Merge tag 'sound-3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / fs / xfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_btree.h"
34 #include "xfs_ialloc.h"
35 #include "xfs_alloc.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_bmap.h"
39
40
41 /*
42 * Allocation group level functions.
43 */
44 static inline int
45 xfs_ialloc_cluster_alignment(
46 xfs_alloc_arg_t *args)
47 {
48 if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
49 args->mp->m_sb.sb_inoalignmt >=
50 XFS_B_TO_FSBT(args->mp, XFS_INODE_CLUSTER_SIZE(args->mp)))
51 return args->mp->m_sb.sb_inoalignmt;
52 return 1;
53 }
54
55 /*
56 * Lookup a record by ino in the btree given by cur.
57 */
58 int /* error */
59 xfs_inobt_lookup(
60 struct xfs_btree_cur *cur, /* btree cursor */
61 xfs_agino_t ino, /* starting inode of chunk */
62 xfs_lookup_t dir, /* <=, >=, == */
63 int *stat) /* success/failure */
64 {
65 cur->bc_rec.i.ir_startino = ino;
66 cur->bc_rec.i.ir_freecount = 0;
67 cur->bc_rec.i.ir_free = 0;
68 return xfs_btree_lookup(cur, dir, stat);
69 }
70
71 /*
72 * Update the record referred to by cur to the value given.
73 * This either works (return 0) or gets an EFSCORRUPTED error.
74 */
75 STATIC int /* error */
76 xfs_inobt_update(
77 struct xfs_btree_cur *cur, /* btree cursor */
78 xfs_inobt_rec_incore_t *irec) /* btree record */
79 {
80 union xfs_btree_rec rec;
81
82 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
83 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
84 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
85 return xfs_btree_update(cur, &rec);
86 }
87
88 /*
89 * Get the data from the pointed-to record.
90 */
91 int /* error */
92 xfs_inobt_get_rec(
93 struct xfs_btree_cur *cur, /* btree cursor */
94 xfs_inobt_rec_incore_t *irec, /* btree record */
95 int *stat) /* output: success/failure */
96 {
97 union xfs_btree_rec *rec;
98 int error;
99
100 error = xfs_btree_get_rec(cur, &rec, stat);
101 if (!error && *stat == 1) {
102 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
103 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
104 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
105 }
106 return error;
107 }
108
109 /*
110 * Verify that the number of free inodes in the AGI is correct.
111 */
112 #ifdef DEBUG
113 STATIC int
114 xfs_check_agi_freecount(
115 struct xfs_btree_cur *cur,
116 struct xfs_agi *agi)
117 {
118 if (cur->bc_nlevels == 1) {
119 xfs_inobt_rec_incore_t rec;
120 int freecount = 0;
121 int error;
122 int i;
123
124 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
125 if (error)
126 return error;
127
128 do {
129 error = xfs_inobt_get_rec(cur, &rec, &i);
130 if (error)
131 return error;
132
133 if (i) {
134 freecount += rec.ir_freecount;
135 error = xfs_btree_increment(cur, 0, &i);
136 if (error)
137 return error;
138 }
139 } while (i == 1);
140
141 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
142 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
143 }
144 return 0;
145 }
146 #else
147 #define xfs_check_agi_freecount(cur, agi) 0
148 #endif
149
150 /*
151 * Initialise a new set of inodes.
152 */
153 STATIC int
154 xfs_ialloc_inode_init(
155 struct xfs_mount *mp,
156 struct xfs_trans *tp,
157 xfs_agnumber_t agno,
158 xfs_agblock_t agbno,
159 xfs_agblock_t length,
160 unsigned int gen)
161 {
162 struct xfs_buf *fbuf;
163 struct xfs_dinode *free;
164 int blks_per_cluster, nbufs, ninodes;
165 int version;
166 int i, j;
167 xfs_daddr_t d;
168
169 /*
170 * Loop over the new block(s), filling in the inodes.
171 * For small block sizes, manipulate the inodes in buffers
172 * which are multiples of the blocks size.
173 */
174 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
175 blks_per_cluster = 1;
176 nbufs = length;
177 ninodes = mp->m_sb.sb_inopblock;
178 } else {
179 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
180 mp->m_sb.sb_blocksize;
181 nbufs = length / blks_per_cluster;
182 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
183 }
184
185 /*
186 * Figure out what version number to use in the inodes we create.
187 * If the superblock version has caught up to the one that supports
188 * the new inode format, then use the new inode version. Otherwise
189 * use the old version so that old kernels will continue to be
190 * able to use the file system.
191 */
192 if (xfs_sb_version_hasnlink(&mp->m_sb))
193 version = 2;
194 else
195 version = 1;
196
197 for (j = 0; j < nbufs; j++) {
198 /*
199 * Get the block.
200 */
201 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
202 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
203 mp->m_bsize * blks_per_cluster,
204 XBF_UNMAPPED);
205 if (!fbuf)
206 return ENOMEM;
207 /*
208 * Initialize all inodes in this buffer and then log them.
209 *
210 * XXX: It would be much better if we had just one transaction
211 * to log a whole cluster of inodes instead of all the
212 * individual transactions causing a lot of log traffic.
213 */
214 fbuf->b_ops = &xfs_inode_buf_ops;
215 xfs_buf_zero(fbuf, 0, ninodes << mp->m_sb.sb_inodelog);
216 for (i = 0; i < ninodes; i++) {
217 int ioffset = i << mp->m_sb.sb_inodelog;
218 uint isize = sizeof(struct xfs_dinode);
219
220 free = xfs_make_iptr(mp, fbuf, i);
221 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
222 free->di_version = version;
223 free->di_gen = cpu_to_be32(gen);
224 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
225 xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1);
226 }
227 xfs_trans_inode_alloc_buf(tp, fbuf);
228 }
229 return 0;
230 }
231
232 /*
233 * Allocate new inodes in the allocation group specified by agbp.
234 * Return 0 for success, else error code.
