gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "symfile.h"
23 #include "gdbtypes.h"
24 #include "language.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "block.h"
34 #include "regcache.h"
35 #include "user-regs.h"
36 #include "dictionary.h"
37 #include "breakpoint.h"
38 #include "tracepoint.h"
39 #include "cp-support.h"
40 #include "arch-utils.h"
41 #include "cli/cli-utils.h"
42 #include "linespec.h"
43 #include "location.h"
44 #include "objfiles.h"
45 #include "typeprint.h"
46 #include "valprint.h"
47 #include "c-lang.h"
48
49 #include "gdbsupport/format.h"
50
51 /* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
55 code.
56
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
63 strings.
64
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
66 \f
67
68
69 /* Prototypes for local functions. */
70
71 /* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
75
76 static struct value *const_var_ref (struct symbol *var);
77 static struct value *const_expr (union exp_element **pc);
78 static struct value *maybe_const_expr (union exp_element **pc);
79
80 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
81
82 static void gen_sign_extend (struct agent_expr *, struct type *);
83 static void gen_extend (struct agent_expr *, struct type *);
84 static void gen_fetch (struct agent_expr *, struct type *);
85 static void gen_left_shift (struct agent_expr *, int);
86
87
88 static void gen_frame_args_address (struct agent_expr *);
89 static void gen_frame_locals_address (struct agent_expr *);
90 static void gen_offset (struct agent_expr *ax, int offset);
91 static void gen_sym_offset (struct agent_expr *, struct symbol *);
92 static void gen_var_ref (struct agent_expr *ax, struct axs_value *value,
93 struct symbol *var);
94
95
96 static void gen_int_literal (struct agent_expr *ax,
97 struct axs_value *value,
98 LONGEST k, struct type *type);
99
100 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
101 static int type_wider_than (struct type *type1, struct type *type2);
102 static struct type *max_type (struct type *type1, struct type *type2);
103 static void gen_conversion (struct agent_expr *ax,
104 struct type *from, struct type *to);
105 static int is_nontrivial_conversion (struct type *from, struct type *to);
106 static void gen_usual_arithmetic (struct agent_expr *ax,
107 struct axs_value *value1,
108 struct axs_value *value2);
109 static void gen_integral_promotions (struct agent_expr *ax,
110 struct axs_value *value);
111 static void gen_cast (struct agent_expr *ax,
112 struct axs_value *value, struct type *type);
113 static void gen_scale (struct agent_expr *ax,
114 enum agent_op op, struct type *type);
115 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
116 struct axs_value *value1, struct axs_value *value2);
117 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
118 struct axs_value *value1, struct axs_value *value2);
119 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
120 struct axs_value *value1, struct axs_value *value2,
121 struct type *result_type);
122 static void gen_binop (struct agent_expr *ax,
123 struct axs_value *value,
124 struct axs_value *value1,
125 struct axs_value *value2,
126 enum agent_op op,
127 enum agent_op op_unsigned, int may_carry,
128 const char *name);
129 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
130 struct type *result_type);
131 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
132 static void gen_deref (struct axs_value *);
133 static void gen_address_of (struct axs_value *);
134 static void gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
135 struct type *type, int start, int end);
136 static void gen_primitive_field (struct agent_expr *ax,
137 struct axs_value *value,
138 int offset, int fieldno, struct type *type);
139 static int gen_struct_ref_recursive (struct agent_expr *ax,
140 struct axs_value *value,
141 const char *field, int offset,
142 struct type *type);
143 static void gen_struct_ref (struct agent_expr *ax,
144 struct axs_value *value,
145 const char *field,
146 const char *operator_name,
147 const char *operand_name);
148 static void gen_static_field (struct agent_expr *ax, struct axs_value *value,
149 struct type *type, int fieldno);
150 static void gen_repeat (struct expression *exp, union exp_element **pc,
151 struct agent_expr *ax, struct axs_value *value);
152 static void gen_sizeof (struct expression *exp, union exp_element **pc,
153 struct agent_expr *ax, struct axs_value *value,
154 struct type *size_type);
155 static void gen_expr_binop_rest (struct expression *exp,
156 enum exp_opcode op, union exp_element **pc,
157 struct agent_expr *ax,
158 struct axs_value *value,
159 struct axs_value *value1,
160 struct axs_value *value2);
161 \f
162
163 /* Detecting constant expressions. */
164
165 /* If the variable reference at *PC is a constant, return its value.
166 Otherwise, return zero.
167
168 Hey, Wally! How can a variable reference be a constant?
169
170 Well, Beav, this function really handles the OP_VAR_VALUE operator,
171 not specifically variable references. GDB uses OP_VAR_VALUE to
172 refer to any kind of symbolic reference: function names, enum
173 elements, and goto labels are all handled through the OP_VAR_VALUE
174 operator, even though they're constants. It makes sense given the
175 situation.
176
177 Gee, Wally, don'cha wonder sometimes if data representations that
178 subvert commonly accepted definitions of terms in favor of heavily
179 context-specific interpretations are really just a tool of the
180 programming hegemony to preserve their power and exclude the
181 proletariat? */
182
183 static struct value *
184 const_var_ref (struct symbol *var)
185 {
186 struct type *type = SYMBOL_TYPE (var);
187
188 switch (SYMBOL_CLASS (var))
189 {
190 case LOC_CONST:
191 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
192
193 case LOC_LABEL:
194 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
195
196 default:
197 return 0;
198 }
199 }
200
201
202 /* If the expression starting at *PC has a constant value, return it.
203 Otherwise, return zero. If we return a value, then *PC will be
204 advanced to the end of it. If we return zero, *PC could be
205 anywhere. */
206 static struct value *
207 const_expr (union exp_element **pc)
208 {
209 enum exp_opcode op = (*pc)->opcode;
210 struct value *v1;
211
212 switch (op)
213 {
214 case OP_LONG:
215 {
216 struct type *type = (*pc)[1].type;
217 LONGEST k = (*pc)[2].longconst;
218
219 (*pc) += 4;
220 return value_from_longest (type, k);
221 }
222
223 case OP_VAR_VALUE:
224 {
225 struct value *v = const_var_ref ((*pc)[2].symbol);
226
227 (*pc) += 4;
228 return v;
229 }
230
231 /* We could add more operators in here. */
232
233 case UNOP_NEG:
234 (*pc)++;
235 v1 = const_expr (pc);
236 if (v1)
237 return value_neg (v1);
238 else
239 return 0;
240
241 default:
242 return 0;
243 }
244 }
245
246
247 /* Like const_expr, but guarantee also that *PC is undisturbed if the
248 expression is not constant. */
249 static struct value *
250 maybe_const_expr (union exp_element **pc)
251 {
252 union exp_element *tentative_pc = *pc;
253 struct value *v = const_expr (&tentative_pc);
254
255 /* If we got a value, then update the real PC. */
256 if (v)
257 *pc = tentative_pc;
258
259 return v;
260 }
261 \f
262
263 /* Generating bytecode from GDB expressions: general assumptions */
264
265 /* Here are a few general assumptions made throughout the code; if you
266 want to make a change that contradicts one of these, then you'd
267 better scan things pretty thoroughly.
268
269 - We assume that all values occupy one stack element. For example,
270 sometimes we'll swap to get at the left argument to a binary
271 operator. If we decide that void values should occupy no stack
272 elements, or that synthetic arrays (whose size is determined at
273 run time, created by the `@' operator) should occupy two stack
274 elements (address and length), then this will cause trouble.
275
276 - We assume the stack elements are infinitely wide, and that we
277 don't have to worry what happens if the user requests an
278 operation that is wider than the actual interpreter's stack.
279 That is, it's up to the interpreter to handle directly all the
280 integer widths the user has access to. (Woe betide the language
281 with bignums!)
282
283 - We don't support side effects. Thus, we don't have to worry about
284 GCC's generalized lvalues, function calls, etc.
285
286 - We don't support floating point. Many places where we switch on
287 some type don't bother to include cases for floating point; there
288 may be even more subtle ways this assumption exists. For
289 example, the arguments to % must be integers.
290
291 - We assume all subexpressions have a static, unchanging type. If
292 we tried to support convenience variables, this would be a
293 problem.
294
295 - All values on the stack should always be fully zero- or
296 sign-extended.
