gdb: remove TYPE_VARARGS
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * Identify a vector type. Gcc is handling this by adding an extra
220 attribute to the array type. We slurp that in as a new flag of a
221 type. This is used only in dwarf2read.c. */
222 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
223
224 /* * The debugging formats (especially STABS) do not contain enough
225 information to represent all Ada types---especially those whose
226 size depends on dynamic quantities. Therefore, the GNAT Ada
227 compiler includes extra information in the form of additional type
228 definitions connected by naming conventions. This flag indicates
229 that the type is an ordinary (unencoded) GDB type that has been
230 created from the necessary run-time information, and does not need
231 further interpretation. Optionally marks ordinary, fixed-size GDB
232 type. */
233
234 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
235
236 /* * This debug target supports TYPE_STUB(t). In the unsupported case
237 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
238 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
239 guessed the TYPE_STUB(t) value (see dwarfread.c). */
240
241 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
242
243 /* * Not textual. By default, GDB treats all single byte integers as
244 characters (or elements of strings) unless this flag is set. */
245
246 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
247
248 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
249 address is returned by this function call. TYPE_TARGET_TYPE
250 determines the final returned function type to be presented to
251 user. */
252
253 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
254
255 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
256 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
257 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
258
259 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
260 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
261 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
262
263 /* * True if this type was declared using the "class" keyword. This is
264 only valid for C++ structure and enum types. If false, a structure
265 was declared as a "struct"; if true it was declared "class". For
266 enum types, this is true when "enum class" or "enum struct" was
267 used to declare the type.. */
268
269 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
270
271 /* * True if this type is a "flag" enum. A flag enum is one where all
272 the values are pairwise disjoint when "and"ed together. This
273 affects how enum values are printed. */
274
275 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
276
277 /* * Constant type. If this is set, the corresponding type has a
278 const modifier. */
279
280 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
281
282 /* * Volatile type. If this is set, the corresponding type has a
283 volatile modifier. */
284
285 #define TYPE_VOLATILE(t) \
286 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
287
288 /* * Restrict type. If this is set, the corresponding type has a
289 restrict modifier. */
290
291 #define TYPE_RESTRICT(t) \
292 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
293
294 /* * Atomic type. If this is set, the corresponding type has an
295 _Atomic modifier. */
296
297 #define TYPE_ATOMIC(t) \
298 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
299
300 /* * True if this type represents either an lvalue or lvalue reference type. */
301
302 #define TYPE_IS_REFERENCE(t) \
303 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
304
305 /* * True if this type is allocatable. */
306 #define TYPE_IS_ALLOCATABLE(t) \
307 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
308
309 /* * True if this type has variant parts. */
310 #define TYPE_HAS_VARIANT_PARTS(t) \
311 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
312
313 /* * True if this type has a dynamic length. */
314 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
315 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
316
317 /* * Instruction-space delimited type. This is for Harvard architectures
318 which have separate instruction and data address spaces (and perhaps
319 others).
320
321 GDB usually defines a flat address space that is a superset of the
322 architecture's two (or more) address spaces, but this is an extension
323 of the architecture's model.
324
325 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
326 resides in instruction memory, even if its address (in the extended
327 flat address space) does not reflect this.
328
329 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
330 corresponding type resides in the data memory space, even if
331 this is not indicated by its (flat address space) address.
332
333 If neither flag is set, the default space for functions / methods
334 is instruction space, and for data objects is data memory. */
335
336 #define TYPE_CODE_SPACE(t) \
337 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
338
339 #define TYPE_DATA_SPACE(t) \
340 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
341
342 /* * Address class flags. Some environments provide for pointers
343 whose size is different from that of a normal pointer or address
344 types where the bits are interpreted differently than normal
345 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
346 target specific ways to represent these different types of address
347 classes. */
348
349 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
350 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
351 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
352 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
353 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
354 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
355 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
356 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
357
358 /* * Information about a single discriminant. */
359
360 struct discriminant_range
361 {
362 /* * The range of values for the variant. This is an inclusive
363 range. */
364 ULONGEST low, high;
365
366 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
367 is true if this should be an unsigned comparison; false for
368 signed. */
369 bool contains (ULONGEST value, bool is_unsigned) const
370 {
371 if (is_unsigned)
372 return value >= low && value <= high;
373 LONGEST valuel = (LONGEST) value;
374 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
375 }
376 };
377
378 struct variant_part;
379
380 /* * A single variant. A variant has a list of discriminant values.
381 When the discriminator matches one of these, the variant is
382 enabled. Each variant controls zero or more fields; and may also
383 control other variant parts as well. This struct corresponds to
384 DW_TAG_variant in DWARF. */
385
386 struct variant : allocate_on_obstack
387 {
388 /* * The discriminant ranges for this variant. */
389 gdb::array_view<discriminant_range> discriminants;
390
391 /* * The fields controlled by this variant. This is inclusive on
392 the low end and exclusive on the high end. A variant may not
393 control any fields, in which case the two values will be equal.
394 These are indexes into the type's array of fields. */
395 int first_field;
396 int last_field;
397
398 /* * Variant parts controlled by this variant. */
399 gdb::array_view<variant_part> parts;
400
401 /* * Return true if this is the default variant. The default
402 variant can be recognized because it has no associated
403 discriminants. */
404 bool is_default () const
405 {
406 return discriminants.empty ();
407 }
408
409 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
410 if this should be an unsigned comparison; false for signed. */
411 bool matches (ULONGEST value, bool is_unsigned) const;
412 };
413
414 /* * A variant part. Each variant part has an optional discriminant
415 and holds an array of variants. This struct corresponds to
416 DW_TAG_variant_part in DWARF. */
417
418 struct variant_part : allocate_on_obstack
419 {
420 /* * The index of the discriminant field in the outer type. This is
421 an index into the type's array of fields. If this is -1, there
422 is no discriminant, and only the default variant can be
423 considered to be selected. */
424 int discriminant_index;
425
426 /* * True if this discriminant is unsigned; false if signed. This
427 comes from the type of the discriminant. */
428 bool is_unsigned;
429
430 /* * The variants that are controlled by this variant part. Note
431 that these will always be sorted by field number. */
432 gdb::array_view<variant> variants;
433 };
434
435
436 enum dynamic_prop_kind
437 {
438 PROP_UNDEFINED, /* Not defined. */
439 PROP_CONST, /* Constant. */
440 PROP_ADDR_OFFSET, /* Address offset. */
441 PROP_LOCEXPR, /* Location expression. */
442 PROP_LOCLIST, /* Location list. */
443 PROP_VARIANT_PARTS, /* Variant parts. */
444 PROP_TYPE, /* Type. */
445 };
446
447 union dynamic_prop_data
448 {
449 /* Storage for constant property. */
450
451 LONGEST const_val;
452
453 /* Storage for dynamic property. */
454
455 void *baton;
456
457 /* Storage of variant parts for a type. A type with variant parts
458 has all its fields "linearized" -- stored in a single field
459 array, just as if they had all been declared that way. The
460 variant parts are attached via a dynamic property, and then are
461 used to control which fields end up in the final type during
462 dynamic type resolution. */
463
464 const gdb::array_view<variant_part> *variant_parts;
465
466 /* Once a variant type is resolved, we may want to be able to go
467 from the resolved type to the original type. In this case we
468 rewrite the property's kind and set this field. */
469
470 struct type *original_type;
471 };
472
473 /* * Used to store a dynamic property. */
474
475 struct dynamic_prop
476 {
477 dynamic_prop_kind kind () const
478 {
479 return m_kind;
480 }
481
482 void set_undefined ()
483 {
484 m_kind = PROP_UNDEFINED;
485 }
486
487 LONGEST const_val () const
488 {
489 gdb_assert (m_kind == PROP_CONST);
490
491 return m_data.const_val;
492 }
493
494 void set_const_val (LONGEST const_val)
495 {
496 m_kind = PROP_CONST;
497 m_data.const_val = const_val;
498 }
499
500 void *baton () const
501 {
502 gdb_assert (m_kind == PROP_LOCEXPR
503 || m_kind == PROP_LOCLIST
504 || m_kind == PROP_ADDR_OFFSET);
505
506 return m_data.baton;
507 }
508
509 void set_locexpr (void *baton)
510 {
511 m_kind = PROP_LOCEXPR;
512 m_data.baton = baton;
513 }
514
515 void set_loclist (void *baton)
516 {
517 m_kind = PROP_LOCLIST;
518 m_data.baton = baton;
519 }
520
521 void set_addr_offset (void *baton)
522 {
523 m_kind = PROP_ADDR_OFFSET;
524 m_data.baton = baton;
525 }
526
527 const gdb::array_view<variant_part> *variant_parts () const
528 {
529 gdb_assert (m_kind == PROP_VARIANT_PARTS);
530
531 return m_data.variant_parts;
532 }
533
534 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
535 {
536 m_kind = PROP_VARIANT_PARTS;
537 m_data.variant_parts = variant_parts;
538 }
539
540 struct type *original_type () const
541 {
542 gdb_assert (m_kind == PROP_TYPE);
543
544 return m_data.original_type;
545 }
546
547 void set_original_type (struct type *original_type)
548 {
549 m_kind = PROP_TYPE;
550 m_data.original_type = original_type;
551 }
552
553 /* Determine which field of the union dynamic_prop.data is used. */
554 enum dynamic_prop_kind m_kind;
555
556 /* Storage for dynamic or static value. */
557 union dynamic_prop_data m_data;
558 };
559
560 /* Compare two dynamic_prop objects for equality. dynamic_prop
561 instances are equal iff they have the same type and storage. */
562 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
563
564 /* Compare two dynamic_prop objects for inequality. */
565 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
566 {
567 return !(l == r);
568 }
569
570 /* * Define a type's dynamic property node kind. */
571 enum dynamic_prop_node_kind
572 {
573 /* A property providing a type's data location.