235 */
236 STATIC int /* error code or 0 */
237 xfs_ialloc_ag_alloc(
238 xfs_trans_t *tp, /* transaction pointer */
239 xfs_buf_t *agbp, /* alloc group buffer */
240 int *alloc)
241 {
242 xfs_agi_t *agi; /* allocation group header */
243 xfs_alloc_arg_t args; /* allocation argument structure */
244 xfs_btree_cur_t *cur; /* inode btree cursor */
245 xfs_agnumber_t agno;
246 int error;
247 int i;
248 xfs_agino_t newino; /* new first inode's number */
249 xfs_agino_t newlen; /* new number of inodes */
250 xfs_agino_t thisino; /* current inode number, for loop */
251 int isaligned = 0; /* inode allocation at stripe unit */
252 /* boundary */
253 struct xfs_perag *pag;
254
255 memset(&args, 0, sizeof(args));
256 args.tp = tp;
257 args.mp = tp->t_mountp;
258
259 /*
260 * Locking will ensure that we don't have two callers in here
261 * at one time.
262 */
263 newlen = XFS_IALLOC_INODES(args.mp);
264 if (args.mp->m_maxicount &&
265 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
266 return XFS_ERROR(ENOSPC);
267 args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp);
268 /*
269 * First try to allocate inodes contiguous with the last-allocated
270 * chunk of inodes. If the filesystem is striped, this will fill
271 * an entire stripe unit with inodes.
272 */
273 agi = XFS_BUF_TO_AGI(agbp);
274 newino = be32_to_cpu(agi->agi_newino);
275 agno = be32_to_cpu(agi->agi_seqno);
276 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
277 XFS_IALLOC_BLOCKS(args.mp);
278 if (likely(newino != NULLAGINO &&
279 (args.agbno < be32_to_cpu(agi->agi_length)))) {
280 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
281 args.type = XFS_ALLOCTYPE_THIS_BNO;
282 args.prod = 1;
283
284 /*
285 * We need to take into account alignment here to ensure that
286 * we don't modify the free list if we fail to have an exact
287 * block. If we don't have an exact match, and every oher
288 * attempt allocation attempt fails, we'll end up cancelling
289 * a dirty transaction and shutting down.
290 *
291 * For an exact allocation, alignment must be 1,
292 * however we need to take cluster alignment into account when
293 * fixing up the freelist. Use the minalignslop field to
294 * indicate that extra blocks might be required for alignment,
295 * but not to use them in the actual exact allocation.
296 */
297 args.alignment = 1;
298 args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
299
300 /* Allow space for the inode btree to split. */
301 args.minleft = args.mp->m_in_maxlevels - 1;
302 if ((error = xfs_alloc_vextent(&args)))
303 return error;
304 } else
305 args.fsbno = NULLFSBLOCK;
306
307 if (unlikely(args.fsbno == NULLFSBLOCK)) {
308 /*
309 * Set the alignment for the allocation.
310 * If stripe alignment is turned on then align at stripe unit
311 * boundary.
312 * If the cluster size is smaller than a filesystem block
313 * then we're doing I/O for inodes in filesystem block size
314 * pieces, so don't need alignment anyway.
315 */
316 isaligned = 0;
317 if (args.mp->m_sinoalign) {
318 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
319 args.alignment = args.mp->m_dalign;
320 isaligned = 1;
321 } else
322 args.alignment = xfs_ialloc_cluster_alignment(&args);
323 /*
324 * Need to figure out where to allocate the inode blocks.
325 * Ideally they should be spaced out through the a.g.
326 * For now, just allocate blocks up front.
327 */
328 args.agbno = be32_to_cpu(agi->agi_root);
329 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
330 /*
331 * Allocate a fixed-size extent of inodes.
332 */
333 args.type = XFS_ALLOCTYPE_NEAR_BNO;
334 args.prod = 1;
335 /*
336 * Allow space for the inode btree to split.
337 */
338 args.minleft = args.mp->m_in_maxlevels - 1;
339 if ((error = xfs_alloc_vextent(&args)))
340 return error;
341 }
342
343 /*
344 * If stripe alignment is turned on, then try again with cluster
345 * alignment.
346 */
347 if (isaligned && args.fsbno == NULLFSBLOCK) {
348 args.type = XFS_ALLOCTYPE_NEAR_BNO;
349 args.agbno = be32_to_cpu(agi->agi_root);
350 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
351 args.alignment = xfs_ialloc_cluster_alignment(&args);
352 if ((error = xfs_alloc_vextent(&args)))
353 return error;
354 }
355
356 if (args.fsbno == NULLFSBLOCK) {
357 *alloc = 0;
358 return 0;
359 }
360 ASSERT(args.len == args.minlen);
361
362 /*
363 * Stamp and write the inode buffers.
364 *
365 * Seed the new inode cluster with a random generation number. This
366 * prevents short-term reuse of generation numbers if a chunk is
367 * freed and then immediately reallocated. We use random numbers
368 * rather than a linear progression to prevent the next generation
369 * number from being easily guessable.
370 */
371 error = xfs_ialloc_inode_init(args.mp, tp, agno, args.agbno,
372 args.len, random32());
373
374 if (error)
375 return error;
376 /*
377 * Convert the results.
378 */
379 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
380 be32_add_cpu(&agi->agi_count, newlen);
381 be32_add_cpu(&agi->agi_freecount, newlen);
382 pag = xfs_perag_get(args.mp, agno);
383 pag->pagi_freecount += newlen;
384 xfs_perag_put(pag);
385 agi->agi_newino = cpu_to_be32(newino);
386
387 /*
388 * Insert records describing the new inode chunk into the btree.
389 */
390 cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
391 for (thisino = newino;
392 thisino < newino + newlen;
393 thisino += XFS_INODES_PER_CHUNK) {
394 cur->bc_rec.i.ir_startino = thisino;
395 cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
396 cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
397 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
398 if (error) {
399 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
400 return error;
401 }
402 ASSERT(i == 0);
403 error = xfs_btree_insert(cur, &i);
404 if (error) {
405 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
406 return error;
407 }
408 ASSERT(i == 1);
409 }
410 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
411 /*
412 * Log allocation group header fields
413 */
414 xfs_ialloc_log_agi(tp, agbp,
415 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
416 /*
417 * Modify/log superblock values for inode count and inode free count.
