daf10417842fecde9f066a4c767f34ab452745ea
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_debug_printf_1 (const char *func_name, const char *fmt, ...)
109 {
110 va_list ap;
111 va_start (ap, fmt);
112 debug_prefixed_vprintf ("infrun", func_name, fmt, ap);
113 va_end (ap);
114 }
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 infrun_debug_printf ("enable=%d", enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132 }
133
134 /* See infrun.h. */
135
136 void
137 mark_infrun_async_event_handler (void)
138 {
139 mark_async_event_handler (infrun_async_inferior_event_token);
140 }
141
142 /* When set, stop the 'step' command if we enter a function which has
143 no line number information. The normal behavior is that we step
144 over such function. */
145 bool step_stop_if_no_debug = false;
146 static void
147 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
151 }
152
153 /* proceed and normal_stop use this to notify the user when the
154 inferior stopped in a different thread than it had been running
155 in. */
156
157 static ptid_t previous_inferior_ptid;
158
159 /* If set (default for legacy reasons), when following a fork, GDB
160 will detach from one of the fork branches, child or parent.
161 Exactly which branch is detached depends on 'set follow-fork-mode'
162 setting. */
163
164 static bool detach_fork = true;
165
166 bool debug_displaced = false;
167 static void
168 show_debug_displaced (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
172 }
173
174 unsigned int debug_infrun = 0;
175 static void
176 show_debug_infrun (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
180 }
181
182
183 /* Support for disabling address space randomization. */
184
185 bool disable_randomization = true;
186
187 static void
188 show_disable_randomization (struct ui_file *file, int from_tty,
189 struct cmd_list_element *c, const char *value)
190 {
191 if (target_supports_disable_randomization ())
192 fprintf_filtered (file,
193 _("Disabling randomization of debuggee's "
194 "virtual address space is %s.\n"),
195 value);
196 else
197 fputs_filtered (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform.\n"), file);
200 }
201
202 static void
203 set_disable_randomization (const char *args, int from_tty,
204 struct cmd_list_element *c)
205 {
206 if (!target_supports_disable_randomization ())
207 error (_("Disabling randomization of debuggee's "
208 "virtual address space is unsupported on\n"
209 "this platform."));
210 }
211
212 /* User interface for non-stop mode. */
213
214 bool non_stop = false;
215 static bool non_stop_1 = false;
216
217 static void
218 set_non_stop (const char *args, int from_tty,
219 struct cmd_list_element *c)
220 {
221 if (target_has_execution ())
222 {
223 non_stop_1 = non_stop;
224 error (_("Cannot change this setting while the inferior is running."));
225 }
226
227 non_stop = non_stop_1;
228 }
229
230 static void
231 show_non_stop (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file,
235 _("Controlling the inferior in non-stop mode is %s.\n"),
236 value);
237 }
238
239 /* "Observer mode" is somewhat like a more extreme version of
240 non-stop, in which all GDB operations that might affect the
241 target's execution have been disabled. */
242
243 bool observer_mode = false;
244 static bool observer_mode_1 = false;
245
246 static void
247 set_observer_mode (const char *args, int from_tty,
248 struct cmd_list_element *c)
249 {
250 if (target_has_execution ())
251 {
252 observer_mode_1 = observer_mode;
253 error (_("Cannot change this setting while the inferior is running."));
254 }
255
256 observer_mode = observer_mode_1;
257
258 may_write_registers = !observer_mode;
259 may_write_memory = !observer_mode;
260 may_insert_breakpoints = !observer_mode;
261 may_insert_tracepoints = !observer_mode;
262 /* We can insert fast tracepoints in or out of observer mode,
263 but enable them if we're going into this mode. */
264 if (observer_mode)
265 may_insert_fast_tracepoints = true;
266 may_stop = !observer_mode;
267 update_target_permissions ();
268
269 /* Going *into* observer mode we must force non-stop, then
270 going out we leave it that way. */
271 if (observer_mode)
272 {
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = true;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280 }
281
282 static void
283 show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285 {
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287 }
288
289 /* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295 void
296 update_observer_mode (void)
297 {
298 bool newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310 }
311
312 /* Tables of how to react to signals; the user sets them. */
313
314 static unsigned char signal_stop[GDB_SIGNAL_LAST];
315 static unsigned char signal_print[GDB_SIGNAL_LAST];
316 static unsigned char signal_program[GDB_SIGNAL_LAST];
317
318 /* Table of signals that are registered with "catch signal". A
319 non-zero entry indicates that the signal is caught by some "catch
320 signal" command. */
321 static unsigned char signal_catch[GDB_SIGNAL_LAST];
322
323 /* Table of signals that the target may silently handle.
