static ssize_t mem_write(struct file *file, const char __user *buf,
765 size_t count, loff_t *ppos)
766 {
767 return mem_rw(file, (char __user*)buf, count, ppos, 1);
768 }
769
770 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
771 {
772 switch (orig) {
773 case 0:
774 file->f_pos = offset;
775 break;
776 case 1:
777 file->f_pos += offset;
778 break;
779 default:
780 return -EINVAL;
781 }
782 force_successful_syscall_return();
783 return file->f_pos;
784 }
785
786 static int mem_release(struct inode *inode, struct file *file)
787 {
788 struct mm_struct *mm = file->private_data;
789 if (mm)
790 mmdrop(mm);
791 return 0;
792 }
793
794 static const struct file_operations proc_mem_operations = {
795 .llseek = mem_lseek,
796 .read = mem_read,
797 .write = mem_write,
798 .open = mem_open,
799 .release = mem_release,
800 };
801
802 static int environ_open(struct inode *inode, struct file *file)
803 {
804 return __mem_open(inode, file, PTRACE_MODE_READ);
805 }
806
807 static ssize_t environ_read(struct file *file, char __user *buf,
808 size_t count, loff_t *ppos)
809 {
810 char *page;
811 unsigned long src = *ppos;
812 int ret = 0;
813 struct mm_struct *mm = file->private_data;
814
815 if (!mm)
816 return 0;
817
818 page = (char *)__get_free_page(GFP_TEMPORARY);
819 if (!page)
820 return -ENOMEM;
821
822 ret = 0;
823 if (!atomic_inc_not_zero(&mm->mm_users))
824 goto free;
825 while (count > 0) {
826 size_t this_len, max_len;
827 int retval;
828
829 if (src >= (mm->env_end - mm->env_start))
830 break;
831
832 this_len = mm->env_end - (mm->env_start + src);
833
834 max_len = min_t(size_t, PAGE_SIZE, count);
835 this_len = min(max_len, this_len);
836
837 retval = access_remote_vm(mm, (mm->env_start + src),
838 page, this_len, 0);
839
840 if (retval <= 0) {
841 ret = retval;
842 break;
843 }
844
845 if (copy_to_user(buf, page, retval)) {
846 ret = -EFAULT;
847 break;
848 }
849
850 ret += retval;
851 src += retval;
852 buf += retval;
853 count -= retval;
854 }
855 *ppos = src;
856 mmput(mm);
857
858 free:
859 free_page((unsigned long) page);
860 return ret;
861 }
862
863 static const struct file_operations proc_environ_operations = {
864 .open = environ_open,
865 .read = environ_read,
866 .llseek = generic_file_llseek,
867 .release = mem_release,
868 };
869
870 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
871 loff_t *ppos)
872 {
873 struct task_struct *task = get_proc_task(file_inode(file));
874 char buffer[PROC_NUMBUF];
875 int oom_adj = OOM_ADJUST_MIN;
876 size_t len;
877 unsigned long flags;
878
879 if (!task)
880 return -ESRCH;
881 if (lock_task_sighand(task, &flags)) {
882 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
883 oom_adj = OOM_ADJUST_MAX;
884 else
885 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
886 OOM_SCORE_ADJ_MAX;
887 unlock_task_sighand(task, &flags);
888 }
889 put_task_struct(task);
890 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
891 return simple_read_from_buffer(buf, count, ppos, buffer, len);
892 }
893
894 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
895 size_t count, loff_t *ppos)
896 {
897 struct task_struct *task;
898 char buffer[PROC_NUMBUF];
899 int oom_adj;
900 unsigned long flags;
901 int err;
902
903 memset(buffer, 0, sizeof(buffer));
904 if (count > sizeof(buffer) - 1)
905 count = sizeof(buffer) - 1;
906 if (copy_from_user(buffer, buf, count)) {
907 err = -EFAULT;
908 goto out;
909 }
910
911 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
912 if (err)
913 goto out;
914 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
915 oom_adj != OOM_DISABLE) {
916 err = -EINVAL;
917 goto out;
918 }
919
920 task = get_proc_task(file_inode(file));
921 if (!task) {
922 err = -ESRCH;
923 goto out;
924 }
925
926 task_lock(task);
927 if (!task->mm) {
928 err = -EINVAL;
929 goto err_task_lock;
930 }
931
932 if (!lock_task_sighand(task, &flags)) {
933 err = -ESRCH;
934 goto err_task_lock;
935 }
936
937 /*
938 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
939 * value is always attainable.
940 */
941 if (oom_adj == OOM_ADJUST_MAX)
942 oom_adj = OOM_SCORE_ADJ_MAX;
943 else
944 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
945
946 if (oom_adj < task->signal->oom_score_adj &&
947 !capable(CAP_SYS_RESOURCE)) {
948 err = -EACCES;
949 goto err_sighand;
950 }
951
952 /*
953 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
954 * /proc/pid/oom_score_adj instead.
955 */
956 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
957 current->comm, task_pid_nr(current), task_pid_nr(task),
958 task_pid_nr(task));
959
960 task->signal->oom_score_adj = oom_adj;
961 trace_oom_score_adj_update(task);
962 err_sighand:
963 unlock_task_sighand(task, &flags);
964 err_task_lock:
965 task_unlock(task);
966 put_task_struct(task);
967 out:
968 return err < 0 ? err : count;
969 }
970
971 static const struct file_operations proc_oom_adj_operations = {
972 .read = oom_adj_read,
973 .write = oom_adj_write,
974 .llseek = generic_file_llseek,
975 };
976
977 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
978 size_t count, loff_t *ppos)
979 {
980 struct task_struct *task = get_proc_task(file_inode(file));
981 char buffer[PROC_NUMBUF];
982 short oom_score_adj = OOM_SCORE_ADJ_MIN;
983 unsigned long flags;
984 size_t len;
985
986 if (!task)
987 return -ESRCH;
988 if (lock_task_sighand(task, &flags)) {
989 oom_score_adj = task->signal->oom_score_adj;
990 unlock_task_sighand(task, &flags);
991 }
992 put_task_struct(task);
993 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
994 return simple_read_from_buffer(buf, count, ppos, buffer, len);
995 }
996
997 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
998 size_t count, loff_t *ppos)
999 {
1000 struct task_struct *task;
1001 char buffer[PROC_NUMBUF];
1002 unsigned long flags;
1003 int oom_score_adj;
1004 int err;
1005
1006 memset(buffer, 0, sizeof(buffer));
1007 if (count > sizeof(buffer) - 1)
1008 count = sizeof(buffer) - 1;
1009 if (copy_from_user(buffer, buf, count)) {
1010 err = -EFAULT;
1011 goto out;
1012 }
1013
1014 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1015 if (err)
1016 goto out;
1017 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1018 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022
1023 task = get_proc_task(file_inode(file));
1024 if (!task) {
1025 err = -ESRCH;
1026 goto out;
1027 }
1028
1029 task_lock(task);
1030 if (!task->mm) {
1031 err = -EINVAL;
1032 goto err_task_lock;
1033 }
1034
1035 if (!lock_task_sighand(task, &flags)) {
1036 err = -ESRCH;
1037 goto err_task_lock;
1038 }
1039
1040 if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1041 !capable(CAP_SYS_RESOURCE)) {
1042 err = -EACCES;
1043 goto err_sighand;
1044 }
1045
1046 task->signal->oom_score_adj = (short)oom_score_adj;
1047 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1048 task->signal->oom_score_adj_min = (short)oom_score_adj;
1049 trace_oom_score_adj_update(task);
1050
1051 err_sighand:
1052 unlock_task_sighand(task, &flags);
1053 err_task_lock:
1054 task_unlock(task);
1055 put_task_struct(task);
1056 out:
1057 return err < 0 ? err : count;
1058 }
1059
1060 static const struct file_operations proc_oom_score_adj_operations = {
1061 .read = oom_score_adj_read,
1062 .write = oom_score_adj_write,
1063 .llseek = default_llseek,
1064 };
1065
1066 #ifdef CONFIG_AUDITSYSCALL
1067 #define TMPBUFLEN 21
1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069 size_t count, loff_t *ppos)
1070 {
1071 struct inode * inode = file_inode(file);
1072 struct task_struct *task = get_proc_task(inode);
1073 ssize_t length;
1074 char tmpbuf[TMPBUFLEN];
1075
1076 if (!task)
1077 return -ESRCH;
1078 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079 from_kuid(file->f_cred->user_ns,