297
298 (I wasn't sure whether to choose this or its opposite --- that
299 only addresses are assumed extended --- but it turns out that
300 neither convention completely eliminates spurious extend
301 operations (if everything is always extended, then you have to
302 extend after add, because it could overflow; if nothing is
303 extended, then you end up producing extends whenever you change
304 sizes), and this is simpler.) */
305 \f
306
307 /* Scan for all static fields in the given class, including any base
308 classes, and generate tracing bytecodes for each. */
309
310 static void
311 gen_trace_static_fields (struct agent_expr *ax,
312 struct type *type)
313 {
314 int i, nbases = TYPE_N_BASECLASSES (type);
315 struct axs_value value;
316
317 type = check_typedef (type);
318
319 for (i = type->num_fields () - 1; i >= nbases; i--)
320 {
321 if (field_is_static (&type->field (i)))
322 {
323 gen_static_field (ax, &value, type, i);
324 if (value.optimized_out)
325 continue;
326 switch (value.kind)
327 {
328 case axs_lvalue_memory:
329 {
330 /* Initialize the TYPE_LENGTH if it is a typedef. */
331 check_typedef (value.type);
332 ax_const_l (ax, TYPE_LENGTH (value.type));
333 ax_simple (ax, aop_trace);
334 }
335 break;
336
337 case axs_lvalue_register:
338 /* We don't actually need the register's value to be pushed,
339 just note that we need it to be collected. */
340 ax_reg_mask (ax, value.u.reg);
341
342 default:
343 break;
344 }
345 }
346 }
347
348 /* Now scan through base classes recursively. */
349 for (i = 0; i < nbases; i++)
350 {
351 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
352
353 gen_trace_static_fields (ax, basetype);
354 }
355 }
356
357 /* Trace the lvalue on the stack, if it needs it. In either case, pop
358 the value. Useful on the left side of a comma, and at the end of
359 an expression being used for tracing. */
360 static void
361 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
362 {
363 int string_trace = 0;
364 if (ax->trace_string
365 && value->type->code () == TYPE_CODE_PTR
366 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
367 's'))
368 string_trace = 1;
369
370 if (ax->tracing)
371 switch (value->kind)
372 {
373 case axs_rvalue:
374 if (string_trace)
375 {
376 ax_const_l (ax, ax->trace_string);
377 ax_simple (ax, aop_tracenz);
378 }
379 else
380 /* We don't trace rvalues, just the lvalues necessary to
381 produce them. So just dispose of this value. */
382 ax_simple (ax, aop_pop);
383 break;
384
385 case axs_lvalue_memory:
386 {
387 /* Initialize the TYPE_LENGTH if it is a typedef. */
388 check_typedef (value->type);
389
390 if (string_trace)
391 {
392 gen_fetch (ax, value->type);
393 ax_const_l (ax, ax->trace_string);
394 ax_simple (ax, aop_tracenz);
395 }
396 else
397 {
398 /* There's no point in trying to use a trace_quick bytecode
399 here, since "trace_quick SIZE pop" is three bytes, whereas
400 "const8 SIZE trace" is also three bytes, does the same
401 thing, and the simplest code which generates that will also
402 work correctly for objects with large sizes. */
403 ax_const_l (ax, TYPE_LENGTH (value->type));
404 ax_simple (ax, aop_trace);
405 }
406 }
407 break;
408
409 case axs_lvalue_register:
410 /* We don't actually need the register's value to be on the
411 stack, and the target will get heartburn if the register is
412 larger than will fit in a stack, so just mark it for
413 collection and be done with it. */
414 ax_reg_mask (ax, value->u.reg);
415
416 /* But if the register points to a string, assume the value
417 will fit on the stack and push it anyway. */
418 if (string_trace)
419 {
420 ax_reg (ax, value->u.reg);
421 ax_const_l (ax, ax->trace_string);
422 ax_simple (ax, aop_tracenz);
423 }
424 break;
425 }
426 else
427 /* If we're not tracing, just pop the value. */
428 ax_simple (ax, aop_pop);
429
430 /* To trace C++ classes with static fields stored elsewhere. */
431 if (ax->tracing
432 && (value->type->code () == TYPE_CODE_STRUCT
433 || value->type->code () == TYPE_CODE_UNION))
434 gen_trace_static_fields (ax, value->type);
435 }
436 \f
437
438
439 /* Generating bytecode from GDB expressions: helper functions */
440
441 /* Assume that the lower bits of the top of the stack is a value of
442 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
443 static void
444 gen_sign_extend (struct agent_expr *ax, struct type *type)
445 {
446 /* Do we need to sign-extend this? */
447 if (!type->is_unsigned ())
448 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
449 }
450
451
452 /* Assume the lower bits of the top of the stack hold a value of type
453 TYPE, and the upper bits are garbage. Sign-extend or truncate as
454 needed. */
455 static void
456 gen_extend (struct agent_expr *ax, struct type *type)
457 {
458 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
459
460 /* I just had to. */
461 ((type->is_unsigned () ? ax_zero_ext : ax_ext) (ax, bits));
462 }
463
464
465 /* Assume that the top of the stack contains a value of type "pointer
466 to TYPE"; generate code to fetch its value. Note that TYPE is the
467 target type, not the pointer type. */
468 static void
469 gen_fetch (struct agent_expr *ax, struct type *type)
470 {
471 if (ax->tracing)
472 {
473 /* Record the area of memory we're about to fetch. */
474 ax_trace_quick (ax, TYPE_LENGTH (type));
475 }
476
477 if (type->code () == TYPE_CODE_RANGE)
478 type = TYPE_TARGET_TYPE (type);
479
480 switch (type->code ())
481 {
482 case TYPE_CODE_PTR:
483 case TYPE_CODE_REF:
484 case TYPE_CODE_RVALUE_REF:
485 case TYPE_CODE_ENUM:
486 case TYPE_CODE_INT:
487 case TYPE_CODE_CHAR:
488 case TYPE_CODE_BOOL:
489 /* It's a scalar value, so we know how to dereference it. How
490 many bytes long is it? */
491 switch (TYPE_LENGTH (type))
492 {
493 case 8 / TARGET_CHAR_BIT:
494 ax_simple (ax, aop_ref8);
495 break;
496 case 16 / TARGET_CHAR_BIT:
497 ax_simple (ax, aop_ref16);
498 break;
499 case 32 / TARGET_CHAR_BIT:
500 ax_simple (ax, aop_ref32);
501 break;
502 case 64 / TARGET_CHAR_BIT:
503 ax_simple (ax, aop_ref64);
504 break;
505
506 /* Either our caller shouldn't have asked us to dereference
507 that pointer (other code's fault), or we're not
508 implementing something we should be (this code's fault).
509 In any case, it's a bug the user shouldn't see. */
510 default:
511 internal_error (__FILE__, __LINE__,
512 _("gen_fetch: strange size"));
513 }
514
515 gen_sign_extend (ax, type);
516 break;
517
518 default:
519 /* Our caller requested us to dereference a pointer from an unsupported
520 type. Error out and give callers a chance to handle the failure
521 gracefully. */
522 error (_("gen_fetch: Unsupported type code `%s'."),
523 type->name ());
524 }
525 }
526
527
528 /* Generate code to left shift the top of the stack by DISTANCE bits, or
529 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
530 unsigned (logical) right shifts. */
531 static void
532 gen_left_shift (struct agent_expr *ax, int distance)
533 {
534 if (distance > 0)
535 {
536 ax_const_l (ax, distance);
537 ax_simple (ax, aop_lsh);
538 }
539 else if (distance < 0)
540 {
541 ax_const_l (ax, -distance);
542 ax_simple (ax, aop_rsh_unsigned);
543 }
544 }
545 \f
546
547
548 /* Generating bytecode from GDB expressions: symbol references */
549
550 /* Generate code to push the base address of the argument portion of
551 the top stack frame. */
552 static void
553 gen_frame_args_address (struct agent_expr *ax)
554 {
555 int frame_reg;
556 LONGEST frame_offset;
557
558 gdbarch_virtual_frame_pointer (ax->gdbarch,
559 ax->scope, &frame_reg, &frame_offset);
560 ax_reg (ax, frame_reg);
561 gen_offset (ax, frame_offset);
562 }
563
564
565 /* Generate code to push the base address of the locals portion of the
566 top stack frame. */
567 static void
568 gen_frame_locals_address (struct agent_expr *ax)
569 {
570 int frame_reg;
571 LONGEST frame_offset;
572
573 gdbarch_virtual_frame_pointer (ax->gdbarch,
574 ax->scope, &frame_reg, &frame_offset);
575 ax_reg (ax, frame_reg);
576 gen_offset (ax, frame_offset);
577 }
578
579
580 /* Generate code to add OFFSET to the top of the stack. Try to
581 generate short and readable code. We use this for getting to
582 variables on the stack, and structure members. If we were
583 programming in ML, it would be clearer why these are the same
584 thing. */
585 static void
586 gen_offset (struct agent_expr *ax, int offset)
587 {
588 /* It would suffice to simply push the offset and add it, but this
589 makes it easier to read positive and negative offsets in the
590 bytecode. */
591 if (offset > 0)
592 {
593 ax_const_l (ax, offset);
594 ax_simple (ax, aop_add);
595 }
596 else if (offset < 0)
597 {
598 ax_const_l (ax, -offset);
599 ax_simple (ax, aop_sub);
600 }
601 }
602
603
604 /* In many cases, a symbol's value is the offset from some other
605 address (stack frame, base register, etc.) Generate code to add
606 VAR's value to the top of the stack. */
607 static void
608 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
609 {
610 gen_offset (ax, SYMBOL_VALUE (var));
611 }
612
613
614 /* Generate code for a variable reference to AX. The variable is the
615 symbol VAR. Set VALUE to describe the result. */
616
617 static void
618 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
619 {
620 /* Dereference any typedefs. */
621 value->type = check_typedef (SYMBOL_TYPE (var));
622 value->optimized_out = 0;
623
624 if (SYMBOL_COMPUTED_OPS (var) != NULL)
625 {
626 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, ax, value);
627 return;
628 }
629
630 /* I'm imitating the code in read_var_value. */
631 switch (SYMBOL_CLASS (var))
632 {
633 case LOC_CONST: /* A constant, like an enum value. */
634 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
635 value->kind = axs_rvalue;
636 break;
637
638 case LOC_LABEL: /* A goto label, being used as a value. */
639 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
640 value->kind = axs_rvalue;
641 break;
642
643 case LOC_CONST_BYTES:
644 internal_error (__FILE__, __LINE__,
645 _("gen_var_ref: LOC_CONST_BYTES "
646 "symbols are not supported"));
647
648 /* Variable at a fixed location in memory. Easy. */
649 case LOC_STATIC:
650 /* Push the address of the variable. */
651 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
652 value->kind = axs_lvalue_memory;
653 break;
654
655 case LOC_ARG: /* var lives in argument area of frame */
656 gen_frame_args_address (ax);
657 gen_sym_offset (ax, var);
658 value->kind = axs_lvalue_memory;
659 break;
660
661 case LOC_REF_ARG: /* As above, but the frame slot really
662 holds the address of the variable. */
663 gen_frame_args_address (ax);
664 gen_sym_offset (ax, var);
665 /* Don't assume any particular pointer size. */
666 gen_fetch (ax, builtin_type (ax->gdbarch)->builtin_data_ptr);
667 value->kind = axs_lvalue_memory;
668 break;
669
670 case LOC_LOCAL: /* var lives in locals area of frame */
671 gen_frame_locals_address (ax);
672 gen_sym_offset (ax, var);
673 value->kind = axs_lvalue_memory;
674 break;
675
676 case LOC_TYPEDEF:
677 error (_("Cannot compute value of typedef `%s'."),
678 var->print_name ());
679 break;
680
681 case LOC_BLOCK:
682 ax_const_l (ax, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)));
683 value->kind = axs_rvalue;
684 break;
685
686 case LOC_REGISTER:
687 /* Don't generate any code at all; in the process of treating
688 this as an lvalue or rvalue, the caller will generate the
689 right code. */
690 value->kind = axs_lvalue_register;
691 value->u.reg
692 = SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch);
693 break;
694
695 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
696 register, not on the stack. Simpler than LOC_REGISTER
697 because it's just like any other case where the thing
698 has a real address. */
699 case LOC_REGPARM_ADDR:
700 ax_reg (ax,
701 SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch));
702 value->kind = axs_lvalue_memory;
703 break;
704
705 case LOC_UNRESOLVED:
706 {
707 struct bound_minimal_symbol msym
708 = lookup_minimal_symbol (var->linkage_name (), NULL, NULL);
709
710 if (!msym.minsym)
711 error (_("Couldn't resolve symbol `%s'."), var->print_name ());
712
713 /* Push the address of the variable. */
714 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
715 value->kind = axs_lvalue_memory;
716 }
717 break;
718
719 case LOC_COMPUTED:
720 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
721
722 case LOC_OPTIMIZED_OUT:
723 /* Flag this, but don't say anything; leave it up to callers to
724 warn the user. */
725 value->optimized_out = 1;
726 break;
727
728 default:
729 error (_("Cannot find value of botched symbol `%s'."),
730 var->print_name ());
731 break;
732 }
733 }
734
735 /* Generate code for a minimal symbol variable reference to AX. The
736 variable is the symbol MINSYM, of OBJFILE. Set VALUE to describe
737 the result. */
738
739 static void
740 gen_msym_var_ref (agent_expr *ax, axs_value *value,
741 minimal_symbol *msymbol, objfile *objf)
742 {
743 CORE_ADDR address;
744 type *t = find_minsym_type_and_address (msymbol, objf, &address);
745 value->type = t;
746 value->optimized_out = false;
747 ax_const_l (ax, address);
748 value->kind = axs_lvalue_memory;
749 }
750
751 \f
752
753
754 /* Generating bytecode from GDB expressions: literals */
755
756 static void
757 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
758 struct type *type)
759 {
760 ax_const_l (ax, k);
761 value->kind = axs_rvalue;
762 value->type = check_typedef (type);
763 }
764 \f
765
766
767 /* Generating bytecode from GDB expressions: unary conversions, casts */
768
769 /* Take what's on the top of the stack (as described by VALUE), and
770 try to make an rvalue out of it. Signal an error if we can't do
771 that. */
772 void
773 require_rvalue (struct agent_expr *ax, struct axs_value *value)
774 {
775 /* Only deal with scalars, structs and such may be too large
776 to fit in a stack entry. */
777 value->type = check_typedef (value->type);
778 if (value->type->code () == TYPE_CODE_ARRAY
779 || value->type->code () == TYPE_CODE_STRUCT
780 || value->type->code () == TYPE_CODE_UNION
781 || value->type->code () == TYPE_CODE_FUNC)
782 error (_("Value not scalar: cannot be an rvalue."));
783
784 switch (value->kind)
785 {
786 case axs_rvalue:
787 /* It's already an rvalue. */
788 break;
789
790 case axs_lvalue_memory:
791 /* The top of stack is the address of the object. Dereference. */
792 gen_fetch (ax, value->type);
793 break;
794
795 case axs_lvalue_register:
796 /* There's nothing on the stack, but value->u.reg is the
797 register number containing the value.