324 This is automatically determined from the flags above,
325 and simply cached here. */
326 static unsigned char signal_pass[GDB_SIGNAL_LAST];
327
328 #define SET_SIGS(nsigs,sigs,flags) \
329 do { \
330 int signum = (nsigs); \
331 while (signum-- > 0) \
332 if ((sigs)[signum]) \
333 (flags)[signum] = 1; \
334 } while (0)
335
336 #define UNSET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 0; \
342 } while (0)
343
344 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
345 this function is to avoid exporting `signal_program'. */
346
347 void
348 update_signals_program_target (void)
349 {
350 target_program_signals (signal_program);
351 }
352
353 /* Value to pass to target_resume() to cause all threads to resume. */
354
355 #define RESUME_ALL minus_one_ptid
356
357 /* Command list pointer for the "stop" placeholder. */
358
359 static struct cmd_list_element *stop_command;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364
365 /* Enable or disable optional shared library event breakpoints
366 as appropriate when the above flag is changed. */
367
368 static void
369 set_stop_on_solib_events (const char *args,
370 int from_tty, struct cmd_list_element *c)
371 {
372 update_solib_breakpoints ();
373 }
374
375 static void
376 show_stop_on_solib_events (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
380 value);
381 }
382
383 /* Nonzero after stop if current stack frame should be printed. */
384
385 static int stop_print_frame;
386
387 /* This is a cached copy of the target/ptid/waitstatus of the last
388 event returned by target_wait()/deprecated_target_wait_hook().
389 This information is returned by get_last_target_status(). */
390 static process_stratum_target *target_last_proc_target;
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 void init_thread_stepping_state (struct thread_info *tss);
395
396 static const char follow_fork_mode_child[] = "child";
397 static const char follow_fork_mode_parent[] = "parent";
398
399 static const char *const follow_fork_mode_kind_names[] = {
400 follow_fork_mode_child,
401 follow_fork_mode_parent,
402 NULL
403 };
404
405 static const char *follow_fork_mode_string = follow_fork_mode_parent;
406 static void
407 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
408 struct cmd_list_element *c, const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger response to a program "
412 "call of fork or vfork is \"%s\".\n"),
413 value);
414 }
415 \f
416
417 /* Handle changes to the inferior list based on the type of fork,
418 which process is being followed, and whether the other process
419 should be detached. On entry inferior_ptid must be the ptid of
420 the fork parent. At return inferior_ptid is the ptid of the
421 followed inferior. */
422
423 static bool
424 follow_fork_inferior (bool follow_child, bool detach_fork)
425 {
426 int has_vforked;
427 ptid_t parent_ptid, child_ptid;
428
429 has_vforked = (inferior_thread ()->pending_follow.kind
430 == TARGET_WAITKIND_VFORKED);
431 parent_ptid = inferior_ptid;
432 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
433
434 if (has_vforked
435 && !non_stop /* Non-stop always resumes both branches. */
436 && current_ui->prompt_state == PROMPT_BLOCKED
437 && !(follow_child || detach_fork || sched_multi))
438 {
439 /* The parent stays blocked inside the vfork syscall until the
440 child execs or exits. If we don't let the child run, then
441 the parent stays blocked. If we're telling the parent to run
442 in the foreground, the user will not be able to ctrl-c to get
443 back the terminal, effectively hanging the debug session. */
444 fprintf_filtered (gdb_stderr, _("\
445 Can not resume the parent process over vfork in the foreground while\n\
446 holding the child stopped. Try \"set detach-on-fork\" or \
447 \"set schedule-multiple\".\n"));
448 return 1;
449 }
450
451 if (!follow_child)
452 {
453 /* Detach new forked process? */
454 if (detach_fork)
455 {
456 /* Before detaching from the child, remove all breakpoints
457 from it. If we forked, then this has already been taken
458 care of by infrun.c. If we vforked however, any
459 breakpoint inserted in the parent is visible in the
460 child, even those added while stopped in a vfork
461 catchpoint. This will remove the breakpoints from the
462 parent also, but they'll be reinserted below. */
463 if (has_vforked)
464 {
465 /* Keep breakpoints list in sync. */
466 remove_breakpoints_inf (current_inferior ());
467 }
468
469 if (print_inferior_events)
470 {
471 /* Ensure that we have a process ptid. */
472 ptid_t process_ptid = ptid_t (child_ptid.pid ());
473
474 target_terminal::ours_for_output ();
475 fprintf_filtered (gdb_stdlog,
476 _("[Detaching after %s from child %s]\n"),
477 has_vforked ? "vfork" : "fork",
478 target_pid_to_str (process_ptid).c_str ());
479 }
480 }
481 else
482 {
483 struct inferior *parent_inf, *child_inf;
484
485 /* Add process to GDB's tables. */
486 child_inf = add_inferior (child_ptid.pid ());
487
488 parent_inf = current_inferior ();
489 child_inf->attach_flag = parent_inf->attach_flag;
490 copy_terminal_info (child_inf, parent_inf);
491 child_inf->gdbarch = parent_inf->gdbarch;
492 copy_inferior_target_desc_info (child_inf, parent_inf);
493
494 scoped_restore_current_pspace_and_thread restore_pspace_thread;
495
496 set_current_inferior (child_inf);
497 switch_to_no_thread ();
498 child_inf->symfile_flags = SYMFILE_NO_READ;
499 push_target (parent_inf->process_target ());
500 thread_info *child_thr
501 = add_thread_silent (child_inf->process_target (), child_ptid);
502
503 /* If this is a vfork child, then the address-space is