574 Evaluating this field yields to the location of an object's data. */
575 DYN_PROP_DATA_LOCATION,
576
577 /* A property representing DW_AT_allocated. The presence of this attribute
578 indicates that the object of the type can be allocated/deallocated. */
579 DYN_PROP_ALLOCATED,
580
581 /* A property representing DW_AT_associated. The presence of this attribute
582 indicated that the object of the type can be associated. */
583 DYN_PROP_ASSOCIATED,
584
585 /* A property providing an array's byte stride. */
586 DYN_PROP_BYTE_STRIDE,
587
588 /* A property holding variant parts. */
589 DYN_PROP_VARIANT_PARTS,
590
591 /* A property holding the size of the type. */
592 DYN_PROP_BYTE_SIZE,
593 };
594
595 /* * List for dynamic type attributes. */
596 struct dynamic_prop_list
597 {
598 /* The kind of dynamic prop in this node. */
599 enum dynamic_prop_node_kind prop_kind;
600
601 /* The dynamic property itself. */
602 struct dynamic_prop prop;
603
604 /* A pointer to the next dynamic property. */
605 struct dynamic_prop_list *next;
606 };
607
608 /* * Determine which field of the union main_type.fields[x].loc is
609 used. */
610
611 enum field_loc_kind
612 {
613 FIELD_LOC_KIND_BITPOS, /**< bitpos */
614 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
615 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
616 FIELD_LOC_KIND_PHYSNAME, /**< physname */
617 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
618 };
619
620 /* * A discriminant to determine which field in the
621 main_type.type_specific union is being used, if any.
622
623 For types such as TYPE_CODE_FLT, the use of this
624 discriminant is really redundant, as we know from the type code
625 which field is going to be used. As such, it would be possible to
626 reduce the size of this enum in order to save a bit or two for
627 other fields of struct main_type. But, since we still have extra
628 room , and for the sake of clarity and consistency, we treat all fields
629 of the union the same way. */
630
631 enum type_specific_kind
632 {
633 TYPE_SPECIFIC_NONE,
634 TYPE_SPECIFIC_CPLUS_STUFF,
635 TYPE_SPECIFIC_GNAT_STUFF,
636 TYPE_SPECIFIC_FLOATFORMAT,
637 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
638 TYPE_SPECIFIC_FUNC,
639 TYPE_SPECIFIC_SELF_TYPE
640 };
641
642 union type_owner
643 {
644 struct objfile *objfile;
645 struct gdbarch *gdbarch;
646 };
647
648 union field_location
649 {
650 /* * Position of this field, counting in bits from start of
651 containing structure. For big-endian targets, it is the bit
652 offset to the MSB. For little-endian targets, it is the bit
653 offset to the LSB. */
654
655 LONGEST bitpos;
656
657 /* * Enum value. */
658 LONGEST enumval;
659
660 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
661 physaddr is the location (in the target) of the static
662 field. Otherwise, physname is the mangled label of the
663 static field. */
664
665 CORE_ADDR physaddr;
666 const char *physname;
667
668 /* * The field location can be computed by evaluating the
669 following DWARF block. Its DATA is allocated on
670 objfile_obstack - no CU load is needed to access it. */
671
672 struct dwarf2_locexpr_baton *dwarf_block;
673 };
674
675 struct field
676 {
677 struct type *type () const
678 {
679 return this->m_type;
680 }
681
682 void set_type (struct type *type)
683 {
684 this->m_type = type;
685 }
686
687 union field_location loc;
688
689 /* * For a function or member type, this is 1 if the argument is
690 marked artificial. Artificial arguments should not be shown
691 to the user. For TYPE_CODE_RANGE it is set if the specific
692 bound is not defined. */
693
694 unsigned int artificial : 1;
695
696 /* * Discriminant for union field_location. */
697
698 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
699
700 /* * Size of this field, in bits, or zero if not packed.
701 If non-zero in an array type, indicates the element size in
702 bits (used only in Ada at the moment).
703 For an unpacked field, the field's type's length
704 says how many bytes the field occupies. */
705
706 unsigned int bitsize : 28;
707
708 /* * In a struct or union type, type of this field.
709 - In a function or member type, type of this argument.
710 - In an array type, the domain-type of the array. */
711
712 struct type *m_type;
713
714 /* * Name of field, value or argument.
715 NULL for range bounds, array domains, and member function
716 arguments. */
717
718 const char *name;
719 };
720
721 struct range_bounds
722 {
723 ULONGEST bit_stride () const
724 {
725 if (this->flag_is_byte_stride)
726 return this->stride.const_val () * 8;
727 else
728 return this->stride.const_val ();
729 }
730
731 /* * Low bound of range. */
732
733 struct dynamic_prop low;
734
735 /* * High bound of range. */
736
737 struct dynamic_prop high;
738
739 /* The stride value for this range. This can be stored in bits or bytes
740 based on the value of BYTE_STRIDE_P. It is optional to have a stride
741 value, if this range has no stride value defined then this will be set
742 to the constant zero. */
743
744 struct dynamic_prop stride;
745
746 /* * The bias. Sometimes a range value is biased before storage.
747 The bias is added to the stored bits to form the true value. */
748
749 LONGEST bias;
750
751 /* True if HIGH range bound contains the number of elements in the
752 subrange. This affects how the final high bound is computed. */
753
754 unsigned int flag_upper_bound_is_count : 1;
755
756 /* True if LOW or/and HIGH are resolved into a static bound from
757 a dynamic one. */
758
759 unsigned int flag_bound_evaluated : 1;
760
761 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
762
763 unsigned int flag_is_byte_stride : 1;
764 };
765
766 /* Compare two range_bounds objects for equality. Simply does
767 memberwise comparison. */
768 extern bool operator== (const range_bounds &l, const range_bounds &r);
769
770 /* Compare two range_bounds objects for inequality. */
771 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
772 {
773 return !(l == r);
774 }
775
776 union type_specific
777 {
778 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
779 point to cplus_struct_default, a default static instance of a
780 struct cplus_struct_type. */
781
782 struct cplus_struct_type *cplus_stuff;
783
784 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
785 provides additional information. */
786
787 struct gnat_aux_type *gnat_stuff;
788
789 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
790 floatformat object that describes the floating-point value
791 that resides within the type. */
792
793 const struct floatformat *floatformat;
794
795 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
796
797 struct func_type *func_stuff;
798
799 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
800 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
801 is a member of. */
802
803 struct type *self_type;
804 };
805
806 /* * Main structure representing a type in GDB.