798
799 When we add floating-point support, this is going to have to
800 change. What about SPARC register pairs, for example? */
801 ax_reg (ax, value->u.reg);
802 gen_extend (ax, value->type);
803 break;
804 }
805
806 value->kind = axs_rvalue;
807 }
808
809
810 /* Assume the top of the stack is described by VALUE, and perform the
811 usual unary conversions. This is motivated by ANSI 6.2.2, but of
812 course GDB expressions are not ANSI; they're the mishmash union of
813 a bunch of languages. Rah.
814
815 NOTE! This function promises to produce an rvalue only when the
816 incoming value is of an appropriate type. In other words, the
817 consumer of the value this function produces may assume the value
818 is an rvalue only after checking its type.
819
820 The immediate issue is that if the user tries to use a structure or
821 union as an operand of, say, the `+' operator, we don't want to try
822 to convert that structure to an rvalue; require_rvalue will bomb on
823 structs and unions. Rather, we want to simply pass the struct
824 lvalue through unchanged, and let `+' raise an error. */
825
826 static void
827 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
828 {
829 /* We don't have to generate any code for the usual integral
830 conversions, since values are always represented as full-width on
831 the stack. Should we tweak the type? */
832
833 /* Some types require special handling. */
834 switch (value->type->code ())
835 {
836 /* Functions get converted to a pointer to the function. */
837 case TYPE_CODE_FUNC:
838 value->type = lookup_pointer_type (value->type);
839 value->kind = axs_rvalue; /* Should always be true, but just in case. */
840 break;
841
842 /* Arrays get converted to a pointer to their first element, and
843 are no longer an lvalue. */
844 case TYPE_CODE_ARRAY:
845 {
846 struct type *elements = TYPE_TARGET_TYPE (value->type);
847
848 value->type = lookup_pointer_type (elements);
849 value->kind = axs_rvalue;
850 /* We don't need to generate any code; the address of the array
851 is also the address of its first element. */
852 }
853 break;
854
855 /* Don't try to convert structures and unions to rvalues. Let the
856 consumer signal an error. */
857 case TYPE_CODE_STRUCT:
858 case TYPE_CODE_UNION:
859 return;
860 }
861
862 /* If the value is an lvalue, dereference it. */
863 require_rvalue (ax, value);
864 }
865
866
867 /* Return non-zero iff the type TYPE1 is considered "wider" than the
868 type TYPE2, according to the rules described in gen_usual_arithmetic. */
869 static int
870 type_wider_than (struct type *type1, struct type *type2)
871 {
872 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
873 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
874 && type1->is_unsigned ()
875 && !type2->is_unsigned ()));
876 }
877
878
879 /* Return the "wider" of the two types TYPE1 and TYPE2. */
880 static struct type *
881 max_type (struct type *type1, struct type *type2)
882 {
883 return type_wider_than (type1, type2) ? type1 : type2;
884 }
885
886
887 /* Generate code to convert a scalar value of type FROM to type TO. */
888 static void
889 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
890 {
891 /* Perhaps there is a more graceful way to state these rules. */
892
893 /* If we're converting to a narrower type, then we need to clear out
894 the upper bits. */
895 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
896 gen_extend (ax, to);
897
898 /* If the two values have equal width, but different signednesses,
899 then we need to extend. */
900 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
901 {
902 if (from->is_unsigned () != to->is_unsigned ())
903 gen_extend (ax, to);
904 }
905
906 /* If we're converting to a wider type, and becoming unsigned, then
907 we need to zero out any possible sign bits. */
908 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
909 {
910 if (to->is_unsigned ())
911 gen_extend (ax, to);
912 }
913 }
914
915
916 /* Return non-zero iff the type FROM will require any bytecodes to be
917 emitted to be converted to the type TO. */
918 static int
919 is_nontrivial_conversion (struct type *from, struct type *to)
920 {
921 agent_expr_up ax (new agent_expr (NULL, 0));
922 int nontrivial;
923
924 /* Actually generate the code, and see if anything came out. At the
925 moment, it would be trivial to replicate the code in
926 gen_conversion here, but in the future, when we're supporting
927 floating point and the like, it may not be. Doing things this
928 way allows this function to be independent of the logic in
929 gen_conversion. */
930 gen_conversion (ax.get (), from, to);
931 nontrivial = ax->len > 0;
932 return nontrivial;
933 }
934
935
936 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
937 6.2.1.5) for the two operands of an arithmetic operator. This
938 effectively finds a "least upper bound" type for the two arguments,
939 and promotes each argument to that type. *VALUE1 and *VALUE2
940 describe the values as they are passed in, and as they are left. */
941 static void
942 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
943 struct axs_value *value2)
944 {
945 /* Do the usual binary conversions. */
946 if (value1->type->code () == TYPE_CODE_INT
947 && value2->type->code () == TYPE_CODE_INT)
948 {
949 /* The ANSI integral promotions seem to work this way: Order the
950 integer types by size, and then by signedness: an n-bit
951 unsigned type is considered "wider" than an n-bit signed
952 type. Promote to the "wider" of the two types, and always
953 promote at least to int. */
954 struct type *target = max_type (builtin_type (ax->gdbarch)->builtin_int,
955 max_type (value1->type, value2->type));
956
957 /* Deal with value2, on the top of the stack. */
958 gen_conversion (ax, value2->type, target);
959
960 /* Deal with value1, not on the top of the stack. Don't
961 generate the `swap' instructions if we're not actually going
962 to do anything. */
963 if (is_nontrivial_conversion (value1->type, target))
964 {
965 ax_simple (ax, aop_swap);
966 gen_conversion (ax, value1->type, target);
967 ax_simple (ax, aop_swap);
968 }
969
970 value1->type = value2->type = check_typedef (target);
971 }
972 }
973
974
975 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
976 the value on the top of the stack, as described by VALUE. Assume
977 the value has integral type. */
978 static void
979 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
980 {
981 const struct builtin_type *builtin = builtin_type (ax->gdbarch);
982
983 if (!type_wider_than (value->type, builtin->builtin_int))
984 {
985 gen_conversion (ax, value->type, builtin->builtin_int);
986 value->type = builtin->builtin_int;
987 }
988 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
989 {
990 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
991 value->type = builtin->builtin_unsigned_int;
992 }
993 }
994
995
996 /* Generate code for a cast to TYPE. */
997 static void
998 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
999 {
1000 /* GCC does allow casts to yield lvalues, so this should be fixed
1001 before merging these changes into the trunk. */
1002 require_rvalue (ax, value);
1003 /* Dereference typedefs. */
1004 type = check_typedef (type);
1005
1006 switch (type->code ())
1007 {
1008 case TYPE_CODE_PTR:
1009 case TYPE_CODE_REF:
1010 case TYPE_CODE_RVALUE_REF:
1011 /* It's implementation-defined, and I'll bet this is what GCC
1012 does. */
1013 break;
1014
1015 case TYPE_CODE_ARRAY:
1016 case TYPE_CODE_STRUCT:
1017 case TYPE_CODE_UNION:
1018 case TYPE_CODE_FUNC:
1019 error (_("Invalid type cast: intended type must be scalar."));
1020
1021 case TYPE_CODE_ENUM:
1022 case TYPE_CODE_BOOL:
1023 /* We don't have to worry about the size of the value, because
1024 all our integral values are fully sign-extended, and when
1025 casting pointers we can do anything we like. Is there any
1026 way for us to know what GCC actually does with a cast like
1027 this? */
1028 break;
1029
1030 case TYPE_CODE_INT:
1031 gen_conversion (ax, value->type, type);
1032 break;
1033
1034 case TYPE_CODE_VOID:
1035 /* We could pop the value, and rely on everyone else to check
1036 the type and notice that this value doesn't occupy a stack
1037 slot. But for now, leave the value on the stack, and
1038 preserve the "value == stack element" assumption. */
1039 break;
1040
1041 default:
1042 error (_("Casts to requested type are not yet implemented."));
1043 }
1044
1045 value->type = type;
1046 }
1047 \f
1048
1049
1050 /* Generating bytecode from GDB expressions: arithmetic */
1051
1052 /* Scale the integer on the top of the stack by the size of the target
1053 of the pointer type TYPE. */
1054 static void
1055 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1056 {
1057 struct type *element = TYPE_TARGET_TYPE (type);
1058
1059 if (TYPE_LENGTH (element) != 1)
1060 {
1061 ax_const_l (ax, TYPE_LENGTH (element));
1062 ax_simple (ax, op);
1063 }
1064 }
1065
1066
1067 /* Generate code for pointer arithmetic PTR + INT. */
1068 static void
1069 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1070 struct axs_value *value1, struct axs_value *value2)
1071 {
1072 gdb_assert (pointer_type (value1->type));
1073 gdb_assert (value2->type->code () == TYPE_CODE_INT);
1074
1075 gen_scale (ax, aop_mul, value1->type);
1076 ax_simple (ax, aop_add);
1077 gen_extend (ax, value1->type); /* Catch overflow. */
1078 value->type = value1->type;
1079 value->kind = axs_rvalue;
1080 }
1081
1082
1083 /* Generate code for pointer arithmetic PTR - INT. */
1084 static void
1085 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1086 struct axs_value *value1, struct axs_value *value2)
1087 {
1088 gdb_assert (pointer_type (value1->type));
1089 gdb_assert (value2->type->code () == TYPE_CODE_INT);
1090
1091 gen_scale (ax, aop_mul, value1->type);
1092 ax_simple (ax, aop_sub);
1093 gen_extend (ax, value1->type); /* Catch overflow. */
1094 value->type = value1->type;
1095 value->kind = axs_rvalue;
1096 }
1097
1098
1099 /* Generate code for pointer arithmetic PTR - PTR. */
1100 static void
1101 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1102 struct axs_value *value1, struct axs_value *value2,
1103 struct type *result_type)
1104 {
1105 gdb_assert (pointer_type (value1->type));
1106 gdb_assert (pointer_type (value2->type));
1107
1108 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1109 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1110 error (_("\
1111 First argument of `-' is a pointer, but second argument is neither\n\
1112 an integer nor a pointer of the same type."));
1113
1114 ax_simple (ax, aop_sub);
1115 gen_scale (ax, aop_div_unsigned, value1->type);
1116 value->type = result_type;
1117 value->kind = axs_rvalue;
1118 }
1119
1120 static void
1121 gen_equal (struct agent_expr *ax, struct axs_value *value,
1122 struct axs_value *value1, struct axs_value *value2,
1123 struct type *result_type)
1124 {
1125 if (pointer_type (value1->type) || pointer_type (value2->type))
1126 ax_simple (ax, aop_equal);
1127 else
1128 gen_binop (ax, value, value1, value2,
1129 aop_equal, aop_equal, 0, "equal");
1130 value->type = result_type;
1131 value->kind = axs_rvalue;
1132 }
1133
1134 static void
1135 gen_less (struct agent_expr *ax, struct axs_value *value,
1136 struct axs_value *value1, struct axs_value *value2,
1137 struct type *result_type)
1138 {
1139 if (pointer_type (value1->type) || pointer_type (value2->type))
1140 ax_simple (ax, aop_less_unsigned);
1141 else
1142 gen_binop (ax, value, value1, value2,
1143 aop_less_signed, aop_less_unsigned, 0, "less than");
1144 value->type = result_type;
1145 value->kind = axs_rvalue;
1146 }
1147
1148 /* Generate code for a binary operator that doesn't do pointer magic.