504 shared with the parent. */
505 if (has_vforked)
506 {
507 child_inf->pspace = parent_inf->pspace;
508 child_inf->aspace = parent_inf->aspace;
509
510 exec_on_vfork ();
511
512 /* The parent will be frozen until the child is done
513 with the shared region. Keep track of the
514 parent. */
515 child_inf->vfork_parent = parent_inf;
516 child_inf->pending_detach = 0;
517 parent_inf->vfork_child = child_inf;
518 parent_inf->pending_detach = 0;
519
520 /* Now that the inferiors and program spaces are all
521 wired up, we can switch to the child thread (which
522 switches inferior and program space too). */
523 switch_to_thread (child_thr);
524 }
525 else
526 {
527 child_inf->aspace = new_address_space ();
528 child_inf->pspace = new program_space (child_inf->aspace);
529 child_inf->removable = 1;
530 set_current_program_space (child_inf->pspace);
531 clone_program_space (child_inf->pspace, parent_inf->pspace);
532
533 /* solib_create_inferior_hook relies on the current
534 thread. */
535 switch_to_thread (child_thr);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545 }
546
547 if (has_vforked)
548 {
549 struct inferior *parent_inf;
550
551 parent_inf = current_inferior ();
552
553 /* If we detached from the child, then we have to be careful
554 to not insert breakpoints in the parent until the child
555 is done with the shared memory region. However, if we're
556 staying attached to the child, then we can and should
557 insert breakpoints, so that we can debug it. A
558 subsequent child exec or exit is enough to know when does
559 the child stops using the parent's address space. */
560 parent_inf->waiting_for_vfork_done = detach_fork;
561 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
562 }
563 }
564 else
565 {
566 /* Follow the child. */
567 struct inferior *parent_inf, *child_inf;
568 struct program_space *parent_pspace;
569
570 if (print_inferior_events)
571 {
572 std::string parent_pid = target_pid_to_str (parent_ptid);
573 std::string child_pid = target_pid_to_str (child_ptid);
574
575 target_terminal::ours_for_output ();
576 fprintf_filtered (gdb_stdlog,
577 _("[Attaching after %s %s to child %s]\n"),
578 parent_pid.c_str (),
579 has_vforked ? "vfork" : "fork",
580 child_pid.c_str ());
581 }
582
583 /* Add the new inferior first, so that the target_detach below
584 doesn't unpush the target. */
585
586 child_inf = add_inferior (child_ptid.pid ());
587
588 parent_inf = current_inferior ();
589 child_inf->attach_flag = parent_inf->attach_flag;
590 copy_terminal_info (child_inf, parent_inf);
591 child_inf->gdbarch = parent_inf->gdbarch;
592 copy_inferior_target_desc_info (child_inf, parent_inf);
593
594 parent_pspace = parent_inf->pspace;
595
596 process_stratum_target *target = parent_inf->process_target ();
597
598 {
599 /* Hold a strong reference to the target while (maybe)
600 detaching the parent. Otherwise detaching could close the
601 target. */
602 auto target_ref = target_ops_ref::new_reference (target);
603
604 /* If we're vforking, we want to hold on to the parent until
605 the child exits or execs. At child exec or exit time we
606 can remove the old breakpoints from the parent and detach
607 or resume debugging it. Otherwise, detach the parent now;
608 we'll want to reuse it's program/address spaces, but we
609 can't set them to the child before removing breakpoints
610 from the parent, otherwise, the breakpoints module could
611 decide to remove breakpoints from the wrong process (since
612 they'd be assigned to the same address space). */
613
614 if (has_vforked)
615 {
616 gdb_assert (child_inf->vfork_parent == NULL);
617 gdb_assert (parent_inf->vfork_child == NULL);
618 child_inf->vfork_parent = parent_inf;
619 child_inf->pending_detach = 0;
620 parent_inf->vfork_child = child_inf;
621 parent_inf->pending_detach = detach_fork;
622 parent_inf->waiting_for_vfork_done = 0;
623 }
624 else if (detach_fork)
625 {
626 if (print_inferior_events)
627 {
628 /* Ensure that we have a process ptid. */
629 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
630
631 target_terminal::ours_for_output ();
632 fprintf_filtered (gdb_stdlog,
633 _("[Detaching after fork from "
634 "parent %s]\n"),
635 target_pid_to_str (process_ptid).c_str ());
636 }
637
638 target_detach (parent_inf, 0);
639 parent_inf = NULL;
640 }
641
642 /* Note that the detach above makes PARENT_INF dangling. */
643
644 /* Add the child thread to the appropriate lists, and switch
645 to this new thread, before cloning the program space, and
646 informing the solib layer about this new process. */
647
648 set_current_inferior (child_inf);
649 push_target (target);
650 }
651
652 thread_info *child_thr = add_thread_silent (target, child_ptid);
653
654 /* If this is a vfork child, then the address-space is shared
655 with the parent. If we detached from the parent, then we can
656 reuse the parent's program/address spaces. */
657 if (has_vforked || detach_fork)
658 {
659 child_inf->pspace = parent_pspace;
660 child_inf->aspace = child_inf->pspace->aspace;
661
662 exec_on_vfork ();
663 }
664 else
665 {
666 child_inf->aspace = new_address_space ();
667 child_inf->pspace = new program_space (child_inf->aspace);
668 child_inf->removable = 1;
669 child_inf->symfile_flags = SYMFILE_NO_READ;
670 set_current_program_space (child_inf->pspace);
671 clone_program_space (child_inf->pspace, parent_pspace);
672
673 /* Let the shared library layer (e.g., solib-svr4) learn
674 about this new process, relocate the cloned exec, pull in
675 shared libraries, and install the solib event breakpoint.