807
808 This structure is space-critical. Its layout has been tweaked to
809 reduce the space used. */
810
811 struct main_type
812 {
813 /* * Code for kind of type. */
814
815 ENUM_BITFIELD(type_code) code : 8;
816
817 /* * Flags about this type. These fields appear at this location
818 because they packs nicely here. See the TYPE_* macros for
819 documentation about these fields. */
820
821 unsigned int m_flag_unsigned : 1;
822 unsigned int m_flag_nosign : 1;
823 unsigned int m_flag_stub : 1;
824 unsigned int m_flag_target_stub : 1;
825 unsigned int m_flag_prototyped : 1;
826 unsigned int m_flag_varargs : 1;
827 unsigned int flag_vector : 1;
828 unsigned int flag_stub_supported : 1;
829 unsigned int flag_gnu_ifunc : 1;
830 unsigned int flag_fixed_instance : 1;
831 unsigned int flag_objfile_owned : 1;
832 unsigned int flag_endianity_not_default : 1;
833
834 /* * True if this type was declared with "class" rather than
835 "struct". */
836
837 unsigned int flag_declared_class : 1;
838
839 /* * True if this is an enum type with disjoint values. This
840 affects how the enum is printed. */
841
842 unsigned int flag_flag_enum : 1;
843
844 /* * A discriminant telling us which field of the type_specific
845 union is being used for this type, if any. */
846
847 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
848
849 /* * Number of fields described for this type. This field appears
850 at this location because it packs nicely here. */
851
852 short nfields;
853
854 /* * Name of this type, or NULL if none.
855
856 This is used for printing only. For looking up a name, look for
857 a symbol in the VAR_DOMAIN. This is generally allocated in the
858 objfile's obstack. However coffread.c uses malloc. */
859
860 const char *name;
861
862 /* * Every type is now associated with a particular objfile, and the
863 type is allocated on the objfile_obstack for that objfile. One
864 problem however, is that there are times when gdb allocates new
865 types while it is not in the process of reading symbols from a
866 particular objfile. Fortunately, these happen when the type
867 being created is a derived type of an existing type, such as in
868 lookup_pointer_type(). So we can just allocate the new type
869 using the same objfile as the existing type, but to do this we
870 need a backpointer to the objfile from the existing type. Yes
871 this is somewhat ugly, but without major overhaul of the internal
872 type system, it can't be avoided for now. */
873
874 union type_owner owner;
875
876 /* * For a pointer type, describes the type of object pointed to.
877 - For an array type, describes the type of the elements.
878 - For a function or method type, describes the type of the return value.
879 - For a range type, describes the type of the full range.
880 - For a complex type, describes the type of each coordinate.
881 - For a special record or union type encoding a dynamic-sized type
882 in GNAT, a memoized pointer to a corresponding static version of
883 the type.
884 - Unused otherwise. */
885
886 struct type *target_type;
887
888 /* * For structure and union types, a description of each field.
889 For set and pascal array types, there is one "field",
890 whose type is the domain type of the set or array.
891 For range types, there are two "fields",
892 the minimum and maximum values (both inclusive).
893 For enum types, each possible value is described by one "field".
894 For a function or method type, a "field" for each parameter.
895 For C++ classes, there is one field for each base class (if it is
896 a derived class) plus one field for each class data member. Member
897 functions are recorded elsewhere.
898
899 Using a pointer to a separate array of fields
900 allows all types to have the same size, which is useful
901 because we can allocate the space for a type before
902 we know what to put in it. */
903
904 union
905 {
906 struct field *fields;
907
908 /* * Union member used for range types. */
909
910 struct range_bounds *bounds;
911
912 /* If this is a scalar type, then this is its corresponding
913 complex type. */
914 struct type *complex_type;
915
916 } flds_bnds;
917
918 /* * Slot to point to additional language-specific fields of this
919 type. */
920
921 union type_specific type_specific;
922
923 /* * Contains all dynamic type properties. */
924 struct dynamic_prop_list *dyn_prop_list;
925 };
926
927 /* * Number of bits allocated for alignment. */
928
929 #define TYPE_ALIGN_BITS 8
930
931 /* * A ``struct type'' describes a particular instance of a type, with
932 some particular qualification. */
933
934 struct type
935 {
936 /* Get the type code of this type.
937
938 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
939 type, you need to do `check_typedef (type)->code ()`. */
940 type_code code () const
941 {
942 return this->main_type->code;
943 }
944
945 /* Set the type code of this type. */
946 void set_code (type_code code)
947 {
948 this->main_type->code = code;
949 }
950
951 /* Get the name of this type. */
952 const char *name () const
953 {
954 return this->main_type->name;
955 }
956
957 /* Set the name of this type. */
958 void set_name (const char *name)
959 {
960 this->main_type->name = name;
961 }
962
963 /* Get the number of fields of this type. */
964 int num_fields () const
965 {
966 return this->main_type->nfields;
967 }
968
969 /* Set the number of fields of this type. */
970 void set_num_fields (int num_fields)
971 {
972 this->main_type->nfields = num_fields;
973 }
974
975 /* Get the fields array of this type. */
976 struct field *fields () const
977 {
978 return this->main_type->flds_bnds.fields;
979 }
980
981 /* Get the field at index IDX. */
982 struct field &field (int idx) const
983 {
984 return this->fields ()[idx];
985 }
986
987 /* Set the fields array of this type. */
988 void set_fields (struct field *fields)
989 {
990 this->main_type->flds_bnds.fields = fields;
991 }
992
993 type *index_type () const
994 {
995 return this->field (0).type ();
996 }
997
998 void set_index_type (type *index_type)
999 {
1000 this->field (0).set_type (index_type);
1001 }
1002
1003 /* Get the bounds bounds of this type. The type must be a range type. */
1004 range_bounds *bounds () const
1005 {
1006 switch (this->code ())
1007 {
1008 case TYPE_CODE_RANGE:
1009 return this->main_type->flds_bnds.bounds;
1010
1011 case TYPE_CODE_ARRAY:
1012 case TYPE_CODE_STRING:
1013 return this->index_type ()->bounds ();
1014
1015 default:
1016 gdb_assert_not_reached
1017 ("type::bounds called on type with invalid code");
1018 }
1019 }
1020
1021 /* Set the bounds of this type. The type must be a range type. */
1022 void set_bounds (range_bounds *bounds)
1023 {
1024 gdb_assert (this->code () == TYPE_CODE_RANGE);
1025
1026 this->main_type->flds_bnds.bounds = bounds;
1027 }
1028
1029 ULONGEST bit_stride () const
1030 {
1031 return this->bounds ()->bit_stride ();
1032 }
1033
1034 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1035 the type is signed (unless TYPE_NOSIGN is set). */
1036
1037 bool is_unsigned () const
1038 {
1039 return this->main_type->m_flag_unsigned;
1040 }
1041
1042 void set_is_unsigned (bool is_unsigned)
1043 {
1044 this->main_type->m_flag_unsigned = is_unsigned;
1045 }
1046
1047 /* No sign for this type. In C++, "char", "signed char", and
1048 "unsigned char" are distinct types; so we need an extra flag to
1049 indicate the absence of a sign! */
1050
1051 bool has_no_signedness () const
1052 {
1053 return this->main_type->m_flag_nosign;
1054 }
1055
1056 void set_has_no_signedness (bool has_no_signedness)
1057 {
1058 this->main_type->m_flag_nosign = has_no_signedness;
1059 }
1060
1061 /* This appears in a type's flags word if it is a stub type (e.g.,
1062 if someone referenced a type that wasn't defined in a source file
1063 via (struct sir_not_appearing_in_this_film *)). */
1064
1065 bool is_stub () const
1066 {
1067 return this->main_type->m_flag_stub;
1068 }
1069
1070 void set_is_stub (bool is_stub)
1071 {
1072 this->main_type->m_flag_stub = is_stub;
1073 }
1074
1075 /* The target type of this type is a stub type, and this type needs
1076 to be updated if it gets un-stubbed in check_typedef. Used for
1077 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1078 based on the TYPE_LENGTH of the target type. Also, set for
1079 TYPE_CODE_TYPEDEF. */
1080
1081 bool target_is_stub () const
1082 {
1083 return this->main_type->m_flag_target_stub;
1084 }
1085
1086 void set_target_is_stub (bool target_is_stub)
1087 {
1088 this->main_type->m_flag_target_stub = target_is_stub;
1089 }
1090
1091 /* This is a function type which appears to have a prototype. We
1092 need this for function calls in order to tell us if it's necessary
1093 to coerce the args, or to just do the standard conversions. This
1094 is used with a short field. */
1095
1096 bool is_prototyped () const
1097 {
1098 return this->main_type->m_flag_prototyped;
1099 }
1100
1101 void set_is_prototyped (bool is_prototyped)
1102 {
1103 this->main_type->m_flag_prototyped = is_prototyped;
1104 }
1105
1106 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1107 to functions. */
1108
1109 bool has_varargs () const
1110 {
1111 return this->main_type->m_flag_varargs;
1112 }
1113
1114 void set_has_varargs (bool has_varargs)
1115 {
1116 this->main_type->m_flag_varargs = has_varargs;
1117 }
1118
1119 /* * Return the dynamic property of the requested KIND from this type's
1120 list of dynamic properties. */
1121 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1122
1123 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1124 property to this type.