1149 We set VALUE to describe the result value; we assume VALUE1 and
1150 VALUE2 describe the two operands, and that they've undergone the
1151 usual binary conversions. MAY_CARRY should be non-zero iff the
1152 result needs to be extended. NAME is the English name of the
1153 operator, used in error messages */
1154 static void
1155 gen_binop (struct agent_expr *ax, struct axs_value *value,
1156 struct axs_value *value1, struct axs_value *value2,
1157 enum agent_op op, enum agent_op op_unsigned,
1158 int may_carry, const char *name)
1159 {
1160 /* We only handle INT op INT. */
1161 if ((value1->type->code () != TYPE_CODE_INT)
1162 || (value2->type->code () != TYPE_CODE_INT))
1163 error (_("Invalid combination of types in %s."), name);
1164
1165 ax_simple (ax, value1->type->is_unsigned () ? op_unsigned : op);
1166 if (may_carry)
1167 gen_extend (ax, value1->type); /* catch overflow */
1168 value->type = value1->type;
1169 value->kind = axs_rvalue;
1170 }
1171
1172
1173 static void
1174 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1175 struct type *result_type)
1176 {
1177 if (value->type->code () != TYPE_CODE_INT
1178 && value->type->code () != TYPE_CODE_PTR)
1179 error (_("Invalid type of operand to `!'."));
1180
1181 ax_simple (ax, aop_log_not);
1182 value->type = result_type;
1183 }
1184
1185
1186 static void
1187 gen_complement (struct agent_expr *ax, struct axs_value *value)
1188 {
1189 if (value->type->code () != TYPE_CODE_INT)
1190 error (_("Invalid type of operand to `~'."));
1191
1192 ax_simple (ax, aop_bit_not);
1193 gen_extend (ax, value->type);
1194 }
1195 \f
1196
1197
1198 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1199
1200 /* Dereference the value on the top of the stack. */
1201 static void
1202 gen_deref (struct axs_value *value)
1203 {
1204 /* The caller should check the type, because several operators use
1205 this, and we don't know what error message to generate. */
1206 if (!pointer_type (value->type))
1207 internal_error (__FILE__, __LINE__,
1208 _("gen_deref: expected a pointer"));
1209
1210 /* We've got an rvalue now, which is a pointer. We want to yield an
1211 lvalue, whose address is exactly that pointer. So we don't
1212 actually emit any code; we just change the type from "Pointer to
1213 T" to "T", and mark the value as an lvalue in memory. Leave it
1214 to the consumer to actually dereference it. */
1215 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1216 if (value->type->code () == TYPE_CODE_VOID)
1217 error (_("Attempt to dereference a generic pointer."));
1218 value->kind = ((value->type->code () == TYPE_CODE_FUNC)
1219 ? axs_rvalue : axs_lvalue_memory);
1220 }
1221
1222
1223 /* Produce the address of the lvalue on the top of the stack. */
1224 static void
1225 gen_address_of (struct axs_value *value)
1226 {
1227 /* Special case for taking the address of a function. The ANSI
1228 standard describes this as a special case, too, so this
1229 arrangement is not without motivation. */
1230 if (value->type->code () == TYPE_CODE_FUNC)
1231 /* The value's already an rvalue on the stack, so we just need to
1232 change the type. */
1233 value->type = lookup_pointer_type (value->type);
1234 else
1235 switch (value->kind)
1236 {
1237 case axs_rvalue:
1238 error (_("Operand of `&' is an rvalue, which has no address."));
1239
1240 case axs_lvalue_register:
1241 error (_("Operand of `&' is in a register, and has no address."));
1242
1243 case axs_lvalue_memory:
1244 value->kind = axs_rvalue;
1245 value->type = lookup_pointer_type (value->type);
1246 break;
1247 }
1248 }
1249
1250 /* Generate code to push the value of a bitfield of a structure whose
1251 address is on the top of the stack. START and END give the
1252 starting and one-past-ending *bit* numbers of the field within the
1253 structure. */
1254 static void
1255 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1256 struct type *type, int start, int end)
1257 {
1258 /* Note that ops[i] fetches 8 << i bits. */
1259 static enum agent_op ops[]
1260 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1261 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1262
1263 /* We don't want to touch any byte that the bitfield doesn't
1264 actually occupy; we shouldn't make any accesses we're not
1265 explicitly permitted to. We rely here on the fact that the
1266 bytecode `ref' operators work on unaligned addresses.
1267
1268 It takes some fancy footwork to get the stack to work the way
1269 we'd like. Say we're retrieving a bitfield that requires three
1270 fetches. Initially, the stack just contains the address:
1271 addr
1272 For the first fetch, we duplicate the address
1273 addr addr
1274 then add the byte offset, do the fetch, and shift and mask as
1275 needed, yielding a fragment of the value, properly aligned for
1276 the final bitwise or:
1277 addr frag1
1278 then we swap, and repeat the process:
1279 frag1 addr --- address on top
1280 frag1 addr addr --- duplicate it
1281 frag1 addr frag2 --- get second fragment
1282 frag1 frag2 addr --- swap again
1283 frag1 frag2 frag3 --- get third fragment
1284 Notice that, since the third fragment is the last one, we don't
1285 bother duplicating the address this time. Now we have all the
1286 fragments on the stack, and we can simply `or' them together,
1287 yielding the final value of the bitfield. */
1288
1289 /* The first and one-after-last bits in the field, but rounded down
1290 and up to byte boundaries. */
1291 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1292 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1293 / TARGET_CHAR_BIT)
1294 * TARGET_CHAR_BIT);
1295
1296 /* current bit offset within the structure */
1297 int offset;
1298
1299 /* The index in ops of the opcode we're considering. */
1300 int op;
1301
1302 /* The number of fragments we generated in the process. Probably
1303 equal to the number of `one' bits in bytesize, but who cares? */
1304 int fragment_count;
1305
1306 /* Dereference any typedefs. */
1307 type = check_typedef (type);
1308
1309 /* Can we fetch the number of bits requested at all? */
1310 if ((end - start) > ((1 << num_ops) * 8))
1311 internal_error (__FILE__, __LINE__,
1312 _("gen_bitfield_ref: bitfield too wide"));
1313
1314 /* Note that we know here that we only need to try each opcode once.
1315 That may not be true on machines with weird byte sizes. */
1316 offset = bound_start;
1317 fragment_count = 0;
1318 for (op = num_ops - 1; op >= 0; op--)
1319 {
1320 /* number of bits that ops[op] would fetch */
1321 int op_size = 8 << op;
1322
1323 /* The stack at this point, from bottom to top, contains zero or
1324 more fragments, then the address. */
1325
1326 /* Does this fetch fit within the bitfield? */
1327 if (offset + op_size <= bound_end)
1328 {
1329 /* Is this the last fragment? */
1330 int last_frag = (offset + op_size == bound_end);
1331
1332 if (!last_frag)
1333 ax_simple (ax, aop_dup); /* keep a copy of the address */
1334
1335 /* Add the offset. */
1336 gen_offset (ax, offset / TARGET_CHAR_BIT);
1337
1338 if (ax->tracing)
1339 {
1340 /* Record the area of memory we're about to fetch. */
1341 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1342 }
1343
1344 /* Perform the fetch. */
1345 ax_simple (ax, ops[op]);
1346
1347 /* Shift the bits we have to their proper position.
1348 gen_left_shift will generate right shifts when the operand
1349 is negative.
1350
1351 A big-endian field diagram to ponder:
1352 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1353 +------++------++------++------++------++------++------++------+
1354 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1355 ^ ^ ^ ^
1356 bit number 16 32 48 53
1357 These are bit numbers as supplied by GDB. Note that the
1358 bit numbers run from right to left once you've fetched the
1359 value!
1360
1361 A little-endian field diagram to ponder:
1362 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1363 +------++------++------++------++------++------++------++------+
1364 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1365 ^ ^ ^ ^ ^
1366 bit number 48 32 16 4 0
1367
1368 In both cases, the most significant end is on the left
1369 (i.e. normal numeric writing order), which means that you
1370 don't go crazy thinking about `left' and `right' shifts.
1371
1372 We don't have to worry about masking yet:
1373 - If they contain garbage off the least significant end, then we
1374 must be looking at the low end of the field, and the right
1375 shift will wipe them out.
1376 - If they contain garbage off the most significant end, then we
1377 must be looking at the most significant end of the word, and
1378 the sign/zero extension will wipe them out.
