cifs: Allow passwords which begin with a delimitor
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47
48 STATIC int
49 xlog_find_zeroed(
50 struct xlog *,
51 xfs_daddr_t *);
52 STATIC int
53 xlog_clear_stale_blocks(
54 struct xlog *,
55 xfs_lsn_t);
56 #if defined(DEBUG)
57 STATIC void
58 xlog_recover_check_summary(
59 struct xlog *);
60 #else
61 #define xlog_recover_check_summary(log)
62 #endif
63
64 /*
65 * This structure is used during recovery to record the buf log items which
66 * have been canceled and should not be replayed.
67 */
68 struct xfs_buf_cancel {
69 xfs_daddr_t bc_blkno;
70 uint bc_len;
71 int bc_refcount;
72 struct list_head bc_list;
73 };
74
75 /*
76 * Sector aligned buffer routines for buffer create/read/write/access
77 */
78
79 /*
80 * Verify the given count of basic blocks is valid number of blocks
81 * to specify for an operation involving the given XFS log buffer.
82 * Returns nonzero if the count is valid, 0 otherwise.
83 */
84
85 static inline int
86 xlog_buf_bbcount_valid(
87 struct xlog *log,
88 int bbcount)
89 {
90 return bbcount > 0 && bbcount <= log->l_logBBsize;
91 }
92
93 /*
94 * Allocate a buffer to hold log data. The buffer needs to be able
95 * to map to a range of nbblks basic blocks at any valid (basic
96 * block) offset within the log.
97 */
98 STATIC xfs_buf_t *
99 xlog_get_bp(
100 struct xlog *log,
101 int nbblks)
102 {
103 struct xfs_buf *bp;
104
105 if (!xlog_buf_bbcount_valid(log, nbblks)) {
106 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
107 nbblks);
108 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
109 return NULL;
110 }
111
112 /*
113 * We do log I/O in units of log sectors (a power-of-2
114 * multiple of the basic block size), so we round up the
115 * requested size to accommodate the basic blocks required
116 * for complete log sectors.
117 *
118 * In addition, the buffer may be used for a non-sector-
119 * aligned block offset, in which case an I/O of the
120 * requested size could extend beyond the end of the
121 * buffer. If the requested size is only 1 basic block it
122 * will never straddle a sector boundary, so this won't be
123 * an issue. Nor will this be a problem if the log I/O is
124 * done in basic blocks (sector size 1). But otherwise we
125 * extend the buffer by one extra log sector to ensure
126 * there's space to accommodate this possibility.
127 */
128 if (nbblks > 1 && log->l_sectBBsize > 1)
129 nbblks += log->l_sectBBsize;
130 nbblks = round_up(nbblks, log->l_sectBBsize);
131
132 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
133 if (bp)
134 xfs_buf_unlock(bp);
135 return bp;
136 }
137
138 STATIC void
139 xlog_put_bp(
140 xfs_buf_t *bp)
141 {
142 xfs_buf_free(bp);
143 }
144
145 /*
146 * Return the address of the start of the given block number's data
147 * in a log buffer. The buffer covers a log sector-aligned region.
148 */
149 STATIC xfs_caddr_t
150 xlog_align(
151 struct xlog *log,
152 xfs_daddr_t blk_no,
153 int nbblks,
154 struct xfs_buf *bp)
155 {
156 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
157
158 ASSERT(offset + nbblks <= bp->b_length);
159 return bp->b_addr + BBTOB(offset);
160 }
161
162
163 /*
164 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
165 */
166 STATIC int
167 xlog_bread_noalign(
168 struct xlog *log,
169 xfs_daddr_t blk_no,
170 int nbblks,
171 struct xfs_buf *bp)
172 {
173 int error;
174
175 if (!xlog_buf_bbcount_valid(log, nbblks)) {
176 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
177 nbblks);
178 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
179 return EFSCORRUPTED;
180 }
181
182 blk_no = round_down(blk_no, log->l_sectBBsize);
183 nbblks = round_up(nbblks, log->l_sectBBsize);
184
185 ASSERT(nbblks > 0);
186 ASSERT(nbblks <= bp->b_length);
187
188 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
189 XFS_BUF_READ(bp);
190 bp->b_io_length = nbblks;
191 bp->b_error = 0;
192
193 xfsbdstrat(log->l_mp, bp);
194 error = xfs_buf_iowait(bp);
195 if (error)
196 xfs_buf_ioerror_alert(bp, __func__);
197 return error;
198 }
199
200 STATIC int
201 xlog_bread(
202 struct xlog *log,
203 xfs_daddr_t blk_no,
204 int nbblks,
205 struct xfs_buf *bp,
206 xfs_caddr_t *offset)
207 {
208 int error;
209
210 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 if (error)
212 return error;
213
214 *offset = xlog_align(log, blk_no, nbblks, bp);
215 return 0;
216 }
217
218 /*
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
221 */
222 STATIC int
223 xlog_bread_offset(
224 struct xlog *log,
225 xfs_daddr_t blk_no, /* block to read from */
226 int nbblks, /* blocks to read */
227 struct xfs_buf *bp,
228 xfs_caddr_t offset)
229 {
230 xfs_caddr_t orig_offset = bp->b_addr;
231 int orig_len = BBTOB(bp->b_length);
232 int error, error2;
233
234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
235 if (error)
236 return error;
237
238 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239
240 /* must reset buffer pointer even on error */
241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
242 if (error)
243 return error;
244 return error2;
245 }
246
247 /*
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
251 */
252 STATIC int
253 xlog_bwrite(
254 struct xlog *log,
255 xfs_daddr_t blk_no,
256 int nbblks,
257 struct xfs_buf *bp)
258 {
259 int error;
260
261 if (!xlog_buf_bbcount_valid(log, nbblks)) {
262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
263 nbblks);
264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
265 return EFSCORRUPTED;
266 }
267
268 blk_no = round_down(blk_no, log->l_sectBBsize);
269 nbblks = round_up(nbblks, log->l_sectBBsize);
270
271 ASSERT(nbblks > 0);
272 ASSERT(nbblks <= bp->b_length);
273
274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 XFS_BUF_ZEROFLAGS(bp);
276 xfs_buf_hold(bp);
277 xfs_buf_lock(bp);
278 bp->b_io_length = nbblks;
279 bp->b_error = 0;
280
281 error = xfs_bwrite(bp);
282 if (error)
283 xfs_buf_ioerror_alert(bp, __func__);
284 xfs_buf_relse(bp);
285 return error;
286 }
287
288 #ifdef DEBUG
289 /*
290 * dump debug superblock and log record information
291 */
292 STATIC void
293 xlog_header_check_dump(
294 xfs_mount_t *mp,
295 xlog_rec_header_t *head)
296 {
297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
299 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
301 }
302 #else
303 #define xlog_header_check_dump(mp, head)
304 #endif
305
306 /*
307 * check log record header for recovery
308 */
309 STATIC int
310 xlog_header_check_recover(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313 {
314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
315
316 /*
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
320 */
321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
322 xfs_warn(mp,
323 "dirty log written in incompatible format - can't recover");
324 xlog_header_check_dump(mp, head);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH, mp);
327 return XFS_ERROR(EFSCORRUPTED);
328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
329 xfs_warn(mp,
330 "dirty log entry has mismatched uuid - can't recover");
331 xlog_header_check_dump(mp, head);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH, mp);
334 return XFS_ERROR(EFSCORRUPTED);
335 }
336 return 0;
337 }
338
339 /*
340 * read the head block of the log and check the header
341 */
342 STATIC int
343 xlog_header_check_mount(
344 xfs_mount_t *mp,
345 xlog_rec_header_t *head)
346 {
347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
348
349 if (uuid_is_nil(&head->h_fs_uuid)) {
350 /*
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
354 */
355 xfs_warn(mp, "nil uuid in log - IRIX style log");
356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
357 xfs_warn(mp, "log has mismatched uuid - can't recover");
358 xlog_header_check_dump(mp, head);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH, mp);
361 return XFS_ERROR(EFSCORRUPTED);
362 }
363 return 0;
364 }
365
366 STATIC void
367 xlog_recover_iodone(
368 struct xfs_buf *bp)
369 {
370 if (bp->b_error) {
371 /*
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
374 */
375 xfs_buf_ioerror_alert(bp, __func__);
376 xfs_force_shutdown(bp->b_target->bt_mount,
377 SHUTDOWN_META_IO_ERROR);
378 }
379 bp->b_iodone = NULL;
380 xfs_buf_ioend(bp, 0);
381 }
382
383 /*
384 * This routine finds (to an approximation) the first block in the physical
385 * log which contains the given cycle. It uses a binary search algorithm.
386 * Note that the algorithm can not be perfect because the disk will not
387 * necessarily be perfect.
388 */
389 STATIC int
390 xlog_find_cycle_start(
391 struct xlog *log,
392 struct xfs_buf *bp,
393 xfs_daddr_t first_blk,
394 xfs_daddr_t *last_blk,
395 uint cycle)
396 {
397 xfs_caddr_t offset;
398 xfs_daddr_t mid_blk;
399 xfs_daddr_t end_blk;
400 uint mid_cycle;
401 int error;
402
403 end_blk = *last_blk;
404 mid_blk = BLK_AVG(first_blk, end_blk);
405 while (mid_blk != first_blk && mid_blk != end_blk) {
406 error = xlog_bread(log, mid_blk, 1, bp, &offset);
407 if (error)
408 return error;
409 mid_cycle = xlog_get_cycle(offset);
410 if (mid_cycle == cycle)
411 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
412 else
413 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
414 mid_blk = BLK_AVG(first_blk, end_blk);
415 }
416 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
417 (mid_blk == end_blk && mid_blk-1 == first_blk));
418
419 *last_blk = end_blk;
420
421 return 0;
422 }
423
424 /*
425 * Check that a range of blocks does not contain stop_on_cycle_no.
426 * Fill in *new_blk with the block offset where such a block is
427 * found, or with -1 (an invalid block number) if there is no such
428 * block in the range. The scan needs to occur from front to back
429 * and the pointer into the region must be updated since a later
430 * routine will need to perform another test.
431 */
432 STATIC int
433 xlog_find_verify_cycle(
434 struct xlog *log,
435 xfs_daddr_t start_blk,
436 int nbblks,
437 uint stop_on_cycle_no,
438 xfs_daddr_t *new_blk)
439 {
440 xfs_daddr_t i, j;
441 uint cycle;
442 xfs_buf_t *bp;
443 xfs_daddr_t bufblks;
444 xfs_caddr_t buf = NULL;
445 int error = 0;
446
447 /*
448 * Greedily allocate a buffer big enough to handle the full
449 * range of basic blocks we'll be examining. If that fails,
450 * try a smaller size. We need to be able to read at least
451 * a log sector, or we're out of luck.
452 */
453 bufblks = 1 << ffs(nbblks);
454 while (bufblks > log->l_logBBsize)
455 bufblks >>= 1;
456 while (!(bp = xlog_get_bp(log, bufblks))) {
457 bufblks >>= 1;
458 if (bufblks < log->l_sectBBsize)
459 return ENOMEM;
460 }
461
462 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
463 int bcount;
464
465 bcount = min(bufblks, (start_blk + nbblks - i));
466
467 error = xlog_bread(log, i, bcount, bp, &buf);
468 if (error)
469 goto out;
470
471 for (j = 0; j < bcount; j++) {
472 cycle = xlog_get_cycle(buf);
473 if (cycle == stop_on_cycle_no) {
474 *new_blk = i+j;
475 goto out;
476 }
477
478 buf += BBSIZE;
479 }
480 }
481
482 *new_blk = -1;
483
484 out:
485 xlog_put_bp(bp);
486 return error;
487 }
488
489 /*
490 * Potentially backup over partial log record write.
491 *
492 * In the typical case, last_blk is the number of the block directly after
493 * a good log record. Therefore, we subtract one to get the block number
494 * of the last block in the given buffer. extra_bblks contains the number
495 * of blocks we would have read on a previous read. This happens when the
496 * last log record is split over the end of the physical log.
497 *
498 * extra_bblks is the number of blocks potentially verified on a previous
499 * call to this routine.
500 */
501 STATIC int
502 xlog_find_verify_log_record(
503 struct xlog *log,
504 xfs_daddr_t start_blk,
505 xfs_daddr_t *last_blk,
506 int extra_bblks)
507 {
508 xfs_daddr_t i;
509 xfs_buf_t *bp;
510 xfs_caddr_t offset = NULL;
511 xlog_rec_header_t *head = NULL;
512 int error = 0;
513 int smallmem = 0;
514 int num_blks = *last_blk - start_blk;
515 int xhdrs;
516
517 ASSERT(start_blk != 0 || *last_blk != start_blk);
518
519 if (!(bp = xlog_get_bp(log, num_blks))) {
520 if (!(bp = xlog_get_bp(log, 1)))
521 return ENOMEM;
522 smallmem = 1;
523 } else {
524 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
525 if (error)
526 goto out;
527 offset += ((num_blks - 1) << BBSHIFT);
528 }
529
530 for (i = (*last_blk) - 1; i >= 0; i--) {
531 if (i < start_blk) {
532 /* valid log record not found */
533 xfs_warn(log->l_mp,
534 "Log inconsistent (didn't find previous header)");
535 ASSERT(0);
536 error = XFS_ERROR(EIO);
537 goto out;
538 }
539
540 if (smallmem) {
541 error = xlog_bread(log, i, 1, bp, &offset);
542 if (error)
543 goto out;
544 }
545
546 head = (xlog_rec_header_t *)offset;
547
548 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
549 break;
550
551 if (!smallmem)
552 offset -= BBSIZE;
553 }
554
555 /*
556 * We hit the beginning of the physical log & still no header. Return
557 * to caller. If caller can handle a return of -1, then this routine
558 * will be called again for the end of the physical log.
559 */
560 if (i == -1) {
561 error = -1;
562 goto out;
563 }
564
565 /*
566 * We have the final block of the good log (the first block
567 * of the log record _before_ the head. So we check the uuid.
568 */
569 if ((error = xlog_header_check_mount(log->l_mp, head)))
570 goto out;
571
572 /*
573 * We may have found a log record header before we expected one.
574 * last_blk will be the 1st block # with a given cycle #. We may end
575 * up reading an entire log record. In this case, we don't want to
576 * reset last_blk. Only when last_blk points in the middle of a log
577 * record do we update last_blk.