418 */
419 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
420 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
421 *alloc = 1;
422 return 0;
423 }
424
425 STATIC xfs_agnumber_t
426 xfs_ialloc_next_ag(
427 xfs_mount_t *mp)
428 {
429 xfs_agnumber_t agno;
430
431 spin_lock(&mp->m_agirotor_lock);
432 agno = mp->m_agirotor;
433 if (++mp->m_agirotor >= mp->m_maxagi)
434 mp->m_agirotor = 0;
435 spin_unlock(&mp->m_agirotor_lock);
436
437 return agno;
438 }
439
440 /*
441 * Select an allocation group to look for a free inode in, based on the parent
442 * inode and then mode. Return the allocation group buffer.
443 */
444 STATIC xfs_agnumber_t
445 xfs_ialloc_ag_select(
446 xfs_trans_t *tp, /* transaction pointer */
447 xfs_ino_t parent, /* parent directory inode number */
448 umode_t mode, /* bits set to indicate file type */
449 int okalloc) /* ok to allocate more space */
450 {
451 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
452 xfs_agnumber_t agno; /* current ag number */
453 int flags; /* alloc buffer locking flags */
454 xfs_extlen_t ineed; /* blocks needed for inode allocation */
455 xfs_extlen_t longest = 0; /* longest extent available */
456 xfs_mount_t *mp; /* mount point structure */
457 int needspace; /* file mode implies space allocated */
458 xfs_perag_t *pag; /* per allocation group data */
459 xfs_agnumber_t pagno; /* parent (starting) ag number */
460 int error;
461
462 /*
463 * Files of these types need at least one block if length > 0
464 * (and they won't fit in the inode, but that's hard to figure out).
465 */
466 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
467 mp = tp->t_mountp;
468 agcount = mp->m_maxagi;
469 if (S_ISDIR(mode))
470 pagno = xfs_ialloc_next_ag(mp);
471 else {
472 pagno = XFS_INO_TO_AGNO(mp, parent);
473 if (pagno >= agcount)
474 pagno = 0;
475 }
476
477 ASSERT(pagno < agcount);
478
479 /*
480 * Loop through allocation groups, looking for one with a little
481 * free space in it. Note we don't look for free inodes, exactly.
482 * Instead, we include whether there is a need to allocate inodes
483 * to mean that blocks must be allocated for them,
484 * if none are currently free.
485 */
486 agno = pagno;
487 flags = XFS_ALLOC_FLAG_TRYLOCK;
488 for (;;) {
489 pag = xfs_perag_get(mp, agno);
490 if (!pag->pagi_inodeok) {
491 xfs_ialloc_next_ag(mp);
492 goto nextag;
493 }
494
495 if (!pag->pagi_init) {
496 error = xfs_ialloc_pagi_init(mp, tp, agno);
497 if (error)
498 goto nextag;
499 }
500
501 if (pag->pagi_freecount) {
502 xfs_perag_put(pag);
503 return agno;
504 }
505
506 if (!okalloc)
507 goto nextag;
508
509 if (!pag->pagf_init) {
510 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
511 if (error)
512 goto nextag;
513 }
514
515 /*
516 * Is there enough free space for the file plus a block of
517 * inodes? (if we need to allocate some)?
518 */
519 ineed = XFS_IALLOC_BLOCKS(mp);
520 longest = pag->pagf_longest;
521 if (!longest)
522 longest = pag->pagf_flcount > 0;
523
524 if (pag->pagf_freeblks >= needspace + ineed &&
525 longest >= ineed) {
526 xfs_perag_put(pag);
527 return agno;
528 }
529 nextag:
530 xfs_perag_put(pag);
531 /*
532 * No point in iterating over the rest, if we're shutting
533 * down.
534 */
535 if (XFS_FORCED_SHUTDOWN(mp))
536 return NULLAGNUMBER;
537 agno++;
538 if (agno >= agcount)
539 agno = 0;
540 if (agno == pagno) {
541 if (flags == 0)
542 return NULLAGNUMBER;
543 flags = 0;
544 }
545 }
546 }
547
548 /*
549 * Try to retrieve the next record to the left/right from the current one.
550 */
551 STATIC int
552 xfs_ialloc_next_rec(
553 struct xfs_btree_cur *cur,
554 xfs_inobt_rec_incore_t *rec,
555 int *done,
556 int left)
557 {
558 int error;
559 int i;
560
561 if (left)
562 error = xfs_btree_decrement(cur, 0, &i);
563 else
564 error = xfs_btree_increment(cur, 0, &i);
565
566 if (error)
567 return error;
568 *done = !i;
569 if (i) {
570 error = xfs_inobt_get_rec(cur, rec, &i);
571 if (error)
572 return error;
573 XFS_WANT_CORRUPTED_RETURN(i == 1);
574 }
575
576 return 0;
577 }
578
579 STATIC int
580 xfs_ialloc_get_rec(
581 struct xfs_btree_cur *cur,
582 xfs_agino_t agino,
583 xfs_inobt_rec_incore_t *rec,
584 int *done,
585 int left)
586 {
587 int error;
588 int i;
589
590 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
591 if (error)
592 return error;
593 *done = !i;
594 if (i) {
595 error = xfs_inobt_get_rec(cur, rec, &i);
596 if (error)
597 return error;
598 XFS_WANT_CORRUPTED_RETURN(i == 1);
599 }
600
601 return 0;
602 }
603
604 /*
605 * Allocate an inode.
606 *
607 * The caller selected an AG for us, and made sure that free inodes are
608 * available.