1379 - If we're in the interior of the word, then there is no garbage
1380 on either end, because the ref operators zero-extend. */
1381 if (gdbarch_byte_order (ax->gdbarch) == BFD_ENDIAN_BIG)
1382 gen_left_shift (ax, end - (offset + op_size));
1383 else
1384 gen_left_shift (ax, offset - start);
1385
1386 if (!last_frag)
1387 /* Bring the copy of the address up to the top. */
1388 ax_simple (ax, aop_swap);
1389
1390 offset += op_size;
1391 fragment_count++;
1392 }
1393 }
1394
1395 /* Generate enough bitwise `or' operations to combine all the
1396 fragments we left on the stack. */
1397 while (fragment_count-- > 1)
1398 ax_simple (ax, aop_bit_or);
1399
1400 /* Sign- or zero-extend the value as appropriate. */
1401 ((type->is_unsigned () ? ax_zero_ext : ax_ext) (ax, end - start));
1402
1403 /* This is *not* an lvalue. Ugh. */
1404 value->kind = axs_rvalue;
1405 value->type = type;
1406 }
1407
1408 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1409 is an accumulated offset (in bytes), will be nonzero for objects
1410 embedded in other objects, like C++ base classes. Behavior should
1411 generally follow value_primitive_field. */
1412
1413 static void
1414 gen_primitive_field (struct agent_expr *ax, struct axs_value *value,
1415 int offset, int fieldno, struct type *type)
1416 {
1417 /* Is this a bitfield? */
1418 if (TYPE_FIELD_PACKED (type, fieldno))
1419 gen_bitfield_ref (ax, value, type->field (fieldno).type (),
1420 (offset * TARGET_CHAR_BIT
1421 + TYPE_FIELD_BITPOS (type, fieldno)),
1422 (offset * TARGET_CHAR_BIT
1423 + TYPE_FIELD_BITPOS (type, fieldno)
1424 + TYPE_FIELD_BITSIZE (type, fieldno)));
1425 else
1426 {
1427 gen_offset (ax, offset
1428 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1429 value->kind = axs_lvalue_memory;
1430 value->type = type->field (fieldno).type ();
1431 }
1432 }
1433
1434 /* Search for the given field in either the given type or one of its
1435 base classes. Return 1 if found, 0 if not. */
1436
1437 static int
1438 gen_struct_ref_recursive (struct agent_expr *ax, struct axs_value *value,
1439 const char *field, int offset, struct type *type)
1440 {
1441 int i, rslt;
1442 int nbases = TYPE_N_BASECLASSES (type);
1443
1444 type = check_typedef (type);
1445
1446 for (i = type->num_fields () - 1; i >= nbases; i--)
1447 {
1448 const char *this_name = TYPE_FIELD_NAME (type, i);
1449
1450 if (this_name)
1451 {
1452 if (strcmp (field, this_name) == 0)
1453 {
1454 /* Note that bytecodes for the struct's base (aka
1455 "this") will have been generated already, which will
1456 be unnecessary but not harmful if the static field is
1457 being handled as a global. */
1458 if (field_is_static (&type->field (i)))
1459 {
1460 gen_static_field (ax, value, type, i);
1461 if (value->optimized_out)
1462 error (_("static field `%s' has been "
1463 "optimized out, cannot use"),
1464 field);
1465 return 1;
1466 }
1467
1468 gen_primitive_field (ax, value, offset, i, type);
1469 return 1;
1470 }
1471 #if 0 /* is this right? */
1472 if (this_name[0] == '\0')
1473 internal_error (__FILE__, __LINE__,
1474 _("find_field: anonymous unions not supported"));
1475 #endif
1476 }
1477 }
1478
1479 /* Now scan through base classes recursively. */
1480 for (i = 0; i < nbases; i++)
1481 {
1482 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1483
1484 rslt = gen_struct_ref_recursive (ax, value, field,
1485 offset + TYPE_BASECLASS_BITPOS (type, i)
1486 / TARGET_CHAR_BIT,
1487 basetype);
1488 if (rslt)
1489 return 1;
1490 }
1491
1492 /* Not found anywhere, flag so caller can complain. */
1493 return 0;
1494 }
1495
1496 /* Generate code to reference the member named FIELD of a structure or
1497 union. The top of the stack, as described by VALUE, should have
1498 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1499 the operator being compiled, and OPERAND_NAME is the kind of thing
1500 it operates on; we use them in error messages. */
1501 static void
1502 gen_struct_ref (struct agent_expr *ax, struct axs_value *value,
1503 const char *field, const char *operator_name,
1504 const char *operand_name)
1505 {
1506 struct type *type;
1507 int found;
1508
1509 /* Follow pointers until we reach a non-pointer. These aren't the C
1510 semantics, but they're what the normal GDB evaluator does, so we
1511 should at least be consistent. */
1512 while (pointer_type (value->type))
1513 {
1514 require_rvalue (ax, value);
1515 gen_deref (value);
1516 }
1517 type = check_typedef (value->type);
1518
1519 /* This must yield a structure or a union. */
1520 if (type->code () != TYPE_CODE_STRUCT
1521 && type->code () != TYPE_CODE_UNION)
1522 error (_("The left operand of `%s' is not a %s."),
1523 operator_name, operand_name);
1524
1525 /* And it must be in memory; we don't deal with structure rvalues,
1526 or structures living in registers. */
1527 if (value->kind != axs_lvalue_memory)
1528 error (_("Structure does not live in memory."));
1529
1530 /* Search through fields and base classes recursively. */
1531 found = gen_struct_ref_recursive (ax, value, field, 0, type);
1532
1533 if (!found)
1534 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1535 field, type->name ());
1536 }
1537
1538 static int
1539 gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1540 const struct type *curtype, char *name);
1541 static int
1542 gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1543 const struct type *curtype, char *name);
1544
1545 static void
1546 gen_static_field (struct agent_expr *ax, struct axs_value *value,
1547 struct type *type, int fieldno)
1548 {
1549 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1550 {
1551 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1552 value->kind = axs_lvalue_memory;
1553 value->type = type->field (fieldno).type ();
1554 value->optimized_out = 0;
1555 }
1556 else
1557 {
1558 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1559 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
1560
1561 if (sym)
1562 {
1563 gen_var_ref (ax, value, sym);
1564
1565 /* Don't error if the value was optimized out, we may be
1566 scanning all static fields and just want to pass over this
1567 and continue with the rest. */
1568 }
1569 else
1570 {
1571 /* Silently assume this was optimized out; class printing
1572 will let the user know why the data is missing. */
1573 value->optimized_out = 1;
1574 }
1575 }
1576 }
1577
1578 static int
1579 gen_struct_elt_for_reference (struct agent_expr *ax, struct axs_value *value,
1580 struct type *type, char *fieldname)
1581 {
1582 struct type *t = type;
1583 int i;
1584
1585 if (t->code () != TYPE_CODE_STRUCT
1586 && t->code () != TYPE_CODE_UNION)
1587 internal_error (__FILE__, __LINE__,
1588 _("non-aggregate type to gen_struct_elt_for_reference"));
1589
1590 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
1591 {
1592 const char *t_field_name = TYPE_FIELD_NAME (t, i);
1593
1594 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1595 {
1596 if (field_is_static (&t->field (i)))
1597 {
1598 gen_static_field (ax, value, t, i);
1599 if (value->optimized_out)
1600 error (_("static field `%s' has been "
1601 "optimized out, cannot use"),
1602 fieldname);
1603 return 1;
1604 }
1605 if (TYPE_FIELD_PACKED (t, i))
1606 error (_("pointers to bitfield members not allowed"));
1607
1608 /* FIXME we need a way to do "want_address" equivalent */
1609
1610 error (_("Cannot reference non-static field \"%s\""), fieldname);
1611 }
1612 }
1613
1614 /* FIXME add other scoped-reference cases here */
1615
1616 /* Do a last-ditch lookup. */
1617 return gen_maybe_namespace_elt (ax, value, type, fieldname);
1618 }
1619
1620 /* C++: Return the member NAME of the namespace given by the type
1621 CURTYPE. */
1622
1623 static int
1624 gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1625 const struct type *curtype, char *name)
1626 {
1627 int found = gen_maybe_namespace_elt (ax, value, curtype, name);
1628
1629 if (!found)
1630 error (_("No symbol \"%s\" in namespace \"%s\"."),
1631 name, curtype->name ());
1632
1633 return found;
1634 }
1635
1636 /* A helper function used by value_namespace_elt and
1637 value_struct_elt_for_reference. It looks up NAME inside the
1638 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1639 is a class and NAME refers to a type in CURTYPE itself (as opposed
1640 to, say, some base class of CURTYPE). */
1641
1642 static int
1643 gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1644 const struct type *curtype, char *name)
1645 {
1646 const char *namespace_name = curtype->name ();
1647 struct block_symbol sym;
1648
1649 sym = cp_lookup_symbol_namespace (namespace_name, name,
1650 block_for_pc (ax->scope),
1651 VAR_DOMAIN);
1652
1653 if (sym.symbol == NULL)
1654 return 0;
1655
1656 gen_var_ref (ax, value, sym.symbol);
1657
1658 if (value->optimized_out)
1659 error (_("`%s' has been optimized out, cannot use"),
1660 sym.symbol->print_name ());
1661
1662 return 1;
1663 }
1664
1665
1666 static int
1667 gen_aggregate_elt_ref (struct agent_expr *ax, struct axs_value *value,
1668 struct type *type, char *field)
1669 {
1670 switch (type->code ())
1671 {
1672 case TYPE_CODE_STRUCT:
1673 case TYPE_CODE_UNION:
1674 return gen_struct_elt_for_reference (ax, value, type, field);
1675 break;
1676 case TYPE_CODE_NAMESPACE:
1677 return gen_namespace_elt (ax, value, type, field);
1678 break;
1679 default:
1680 internal_error (__FILE__, __LINE__,
1681 _("non-aggregate type in gen_aggregate_elt_ref"));
1682 }
1683
1684 return 0;
1685 }
1686
1687 /* Generate code for GDB's magical `repeat' operator.
1688 LVALUE @ INT creates an array INT elements long, and whose elements
1689 have the same type as LVALUE, located in memory so that LVALUE is
1690 its first element. For example, argv[0]@argc gives you the array
1691 of command-line arguments.
1692
1693 Unfortunately, because we have to know the types before we actually
1694 have a value for the expression, we can't implement this perfectly
1695 without changing the type system, having values that occupy two
1696 stack slots, doing weird things with sizeof, etc. So we require
1697 the right operand to be a constant expression. */
1698 static void
1699 gen_repeat (struct expression *exp, union exp_element **pc,
1700 struct agent_expr *ax, struct axs_value *value)
1701 {
1702 struct axs_value value1;
1703
1704 /* We don't want to turn this into an rvalue, so no conversions
1705 here. */
1706 gen_expr (exp, pc, ax, &value1);
1707 if (value1.kind != axs_lvalue_memory)
1708 error (_("Left operand of `@' must be an object in memory."));
1709
1710 /* Evaluate the length; it had better be a constant. */
1711 {
1712 struct value *v = const_expr (pc);
1713 int length;
1714
1715 if (!v)
1716 error (_("Right operand of `@' must be a "
1717 "constant, in agent expressions."));
1718 if (value_type (v)->code () != TYPE_CODE_INT)
1719 error (_("Right operand of `@' must be an integer."));
1720 length = value_as_long (v);
1721 if (length <= 0)
1722 error (_("Right operand of `@' must be positive."));
1723
1724 /* The top of the stack is already the address of the object, so
1725 all we need to do is frob the type of the lvalue. */
1726 {
1727 /* FIXME-type-allocation: need a way to free this type when we are
1728 done with it. */
1729 struct type *array
1730 = lookup_array_range_type (value1.type, 0, length - 1);
1731
1732 value->kind = axs_lvalue_memory;
1733 value->type = array;
1734 }
1735 }
1736 }
1737
1738
1739 /* Emit code for the `sizeof' operator.
1740 *PC should point at the start of the operand expression; we advance it
1741 to the first instruction after the operand. */
1742 static void
1743 gen_sizeof (struct expression *exp, union exp_element **pc,
1744 struct agent_expr *ax, struct axs_value *value,
1745 struct type *size_type)
1746 {
1747 /* We don't care about the value of the operand expression; we only
1748 care about its type. However, in the current arrangement, the
1749 only way to find an expression's type is to generate code for it.
1750 So we generate code for the operand, and then throw it away,
1751 replacing it with code that simply pushes its size. */
1752 int start = ax->len;
1753
1754 gen_expr (exp, pc, ax, value);
1755
1756 /* Throw away the code we just generated. */
1757 ax->len = start;
1758
1759 ax_const_l (ax, TYPE_LENGTH (value->type));
1760 value->kind = axs_rvalue;
1761 value->type = size_type;
1762 }
1763 \f
1764
1765 /* Generate bytecode for a cast to TO_TYPE. Advance *PC over the
1766 subexpression. */
1767
1768 static void
1769 gen_expr_for_cast (struct expression *exp, union exp_element **pc,
1770 struct agent_expr *ax, struct axs_value *value,
1771 struct type *to_type)
1772 {
1773 enum exp_opcode op = (*pc)[0].opcode;
1774
1775 /* Don't let symbols be handled with gen_expr because that throws an
1776 "unknown type" error for no-debug data symbols. Instead, we want
1777 the cast to reinterpret such symbols. */
1778 if (op == OP_VAR_MSYM_VALUE || op == OP_VAR_VALUE)
1779 {
1780 if (op == OP_VAR_VALUE)
1781 {
1782 gen_var_ref (ax, value, (*pc)[2].symbol);
1783
1784 if (value->optimized_out)
1785 error (_("`%s' has been optimized out, cannot use"),
1786 (*pc)[2].symbol->print_name ());
1787 }
1788 else
1789 gen_msym_var_ref (ax, value, (*pc)[2].msymbol, (*pc)[1].objfile);
1790 if (value->type->code () == TYPE_CODE_ERROR)
1791 value->type = to_type;
1792 (*pc) += 4;
1793 }
1794 else
1795 gen_expr (exp, pc, ax, value);
1796 gen_cast (ax, value, to_type);
1797 }
1798
1799 /* Generating bytecode from GDB expressions: general recursive thingy */
1800
1801 /* XXX: i18n */
1802 /* A gen_expr function written by a Gen-X'er guy.