578 */
579 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
580 uint h_size = be32_to_cpu(head->h_size);
581
582 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
583 if (h_size % XLOG_HEADER_CYCLE_SIZE)
584 xhdrs++;
585 } else {
586 xhdrs = 1;
587 }
588
589 if (*last_blk - i + extra_bblks !=
590 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
591 *last_blk = i;
592
593 out:
594 xlog_put_bp(bp);
595 return error;
596 }
597
598 /*
599 * Head is defined to be the point of the log where the next log write
600 * write could go. This means that incomplete LR writes at the end are
601 * eliminated when calculating the head. We aren't guaranteed that previous
602 * LR have complete transactions. We only know that a cycle number of
603 * current cycle number -1 won't be present in the log if we start writing
604 * from our current block number.
605 *
606 * last_blk contains the block number of the first block with a given
607 * cycle number.
608 *
609 * Return: zero if normal, non-zero if error.
610 */
611 STATIC int
612 xlog_find_head(
613 struct xlog *log,
614 xfs_daddr_t *return_head_blk)
615 {
616 xfs_buf_t *bp;
617 xfs_caddr_t offset;
618 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
619 int num_scan_bblks;
620 uint first_half_cycle, last_half_cycle;
621 uint stop_on_cycle;
622 int error, log_bbnum = log->l_logBBsize;
623
624 /* Is the end of the log device zeroed? */
625 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
626 *return_head_blk = first_blk;
627
628 /* Is the whole lot zeroed? */
629 if (!first_blk) {
630 /* Linux XFS shouldn't generate totally zeroed logs -
631 * mkfs etc write a dummy unmount record to a fresh
632 * log so we can store the uuid in there
633 */
634 xfs_warn(log->l_mp, "totally zeroed log");
635 }
636
637 return 0;
638 } else if (error) {
639 xfs_warn(log->l_mp, "empty log check failed");
640 return error;
641 }
642
643 first_blk = 0; /* get cycle # of 1st block */
644 bp = xlog_get_bp(log, 1);
645 if (!bp)
646 return ENOMEM;
647
648 error = xlog_bread(log, 0, 1, bp, &offset);
649 if (error)
650 goto bp_err;
651
652 first_half_cycle = xlog_get_cycle(offset);
653
654 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
655 error = xlog_bread(log, last_blk, 1, bp, &offset);
656 if (error)
657 goto bp_err;
658
659 last_half_cycle = xlog_get_cycle(offset);
660 ASSERT(last_half_cycle != 0);
661
662 /*
663 * If the 1st half cycle number is equal to the last half cycle number,
664 * then the entire log is stamped with the same cycle number. In this
665 * case, head_blk can't be set to zero (which makes sense). The below
666 * math doesn't work out properly with head_blk equal to zero. Instead,
667 * we set it to log_bbnum which is an invalid block number, but this
668 * value makes the math correct. If head_blk doesn't changed through
669 * all the tests below, *head_blk is set to zero at the very end rather
670 * than log_bbnum. In a sense, log_bbnum and zero are the same block
671 * in a circular file.
672 */
673 if (first_half_cycle == last_half_cycle) {
674 /*
675 * In this case we believe that the entire log should have
676 * cycle number last_half_cycle. We need to scan backwards
677 * from the end verifying that there are no holes still
678 * containing last_half_cycle - 1. If we find such a hole,
679 * then the start of that hole will be the new head. The
680 * simple case looks like
681 * x | x ... | x - 1 | x
682 * Another case that fits this picture would be
683 * x | x + 1 | x ... | x
684 * In this case the head really is somewhere at the end of the
685 * log, as one of the latest writes at the beginning was
686 * incomplete.
687 * One more case is
688 * x | x + 1 | x ... | x - 1 | x
689 * This is really the combination of the above two cases, and
690 * the head has to end up at the start of the x-1 hole at the
691 * end of the log.
692 *
693 * In the 256k log case, we will read from the beginning to the
694 * end of the log and search for cycle numbers equal to x-1.
695 * We don't worry about the x+1 blocks that we encounter,
696 * because we know that they cannot be the head since the log
697 * started with x.
698 */
699 head_blk = log_bbnum;
700 stop_on_cycle = last_half_cycle - 1;
701 } else {
702 /*
703 * In this case we want to find the first block with cycle
704 * number matching last_half_cycle. We expect the log to be
705 * some variation on
706 * x + 1 ... | x ... | x
707 * The first block with cycle number x (last_half_cycle) will
708 * be where the new head belongs. First we do a binary search
709 * for the first occurrence of last_half_cycle. The binary
710 * search may not be totally accurate, so then we scan back
711 * from there looking for occurrences of last_half_cycle before
712 * us. If that backwards scan wraps around the beginning of
713 * the log, then we look for occurrences of last_half_cycle - 1
714 * at the end of the log. The cases we're looking for look
715 * like
716 * v binary search stopped here
717 * x + 1 ... | x | x + 1 | x ... | x
718 * ^ but we want to locate this spot
719 * or
720 * <---------> less than scan distance
721 * x + 1 ... | x ... | x - 1 | x
722 * ^ we want to locate this spot
723 */
724 stop_on_cycle = last_half_cycle;
725 if ((error = xlog_find_cycle_start(log, bp, first_blk,
726 &head_blk, last_half_cycle)))
727 goto bp_err;
728 }
729
730 /*
731 * Now validate the answer. Scan back some number of maximum possible
732 * blocks and make sure each one has the expected cycle number. The
733 * maximum is determined by the total possible amount of buffering
734 * in the in-core log. The following number can be made tighter if
735 * we actually look at the block size of the filesystem.
736 */
737 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
738 if (head_blk >= num_scan_bblks) {
739 /*
740 * We are guaranteed that the entire check can be performed
741 * in one buffer.
742 */
743 start_blk = head_blk - num_scan_bblks;
744 if ((error = xlog_find_verify_cycle(log,
745 start_blk, num_scan_bblks,
746 stop_on_cycle, &new_blk)))
747 goto bp_err;
748 if (new_blk != -1)
749 head_blk = new_blk;
750 } else { /* need to read 2 parts of log */
751 /*
752 * We are going to scan backwards in the log in two parts.
753 * First we scan the physical end of the log. In this part
754 * of the log, we are looking for blocks with cycle number
755 * last_half_cycle - 1.
756 * If we find one, then we know that the log starts there, as
757 * we've found a hole that didn't get written in going around
758 * the end of the physical log. The simple case for this is
759 * x + 1 ... | x ... | x - 1 | x
760 * <---------> less than scan distance
761 * If all of the blocks at the end of the log have cycle number
762 * last_half_cycle, then we check the blocks at the start of
763 * the log looking for occurrences of last_half_cycle. If we
764 * find one, then our current estimate for the location of the
765 * first occurrence of last_half_cycle is wrong and we move
766 * back to the hole we've found. This case looks like
767 * x + 1 ... | x | x + 1 | x ...
768 * ^ binary search stopped here
769 * Another case we need to handle that only occurs in 256k
770 * logs is
771 * x + 1 ... | x ... | x+1 | x ...
772 * ^ binary search stops here
773 * In a 256k log, the scan at the end of the log will see the
774 * x + 1 blocks. We need to skip past those since that is
775 * certainly not the head of the log. By searching for
776 * last_half_cycle-1 we accomplish that.
777 */
778 ASSERT(head_blk <= INT_MAX &&
779 (xfs_daddr_t) num_scan_bblks >= head_blk);
780 start_blk = log_bbnum - (num_scan_bblks - head_blk);
781 if ((error = xlog_find_verify_cycle(log, start_blk,
782 num_scan_bblks - (int)head_blk,
783 (stop_on_cycle - 1), &new_blk)))
784 goto bp_err;
785 if (new_blk != -1) {
786 head_blk = new_blk;
787 goto validate_head;
788 }
789
790 /*
791 * Scan beginning of log now. The last part of the physical
792 * log is good. This scan needs to verify that it doesn't find
793 * the last_half_cycle.
794 */
795 start_blk = 0;
796 ASSERT(head_blk <= INT_MAX);
797 if ((error = xlog_find_verify_cycle(log,
798 start_blk, (int)head_blk,
799 stop_on_cycle, &new_blk)))
800 goto bp_err;
801 if (new_blk != -1)
802 head_blk = new_blk;
803 }
804
805 validate_head:
806 /*
807 * Now we need to make sure head_blk is not pointing to a block in
808 * the middle of a log record.
809 */
810 num_scan_bblks = XLOG_REC_SHIFT(log);
811 if (head_blk >= num_scan_bblks) {
812 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
813
814 /* start ptr at last block ptr before head_blk */
815 if ((error = xlog_find_verify_log_record(log, start_blk,
816 &head_blk, 0)) == -1) {
817 error = XFS_ERROR(EIO);
818 goto bp_err;
819 } else if (error)
820 goto bp_err;
821 } else {
822 start_blk = 0;
823 ASSERT(head_blk <= INT_MAX);
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 /* We hit the beginning of the log during our search */
827 start_blk = log_bbnum - (num_scan_bblks - head_blk);
828 new_blk = log_bbnum;
829 ASSERT(start_blk <= INT_MAX &&
830 (xfs_daddr_t) log_bbnum-start_blk >= 0);
831 ASSERT(head_blk <= INT_MAX);
832 if ((error = xlog_find_verify_log_record(log,
833 start_blk, &new_blk,
834 (int)head_blk)) == -1) {
835 error = XFS_ERROR(EIO);
836 goto bp_err;
837 } else if (error)
838 goto bp_err;
839 if (new_blk != log_bbnum)
840 head_blk = new_blk;
841 } else if (error)
842 goto bp_err;
843 }
844
845 xlog_put_bp(bp);
846 if (head_blk == log_bbnum)
847 *return_head_blk = 0;
848 else
849 *return_head_blk = head_blk;
850 /*
851 * When returning here, we have a good block number. Bad block
852 * means that during a previous crash, we didn't have a clean break
853 * from cycle number N to cycle number N-1. In this case, we need
854 * to find the first block with cycle number N-1.
855 */
856 return 0;
857
858 bp_err:
859 xlog_put_bp(bp);
860
861 if (error)
862 xfs_warn(log->l_mp, "failed to find log head");
863 return error;
864 }
865
866 /*
867 * Find the sync block number or the tail of the log.
868 *
869 * This will be the block number of the last record to have its
870 * associated buffers synced to disk. Every log record header has
871 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
872 * to get a sync block number. The only concern is to figure out which
873 * log record header to believe.
874 *
875 * The following algorithm uses the log record header with the largest
876 * lsn. The entire log record does not need to be valid. We only care
877 * that the header is valid.
878 *
879 * We could speed up search by using current head_blk buffer, but it is not
880 * available.
881 */
882 STATIC int
883 xlog_find_tail(
884 struct xlog *log,
885 xfs_daddr_t *head_blk,
886 xfs_daddr_t *tail_blk)
887 {
888 xlog_rec_header_t *rhead;
889 xlog_op_header_t *op_head;
890 xfs_caddr_t offset = NULL;
891 xfs_buf_t *bp;
892 int error, i, found;
893 xfs_daddr_t umount_data_blk;
894 xfs_daddr_t after_umount_blk;
895 xfs_lsn_t tail_lsn;
896 int hblks;
897
898 found = 0;
899
900 /*
901 * Find previous log record
902 */
903 if ((error = xlog_find_head(log, head_blk)))
904 return error;
905
906 bp = xlog_get_bp(log, 1);
907 if (!bp)
908 return ENOMEM;
909 if (*head_blk == 0) { /* special case */
910 error = xlog_bread(log, 0, 1, bp, &offset);
911 if (error)
912 goto done;
913
914 if (xlog_get_cycle(offset) == 0) {
915 *tail_blk = 0;
916 /* leave all other log inited values alone */
917 goto done;
918 }
919 }
920
921 /*
922 * Search backwards looking for log record header block
923 */
924 ASSERT(*head_blk < INT_MAX);
925 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
926 error = xlog_bread(log, i, 1, bp, &offset);
927 if (error)
928 goto done;
929
930 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 found = 1;
932 break;
933 }
934 }
935 /*
936 * If we haven't found the log record header block, start looking
937 * again from the end of the physical log. XXXmiken: There should be
938 * a check here to make sure we didn't search more than N blocks in
939 * the previous code.
940 */
941 if (!found) {
942 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
943 error = xlog_bread(log, i, 1, bp, &offset);
944 if (error)
945 goto done;
946
947 if (*(__be32 *)offset ==
948 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
949 found = 2;
950 break;
951 }
952 }
953 }
954 if (!found) {
955 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
956 ASSERT(0);
957 return XFS_ERROR(EIO);
958 }
959
960 /* find blk_no of tail of log */
961 rhead = (xlog_rec_header_t *)offset;
962 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
963
964 /*
965 * Reset log values according to the state of the log when we
966 * crashed. In the case where head_blk == 0, we bump curr_cycle
967 * one because the next write starts a new cycle rather than
968 * continuing the cycle of the last good log record. At this
969 * point we have guaranteed that all partial log records have been
970 * accounted for. Therefore, we know that the last good log record
971 * written was complete and ended exactly on the end boundary
972 * of the physical log.
973 */
974 log->l_prev_block = i;
975 log->l_curr_block = (int)*head_blk;
976 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
977 if (found == 2)
978 log->l_curr_cycle++;
979 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
980 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
981 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
982 BBTOB(log->l_curr_block));
983 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
984 BBTOB(log->l_curr_block));
985
986 /*
987 * Look for unmount record. If we find it, then we know there
988 * was a clean unmount. Since 'i' could be the last block in
989 * the physical log, we convert to a log block before comparing
990 * to the head_blk.
991 *
992 * Save the current tail lsn to use to pass to
993 * xlog_clear_stale_blocks() below. We won't want to clear the
994 * unmount record if there is one, so we pass the lsn of the
995 * unmount record rather than the block after it.
996 */
997 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
998 int h_size = be32_to_cpu(rhead->h_size);
999 int h_version = be32_to_cpu(rhead->h_version);
1000
1001 if ((h_version & XLOG_VERSION_2) &&
1002 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1003 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1004 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1005 hblks++;
1006 } else {
1007 hblks = 1;
1008 }
1009 } else {
1010 hblks = 1;
1011 }
1012 after_umount_blk = (i + hblks + (int)
1013 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1014 tail_lsn = atomic64_read(&log->l_tail_lsn);
1015 if (*head_blk == after_umount_blk &&
1016 be32_to_cpu(rhead->h_num_logops) == 1) {
1017 umount_data_blk = (i + hblks) % log->l_logBBsize;
1018 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1019 if (error)
1020 goto done;
1021
1022 op_head = (xlog_op_header_t *)offset;
1023 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1024 /*
1025 * Set tail and last sync so that newly written
1026 * log records will point recovery to after the
1027 * current unmount record.
1028 */
1029 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1030 log->l_curr_cycle, after_umount_blk);
1031 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1032 log->l_curr_cycle, after_umount_blk);
1033 *tail_blk = after_umount_blk;
1034
1035 /*
1036 * Note that the unmount was clean. If the unmount
1037 * was not clean, we need to know this to rebuild the
1038 * superblock counters from the perag headers if we
1039 * have a filesystem using non-persistent counters.