1080 audit_get_loginuid(task)));
1081 put_task_struct(task);
1082 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083 }
1084
1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086 size_t count, loff_t *ppos)
1087 {
1088 struct inode * inode = file_inode(file);
1089 char *page, *tmp;
1090 ssize_t length;
1091 uid_t loginuid;
1092 kuid_t kloginuid;
1093
1094 rcu_read_lock();
1095 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1096 rcu_read_unlock();
1097 return -EPERM;
1098 }
1099 rcu_read_unlock();
1100
1101 if (count >= PAGE_SIZE)
1102 count = PAGE_SIZE - 1;
1103
1104 if (*ppos != 0) {
1105 /* No partial writes. */
1106 return -EINVAL;
1107 }
1108 page = (char*)__get_free_page(GFP_TEMPORARY);
1109 if (!page)
1110 return -ENOMEM;
1111 length = -EFAULT;
1112 if (copy_from_user(page, buf, count))
1113 goto out_free_page;
1114
1115 page[count] = '\0';
1116 loginuid = simple_strtoul(page, &tmp, 10);
1117 if (tmp == page) {
1118 length = -EINVAL;
1119 goto out_free_page;
1120
1121 }
1122 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1123 if (!uid_valid(kloginuid)) {
1124 length = -EINVAL;
1125 goto out_free_page;
1126 }
1127
1128 length = audit_set_loginuid(kloginuid);
1129 if (likely(length == 0))
1130 length = count;
1131
1132 out_free_page:
1133 free_page((unsigned long) page);
1134 return length;
1135 }
1136
1137 static const struct file_operations proc_loginuid_operations = {
1138 .read = proc_loginuid_read,
1139 .write = proc_loginuid_write,
1140 .llseek = generic_file_llseek,
1141 };
1142
1143 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1144 size_t count, loff_t *ppos)
1145 {
1146 struct inode * inode = file_inode(file);
1147 struct task_struct *task = get_proc_task(inode);
1148 ssize_t length;
1149 char tmpbuf[TMPBUFLEN];
1150
1151 if (!task)
1152 return -ESRCH;
1153 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1154 audit_get_sessionid(task));
1155 put_task_struct(task);
1156 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1157 }
1158
1159 static const struct file_operations proc_sessionid_operations = {
1160 .read = proc_sessionid_read,
1161 .llseek = generic_file_llseek,
1162 };
1163 #endif
1164
1165 #ifdef CONFIG_FAULT_INJECTION
1166 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1167 size_t count, loff_t *ppos)
1168 {
1169 struct task_struct *task = get_proc_task(file_inode(file));
1170 char buffer[PROC_NUMBUF];
1171 size_t len;
1172 int make_it_fail;
1173
1174 if (!task)
1175 return -ESRCH;
1176 make_it_fail = task->make_it_fail;
1177 put_task_struct(task);
1178
1179 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1180
1181 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183
1184 static ssize_t proc_fault_inject_write(struct file * file,
1185 const char __user * buf, size_t count, loff_t *ppos)
1186 {
1187 struct task_struct *task;
1188 char buffer[PROC_NUMBUF], *end;
1189 int make_it_fail;
1190
1191 if (!capable(CAP_SYS_RESOURCE))
1192 return -EPERM;
1193 memset(buffer, 0, sizeof(buffer));
1194 if (count > sizeof(buffer) - 1)
1195 count = sizeof(buffer) - 1;
1196 if (copy_from_user(buffer, buf, count))
1197 return -EFAULT;
1198 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1199 if (*end)
1200 return -EINVAL;
1201 task = get_proc_task(file_inode(file));
1202 if (!task)
1203 return -ESRCH;
1204 task->make_it_fail = make_it_fail;
1205 put_task_struct(task);
1206
1207 return count;
1208 }
1209
1210 static const struct file_operations proc_fault_inject_operations = {
1211 .read = proc_fault_inject_read,
1212 .write = proc_fault_inject_write,
1213 .llseek = generic_file_llseek,
1214 };
1215 #endif
1216
1217
1218 #ifdef CONFIG_SCHED_DEBUG
1219 /*
1220 * Print out various scheduling related per-task fields:
1221 */
1222 static int sched_show(struct seq_file *m, void *v)
1223 {
1224 struct inode *inode = m->private;
1225 struct task_struct *p;
1226
1227 p = get_proc_task(inode);
1228 if (!p)
1229 return -ESRCH;
1230 proc_sched_show_task(p, m);
1231
1232 put_task_struct(p);
1233
1234 return 0;
1235 }
1236
1237 static ssize_t
1238 sched_write(struct file *file, const char __user *buf,
1239 size_t count, loff_t *offset)
1240 {
1241 struct inode *inode = file_inode(file);
1242 struct task_struct *p;
1243
1244 p = get_proc_task(inode);
1245 if (!p)
1246 return -ESRCH;
1247 proc_sched_set_task(p);
1248
1249 put_task_struct(p);
1250
1251 return count;
1252 }
1253
1254 static int sched_open(struct inode *inode, struct file *filp)
1255 {
1256 return single_open(filp, sched_show, inode);
1257 }
1258
1259 static const struct file_operations proc_pid_sched_operations = {
1260 .open = sched_open,
1261 .read = seq_read,
1262 .write = sched_write,
1263 .llseek = seq_lseek,
1264 .release = single_release,
1265 };
1266
1267 #endif
1268
1269 #ifdef CONFIG_SCHED_AUTOGROUP
1270 /*
1271 * Print out autogroup related information:
1272 */
1273 static int sched_autogroup_show(struct seq_file *m, void *v)
1274 {
1275 struct inode *inode = m->private;
1276 struct task_struct *p;
1277
1278 p = get_proc_task(inode);
1279 if (!p)
1280 return -ESRCH;
1281 proc_sched_autogroup_show_task(p, m);
1282
1283 put_task_struct(p);
1284
1285 return 0;
1286 }
1287
1288 static ssize_t
1289 sched_autogroup_write(struct file *file, const char __user *buf,
1290 size_t count, loff_t *offset)
1291 {
1292 struct inode *inode = file_inode(file);
1293 struct task_struct *p;
1294 char buffer[PROC_NUMBUF];
1295 int nice;
1296 int err;
1297
1298 memset(buffer, 0, sizeof(buffer));
1299 if (count > sizeof(buffer) - 1)
1300 count = sizeof(buffer) - 1;
1301 if (copy_from_user(buffer, buf, count))
1302 return -EFAULT;
1303
1304 err = kstrtoint(strstrip(buffer), 0, &nice);
1305 if (err < 0)
1306 return err;
1307
1308 p = get_proc_task(inode);
1309 if (!p)
1310 return -ESRCH;
1311
1312 err = proc_sched_autogroup_set_nice(p, nice);
1313 if (err)
1314 count = err;
1315
1316 put_task_struct(p);
1317
1318 return count;
1319 }
1320
1321 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1322 {
1323 int ret;
1324
1325 ret = single_open(filp, sched_autogroup_show, NULL);
1326 if (!ret) {
1327 struct seq_file *m = filp->private_data;
1328
1329 m->private = inode;
1330 }
1331 return ret;
1332 }
1333
1334 static const struct file_operations proc_pid_sched_autogroup_operations = {
1335 .open = sched_autogroup_open,
1336 .read = seq_read,
1337 .write = sched_autogroup_write,
1338 .llseek = seq_lseek,
1339 .release = single_release,
1340 };
1341
1342 #endif /* CONFIG_SCHED_AUTOGROUP */
1343
1344 static ssize_t comm_write(struct file *file, const char __user *buf,
1345 size_t count, loff_t *offset)
1346 {
1347 struct inode *inode = file_inode(file);
1348 struct task_struct *p;
1349 char buffer[TASK_COMM_LEN];
1350
1351 memset(buffer, 0, sizeof(buffer));
1352 if (count > sizeof(buffer) - 1)
1353 count = sizeof(buffer) - 1;
1354 if (copy_from_user(buffer, buf, count))
1355 return -EFAULT;
1356
1357 p = get_proc_task(inode);
1358 if (!p)
1359 return -ESRCH;
1360
1361 if (same_thread_group(current, p))
1362 set_task_comm(p, buffer);
1363 else
1364 count = -EINVAL;
1365
1366 put_task_struct(p);
1367
1368 return count;
1369 }
1370
1371 static int comm_show(struct seq_file *m, void *v)
1372 {
1373 struct inode *inode = m->private;
1374 struct task_struct *p;
1375
1376 p = get_proc_task(inode);
1377 if (!p)
1378 return -ESRCH;
1379
1380 task_lock(p);
1381 seq_printf(m, "%s\n", p->comm);
1382 task_unlock(p);
1383
1384 put_task_struct(p);
1385
1386 return 0;
1387 }
1388
1389 static int comm_open(struct inode *inode, struct file *filp)
1390 {
1391 return single_open(filp, comm_show, inode);
1392 }
1393
1394 static const struct file_operations proc_pid_set_comm_operations = {