1803 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1804 void
1805 gen_expr (struct expression *exp, union exp_element **pc,
1806 struct agent_expr *ax, struct axs_value *value)
1807 {
1808 /* Used to hold the descriptions of operand expressions. */
1809 struct axs_value value1, value2, value3;
1810 enum exp_opcode op = (*pc)[0].opcode, op2;
1811 int if1, go1, if2, go2, end;
1812 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
1813
1814 /* If we're looking at a constant expression, just push its value. */
1815 {
1816 struct value *v = maybe_const_expr (pc);
1817
1818 if (v)
1819 {
1820 ax_const_l (ax, value_as_long (v));
1821 value->kind = axs_rvalue;
1822 value->type = check_typedef (value_type (v));
1823 return;
1824 }
1825 }
1826
1827 /* Otherwise, go ahead and generate code for it. */
1828 switch (op)
1829 {
1830 /* Binary arithmetic operators. */
1831 case BINOP_ADD:
1832 case BINOP_SUB:
1833 case BINOP_MUL:
1834 case BINOP_DIV:
1835 case BINOP_REM:
1836 case BINOP_LSH:
1837 case BINOP_RSH:
1838 case BINOP_SUBSCRIPT:
1839 case BINOP_BITWISE_AND:
1840 case BINOP_BITWISE_IOR:
1841 case BINOP_BITWISE_XOR:
1842 case BINOP_EQUAL:
1843 case BINOP_NOTEQUAL:
1844 case BINOP_LESS:
1845 case BINOP_GTR:
1846 case BINOP_LEQ:
1847 case BINOP_GEQ:
1848 (*pc)++;
1849 gen_expr (exp, pc, ax, &value1);
1850 gen_usual_unary (ax, &value1);
1851 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1852 break;
1853
1854 case BINOP_LOGICAL_AND:
1855 (*pc)++;
1856 /* Generate the obvious sequence of tests and jumps. */
1857 gen_expr (exp, pc, ax, &value1);
1858 gen_usual_unary (ax, &value1);
1859 if1 = ax_goto (ax, aop_if_goto);
1860 go1 = ax_goto (ax, aop_goto);
1861 ax_label (ax, if1, ax->len);
1862 gen_expr (exp, pc, ax, &value2);
1863 gen_usual_unary (ax, &value2);
1864 if2 = ax_goto (ax, aop_if_goto);
1865 go2 = ax_goto (ax, aop_goto);
1866 ax_label (ax, if2, ax->len);
1867 ax_const_l (ax, 1);
1868 end = ax_goto (ax, aop_goto);
1869 ax_label (ax, go1, ax->len);
1870 ax_label (ax, go2, ax->len);
1871 ax_const_l (ax, 0);
1872 ax_label (ax, end, ax->len);
1873 value->kind = axs_rvalue;
1874 value->type = int_type;
1875 break;
1876
1877 case BINOP_LOGICAL_OR:
1878 (*pc)++;
1879 /* Generate the obvious sequence of tests and jumps. */
1880 gen_expr (exp, pc, ax, &value1);
1881 gen_usual_unary (ax, &value1);
1882 if1 = ax_goto (ax, aop_if_goto);
1883 gen_expr (exp, pc, ax, &value2);
1884 gen_usual_unary (ax, &value2);
1885 if2 = ax_goto (ax, aop_if_goto);
1886 ax_const_l (ax, 0);
1887 end = ax_goto (ax, aop_goto);
1888 ax_label (ax, if1, ax->len);
1889 ax_label (ax, if2, ax->len);
1890 ax_const_l (ax, 1);
1891 ax_label (ax, end, ax->len);
1892 value->kind = axs_rvalue;
1893 value->type = int_type;
1894 break;
1895
1896 case TERNOP_COND:
1897 (*pc)++;
1898 gen_expr (exp, pc, ax, &value1);
1899 gen_usual_unary (ax, &value1);
1900 /* For (A ? B : C), it's easiest to generate subexpression
1901 bytecodes in order, but if_goto jumps on true, so we invert
1902 the sense of A. Then we can do B by dropping through, and
1903 jump to do C. */
1904 gen_logical_not (ax, &value1, int_type);
1905 if1 = ax_goto (ax, aop_if_goto);
1906 gen_expr (exp, pc, ax, &value2);
1907 gen_usual_unary (ax, &value2);
1908 end = ax_goto (ax, aop_goto);
1909 ax_label (ax, if1, ax->len);
1910 gen_expr (exp, pc, ax, &value3);
1911 gen_usual_unary (ax, &value3);
1912 ax_label (ax, end, ax->len);
1913 /* This is arbitrary - what if B and C are incompatible types? */
1914 value->type = value2.type;
1915 value->kind = value2.kind;
1916 break;
1917
1918 case BINOP_ASSIGN:
1919 (*pc)++;
1920 if ((*pc)[0].opcode == OP_INTERNALVAR)
1921 {
1922 char *name = internalvar_name ((*pc)[1].internalvar);
1923 struct trace_state_variable *tsv;
1924
1925 (*pc) += 3;
1926 gen_expr (exp, pc, ax, value);
1927 tsv = find_trace_state_variable (name);
1928 if (tsv)
1929 {
1930 ax_tsv (ax, aop_setv, tsv->number);
1931 if (ax->tracing)
1932 ax_tsv (ax, aop_tracev, tsv->number);
1933 }
1934 else
1935 error (_("$%s is not a trace state variable, "
1936 "may not assign to it"), name);
1937 }
1938 else
1939 error (_("May only assign to trace state variables"));
1940 break;
1941
1942 case BINOP_ASSIGN_MODIFY:
1943 (*pc)++;
1944 op2 = (*pc)[0].opcode;
1945 (*pc)++;
1946 (*pc)++;
1947 if ((*pc)[0].opcode == OP_INTERNALVAR)
1948 {
1949 char *name = internalvar_name ((*pc)[1].internalvar);
1950 struct trace_state_variable *tsv;
1951
1952 (*pc) += 3;
1953 tsv = find_trace_state_variable (name);
1954 if (tsv)
1955 {
1956 /* The tsv will be the left half of the binary operation. */
1957 ax_tsv (ax, aop_getv, tsv->number);
1958 if (ax->tracing)
1959 ax_tsv (ax, aop_tracev, tsv->number);
1960 /* Trace state variables are always 64-bit integers. */
1961 value1.kind = axs_rvalue;
1962 value1.type = builtin_type (ax->gdbarch)->builtin_long_long;
1963 /* Now do right half of expression. */
1964 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1965 /* We have a result of the binary op, set the tsv. */
1966 ax_tsv (ax, aop_setv, tsv->number);
1967 if (ax->tracing)
1968 ax_tsv (ax, aop_tracev, tsv->number);
1969 }
1970 else
1971 error (_("$%s is not a trace state variable, "
1972 "may not assign to it"), name);
1973 }
1974 else
1975 error (_("May only assign to trace state variables"));
1976 break;
1977
1978 /* Note that we need to be a little subtle about generating code
1979 for comma. In C, we can do some optimizations here because
1980 we know the left operand is only being evaluated for effect.
1981 However, if the tracing kludge is in effect, then we always
1982 need to evaluate the left hand side fully, so that all the
1983 variables it mentions get traced. */
1984 case BINOP_COMMA:
1985 (*pc)++;
1986 gen_expr (exp, pc, ax, &value1);
1987 /* Don't just dispose of the left operand. We might be tracing,
1988 in which case we want to emit code to trace it if it's an
1989 lvalue. */
1990 gen_traced_pop (ax, &value1);
1991 gen_expr (exp, pc, ax, value);
1992 /* It's the consumer's responsibility to trace the right operand. */
1993 break;
1994
1995 case OP_LONG: /* some integer constant */
1996 {
1997 struct type *type = (*pc)[1].type;
1998 LONGEST k = (*pc)[2].longconst;
1999
2000 (*pc) += 4;
2001 gen_int_literal (ax, value, k, type);
2002 }
2003 break;
2004
2005 case OP_VAR_VALUE:
2006 gen_var_ref (ax, value, (*pc)[2].symbol);
2007
2008 if (value->optimized_out)
2009 error (_("`%s' has been optimized out, cannot use"),
2010 (*pc)[2].symbol->print_name ());
2011
2012 if (value->type->code () == TYPE_CODE_ERROR)
2013 error_unknown_type ((*pc)[2].symbol->print_name ());
2014
2015 (*pc) += 4;
2016 break;
2017
2018 case OP_VAR_MSYM_VALUE:
2019 gen_msym_var_ref (ax, value, (*pc)[2].msymbol, (*pc)[1].objfile);
2020
2021 if (value->type->code () == TYPE_CODE_ERROR)
2022 error_unknown_type ((*pc)[2].msymbol->linkage_name ());
2023
2024 (*pc) += 4;
2025 break;
2026
2027 case OP_REGISTER:
2028 {
2029 const char *name = &(*pc)[2].string;
2030 int reg;
2031
2032 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
2033 reg = user_reg_map_name_to_regnum (ax->gdbarch, name, strlen (name));
2034 if (reg == -1)
2035 internal_error (__FILE__, __LINE__,
2036 _("Register $%s not available"), name);
2037 /* No support for tracing user registers yet. */
2038 if (reg >= gdbarch_num_cooked_regs (ax->gdbarch))
2039 error (_("'%s' is a user-register; "
2040 "GDB cannot yet trace user-register contents."),
2041 name);
2042 value->kind = axs_lvalue_register;
2043 value->u.reg = reg;
2044 value->type = register_type (ax->gdbarch, reg);
2045 }
2046 break;
2047
2048 case OP_INTERNALVAR:
2049 {
2050 struct internalvar *var = (*pc)[1].internalvar;
2051 const char *name = internalvar_name (var);
2052 struct trace_state_variable *tsv;
2053
2054 (*pc) += 3;
2055 tsv = find_trace_state_variable (name);
2056 if (tsv)
2057 {
2058 ax_tsv (ax, aop_getv, tsv->number);
2059 if (ax->tracing)
2060 ax_tsv (ax, aop_tracev, tsv->number);
2061 /* Trace state variables are always 64-bit integers. */
2062 value->kind = axs_rvalue;
2063 value->type = builtin_type (ax->gdbarch)->builtin_long_long;
2064 }
2065 else if (! compile_internalvar_to_ax (var, ax, value))
2066 error (_("$%s is not a trace state variable; GDB agent "
2067 "expressions cannot use convenience variables."), name);
2068 }
2069 break;
2070
2071 /* Weirdo operator: see comments for gen_repeat for details. */
2072 case BINOP_REPEAT:
2073 /* Note that gen_repeat handles its own argument evaluation. */
2074 (*pc)++;
2075 gen_repeat (exp, pc, ax, value);
2076 break;
2077
2078 case UNOP_CAST:
2079 {
2080 struct type *type = (*pc)[1].type;
2081
2082 (*pc) += 3;
2083 gen_expr_for_cast (exp, pc, ax, value, type);
2084 }
2085 break;
2086
2087 case UNOP_CAST_TYPE:
2088 {
2089 int offset;
2090 struct value *val;
2091 struct type *type;
2092
2093 ++*pc;
2094 offset = *pc - exp->elts;
2095 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2096 type = value_type (val);
2097 *pc = &exp->elts[offset];
2098 gen_expr_for_cast (exp, pc, ax, value, type);
2099 }
2100 break;
2101
2102 case UNOP_MEMVAL:
2103 {
2104 struct type *type = check_typedef ((*pc)[1].type);
2105
2106 (*pc) += 3;
2107 gen_expr (exp, pc, ax, value);
2108
2109 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2110 already have the right value on the stack. For
2111 axs_lvalue_register, we must convert. */
2112 if (value->kind == axs_lvalue_register)
2113 require_rvalue (ax, value);
2114
2115 value->type = type;
2116 value->kind = axs_lvalue_memory;
2117 }
2118 break;
2119
2120 case UNOP_MEMVAL_TYPE:
2121 {
2122 int offset;
2123 struct value *val;
2124 struct type *type;
2125
2126 ++*pc;
2127 offset = *pc - exp->elts;
2128 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2129 type = value_type (val);