1040 */
1041 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1042 }
1043 }
1044
1045 /*
1046 * Make sure that there are no blocks in front of the head
1047 * with the same cycle number as the head. This can happen
1048 * because we allow multiple outstanding log writes concurrently,
1049 * and the later writes might make it out before earlier ones.
1050 *
1051 * We use the lsn from before modifying it so that we'll never
1052 * overwrite the unmount record after a clean unmount.
1053 *
1054 * Do this only if we are going to recover the filesystem
1055 *
1056 * NOTE: This used to say "if (!readonly)"
1057 * However on Linux, we can & do recover a read-only filesystem.
1058 * We only skip recovery if NORECOVERY is specified on mount,
1059 * in which case we would not be here.
1060 *
1061 * But... if the -device- itself is readonly, just skip this.
1062 * We can't recover this device anyway, so it won't matter.
1063 */
1064 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1065 error = xlog_clear_stale_blocks(log, tail_lsn);
1066
1067 done:
1068 xlog_put_bp(bp);
1069
1070 if (error)
1071 xfs_warn(log->l_mp, "failed to locate log tail");
1072 return error;
1073 }
1074
1075 /*
1076 * Is the log zeroed at all?
1077 *
1078 * The last binary search should be changed to perform an X block read
1079 * once X becomes small enough. You can then search linearly through
1080 * the X blocks. This will cut down on the number of reads we need to do.
1081 *
1082 * If the log is partially zeroed, this routine will pass back the blkno
1083 * of the first block with cycle number 0. It won't have a complete LR
1084 * preceding it.
1085 *
1086 * Return:
1087 * 0 => the log is completely written to
1088 * -1 => use *blk_no as the first block of the log
1089 * >0 => error has occurred
1090 */
1091 STATIC int
1092 xlog_find_zeroed(
1093 struct xlog *log,
1094 xfs_daddr_t *blk_no)
1095 {
1096 xfs_buf_t *bp;
1097 xfs_caddr_t offset;
1098 uint first_cycle, last_cycle;
1099 xfs_daddr_t new_blk, last_blk, start_blk;
1100 xfs_daddr_t num_scan_bblks;
1101 int error, log_bbnum = log->l_logBBsize;
1102
1103 *blk_no = 0;
1104
1105 /* check totally zeroed log */
1106 bp = xlog_get_bp(log, 1);
1107 if (!bp)
1108 return ENOMEM;
1109 error = xlog_bread(log, 0, 1, bp, &offset);
1110 if (error)
1111 goto bp_err;
1112
1113 first_cycle = xlog_get_cycle(offset);
1114 if (first_cycle == 0) { /* completely zeroed log */
1115 *blk_no = 0;
1116 xlog_put_bp(bp);
1117 return -1;
1118 }
1119
1120 /* check partially zeroed log */
1121 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1122 if (error)
1123 goto bp_err;
1124
1125 last_cycle = xlog_get_cycle(offset);
1126 if (last_cycle != 0) { /* log completely written to */
1127 xlog_put_bp(bp);
1128 return 0;
1129 } else if (first_cycle != 1) {
1130 /*
1131 * If the cycle of the last block is zero, the cycle of
1132 * the first block must be 1. If it's not, maybe we're
1133 * not looking at a log... Bail out.
1134 */
1135 xfs_warn(log->l_mp,
1136 "Log inconsistent or not a log (last==0, first!=1)");
1137 return XFS_ERROR(EINVAL);
1138 }
1139
1140 /* we have a partially zeroed log */
1141 last_blk = log_bbnum-1;
1142 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1143 goto bp_err;
1144
1145 /*
1146 * Validate the answer. Because there is no way to guarantee that
1147 * the entire log is made up of log records which are the same size,
1148 * we scan over the defined maximum blocks. At this point, the maximum
1149 * is not chosen to mean anything special. XXXmiken
1150 */
1151 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1152 ASSERT(num_scan_bblks <= INT_MAX);
1153
1154 if (last_blk < num_scan_bblks)
1155 num_scan_bblks = last_blk;
1156 start_blk = last_blk - num_scan_bblks;
1157
1158 /*
1159 * We search for any instances of cycle number 0 that occur before
1160 * our current estimate of the head. What we're trying to detect is
1161 * 1 ... | 0 | 1 | 0...
1162 * ^ binary search ends here
1163 */
1164 if ((error = xlog_find_verify_cycle(log, start_blk,
1165 (int)num_scan_bblks, 0, &new_blk)))
1166 goto bp_err;
1167 if (new_blk != -1)
1168 last_blk = new_blk;
1169
1170 /*
1171 * Potentially backup over partial log record write. We don't need
1172 * to search the end of the log because we know it is zero.
1173 */
1174 if ((error = xlog_find_verify_log_record(log, start_blk,
1175 &last_blk, 0)) == -1) {
1176 error = XFS_ERROR(EIO);
1177 goto bp_err;
1178 } else if (error)
1179 goto bp_err;
1180
1181 *blk_no = last_blk;
1182 bp_err:
1183 xlog_put_bp(bp);
1184 if (error)
1185 return error;
1186 return -1;
1187 }
1188
1189 /*
1190 * These are simple subroutines used by xlog_clear_stale_blocks() below
1191 * to initialize a buffer full of empty log record headers and write
1192 * them into the log.
1193 */
1194 STATIC void
1195 xlog_add_record(
1196 struct xlog *log,
1197 xfs_caddr_t buf,
1198 int cycle,
1199 int block,
1200 int tail_cycle,
1201 int tail_block)
1202 {
1203 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1204
1205 memset(buf, 0, BBSIZE);
1206 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1207 recp->h_cycle = cpu_to_be32(cycle);
1208 recp->h_version = cpu_to_be32(
1209 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1210 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1211 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1212 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1213 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1214 }
1215
1216 STATIC int
1217 xlog_write_log_records(
1218 struct xlog *log,
1219 int cycle,
1220 int start_block,
1221 int blocks,
1222 int tail_cycle,
1223 int tail_block)
1224 {
1225 xfs_caddr_t offset;
1226 xfs_buf_t *bp;
1227 int balign, ealign;
1228 int sectbb = log->l_sectBBsize;
1229 int end_block = start_block + blocks;
1230 int bufblks;
1231 int error = 0;
1232 int i, j = 0;
1233
1234 /*
1235 * Greedily allocate a buffer big enough to handle the full
1236 * range of basic blocks to be written. If that fails, try
1237 * a smaller size. We need to be able to write at least a
1238 * log sector, or we're out of luck.
1239 */
1240 bufblks = 1 << ffs(blocks);
1241 while (bufblks > log->l_logBBsize)
1242 bufblks >>= 1;
1243 while (!(bp = xlog_get_bp(log, bufblks))) {
1244 bufblks >>= 1;
1245 if (bufblks < sectbb)
1246 return ENOMEM;
1247 }
1248
1249 /* We may need to do a read at the start to fill in part of
1250 * the buffer in the starting sector not covered by the first
1251 * write below.
1252 */
1253 balign = round_down(start_block, sectbb);
1254 if (balign != start_block) {
1255 error = xlog_bread_noalign(log, start_block, 1, bp);
1256 if (error)
1257 goto out_put_bp;
1258
1259 j = start_block - balign;
1260 }
1261
1262 for (i = start_block; i < end_block; i += bufblks) {
1263 int bcount, endcount;
1264
1265 bcount = min(bufblks, end_block - start_block);
1266 endcount = bcount - j;
1267
1268 /* We may need to do a read at the end to fill in part of
1269 * the buffer in the final sector not covered by the write.
1270 * If this is the same sector as the above read, skip it.
1271 */
1272 ealign = round_down(end_block, sectbb);
1273 if (j == 0 && (start_block + endcount > ealign)) {
1274 offset = bp->b_addr + BBTOB(ealign - start_block);
1275 error = xlog_bread_offset(log, ealign, sectbb,
1276 bp, offset);
1277 if (error)
1278 break;
1279
1280 }
1281
1282 offset = xlog_align(log, start_block, endcount, bp);
1283 for (; j < endcount; j++) {
1284 xlog_add_record(log, offset, cycle, i+j,
1285 tail_cycle, tail_block);
1286 offset += BBSIZE;
1287 }
1288 error = xlog_bwrite(log, start_block, endcount, bp);
1289 if (error)
1290 break;
1291 start_block += endcount;
1292 j = 0;
1293 }
1294
1295 out_put_bp:
1296 xlog_put_bp(bp);
1297 return error;
1298 }
1299
1300 /*
1301 * This routine is called to blow away any incomplete log writes out
1302 * in front of the log head. We do this so that we won't become confused
1303 * if we come up, write only a little bit more, and then crash again.
1304 * If we leave the partial log records out there, this situation could
1305 * cause us to think those partial writes are valid blocks since they
1306 * have the current cycle number. We get rid of them by overwriting them
1307 * with empty log records with the old cycle number rather than the
1308 * current one.
1309 *
1310 * The tail lsn is passed in rather than taken from
1311 * the log so that we will not write over the unmount record after a
1312 * clean unmount in a 512 block log. Doing so would leave the log without
1313 * any valid log records in it until a new one was written. If we crashed
1314 * during that time we would not be able to recover.
1315 */
1316 STATIC int
1317 xlog_clear_stale_blocks(
1318 struct xlog *log,
1319 xfs_lsn_t tail_lsn)
1320 {
1321 int tail_cycle, head_cycle;
1322 int tail_block, head_block;
1323 int tail_distance, max_distance;
1324 int distance;
1325 int error;
1326
1327 tail_cycle = CYCLE_LSN(tail_lsn);
1328 tail_block = BLOCK_LSN(tail_lsn);
1329 head_cycle = log->l_curr_cycle;
1330 head_block = log->l_curr_block;
1331
1332 /*
1333 * Figure out the distance between the new head of the log
1334 * and the tail. We want to write over any blocks beyond the
1335 * head that we may have written just before the crash, but
1336 * we don't want to overwrite the tail of the log.
1337 */
1338 if (head_cycle == tail_cycle) {
1339 /*
1340 * The tail is behind the head in the physical log,
1341 * so the distance from the head to the tail is the
1342 * distance from the head to the end of the log plus
1343 * the distance from the beginning of the log to the
1344 * tail.
1345 */
1346 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1347 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1348 XFS_ERRLEVEL_LOW, log->l_mp);
1349 return XFS_ERROR(EFSCORRUPTED);
1350 }
1351 tail_distance = tail_block + (log->l_logBBsize - head_block);
1352 } else {
1353 /*
1354 * The head is behind the tail in the physical log,
1355 * so the distance from the head to the tail is just
1356 * the tail block minus the head block.
1357 */
1358 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1359 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1360 XFS_ERRLEVEL_LOW, log->l_mp);
1361 return XFS_ERROR(EFSCORRUPTED);
1362 }
1363 tail_distance = tail_block - head_block;
1364 }
1365
1366 /*
1367 * If the head is right up against the tail, we can't clear
1368 * anything.
1369 */
1370 if (tail_distance <= 0) {
1371 ASSERT(tail_distance == 0);
1372 return 0;
1373 }
1374
1375 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1376 /*
1377 * Take the smaller of the maximum amount of outstanding I/O
1378 * we could have and the distance to the tail to clear out.
1379 * We take the smaller so that we don't overwrite the tail and
1380 * we don't waste all day writing from the head to the tail
1381 * for no reason.
1382 */
1383 max_distance = MIN(max_distance, tail_distance);
1384
1385 if ((head_block + max_distance) <= log->l_logBBsize) {
1386 /*
1387 * We can stomp all the blocks we need to without
1388 * wrapping around the end of the log. Just do it
1389 * in a single write. Use the cycle number of the
1390 * current cycle minus one so that the log will look like:
1391 * n ... | n - 1 ...
1392 */
1393 error = xlog_write_log_records(log, (head_cycle - 1),
1394 head_block, max_distance, tail_cycle,
1395 tail_block);
1396 if (error)
1397 return error;
1398 } else {
1399 /*
1400 * We need to wrap around the end of the physical log in
1401 * order to clear all the blocks. Do it in two separate
1402 * I/Os. The first write should be from the head to the
1403 * end of the physical log, and it should use the current
1404 * cycle number minus one just like above.
1405 */
1406 distance = log->l_logBBsize - head_block;
1407 error = xlog_write_log_records(log, (head_cycle - 1),
1408 head_block, distance, tail_cycle,
1409 tail_block);
1410
1411 if (error)
1412 return error;
1413
1414 /*
1415 * Now write the blocks at the start of the physical log.
1416 * This writes the remainder of the blocks we want to clear.
1417 * It uses the current cycle number since we're now on the
1418 * same cycle as the head so that we get:
1419 * n ... n ... | n - 1 ...
1420 * ^^^^^ blocks we're writing
1421 */
1422 distance = max_distance - (log->l_logBBsize - head_block);
1423 error = xlog_write_log_records(log, head_cycle, 0, distance,
1424 tail_cycle, tail_block);
1425 if (error)
1426 return error;
1427 }
1428
1429 return 0;
1430 }
1431
1432 /******************************************************************************
1433 *
1434 * Log recover routines
1435 *
1436 ******************************************************************************
1437 */
1438
1439 STATIC xlog_recover_t *
1440 xlog_recover_find_tid(
1441 struct hlist_head *head,
1442 xlog_tid_t tid)
1443 {
1444 xlog_recover_t *trans;
1445
1446 hlist_for_each_entry(trans, head, r_list) {
1447 if (trans->r_log_tid == tid)
1448 return trans;
1449 }
1450 return NULL;
1451 }
1452
1453 STATIC void
1454 xlog_recover_new_tid(
1455 struct hlist_head *head,
1456 xlog_tid_t tid,
1457 xfs_lsn_t lsn)
1458 {
1459 xlog_recover_t *trans;
1460
1461 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1462 trans->r_log_tid = tid;
1463 trans->r_lsn = lsn;
1464 INIT_LIST_HEAD(&trans->r_itemq);
1465
1466 INIT_HLIST_NODE(&trans->r_list);
1467 hlist_add_head(&trans->r_list, head);
1468 }
1469
1470 STATIC void
1471 xlog_recover_add_item(
1472 struct list_head *head)
1473 {
1474 xlog_recover_item_t *item;
1475
1476 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1477 INIT_LIST_HEAD(&item->ri_list);
1478 list_add_tail(&item->ri_list, head);
1479 }
1480
1481 STATIC int
1482 xlog_recover_add_to_cont_trans(
1483 struct xlog *log,
1484 struct xlog_recover *trans,
1485 xfs_caddr_t dp,
1486 int len)
1487 {
1488 xlog_recover_item_t *item;
1489 xfs_caddr_t ptr, old_ptr;
1490 int old_len;
1491
1492 if (list_empty(&trans->r_itemq)) {
1493 /* finish copying rest of trans header */
1494 xlog_recover_add_item(&trans->r_itemq);
1495 ptr = (xfs_caddr_t) &trans->r_theader +
1496 sizeof(xfs_trans_header_t) - len;
1497 memcpy(ptr, dp, len); /* d, s, l */
1498 return 0;
1499 }
1500 /* take the tail entry */
1501 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1502
1503 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1504 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1505
1506 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1507 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1508 item->ri_buf[item->ri_cnt-1].i_len += len;
1509 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1510 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1511 return 0;
1512 }
1513
1514 /*
1515 * The next region to add is the start of a new region. It could be
1516 * a whole region or it could be the first part of a new region. Because
1517 * of this, the assumption here is that the type and size fields of all
1518 * format structures fit into the first 32 bits of the structure.