676 If a "cloned-VM" event was propagated better throughout
677 the core, this wouldn't be required. */
678 solib_create_inferior_hook (0);
679 }
680
681 switch_to_thread (child_thr);
682 }
683
684 return target_follow_fork (follow_child, detach_fork);
685 }
686
687 /* Tell the target to follow the fork we're stopped at. Returns true
688 if the inferior should be resumed; false, if the target for some
689 reason decided it's best not to resume. */
690
691 static bool
692 follow_fork ()
693 {
694 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
695 bool should_resume = true;
696 struct thread_info *tp;
697
698 /* Copy user stepping state to the new inferior thread. FIXME: the
699 followed fork child thread should have a copy of most of the
700 parent thread structure's run control related fields, not just these.
701 Initialized to avoid "may be used uninitialized" warnings from gcc. */
702 struct breakpoint *step_resume_breakpoint = NULL;
703 struct breakpoint *exception_resume_breakpoint = NULL;
704 CORE_ADDR step_range_start = 0;
705 CORE_ADDR step_range_end = 0;
706 int current_line = 0;
707 symtab *current_symtab = NULL;
708 struct frame_id step_frame_id = { 0 };
709 struct thread_fsm *thread_fsm = NULL;
710
711 if (!non_stop)
712 {
713 process_stratum_target *wait_target;
714 ptid_t wait_ptid;
715 struct target_waitstatus wait_status;
716
717 /* Get the last target status returned by target_wait(). */
718 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
719
720 /* If not stopped at a fork event, then there's nothing else to
721 do. */
722 if (wait_status.kind != TARGET_WAITKIND_FORKED
723 && wait_status.kind != TARGET_WAITKIND_VFORKED)
724 return 1;
725
726 /* Check if we switched over from WAIT_PTID, since the event was
727 reported. */
728 if (wait_ptid != minus_one_ptid
729 && (current_inferior ()->process_target () != wait_target
730 || inferior_ptid != wait_ptid))
731 {
732 /* We did. Switch back to WAIT_PTID thread, to tell the
733 target to follow it (in either direction). We'll
734 afterwards refuse to resume, and inform the user what
735 happened. */
736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
737 switch_to_thread (wait_thread);
738 should_resume = false;
739 }
740 }
741
742 tp = inferior_thread ();
743
744 /* If there were any forks/vforks that were caught and are now to be
745 followed, then do so now. */
746 switch (tp->pending_follow.kind)
747 {
748 case TARGET_WAITKIND_FORKED:
749 case TARGET_WAITKIND_VFORKED:
750 {
751 ptid_t parent, child;
752
753 /* If the user did a next/step, etc, over a fork call,
754 preserve the stepping state in the fork child. */
755 if (follow_child && should_resume)
756 {
757 step_resume_breakpoint = clone_momentary_breakpoint
758 (tp->control.step_resume_breakpoint);
759 step_range_start = tp->control.step_range_start;
760 step_range_end = tp->control.step_range_end;
761 current_line = tp->current_line;
762 current_symtab = tp->current_symtab;
763 step_frame_id = tp->control.step_frame_id;
764 exception_resume_breakpoint
765 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
766 thread_fsm = tp->thread_fsm;
767
768 /* For now, delete the parent's sr breakpoint, otherwise,
769 parent/child sr breakpoints are considered duplicates,
770 and the child version will not be installed. Remove
771 this when the breakpoints module becomes aware of
772 inferiors and address spaces. */
773 delete_step_resume_breakpoint (tp);
774 tp->control.step_range_start = 0;
775 tp->control.step_range_end = 0;
776 tp->control.step_frame_id = null_frame_id;
777 delete_exception_resume_breakpoint (tp);
778 tp->thread_fsm = NULL;
779 }
780
781 parent = inferior_ptid;
782 child = tp->pending_follow.value.related_pid;
783
784 process_stratum_target *parent_targ = tp->inf->process_target ();
785 /* Set up inferior(s) as specified by the caller, and tell the
786 target to do whatever is necessary to follow either parent
787 or child. */
788 if (follow_fork_inferior (follow_child, detach_fork))
789 {
790 /* Target refused to follow, or there's some other reason
791 we shouldn't resume. */
792 should_resume = 0;
793 }
794 else
795 {
796 /* This pending follow fork event is now handled, one way
797 or another. The previous selected thread may be gone
798 from the lists by now, but if it is still around, need
799 to clear the pending follow request. */
800 tp = find_thread_ptid (parent_targ, parent);
801 if (tp)
802 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
803
804 /* This makes sure we don't try to apply the "Switched
805 over from WAIT_PID" logic above. */
806 nullify_last_target_wait_ptid ();
807
808 /* If we followed the child, switch to it... */
809 if (follow_child)
810 {
811 thread_info *child_thr = find_thread_ptid (parent_targ, child);
812 switch_to_thread (child_thr);
813
814 /* ... and preserve the stepping state, in case the
815 user was stepping over the fork call. */
816 if (should_resume)
817 {
818 tp = inferior_thread ();
819 tp->control.step_resume_breakpoint
820 = step_resume_breakpoint;
821 tp->control.step_range_start = step_range_start;
822 tp->control.step_range_end = step_range_end;
823 tp->current_line = current_line;
824 tp->current_symtab = current_symtab;
825 tp->control.step_frame_id = step_frame_id;
826 tp->control.exception_resume_breakpoint
827 = exception_resume_breakpoint;
828 tp->thread_fsm = thread_fsm;
829 }
830 else
831 {
832 /* If we get here, it was because we're trying to
833 resume from a fork catchpoint, but, the user
834 has switched threads away from the thread that
835 forked. In that case, the resume command
836 issued is most likely not applicable to the
837 child, so just warn, and refuse to resume. */
838 warning (_("Not resuming: switched threads "
839 "before following fork child."));
840 }
841
842 /* Reset breakpoints in the child as appropriate. */
843 follow_inferior_reset_breakpoints ();
844 }
845 }
846 }
847 break;
848 case TARGET_WAITKIND_SPURIOUS:
849 /* Nothing to follow. */
850 break;
851 default:
852 internal_error (__FILE__, __LINE__,
853 "Unexpected pending_follow.kind %d\n",
854 tp->pending_follow.kind);
855 break;
856 }
857
858 return should_resume;
859 }
860
861 static void
862 follow_inferior_reset_breakpoints (void)
863 {
864 struct thread_info *tp = inferior_thread ();
865
866 /* Was there a step_resume breakpoint? (There was if the user
867 did a "next" at the fork() call.) If so, explicitly reset its
868 thread number. Cloned step_resume breakpoints are disabled on
869 creation, so enable it here now that it is associated with the
870 correct thread.