609 */
610 STATIC int
611 xfs_dialloc_ag(
612 struct xfs_trans *tp,
613 struct xfs_buf *agbp,
614 xfs_ino_t parent,
615 xfs_ino_t *inop)
616 {
617 struct xfs_mount *mp = tp->t_mountp;
618 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
619 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
620 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
621 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
622 struct xfs_perag *pag;
623 struct xfs_btree_cur *cur, *tcur;
624 struct xfs_inobt_rec_incore rec, trec;
625 xfs_ino_t ino;
626 int error;
627 int offset;
628 int i, j;
629
630 pag = xfs_perag_get(mp, agno);
631
632 ASSERT(pag->pagi_init);
633 ASSERT(pag->pagi_inodeok);
634 ASSERT(pag->pagi_freecount > 0);
635
636 restart_pagno:
637 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
638 /*
639 * If pagino is 0 (this is the root inode allocation) use newino.
640 * This must work because we've just allocated some.
641 */
642 if (!pagino)
643 pagino = be32_to_cpu(agi->agi_newino);
644
645 error = xfs_check_agi_freecount(cur, agi);
646 if (error)
647 goto error0;
648
649 /*
650 * If in the same AG as the parent, try to get near the parent.
651 */
652 if (pagno == agno) {
653 int doneleft; /* done, to the left */
654 int doneright; /* done, to the right */
655 int searchdistance = 10;
656
657 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
658 if (error)
659 goto error0;
660 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
661
662 error = xfs_inobt_get_rec(cur, &rec, &j);
663 if (error)
664 goto error0;
665 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
666
667 if (rec.ir_freecount > 0) {
668 /*
669 * Found a free inode in the same chunk
670 * as the parent, done.
671 */
672 goto alloc_inode;
673 }
674
675
676 /*
677 * In the same AG as parent, but parent's chunk is full.
678 */
679
680 /* duplicate the cursor, search left & right simultaneously */
681 error = xfs_btree_dup_cursor(cur, &tcur);
682 if (error)
683 goto error0;
684
685 /*
686 * Skip to last blocks looked up if same parent inode.
687 */
688 if (pagino != NULLAGINO &&
689 pag->pagl_pagino == pagino &&
690 pag->pagl_leftrec != NULLAGINO &&
691 pag->pagl_rightrec != NULLAGINO) {
692 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
693 &trec, &doneleft, 1);
694 if (error)
695 goto error1;
696
697 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
698 &rec, &doneright, 0);
699 if (error)
700 goto error1;
701 } else {
702 /* search left with tcur, back up 1 record */
703 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
704 if (error)
705 goto error1;
706
707 /* search right with cur, go forward 1 record. */
708 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
709 if (error)
710 goto error1;
711 }
712
713 /*
714 * Loop until we find an inode chunk with a free inode.
715 */
716 while (!doneleft || !doneright) {
717 int useleft; /* using left inode chunk this time */
718
719 if (!--searchdistance) {
720 /*
721 * Not in range - save last search
722 * location and allocate a new inode
723 */
724 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
725 pag->pagl_leftrec = trec.ir_startino;
726 pag->pagl_rightrec = rec.ir_startino;
727 pag->pagl_pagino = pagino;
728 goto newino;
729 }
730
731 /* figure out the closer block if both are valid. */
732 if (!doneleft && !doneright) {
733 useleft = pagino -
734 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
735 rec.ir_startino - pagino;
736 } else {
737 useleft = !doneleft;
738 }
739
740 /* free inodes to the left? */
741 if (useleft && trec.ir_freecount) {
742 rec = trec;
743 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
744 cur = tcur;
745
746 pag->pagl_leftrec = trec.ir_startino;
747 pag->pagl_rightrec = rec.ir_startino;
748 pag->pagl_pagino = pagino;
749 goto alloc_inode;
750 }
751
752 /* free inodes to the right? */
753 if (!useleft && rec.ir_freecount) {
754 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
755
756 pag->pagl_leftrec = trec.ir_startino;
757 pag->pagl_rightrec = rec.ir_startino;
758 pag->pagl_pagino = pagino;
759 goto alloc_inode;
760 }
761
762 /* get next record to check */
763 if (useleft) {
764 error = xfs_ialloc_next_rec(tcur, &trec,
765 &doneleft, 1);
766 } else {
767 error = xfs_ialloc_next_rec(cur, &rec,
768 &doneright, 0);
769 }
770 if (error)
771 goto error1;
772 }
773
774 /*
775 * We've reached the end of the btree. because
776 * we are only searching a small chunk of the
777 * btree each search, there is obviously free
778 * inodes closer to the parent inode than we
779 * are now. restart the search again.
780 */
781 pag->pagl_pagino = NULLAGINO;
782 pag->pagl_leftrec = NULLAGINO;
783 pag->pagl_rightrec = NULLAGINO;
784 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
785 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
786 goto restart_pagno;
787 }
788
789 /*
790 * In a different AG from the parent.
791 * See if the most recently allocated block has any free.
792 */
793 newino:
794 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
795 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
796 XFS_LOOKUP_EQ, &i);
797 if (error)
798 goto error0;
799
800 if (i == 1) {
801 error = xfs_inobt_get_rec(cur, &rec, &j);
802 if (error)
803 goto error0;
804
805 if (j == 1 && rec.ir_freecount > 0) {
806 /*
807 * The last chunk allocated in the group
808 * still has a free inode.