2130 *pc = &exp->elts[offset];
2131
2132 gen_expr (exp, pc, ax, value);
2133
2134 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2135 already have the right value on the stack. For
2136 axs_lvalue_register, we must convert. */
2137 if (value->kind == axs_lvalue_register)
2138 require_rvalue (ax, value);
2139
2140 value->type = type;
2141 value->kind = axs_lvalue_memory;
2142 }
2143 break;
2144
2145 case UNOP_PLUS:
2146 (*pc)++;
2147 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2148 gen_expr (exp, pc, ax, value);
2149 gen_usual_unary (ax, value);
2150 break;
2151
2152 case UNOP_NEG:
2153 (*pc)++;
2154 /* -FOO is equivalent to 0 - FOO. */
2155 gen_int_literal (ax, &value1, 0,
2156 builtin_type (ax->gdbarch)->builtin_int);
2157 gen_usual_unary (ax, &value1); /* shouldn't do much */
2158 gen_expr (exp, pc, ax, &value2);
2159 gen_usual_unary (ax, &value2);
2160 gen_usual_arithmetic (ax, &value1, &value2);
2161 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2162 break;
2163
2164 case UNOP_LOGICAL_NOT:
2165 (*pc)++;
2166 gen_expr (exp, pc, ax, value);
2167 gen_usual_unary (ax, value);
2168 gen_logical_not (ax, value, int_type);
2169 break;
2170
2171 case UNOP_COMPLEMENT:
2172 (*pc)++;
2173 gen_expr (exp, pc, ax, value);
2174 gen_usual_unary (ax, value);
2175 gen_integral_promotions (ax, value);
2176 gen_complement (ax, value);
2177 break;
2178
2179 case UNOP_IND:
2180 (*pc)++;
2181 gen_expr (exp, pc, ax, value);
2182 gen_usual_unary (ax, value);
2183 if (!pointer_type (value->type))
2184 error (_("Argument of unary `*' is not a pointer."));
2185 gen_deref (value);
2186 break;
2187
2188 case UNOP_ADDR:
2189 (*pc)++;
2190 gen_expr (exp, pc, ax, value);
2191 gen_address_of (value);
2192 break;
2193
2194 case UNOP_SIZEOF:
2195 (*pc)++;
2196 /* Notice that gen_sizeof handles its own operand, unlike most
2197 of the other unary operator functions. This is because we
2198 have to throw away the code we generate. */
2199 gen_sizeof (exp, pc, ax, value,
2200 builtin_type (ax->gdbarch)->builtin_int);
2201 break;
2202
2203 case STRUCTOP_STRUCT:
2204 case STRUCTOP_PTR:
2205 {
2206 int length = (*pc)[1].longconst;
2207 char *name = &(*pc)[2].string;
2208
2209 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2210 gen_expr (exp, pc, ax, value);
2211 if (op == STRUCTOP_STRUCT)
2212 gen_struct_ref (ax, value, name, ".", "structure or union");
2213 else if (op == STRUCTOP_PTR)
2214 gen_struct_ref (ax, value, name, "->",
2215 "pointer to a structure or union");
2216 else
2217 /* If this `if' chain doesn't handle it, then the case list
2218 shouldn't mention it, and we shouldn't be here. */
2219 internal_error (__FILE__, __LINE__,
2220 _("gen_expr: unhandled struct case"));
2221 }
2222 break;
2223
2224 case OP_THIS:
2225 {
2226 struct symbol *sym, *func;
2227 const struct block *b;
2228 const struct language_defn *lang;
2229
2230 b = block_for_pc (ax->scope);
2231 func = block_linkage_function (b);
2232 lang = language_def (func->language ());
2233
2234 sym = lookup_language_this (lang, b).symbol;
2235 if (!sym)
2236 error (_("no `%s' found"), lang->name_of_this ());
2237
2238 gen_var_ref (ax, value, sym);
2239
2240 if (value->optimized_out)
2241 error (_("`%s' has been optimized out, cannot use"),
2242 sym->print_name ());
2243
2244 (*pc) += 2;
2245 }
2246 break;
2247
2248 case OP_SCOPE:
2249 {
2250 struct type *type = (*pc)[1].type;
2251 int length = longest_to_int ((*pc)[2].longconst);
2252 char *name = &(*pc)[3].string;
2253 int found;
2254
2255 found = gen_aggregate_elt_ref (ax, value, type, name);
2256 if (!found)
2257 error (_("There is no field named %s"), name);
2258 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2259 }
2260 break;
2261
2262 case OP_TYPE:
2263 case OP_TYPEOF:
2264 case OP_DECLTYPE:
2265 error (_("Attempt to use a type name as an expression."));
2266
2267 default:
2268 error (_("Unsupported operator %s (%d) in expression."),
2269 op_name (exp, op), op);
2270 }
2271 }
2272
2273 /* This handles the middle-to-right-side of code generation for binary
2274 expressions, which is shared between regular binary operations and
2275 assign-modify (+= and friends) expressions. */
2276
2277 static void
2278 gen_expr_binop_rest (struct expression *exp,
2279 enum exp_opcode op, union exp_element **pc,
2280 struct agent_expr *ax, struct axs_value *value,
2281 struct axs_value *value1, struct axs_value *value2)
2282 {
2283 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
2284
2285 gen_expr (exp, pc, ax, value2);
2286 gen_usual_unary (ax, value2);
2287 gen_usual_arithmetic (ax, value1, value2);
2288 switch (op)
2289 {
2290 case BINOP_ADD:
2291 if (value1->type->code () == TYPE_CODE_INT
2292 && pointer_type (value2->type))
2293 {
2294 /* Swap the values and proceed normally. */
2295 ax_simple (ax, aop_swap);
2296 gen_ptradd (ax, value, value2, value1);
2297 }
2298 else if (pointer_type (value1->type)
2299 && value2->type->code () == TYPE_CODE_INT)
2300 gen_ptradd (ax, value, value1, value2);
2301 else
2302 gen_binop (ax, value, value1, value2,
2303 aop_add, aop_add, 1, "addition");
2304 break;
2305 case BINOP_SUB:
2306 if (pointer_type (value1->type)
2307 && value2->type->code () == TYPE_CODE_INT)
2308 gen_ptrsub (ax,value, value1, value2);
2309 else if (pointer_type (value1->type)
2310 && pointer_type (value2->type))
2311 /* FIXME --- result type should be ptrdiff_t */
2312 gen_ptrdiff (ax, value, value1, value2,
2313 builtin_type (ax->gdbarch)->builtin_long);
2314 else
2315 gen_binop (ax, value, value1, value2,
2316 aop_sub, aop_sub, 1, "subtraction");
2317 break;
2318 case BINOP_MUL:
2319 gen_binop (ax, value, value1, value2,
2320 aop_mul, aop_mul, 1, "multiplication");
2321 break;
2322 case BINOP_DIV:
2323 gen_binop (ax, value, value1, value2,
2324 aop_div_signed, aop_div_unsigned, 1, "division");
2325 break;
2326 case BINOP_REM:
2327 gen_binop (ax, value, value1, value2,
2328 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2329 break;
2330 case BINOP_LSH:
2331 gen_binop (ax, value, value1, value2,
2332 aop_lsh, aop_lsh, 1, "left shift");
2333 break;
2334 case BINOP_RSH:
2335 gen_binop (ax, value, value1, value2,
2336 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2337 break;
2338 case BINOP_SUBSCRIPT:
2339 {
2340 struct type *type;
2341
2342 if (binop_types_user_defined_p (op, value1->type, value2->type))
2343 {
2344 error (_("cannot subscript requested type: "
2345 "cannot call user defined functions"));
2346 }
2347 else
2348 {
2349 /* If the user attempts to subscript something that is not
2350 an array or pointer type (like a plain int variable for
2351 example), then report this as an error. */
2352 type = check_typedef (value1->type);
2353 if (type->code () != TYPE_CODE_ARRAY
2354 && type->code () != TYPE_CODE_PTR)
2355 {
2356 if (type->name ())
2357 error (_("cannot subscript something of type `%s'"),
2358 type->name ());
2359 else
2360 error (_("cannot subscript requested type"));
2361 }
2362 }
2363
2364 if (!is_integral_type (value2->type))
2365 error (_("Argument to arithmetic operation "
2366 "not a number or boolean."));
2367
2368 gen_ptradd (ax, value, value1, value2);
2369 gen_deref (value);
2370 break;
2371 }
2372 case BINOP_BITWISE_AND:
2373 gen_binop (ax, value, value1, value2,
2374 aop_bit_and, aop_bit_and, 0, "bitwise and");
2375 break;
2376
2377 case BINOP_BITWISE_IOR:
2378 gen_binop (ax, value, value1, value2,
2379 aop_bit_or, aop_bit_or, 0, "bitwise or");
2380 break;
2381
2382 case BINOP_BITWISE_XOR:
2383 gen_binop (ax, value, value1, value2,
2384 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2385 break;
2386
2387 case BINOP_EQUAL:
2388 gen_equal (ax, value, value1, value2, int_type);
2389 break;
2390
2391 case BINOP_NOTEQUAL:
2392 gen_equal (ax, value, value1, value2, int_type);
2393 gen_logical_not (ax, value, int_type);
2394 break;
2395
2396 case BINOP_LESS:
2397 gen_less (ax, value, value1, value2, int_type);
2398 break;
2399
2400 case BINOP_GTR:
2401 ax_simple (ax, aop_swap);
2402 gen_less (ax, value, value1, value2, int_type);
2403 break;
2404
2405 case BINOP_LEQ:
2406 ax_simple (ax, aop_swap);
2407 gen_less (ax, value, value1, value2, int_type);
2408 gen_logical_not (ax, value, int_type);
2409 break;
2410
2411 case BINOP_GEQ:
2412 gen_less (ax, value, value1, value2, int_type);
2413 gen_logical_not (ax, value, int_type);
2414 break;
2415
2416 default:
2417 /* We should only list operators in the outer case statement
2418 that we actually handle in the inner case statement. */
2419 internal_error (__FILE__, __LINE__,
2420 _("gen_expr: op case sets don't match"));
2421 }
2422 }
2423 \f
2424
2425 /* Given a single variable and a scope, generate bytecodes to trace
2426 its value. This is for use in situations where we have only a
2427 variable's name, and no parsed expression; for instance, when the
2428 name comes from a list of local variables of a function. */
2429
2430 agent_expr_up
2431 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2432 struct symbol *var, int trace_string)
2433 {
2434 agent_expr_up ax (new agent_expr (gdbarch, scope));
2435 struct axs_value value;
2436
2437 ax->tracing = 1;
2438 ax->trace_string = trace_string;
2439 gen_var_ref (ax.get (), &value, var);
2440
2441 /* If there is no actual variable to trace, flag it by returning
2442 an empty agent expression. */
2443 if (value.optimized_out)
2444 return agent_expr_up ();
2445
2446 /* Make sure we record the final object, and get rid of it. */
2447 gen_traced_pop (ax.get (), &value);
2448
2449 /* Oh, and terminate. */
2450 ax_simple (ax.get (), aop_end);
2451
2452 return ax;
2453 }
2454
2455 /* Generating bytecode from GDB expressions: driver */
2456
2457 /* Given a GDB expression EXPR, return bytecode to trace its value.