1519 *
1520 * This works because all regions must be 32 bit aligned. Therefore, we
1521 * either have both fields or we have neither field. In the case we have
1522 * neither field, the data part of the region is zero length. We only have
1523 * a log_op_header and can throw away the header since a new one will appear
1524 * later. If we have at least 4 bytes, then we can determine how many regions
1525 * will appear in the current log item.
1526 */
1527 STATIC int
1528 xlog_recover_add_to_trans(
1529 struct xlog *log,
1530 struct xlog_recover *trans,
1531 xfs_caddr_t dp,
1532 int len)
1533 {
1534 xfs_inode_log_format_t *in_f; /* any will do */
1535 xlog_recover_item_t *item;
1536 xfs_caddr_t ptr;
1537
1538 if (!len)
1539 return 0;
1540 if (list_empty(&trans->r_itemq)) {
1541 /* we need to catch log corruptions here */
1542 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1543 xfs_warn(log->l_mp, "%s: bad header magic number",
1544 __func__);
1545 ASSERT(0);
1546 return XFS_ERROR(EIO);
1547 }
1548 if (len == sizeof(xfs_trans_header_t))
1549 xlog_recover_add_item(&trans->r_itemq);
1550 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1551 return 0;
1552 }
1553
1554 ptr = kmem_alloc(len, KM_SLEEP);
1555 memcpy(ptr, dp, len);
1556 in_f = (xfs_inode_log_format_t *)ptr;
1557
1558 /* take the tail entry */
1559 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1560 if (item->ri_total != 0 &&
1561 item->ri_total == item->ri_cnt) {
1562 /* tail item is in use, get a new one */
1563 xlog_recover_add_item(&trans->r_itemq);
1564 item = list_entry(trans->r_itemq.prev,
1565 xlog_recover_item_t, ri_list);
1566 }
1567
1568 if (item->ri_total == 0) { /* first region to be added */
1569 if (in_f->ilf_size == 0 ||
1570 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1571 xfs_warn(log->l_mp,
1572 "bad number of regions (%d) in inode log format",
1573 in_f->ilf_size);
1574 ASSERT(0);
1575 return XFS_ERROR(EIO);
1576 }
1577
1578 item->ri_total = in_f->ilf_size;
1579 item->ri_buf =
1580 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1581 KM_SLEEP);
1582 }
1583 ASSERT(item->ri_total > item->ri_cnt);
1584 /* Description region is ri_buf[0] */
1585 item->ri_buf[item->ri_cnt].i_addr = ptr;
1586 item->ri_buf[item->ri_cnt].i_len = len;
1587 item->ri_cnt++;
1588 trace_xfs_log_recover_item_add(log, trans, item, 0);
1589 return 0;
1590 }
1591
1592 /*
1593 * Sort the log items in the transaction. Cancelled buffers need
1594 * to be put first so they are processed before any items that might
1595 * modify the buffers. If they are cancelled, then the modifications
1596 * don't need to be replayed.
1597 */
1598 STATIC int
1599 xlog_recover_reorder_trans(
1600 struct xlog *log,
1601 struct xlog_recover *trans,
1602 int pass)
1603 {
1604 xlog_recover_item_t *item, *n;
1605 LIST_HEAD(sort_list);
1606
1607 list_splice_init(&trans->r_itemq, &sort_list);
1608 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1609 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1610
1611 switch (ITEM_TYPE(item)) {
1612 case XFS_LI_BUF:
1613 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1614 trace_xfs_log_recover_item_reorder_head(log,
1615 trans, item, pass);
1616 list_move(&item->ri_list, &trans->r_itemq);
1617 break;
1618 }
1619 case XFS_LI_INODE:
1620 case XFS_LI_DQUOT:
1621 case XFS_LI_QUOTAOFF:
1622 case XFS_LI_EFD:
1623 case XFS_LI_EFI:
1624 trace_xfs_log_recover_item_reorder_tail(log,
1625 trans, item, pass);
1626 list_move_tail(&item->ri_list, &trans->r_itemq);
1627 break;
1628 default:
1629 xfs_warn(log->l_mp,
1630 "%s: unrecognized type of log operation",
1631 __func__);
1632 ASSERT(0);
1633 return XFS_ERROR(EIO);
1634 }
1635 }
1636 ASSERT(list_empty(&sort_list));
1637 return 0;
1638 }
1639
1640 /*
1641 * Build up the table of buf cancel records so that we don't replay
1642 * cancelled data in the second pass. For buffer records that are
1643 * not cancel records, there is nothing to do here so we just return.
1644 *
1645 * If we get a cancel record which is already in the table, this indicates
1646 * that the buffer was cancelled multiple times. In order to ensure
1647 * that during pass 2 we keep the record in the table until we reach its
1648 * last occurrence in the log, we keep a reference count in the cancel
1649 * record in the table to tell us how many times we expect to see this
1650 * record during the second pass.
1651 */
1652 STATIC int
1653 xlog_recover_buffer_pass1(
1654 struct xlog *log,
1655 struct xlog_recover_item *item)
1656 {
1657 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1658 struct list_head *bucket;
1659 struct xfs_buf_cancel *bcp;
1660
1661 /*
1662 * If this isn't a cancel buffer item, then just return.
1663 */
1664 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1665 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1666 return 0;
1667 }
1668
1669 /*
1670 * Insert an xfs_buf_cancel record into the hash table of them.
1671 * If there is already an identical record, bump its reference count.
1672 */
1673 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1674 list_for_each_entry(bcp, bucket, bc_list) {
1675 if (bcp->bc_blkno == buf_f->blf_blkno &&
1676 bcp->bc_len == buf_f->blf_len) {
1677 bcp->bc_refcount++;
1678 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1679 return 0;
1680 }
1681 }
1682
1683 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1684 bcp->bc_blkno = buf_f->blf_blkno;
1685 bcp->bc_len = buf_f->blf_len;
1686 bcp->bc_refcount = 1;
1687 list_add_tail(&bcp->bc_list, bucket);
1688
1689 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1690 return 0;
1691 }
1692
1693 /*
1694 * Check to see whether the buffer being recovered has a corresponding
1695 * entry in the buffer cancel record table. If it does then return 1
1696 * so that it will be cancelled, otherwise return 0. If the buffer is
1697 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1698 * the refcount on the entry in the table and remove it from the table
1699 * if this is the last reference.
1700 *
1701 * We remove the cancel record from the table when we encounter its
1702 * last occurrence in the log so that if the same buffer is re-used
1703 * again after its last cancellation we actually replay the changes
1704 * made at that point.
1705 */
1706 STATIC int
1707 xlog_check_buffer_cancelled(
1708 struct xlog *log,
1709 xfs_daddr_t blkno,
1710 uint len,
1711 ushort flags)
1712 {
1713 struct list_head *bucket;
1714 struct xfs_buf_cancel *bcp;
1715
1716 if (log->l_buf_cancel_table == NULL) {
1717 /*
1718 * There is nothing in the table built in pass one,
1719 * so this buffer must not be cancelled.
1720 */
1721 ASSERT(!(flags & XFS_BLF_CANCEL));
1722 return 0;
1723 }
1724
1725 /*
1726 * Search for an entry in the cancel table that matches our buffer.
1727 */
1728 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1729 list_for_each_entry(bcp, bucket, bc_list) {
1730 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1731 goto found;
1732 }
1733
1734 /*
1735 * We didn't find a corresponding entry in the table, so return 0 so
1736 * that the buffer is NOT cancelled.
1737 */
1738 ASSERT(!(flags & XFS_BLF_CANCEL));
1739 return 0;
1740
1741 found:
1742 /*
1743 * We've go a match, so return 1 so that the recovery of this buffer
1744 * is cancelled. If this buffer is actually a buffer cancel log
1745 * item, then decrement the refcount on the one in the table and
1746 * remove it if this is the last reference.
1747 */
1748 if (flags & XFS_BLF_CANCEL) {
1749 if (--bcp->bc_refcount == 0) {
1750 list_del(&bcp->bc_list);
1751 kmem_free(bcp);
1752 }
1753 }
1754 return 1;
1755 }
1756
1757 /*
1758 * Perform recovery for a buffer full of inodes. In these buffers, the only
1759 * data which should be recovered is that which corresponds to the
1760 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1761 * data for the inodes is always logged through the inodes themselves rather
1762 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1763 *
1764 * The only time when buffers full of inodes are fully recovered is when the
1765 * buffer is full of newly allocated inodes. In this case the buffer will
1766 * not be marked as an inode buffer and so will be sent to
1767 * xlog_recover_do_reg_buffer() below during recovery.
1768 */
1769 STATIC int
1770 xlog_recover_do_inode_buffer(
1771 struct xfs_mount *mp,
1772 xlog_recover_item_t *item,
1773 struct xfs_buf *bp,
1774 xfs_buf_log_format_t *buf_f)
1775 {
1776 int i;
1777 int item_index = 0;
1778 int bit = 0;
1779 int nbits = 0;
1780 int reg_buf_offset = 0;
1781 int reg_buf_bytes = 0;
1782 int next_unlinked_offset;
1783 int inodes_per_buf;
1784 xfs_agino_t *logged_nextp;
1785 xfs_agino_t *buffer_nextp;
1786
1787 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1788
1789 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1790 for (i = 0; i < inodes_per_buf; i++) {
1791 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1792 offsetof(xfs_dinode_t, di_next_unlinked);
1793
1794 while (next_unlinked_offset >=
1795 (reg_buf_offset + reg_buf_bytes)) {
1796 /*
1797 * The next di_next_unlinked field is beyond
1798 * the current logged region. Find the next
1799 * logged region that contains or is beyond
1800 * the current di_next_unlinked field.
1801 */
1802 bit += nbits;
1803 bit = xfs_next_bit(buf_f->blf_data_map,
1804 buf_f->blf_map_size, bit);
1805
1806 /*
1807 * If there are no more logged regions in the
1808 * buffer, then we're done.
1809 */
1810 if (bit == -1)
1811 return 0;
1812
1813 nbits = xfs_contig_bits(buf_f->blf_data_map,
1814 buf_f->blf_map_size, bit);
1815 ASSERT(nbits > 0);
1816 reg_buf_offset = bit << XFS_BLF_SHIFT;
1817 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1818 item_index++;
1819 }
1820
1821 /*
1822 * If the current logged region starts after the current
1823 * di_next_unlinked field, then move on to the next
1824 * di_next_unlinked field.
1825 */
1826 if (next_unlinked_offset < reg_buf_offset)
1827 continue;
1828
1829 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1830 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1831 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1832 BBTOB(bp->b_io_length));
1833
1834 /*
1835 * The current logged region contains a copy of the
1836 * current di_next_unlinked field. Extract its value
1837 * and copy it to the buffer copy.
1838 */
1839 logged_nextp = item->ri_buf[item_index].i_addr +
1840 next_unlinked_offset - reg_buf_offset;
1841 if (unlikely(*logged_nextp == 0)) {
1842 xfs_alert(mp,
1843 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1844 "Trying to replay bad (0) inode di_next_unlinked field.",
1845 item, bp);
1846 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1847 XFS_ERRLEVEL_LOW, mp);
1848 return XFS_ERROR(EFSCORRUPTED);
1849 }
1850
1851 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1852 next_unlinked_offset);
1853 *buffer_nextp = *logged_nextp;
1854 }
1855
1856 return 0;
1857 }
1858
1859 /*
1860 * Perform a 'normal' buffer recovery. Each logged region of the
1861 * buffer should be copied over the corresponding region in the
1862 * given buffer. The bitmap in the buf log format structure indicates
1863 * where to place the logged data.
1864 */
1865 STATIC void
1866 xlog_recover_do_reg_buffer(
1867 struct xfs_mount *mp,
1868 xlog_recover_item_t *item,
1869 struct xfs_buf *bp,
1870 xfs_buf_log_format_t *buf_f)
1871 {
1872 int i;
1873 int bit;
1874 int nbits;
1875 int error;
1876
1877 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1878
1879 bit = 0;
1880 i = 1; /* 0 is the buf format structure */
1881 while (1) {
1882 bit = xfs_next_bit(buf_f->blf_data_map,
1883 buf_f->blf_map_size, bit);
1884 if (bit == -1)
1885 break;
1886 nbits = xfs_contig_bits(buf_f->blf_data_map,
1887 buf_f->blf_map_size, bit);
1888 ASSERT(nbits > 0);
1889 ASSERT(item->ri_buf[i].i_addr != NULL);
1890 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1891 ASSERT(BBTOB(bp->b_io_length) >=
1892 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1893
1894 /*
1895 * Do a sanity check if this is a dquot buffer. Just checking
1896 * the first dquot in the buffer should do. XXXThis is
1897 * probably a good thing to do for other buf types also.
1898 */
1899 error = 0;
1900 if (buf_f->blf_flags &
1901 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1902 if (item->ri_buf[i].i_addr == NULL) {
1903 xfs_alert(mp,
1904 "XFS: NULL dquot in %s.", __func__);
1905 goto next;
1906 }
1907 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1908 xfs_alert(mp,
1909 "XFS: dquot too small (%d) in %s.",
1910 item->ri_buf[i].i_len, __func__);
1911 goto next;
1912 }
1913 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1914 -1, 0, XFS_QMOPT_DOWARN,
1915 "dquot_buf_recover");
1916 if (error)
1917 goto next;
1918 }
1919
1920 memcpy(xfs_buf_offset(bp,
1921 (uint)bit << XFS_BLF_SHIFT), /* dest */
1922 item->ri_buf[i].i_addr, /* source */
1923 nbits<<XFS_BLF_SHIFT); /* length */
1924 next:
1925 i++;
1926 bit += nbits;
1927 }
1928
1929 /* Shouldn't be any more regions */
1930 ASSERT(i == item->ri_total);
1931 }
1932
1933 /*
1934 * Do some primitive error checking on ondisk dquot data structures.