1125
1126 This function assumes that this type is objfile-owned. */
1127 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1128
1129 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1130 void remove_dyn_prop (dynamic_prop_node_kind kind);
1131
1132 /* * Type that is a pointer to this type.
1133 NULL if no such pointer-to type is known yet.
1134 The debugger may add the address of such a type
1135 if it has to construct one later. */
1136
1137 struct type *pointer_type;
1138
1139 /* * C++: also need a reference type. */
1140
1141 struct type *reference_type;
1142
1143 /* * A C++ rvalue reference type added in C++11. */
1144
1145 struct type *rvalue_reference_type;
1146
1147 /* * Variant chain. This points to a type that differs from this
1148 one only in qualifiers and length. Currently, the possible
1149 qualifiers are const, volatile, code-space, data-space, and
1150 address class. The length may differ only when one of the
1151 address class flags are set. The variants are linked in a
1152 circular ring and share MAIN_TYPE. */
1153
1154 struct type *chain;
1155
1156 /* * The alignment for this type. Zero means that the alignment was
1157 not specified in the debug info. Note that this is stored in a
1158 funny way: as the log base 2 (plus 1) of the alignment; so a
1159 value of 1 means the alignment is 1, and a value of 9 means the
1160 alignment is 256. */
1161
1162 unsigned align_log2 : TYPE_ALIGN_BITS;
1163
1164 /* * Flags specific to this instance of the type, indicating where
1165 on the ring we are.
1166
1167 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1168 binary or-ed with the target type, with a special case for
1169 address class and space class. For example if this typedef does
1170 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1171 instance flags are completely inherited from the target type. No
1172 qualifiers can be cleared by the typedef. See also
1173 check_typedef. */
1174 unsigned instance_flags : 9;
1175
1176 /* * Length of storage for a value of this type. The value is the
1177 expression in host bytes of what sizeof(type) would return. This
1178 size includes padding. For example, an i386 extended-precision
1179 floating point value really only occupies ten bytes, but most
1180 ABI's declare its size to be 12 bytes, to preserve alignment.
1181 A `struct type' representing such a floating-point type would
1182 have a `length' value of 12, even though the last two bytes are
1183 unused.
1184
1185 Since this field is expressed in host bytes, its value is appropriate
1186 to pass to memcpy and such (it is assumed that GDB itself always runs
1187 on an 8-bits addressable architecture). However, when using it for
1188 target address arithmetic (e.g. adding it to a target address), the
1189 type_length_units function should be used in order to get the length
1190 expressed in target addressable memory units. */
1191
1192 ULONGEST length;
1193
1194 /* * Core type, shared by a group of qualified types. */
1195
1196 struct main_type *main_type;
1197 };
1198
1199 struct fn_fieldlist
1200 {
1201
1202 /* * The overloaded name.
1203 This is generally allocated in the objfile's obstack.
1204 However stabsread.c sometimes uses malloc. */
1205
1206 const char *name;
1207
1208 /* * The number of methods with this name. */
1209
1210 int length;
1211
1212 /* * The list of methods. */
1213
1214 struct fn_field *fn_fields;
1215 };
1216
1217
1218
1219 struct fn_field
1220 {
1221 /* * If is_stub is clear, this is the mangled name which we can look
1222 up to find the address of the method (FIXME: it would be cleaner
1223 to have a pointer to the struct symbol here instead).
1224
1225 If is_stub is set, this is the portion of the mangled name which
1226 specifies the arguments. For example, "ii", if there are two int
1227 arguments, or "" if there are no arguments. See gdb_mangle_name
1228 for the conversion from this format to the one used if is_stub is
1229 clear. */
1230
1231 const char *physname;
1232
1233 /* * The function type for the method.
1234
1235 (This comment used to say "The return value of the method", but
1236 that's wrong. The function type is expected here, i.e. something
1237 with TYPE_CODE_METHOD, and *not* the return-value type). */
1238
1239 struct type *type;
1240
1241 /* * For virtual functions. First baseclass that defines this
1242 virtual function. */
1243
1244 struct type *fcontext;
1245
1246 /* Attributes. */
1247
1248 unsigned int is_const:1;
1249 unsigned int is_volatile:1;
1250 unsigned int is_private:1;
1251 unsigned int is_protected:1;
1252 unsigned int is_artificial:1;
1253
1254 /* * A stub method only has some fields valid (but they are enough
1255 to reconstruct the rest of the fields). */
1256
1257 unsigned int is_stub:1;
1258
1259 /* * True if this function is a constructor, false otherwise. */
1260
1261 unsigned int is_constructor : 1;
1262
1263 /* * True if this function is deleted, false otherwise. */
1264
1265 unsigned int is_deleted : 1;
1266
1267 /* * DW_AT_defaulted attribute for this function. The value is one
1268 of the DW_DEFAULTED constants. */
1269
1270 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1271
1272 /* * Unused. */
1273
1274 unsigned int dummy:6;
1275
1276 /* * Index into that baseclass's virtual function table, minus 2;
1277 else if static: VOFFSET_STATIC; else: 0. */
1278
1279 unsigned int voffset:16;
1280
1281 #define VOFFSET_STATIC 1
1282
1283 };
1284
1285 struct decl_field
1286 {
1287 /* * Unqualified name to be prefixed by owning class qualified
1288 name. */
1289
1290 const char *name;
1291
1292 /* * Type this typedef named NAME represents. */
1293
1294 struct type *type;
1295
1296 /* * True if this field was declared protected, false otherwise. */
1297 unsigned int is_protected : 1;
1298
1299 /* * True if this field was declared private, false otherwise. */
1300 unsigned int is_private : 1;
1301 };
1302
1303 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1304 TYPE_CODE_UNION nodes. */
1305
1306 struct cplus_struct_type
1307 {
1308 /* * Number of base classes this type derives from. The
1309 baseclasses are stored in the first N_BASECLASSES fields
1310 (i.e. the `fields' field of the struct type). The only fields
1311 of struct field that are used are: type, name, loc.bitpos. */
1312
1313 short n_baseclasses;
1314
1315 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1316 All access to this field must be through TYPE_VPTR_FIELDNO as one
1317 thing it does is check whether the field has been initialized.
1318 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1319 which for portability reasons doesn't initialize this field.
1320 TYPE_VPTR_FIELDNO returns -1 for this case.
1321
1322 If -1, we were unable to find the virtual function table pointer in
1323 initial symbol reading, and get_vptr_fieldno should be called to find
1324 it if possible. get_vptr_fieldno will update this field if possible.
1325 Otherwise the value is left at -1.
1326
1327 Unused if this type does not have virtual functions. */
1328
1329 short vptr_fieldno;
1330
1331 /* * Number of methods with unique names. All overloaded methods
1332 with the same name count only once. */
1333
1334 short nfn_fields;
1335
1336 /* * Number of template arguments. */
1337
1338 unsigned short n_template_arguments;
1339
1340 /* * One if this struct is a dynamic class, as defined by the
1341 Itanium C++ ABI: if it requires a virtual table pointer,
1342 because it or any of its base classes have one or more virtual
1343 member functions or virtual base classes. Minus one if not
1344 dynamic. Zero if not yet computed. */
1345
1346 int is_dynamic : 2;
1347
1348 /* * The calling convention for this type, fetched from the
1349 DW_AT_calling_convention attribute. The value is one of the
1350 DW_CC constants. */
1351
1352 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1353
1354 /* * The base class which defined the virtual function table pointer. */
1355
1356 struct type *vptr_basetype;
1357
1358 /* * For derived classes, the number of base classes is given by
1359 n_baseclasses and virtual_field_bits is a bit vector containing
1360 one bit per base class. If the base class is virtual, the
1361 corresponding bit will be set.