2458 The result will use the `trace' and `trace_quick' bytecodes to
2459 record the value of all memory touched by the expression. The
2460 caller can then use the ax_reqs function to discover which
2461 registers it relies upon. */
2462
2463 agent_expr_up
2464 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
2465 int trace_string)
2466 {
2467 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2468 union exp_element *pc;
2469 struct axs_value value;
2470
2471 pc = expr->elts;
2472 ax->tracing = 1;
2473 ax->trace_string = trace_string;
2474 value.optimized_out = 0;
2475 gen_expr (expr, &pc, ax.get (), &value);
2476
2477 /* Make sure we record the final object, and get rid of it. */
2478 gen_traced_pop (ax.get (), &value);
2479
2480 /* Oh, and terminate. */
2481 ax_simple (ax.get (), aop_end);
2482
2483 return ax;
2484 }
2485
2486 /* Given a GDB expression EXPR, return a bytecode sequence that will
2487 evaluate and return a result. The bytecodes will do a direct
2488 evaluation, using the current data on the target, rather than
2489 recording blocks of memory and registers for later use, as
2490 gen_trace_for_expr does. The generated bytecode sequence leaves
2491 the result of expression evaluation on the top of the stack. */
2492
2493 agent_expr_up
2494 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2495 {
2496 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2497 union exp_element *pc;
2498 struct axs_value value;
2499
2500 pc = expr->elts;
2501 ax->tracing = 0;
2502 value.optimized_out = 0;
2503 gen_expr (expr, &pc, ax.get (), &value);
2504
2505 require_rvalue (ax.get (), &value);
2506
2507 /* Oh, and terminate. */
2508 ax_simple (ax.get (), aop_end);
2509
2510 return ax;
2511 }
2512
2513 agent_expr_up
2514 gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
2515 int trace_string)
2516 {
2517 agent_expr_up ax (new agent_expr (gdbarch, scope));
2518 struct axs_value value;
2519
2520 ax->tracing = 1;
2521 ax->trace_string = trace_string;
2522
2523 gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope);
2524
2525 /* Make sure we record the final object, and get rid of it. */
2526 gen_traced_pop (ax.get (), &value);
2527
2528 /* Oh, and terminate. */
2529 ax_simple (ax.get (), aop_end);
2530
2531 return ax;
2532 }
2533
2534 /* Given a collection of printf-style arguments, generate code to
2535 evaluate the arguments and pass everything to a special
2536 bytecode. */
2537
2538 agent_expr_up
2539 gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2540 CORE_ADDR function, LONGEST channel,
2541 const char *format, int fmtlen,
2542 int nargs, struct expression **exprs)
2543 {
2544 agent_expr_up ax (new agent_expr (gdbarch, scope));
2545 union exp_element *pc;
2546 struct axs_value value;
2547 int tem;
2548
2549 /* We're computing values, not doing side effects. */
2550 ax->tracing = 0;
2551
2552 /* Evaluate and push the args on the stack in reverse order,
2553 for simplicity of collecting them on the target side. */
2554 for (tem = nargs - 1; tem >= 0; --tem)
2555 {
2556 pc = exprs[tem]->elts;
2557 value.optimized_out = 0;
2558 gen_expr (exprs[tem], &pc, ax.get (), &value);
2559 require_rvalue (ax.get (), &value);
2560 }
2561
2562 /* Push function and channel. */
2563 ax_const_l (ax.get (), channel);
2564 ax_const_l (ax.get (), function);
2565
2566 /* Issue the printf bytecode proper. */
2567 ax_simple (ax.get (), aop_printf);
2568 ax_raw_byte (ax.get (), nargs);
2569 ax_string (ax.get (), format, fmtlen);
2570
2571 /* And terminate. */
2572 ax_simple (ax.get (), aop_end);
2573
2574 return ax;
2575 }
2576
2577 static void
2578 agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
2579 {
2580 const char *arg;
2581 int trace_string = 0;
2582
2583 if (!eval)
2584 {
2585 if (*exp == '/')
2586 exp = decode_agent_options (exp, &trace_string);
2587 }
2588
2589 agent_expr_up agent;
2590
2591 arg = exp;
2592 if (!eval && strcmp (arg, "$_ret") == 0)
2593 {
2594 agent = gen_trace_for_return_address (pc, get_current_arch (),
2595 trace_string);
2596 }
2597 else
2598 {
2599 expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
2600
2601 if (eval)
2602 {
2603 gdb_assert (trace_string == 0);
2604 agent = gen_eval_for_expr (pc, expr.get ());
2605 }
2606 else
2607 agent = gen_trace_for_expr (pc, expr.get (), trace_string);
2608 }
2609
2610 ax_reqs (agent.get ());
2611 ax_print (gdb_stdout, agent.get ());
2612
2613 /* It would be nice to call ax_reqs here to gather some general info
2614 about the expression, and then print out the result. */
2615
2616 dont_repeat ();
2617 }
2618
2619 static void
2620 agent_command_1 (const char *exp, int eval)
2621 {
2622 /* We don't deal with overlay debugging at the moment. We need to
2623 think more carefully about this. If you copy this code into
2624 another command, change the error message; the user shouldn't
2625 have to know anything about agent expressions. */
2626 if (overlay_debugging)
2627 error (_("GDB can't do agent expression translation with overlays."));
2628
2629 if (exp == 0)
2630 error_no_arg (_("expression to translate"));
2631
2632 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2633 {
2634 struct linespec_result canonical;
2635
2636 event_location_up location
2637 = new_linespec_location (&exp, symbol_name_match_type::WILD);
2638 decode_line_full (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
2639 NULL, 0, &canonical,
2640 NULL, NULL);
2641 exp = skip_spaces (exp);
2642 if (exp[0] == ',')
2643 {
2644 exp++;
2645 exp = skip_spaces (exp);
2646 }
2647 for (const auto &lsal : canonical.lsals)
2648 for (const auto &sal : lsal.sals)
2649 agent_eval_command_one (exp, eval, sal.pc);
2650 }
2651 else
2652 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
2653
2654 dont_repeat ();
2655 }
2656
2657 static void
2658 agent_command (const char *exp, int from_tty)
2659 {
2660 agent_command_1 (exp, 0);
2661 }
2662
2663 /* Parse the given expression, compile it into an agent expression
2664 that does direct evaluation, and display the resulting
2665 expression. */
2666
2667 static void
2668 agent_eval_command (const char *exp, int from_tty)
2669 {
2670 agent_command_1 (exp, 1);
2671 }
2672
2673 /* Parse the given expression, compile it into an agent expression
2674 that does a printf, and display the resulting expression. */
2675
2676 static void
2677 maint_agent_printf_command (const char *cmdrest, int from_tty)
2678 {
2679 struct frame_info *fi = get_current_frame (); /* need current scope */
2680 const char *format_start, *format_end;
2681
2682 /* We don't deal with overlay debugging at the moment. We need to
2683 think more carefully about this. If you copy this code into
2684 another command, change the error message; the user shouldn't
2685 have to know anything about agent expressions. */
2686 if (overlay_debugging)
2687 error (_("GDB can't do agent expression translation with overlays."));
2688
2689 if (cmdrest == 0)
2690 error_no_arg (_("expression to translate"));
2691
2692 cmdrest = skip_spaces (cmdrest);
2693
2694 if (*cmdrest++ != '"')
2695 error (_("Must start with a format string."));
2696
2697 format_start = cmdrest;
2698
2699 format_pieces fpieces (&cmdrest);
2700
2701 format_end = cmdrest;
2702
2703 if (*cmdrest++ != '"')
2704 error (_("Bad format string, non-terminated '\"'."));
2705
2706 cmdrest = skip_spaces (cmdrest);
2707
2708 if (*cmdrest != ',' && *cmdrest != 0)
2709 error (_("Invalid argument syntax"));
2710
2711 if (*cmdrest == ',')
2712 cmdrest++;
2713 cmdrest = skip_spaces (cmdrest);
2714
2715 std::vector<struct expression *> argvec;
2716 while (*cmdrest != '\0')
2717 {
2718 const char *cmd1;
2719
2720 cmd1 = cmdrest;
2721 expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2722 argvec.push_back (expr.release ());
2723 cmdrest = cmd1;
2724 if (*cmdrest == ',')
2725 ++cmdrest;
2726 /* else complain? */
2727 }
2728
2729
2730 agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (),
2731 0, 0,
2732 format_start, format_end - format_start,
2733 argvec.size (), argvec.data ());
2734 ax_reqs (agent.get ());
2735 ax_print (gdb_stdout, agent.get ());
2736
2737 /* It would be nice to call ax_reqs here to gather some general info
2738 about the expression, and then print out the result. */
2739
2740 dont_repeat ();
2741 }
2742
2743 /* Initialization code. */
2744
2745 void _initialize_ax_gdb ();
2746 void
2747 _initialize_ax_gdb ()
2748 {
2749 add_cmd ("agent", class_maintenance, agent_command,
2750 _("\
2751 Translate an expression into remote agent bytecode for tracing.\n\
2752 Usage: maint agent [-at LOCATION,] EXPRESSION\n\
2753 If -at is given, generate remote agent bytecode for this location.\n\
2754 If not, generate remote agent bytecode for current frame pc address."),
2755 &maintenancelist);
2756
2757 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2758 _("\
2759 Translate an expression into remote agent bytecode for evaluation.\n\
2760 Usage: maint agent-eval [-at LOCATION,] EXPRESSION\n\
2761 If -at is given, generate remote agent bytecode for this location.\n\
2762 If not, generate remote agent bytecode for current frame pc address."),
2763 &maintenancelist);
2764
2765 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2766 _("Translate an expression into remote "
2767 "agent bytecode for evaluation and display the bytecodes."),
2768 &maintenancelist);
2769 }
This page took 0.13404 seconds and 4 git commands to generate.