1935 */
1936 int
1937 xfs_qm_dqcheck(
1938 struct xfs_mount *mp,
1939 xfs_disk_dquot_t *ddq,
1940 xfs_dqid_t id,
1941 uint type, /* used only when IO_dorepair is true */
1942 uint flags,
1943 char *str)
1944 {
1945 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1946 int errs = 0;
1947
1948 /*
1949 * We can encounter an uninitialized dquot buffer for 2 reasons:
1950 * 1. If we crash while deleting the quotainode(s), and those blks got
1951 * used for user data. This is because we take the path of regular
1952 * file deletion; however, the size field of quotainodes is never
1953 * updated, so all the tricks that we play in itruncate_finish
1954 * don't quite matter.
1955 *
1956 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1957 * But the allocation will be replayed so we'll end up with an
1958 * uninitialized quota block.
1959 *
1960 * This is all fine; things are still consistent, and we haven't lost
1961 * any quota information. Just don't complain about bad dquot blks.
1962 */
1963 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1964 if (flags & XFS_QMOPT_DOWARN)
1965 xfs_alert(mp,
1966 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1967 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1968 errs++;
1969 }
1970 if (ddq->d_version != XFS_DQUOT_VERSION) {
1971 if (flags & XFS_QMOPT_DOWARN)
1972 xfs_alert(mp,
1973 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1974 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1975 errs++;
1976 }
1977
1978 if (ddq->d_flags != XFS_DQ_USER &&
1979 ddq->d_flags != XFS_DQ_PROJ &&
1980 ddq->d_flags != XFS_DQ_GROUP) {
1981 if (flags & XFS_QMOPT_DOWARN)
1982 xfs_alert(mp,
1983 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1984 str, id, ddq->d_flags);
1985 errs++;
1986 }
1987
1988 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1989 if (flags & XFS_QMOPT_DOWARN)
1990 xfs_alert(mp,
1991 "%s : ondisk-dquot 0x%p, ID mismatch: "
1992 "0x%x expected, found id 0x%x",
1993 str, ddq, id, be32_to_cpu(ddq->d_id));
1994 errs++;
1995 }
1996
1997 if (!errs && ddq->d_id) {
1998 if (ddq->d_blk_softlimit &&
1999 be64_to_cpu(ddq->d_bcount) >
2000 be64_to_cpu(ddq->d_blk_softlimit)) {
2001 if (!ddq->d_btimer) {
2002 if (flags & XFS_QMOPT_DOWARN)
2003 xfs_alert(mp,
2004 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2005 str, (int)be32_to_cpu(ddq->d_id), ddq);
2006 errs++;
2007 }
2008 }
2009 if (ddq->d_ino_softlimit &&
2010 be64_to_cpu(ddq->d_icount) >
2011 be64_to_cpu(ddq->d_ino_softlimit)) {
2012 if (!ddq->d_itimer) {
2013 if (flags & XFS_QMOPT_DOWARN)
2014 xfs_alert(mp,
2015 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2016 str, (int)be32_to_cpu(ddq->d_id), ddq);
2017 errs++;
2018 }
2019 }
2020 if (ddq->d_rtb_softlimit &&
2021 be64_to_cpu(ddq->d_rtbcount) >
2022 be64_to_cpu(ddq->d_rtb_softlimit)) {
2023 if (!ddq->d_rtbtimer) {
2024 if (flags & XFS_QMOPT_DOWARN)
2025 xfs_alert(mp,
2026 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2027 str, (int)be32_to_cpu(ddq->d_id), ddq);
2028 errs++;
2029 }
2030 }
2031 }
2032
2033 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2034 return errs;
2035
2036 if (flags & XFS_QMOPT_DOWARN)
2037 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2038
2039 /*
2040 * Typically, a repair is only requested by quotacheck.
2041 */
2042 ASSERT(id != -1);
2043 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2044 memset(d, 0, sizeof(xfs_dqblk_t));
2045
2046 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2047 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2048 d->dd_diskdq.d_flags = type;
2049 d->dd_diskdq.d_id = cpu_to_be32(id);
2050
2051 return errs;
2052 }
2053
2054 /*
2055 * Perform a dquot buffer recovery.
2056 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2057 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2058 * Else, treat it as a regular buffer and do recovery.
2059 */
2060 STATIC void
2061 xlog_recover_do_dquot_buffer(
2062 struct xfs_mount *mp,
2063 struct xlog *log,
2064 struct xlog_recover_item *item,
2065 struct xfs_buf *bp,
2066 struct xfs_buf_log_format *buf_f)
2067 {
2068 uint type;
2069
2070 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2071
2072 /*
2073 * Filesystems are required to send in quota flags at mount time.
2074 */
2075 if (mp->m_qflags == 0) {
2076 return;
2077 }
2078
2079 type = 0;
2080 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2081 type |= XFS_DQ_USER;
2082 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2083 type |= XFS_DQ_PROJ;
2084 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2085 type |= XFS_DQ_GROUP;
2086 /*
2087 * This type of quotas was turned off, so ignore this buffer
2088 */
2089 if (log->l_quotaoffs_flag & type)
2090 return;
2091
2092 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2093 }
2094
2095 /*
2096 * This routine replays a modification made to a buffer at runtime.
2097 * There are actually two types of buffer, regular and inode, which
2098 * are handled differently. Inode buffers are handled differently
2099 * in that we only recover a specific set of data from them, namely
2100 * the inode di_next_unlinked fields. This is because all other inode
2101 * data is actually logged via inode records and any data we replay
2102 * here which overlaps that may be stale.
2103 *
2104 * When meta-data buffers are freed at run time we log a buffer item
2105 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2106 * of the buffer in the log should not be replayed at recovery time.
2107 * This is so that if the blocks covered by the buffer are reused for
2108 * file data before we crash we don't end up replaying old, freed
2109 * meta-data into a user's file.
2110 *
2111 * To handle the cancellation of buffer log items, we make two passes
2112 * over the log during recovery. During the first we build a table of
2113 * those buffers which have been cancelled, and during the second we
2114 * only replay those buffers which do not have corresponding cancel
2115 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2116 * for more details on the implementation of the table of cancel records.
2117 */
2118 STATIC int
2119 xlog_recover_buffer_pass2(
2120 struct xlog *log,
2121 struct list_head *buffer_list,
2122 struct xlog_recover_item *item)
2123 {
2124 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2125 xfs_mount_t *mp = log->l_mp;
2126 xfs_buf_t *bp;
2127 int error;
2128 uint buf_flags;
2129
2130 /*
2131 * In this pass we only want to recover all the buffers which have
2132 * not been cancelled and are not cancellation buffers themselves.
2133 */
2134 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2135 buf_f->blf_len, buf_f->blf_flags)) {
2136 trace_xfs_log_recover_buf_cancel(log, buf_f);
2137 return 0;
2138 }
2139
2140 trace_xfs_log_recover_buf_recover(log, buf_f);
2141
2142 buf_flags = 0;
2143 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2144 buf_flags |= XBF_UNMAPPED;
2145
2146 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2147 buf_flags, NULL);
2148 if (!bp)
2149 return XFS_ERROR(ENOMEM);
2150 error = bp->b_error;
2151 if (error) {
2152 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2153 xfs_buf_relse(bp);
2154 return error;
2155 }
2156
2157 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2158 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2159 } else if (buf_f->blf_flags &
2160 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2161 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2162 } else {
2163 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2164 }
2165 if (error)
2166 return XFS_ERROR(error);
2167
2168 /*
2169 * Perform delayed write on the buffer. Asynchronous writes will be
2170 * slower when taking into account all the buffers to be flushed.
2171 *
2172 * Also make sure that only inode buffers with good sizes stay in
2173 * the buffer cache. The kernel moves inodes in buffers of 1 block
2174 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2175 * buffers in the log can be a different size if the log was generated
2176 * by an older kernel using unclustered inode buffers or a newer kernel
2177 * running with a different inode cluster size. Regardless, if the
2178 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2179 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2180 * the buffer out of the buffer cache so that the buffer won't
2181 * overlap with future reads of those inodes.
2182 */
2183 if (XFS_DINODE_MAGIC ==
2184 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2185 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2186 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2187 xfs_buf_stale(bp);
2188 error = xfs_bwrite(bp);
2189 } else {
2190 ASSERT(bp->b_target->bt_mount == mp);
2191 bp->b_iodone = xlog_recover_iodone;
2192 xfs_buf_delwri_queue(bp, buffer_list);
2193 }
2194
2195 xfs_buf_relse(bp);
2196 return error;
2197 }
2198
2199 STATIC int
2200 xlog_recover_inode_pass2(
2201 struct xlog *log,
2202 struct list_head *buffer_list,
2203 struct xlog_recover_item *item)
2204 {
2205 xfs_inode_log_format_t *in_f;
2206 xfs_mount_t *mp = log->l_mp;
2207 xfs_buf_t *bp;
2208 xfs_dinode_t *dip;
2209 int len;
2210 xfs_caddr_t src;
2211 xfs_caddr_t dest;
2212 int error;
2213 int attr_index;
2214 uint fields;
2215 xfs_icdinode_t *dicp;
2216 int need_free = 0;
2217
2218 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2219 in_f = item->ri_buf[0].i_addr;
2220 } else {
2221 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2222 need_free = 1;
2223 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2224 if (error)
2225 goto error;
2226 }
2227
2228 /*
2229 * Inode buffers can be freed, look out for it,
2230 * and do not replay the inode.
2231 */
2232 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2233 in_f->ilf_len, 0)) {
2234 error = 0;
2235 trace_xfs_log_recover_inode_cancel(log, in_f);
2236 goto error;
2237 }
2238 trace_xfs_log_recover_inode_recover(log, in_f);
2239
2240 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2241 NULL);
2242 if (!bp) {
2243 error = ENOMEM;
2244 goto error;
2245 }
2246 error = bp->b_error;
2247 if (error) {
2248 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2249 xfs_buf_relse(bp);
2250 goto error;
2251 }
2252 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2253 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2254
2255 /*
2256 * Make sure the place we're flushing out to really looks
2257 * like an inode!
2258 */
2259 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2260 xfs_buf_relse(bp);
2261 xfs_alert(mp,
2262 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2263 __func__, dip, bp, in_f->ilf_ino);
2264 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2265 XFS_ERRLEVEL_LOW, mp);
2266 error = EFSCORRUPTED;
2267 goto error;
2268 }
2269 dicp = item->ri_buf[1].i_addr;
2270 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2271 xfs_buf_relse(bp);
2272 xfs_alert(mp,
2273 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2274 __func__, item, in_f->ilf_ino);
2275 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2276 XFS_ERRLEVEL_LOW, mp);
2277 error = EFSCORRUPTED;
2278 goto error;
2279 }
2280
2281 /* Skip replay when the on disk inode is newer than the log one */
2282 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2283 /*
2284 * Deal with the wrap case, DI_MAX_FLUSH is less
2285 * than smaller numbers
2286 */
2287 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2288 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2289 /* do nothing */
2290 } else {
2291 xfs_buf_relse(bp);
2292 trace_xfs_log_recover_inode_skip(log, in_f);
2293 error = 0;
2294 goto error;
2295 }
2296 }
2297 /* Take the opportunity to reset the flush iteration count */
2298 dicp->di_flushiter = 0;
2299
2300 if (unlikely(S_ISREG(dicp->di_mode))) {
2301 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2302 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2304 XFS_ERRLEVEL_LOW, mp, dicp);
2305 xfs_buf_relse(bp);
2306 xfs_alert(mp,
2307 "%s: Bad regular inode log record, rec ptr 0x%p, "
2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309 __func__, item, dip, bp, in_f->ilf_ino);
2310 error = EFSCORRUPTED;
2311 goto error;
2312 }
2313 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2314 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2315 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2316 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2317 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2318 XFS_ERRLEVEL_LOW, mp, dicp);
2319 xfs_buf_relse(bp);
2320 xfs_alert(mp,
2321 "%s: Bad dir inode log record, rec ptr 0x%p, "
2322 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2323 __func__, item, dip, bp, in_f->ilf_ino);
2324 error = EFSCORRUPTED;
2325 goto error;
2326 }
2327 }
2328 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2329 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2330 XFS_ERRLEVEL_LOW, mp, dicp);
2331 xfs_buf_relse(bp);
2332 xfs_alert(mp,
2333 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2334 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2335 __func__, item, dip, bp, in_f->ilf_ino,
2336 dicp->di_nextents + dicp->di_anextents,
2337 dicp->di_nblocks);
2338 error = EFSCORRUPTED;
2339 goto error;
2340 }
2341 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2342 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2343 XFS_ERRLEVEL_LOW, mp, dicp);
2344 xfs_buf_relse(bp);
2345 xfs_alert(mp,
2346 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2347 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2348 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2349 error = EFSCORRUPTED;
2350 goto error;
2351 }
2352 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2353 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2354 XFS_ERRLEVEL_LOW, mp, dicp);
2355 xfs_buf_relse(bp);
2356 xfs_alert(mp,
2357 "%s: Bad inode log record length %d, rec ptr 0x%p",
2358 __func__, item->ri_buf[1].i_len, item);
2359 error = EFSCORRUPTED;
2360 goto error;
2361 }
2362
2363 /* The core is in in-core format */
2364 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2365
2366 /* the rest is in on-disk format */
2367 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2368 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2369 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2370 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2371 }
2372
2373 fields = in_f->ilf_fields;
2374 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2375 case XFS_ILOG_DEV:
2376 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2377 break;
2378 case XFS_ILOG_UUID:
2379 memcpy(XFS_DFORK_DPTR(dip),
2380 &in_f->ilf_u.ilfu_uuid,
2381 sizeof(uuid_t));
2382 break;
2383 }
2384
2385 if (in_f->ilf_size == 2)
2386 goto write_inode_buffer;
2387 len = item->ri_buf[2].i_len;
2388 src = item->ri_buf[2].i_addr;
2389 ASSERT(in_f->ilf_size <= 4);
2390 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2391 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2392 (len == in_f->ilf_dsize));
2393
2394 switch (fields & XFS_ILOG_DFORK) {
2395 case XFS_ILOG_DDATA:
2396 case XFS_ILOG_DEXT:
2397 memcpy(XFS_DFORK_DPTR(dip), src, len);
2398 break;
2399
2400 case XFS_ILOG_DBROOT:
2401 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2402 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2403 XFS_DFORK_DSIZE(dip, mp));
2404 break;
2405
2406 default:
2407 /*
2408 * There are no data fork flags set.
2409 */
2410 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2411 break;
2412 }
2413
2414 /*
2415 * If we logged any attribute data, recover it. There may or
2416 * may not have been any other non-core data logged in this
2417 * transaction.