1395 .open = comm_open,
1396 .read = seq_read,
1397 .write = comm_write,
1398 .llseek = seq_lseek,
1399 .release = single_release,
1400 };
1401
1402 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1403 {
1404 struct task_struct *task;
1405 struct mm_struct *mm;
1406 struct file *exe_file;
1407
1408 task = get_proc_task(dentry->d_inode);
1409 if (!task)
1410 return -ENOENT;
1411 mm = get_task_mm(task);
1412 put_task_struct(task);
1413 if (!mm)
1414 return -ENOENT;
1415 exe_file = get_mm_exe_file(mm);
1416 mmput(mm);
1417 if (exe_file) {
1418 *exe_path = exe_file->f_path;
1419 path_get(&exe_file->f_path);
1420 fput(exe_file);
1421 return 0;
1422 } else
1423 return -ENOENT;
1424 }
1425
1426 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1427 {
1428 struct inode *inode = dentry->d_inode;
1429 struct path path;
1430 int error = -EACCES;
1431
1432 /* Are we allowed to snoop on the tasks file descriptors? */
1433 if (!proc_fd_access_allowed(inode))
1434 goto out;
1435
1436 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1437 if (error)
1438 goto out;
1439
1440 nd_jump_link(nd, &path);
1441 return NULL;
1442 out:
1443 return ERR_PTR(error);
1444 }
1445
1446 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1447 {
1448 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1449 char *pathname;
1450 int len;
1451
1452 if (!tmp)
1453 return -ENOMEM;
1454
1455 pathname = d_path(path, tmp, PAGE_SIZE);
1456 len = PTR_ERR(pathname);
1457 if (IS_ERR(pathname))
1458 goto out;
1459 len = tmp + PAGE_SIZE - 1 - pathname;
1460
1461 if (len > buflen)
1462 len = buflen;
1463 if (copy_to_user(buffer, pathname, len))
1464 len = -EFAULT;
1465 out:
1466 free_page((unsigned long)tmp);
1467 return len;
1468 }
1469
1470 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1471 {
1472 int error = -EACCES;
1473 struct inode *inode = dentry->d_inode;
1474 struct path path;
1475
1476 /* Are we allowed to snoop on the tasks file descriptors? */
1477 if (!proc_fd_access_allowed(inode))
1478 goto out;
1479
1480 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1481 if (error)
1482 goto out;
1483
1484 error = do_proc_readlink(&path, buffer, buflen);
1485 path_put(&path);
1486 out:
1487 return error;
1488 }
1489
1490 const struct inode_operations proc_pid_link_inode_operations = {
1491 .readlink = proc_pid_readlink,
1492 .follow_link = proc_pid_follow_link,
1493 .setattr = proc_setattr,
1494 };
1495
1496
1497 /* building an inode */
1498
1499 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1500 {
1501 struct inode * inode;
1502 struct proc_inode *ei;
1503 const struct cred *cred;
1504
1505 /* We need a new inode */
1506
1507 inode = new_inode(sb);
1508 if (!inode)
1509 goto out;
1510
1511 /* Common stuff */
1512 ei = PROC_I(inode);
1513 inode->i_ino = get_next_ino();
1514 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1515 inode->i_op = &proc_def_inode_operations;
1516
1517 /*
1518 * grab the reference to task.
1519 */
1520 ei->pid = get_task_pid(task, PIDTYPE_PID);
1521 if (!ei->pid)
1522 goto out_unlock;
1523
1524 if (task_dumpable(task)) {
1525 rcu_read_lock();
1526 cred = __task_cred(task);
1527 inode->i_uid = cred->euid;
1528 inode->i_gid = cred->egid;
1529 rcu_read_unlock();
1530 }
1531 security_task_to_inode(task, inode);
1532
1533 out:
1534 return inode;
1535
1536 out_unlock:
1537 iput(inode);
1538 return NULL;
1539 }
1540
1541 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1542 {
1543 struct inode *inode = dentry->d_inode;
1544 struct task_struct *task;
1545 const struct cred *cred;
1546 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1547
1548 generic_fillattr(inode, stat);
1549
1550 rcu_read_lock();
1551 stat->uid = GLOBAL_ROOT_UID;
1552 stat->gid = GLOBAL_ROOT_GID;
1553 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1554 if (task) {
1555 if (!has_pid_permissions(pid, task, 2)) {
1556 rcu_read_unlock();
1557 /*
1558 * This doesn't prevent learning whether PID exists,
1559 * it only makes getattr() consistent with readdir().
1560 */
1561 return -ENOENT;
1562 }
1563 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1564 task_dumpable(task)) {
1565 cred = __task_cred(task);
1566 stat->uid = cred->euid;
1567 stat->gid = cred->egid;
1568 }
1569 }
1570 rcu_read_unlock();
1571 return 0;
1572 }
1573
1574 /* dentry stuff */
1575
1576 /*
1577 * Exceptional case: normally we are not allowed to unhash a busy
1578 * directory. In this case, however, we can do it - no aliasing problems
1579 * due to the way we treat inodes.
1580 *
1581 * Rewrite the inode's ownerships here because the owning task may have
1582 * performed a setuid(), etc.
1583 *
1584 * Before the /proc/pid/status file was created the only way to read
1585 * the effective uid of a /process was to stat /proc/pid. Reading
1586 * /proc/pid/status is slow enough that procps and other packages
1587 * kept stating /proc/pid. To keep the rules in /proc simple I have
1588 * made this apply to all per process world readable and executable
1589 * directories.
1590 */
1591 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1592 {
1593 struct inode *inode;
1594 struct task_struct *task;
1595 const struct cred *cred;
1596
1597 if (flags & LOOKUP_RCU)
1598 return -ECHILD;
1599
1600 inode = dentry->d_inode;
1601 task = get_proc_task(inode);
1602
1603 if (task) {
1604 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1605 task_dumpable(task)) {
1606 rcu_read_lock();
1607 cred = __task_cred(task);
1608 inode->i_uid = cred->euid;
1609 inode->i_gid = cred->egid;
1610 rcu_read_unlock();
1611 } else {
1612 inode->i_uid = GLOBAL_ROOT_UID;
1613 inode->i_gid = GLOBAL_ROOT_GID;
1614 }
1615 inode->i_mode &= ~(S_ISUID | S_ISGID);
1616 security_task_to_inode(task, inode);
1617 put_task_struct(task);
1618 return 1;
1619 }
1620 d_drop(dentry);
1621 return 0;
1622 }
1623
1624 const struct dentry_operations pid_dentry_operations =
1625 {
1626 .d_revalidate = pid_revalidate,
1627 .d_delete = pid_delete_dentry,
1628 };
1629
1630 /* Lookups */
1631
1632 /*
1633 * Fill a directory entry.
1634 *
1635 * If possible create the dcache entry and derive our inode number and
1636 * file type from dcache entry.
1637 *
1638 * Since all of the proc inode numbers are dynamically generated, the inode
1639 * numbers do not exist until the inode is cache. This means creating the
1640 * the dcache entry in readdir is necessary to keep the inode numbers
1641 * reported by readdir in sync with the inode numbers reported
1642 * by stat.
1643 */
1644 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1645 const char *name, int len,
1646 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1647 {
1648 struct dentry *child, *dir = filp->f_path.dentry;
1649 struct inode *inode;
1650 struct qstr qname;
1651 ino_t ino = 0;
1652 unsigned type = DT_UNKNOWN;
1653
1654 qname.name = name;
1655 qname.len = len;
1656 qname.hash = full_name_hash(name, len);
1657
1658 child = d_lookup(dir, &qname);
1659 if (!child) {
1660 struct dentry *new;
1661 new = d_alloc(dir, &qname);
1662 if (new) {
1663 child = instantiate(dir->d_inode, new, task, ptr);
1664 if (child)
1665 dput(new);
1666 else
1667 child = new;
1668 }
1669 }
1670 if (!child || IS_ERR(child) || !child->d_inode)
1671 goto end_instantiate;
1672 inode = child->d_inode;
1673 if (inode) {
1674 ino = inode->i_ino;
1675 type = inode->i_mode >> 12;
1676 }
1677 dput(child);
1678 end_instantiate:
1679 if (!ino)
1680 ino = find_inode_number(dir, &qname);
1681 if (!ino)
1682 ino = 1;
1683 return filldir(dirent, name, len, filp->f_pos, ino, type);
1684 }
1685
1686 #ifdef CONFIG_CHECKPOINT_RESTORE
1687
1688 /*
1689 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1690 * which represent vma start and end addresses.