871
872 step_resumes are a form of bp that are made to be per-thread.
873 Since we created the step_resume bp when the parent process
874 was being debugged, and now are switching to the child process,
875 from the breakpoint package's viewpoint, that's a switch of
876 "threads". We must update the bp's notion of which thread
877 it is for, or it'll be ignored when it triggers. */
878
879 if (tp->control.step_resume_breakpoint)
880 {
881 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
882 tp->control.step_resume_breakpoint->loc->enabled = 1;
883 }
884
885 /* Treat exception_resume breakpoints like step_resume breakpoints. */
886 if (tp->control.exception_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
889 tp->control.exception_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Reinsert all breakpoints in the child. The user may have set
893 breakpoints after catching the fork, in which case those
894 were never set in the child, but only in the parent. This makes
895 sure the inserted breakpoints match the breakpoint list. */
896
897 breakpoint_re_set ();
898 insert_breakpoints ();
899 }
900
901 /* The child has exited or execed: resume threads of the parent the
902 user wanted to be executing. */
903
904 static int
905 proceed_after_vfork_done (struct thread_info *thread,
906 void *arg)
907 {
908 int pid = * (int *) arg;
909
910 if (thread->ptid.pid () == pid
911 && thread->state == THREAD_RUNNING
912 && !thread->executing
913 && !thread->stop_requested
914 && thread->suspend.stop_signal == GDB_SIGNAL_0)
915 {
916 infrun_debug_printf ("resuming vfork parent thread %s",
917 target_pid_to_str (thread->ptid).c_str ());
918
919 switch_to_thread (thread);
920 clear_proceed_status (0);
921 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
922 }
923
924 return 0;
925 }
926
927 /* Called whenever we notice an exec or exit event, to handle
928 detaching or resuming a vfork parent. */
929
930 static void
931 handle_vfork_child_exec_or_exit (int exec)
932 {
933 struct inferior *inf = current_inferior ();
934
935 if (inf->vfork_parent)
936 {
937 int resume_parent = -1;
938
939 /* This exec or exit marks the end of the shared memory region
940 between the parent and the child. Break the bonds. */
941 inferior *vfork_parent = inf->vfork_parent;
942 inf->vfork_parent->vfork_child = NULL;
943 inf->vfork_parent = NULL;
944
945 /* If the user wanted to detach from the parent, now is the
946 time. */
947 if (vfork_parent->pending_detach)
948 {
949 struct program_space *pspace;
950 struct address_space *aspace;
951
952 /* follow-fork child, detach-on-fork on. */
953
954 vfork_parent->pending_detach = 0;
955
956 scoped_restore_current_pspace_and_thread restore_thread;
957
958 /* We're letting loose of the parent. */
959 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
960 switch_to_thread (tp);
961
962 /* We're about to detach from the parent, which implicitly
963 removes breakpoints from its address space. There's a
964 catch here: we want to reuse the spaces for the child,
965 but, parent/child are still sharing the pspace at this
966 point, although the exec in reality makes the kernel give
967 the child a fresh set of new pages. The problem here is
968 that the breakpoints module being unaware of this, would
969 likely chose the child process to write to the parent
970 address space. Swapping the child temporarily away from
971 the spaces has the desired effect. Yes, this is "sort
972 of" a hack. */
973
974 pspace = inf->pspace;
975 aspace = inf->aspace;
976 inf->aspace = NULL;
977 inf->pspace = NULL;
978
979 if (print_inferior_events)
980 {
981 std::string pidstr
982 = target_pid_to_str (ptid_t (vfork_parent->pid));
983
984 target_terminal::ours_for_output ();
985
986 if (exec)
987 {
988 fprintf_filtered (gdb_stdlog,
989 _("[Detaching vfork parent %s "
990 "after child exec]\n"), pidstr.c_str ());
991 }
992 else
993 {
994 fprintf_filtered (gdb_stdlog,
995 _("[Detaching vfork parent %s "
996 "after child exit]\n"), pidstr.c_str ());
997 }
998 }
999
1000 target_detach (vfork_parent, 0);
1001
1002 /* Put it back. */
1003 inf->pspace = pspace;
1004 inf->aspace = aspace;
1005 }
1006 else if (exec)
1007 {
1008 /* We're staying attached to the parent, so, really give the
1009 child a new address space. */
1010 inf->pspace = new program_space (maybe_new_address_space ());
1011 inf->aspace = inf->pspace->aspace;
1012 inf->removable = 1;
1013 set_current_program_space (inf->pspace);
1014
1015 resume_parent = vfork_parent->pid;
1016 }
1017 else
1018 {
1019 /* If this is a vfork child exiting, then the pspace and
1020 aspaces were shared with the parent. Since we're
1021 reporting the process exit, we'll be mourning all that is
1022 found in the address space, and switching to null_ptid,
1023 preparing to start a new inferior. But, since we don't
1024 want to clobber the parent's address/program spaces, we
1025 go ahead and create a new one for this exiting
1026 inferior. */
1027
1028 /* Switch to no-thread while running clone_program_space, so
1029 that clone_program_space doesn't want to read the
1030 selected frame of a dead process. */
1031 scoped_restore_current_thread restore_thread;
1032 switch_to_no_thread ();
1033
1034 inf->pspace = new program_space (maybe_new_address_space ());
1035 inf->aspace = inf->pspace->aspace;
1036 set_current_program_space (inf->pspace);
1037 inf->removable = 1;
1038 inf->symfile_flags = SYMFILE_NO_READ;
1039 clone_program_space (inf->pspace, vfork_parent->pspace);