1362 I.E, given:
1363
1364 class A{};
1365 class B{};
1366 class C : public B, public virtual A {};
1367
1368 B is a baseclass of C; A is a virtual baseclass for C.
1369 This is a C++ 2.0 language feature. */
1370
1371 B_TYPE *virtual_field_bits;
1372
1373 /* * For classes with private fields, the number of fields is
1374 given by nfields and private_field_bits is a bit vector
1375 containing one bit per field.
1376
1377 If the field is private, the corresponding bit will be set. */
1378
1379 B_TYPE *private_field_bits;
1380
1381 /* * For classes with protected fields, the number of fields is
1382 given by nfields and protected_field_bits is a bit vector
1383 containing one bit per field.
1384
1385 If the field is private, the corresponding bit will be set. */
1386
1387 B_TYPE *protected_field_bits;
1388
1389 /* * For classes with fields to be ignored, either this is
1390 optimized out or this field has length 0. */
1391
1392 B_TYPE *ignore_field_bits;
1393
1394 /* * For classes, structures, and unions, a description of each
1395 field, which consists of an overloaded name, followed by the
1396 types of arguments that the method expects, and then the name
1397 after it has been renamed to make it distinct.
1398
1399 fn_fieldlists points to an array of nfn_fields of these. */
1400
1401 struct fn_fieldlist *fn_fieldlists;
1402
1403 /* * typedefs defined inside this class. typedef_field points to
1404 an array of typedef_field_count elements. */
1405
1406 struct decl_field *typedef_field;
1407
1408 unsigned typedef_field_count;
1409
1410 /* * The nested types defined by this type. nested_types points to
1411 an array of nested_types_count elements. */
1412
1413 struct decl_field *nested_types;
1414
1415 unsigned nested_types_count;
1416
1417 /* * The template arguments. This is an array with
1418 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1419 classes. */
1420
1421 struct symbol **template_arguments;
1422 };
1423
1424 /* * Struct used to store conversion rankings. */
1425
1426 struct rank
1427 {
1428 short rank;
1429
1430 /* * When two conversions are of the same type and therefore have
1431 the same rank, subrank is used to differentiate the two.
1432
1433 Eg: Two derived-class-pointer to base-class-pointer conversions
1434 would both have base pointer conversion rank, but the
1435 conversion with the shorter distance to the ancestor is
1436 preferable. 'subrank' would be used to reflect that. */
1437
1438 short subrank;
1439 };
1440
1441 /* * Used for ranking a function for overload resolution. */
1442
1443 typedef std::vector<rank> badness_vector;
1444
1445 /* * GNAT Ada-specific information for various Ada types. */
1446
1447 struct gnat_aux_type
1448 {
1449 /* * Parallel type used to encode information about dynamic types
1450 used in Ada (such as variant records, variable-size array,
1451 etc). */
1452 struct type* descriptive_type;
1453 };
1454
1455 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1456
1457 struct func_type
1458 {
1459 /* * The calling convention for targets supporting multiple ABIs.
1460 Right now this is only fetched from the Dwarf-2
1461 DW_AT_calling_convention attribute. The value is one of the
1462 DW_CC constants. */
1463
1464 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1465
1466 /* * Whether this function normally returns to its caller. It is
1467 set from the DW_AT_noreturn attribute if set on the
1468 DW_TAG_subprogram. */
1469
1470 unsigned int is_noreturn : 1;
1471
1472 /* * Only those DW_TAG_call_site's in this function that have
1473 DW_AT_call_tail_call set are linked in this list. Function
1474 without its tail call list complete
1475 (DW_AT_call_all_tail_calls or its superset
1476 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1477 DW_TAG_call_site's exist in such function. */
1478
1479 struct call_site *tail_call_list;
1480
1481 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1482 contains the method. */
1483
1484 struct type *self_type;
1485 };
1486
1487 /* struct call_site_parameter can be referenced in callees by several ways. */
1488
1489 enum call_site_parameter_kind
1490 {
1491 /* * Use field call_site_parameter.u.dwarf_reg. */
1492 CALL_SITE_PARAMETER_DWARF_REG,
1493
1494 /* * Use field call_site_parameter.u.fb_offset. */
1495 CALL_SITE_PARAMETER_FB_OFFSET,
1496
1497 /* * Use field call_site_parameter.u.param_offset. */
1498 CALL_SITE_PARAMETER_PARAM_OFFSET
1499 };
1500
1501 struct call_site_target
1502 {
1503 union field_location loc;
1504
1505 /* * Discriminant for union field_location. */
1506
1507 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1508 };
1509
1510 union call_site_parameter_u
1511 {
1512 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1513 as DWARF register number, for register passed
1514 parameters. */
1515
1516 int dwarf_reg;
1517
1518 /* * Offset from the callee's frame base, for stack passed
1519 parameters. This equals offset from the caller's stack
1520 pointer. */
1521
1522 CORE_ADDR fb_offset;
1523
1524 /* * Offset relative to the start of this PER_CU to
1525 DW_TAG_formal_parameter which is referenced by both
1526 caller and the callee. */
1527
1528 cu_offset param_cu_off;
1529 };
1530
1531 struct call_site_parameter
1532 {
1533 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1534
1535 union call_site_parameter_u u;
1536
1537 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1538
1539 const gdb_byte *value;
1540 size_t value_size;
1541
1542 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1543 It may be NULL if not provided by DWARF. */
1544
1545 const gdb_byte *data_value;
1546 size_t data_value_size;
1547 };
1548
1549 /* * A place where a function gets called from, represented by
1550 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1551
1552 struct call_site
1553 {
1554 /* * Address of the first instruction after this call. It must be
1555 the first field as we overload core_addr_hash and core_addr_eq
1556 for it. */
1557
1558 CORE_ADDR pc;
1559
1560 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1561
1562 struct call_site *tail_call_next;
1563
1564 /* * Describe DW_AT_call_target. Missing attribute uses
1565 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1566
1567 struct call_site_target target;
1568
1569 /* * Size of the PARAMETER array. */
1570
1571 unsigned parameter_count;
1572
1573 /* * CU of the function where the call is located. It gets used
1574 for DWARF blocks execution in the parameter array below. */
1575
1576 dwarf2_per_cu_data *per_cu;
1577
1578 /* objfile of the function where the call is located. */
1579
1580 dwarf2_per_objfile *per_objfile;
1581
1582 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1583
1584 struct call_site_parameter parameter[1];
1585 };
1586
1587 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1588 static structure. */
1589
1590 extern const struct cplus_struct_type cplus_struct_default;
1591
1592 extern void allocate_cplus_struct_type (struct type *);
1593
1594 #define INIT_CPLUS_SPECIFIC(type) \
1595 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1596 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1597 &cplus_struct_default)
1598
1599 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1600
1601 #define HAVE_CPLUS_STRUCT(type) \
1602 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1603 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1604
1605 #define INIT_NONE_SPECIFIC(type) \
1606 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1607 TYPE_MAIN_TYPE (type)->type_specific = {})
1608
1609 extern const struct gnat_aux_type gnat_aux_default;
1610
1611 extern void allocate_gnat_aux_type (struct type *);
1612
1613 #define INIT_GNAT_SPECIFIC(type) \
1614 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1615 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1616 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1617 /* * A macro that returns non-zero if the type-specific data should be
1618 read as "gnat-stuff". */
1619 #define HAVE_GNAT_AUX_INFO(type) \
1620 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1621
1622 /* * True if TYPE is known to be an Ada type of some kind. */
1623 #define ADA_TYPE_P(type) \
1624 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1625 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1626 && TYPE_FIXED_INSTANCE (type)))
1627
1628 #define INIT_FUNC_SPECIFIC(type) \
1629 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1630 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1631 TYPE_ZALLOC (type, \
1632 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1633
1634 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1635 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1636 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1637 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1638 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1639 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1640 #define TYPE_CHAIN(thistype) (thistype)->chain
1641 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1642 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1643 so you only have to call check_typedef once. Since allocate_value
1644 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1645 #define TYPE_LENGTH(thistype) (thistype)->length
1646
1647 /* * Return the alignment of the type in target addressable memory
1648 units, or 0 if no alignment was specified. */
1649 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1650
1651 /* * Return the alignment of the type in target addressable memory
1652 units, or 0 if no alignment was specified. */
1653 extern unsigned type_raw_align (struct type *);
1654
1655 /* * Return the alignment of the type in target addressable memory
1656 units. Return 0 if the alignment cannot be determined; but note
1657 that this makes an effort to compute the alignment even it it was
1658 not specified in the debug info. */
1659 extern unsigned type_align (struct type *);
1660
1661 /* * Set the alignment of the type. The alignment must be a power of
1662 2. Returns false if the given value does not fit in the available
1663 space in struct type. */
1664 extern bool set_type_align (struct type *, ULONGEST);
1665
1666 /* Property accessors for the type data location. */
1667 #define TYPE_DATA_LOCATION(thistype) \
1668 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1669 #define TYPE_DATA_LOCATION_BATON(thistype) \
1670 TYPE_DATA_LOCATION (thistype)->data.baton
1671 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1672 (TYPE_DATA_LOCATION (thistype)->const_val ())
1673 #define TYPE_DATA_LOCATION_KIND(thistype) \
1674 (TYPE_DATA_LOCATION (thistype)->kind ())
1675 #define TYPE_DYNAMIC_LENGTH(thistype) \
1676 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1677
1678 /* Property accessors for the type allocated/associated. */
1679 #define TYPE_ALLOCATED_PROP(thistype) \
1680 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1681 #define TYPE_ASSOCIATED_PROP(thistype) \
1682 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1683
1684 /* C++ */
1685
1686 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1687 /* Do not call this, use TYPE_SELF_TYPE. */
1688 extern struct type *internal_type_self_type (struct type *);
1689 extern void set_type_self_type (struct type *, struct type *);
1690
1691 extern int internal_type_vptr_fieldno (struct type *);
1692 extern void set_type_vptr_fieldno (struct type *, int);
1693 extern struct type *internal_type_vptr_basetype (struct type *);
1694 extern void set_type_vptr_basetype (struct type *, struct type *);
1695 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1696 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1697
1698 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1699 #define TYPE_SPECIFIC_FIELD(thistype) \
1700 TYPE_MAIN_TYPE(thistype)->type_specific_field
1701 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1702 where we're trying to print an Ada array using the C language.