1691 */
1692 static int dname_to_vma_addr(struct dentry *dentry,
1693 unsigned long *start, unsigned long *end)
1694 {
1695 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1696 return -EINVAL;
1697
1698 return 0;
1699 }
1700
1701 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1702 {
1703 unsigned long vm_start, vm_end;
1704 bool exact_vma_exists = false;
1705 struct mm_struct *mm = NULL;
1706 struct task_struct *task;
1707 const struct cred *cred;
1708 struct inode *inode;
1709 int status = 0;
1710
1711 if (flags & LOOKUP_RCU)
1712 return -ECHILD;
1713
1714 if (!capable(CAP_SYS_ADMIN)) {
1715 status = -EPERM;
1716 goto out_notask;
1717 }
1718
1719 inode = dentry->d_inode;
1720 task = get_proc_task(inode);
1721 if (!task)
1722 goto out_notask;
1723
1724 mm = mm_access(task, PTRACE_MODE_READ);
1725 if (IS_ERR_OR_NULL(mm))
1726 goto out;
1727
1728 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1729 down_read(&mm->mmap_sem);
1730 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1731 up_read(&mm->mmap_sem);
1732 }
1733
1734 mmput(mm);
1735
1736 if (exact_vma_exists) {
1737 if (task_dumpable(task)) {
1738 rcu_read_lock();
1739 cred = __task_cred(task);
1740 inode->i_uid = cred->euid;
1741 inode->i_gid = cred->egid;
1742 rcu_read_unlock();
1743 } else {
1744 inode->i_uid = GLOBAL_ROOT_UID;
1745 inode->i_gid = GLOBAL_ROOT_GID;
1746 }
1747 security_task_to_inode(task, inode);
1748 status = 1;
1749 }
1750
1751 out:
1752 put_task_struct(task);
1753
1754 out_notask:
1755 if (status <= 0)
1756 d_drop(dentry);
1757
1758 return status;
1759 }
1760
1761 static const struct dentry_operations tid_map_files_dentry_operations = {
1762 .d_revalidate = map_files_d_revalidate,
1763 .d_delete = pid_delete_dentry,
1764 };
1765
1766 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1767 {
1768 unsigned long vm_start, vm_end;
1769 struct vm_area_struct *vma;
1770 struct task_struct *task;
1771 struct mm_struct *mm;
1772 int rc;
1773
1774 rc = -ENOENT;
1775 task = get_proc_task(dentry->d_inode);
1776 if (!task)
1777 goto out;
1778
1779 mm = get_task_mm(task);
1780 put_task_struct(task);
1781 if (!mm)
1782 goto out;
1783
1784 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1785 if (rc)
1786 goto out_mmput;
1787
1788 down_read(&mm->mmap_sem);
1789 vma = find_exact_vma(mm, vm_start, vm_end);
1790 if (vma && vma->vm_file) {
1791 *path = vma->vm_file->f_path;
1792 path_get(path);
1793 rc = 0;
1794 }
1795 up_read(&mm->mmap_sem);
1796
1797 out_mmput:
1798 mmput(mm);
1799 out:
1800 return rc;
1801 }
1802
1803 struct map_files_info {
1804 fmode_t mode;
1805 unsigned long len;
1806 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1807 };
1808
1809 static struct dentry *
1810 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1811 struct task_struct *task, const void *ptr)
1812 {
1813 fmode_t mode = (fmode_t)(unsigned long)ptr;
1814 struct proc_inode *ei;
1815 struct inode *inode;
1816
1817 inode = proc_pid_make_inode(dir->i_sb, task);
1818 if (!inode)
1819 return ERR_PTR(-ENOENT);
1820
1821 ei = PROC_I(inode);
1822 ei->op.proc_get_link = proc_map_files_get_link;
1823
1824 inode->i_op = &proc_pid_link_inode_operations;
1825 inode->i_size = 64;
1826 inode->i_mode = S_IFLNK;
1827
1828 if (mode & FMODE_READ)
1829 inode->i_mode |= S_IRUSR;
1830 if (mode & FMODE_WRITE)
1831 inode->i_mode |= S_IWUSR;
1832
1833 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1834 d_add(dentry, inode);
1835
1836 return NULL;
1837 }
1838
1839 static struct dentry *proc_map_files_lookup(struct inode *dir,
1840 struct dentry *dentry, unsigned int flags)
1841 {
1842 unsigned long vm_start, vm_end;
1843 struct vm_area_struct *vma;
1844 struct task_struct *task;
1845 struct dentry *result;
1846 struct mm_struct *mm;
1847
1848 result = ERR_PTR(-EPERM);
1849 if (!capable(CAP_SYS_ADMIN))
1850 goto out;
1851
1852 result = ERR_PTR(-ENOENT);
1853 task = get_proc_task(dir);
1854 if (!task)
1855 goto out;
1856
1857 result = ERR_PTR(-EACCES);
1858 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1859 goto out_put_task;
1860
1861 result = ERR_PTR(-ENOENT);
1862 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1863 goto out_put_task;
1864
1865 mm = get_task_mm(task);
1866 if (!mm)
1867 goto out_put_task;
1868
1869 down_read(&mm->mmap_sem);
1870 vma = find_exact_vma(mm, vm_start, vm_end);
1871 if (!vma)
1872 goto out_no_vma;
1873
1874 if (vma->vm_file)
1875 result = proc_map_files_instantiate(dir, dentry, task,
1876 (void *)(unsigned long)vma->vm_file->f_mode);
1877
1878 out_no_vma:
1879 up_read(&mm->mmap_sem);
1880 mmput(mm);
1881 out_put_task:
1882 put_task_struct(task);
1883 out:
1884 return result;
1885 }
1886
1887 static const struct inode_operations proc_map_files_inode_operations = {
1888 .lookup = proc_map_files_lookup,
1889 .permission = proc_fd_permission,
1890 .setattr = proc_setattr,
1891 };
1892
1893 static int
1894 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1895 {
1896 struct dentry *dentry = filp->f_path.dentry;
1897 struct inode *inode = dentry->d_inode;
1898 struct vm_area_struct *vma;
1899 struct task_struct *task;
1900 struct mm_struct *mm;
1901 ino_t ino;
1902 int ret;
1903
1904 ret = -EPERM;
1905 if (!capable(CAP_SYS_ADMIN))
1906 goto out;
1907
1908 ret = -ENOENT;
1909 task = get_proc_task(inode);
1910 if (!task)
1911 goto out;
1912
1913 ret = -EACCES;
1914 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1915 goto out_put_task;
1916
1917 ret = 0;
1918 switch (filp->f_pos) {
1919 case 0:
1920 ino = inode->i_ino;
1921 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1922 goto out_put_task;
1923 filp->f_pos++;
1924 case 1:
1925 ino = parent_ino(dentry);
1926 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1927 goto out_put_task;
1928 filp->f_pos++;
1929 default:
1930 {
1931 unsigned long nr_files, pos, i;
1932 struct flex_array *fa = NULL;
1933 struct map_files_info info;
1934 struct map_files_info *p;
1935
1936 mm = get_task_mm(task);
1937 if (!mm)
1938 goto out_put_task;
1939 down_read(&mm->mmap_sem);
1940
1941 nr_files = 0;
1942
1943 /*
1944 * We need two passes here:
1945 *
1946 * 1) Collect vmas of mapped files with mmap_sem taken
1947 * 2) Release mmap_sem and instantiate entries
1948 *
1949 * otherwise we get lockdep complained, since filldir()
1950 * routine might require mmap_sem taken in might_fault().
1951 */
1952
1953 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1954 if (vma->vm_file && ++pos > filp->f_pos)
1955 nr_files++;
1956 }
1957
1958 if (nr_files) {
1959 fa = flex_array_alloc(sizeof(info), nr_files,
1960 GFP_KERNEL);
1961 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1962 GFP_KERNEL)) {
1963 ret = -ENOMEM;
1964 if (fa)
1965 flex_array_free(fa);
1966 up_read(&mm->mmap_sem);
1967 mmput(mm);
1968 goto out_put_task;
1969 }
1970 for (i = 0, vma = mm->mmap, pos = 2; vma;
1971 vma = vma->vm_next) {
1972 if (!vma->vm_file)
1973 continue;
1974 if (++pos <= filp->f_pos)
1975 continue;
1976
1977 info.mode = vma->vm_file->f_mode;
1978 info.len = snprintf(info.name,
1979 sizeof(info.name), "%lx-%lx",
1980 vma->vm_start, vma->vm_end);
1981 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1982 BUG();
1983 }
1984 }
1985 up_read(&mm->mmap_sem);
1986
1987 for (i = 0; i < nr_files; i++) {
1988 p = flex_array_get(fa, i);
1989 ret = proc_fill_cache(filp, dirent, filldir,
1990 p->name, p->len,
1991 proc_map_files_instantiate,
1992 task,
1993 (void *)(unsigned long)p->mode);
1994 if (ret)
1995 break;
1996 filp->f_pos++;
1997 }
1998 if (fa)
1999 flex_array_free(fa);
2000 mmput(mm);
2001 }
2002 }
2003
2004 out_put_task:
2005 put_task_struct(task);
2006 out:
2007 return ret;
2008 }
2009
2010 static const struct file_operations proc_map_files_operations = {
2011 .read = generic_read_dir,
2012 .readdir = proc_map_files_readdir,
2013 .llseek = default_llseek,
2014 };
2015
2016 #endif /* CONFIG_CHECKPOINT_RESTORE */
2017
2018 static struct dentry *proc_pident_instantiate(struct inode *dir,
2019 struct dentry *dentry, struct task_struct *task, const void *ptr)
2020 {
2021 const struct pid_entry *p = ptr;
2022 struct inode *inode;
2023 struct proc_inode *ei;
2024 struct dentry *error = ERR_PTR(-ENOENT);
2025
2026 inode = proc_pid_make_inode(dir->i_sb, task);
2027 if (!inode)
2028 goto out;
2029
2030 ei = PROC_I(inode);
2031 inode->i_mode = p->mode;
2032 if (S_ISDIR(inode->i_mode))
2033 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2034 if (p->iop)
2035 inode->i_op = p->iop;
2036 if (p->fop)
2037 inode->i_fop = p->fop;
2038 ei->op = p->op;
2039 d_set_d_op(dentry, &pid_dentry_operations);
2040 d_add(dentry, inode);
2041 /* Close the race of the process dying before we return the dentry */
2042 if (pid_revalidate(dentry, 0))
2043 error = NULL;
2044 out:
2045 return error;
2046 }
2047
2048 static struct dentry *proc_pident_lookup(struct inode *dir,
2049 struct dentry *dentry,
2050 const struct pid_entry *ents,
2051 unsigned int nents)
2052 {
2053 struct dentry *error;
2054 struct task_struct *task = get_proc_task(dir);
2055 const struct pid_entry *p, *last;
2056
2057 error = ERR_PTR(-ENOENT);
2058
2059 if (!task)
2060 goto out_no_task;
2061
2062 /*
2063 * Yes, it does not scale. And it should not. Don't add
2064 * new entries into /proc/<tgid>/ without very good reasons.