2418 */
2419 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2420 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2421 attr_index = 3;
2422 } else {
2423 attr_index = 2;
2424 }
2425 len = item->ri_buf[attr_index].i_len;
2426 src = item->ri_buf[attr_index].i_addr;
2427 ASSERT(len == in_f->ilf_asize);
2428
2429 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2430 case XFS_ILOG_ADATA:
2431 case XFS_ILOG_AEXT:
2432 dest = XFS_DFORK_APTR(dip);
2433 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2434 memcpy(dest, src, len);
2435 break;
2436
2437 case XFS_ILOG_ABROOT:
2438 dest = XFS_DFORK_APTR(dip);
2439 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2440 len, (xfs_bmdr_block_t*)dest,
2441 XFS_DFORK_ASIZE(dip, mp));
2442 break;
2443
2444 default:
2445 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2446 ASSERT(0);
2447 xfs_buf_relse(bp);
2448 error = EIO;
2449 goto error;
2450 }
2451 }
2452
2453 write_inode_buffer:
2454 ASSERT(bp->b_target->bt_mount == mp);
2455 bp->b_iodone = xlog_recover_iodone;
2456 xfs_buf_delwri_queue(bp, buffer_list);
2457 xfs_buf_relse(bp);
2458 error:
2459 if (need_free)
2460 kmem_free(in_f);
2461 return XFS_ERROR(error);
2462 }
2463
2464 /*
2465 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2466 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2467 * of that type.
2468 */
2469 STATIC int
2470 xlog_recover_quotaoff_pass1(
2471 struct xlog *log,
2472 struct xlog_recover_item *item)
2473 {
2474 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2475 ASSERT(qoff_f);
2476
2477 /*
2478 * The logitem format's flag tells us if this was user quotaoff,
2479 * group/project quotaoff or both.
2480 */
2481 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2482 log->l_quotaoffs_flag |= XFS_DQ_USER;
2483 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2484 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2485 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2486 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2487
2488 return (0);
2489 }
2490
2491 /*
2492 * Recover a dquot record
2493 */
2494 STATIC int
2495 xlog_recover_dquot_pass2(
2496 struct xlog *log,
2497 struct list_head *buffer_list,
2498 struct xlog_recover_item *item)
2499 {
2500 xfs_mount_t *mp = log->l_mp;
2501 xfs_buf_t *bp;
2502 struct xfs_disk_dquot *ddq, *recddq;
2503 int error;
2504 xfs_dq_logformat_t *dq_f;
2505 uint type;
2506
2507
2508 /*
2509 * Filesystems are required to send in quota flags at mount time.
2510 */
2511 if (mp->m_qflags == 0)
2512 return (0);
2513
2514 recddq = item->ri_buf[1].i_addr;
2515 if (recddq == NULL) {
2516 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2517 return XFS_ERROR(EIO);
2518 }
2519 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2520 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2521 item->ri_buf[1].i_len, __func__);
2522 return XFS_ERROR(EIO);
2523 }
2524
2525 /*
2526 * This type of quotas was turned off, so ignore this record.
2527 */
2528 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2529 ASSERT(type);
2530 if (log->l_quotaoffs_flag & type)
2531 return (0);
2532
2533 /*
2534 * At this point we know that quota was _not_ turned off.
2535 * Since the mount flags are not indicating to us otherwise, this
2536 * must mean that quota is on, and the dquot needs to be replayed.
2537 * Remember that we may not have fully recovered the superblock yet,
2538 * so we can't do the usual trick of looking at the SB quota bits.
2539 *
2540 * The other possibility, of course, is that the quota subsystem was
2541 * removed since the last mount - ENOSYS.
2542 */
2543 dq_f = item->ri_buf[0].i_addr;
2544 ASSERT(dq_f);
2545 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2546 "xlog_recover_dquot_pass2 (log copy)");
2547 if (error)
2548 return XFS_ERROR(EIO);
2549 ASSERT(dq_f->qlf_len == 1);
2550
2551 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2552 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2553 NULL);
2554 if (error)
2555 return error;
2556
2557 ASSERT(bp);
2558 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2559
2560 /*
2561 * At least the magic num portion should be on disk because this
2562 * was among a chunk of dquots created earlier, and we did some
2563 * minimal initialization then.
2564 */
2565 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2566 "xlog_recover_dquot_pass2");
2567 if (error) {
2568 xfs_buf_relse(bp);
2569 return XFS_ERROR(EIO);
2570 }
2571
2572 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2573
2574 ASSERT(dq_f->qlf_size == 2);
2575 ASSERT(bp->b_target->bt_mount == mp);
2576 bp->b_iodone = xlog_recover_iodone;
2577 xfs_buf_delwri_queue(bp, buffer_list);
2578 xfs_buf_relse(bp);
2579
2580 return (0);
2581 }
2582
2583 /*
2584 * This routine is called to create an in-core extent free intent
2585 * item from the efi format structure which was logged on disk.
2586 * It allocates an in-core efi, copies the extents from the format
2587 * structure into it, and adds the efi to the AIL with the given
2588 * LSN.
2589 */
2590 STATIC int
2591 xlog_recover_efi_pass2(
2592 struct xlog *log,
2593 struct xlog_recover_item *item,
2594 xfs_lsn_t lsn)
2595 {
2596 int error;
2597 xfs_mount_t *mp = log->l_mp;
2598 xfs_efi_log_item_t *efip;
2599 xfs_efi_log_format_t *efi_formatp;
2600
2601 efi_formatp = item->ri_buf[0].i_addr;
2602
2603 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2604 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2605 &(efip->efi_format)))) {
2606 xfs_efi_item_free(efip);
2607 return error;
2608 }
2609 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2610
2611 spin_lock(&log->l_ailp->xa_lock);
2612 /*
2613 * xfs_trans_ail_update() drops the AIL lock.
2614 */
2615 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2616 return 0;
2617 }
2618
2619
2620 /*
2621 * This routine is called when an efd format structure is found in
2622 * a committed transaction in the log. It's purpose is to cancel
2623 * the corresponding efi if it was still in the log. To do this
2624 * it searches the AIL for the efi with an id equal to that in the
2625 * efd format structure. If we find it, we remove the efi from the
2626 * AIL and free it.
2627 */
2628 STATIC int
2629 xlog_recover_efd_pass2(
2630 struct xlog *log,
2631 struct xlog_recover_item *item)
2632 {
2633 xfs_efd_log_format_t *efd_formatp;
2634 xfs_efi_log_item_t *efip = NULL;
2635 xfs_log_item_t *lip;
2636 __uint64_t efi_id;
2637 struct xfs_ail_cursor cur;
2638 struct xfs_ail *ailp = log->l_ailp;
2639
2640 efd_formatp = item->ri_buf[0].i_addr;
2641 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2642 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2643 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2644 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2645 efi_id = efd_formatp->efd_efi_id;
2646
2647 /*
2648 * Search for the efi with the id in the efd format structure
2649 * in the AIL.
2650 */
2651 spin_lock(&ailp->xa_lock);
2652 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2653 while (lip != NULL) {
2654 if (lip->li_type == XFS_LI_EFI) {
2655 efip = (xfs_efi_log_item_t *)lip;
2656 if (efip->efi_format.efi_id == efi_id) {
2657 /*
2658 * xfs_trans_ail_delete() drops the
2659 * AIL lock.
2660 */
2661 xfs_trans_ail_delete(ailp, lip,
2662 SHUTDOWN_CORRUPT_INCORE);
2663 xfs_efi_item_free(efip);
2664 spin_lock(&ailp->xa_lock);
2665 break;
2666 }
2667 }
2668 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2669 }
2670 xfs_trans_ail_cursor_done(ailp, &cur);
2671 spin_unlock(&ailp->xa_lock);
2672
2673 return 0;
2674 }
2675
2676 /*
2677 * Free up any resources allocated by the transaction
2678 *
2679 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2680 */
2681 STATIC void
2682 xlog_recover_free_trans(
2683 struct xlog_recover *trans)
2684 {
2685 xlog_recover_item_t *item, *n;
2686 int i;
2687
2688 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2689 /* Free the regions in the item. */
2690 list_del(&item->ri_list);
2691 for (i = 0; i < item->ri_cnt; i++)
2692 kmem_free(item->ri_buf[i].i_addr);
2693 /* Free the item itself */
2694 kmem_free(item->ri_buf);
2695 kmem_free(item);
2696 }
2697 /* Free the transaction recover structure */
2698 kmem_free(trans);
2699 }
2700
2701 STATIC int
2702 xlog_recover_commit_pass1(
2703 struct xlog *log,
2704 struct xlog_recover *trans,
2705 struct xlog_recover_item *item)
2706 {
2707 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2708
2709 switch (ITEM_TYPE(item)) {
2710 case XFS_LI_BUF:
2711 return xlog_recover_buffer_pass1(log, item);
2712 case XFS_LI_QUOTAOFF:
2713 return xlog_recover_quotaoff_pass1(log, item);
2714 case XFS_LI_INODE:
2715 case XFS_LI_EFI:
2716 case XFS_LI_EFD:
2717 case XFS_LI_DQUOT:
2718 /* nothing to do in pass 1 */
2719 return 0;
2720 default:
2721 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2722 __func__, ITEM_TYPE(item));
2723 ASSERT(0);
2724 return XFS_ERROR(EIO);
2725 }
2726 }
2727
2728 STATIC int
2729 xlog_recover_commit_pass2(
2730 struct xlog *log,
2731 struct xlog_recover *trans,
2732 struct list_head *buffer_list,
2733 struct xlog_recover_item *item)
2734 {
2735 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2736
2737 switch (ITEM_TYPE(item)) {
2738 case XFS_LI_BUF:
2739 return xlog_recover_buffer_pass2(log, buffer_list, item);
2740 case XFS_LI_INODE:
2741 return xlog_recover_inode_pass2(log, buffer_list, item);
2742 case XFS_LI_EFI:
2743 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2744 case XFS_LI_EFD:
2745 return xlog_recover_efd_pass2(log, item);
2746 case XFS_LI_DQUOT:
2747 return xlog_recover_dquot_pass2(log, buffer_list, item);
2748 case XFS_LI_QUOTAOFF:
2749 /* nothing to do in pass2 */
2750 return 0;
2751 default:
2752 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2753 __func__, ITEM_TYPE(item));
2754 ASSERT(0);
2755 return XFS_ERROR(EIO);
2756 }
2757 }
2758
2759 /*
2760 * Perform the transaction.
2761 *
2762 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2763 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2764 */
2765 STATIC int
2766 xlog_recover_commit_trans(
2767 struct xlog *log,
2768 struct xlog_recover *trans,
2769 int pass)
2770 {
2771 int error = 0, error2;
2772 xlog_recover_item_t *item;
2773 LIST_HEAD (buffer_list);
2774
2775 hlist_del(&trans->r_list);
2776
2777 error = xlog_recover_reorder_trans(log, trans, pass);
2778 if (error)
2779 return error;
2780
2781 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2782 switch (pass) {
2783 case XLOG_RECOVER_PASS1:
2784 error = xlog_recover_commit_pass1(log, trans, item);
2785 break;
2786 case XLOG_RECOVER_PASS2:
2787 error = xlog_recover_commit_pass2(log, trans,
2788 &buffer_list, item);
2789 break;
2790 default:
2791 ASSERT(0);
2792 }
2793
2794 if (error)
2795 goto out;
2796 }
2797
2798 xlog_recover_free_trans(trans);
2799
2800 out:
2801 error2 = xfs_buf_delwri_submit(&buffer_list);
2802 return error ? error : error2;
2803 }
2804
2805 STATIC int
2806 xlog_recover_unmount_trans(
2807 struct xlog *log,
2808 struct xlog_recover *trans)
2809 {
2810 /* Do nothing now */
2811 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2812 return 0;
2813 }
2814
2815 /*
2816 * There are two valid states of the r_state field. 0 indicates that the
2817 * transaction structure is in a normal state. We have either seen the
2818 * start of the transaction or the last operation we added was not a partial
2819 * operation. If the last operation we added to the transaction was a
2820 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2821 *
2822 * NOTE: skip LRs with 0 data length.
2823 */
2824 STATIC int
2825 xlog_recover_process_data(
2826 struct xlog *log,
2827 struct hlist_head rhash[],
2828 struct xlog_rec_header *rhead,
2829 xfs_caddr_t dp,
2830 int pass)
2831 {
2832 xfs_caddr_t lp;
2833 int num_logops;
2834 xlog_op_header_t *ohead;
2835 xlog_recover_t *trans;
2836 xlog_tid_t tid;
2837 int error;
2838 unsigned long hash;
2839 uint flags;
2840
2841 lp = dp + be32_to_cpu(rhead->h_len);
2842 num_logops = be32_to_cpu(rhead->h_num_logops);
2843
2844 /* check the log format matches our own - else we can't recover */
2845 if (xlog_header_check_recover(log->l_mp, rhead))
2846 return (XFS_ERROR(EIO));
2847
2848 while ((dp < lp) && num_logops) {
2849 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2850 ohead = (xlog_op_header_t *)dp;
2851 dp += sizeof(xlog_op_header_t);
2852 if (ohead->oh_clientid != XFS_TRANSACTION &&
2853 ohead->oh_clientid != XFS_LOG) {
2854 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2855 __func__, ohead->oh_clientid);
2856 ASSERT(0);
2857 return (XFS_ERROR(EIO));
2858 }
2859 tid = be32_to_cpu(ohead->oh_tid);
2860 hash = XLOG_RHASH(tid);
2861 trans = xlog_recover_find_tid(&rhash[hash], tid);
2862 if (trans == NULL) { /* not found; add new tid */
2863 if (ohead->oh_flags & XLOG_START_TRANS)
2864 xlog_recover_new_tid(&rhash[hash], tid,
2865 be64_to_cpu(rhead->h_lsn));
2866 } else {
2867 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2868 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2869 __func__, be32_to_cpu(ohead->oh_len));
2870 WARN_ON(1);
2871 return (XFS_ERROR(EIO));
2872 }
2873 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2874 if (flags & XLOG_WAS_CONT_TRANS)
2875 flags &= ~XLOG_CONTINUE_TRANS;
2876 switch (flags) {
2877 case XLOG_COMMIT_TRANS:
2878 error = xlog_recover_commit_trans(log,
2879 trans, pass);
2880 break;
2881 case XLOG_UNMOUNT_TRANS:
2882 error = xlog_recover_unmount_trans(log, trans);
2883 break;
2884 case XLOG_WAS_CONT_TRANS:
2885 error = xlog_recover_add_to_cont_trans(log,
2886 trans, dp,
2887 be32_to_cpu(ohead->oh_len));
2888 break;
2889 case XLOG_START_TRANS:
2890 xfs_warn(log->l_mp, "%s: bad transaction",
2891 __func__);
2892 ASSERT(0);
2893 error = XFS_ERROR(EIO);
2894 break;
2895 case 0:
2896 case XLOG_CONTINUE_TRANS:
2897 error = xlog_recover_add_to_trans(log, trans,
2898 dp, be32_to_cpu(ohead->oh_len));
2899 break;
2900 default:
2901 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2902 __func__, flags);
2903 ASSERT(0);
2904 error = XFS_ERROR(EIO);
2905 break;
2906 }
2907 if (error)
2908 return error;
2909 }
2910 dp += be32_to_cpu(ohead->oh_len);
2911 num_logops--;
2912 }
2913 return 0;
2914 }
2915
2916 /*
2917 * Process an extent free intent item that was recovered from
2918 * the log. We need to free the extents that it describes.