1040
1041 resume_parent = vfork_parent->pid;
1042 }
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
1050 scoped_restore_current_thread restore_thread;
1051
1052 infrun_debug_printf ("resuming vfork parent process %d",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056 }
1057 }
1058 }
1059
1060 /* Enum strings for "set|show follow-exec-mode". */
1061
1062 static const char follow_exec_mode_new[] = "new";
1063 static const char follow_exec_mode_same[] = "same";
1064 static const char *const follow_exec_mode_names[] =
1065 {
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069 };
1070
1071 static const char *follow_exec_mode_string = follow_exec_mode_same;
1072 static void
1073 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075 {
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077 }
1078
1079 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1080
1081 static void
1082 follow_exec (ptid_t ptid, const char *exec_file_target)
1083 {
1084 struct inferior *inf = current_inferior ();
1085 int pid = ptid.pid ();
1086 ptid_t process_ptid;
1087
1088 /* Switch terminal for any messages produced e.g. by
1089 breakpoint_re_set. */
1090 target_terminal::ours_for_output ();
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten with a TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 for (thread_info *th : all_threads_safe ())
1135 if (th->ptid.pid () == pid && th->ptid != ptid)
1136 delete_thread (th);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 thread_info *th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = ptid_t (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid).c_str (),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
1169
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
1178
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
1198 exit_inferior_silent (current_inferior ());
1199
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 inferior *org_inferior = current_inferior ();
1204 switch_to_inferior_no_thread (inf);
1205 push_target (org_inferior->process_target ());
1206 thread_info *thr = add_thread (inf->process_target (), ptid);
1207 switch_to_thread (thr);
1208 }
1209 else
1210 {
1211 /* The old description may no longer be fit for the new image.
1212 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1213 old description; we'll read a new one below. No need to do
1214 this on "follow-exec-mode new", as the old inferior stays
1215 around (its description is later cleared/refetched on
1216 restart). */
1217 target_clear_description ();
1218 }
1219
1220 gdb_assert (current_program_space == inf->pspace);
1221
1222 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1223 because the proper displacement for a PIE (Position Independent
1224 Executable) main symbol file will only be computed by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail
1226 to insert the breakpoints with the zero displacement. */
1227 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 const address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327 static void
1328 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 infrun_debug_printf ("clearing step over info");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static int
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfully single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
1476 /* Default destructor for displaced_step_closure. */
1477
1478 displaced_step_closure::~displaced_step_closure () = default;
1479
1480 /* Get the displaced stepping state of process PID. */
1481
1482 static displaced_step_inferior_state *
1483 get_displaced_stepping_state (inferior *inf)
1484 {
1485 return &inf->displaced_step_state;
1486 }
1487
1488 /* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
1491 static bool
1492 displaced_step_in_progress_any_inferior ()
1493 {
1494 for (inferior *i : all_inferiors ())
1495 {
1496 if (i->displaced_step_state.step_thread != nullptr)
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 /* Return true if thread represented by PTID is doing a displaced
1504 step. */
1505
1506 static int
1507 displaced_step_in_progress_thread (thread_info *thread)
1508 {
1509 gdb_assert (thread != NULL);
1510
1511 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1512 }
1513
1514 /* Return true if process PID has a thread doing a displaced step. */
1515
1516 static int
1517 displaced_step_in_progress (inferior *inf)
1518 {
1519 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1520 }
1521
1522 /* If inferior is in displaced stepping, and ADDR equals to starting address
1523 of copy area, return corresponding displaced_step_closure. Otherwise,
1524 return NULL. */
1525
1526 struct displaced_step_closure*
1527 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1528 {
1529 displaced_step_inferior_state *displaced
1530 = get_displaced_stepping_state (current_inferior ());
1531
1532 /* If checking the mode of displaced instruction in copy area. */
1533 if (displaced->step_thread != nullptr
1534 && displaced->step_copy == addr)
1535 return displaced->step_closure.get ();
1536
1537 return NULL;
1538 }
1539
1540 static void
1541 infrun_inferior_exit (struct inferior *inf)
1542 {
1543 inf->displaced_step_state.reset ();
1544 }
1545
1546 /* If ON, and the architecture supports it, GDB will use displaced
1547 stepping to step over breakpoints. If OFF, or if the architecture
1548 doesn't support it, GDB will instead use the traditional