2065 */
2066 last = &ents[nents - 1];
2067 for (p = ents; p <= last; p++) {
2068 if (p->len != dentry->d_name.len)
2069 continue;
2070 if (!memcmp(dentry->d_name.name, p->name, p->len))
2071 break;
2072 }
2073 if (p > last)
2074 goto out;
2075
2076 error = proc_pident_instantiate(dir, dentry, task, p);
2077 out:
2078 put_task_struct(task);
2079 out_no_task:
2080 return error;
2081 }
2082
2083 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2084 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2085 {
2086 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2087 proc_pident_instantiate, task, p);
2088 }
2089
2090 static int proc_pident_readdir(struct file *filp,
2091 void *dirent, filldir_t filldir,
2092 const struct pid_entry *ents, unsigned int nents)
2093 {
2094 int i;
2095 struct dentry *dentry = filp->f_path.dentry;
2096 struct inode *inode = dentry->d_inode;
2097 struct task_struct *task = get_proc_task(inode);
2098 const struct pid_entry *p, *last;
2099 ino_t ino;
2100 int ret;
2101
2102 ret = -ENOENT;
2103 if (!task)
2104 goto out_no_task;
2105
2106 ret = 0;
2107 i = filp->f_pos;
2108 switch (i) {
2109 case 0:
2110 ino = inode->i_ino;
2111 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2112 goto out;
2113 i++;
2114 filp->f_pos++;
2115 /* fall through */
2116 case 1:
2117 ino = parent_ino(dentry);
2118 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2119 goto out;
2120 i++;
2121 filp->f_pos++;
2122 /* fall through */
2123 default:
2124 i -= 2;
2125 if (i >= nents) {
2126 ret = 1;
2127 goto out;
2128 }
2129 p = ents + i;
2130 last = &ents[nents - 1];
2131 while (p <= last) {
2132 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2133 goto out;
2134 filp->f_pos++;
2135 p++;
2136 }
2137 }
2138
2139 ret = 1;
2140 out:
2141 put_task_struct(task);
2142 out_no_task:
2143 return ret;
2144 }
2145
2146 #ifdef CONFIG_SECURITY
2147 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2148 size_t count, loff_t *ppos)
2149 {
2150 struct inode * inode = file_inode(file);
2151 char *p = NULL;
2152 ssize_t length;
2153 struct task_struct *task = get_proc_task(inode);
2154
2155 if (!task)
2156 return -ESRCH;
2157
2158 length = security_getprocattr(task,
2159 (char*)file->f_path.dentry->d_name.name,
2160 &p);
2161 put_task_struct(task);
2162 if (length > 0)
2163 length = simple_read_from_buffer(buf, count, ppos, p, length);
2164 kfree(p);
2165 return length;
2166 }
2167
2168 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2169 size_t count, loff_t *ppos)
2170 {
2171 struct inode * inode = file_inode(file);
2172 char *page;
2173 ssize_t length;
2174 struct task_struct *task = get_proc_task(inode);
2175
2176 length = -ESRCH;
2177 if (!task)
2178 goto out_no_task;
2179 if (count > PAGE_SIZE)
2180 count = PAGE_SIZE;
2181
2182 /* No partial writes. */
2183 length = -EINVAL;
2184 if (*ppos != 0)
2185 goto out;
2186
2187 length = -ENOMEM;
2188 page = (char*)__get_free_page(GFP_TEMPORARY);
2189 if (!page)
2190 goto out;
2191
2192 length = -EFAULT;
2193 if (copy_from_user(page, buf, count))
2194 goto out_free;
2195
2196 /* Guard against adverse ptrace interaction */
2197 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2198 if (length < 0)
2199 goto out_free;
2200
2201 length = security_setprocattr(task,
2202 (char*)file->f_path.dentry->d_name.name,
2203 (void*)page, count);
2204 mutex_unlock(&task->signal->cred_guard_mutex);
2205 out_free:
2206 free_page((unsigned long) page);
2207 out:
2208 put_task_struct(task);
2209 out_no_task:
2210 return length;
2211 }
2212
2213 static const struct file_operations proc_pid_attr_operations = {
2214 .read = proc_pid_attr_read,
2215 .write = proc_pid_attr_write,
2216 .llseek = generic_file_llseek,
2217 };
2218
2219 static const struct pid_entry attr_dir_stuff[] = {
2220 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2221 REG("prev", S_IRUGO, proc_pid_attr_operations),
2222 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2223 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2224 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2225 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2226 };
2227
2228 static int proc_attr_dir_readdir(struct file * filp,
2229 void * dirent, filldir_t filldir)
2230 {
2231 return proc_pident_readdir(filp,dirent,filldir,
2232 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2233 }
2234
2235 static const struct file_operations proc_attr_dir_operations = {
2236 .read = generic_read_dir,
2237 .readdir = proc_attr_dir_readdir,
2238 .llseek = default_llseek,
2239 };
2240
2241 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2242 struct dentry *dentry, unsigned int flags)
2243 {
2244 return proc_pident_lookup(dir, dentry,
2245 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2246 }
2247
2248 static const struct inode_operations proc_attr_dir_inode_operations = {
2249 .lookup = proc_attr_dir_lookup,
2250 .getattr = pid_getattr,
2251 .setattr = proc_setattr,
2252 };
2253
2254 #endif
2255
2256 #ifdef CONFIG_ELF_CORE
2257 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2258 size_t count, loff_t *ppos)
2259 {
2260 struct task_struct *task = get_proc_task(file_inode(file));
2261 struct mm_struct *mm;
2262 char buffer[PROC_NUMBUF];
2263 size_t len;
2264 int ret;
2265
2266 if (!task)
2267 return -ESRCH;
2268
2269 ret = 0;
2270 mm = get_task_mm(task);
2271 if (mm) {
2272 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2273 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2274 MMF_DUMP_FILTER_SHIFT));
2275 mmput(mm);
2276 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2277 }
2278
2279 put_task_struct(task);
2280
2281 return ret;
2282 }
2283
2284 static ssize_t proc_coredump_filter_write(struct file *file,
2285 const char __user *buf,
2286 size_t count,
2287 loff_t *ppos)
2288 {
2289 struct task_struct *task;
2290 struct mm_struct *mm;
2291 char buffer[PROC_NUMBUF], *end;
2292 unsigned int val;
2293 int ret;
2294 int i;
2295 unsigned long mask;
2296
2297 ret = -EFAULT;
2298 memset(buffer, 0, sizeof(buffer));
2299 if (count > sizeof(buffer) - 1)
2300 count = sizeof(buffer) - 1;
2301 if (copy_from_user(buffer, buf, count))
2302 goto out_no_task;
2303
2304 ret = -EINVAL;
2305 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2306 if (*end == '\n')
2307 end++;
2308 if (end - buffer == 0)
2309 goto out_no_task;
2310
2311 ret = -ESRCH;
2312 task = get_proc_task(file_inode(file));
2313 if (!task)
2314 goto out_no_task;
2315
2316 ret = end - buffer;
2317 mm = get_task_mm(task);
2318 if (!mm)
2319 goto out_no_mm;
2320
2321 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2322 if (val & mask)
2323 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2324 else
2325 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2326 }
2327
2328 mmput(mm);
2329 out_no_mm:
2330 put_task_struct(task);
2331 out_no_task:
2332 return ret;
2333 }
2334
2335 static const struct file_operations proc_coredump_filter_operations = {
2336 .read = proc_coredump_filter_read,
2337 .write = proc_coredump_filter_write,
2338 .llseek = generic_file_llseek,
2339 };
2340 #endif
2341
2342 #ifdef CONFIG_TASK_IO_ACCOUNTING
2343 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2344 {
2345 struct task_io_accounting acct = task->ioac;
2346 unsigned long flags;
2347 int result;
2348
2349 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2350 if (result)
2351 return result;
2352
2353 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2354 result = -EACCES;
2355 goto out_unlock;
2356 }
2357
2358 if (whole && lock_task_sighand(task, &flags)) {
2359 struct task_struct *t = task;
2360
2361 task_io_accounting_add(&acct, &task->signal->ioac);
2362 while_each_thread(task, t)
2363 task_io_accounting_add(&acct, &t->ioac);
2364
2365 unlock_task_sighand(task, &flags);
2366 }
2367 result = sprintf(buffer,
2368 "rchar: %llu\n"
2369 "wchar: %llu\n"
2370 "syscr: %llu\n"
2371 "syscw: %llu\n"
2372 "read_bytes: %llu\n"
2373 "write_bytes: %llu\n"
2374 "cancelled_write_bytes: %llu\n",
2375 (unsigned long long)acct.rchar,
2376 (unsigned long long)acct.wchar,
2377 (unsigned long long)acct.syscr,
2378 (unsigned long long)acct.syscw,
2379 (unsigned long long)acct.read_bytes,
2380 (unsigned long long)acct.write_bytes,
2381 (unsigned long long)acct.cancelled_write_bytes);
2382 out_unlock:
2383 mutex_unlock(&task->signal->cred_guard_mutex);
2384 return result;
2385 }
2386
2387 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2388 {