809 */
810 goto alloc_inode;
811 }
812 }
813 }
814
815 /*
816 * None left in the last group, search the whole AG
817 */
818 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
819 if (error)
820 goto error0;
821 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
822
823 for (;;) {
824 error = xfs_inobt_get_rec(cur, &rec, &i);
825 if (error)
826 goto error0;
827 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
828 if (rec.ir_freecount > 0)
829 break;
830 error = xfs_btree_increment(cur, 0, &i);
831 if (error)
832 goto error0;
833 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
834 }
835
836 alloc_inode:
837 offset = xfs_lowbit64(rec.ir_free);
838 ASSERT(offset >= 0);
839 ASSERT(offset < XFS_INODES_PER_CHUNK);
840 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
841 XFS_INODES_PER_CHUNK) == 0);
842 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
843 rec.ir_free &= ~XFS_INOBT_MASK(offset);
844 rec.ir_freecount--;
845 error = xfs_inobt_update(cur, &rec);
846 if (error)
847 goto error0;
848 be32_add_cpu(&agi->agi_freecount, -1);
849 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
850 pag->pagi_freecount--;
851
852 error = xfs_check_agi_freecount(cur, agi);
853 if (error)
854 goto error0;
855
856 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
857 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
858 xfs_perag_put(pag);
859 *inop = ino;
860 return 0;
861 error1:
862 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
863 error0:
864 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
865 xfs_perag_put(pag);
866 return error;
867 }
868
869 /*
870 * Allocate an inode on disk.
871 *
872 * Mode is used to tell whether the new inode will need space, and whether it
873 * is a directory.
874 *
875 * This function is designed to be called twice if it has to do an allocation
876 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
877 * If an inode is available without having to performn an allocation, an inode
878 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
879 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
880 * The caller should then commit the current transaction, allocate a
881 * new transaction, and call xfs_dialloc() again, passing in the previous value
882 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
883 * buffer is locked across the two calls, the second call is guaranteed to have
884 * a free inode available.
885 *
886 * Once we successfully pick an inode its number is returned and the on-disk
887 * data structures are updated. The inode itself is not read in, since doing so
888 * would break ordering constraints with xfs_reclaim.
889 */
890 int
891 xfs_dialloc(
892 struct xfs_trans *tp,
893 xfs_ino_t parent,
894 umode_t mode,
895 int okalloc,
896 struct xfs_buf **IO_agbp,
897 xfs_ino_t *inop)
898 {
899 struct xfs_mount *mp = tp->t_mountp;
900 struct xfs_buf *agbp;
901 xfs_agnumber_t agno;
902 int error;
903 int ialloced;
904 int noroom = 0;
905 xfs_agnumber_t start_agno;
906 struct xfs_perag *pag;
907
908 if (*IO_agbp) {
909 /*
910 * If the caller passes in a pointer to the AGI buffer,
911 * continue where we left off before. In this case, we
912 * know that the allocation group has free inodes.
913 */
914 agbp = *IO_agbp;
915 goto out_alloc;
916 }
917
918 /*
919 * We do not have an agbp, so select an initial allocation
920 * group for inode allocation.
921 */
922 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
923 if (start_agno == NULLAGNUMBER) {
924 *inop = NULLFSINO;
925 return 0;
926 }
927
928 /*
929 * If we have already hit the ceiling of inode blocks then clear
930 * okalloc so we scan all available agi structures for a free
931 * inode.
932 */
933 if (mp->m_maxicount &&
934 mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
935 noroom = 1;
936 okalloc = 0;
937 }
938
939 /*
940 * Loop until we find an allocation group that either has free inodes
941 * or in which we can allocate some inodes. Iterate through the
942 * allocation groups upward, wrapping at the end.
943 */
944 agno = start_agno;
945 for (;;) {
946 pag = xfs_perag_get(mp, agno);
947 if (!pag->pagi_inodeok) {
948 xfs_ialloc_next_ag(mp);
949 goto nextag;
950 }
951
952 if (!pag->pagi_init) {
953 error = xfs_ialloc_pagi_init(mp, tp, agno);
954 if (error)
955 goto out_error;
956 }
957
958 /*
959 * Do a first racy fast path check if this AG is usable.
960 */
961 if (!pag->pagi_freecount && !okalloc)
962 goto nextag;
963
964 /*
965 * Then read in the AGI buffer and recheck with the AGI buffer
966 * lock held.
967 */
968 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
969 if (error)
970 goto out_error;
971
972 if (pag->pagi_freecount) {
973 xfs_perag_put(pag);
974 goto out_alloc;
975 }
976
977 if (!okalloc)
978 goto nextag_relse_buffer;
979
980
981 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
982 if (error) {
983 xfs_trans_brelse(tp, agbp);
984
985 if (error != ENOSPC)
986 goto out_error;
987
988 xfs_perag_put(pag);
989 *inop = NULLFSINO;
990 return 0;
991 }
992
993 if (ialloced) {
994 /*
995 * We successfully allocated some inodes, return
996 * the current context to the caller so that it
997 * can commit the current transaction and call
998 * us again where we left off.
999 */
1000 ASSERT(pag->pagi_freecount > 0);
1001 xfs_perag_put(pag);
1002
1003 *IO_agbp = agbp;
1004 *inop = NULLFSINO;
1005 return 0;
1006 }
1007
1008 nextag_relse_buffer:
1009 xfs_trans_brelse(tp, agbp);
1010 nextag:
1011 xfs_perag_put(pag);
1012 if (++agno == mp->m_sb.sb_agcount)
1013 agno = 0;
1014 if (agno == start_agno) {
1015 *inop = NULLFSINO;
1016 return noroom ? ENOSPC : 0;
1017 }
1018 }
1019
1020 out_alloc:
1021 *IO_agbp = NULL;
1022 return xfs_dialloc_ag(tp, agbp, parent, inop);
1023 out_error:
1024 xfs_perag_put(pag);
1025 return XFS_ERROR(error);
1026 }
1027
1028 /*
1029 * Free disk inode. Carefully avoids touching the incore inode, all
1030 * manipulations incore are the caller's responsibility.
1031 * The on-disk inode is not changed by this operation, only the
1032 * btree (free inode mask) is changed.