1549 hold-and-step approach. If AUTO (which is the default), GDB will
1550 decide which technique to use to step over breakpoints depending on
1551 whether the target works in a non-stop way (see use_displaced_stepping). */
1552
1553 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1554
1555 static void
1556 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559 {
1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
1564 value, target_is_non_stop_p () ? "on" : "off");
1565 else
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
1569 }
1570
1571 /* Return true if the gdbarch implements the required methods to use
1572 displaced stepping. */
1573
1574 static bool
1575 gdbarch_supports_displaced_stepping (gdbarch *arch)
1576 {
1577 /* Only check for the presence of step_copy_insn. Other required methods
1578 are checked by the gdbarch validation. */
1579 return gdbarch_displaced_step_copy_insn_p (arch);
1580 }
1581
1582 /* Return non-zero if displaced stepping can/should be used to step
1583 over breakpoints of thread TP. */
1584
1585 static bool
1586 use_displaced_stepping (thread_info *tp)
1587 {
1588 /* If the user disabled it explicitly, don't use displaced stepping. */
1589 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1590 return false;
1591
1592 /* If "auto", only use displaced stepping if the target operates in a non-stop
1593 way. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1595 && !target_is_non_stop_p ())
1596 return false;
1597
1598 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1599
1600 /* If the architecture doesn't implement displaced stepping, don't use
1601 it. */
1602 if (!gdbarch_supports_displaced_stepping (gdbarch))
1603 return false;
1604
1605 /* If recording, don't use displaced stepping. */
1606 if (find_record_target () != nullptr)
1607 return false;
1608
1609 displaced_step_inferior_state *displaced_state
1610 = get_displaced_stepping_state (tp->inf);
1611
1612 /* If displaced stepping failed before for this inferior, don't bother trying
1613 again. */
1614 if (displaced_state->failed_before)
1615 return false;
1616
1617 return true;
1618 }
1619
1620 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1621
1622 static void
1623 displaced_step_reset (displaced_step_inferior_state *displaced)
1624 {
1625 displaced->reset ();
1626 }
1627
1628 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1629 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1630
1631 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1632
1633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1634 void
1635 displaced_step_dump_bytes (struct ui_file *file,
1636 const gdb_byte *buf,
1637 size_t len)
1638 {
1639 int i;
1640
1641 for (i = 0; i < len; i++)
1642 fprintf_unfiltered (file, "%02x ", buf[i]);
1643 fputs_unfiltered ("\n", file);
1644 }
1645
1646 /* Prepare to single-step, using displaced stepping.
1647
1648 Note that we cannot use displaced stepping when we have a signal to
1649 deliver. If we have a signal to deliver and an instruction to step
1650 over, then after the step, there will be no indication from the
1651 target whether the thread entered a signal handler or ignored the
1652 signal and stepped over the instruction successfully --- both cases
1653 result in a simple SIGTRAP. In the first case we mustn't do a
1654 fixup, and in the second case we must --- but we can't tell which.
1655 Comments in the code for 'random signals' in handle_inferior_event
1656 explain how we handle this case instead.
1657
1658 Returns 1 if preparing was successful -- this thread is going to be
1659 stepped now; 0 if displaced stepping this thread got queued; or -1
1660 if this instruction can't be displaced stepped. */
1661
1662 static int
1663 displaced_step_prepare_throw (thread_info *tp)
1664 {
1665 regcache *regcache = get_thread_regcache (tp);
1666 struct gdbarch *gdbarch = regcache->arch ();
1667 const address_space *aspace = regcache->aspace ();
1668 CORE_ADDR original, copy;
1669 ULONGEST len;
1670 int status;
1671
1672 /* We should never reach this function if the architecture does not
1673 support displaced stepping. */
1674 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1675
1676 /* Nor if the thread isn't meant to step over a breakpoint. */
1677 gdb_assert (tp->control.trap_expected);
1678
1679 /* Disable range stepping while executing in the scratch pad. We
1680 want a single-step even if executing the displaced instruction in
1681 the scratch buffer lands within the stepping range (e.g., a
1682 jump/branch). */
1683 tp->control.may_range_step = 0;
1684
1685 /* We have to displaced step one thread at a time, as we only have
1686 access to a single scratch space per inferior. */
1687
1688 displaced_step_inferior_state *displaced
1689 = get_displaced_stepping_state (tp->inf);
1690
1691 if (displaced->step_thread != nullptr)
1692 {
1693 /* Already waiting for a displaced step to finish. Defer this
1694 request and place in queue. */
1695
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "displaced: deferring step of %s\n",
1699 target_pid_to_str (tp->ptid).c_str ());
1700
1701 thread_step_over_chain_enqueue (tp);
1702 return 0;
1703 }
1704 else
1705 {
1706 if (debug_displaced)
1707 fprintf_unfiltered (gdb_stdlog,
1708 "displaced: stepping %s now\n",
1709 target_pid_to_str (tp->ptid).c_str ());
1710 }
1711
1712 displaced_step_reset (displaced);
1713
1714 scoped_restore_current_thread restore_thread;
1715