2389 return do_io_accounting(task, buffer, 0);
2390 }
2391
2392 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2393 {
2394 return do_io_accounting(task, buffer, 1);
2395 }
2396 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2397
2398 #ifdef CONFIG_USER_NS
2399 static int proc_id_map_open(struct inode *inode, struct file *file,
2400 struct seq_operations *seq_ops)
2401 {
2402 struct user_namespace *ns = NULL;
2403 struct task_struct *task;
2404 struct seq_file *seq;
2405 int ret = -EINVAL;
2406
2407 task = get_proc_task(inode);
2408 if (task) {
2409 rcu_read_lock();
2410 ns = get_user_ns(task_cred_xxx(task, user_ns));
2411 rcu_read_unlock();
2412 put_task_struct(task);
2413 }
2414 if (!ns)
2415 goto err;
2416
2417 ret = seq_open(file, seq_ops);
2418 if (ret)
2419 goto err_put_ns;
2420
2421 seq = file->private_data;
2422 seq->private = ns;
2423
2424 return 0;
2425 err_put_ns:
2426 put_user_ns(ns);
2427 err:
2428 return ret;
2429 }
2430
2431 static int proc_id_map_release(struct inode *inode, struct file *file)
2432 {
2433 struct seq_file *seq = file->private_data;
2434 struct user_namespace *ns = seq->private;
2435 put_user_ns(ns);
2436 return seq_release(inode, file);
2437 }
2438
2439 static int proc_uid_map_open(struct inode *inode, struct file *file)
2440 {
2441 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2442 }
2443
2444 static int proc_gid_map_open(struct inode *inode, struct file *file)
2445 {
2446 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2447 }
2448
2449 static int proc_projid_map_open(struct inode *inode, struct file *file)
2450 {
2451 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2452 }
2453
2454 static const struct file_operations proc_uid_map_operations = {
2455 .open = proc_uid_map_open,
2456 .write = proc_uid_map_write,
2457 .read = seq_read,
2458 .llseek = seq_lseek,
2459 .release = proc_id_map_release,
2460 };
2461
2462 static const struct file_operations proc_gid_map_operations = {
2463 .open = proc_gid_map_open,
2464 .write = proc_gid_map_write,
2465 .read = seq_read,
2466 .llseek = seq_lseek,
2467 .release = proc_id_map_release,
2468 };
2469
2470 static const struct file_operations proc_projid_map_operations = {
2471 .open = proc_projid_map_open,
2472 .write = proc_projid_map_write,
2473 .read = seq_read,
2474 .llseek = seq_lseek,
2475 .release = proc_id_map_release,
2476 };
2477 #endif /* CONFIG_USER_NS */
2478
2479 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2480 struct pid *pid, struct task_struct *task)
2481 {
2482 int err = lock_trace(task);
2483 if (!err) {
2484 seq_printf(m, "%08x\n", task->personality);
2485 unlock_trace(task);
2486 }
2487 return err;
2488 }
2489
2490 /*
2491 * Thread groups
2492 */
2493 static const struct file_operations proc_task_operations;
2494 static const struct inode_operations proc_task_inode_operations;
2495
2496 static const struct pid_entry tgid_base_stuff[] = {
2497 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2498 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2499 #ifdef CONFIG_CHECKPOINT_RESTORE
2500 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2501 #endif
2502 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2503 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2504 #ifdef CONFIG_NET
2505 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2506 #endif
2507 REG("environ", S_IRUSR, proc_environ_operations),
2508 INF("auxv", S_IRUSR, proc_pid_auxv),
2509 ONE("status", S_IRUGO, proc_pid_status),
2510 ONE("personality", S_IRUGO, proc_pid_personality),
2511 INF("limits", S_IRUGO, proc_pid_limits),
2512 #ifdef CONFIG_SCHED_DEBUG
2513 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2514 #endif
2515 #ifdef CONFIG_SCHED_AUTOGROUP
2516 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2517 #endif
2518 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2519 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2520 INF("syscall", S_IRUGO, proc_pid_syscall),
2521 #endif
2522 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2523 ONE("stat", S_IRUGO, proc_tgid_stat),
2524 ONE("statm", S_IRUGO, proc_pid_statm),
2525 REG("maps", S_IRUGO, proc_pid_maps_operations),
2526 #ifdef CONFIG_NUMA
2527 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2528 #endif
2529 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2530 LNK("cwd", proc_cwd_link),
2531 LNK("root", proc_root_link),
2532 LNK("exe", proc_exe_link),
2533 REG("mounts", S_IRUGO, proc_mounts_operations),
2534 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2535 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2536 #ifdef CONFIG_PROC_PAGE_MONITOR
2537 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2538 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2539 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2540 #endif
2541 #ifdef CONFIG_SECURITY
2542 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2543 #endif
2544 #ifdef CONFIG_KALLSYMS
2545 INF("wchan", S_IRUGO, proc_pid_wchan),
2546 #endif
2547 #ifdef CONFIG_STACKTRACE
2548 ONE("stack", S_IRUGO, proc_pid_stack),
2549 #endif
2550 #ifdef CONFIG_SCHEDSTATS
2551 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2552 #endif
2553 #ifdef CONFIG_LATENCYTOP
2554 REG("latency", S_IRUGO, proc_lstats_operations),
2555 #endif
2556 #ifdef CONFIG_PROC_PID_CPUSET
2557 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2558 #endif
2559 #ifdef CONFIG_CGROUPS
2560 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2561 #endif
2562 INF("oom_score", S_IRUGO, proc_oom_score),
2563 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2564 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2565 #ifdef CONFIG_AUDITSYSCALL
2566 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2567 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2568 #endif
2569 #ifdef CONFIG_FAULT_INJECTION
2570 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2571 #endif
2572 #ifdef CONFIG_ELF_CORE
2573 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2574 #endif
2575 #ifdef CONFIG_TASK_IO_ACCOUNTING
2576 INF("io", S_IRUSR, proc_tgid_io_accounting),
2577 #endif
2578 #ifdef CONFIG_HARDWALL
2579 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2580 #endif
2581 #ifdef CONFIG_USER_NS
2582 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2583 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2584 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2585 #endif
2586 };
2587
2588 static int proc_tgid_base_readdir(struct file * filp,
2589 void * dirent, filldir_t filldir)
2590 {
2591 return proc_pident_readdir(filp,dirent,filldir,
2592 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2593 }
2594
2595 static const struct file_operations proc_tgid_base_operations = {
2596 .read = generic_read_dir,
2597 .readdir = proc_tgid_base_readdir,
2598 .llseek = default_llseek,
2599 };
2600
2601 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2602 {
2603 return proc_pident_lookup(dir, dentry,
2604 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2605 }
2606
2607 static const struct inode_operations proc_tgid_base_inode_operations = {
2608 .lookup = proc_tgid_base_lookup,
2609 .getattr = pid_getattr,
2610 .setattr = proc_setattr,
2611 .permission = proc_pid_permission,
2612 };
2613
2614 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2615 {
2616 struct dentry *dentry, *leader, *dir;
2617 char buf[PROC_NUMBUF];
2618 struct qstr name;
2619
2620 name.name = buf;
2621 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2622 /* no ->d_hash() rejects on procfs */
2623 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2624 if (dentry) {
2625 shrink_dcache_parent(dentry);
2626 d_drop(dentry);
2627 dput(dentry);
2628 }
2629
2630 name.name = buf;
2631 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2632 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2633 if (!leader)
2634 goto out;
2635
2636 name.name = "task";
2637 name.len = strlen(name.name);
2638 dir = d_hash_and_lookup(leader, &name);
2639 if (!dir)
2640 goto out_put_leader;
2641
2642 name.name = buf;
2643 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2644 dentry = d_hash_and_lookup(dir, &name);
2645 if (dentry) {
2646 shrink_dcache_parent(dentry);
2647 d_drop(dentry);
2648 dput(dentry);
2649 }
2650
2651 dput(dir);
2652 out_put_leader:
2653 dput(leader);
2654 out:
2655 return;
2656 }
2657
2658 /**
2659 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2660 * @task: task that should be flushed.