1033 */
1034 int
1035 xfs_difree(
1036 xfs_trans_t *tp, /* transaction pointer */
1037 xfs_ino_t inode, /* inode to be freed */
1038 xfs_bmap_free_t *flist, /* extents to free */
1039 int *delete, /* set if inode cluster was deleted */
1040 xfs_ino_t *first_ino) /* first inode in deleted cluster */
1041 {
1042 /* REFERENCED */
1043 xfs_agblock_t agbno; /* block number containing inode */
1044 xfs_buf_t *agbp; /* buffer containing allocation group header */
1045 xfs_agino_t agino; /* inode number relative to allocation group */
1046 xfs_agnumber_t agno; /* allocation group number */
1047 xfs_agi_t *agi; /* allocation group header */
1048 xfs_btree_cur_t *cur; /* inode btree cursor */
1049 int error; /* error return value */
1050 int i; /* result code */
1051 int ilen; /* inodes in an inode cluster */
1052 xfs_mount_t *mp; /* mount structure for filesystem */
1053 int off; /* offset of inode in inode chunk */
1054 xfs_inobt_rec_incore_t rec; /* btree record */
1055 struct xfs_perag *pag;
1056
1057 mp = tp->t_mountp;
1058
1059 /*
1060 * Break up inode number into its components.
1061 */
1062 agno = XFS_INO_TO_AGNO(mp, inode);
1063 if (agno >= mp->m_sb.sb_agcount) {
1064 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1065 __func__, agno, mp->m_sb.sb_agcount);
1066 ASSERT(0);
1067 return XFS_ERROR(EINVAL);
1068 }
1069 agino = XFS_INO_TO_AGINO(mp, inode);
1070 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
1071 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1072 __func__, (unsigned long long)inode,
1073 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1074 ASSERT(0);
1075 return XFS_ERROR(EINVAL);
1076 }
1077 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1078 if (agbno >= mp->m_sb.sb_agblocks) {
1079 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1080 __func__, agbno, mp->m_sb.sb_agblocks);
1081 ASSERT(0);
1082 return XFS_ERROR(EINVAL);
1083 }
1084 /*
1085 * Get the allocation group header.
1086 */
1087 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1088 if (error) {
1089 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1090 __func__, error);
1091 return error;
1092 }
1093 agi = XFS_BUF_TO_AGI(agbp);
1094 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1095 ASSERT(agbno < be32_to_cpu(agi->agi_length));
1096 /*
1097 * Initialize the cursor.
1098 */
1099 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1100
1101 error = xfs_check_agi_freecount(cur, agi);
1102 if (error)
1103 goto error0;
1104
1105 /*
1106 * Look for the entry describing this inode.
1107 */
1108 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1109 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1110 __func__, error);
1111 goto error0;
1112 }
1113 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1114 error = xfs_inobt_get_rec(cur, &rec, &i);
1115 if (error) {
1116 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1117 __func__, error);
1118 goto error0;
1119 }
1120 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1121 /*
1122 * Get the offset in the inode chunk.
1123 */
1124 off = agino - rec.ir_startino;
1125 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1126 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1127 /*
1128 * Mark the inode free & increment the count.
1129 */
1130 rec.ir_free |= XFS_INOBT_MASK(off);
1131 rec.ir_freecount++;
1132
1133 /*
1134 * When an inode cluster is free, it becomes eligible for removal
1135 */
1136 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1137 (rec.ir_freecount == XFS_IALLOC_INODES(mp))) {
1138
1139 *delete = 1;
1140 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1141
1142 /*
1143 * Remove the inode cluster from the AGI B+Tree, adjust the
1144 * AGI and Superblock inode counts, and mark the disk space
1145 * to be freed when the transaction is committed.
1146 */
1147 ilen = XFS_IALLOC_INODES(mp);
1148 be32_add_cpu(&agi->agi_count, -ilen);
1149 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1150 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1151 pag = xfs_perag_get(mp, agno);
1152 pag->pagi_freecount -= ilen - 1;
1153 xfs_perag_put(pag);
1154 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1155 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1156
1157 if ((error = xfs_btree_delete(cur, &i))) {
1158 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1159 __func__, error);
1160 goto error0;
1161 }
1162
1163 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp,
1164 agno, XFS_INO_TO_AGBNO(mp,rec.ir_startino)),
1165 XFS_IALLOC_BLOCKS(mp), flist, mp);
1166 } else {
1167 *delete = 0;
1168
1169 error = xfs_inobt_update(cur, &rec);
1170 if (error) {
1171 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1172 __func__, error);
1173 goto error0;
1174 }
1175
1176 /*
1177 * Change the inode free counts and log the ag/sb changes.
1178 */
1179 be32_add_cpu(&agi->agi_freecount, 1);
1180 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1181 pag = xfs_perag_get(mp, agno);
1182 pag->pagi_freecount++;
1183 xfs_perag_put(pag);
1184 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1185 }
1186
1187 error = xfs_check_agi_freecount(cur, agi);
1188 if (error)
1189 goto error0;
1190
1191 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1192 return 0;
1193
1194 error0:
1195 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1196 return error;
1197 }
1198
1199 STATIC int
1200 xfs_imap_lookup(
1201 struct xfs_mount *mp,
1202 struct xfs_trans *tp,
1203 xfs_agnumber_t agno,
1204 xfs_agino_t agino,
1205 xfs_agblock_t agbno,
1206 xfs_agblock_t *chunk_agbno,
1207 xfs_agblock_t *offset_agbno,
1208 int flags)
1209 {
1210 struct xfs_inobt_rec_incore rec;
1211 struct xfs_btree_cur *cur;
1212 struct xfs_buf *agbp;
1213 int error;
1214 int i;
1215
1216 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1217 if (error) {
1218 xfs_alert(mp,
1219 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1220 __func__, error, agno);
1221 return error;
1222 }
1223
1224 /*
1225 * Lookup the inode record for the given agino. If the record cannot be
1226 * found, then it's an invalid inode number and we should abort. Once
1227 * we have a record, we need to ensure it contains the inode number
1228 * we are looking up.