1703 In that case, there is no "cplus_stuff", but the C language assumes
1704 that there is. What we do, in that case, is pretend that there is
1705 an implicit one which is the default cplus stuff. */
1706 #define TYPE_CPLUS_SPECIFIC(thistype) \
1707 (!HAVE_CPLUS_STRUCT(thistype) \
1708 ? (struct cplus_struct_type*)&cplus_struct_default \
1709 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1710 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1711 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1712 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1713 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1714 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1715 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1716 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1717 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1718 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1719 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1720 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1721 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1722 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1723 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1724 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1725 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1726
1727 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1728 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1729 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1730
1731 #define FIELD_NAME(thisfld) ((thisfld).name)
1732 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1733 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1734 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1735 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1736 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1737 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1738 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1739 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1740 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1741 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1742 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1743 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1744 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1745 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1746 #define SET_FIELD_PHYSNAME(thisfld, name) \
1747 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1748 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1749 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1750 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1751 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1752 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1753 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1754 FIELD_DWARF_BLOCK (thisfld) = (addr))
1755 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1756 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1757
1758 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1759 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1760 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1761 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1762 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1763 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1764 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1765 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1766 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1767 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1768
1769 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1770 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1771 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1772 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1773 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1774 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1775 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1776 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1777 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1778 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1779 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1780 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1781 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1782 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1783 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1784 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1785 #define TYPE_FIELD_PRIVATE(thistype, n) \
1786 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1787 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1788 #define TYPE_FIELD_PROTECTED(thistype, n) \
1789 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1790 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1791 #define TYPE_FIELD_IGNORE(thistype, n) \
1792 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1793 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1794 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1795 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1796 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1797
1798 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1799 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1800 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1801 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1802 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1803
1804 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1805 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1806 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1807 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1808 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1809 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1810
1811 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1812 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1813 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1814 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1815 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1816 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1817 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1818 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1819 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1820 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1821 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1822 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1823 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1824 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1825 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1826 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1827 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1828
1829 /* Accessors for typedefs defined by a class. */
1830 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1831 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1832 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1833 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1834 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1835 TYPE_TYPEDEF_FIELD (thistype, n).name
1836 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1837 TYPE_TYPEDEF_FIELD (thistype, n).type
1838 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1839 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1840 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1841 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1842 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1843 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1844
1845 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1846 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1847 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1848 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1849 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1850 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1851 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1852 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1853 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1854 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1855 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1856 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1857 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1858 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1859
1860 #define TYPE_IS_OPAQUE(thistype) \
1861 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1862 || ((thistype)->code () == TYPE_CODE_UNION)) \
1863 && ((thistype)->num_fields () == 0) \
1864 && (!HAVE_CPLUS_STRUCT (thistype) \
1865 || TYPE_NFN_FIELDS (thistype) == 0) \
1866 && ((thistype)->is_stub () || !TYPE_STUB_SUPPORTED (thistype)))
1867
1868 /* * A helper macro that returns the name of a type or "unnamed type"
1869 if the type has no name. */
1870
1871 #define TYPE_SAFE_NAME(type) \
1872 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1873
1874 /* * A helper macro that returns the name of an error type. If the
1875 type has a name, it is used; otherwise, a default is used. */
1876
1877 #define TYPE_ERROR_NAME(type) \
1878 (type->name () ? type->name () : _("<error type>"))
1879
1880 /* Given TYPE, return its floatformat. */
1881 const struct floatformat *floatformat_from_type (const struct type *type);
1882
1883 struct builtin_type
1884 {
1885 /* Integral types. */
1886
1887 /* Implicit size/sign (based on the architecture's ABI). */
1888 struct type *builtin_void;
1889 struct type *builtin_char;
1890 struct type *builtin_short;
1891 struct type *builtin_int;
1892 struct type *builtin_long;
1893 struct type *builtin_signed_char;
1894 struct type *builtin_unsigned_char;
1895 struct type *builtin_unsigned_short;
1896 struct type *builtin_unsigned_int;
1897 struct type *builtin_unsigned_long;
1898 struct type *builtin_bfloat16;
1899 struct type *builtin_half;
1900 struct type *builtin_float;
1901 struct type *builtin_double;
1902 struct type *builtin_long_double;
1903 struct type *builtin_complex;
1904 struct type *builtin_double_complex;
1905 struct type *builtin_string;
1906 struct type *builtin_bool;
1907 struct type *builtin_long_long;
1908 struct type *builtin_unsigned_long_long;
1909 struct type *builtin_decfloat;
1910 struct type *builtin_decdouble;
1911 struct type *builtin_declong;
1912
1913 /* "True" character types.
1914 We use these for the '/c' print format, because c_char is just a
1915 one-byte integral type, which languages less laid back than C
1916 will print as ... well, a one-byte integral type. */
1917 struct type *builtin_true_char;
1918 struct type *builtin_true_unsigned_char;
1919
1920 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1921 is for when an architecture needs to describe a register that has
1922 no size. */
1923 struct type *builtin_int0;
1924 struct type *builtin_int8;
1925 struct type *builtin_uint8;
1926 struct type *builtin_int16;
1927 struct type *builtin_uint16;
1928 struct type *builtin_int24;
1929 struct type *builtin_uint24;
1930 struct type *builtin_int32;
1931 struct type *builtin_uint32;
1932 struct type *builtin_int64;
1933 struct type *builtin_uint64;
1934 struct type *builtin_int128;
1935 struct type *builtin_uint128;
1936
1937 /* Wide character types. */
1938 struct type *builtin_char16;
1939 struct type *builtin_char32;
1940 struct type *builtin_wchar;
1941
1942 /* Pointer types. */
1943
1944 /* * `pointer to data' type. Some target platforms use an implicitly
1945 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1946 struct type *builtin_data_ptr;
1947
1948 /* * `pointer to function (returning void)' type. Harvard
1949 architectures mean that ABI function and code pointers are not
1950 interconvertible. Similarly, since ANSI, C standards have
1951 explicitly said that pointers to functions and pointers to data
1952 are not interconvertible --- that is, you can't cast a function
1953 pointer to void * and back, and expect to get the same value.