2661 *
2662 * When flushing dentries from proc, one needs to flush them from global
2663 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2664 * in. This call is supposed to do all of this job.
2665 *
2666 * Looks in the dcache for
2667 * /proc/@pid
2668 * /proc/@tgid/task/@pid
2669 * if either directory is present flushes it and all of it'ts children
2670 * from the dcache.
2671 *
2672 * It is safe and reasonable to cache /proc entries for a task until
2673 * that task exits. After that they just clog up the dcache with
2674 * useless entries, possibly causing useful dcache entries to be
2675 * flushed instead. This routine is proved to flush those useless
2676 * dcache entries at process exit time.
2677 *
2678 * NOTE: This routine is just an optimization so it does not guarantee
2679 * that no dcache entries will exist at process exit time it
2680 * just makes it very unlikely that any will persist.
2681 */
2682
2683 void proc_flush_task(struct task_struct *task)
2684 {
2685 int i;
2686 struct pid *pid, *tgid;
2687 struct upid *upid;
2688
2689 pid = task_pid(task);
2690 tgid = task_tgid(task);
2691
2692 for (i = 0; i <= pid->level; i++) {
2693 upid = &pid->numbers[i];
2694 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2695 tgid->numbers[i].nr);
2696 }
2697 }
2698
2699 static struct dentry *proc_pid_instantiate(struct inode *dir,
2700 struct dentry * dentry,
2701 struct task_struct *task, const void *ptr)
2702 {
2703 struct dentry *error = ERR_PTR(-ENOENT);
2704 struct inode *inode;
2705
2706 inode = proc_pid_make_inode(dir->i_sb, task);
2707 if (!inode)
2708 goto out;
2709
2710 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2711 inode->i_op = &proc_tgid_base_inode_operations;
2712 inode->i_fop = &proc_tgid_base_operations;
2713 inode->i_flags|=S_IMMUTABLE;
2714
2715 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2716 ARRAY_SIZE(tgid_base_stuff)));
2717
2718 d_set_d_op(dentry, &pid_dentry_operations);
2719
2720 d_add(dentry, inode);
2721 /* Close the race of the process dying before we return the dentry */
2722 if (pid_revalidate(dentry, 0))
2723 error = NULL;
2724 out:
2725 return error;
2726 }
2727
2728 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2729 {
2730 struct dentry *result = NULL;
2731 struct task_struct *task;
2732 unsigned tgid;
2733 struct pid_namespace *ns;
2734
2735 tgid = name_to_int(dentry);
2736 if (tgid == ~0U)
2737 goto out;
2738
2739 ns = dentry->d_sb->s_fs_info;
2740 rcu_read_lock();
2741 task = find_task_by_pid_ns(tgid, ns);
2742 if (task)
2743 get_task_struct(task);
2744 rcu_read_unlock();
2745 if (!task)
2746 goto out;
2747
2748 result = proc_pid_instantiate(dir, dentry, task, NULL);
2749 put_task_struct(task);
2750 out:
2751 return result;
2752 }
2753
2754 /*
2755 * Find the first task with tgid >= tgid
2756 *
2757 */
2758 struct tgid_iter {
2759 unsigned int tgid;
2760 struct task_struct *task;
2761 };
2762 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2763 {
2764 struct pid *pid;
2765
2766 if (iter.task)
2767 put_task_struct(iter.task);
2768 rcu_read_lock();
2769 retry:
2770 iter.task = NULL;
2771 pid = find_ge_pid(iter.tgid, ns);
2772 if (pid) {
2773 iter.tgid = pid_nr_ns(pid, ns);
2774 iter.task = pid_task(pid, PIDTYPE_PID);
2775 /* What we to know is if the pid we have find is the
2776 * pid of a thread_group_leader. Testing for task
2777 * being a thread_group_leader is the obvious thing
2778 * todo but there is a window when it fails, due to
2779 * the pid transfer logic in de_thread.
2780 *
2781 * So we perform the straight forward test of seeing
2782 * if the pid we have found is the pid of a thread
2783 * group leader, and don't worry if the task we have
2784 * found doesn't happen to be a thread group leader.
2785 * As we don't care in the case of readdir.
2786 */
2787 if (!iter.task || !has_group_leader_pid(iter.task)) {
2788 iter.tgid += 1;
2789 goto retry;
2790 }
2791 get_task_struct(iter.task);
2792 }
2793 rcu_read_unlock();
2794 return iter;
2795 }
2796
2797 #define TGID_OFFSET (FIRST_PROCESS_ENTRY)
2798
2799 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2800 struct tgid_iter iter)
2801 {
2802 char name[PROC_NUMBUF];
2803 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2804 return proc_fill_cache(filp, dirent, filldir, name, len,
2805 proc_pid_instantiate, iter.task, NULL);
2806 }
2807
2808 static int fake_filldir(void *buf, const char *name, int namelen,
2809 loff_t offset, u64 ino, unsigned d_type)
2810 {
2811 return 0;
2812 }
2813
2814 /* for the /proc/ directory itself, after non-process stuff has been done */
2815 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2816 {
2817 struct tgid_iter iter;
2818 struct pid_namespace *ns;
2819 filldir_t __filldir;
2820
2821 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2822 goto out;
2823
2824 ns = filp->f_dentry->d_sb->s_fs_info;
2825 iter.task = NULL;
2826 iter.tgid = filp->f_pos - TGID_OFFSET;
2827 for (iter = next_tgid(ns, iter);
2828 iter.task;
2829 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2830 if (has_pid_permissions(ns, iter.task, 2))
2831 __filldir = filldir;
2832 else
2833 __filldir = fake_filldir;
2834
2835 filp->f_pos = iter.tgid + TGID_OFFSET;
2836 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2837 put_task_struct(iter.task);
2838 goto out;
2839 }
2840 }
2841 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2842 out:
2843 return 0;
2844 }
2845
2846 /*
2847 * Tasks
2848 */
2849 static const struct pid_entry tid_base_stuff[] = {
2850 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2851 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2852 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2853 REG("environ", S_IRUSR, proc_environ_operations),
2854 INF("auxv", S_IRUSR, proc_pid_auxv),
2855 ONE("status", S_IRUGO, proc_pid_status),
2856 ONE("personality", S_IRUGO, proc_pid_personality),
2857 INF("limits", S_IRUGO, proc_pid_limits),
2858 #ifdef CONFIG_SCHED_DEBUG
2859 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2860 #endif
2861 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2862 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2863 INF("syscall", S_IRUGO, proc_pid_syscall),
2864 #endif
2865 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2866 ONE("stat", S_IRUGO, proc_tid_stat),
2867 ONE("statm", S_IRUGO, proc_pid_statm),
2868 REG("maps", S_IRUGO, proc_tid_maps_operations),
2869 #ifdef CONFIG_CHECKPOINT_RESTORE
2870 REG("children", S_IRUGO, proc_tid_children_operations),
2871 #endif
2872 #ifdef CONFIG_NUMA
2873 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2874 #endif
2875 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2876 LNK("cwd", proc_cwd_link),
2877 LNK("root", proc_root_link),
2878 LNK("exe", proc_exe_link),
2879 REG("mounts", S_IRUGO, proc_mounts_operations),
2880 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2881 #ifdef CONFIG_PROC_PAGE_MONITOR
2882 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2883 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
2884 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2885 #endif
2886 #ifdef CONFIG_SECURITY
2887 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2888 #endif
2889 #ifdef CONFIG_KALLSYMS
2890 INF("wchan", S_IRUGO, proc_pid_wchan),
2891 #endif
2892 #ifdef CONFIG_STACKTRACE
2893 ONE("stack", S_IRUGO, proc_pid_stack),
2894 #endif
2895 #ifdef CONFIG_SCHEDSTATS
2896 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2897 #endif
2898 #ifdef CONFIG_LATENCYTOP
2899 REG("latency", S_IRUGO, proc_lstats_operations),
2900 #endif
2901 #ifdef CONFIG_PROC_PID_CPUSET
2902 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2903 #endif
2904 #ifdef CONFIG_CGROUPS
2905 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2906 #endif
2907 INF("oom_score", S_IRUGO, proc_oom_score),
2908 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2909 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2910 #ifdef CONFIG_AUDITSYSCALL