2919 */
2920 STATIC int
2921 xlog_recover_process_efi(
2922 xfs_mount_t *mp,
2923 xfs_efi_log_item_t *efip)
2924 {
2925 xfs_efd_log_item_t *efdp;
2926 xfs_trans_t *tp;
2927 int i;
2928 int error = 0;
2929 xfs_extent_t *extp;
2930 xfs_fsblock_t startblock_fsb;
2931
2932 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2933
2934 /*
2935 * First check the validity of the extents described by the
2936 * EFI. If any are bad, then assume that all are bad and
2937 * just toss the EFI.
2938 */
2939 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2940 extp = &(efip->efi_format.efi_extents[i]);
2941 startblock_fsb = XFS_BB_TO_FSB(mp,
2942 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2943 if ((startblock_fsb == 0) ||
2944 (extp->ext_len == 0) ||
2945 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2946 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2947 /*
2948 * This will pull the EFI from the AIL and
2949 * free the memory associated with it.
2950 */
2951 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2952 return XFS_ERROR(EIO);
2953 }
2954 }
2955
2956 tp = xfs_trans_alloc(mp, 0);
2957 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2958 if (error)
2959 goto abort_error;
2960 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2961
2962 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2963 extp = &(efip->efi_format.efi_extents[i]);
2964 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2965 if (error)
2966 goto abort_error;
2967 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2968 extp->ext_len);
2969 }
2970
2971 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2972 error = xfs_trans_commit(tp, 0);
2973 return error;
2974
2975 abort_error:
2976 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2977 return error;
2978 }
2979
2980 /*
2981 * When this is called, all of the EFIs which did not have
2982 * corresponding EFDs should be in the AIL. What we do now
2983 * is free the extents associated with each one.
2984 *
2985 * Since we process the EFIs in normal transactions, they
2986 * will be removed at some point after the commit. This prevents
2987 * us from just walking down the list processing each one.
2988 * We'll use a flag in the EFI to skip those that we've already
2989 * processed and use the AIL iteration mechanism's generation
2990 * count to try to speed this up at least a bit.
2991 *
2992 * When we start, we know that the EFIs are the only things in
2993 * the AIL. As we process them, however, other items are added
2994 * to the AIL. Since everything added to the AIL must come after
2995 * everything already in the AIL, we stop processing as soon as
2996 * we see something other than an EFI in the AIL.
2997 */
2998 STATIC int
2999 xlog_recover_process_efis(
3000 struct xlog *log)
3001 {
3002 xfs_log_item_t *lip;
3003 xfs_efi_log_item_t *efip;
3004 int error = 0;
3005 struct xfs_ail_cursor cur;
3006 struct xfs_ail *ailp;
3007
3008 ailp = log->l_ailp;
3009 spin_lock(&ailp->xa_lock);
3010 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3011 while (lip != NULL) {
3012 /*
3013 * We're done when we see something other than an EFI.
3014 * There should be no EFIs left in the AIL now.
3015 */
3016 if (lip->li_type != XFS_LI_EFI) {
3017 #ifdef DEBUG
3018 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3019 ASSERT(lip->li_type != XFS_LI_EFI);
3020 #endif
3021 break;
3022 }
3023
3024 /*
3025 * Skip EFIs that we've already processed.
3026 */
3027 efip = (xfs_efi_log_item_t *)lip;
3028 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3029 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3030 continue;
3031 }
3032
3033 spin_unlock(&ailp->xa_lock);
3034 error = xlog_recover_process_efi(log->l_mp, efip);
3035 spin_lock(&ailp->xa_lock);
3036 if (error)
3037 goto out;
3038 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3039 }
3040 out:
3041 xfs_trans_ail_cursor_done(ailp, &cur);
3042 spin_unlock(&ailp->xa_lock);
3043 return error;
3044 }
3045
3046 /*
3047 * This routine performs a transaction to null out a bad inode pointer
3048 * in an agi unlinked inode hash bucket.
3049 */
3050 STATIC void
3051 xlog_recover_clear_agi_bucket(
3052 xfs_mount_t *mp,
3053 xfs_agnumber_t agno,
3054 int bucket)
3055 {
3056 xfs_trans_t *tp;
3057 xfs_agi_t *agi;
3058 xfs_buf_t *agibp;
3059 int offset;
3060 int error;
3061
3062 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3063 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3064 0, 0, 0);
3065 if (error)
3066 goto out_abort;
3067
3068 error = xfs_read_agi(mp, tp, agno, &agibp);
3069 if (error)
3070 goto out_abort;
3071
3072 agi = XFS_BUF_TO_AGI(agibp);
3073 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3074 offset = offsetof(xfs_agi_t, agi_unlinked) +
3075 (sizeof(xfs_agino_t) * bucket);
3076 xfs_trans_log_buf(tp, agibp, offset,
3077 (offset + sizeof(xfs_agino_t) - 1));
3078
3079 error = xfs_trans_commit(tp, 0);
3080 if (error)
3081 goto out_error;
3082 return;
3083
3084 out_abort:
3085 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3086 out_error:
3087 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3088 return;
3089 }
3090
3091 STATIC xfs_agino_t
3092 xlog_recover_process_one_iunlink(
3093 struct xfs_mount *mp,
3094 xfs_agnumber_t agno,
3095 xfs_agino_t agino,
3096 int bucket)
3097 {
3098 struct xfs_buf *ibp;
3099 struct xfs_dinode *dip;
3100 struct xfs_inode *ip;
3101 xfs_ino_t ino;
3102 int error;
3103
3104 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3105 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3106 if (error)
3107 goto fail;
3108
3109 /*
3110 * Get the on disk inode to find the next inode in the bucket.
3111 */
3112 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3113 if (error)
3114 goto fail_iput;
3115
3116 ASSERT(ip->i_d.di_nlink == 0);
3117 ASSERT(ip->i_d.di_mode != 0);
3118
3119 /* setup for the next pass */
3120 agino = be32_to_cpu(dip->di_next_unlinked);
3121 xfs_buf_relse(ibp);
3122
3123 /*
3124 * Prevent any DMAPI event from being sent when the reference on
3125 * the inode is dropped.
3126 */
3127 ip->i_d.di_dmevmask = 0;
3128
3129 IRELE(ip);
3130 return agino;
3131
3132 fail_iput:
3133 IRELE(ip);
3134 fail:
3135 /*
3136 * We can't read in the inode this bucket points to, or this inode
3137 * is messed up. Just ditch this bucket of inodes. We will lose
3138 * some inodes and space, but at least we won't hang.
3139 *
3140 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3141 * clear the inode pointer in the bucket.
3142 */
3143 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3144 return NULLAGINO;
3145 }
3146
3147 /*
3148 * xlog_iunlink_recover
3149 *
3150 * This is called during recovery to process any inodes which
3151 * we unlinked but not freed when the system crashed. These
3152 * inodes will be on the lists in the AGI blocks. What we do
3153 * here is scan all the AGIs and fully truncate and free any
3154 * inodes found on the lists. Each inode is removed from the
3155 * lists when it has been fully truncated and is freed. The
3156 * freeing of the inode and its removal from the list must be
3157 * atomic.
3158 */
3159 STATIC void
3160 xlog_recover_process_iunlinks(
3161 struct xlog *log)
3162 {
3163 xfs_mount_t *mp;
3164 xfs_agnumber_t agno;
3165 xfs_agi_t *agi;
3166 xfs_buf_t *agibp;
3167 xfs_agino_t agino;
3168 int bucket;
3169 int error;
3170 uint mp_dmevmask;
3171
3172 mp = log->l_mp;
3173
3174 /*
3175 * Prevent any DMAPI event from being sent while in this function.
3176 */
3177 mp_dmevmask = mp->m_dmevmask;
3178 mp->m_dmevmask = 0;
3179
3180 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3181 /*
3182 * Find the agi for this ag.
3183 */
3184 error = xfs_read_agi(mp, NULL, agno, &agibp);
3185 if (error) {
3186 /*
3187 * AGI is b0rked. Don't process it.
3188 *
3189 * We should probably mark the filesystem as corrupt
3190 * after we've recovered all the ag's we can....
3191 */
3192 continue;
3193 }
3194 /*
3195 * Unlock the buffer so that it can be acquired in the normal
3196 * course of the transaction to truncate and free each inode.
3197 * Because we are not racing with anyone else here for the AGI
3198 * buffer, we don't even need to hold it locked to read the
3199 * initial unlinked bucket entries out of the buffer. We keep
3200 * buffer reference though, so that it stays pinned in memory
3201 * while we need the buffer.
3202 */
3203 agi = XFS_BUF_TO_AGI(agibp);
3204 xfs_buf_unlock(agibp);
3205
3206 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3207 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3208 while (agino != NULLAGINO) {
3209 agino = xlog_recover_process_one_iunlink(mp,
3210 agno, agino, bucket);
3211 }
3212 }
3213 xfs_buf_rele(agibp);
3214 }
3215
3216 mp->m_dmevmask = mp_dmevmask;
3217 }
3218
3219 /*
3220 * Upack the log buffer data and crc check it. If the check fails, issue a
3221 * warning if and only if the CRC in the header is non-zero. This makes the
3222 * check an advisory warning, and the zero CRC check will prevent failure
3223 * warnings from being emitted when upgrading the kernel from one that does not
3224 * add CRCs by default.
3225 *
3226 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3227 * corruption failure
3228 */
3229 STATIC int
3230 xlog_unpack_data_crc(
3231 struct xlog_rec_header *rhead,
3232 xfs_caddr_t dp,
3233 struct xlog *log)
3234 {
3235 __le32 crc;
3236
3237 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3238 if (crc != rhead->h_crc) {
3239 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3240 xfs_alert(log->l_mp,
3241 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3242 le32_to_cpu(rhead->h_crc),
3243 le32_to_cpu(crc));
3244 xfs_hex_dump(dp, 32);
3245 }
3246
3247 /*
3248 * If we've detected a log record corruption, then we can't
3249 * recover past this point. Abort recovery if we are enforcing
3250 * CRC protection by punting an error back up the stack.
3251 */
3252 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3253 return EFSCORRUPTED;
3254 }
3255
3256 return 0;
3257 }
3258
3259 STATIC int
3260 xlog_unpack_data(
3261 struct xlog_rec_header *rhead,
3262 xfs_caddr_t dp,
3263 struct xlog *log)
3264 {
3265 int i, j, k;
3266 int error;
3267
3268 error = xlog_unpack_data_crc(rhead, dp, log);
3269 if (error)
3270 return error;
3271
3272 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3273 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3274 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3275 dp += BBSIZE;
3276 }
3277
3278 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3279 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3280 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3281 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3282 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3283 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3284 dp += BBSIZE;
3285 }
3286 }
3287
3288 return 0;
3289 }
3290
3291 STATIC int
3292 xlog_valid_rec_header(
3293 struct xlog *log,
3294 struct xlog_rec_header *rhead,
3295 xfs_daddr_t blkno)
3296 {
3297 int hlen;
3298
3299 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3300 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3301 XFS_ERRLEVEL_LOW, log->l_mp);
3302 return XFS_ERROR(EFSCORRUPTED);
3303 }
3304 if (unlikely(
3305 (!rhead->h_version ||
3306 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3307 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3308 __func__, be32_to_cpu(rhead->h_version));
3309 return XFS_ERROR(EIO);
3310 }
3311
3312 /* LR body must have data or it wouldn't have been written */
3313 hlen = be32_to_cpu(rhead->h_len);
3314 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3315 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3316 XFS_ERRLEVEL_LOW, log->l_mp);
3317 return XFS_ERROR(EFSCORRUPTED);
3318 }
3319 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3320 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3321 XFS_ERRLEVEL_LOW, log->l_mp);
3322 return XFS_ERROR(EFSCORRUPTED);
3323 }
3324 return 0;
3325 }
3326
3327 /*
3328 * Read the log from tail to head and process the log records found.
3329 * Handle the two cases where the tail and head are in the same cycle
3330 * and where the active portion of the log wraps around the end of
3331 * the physical log separately. The pass parameter is passed through
3332 * to the routines called to process the data and is not looked at
3333 * here.
3334 */
3335 STATIC int
3336 xlog_do_recovery_pass(
3337 struct xlog *log,
3338 xfs_daddr_t head_blk,
3339 xfs_daddr_t tail_blk,
3340 int pass)
3341 {
3342 xlog_rec_header_t *rhead;
3343 xfs_daddr_t blk_no;
3344 xfs_caddr_t offset;
3345 xfs_buf_t *hbp, *dbp;
3346 int error = 0, h_size;
3347 int bblks, split_bblks;
3348 int hblks, split_hblks, wrapped_hblks;
3349 struct hlist_head rhash[XLOG_RHASH_SIZE];
3350
3351 ASSERT(head_blk != tail_blk);
3352
3353 /*
3354 * Read the header of the tail block and get the iclog buffer size from
3355 * h_size. Use this to tell how many sectors make up the log header.
3356 */
3357 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3358 /*
3359 * When using variable length iclogs, read first sector of
3360 * iclog header and extract the header size from it. Get a
3361 * new hbp that is the correct size.