1229 */
1230 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1231 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1232 if (!error) {
1233 if (i)
1234 error = xfs_inobt_get_rec(cur, &rec, &i);
1235 if (!error && i == 0)
1236 error = EINVAL;
1237 }
1238
1239 xfs_trans_brelse(tp, agbp);
1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 if (error)
1242 return error;
1243
1244 /* check that the returned record contains the required inode */
1245 if (rec.ir_startino > agino ||
1246 rec.ir_startino + XFS_IALLOC_INODES(mp) <= agino)
1247 return EINVAL;
1248
1249 /* for untrusted inodes check it is allocated first */
1250 if ((flags & XFS_IGET_UNTRUSTED) &&
1251 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1252 return EINVAL;
1253
1254 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1255 *offset_agbno = agbno - *chunk_agbno;
1256 return 0;
1257 }
1258
1259 /*
1260 * Return the location of the inode in imap, for mapping it into a buffer.
1261 */
1262 int
1263 xfs_imap(
1264 xfs_mount_t *mp, /* file system mount structure */
1265 xfs_trans_t *tp, /* transaction pointer */
1266 xfs_ino_t ino, /* inode to locate */
1267 struct xfs_imap *imap, /* location map structure */
1268 uint flags) /* flags for inode btree lookup */
1269 {
1270 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1271 xfs_agino_t agino; /* inode number within alloc group */
1272 xfs_agnumber_t agno; /* allocation group number */
1273 int blks_per_cluster; /* num blocks per inode cluster */
1274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1276 int error; /* error code */
1277 int offset; /* index of inode in its buffer */
1278 int offset_agbno; /* blks from chunk start to inode */
1279
1280 ASSERT(ino != NULLFSINO);
1281
1282 /*
1283 * Split up the inode number into its parts.
1284 */
1285 agno = XFS_INO_TO_AGNO(mp, ino);
1286 agino = XFS_INO_TO_AGINO(mp, ino);
1287 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1288 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1289 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1290 #ifdef DEBUG
1291 /*
1292 * Don't output diagnostic information for untrusted inodes
1293 * as they can be invalid without implying corruption.
1294 */
1295 if (flags & XFS_IGET_UNTRUSTED)
1296 return XFS_ERROR(EINVAL);
1297 if (agno >= mp->m_sb.sb_agcount) {
1298 xfs_alert(mp,
1299 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1300 __func__, agno, mp->m_sb.sb_agcount);
1301 }
1302 if (agbno >= mp->m_sb.sb_agblocks) {
1303 xfs_alert(mp,
1304 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1305 __func__, (unsigned long long)agbno,
1306 (unsigned long)mp->m_sb.sb_agblocks);
1307 }
1308 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1309 xfs_alert(mp,
1310 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1311 __func__, ino,
1312 XFS_AGINO_TO_INO(mp, agno, agino));
1313 }
1314 xfs_stack_trace();
1315 #endif /* DEBUG */
1316 return XFS_ERROR(EINVAL);
1317 }
1318
1319 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_blocklog;
1320
1321 /*
1322 * For bulkstat and handle lookups, we have an untrusted inode number
1323 * that we have to verify is valid. We cannot do this just by reading
1324 * the inode buffer as it may have been unlinked and removed leaving
1325 * inodes in stale state on disk. Hence we have to do a btree lookup
1326 * in all cases where an untrusted inode number is passed.
1327 */
1328 if (flags & XFS_IGET_UNTRUSTED) {
1329 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1330 &chunk_agbno, &offset_agbno, flags);
1331 if (error)
1332 return error;
1333 goto out_map;
1334 }
1335
1336 /*
1337 * If the inode cluster size is the same as the blocksize or
1338 * smaller we get to the buffer by simple arithmetics.
1339 */
1340 if (XFS_INODE_CLUSTER_SIZE(mp) <= mp->m_sb.sb_blocksize) {
1341 offset = XFS_INO_TO_OFFSET(mp, ino);
1342 ASSERT(offset < mp->m_sb.sb_inopblock);
1343
1344 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1345 imap->im_len = XFS_FSB_TO_BB(mp, 1);
1346 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1347 return 0;
1348 }
1349
1350 /*
1351 * If the inode chunks are aligned then use simple maths to
1352 * find the location. Otherwise we have to do a btree
1353 * lookup to find the location.
1354 */
1355 if (mp->m_inoalign_mask) {
1356 offset_agbno = agbno & mp->m_inoalign_mask;
1357 chunk_agbno = agbno - offset_agbno;
1358 } else {
1359 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1360 &chunk_agbno, &offset_agbno, flags);
1361 if (error)
1362 return error;
1363 }
1364
1365 out_map:
1366 ASSERT(agbno >= chunk_agbno);
1367 cluster_agbno = chunk_agbno +
1368 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
1369 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1370 XFS_INO_TO_OFFSET(mp, ino);
1371
1372 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1373 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1374 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1375
1376 /*
1377 * If the inode number maps to a block outside the bounds
1378 * of the file system then return NULL rather than calling
1379 * read_buf and panicing when we get an error from the
1380 * driver.
1381 */
1382 if ((imap->im_blkno + imap->im_len) >
1383 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1384 xfs_alert(mp,
1385 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1386 __func__, (unsigned long long) imap->im_blkno,
1387 (unsigned long long) imap->im_len,
1388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1389 return XFS_ERROR(EINVAL);
1390 }
1391 return 0;
1392 }
1393
1394 /*
1395 * Compute and fill in value of m_in_maxlevels.