1954 However, all function pointer types are interconvertible, so void
1955 (*) () can server as a generic function pointer. */
1956
1957 struct type *builtin_func_ptr;
1958
1959 /* * `function returning pointer to function (returning void)' type.
1960 The final void return type is not significant for it. */
1961
1962 struct type *builtin_func_func;
1963
1964 /* Special-purpose types. */
1965
1966 /* * This type is used to represent a GDB internal function. */
1967
1968 struct type *internal_fn;
1969
1970 /* * This type is used to represent an xmethod. */
1971 struct type *xmethod;
1972 };
1973
1974 /* * Return the type table for the specified architecture. */
1975
1976 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1977
1978 /* * Per-objfile types used by symbol readers. */
1979
1980 struct objfile_type
1981 {
1982 /* Basic types based on the objfile architecture. */
1983 struct type *builtin_void;
1984 struct type *builtin_char;
1985 struct type *builtin_short;
1986 struct type *builtin_int;
1987 struct type *builtin_long;
1988 struct type *builtin_long_long;
1989 struct type *builtin_signed_char;
1990 struct type *builtin_unsigned_char;
1991 struct type *builtin_unsigned_short;
1992 struct type *builtin_unsigned_int;
1993 struct type *builtin_unsigned_long;
1994 struct type *builtin_unsigned_long_long;
1995 struct type *builtin_half;
1996 struct type *builtin_float;
1997 struct type *builtin_double;
1998 struct type *builtin_long_double;
1999
2000 /* * This type is used to represent symbol addresses. */
2001 struct type *builtin_core_addr;
2002
2003 /* * This type represents a type that was unrecognized in symbol
2004 read-in. */
2005 struct type *builtin_error;
2006
2007 /* * Types used for symbols with no debug information. */
2008 struct type *nodebug_text_symbol;
2009 struct type *nodebug_text_gnu_ifunc_symbol;
2010 struct type *nodebug_got_plt_symbol;
2011 struct type *nodebug_data_symbol;
2012 struct type *nodebug_unknown_symbol;
2013 struct type *nodebug_tls_symbol;
2014 };
2015
2016 /* * Return the type table for the specified objfile. */
2017
2018 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2019
2020 /* Explicit floating-point formats. See "floatformat.h". */
2021 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2022 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2023 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2024 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2025 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2026 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2027 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2028 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2029 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2030 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2031 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2032 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2033 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2034
2035 /* Allocate space for storing data associated with a particular
2036 type. We ensure that the space is allocated using the same
2037 mechanism that was used to allocate the space for the type
2038 structure itself. I.e. if the type is on an objfile's
2039 objfile_obstack, then the space for data associated with that type
2040 will also be allocated on the objfile_obstack. If the type is
2041 associated with a gdbarch, then the space for data associated with that
2042 type will also be allocated on the gdbarch_obstack.
2043
2044 If a type is not associated with neither an objfile or a gdbarch then
2045 you should not use this macro to allocate space for data, instead you
2046 should call xmalloc directly, and ensure the memory is correctly freed
2047 when it is no longer needed. */
2048
2049 #define TYPE_ALLOC(t,size) \
2050 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2051 ? &TYPE_OBJFILE (t)->objfile_obstack \
2052 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2053 size))
2054
2055
2056 /* See comment on TYPE_ALLOC. */
2057
2058 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2059
2060 /* Use alloc_type to allocate a type owned by an objfile. Use
2061 alloc_type_arch to allocate a type owned by an architecture. Use
2062 alloc_type_copy to allocate a type with the same owner as a
2063 pre-existing template type, no matter whether objfile or
2064 gdbarch. */
2065 extern struct type *alloc_type (struct objfile *);
2066 extern struct type *alloc_type_arch (struct gdbarch *);
2067 extern struct type *alloc_type_copy (const struct type *);
2068
2069 /* * Return the type's architecture. For types owned by an
2070 architecture, that architecture is returned. For types owned by an
2071 objfile, that objfile's architecture is returned. */
2072
2073 extern struct gdbarch *get_type_arch (const struct type *);
2074
2075 /* * This returns the target type (or NULL) of TYPE, also skipping
2076 past typedefs. */
2077
2078 extern struct type *get_target_type (struct type *type);
2079
2080 /* Return the equivalent of TYPE_LENGTH, but in number of target
2081 addressable memory units of the associated gdbarch instead of bytes. */
2082
2083 extern unsigned int type_length_units (struct type *type);
2084
2085 /* * Helper function to construct objfile-owned types. */
2086
2087 extern struct type *init_type (struct objfile *, enum type_code, int,
2088 const char *);
2089 extern struct type *init_integer_type (struct objfile *, int, int,
2090 const char *);
2091 extern struct type *init_character_type (struct objfile *, int, int,
2092 const char *);
2093 extern struct type *init_boolean_type (struct objfile *, int, int,
2094 const char *);
2095 extern struct type *init_float_type (struct objfile *, int, const char *,
2096 const struct floatformat **,
2097 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2098 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2099 extern struct type *init_complex_type (const char *, struct type *);
2100 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2101 struct type *);
2102
2103 /* Helper functions to construct architecture-owned types. */
2104 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2105 const char *);
2106 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2107 const char *);
2108 extern struct type *arch_character_type (struct gdbarch *, int, int,
2109 const char *);
2110 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2111 const char *);
2112 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2113 const struct floatformat **);
2114 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2115 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2116 struct type *);
2117
2118 /* Helper functions to construct a struct or record type. An
2119 initially empty type is created using arch_composite_type().
2120 Fields are then added using append_composite_type_field*(). A union
2121 type has its size set to the largest field. A struct type has each
2122 field packed against the previous. */
2123
2124 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2125 const char *name, enum type_code code);
2126 extern void append_composite_type_field (struct type *t, const char *name,
2127 struct type *field);
2128 extern void append_composite_type_field_aligned (struct type *t,
2129 const char *name,
2130 struct type *field,
2131 int alignment);
2132 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2133 struct type *field);
2134
2135 /* Helper functions to construct a bit flags type. An initially empty
2136 type is created using arch_flag_type(). Flags are then added using
2137 append_flag_type_field() and append_flag_type_flag(). */
2138 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2139 const char *name, int bit);
2140 extern void append_flags_type_field (struct type *type,
2141 int start_bitpos, int nr_bits,
2142 struct type *field_type, const char *name);
2143 extern void append_flags_type_flag (struct type *type, int bitpos,
2144 const char *name);
2145
2146 extern void make_vector_type (struct type *array_type);
2147 extern struct type *init_vector_type (struct type *elt_type, int n);
2148
2149 extern struct type *lookup_reference_type (struct type *, enum type_code);
2150 extern struct type *lookup_lvalue_reference_type (struct type *);
2151 extern struct type *lookup_rvalue_reference_type (struct type *);
2152
2153
2154 extern struct type *make_reference_type (struct type *, struct type **,
2155 enum type_code);
2156
2157 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2158
2159 extern struct type *make_restrict_type (struct type *);
2160
2161 extern struct type *make_unqualified_type (struct type *);
2162
2163 extern struct type *make_atomic_type (struct type *);
2164
2165 extern void replace_type (struct type *, struct type *);
2166
2167 extern int address_space_name_to_int (struct gdbarch *, const char *);
2168
2169 extern const char *address_space_int_to_name (struct gdbarch *, int);
2170
2171 extern struct type *make_type_with_address_space (struct type *type,
2172 int space_identifier);
2173
2174 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2175
2176 extern struct type *lookup_methodptr_type (struct type *);
2177
2178 extern void smash_to_method_type (struct type *type, struct type *self_type,
2179 struct type *to_type, struct field *args,
2180 int nargs, int varargs);
2181
2182 extern void smash_to_memberptr_type (struct type *, struct type *,
2183 struct type *);
2184
2185 extern void smash_to_methodptr_type (struct type *, struct type *);
2186
2187 extern struct type *allocate_stub_method (struct type *);
2188
2189 extern const char *type_name_or_error (struct type *type);
2190
2191 struct struct_elt
2192 {
2193 /* The field of the element, or NULL if no element was found. */
2194 struct field *field;
2195
2196 /* The bit offset of the element in the parent structure. */
2197 LONGEST offset;
2198 };
2199
2200 /* Given a type TYPE, lookup the field and offset of the component named
2201 NAME.
2202
2203 TYPE can be either a struct or union, or a pointer or reference to
2204 a struct or union. If it is a pointer or reference, its target
2205 type is automatically used. Thus '.' and '->' are interchangable,
2206 as specified for the definitions of the expression element types
2207 STRUCTOP_STRUCT and STRUCTOP_PTR.
2208
2209 If NOERR is nonzero, the returned structure will have field set to
2210 NULL if there is no component named NAME.
2211
2212 If the component NAME is a field in an anonymous substructure of
2213 TYPE, the returned offset is a "global" offset relative to TYPE
2214 rather than an offset within the substructure. */
2215
2216 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2217
2218 /* Given a type TYPE, lookup the type of the component named NAME.