3362 */
3363 hbp = xlog_get_bp(log, 1);
3364 if (!hbp)
3365 return ENOMEM;
3366
3367 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3368 if (error)
3369 goto bread_err1;
3370
3371 rhead = (xlog_rec_header_t *)offset;
3372 error = xlog_valid_rec_header(log, rhead, tail_blk);
3373 if (error)
3374 goto bread_err1;
3375 h_size = be32_to_cpu(rhead->h_size);
3376 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3377 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3378 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3379 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3380 hblks++;
3381 xlog_put_bp(hbp);
3382 hbp = xlog_get_bp(log, hblks);
3383 } else {
3384 hblks = 1;
3385 }
3386 } else {
3387 ASSERT(log->l_sectBBsize == 1);
3388 hblks = 1;
3389 hbp = xlog_get_bp(log, 1);
3390 h_size = XLOG_BIG_RECORD_BSIZE;
3391 }
3392
3393 if (!hbp)
3394 return ENOMEM;
3395 dbp = xlog_get_bp(log, BTOBB(h_size));
3396 if (!dbp) {
3397 xlog_put_bp(hbp);
3398 return ENOMEM;
3399 }
3400
3401 memset(rhash, 0, sizeof(rhash));
3402 if (tail_blk <= head_blk) {
3403 for (blk_no = tail_blk; blk_no < head_blk; ) {
3404 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3405 if (error)
3406 goto bread_err2;
3407
3408 rhead = (xlog_rec_header_t *)offset;
3409 error = xlog_valid_rec_header(log, rhead, blk_no);
3410 if (error)
3411 goto bread_err2;
3412
3413 /* blocks in data section */
3414 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3415 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3416 &offset);
3417 if (error)
3418 goto bread_err2;
3419
3420 error = xlog_unpack_data(rhead, offset, log);
3421 if (error)
3422 goto bread_err2;
3423
3424 error = xlog_recover_process_data(log,
3425 rhash, rhead, offset, pass);
3426 if (error)
3427 goto bread_err2;
3428 blk_no += bblks + hblks;
3429 }
3430 } else {
3431 /*
3432 * Perform recovery around the end of the physical log.
3433 * When the head is not on the same cycle number as the tail,
3434 * we can't do a sequential recovery as above.
3435 */
3436 blk_no = tail_blk;
3437 while (blk_no < log->l_logBBsize) {
3438 /*
3439 * Check for header wrapping around physical end-of-log
3440 */
3441 offset = hbp->b_addr;
3442 split_hblks = 0;
3443 wrapped_hblks = 0;
3444 if (blk_no + hblks <= log->l_logBBsize) {
3445 /* Read header in one read */
3446 error = xlog_bread(log, blk_no, hblks, hbp,
3447 &offset);
3448 if (error)
3449 goto bread_err2;
3450 } else {
3451 /* This LR is split across physical log end */
3452 if (blk_no != log->l_logBBsize) {
3453 /* some data before physical log end */
3454 ASSERT(blk_no <= INT_MAX);
3455 split_hblks = log->l_logBBsize - (int)blk_no;
3456 ASSERT(split_hblks > 0);
3457 error = xlog_bread(log, blk_no,
3458 split_hblks, hbp,
3459 &offset);
3460 if (error)
3461 goto bread_err2;
3462 }
3463
3464 /*
3465 * Note: this black magic still works with
3466 * large sector sizes (non-512) only because:
3467 * - we increased the buffer size originally
3468 * by 1 sector giving us enough extra space
3469 * for the second read;
3470 * - the log start is guaranteed to be sector
3471 * aligned;
3472 * - we read the log end (LR header start)
3473 * _first_, then the log start (LR header end)
3474 * - order is important.
3475 */
3476 wrapped_hblks = hblks - split_hblks;
3477 error = xlog_bread_offset(log, 0,
3478 wrapped_hblks, hbp,
3479 offset + BBTOB(split_hblks));
3480 if (error)
3481 goto bread_err2;
3482 }
3483 rhead = (xlog_rec_header_t *)offset;
3484 error = xlog_valid_rec_header(log, rhead,
3485 split_hblks ? blk_no : 0);
3486 if (error)
3487 goto bread_err2;
3488
3489 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3490 blk_no += hblks;
3491
3492 /* Read in data for log record */
3493 if (blk_no + bblks <= log->l_logBBsize) {
3494 error = xlog_bread(log, blk_no, bblks, dbp,
3495 &offset);
3496 if (error)
3497 goto bread_err2;
3498 } else {
3499 /* This log record is split across the
3500 * physical end of log */
3501 offset = dbp->b_addr;
3502 split_bblks = 0;
3503 if (blk_no != log->l_logBBsize) {
3504 /* some data is before the physical
3505 * end of log */
3506 ASSERT(!wrapped_hblks);
3507 ASSERT(blk_no <= INT_MAX);
3508 split_bblks =
3509 log->l_logBBsize - (int)blk_no;
3510 ASSERT(split_bblks > 0);
3511 error = xlog_bread(log, blk_no,
3512 split_bblks, dbp,
3513 &offset);
3514 if (error)
3515 goto bread_err2;
3516 }
3517
3518 /*
3519 * Note: this black magic still works with
3520 * large sector sizes (non-512) only because:
3521 * - we increased the buffer size originally
3522 * by 1 sector giving us enough extra space
3523 * for the second read;
3524 * - the log start is guaranteed to be sector
3525 * aligned;
3526 * - we read the log end (LR header start)
3527 * _first_, then the log start (LR header end)
3528 * - order is important.
3529 */
3530 error = xlog_bread_offset(log, 0,
3531 bblks - split_bblks, dbp,
3532 offset + BBTOB(split_bblks));
3533 if (error)
3534 goto bread_err2;
3535 }
3536
3537 error = xlog_unpack_data(rhead, offset, log);
3538 if (error)
3539 goto bread_err2;
3540
3541 error = xlog_recover_process_data(log, rhash,
3542 rhead, offset, pass);
3543 if (error)
3544 goto bread_err2;
3545 blk_no += bblks;
3546 }
3547
3548 ASSERT(blk_no >= log->l_logBBsize);
3549 blk_no -= log->l_logBBsize;
3550
3551 /* read first part of physical log */
3552 while (blk_no < head_blk) {
3553 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3554 if (error)
3555 goto bread_err2;
3556
3557 rhead = (xlog_rec_header_t *)offset;
3558 error = xlog_valid_rec_header(log, rhead, blk_no);
3559 if (error)
3560 goto bread_err2;
3561
3562 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3563 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3564 &offset);
3565 if (error)
3566 goto bread_err2;
3567
3568 error = xlog_unpack_data(rhead, offset, log);
3569 if (error)
3570 goto bread_err2;
3571
3572 error = xlog_recover_process_data(log, rhash,
3573 rhead, offset, pass);
3574 if (error)
3575 goto bread_err2;
3576 blk_no += bblks + hblks;
3577 }
3578 }
3579
3580 bread_err2:
3581 xlog_put_bp(dbp);
3582 bread_err1:
3583 xlog_put_bp(hbp);
3584 return error;
3585 }
3586
3587 /*
3588 * Do the recovery of the log. We actually do this in two phases.
3589 * The two passes are necessary in order to implement the function
3590 * of cancelling a record written into the log. The first pass
3591 * determines those things which have been cancelled, and the
3592 * second pass replays log items normally except for those which
3593 * have been cancelled. The handling of the replay and cancellations
3594 * takes place in the log item type specific routines.
3595 *
3596 * The table of items which have cancel records in the log is allocated
3597 * and freed at this level, since only here do we know when all of
3598 * the log recovery has been completed.
3599 */
3600 STATIC int
3601 xlog_do_log_recovery(
3602 struct xlog *log,
3603 xfs_daddr_t head_blk,
3604 xfs_daddr_t tail_blk)
3605 {
3606 int error, i;
3607
3608 ASSERT(head_blk != tail_blk);
3609
3610 /*
3611 * First do a pass to find all of the cancelled buf log items.
3612 * Store them in the buf_cancel_table for use in the second pass.
3613 */
3614 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3615 sizeof(struct list_head),
3616 KM_SLEEP);
3617 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3618 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3619
3620 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3621 XLOG_RECOVER_PASS1);
3622 if (error != 0) {
3623 kmem_free(log->l_buf_cancel_table);
3624 log->l_buf_cancel_table = NULL;
3625 return error;
3626 }
3627 /*
3628 * Then do a second pass to actually recover the items in the log.
3629 * When it is complete free the table of buf cancel items.
3630 */
3631 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3632 XLOG_RECOVER_PASS2);
3633 #ifdef DEBUG
3634 if (!error) {
3635 int i;
3636
3637 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3638 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3639 }
3640 #endif /* DEBUG */
3641
3642 kmem_free(log->l_buf_cancel_table);
3643 log->l_buf_cancel_table = NULL;
3644
3645 return error;
3646 }
3647
3648 /*
3649 * Do the actual recovery
3650 */
3651 STATIC int
3652 xlog_do_recover(
3653 struct xlog *log,
3654 xfs_daddr_t head_blk,
3655 xfs_daddr_t tail_blk)
3656 {
3657 int error;
3658 xfs_buf_t *bp;
3659 xfs_sb_t *sbp;
3660
3661 /*
3662 * First replay the images in the log.
3663 */
3664 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3665 if (error)
3666 return error;
3667
3668 /*
3669 * If IO errors happened during recovery, bail out.
3670 */
3671 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3672 return (EIO);
3673 }
3674
3675 /*
3676 * We now update the tail_lsn since much of the recovery has completed
3677 * and there may be space available to use. If there were no extent
3678 * or iunlinks, we can free up the entire log and set the tail_lsn to
3679 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3680 * lsn of the last known good LR on disk. If there are extent frees
3681 * or iunlinks they will have some entries in the AIL; so we look at
3682 * the AIL to determine how to set the tail_lsn.
3683 */
3684 xlog_assign_tail_lsn(log->l_mp);
3685
3686 /*
3687 * Now that we've finished replaying all buffer and inode
3688 * updates, re-read in the superblock and reverify it.
3689 */
3690 bp = xfs_getsb(log->l_mp, 0);
3691 XFS_BUF_UNDONE(bp);
3692 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3693 XFS_BUF_READ(bp);
3694 XFS_BUF_UNASYNC(bp);
3695 bp->b_ops = &xfs_sb_buf_ops;
3696 xfsbdstrat(log->l_mp, bp);
3697 error = xfs_buf_iowait(bp);
3698 if (error) {
3699 xfs_buf_ioerror_alert(bp, __func__);
3700 ASSERT(0);
3701 xfs_buf_relse(bp);
3702 return error;
3703 }
3704
3705 /* Convert superblock from on-disk format */
3706 sbp = &log->l_mp->m_sb;
3707 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3708 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3709 ASSERT(xfs_sb_good_version(sbp));
3710 xfs_buf_relse(bp);
3711
3712 /* We've re-read the superblock so re-initialize per-cpu counters */
3713 xfs_icsb_reinit_counters(log->l_mp);
3714
3715 xlog_recover_check_summary(log);
3716
3717 /* Normal transactions can now occur */
3718 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3719 return 0;
3720 }
3721
3722 /*
3723 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3724 *
3725 * Return error or zero.
3726 */
3727 int
3728 xlog_recover(
3729 struct xlog *log)
3730 {
3731 xfs_daddr_t head_blk, tail_blk;
3732 int error;
3733
3734 /* find the tail of the log */
3735 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3736 return error;
3737
3738 if (tail_blk != head_blk) {
3739 /* There used to be a comment here:
3740 *
3741 * disallow recovery on read-only mounts. note -- mount
3742 * checks for ENOSPC and turns it into an intelligent
3743 * error message.
3744 * ...but this is no longer true. Now, unless you specify
3745 * NORECOVERY (in which case this function would never be
3746 * called), we just go ahead and recover. We do this all
3747 * under the vfs layer, so we can get away with it unless
3748 * the device itself is read-only, in which case we fail.
3749 */
3750 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3751 return error;
3752 }
3753
3754 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3755 log->l_mp->m_logname ? log->l_mp->m_logname
3756 : "internal");
3757
3758 error = xlog_do_recover(log, head_blk, tail_blk);
3759 log->l_flags |= XLOG_RECOVERY_NEEDED;
3760 }
3761 return error;
3762 }
3763
3764 /*
3765 * In the first part of recovery we replay inodes and buffers and build
3766 * up the list of extent free items which need to be processed. Here
3767 * we process the extent free items and clean up the on disk unlinked
3768 * inode lists. This is separated from the first part of recovery so
3769 * that the root and real-time bitmap inodes can be read in from disk in
3770 * between the two stages. This is necessary so that we can free space
3771 * in the real-time portion of the file system.
3772 */
3773 int
3774 xlog_recover_finish(
3775 struct xlog *log)
3776 {
3777 /*
3778 * Now we're ready to do the transactions needed for the
3779 * rest of recovery. Start with completing all the extent
3780 * free intent records and then process the unlinked inode
3781 * lists. At this point, we essentially run in normal mode
3782 * except that we're still performing recovery actions
3783 * rather than accepting new requests.
3784 */
3785 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3786 int error;
3787 error = xlog_recover_process_efis(log);
3788 if (error) {
3789 xfs_alert(log->l_mp, "Failed to recover EFIs");
3790 return error;
3791 }
3792 /*
3793 * Sync the log to get all the EFIs out of the AIL.
3794 * This isn't absolutely necessary, but it helps in
3795 * case the unlink transactions would have problems
3796 * pushing the EFIs out of the way.
3797 */
3798 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3799
3800 xlog_recover_process_iunlinks(log);
3801
3802 xlog_recover_check_summary(log);
3803
3804 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3805 log->l_mp->m_logname ? log->l_mp->m_logname
3806 : "internal");
3807 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3808 } else {
3809 xfs_info(log->l_mp, "Ending clean mount");
3810 }
3811 return 0;
3812 }
3813
3814
3815 #if defined(DEBUG)
3816 /*
3817 * Read all of the agf and agi counters and check that they
3818 * are consistent with the superblock counters.
3819 */
3820 void
3821 xlog_recover_check_summary(
3822 struct xlog *log)
3823 {
3824 xfs_mount_t *mp;
3825 xfs_agf_t *agfp;
3826 xfs_buf_t *agfbp;
3827 xfs_buf_t *agibp;
3828 xfs_agnumber_t agno;
3829 __uint64_t freeblks;
3830 __uint64_t itotal;
3831 __uint64_t ifree;
3832 int error;
3833
3834 mp = log->l_mp;
3835
3836 freeblks = 0LL;
3837 itotal = 0LL;
3838 ifree = 0LL;
3839 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3840 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3841 if (error) {
3842 xfs_alert(mp, "%s agf read failed agno %d error %d",
3843 __func__, agno, error);
3844 } else {
3845 agfp = XFS_BUF_TO_AGF(agfbp);
3846 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3847 be32_to_cpu(agfp->agf_flcount);
3848 xfs_buf_relse(agfbp);
3849 }
3850
3851 error = xfs_read_agi(mp, NULL, agno, &agibp);
3852 if (error) {
3853 xfs_alert(mp, "%s agi read failed agno %d error %d",
3854 __func__, agno, error);
3855 } else {
3856 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3857
3858 itotal += be32_to_cpu(agi->agi_count);
3859 ifree += be32_to_cpu(agi->agi_freecount);
3860 xfs_buf_relse(agibp);
3861 }
3862 }
3863 }
3864 #endif /* DEBUG */
This page took 0.151619 seconds and 5 git commands to generate.