1396 */
1397 void
1398 xfs_ialloc_compute_maxlevels(
1399 xfs_mount_t *mp) /* file system mount structure */
1400 {
1401 int level;
1402 uint maxblocks;
1403 uint maxleafents;
1404 int minleafrecs;
1405 int minnoderecs;
1406
1407 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1408 XFS_INODES_PER_CHUNK_LOG;
1409 minleafrecs = mp->m_alloc_mnr[0];
1410 minnoderecs = mp->m_alloc_mnr[1];
1411 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1412 for (level = 1; maxblocks > 1; level++)
1413 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1414 mp->m_in_maxlevels = level;
1415 }
1416
1417 /*
1418 * Log specified fields for the ag hdr (inode section)
1419 */
1420 void
1421 xfs_ialloc_log_agi(
1422 xfs_trans_t *tp, /* transaction pointer */
1423 xfs_buf_t *bp, /* allocation group header buffer */
1424 int fields) /* bitmask of fields to log */
1425 {
1426 int first; /* first byte number */
1427 int last; /* last byte number */
1428 static const short offsets[] = { /* field starting offsets */
1429 /* keep in sync with bit definitions */
1430 offsetof(xfs_agi_t, agi_magicnum),
1431 offsetof(xfs_agi_t, agi_versionnum),
1432 offsetof(xfs_agi_t, agi_seqno),
1433 offsetof(xfs_agi_t, agi_length),
1434 offsetof(xfs_agi_t, agi_count),
1435 offsetof(xfs_agi_t, agi_root),
1436 offsetof(xfs_agi_t, agi_level),
1437 offsetof(xfs_agi_t, agi_freecount),
1438 offsetof(xfs_agi_t, agi_newino),
1439 offsetof(xfs_agi_t, agi_dirino),
1440 offsetof(xfs_agi_t, agi_unlinked),
1441 sizeof(xfs_agi_t)
1442 };
1443 #ifdef DEBUG
1444 xfs_agi_t *agi; /* allocation group header */
1445
1446 agi = XFS_BUF_TO_AGI(bp);
1447 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1448 #endif
1449 /*
1450 * Compute byte offsets for the first and last fields.
1451 */
1452 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
1453 /*
1454 * Log the allocation group inode header buffer.
1455 */
1456 xfs_trans_log_buf(tp, bp, first, last);
1457 }
1458
1459 #ifdef DEBUG
1460 STATIC void
1461 xfs_check_agi_unlinked(
1462 struct xfs_agi *agi)
1463 {
1464 int i;
1465
1466 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
1467 ASSERT(agi->agi_unlinked[i]);
1468 }
1469 #else
1470 #define xfs_check_agi_unlinked(agi)
1471 #endif
1472
1473 static void
1474 xfs_agi_verify(
1475 struct xfs_buf *bp)
1476 {
1477 struct xfs_mount *mp = bp->b_target->bt_mount;
1478 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
1479 int agi_ok;
1480
1481 /*
1482 * Validate the magic number of the agi block.
1483 */
1484 agi_ok = agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC) &&
1485 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1486
1487 /*
1488 * during growfs operations, the perag is not fully initialised,
1489 * so we can't use it for any useful checking. growfs ensures we can't
1490 * use it by using uncached buffers that don't have the perag attached
1491 * so we can detect and avoid this problem.
1492 */
1493 if (bp->b_pag)
1494 agi_ok = agi_ok && be32_to_cpu(agi->agi_seqno) ==
1495 bp->b_pag->pag_agno;
1496
1497 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
1498 XFS_RANDOM_IALLOC_READ_AGI))) {
1499 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, agi);
1500 xfs_buf_ioerror(bp, EFSCORRUPTED);
1501 }
1502 xfs_check_agi_unlinked(agi);
1503 }
1504
1505 static void
1506 xfs_agi_read_verify(
1507 struct xfs_buf *bp)
1508 {
1509 xfs_agi_verify(bp);
1510 }
1511
1512 static void
1513 xfs_agi_write_verify(
1514 struct xfs_buf *bp)
1515 {
1516 xfs_agi_verify(bp);
1517 }
1518
1519 const struct xfs_buf_ops xfs_agi_buf_ops = {
1520 .verify_read = xfs_agi_read_verify,
1521 .verify_write = xfs_agi_write_verify,
1522 };
1523
1524 /*
1525 * Read in the allocation group header (inode allocation section)
1526 */
1527 int
1528 xfs_read_agi(
1529 struct xfs_mount *mp, /* file system mount structure */
1530 struct xfs_trans *tp, /* transaction pointer */
1531 xfs_agnumber_t agno, /* allocation group number */
1532 struct xfs_buf **bpp) /* allocation group hdr buf */
1533 {
1534 int error;
1535
1536 ASSERT(agno != NULLAGNUMBER);
1537
1538 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1539 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1540 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1541 if (error)
1542 return error;
1543
1544 ASSERT(!xfs_buf_geterror(*bpp));
1545 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
1546 return 0;
1547 }
1548
1549 int
1550 xfs_ialloc_read_agi(
1551 struct xfs_mount *mp, /* file system mount structure */
1552 struct xfs_trans *tp, /* transaction pointer */
1553 xfs_agnumber_t agno, /* allocation group number */
1554 struct xfs_buf **bpp) /* allocation group hdr buf */
1555 {
1556 struct xfs_agi *agi; /* allocation group header */
1557 struct xfs_perag *pag; /* per allocation group data */
1558 int error;
1559
1560 error = xfs_read_agi(mp, tp, agno, bpp);
1561 if (error)
1562 return error;
1563
1564 agi = XFS_BUF_TO_AGI(*bpp);
1565 pag = xfs_perag_get(mp, agno);
1566 if (!pag->pagi_init) {
1567 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
1568 pag->pagi_count = be32_to_cpu(agi->agi_count);
1569 pag->pagi_init = 1;
1570 }
1571
1572 /*
1573 * It's possible for these to be out of sync if
1574 * we are in the middle of a forced shutdown.
1575 */
1576 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
1577 XFS_FORCED_SHUTDOWN(mp));
1578 xfs_perag_put(pag);
1579 return 0;
1580 }
1581
1582 /*
1583 * Read in the agi to initialise the per-ag data in the mount structure
1584 */
1585 int
1586 xfs_ialloc_pagi_init(
1587 xfs_mount_t *mp, /* file system mount structure */
1588 xfs_trans_t *tp, /* transaction pointer */
1589 xfs_agnumber_t agno) /* allocation group number */
1590 {
1591 xfs_buf_t *bp = NULL;
1592 int error;
1593
1594 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
1595 if (error)
1596 return error;
1597 if (bp)
1598 xfs_trans_brelse(tp, bp);
1599 return 0;
1600 }
This page took 0.062722 seconds and 6 git commands to generate.