2219
2220 TYPE can be either a struct or union, or a pointer or reference to
2221 a struct or union. If it is a pointer or reference, its target
2222 type is automatically used. Thus '.' and '->' are interchangable,
2223 as specified for the definitions of the expression element types
2224 STRUCTOP_STRUCT and STRUCTOP_PTR.
2225
2226 If NOERR is nonzero, return NULL if there is no component named
2227 NAME. */
2228
2229 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2230
2231 extern struct type *make_pointer_type (struct type *, struct type **);
2232
2233 extern struct type *lookup_pointer_type (struct type *);
2234
2235 extern struct type *make_function_type (struct type *, struct type **);
2236
2237 extern struct type *lookup_function_type (struct type *);
2238
2239 extern struct type *lookup_function_type_with_arguments (struct type *,
2240 int,
2241 struct type **);
2242
2243 extern struct type *create_static_range_type (struct type *, struct type *,
2244 LONGEST, LONGEST);
2245
2246
2247 extern struct type *create_array_type_with_stride
2248 (struct type *, struct type *, struct type *,
2249 struct dynamic_prop *, unsigned int);
2250
2251 extern struct type *create_range_type (struct type *, struct type *,
2252 const struct dynamic_prop *,
2253 const struct dynamic_prop *,
2254 LONGEST);
2255
2256 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2257 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2258 stride. */
2259
2260 extern struct type * create_range_type_with_stride
2261 (struct type *result_type, struct type *index_type,
2262 const struct dynamic_prop *low_bound,
2263 const struct dynamic_prop *high_bound, LONGEST bias,
2264 const struct dynamic_prop *stride, bool byte_stride_p);
2265
2266 extern struct type *create_array_type (struct type *, struct type *,
2267 struct type *);
2268
2269 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2270
2271 extern struct type *create_string_type (struct type *, struct type *,
2272 struct type *);
2273 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2274
2275 extern struct type *create_set_type (struct type *, struct type *);
2276
2277 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2278 const char *);
2279
2280 extern struct type *lookup_signed_typename (const struct language_defn *,
2281 const char *);
2282
2283 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2284
2285 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2286
2287 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2288 ADDR specifies the location of the variable the type is bound to.
2289 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2290 static properties is returned. */
2291 extern struct type *resolve_dynamic_type
2292 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2293 CORE_ADDR addr);
2294
2295 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2296 extern int is_dynamic_type (struct type *type);
2297
2298 extern struct type *check_typedef (struct type *);
2299
2300 extern void check_stub_method_group (struct type *, int);
2301
2302 extern char *gdb_mangle_name (struct type *, int, int);
2303
2304 extern struct type *lookup_typename (const struct language_defn *,
2305 const char *, const struct block *, int);
2306
2307 extern struct type *lookup_template_type (const char *, struct type *,
2308 const struct block *);
2309
2310 extern int get_vptr_fieldno (struct type *, struct type **);
2311
2312 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2313
2314 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2315 LONGEST *high_bound);
2316
2317 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2318
2319 extern int class_types_same_p (const struct type *, const struct type *);
2320
2321 extern int is_ancestor (struct type *, struct type *);
2322
2323 extern int is_public_ancestor (struct type *, struct type *);
2324
2325 extern int is_unique_ancestor (struct type *, struct value *);
2326
2327 /* Overload resolution */
2328
2329 /* * Badness if parameter list length doesn't match arg list length. */
2330 extern const struct rank LENGTH_MISMATCH_BADNESS;
2331
2332 /* * Dummy badness value for nonexistent parameter positions. */
2333 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2334 /* * Badness if no conversion among types. */
2335 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2336
2337 /* * Badness of an exact match. */
2338 extern const struct rank EXACT_MATCH_BADNESS;
2339
2340 /* * Badness of integral promotion. */
2341 extern const struct rank INTEGER_PROMOTION_BADNESS;
2342 /* * Badness of floating promotion. */
2343 extern const struct rank FLOAT_PROMOTION_BADNESS;
2344 /* * Badness of converting a derived class pointer
2345 to a base class pointer. */
2346 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2347 /* * Badness of integral conversion. */
2348 extern const struct rank INTEGER_CONVERSION_BADNESS;
2349 /* * Badness of floating conversion. */
2350 extern const struct rank FLOAT_CONVERSION_BADNESS;
2351 /* * Badness of integer<->floating conversions. */
2352 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2353 /* * Badness of conversion of pointer to void pointer. */
2354 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2355 /* * Badness of conversion to boolean. */
2356 extern const struct rank BOOL_CONVERSION_BADNESS;
2357 /* * Badness of converting derived to base class. */
2358 extern const struct rank BASE_CONVERSION_BADNESS;
2359 /* * Badness of converting from non-reference to reference. Subrank
2360 is the type of reference conversion being done. */
2361 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2362 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2363 /* * Conversion to rvalue reference. */
2364 #define REFERENCE_CONVERSION_RVALUE 1
2365 /* * Conversion to const lvalue reference. */
2366 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2367
2368 /* * Badness of converting integer 0 to NULL pointer. */
2369 extern const struct rank NULL_POINTER_CONVERSION;
2370 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2371 being done. */
2372 extern const struct rank CV_CONVERSION_BADNESS;
2373 #define CV_CONVERSION_CONST 1
2374 #define CV_CONVERSION_VOLATILE 2
2375
2376 /* Non-standard conversions allowed by the debugger */
2377
2378 /* * Converting a pointer to an int is usually OK. */
2379 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2380
2381 /* * Badness of converting a (non-zero) integer constant
2382 to a pointer. */
2383 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2384
2385 extern struct rank sum_ranks (struct rank a, struct rank b);
2386 extern int compare_ranks (struct rank a, struct rank b);
2387
2388 extern int compare_badness (const badness_vector &,
2389 const badness_vector &);
2390
2391 extern badness_vector rank_function (gdb::array_view<type *> parms,
2392 gdb::array_view<value *> args);
2393
2394 extern struct rank rank_one_type (struct type *, struct type *,
2395 struct value *);
2396
2397 extern void recursive_dump_type (struct type *, int);
2398
2399 extern int field_is_static (struct field *);
2400
2401 /* printcmd.c */
2402
2403 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2404 const struct value_print_options *,
2405 int, struct ui_file *);
2406
2407 extern int can_dereference (struct type *);
2408
2409 extern int is_integral_type (struct type *);
2410
2411 extern int is_floating_type (struct type *);
2412
2413 extern int is_scalar_type (struct type *type);
2414
2415 extern int is_scalar_type_recursive (struct type *);
2416
2417 extern int class_or_union_p (const struct type *);
2418
2419 extern void maintenance_print_type (const char *, int);
2420
2421 extern htab_t create_copied_types_hash (struct objfile *objfile);
2422
2423 extern struct type *copy_type_recursive (struct objfile *objfile,
2424 struct type *type,
2425 htab_t copied_types);
2426
2427 extern struct type *copy_type (const struct type *type);
2428
2429 extern bool types_equal (struct type *, struct type *);
2430
2431 extern bool types_deeply_equal (struct type *, struct type *);
2432
2433 extern int type_not_allocated (const struct type *type);
2434
2435 extern int type_not_associated (const struct type *type);
2436
2437 /* * When the type includes explicit byte ordering, return that.
2438 Otherwise, the byte ordering from gdbarch_byte_order for
2439 get_type_arch is returned. */
2440
2441 extern enum bfd_endian type_byte_order (const struct type *type);
2442
2443 /* A flag to enable printing of debugging information of C++
2444 overloading. */
2445
2446 extern unsigned int overload_debug;
2447
2448 #endif /* GDBTYPES_H */
This page took 0.085098 seconds and 5 git commands to generate.