2911 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2912 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2913 #endif
2914 #ifdef CONFIG_FAULT_INJECTION
2915 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2916 #endif
2917 #ifdef CONFIG_TASK_IO_ACCOUNTING
2918 INF("io", S_IRUSR, proc_tid_io_accounting),
2919 #endif
2920 #ifdef CONFIG_HARDWALL
2921 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2922 #endif
2923 #ifdef CONFIG_USER_NS
2924 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2925 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2926 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2927 #endif
2928 };
2929
2930 static int proc_tid_base_readdir(struct file * filp,
2931 void * dirent, filldir_t filldir)
2932 {
2933 return proc_pident_readdir(filp,dirent,filldir,
2934 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2935 }
2936
2937 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2938 {
2939 return proc_pident_lookup(dir, dentry,
2940 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2941 }
2942
2943 static const struct file_operations proc_tid_base_operations = {
2944 .read = generic_read_dir,
2945 .readdir = proc_tid_base_readdir,
2946 .llseek = default_llseek,
2947 };
2948
2949 static const struct inode_operations proc_tid_base_inode_operations = {
2950 .lookup = proc_tid_base_lookup,
2951 .getattr = pid_getattr,
2952 .setattr = proc_setattr,
2953 };
2954
2955 static struct dentry *proc_task_instantiate(struct inode *dir,
2956 struct dentry *dentry, struct task_struct *task, const void *ptr)
2957 {
2958 struct dentry *error = ERR_PTR(-ENOENT);
2959 struct inode *inode;
2960 inode = proc_pid_make_inode(dir->i_sb, task);
2961
2962 if (!inode)
2963 goto out;
2964 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2965 inode->i_op = &proc_tid_base_inode_operations;
2966 inode->i_fop = &proc_tid_base_operations;
2967 inode->i_flags|=S_IMMUTABLE;
2968
2969 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2970 ARRAY_SIZE(tid_base_stuff)));
2971
2972 d_set_d_op(dentry, &pid_dentry_operations);
2973
2974 d_add(dentry, inode);
2975 /* Close the race of the process dying before we return the dentry */
2976 if (pid_revalidate(dentry, 0))
2977 error = NULL;
2978 out:
2979 return error;
2980 }
2981
2982 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2983 {
2984 struct dentry *result = ERR_PTR(-ENOENT);
2985 struct task_struct *task;
2986 struct task_struct *leader = get_proc_task(dir);
2987 unsigned tid;
2988 struct pid_namespace *ns;
2989
2990 if (!leader)
2991 goto out_no_task;
2992
2993 tid = name_to_int(dentry);
2994 if (tid == ~0U)
2995 goto out;
2996
2997 ns = dentry->d_sb->s_fs_info;
2998 rcu_read_lock();
2999 task = find_task_by_pid_ns(tid, ns);
3000 if (task)
3001 get_task_struct(task);
3002 rcu_read_unlock();
3003 if (!task)
3004 goto out;
3005 if (!same_thread_group(leader, task))
3006 goto out_drop_task;
3007
3008 result = proc_task_instantiate(dir, dentry, task, NULL);
3009 out_drop_task:
3010 put_task_struct(task);
3011 out:
3012 put_task_struct(leader);
3013 out_no_task:
3014 return result;
3015 }
3016
3017 /*
3018 * Find the first tid of a thread group to return to user space.
3019 *
3020 * Usually this is just the thread group leader, but if the users
3021 * buffer was too small or there was a seek into the middle of the
3022 * directory we have more work todo.
3023 *
3024 * In the case of a short read we start with find_task_by_pid.
3025 *
3026 * In the case of a seek we start with the leader and walk nr
3027 * threads past it.
3028 */
3029 static struct task_struct *first_tid(struct task_struct *leader,
3030 int tid, int nr, struct pid_namespace *ns)
3031 {
3032 struct task_struct *pos;
3033
3034 rcu_read_lock();
3035 /* Attempt to start with the pid of a thread */
3036 if (tid && (nr > 0)) {
3037 pos = find_task_by_pid_ns(tid, ns);
3038 if (pos && (pos->group_leader == leader))
3039 goto found;
3040 }
3041
3042 /* If nr exceeds the number of threads there is nothing todo */
3043 pos = NULL;
3044 if (nr && nr >= get_nr_threads(leader))
3045 goto out;
3046
3047 /* If we haven't found our starting place yet start
3048 * with the leader and walk nr threads forward.
3049 */
3050 for (pos = leader; nr > 0; --nr) {
3051 pos = next_thread(pos);
3052 if (pos == leader) {
3053 pos = NULL;
3054 goto out;
3055 }
3056 }
3057 found:
3058 get_task_struct(pos);
3059 out:
3060 rcu_read_unlock();
3061 return pos;
3062 }
3063
3064 /*
3065 * Find the next thread in the thread list.
3066 * Return NULL if there is an error or no next thread.
3067 *
3068 * The reference to the input task_struct is released.
3069 */
3070 static struct task_struct *next_tid(struct task_struct *start)
3071 {
3072 struct task_struct *pos = NULL;
3073 rcu_read_lock();
3074 if (pid_alive(start)) {
3075 pos = next_thread(start);
3076 if (thread_group_leader(pos))
3077 pos = NULL;
3078 else
3079 get_task_struct(pos);
3080 }
3081 rcu_read_unlock();
3082 put_task_struct(start);
3083 return pos;
3084 }
3085
3086 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3087 struct task_struct *task, int tid)
3088 {
3089 char name[PROC_NUMBUF];
3090 int len = snprintf(name, sizeof(name), "%d", tid);
3091 return proc_fill_cache(filp, dirent, filldir, name, len,
3092 proc_task_instantiate, task, NULL);
3093 }
3094
3095 /* for the /proc/TGID/task/ directories */
3096 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3097 {
3098 struct dentry *dentry = filp->f_path.dentry;
3099 struct inode *inode = dentry->d_inode;
3100 struct task_struct *leader = NULL;
3101 struct task_struct *task;
3102 int retval = -ENOENT;
3103 ino_t ino;
3104 int tid;
3105 struct pid_namespace *ns;
3106
3107 task = get_proc_task(inode);
3108 if (!task)
3109 goto out_no_task;
3110 rcu_read_lock();
3111 if (pid_alive(task)) {
3112 leader = task->group_leader;
3113 get_task_struct(leader);
3114 }
3115 rcu_read_unlock();
3116 put_task_struct(task);
3117 if (!leader)
3118 goto out_no_task;
3119 retval = 0;
3120
3121 switch ((unsigned long)filp->f_pos) {
3122 case 0:
3123 ino = inode->i_ino;
3124 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3125 goto out;
3126 filp->f_pos++;
3127 /* fall through */
3128 case 1:
3129 ino = parent_ino(dentry);
3130 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3131 goto out;
3132 filp->f_pos++;
3133 /* fall through */
3134 }
3135
3136 /* f_version caches the tgid value that the last readdir call couldn't
3137 * return. lseek aka telldir automagically resets f_version to 0.
3138 */
3139 ns = filp->f_dentry->d_sb->s_fs_info;
3140 tid = (int)filp->f_version;
3141 filp->f_version = 0;
3142 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3143 task;
3144 task = next_tid(task), filp->f_pos++) {
3145 tid = task_pid_nr_ns(task, ns);
3146 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3147 /* returning this tgid failed, save it as the first
3148 * pid for the next readir call */
3149 filp->f_version = (u64)tid;
3150 put_task_struct(task);
3151 break;
3152 }
3153 }
3154 out:
3155 put_task_struct(leader);
3156 out_no_task:
3157 return retval;
3158 }
3159
3160 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3161 {
3162 struct inode *inode = dentry->d_inode;
3163 struct task_struct *p = get_proc_task(inode);
3164 generic_fillattr(inode, stat);
3165
3166 if (p) {
3167 stat->nlink += get_nr_threads(p);
3168 put_task_struct(p);
3169 }
3170
3171 return 0;
3172 }
3173
3174 static const struct inode_operations proc_task_inode_operations = {
3175 .lookup = proc_task_lookup,
3176 .getattr = proc_task_getattr,
3177 .setattr = proc_setattr,
3178 .permission = proc_pid_permission,
3179 };
3180
3181 static const struct file_operations proc_task_operations = {
3182 .read = generic_read_dir,
3183 .readdir = proc_task_readdir,
3184 .llseek = default_llseek,
3185 };
This page took 0.096535 seconds and 5 git commands to generate.