1716 switch_to_thread (tp);
1717
1718 original = regcache_read_pc (regcache);
1719
1720 copy = gdbarch_displaced_step_location (gdbarch);
1721 len = gdbarch_max_insn_length (gdbarch);
1722
1723 if (breakpoint_in_range_p (aspace, copy, len))
1724 {
1725 /* There's a breakpoint set in the scratch pad location range
1726 (which is usually around the entry point). We'd either
1727 install it before resuming, which would overwrite/corrupt the
1728 scratch pad, or if it was already inserted, this displaced
1729 step would overwrite it. The latter is OK in the sense that
1730 we already assume that no thread is going to execute the code
1731 in the scratch pad range (after initial startup) anyway, but
1732 the former is unacceptable. Simply punt and fallback to
1733 stepping over this breakpoint in-line. */
1734 if (debug_displaced)
1735 {
1736 fprintf_unfiltered (gdb_stdlog,
1737 "displaced: breakpoint set in scratch pad. "
1738 "Stepping over breakpoint in-line instead.\n");
1739 }
1740
1741 return -1;
1742 }
1743
1744 /* Save the original contents of the copy area. */
1745 displaced->step_saved_copy.resize (len);
1746 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1747 if (status != 0)
1748 throw_error (MEMORY_ERROR,
1749 _("Error accessing memory address %s (%s) for "
1750 "displaced-stepping scratch space."),
1751 paddress (gdbarch, copy), safe_strerror (status));
1752 if (debug_displaced)
1753 {
1754 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1755 paddress (gdbarch, copy));
1756 displaced_step_dump_bytes (gdb_stdlog,
1757 displaced->step_saved_copy.data (),
1758 len);
1759 };
1760
1761 displaced->step_closure
1762 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1763 if (displaced->step_closure == NULL)
1764 {
1765 /* The architecture doesn't know how or want to displaced step
1766 this instruction or instruction sequence. Fallback to
1767 stepping over the breakpoint in-line. */
1768 return -1;
1769 }
1770
1771 /* Save the information we need to fix things up if the step
1772 succeeds. */
1773 displaced->step_thread = tp;
1774 displaced->step_gdbarch = gdbarch;
1775 displaced->step_original = original;
1776 displaced->step_copy = copy;
1777
1778 {
1779 displaced_step_reset_cleanup cleanup (displaced);
1780
1781 /* Resume execution at the copy. */
1782 regcache_write_pc (regcache, copy);
1783
1784 cleanup.release ();
1785 }
1786
1787 if (debug_displaced)
1788 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1789 paddress (gdbarch, copy));
1790
1791 return 1;
1792 }
1793
1794 /* Wrapper for displaced_step_prepare_throw that disabled further
1795 attempts at displaced stepping if we get a memory error. */
1796
1797 static int
1798 displaced_step_prepare (thread_info *thread)
1799 {
1800 int prepared = -1;
1801
1802 try
1803 {
1804 prepared = displaced_step_prepare_throw (thread);
1805 }
1806 catch (const gdb_exception_error &ex)
1807 {
1808 struct displaced_step_inferior_state *displaced_state;
1809
1810 if (ex.error != MEMORY_ERROR
1811 && ex.error != NOT_SUPPORTED_ERROR)
1812 throw;
1813
1814 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1815 ex.what ());
1816
1817 /* Be verbose if "set displaced-stepping" is "on", silent if
1818 "auto". */
1819 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1820 {
1821 warning (_("disabling displaced stepping: %s"),
1822 ex.what ());
1823 }
1824
1825 /* Disable further displaced stepping attempts. */
1826 displaced_state
1827 = get_displaced_stepping_state (thread->inf);
1828 displaced_state->failed_before = 1;
1829 }
1830
1831 return prepared;
1832 }
1833
1834 static void
1835 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1836 const gdb_byte *myaddr, int len)
1837 {
1838 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1839
1840 inferior_ptid = ptid;
1841 write_memory (memaddr, myaddr, len);
1842 }
1843
1844 /* Restore the contents of the copy area for thread PTID. */
1845
1846 static void
1847 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1848 ptid_t ptid)
1849 {
1850 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1851
1852 write_memory_ptid (ptid, displaced->step_copy,
1853 displaced->step_saved_copy.data (), len);
1854 if (debug_displaced)
1855 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1856 target_pid_to_str (ptid).c_str (),
1857 paddress (displaced->step_gdbarch,
1858 displaced->step_copy));
1859 }
1860
1861 /* If we displaced stepped an instruction successfully, adjust
1862 registers and memory to yield the same effect the instruction would
1863 have had if we had executed it at its original address, and return
1864 1. If the instruction didn't complete, relocate the PC and return
1865 -1. If the thread wasn't displaced stepping, return 0. */
1866
1867 static int
1868 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1869 {
1870 struct displaced_step_inferior_state *displaced
1871 = get_displaced_stepping_state (event_thread->inf);
1872 int ret;
1873
1874 /* Was this event for the thread we displaced? */
1875 if (displaced->step_thread != event_thread)
1876 return 0;
1877
1878 /* Fixup may need to read memory/registers. Switch to the thread
1879 that we're fixing up. Also, target_stopped_by_watchpoint checks
1880 the current thread, and displaced_step_restore performs ptid-dependent
1881 memory accesses using current_inferior() and current_top_target(). */
1882 switch_to_thread (event_thread);
1883
1884 displaced_step_reset_cleanup cleanup (displaced);
1885
1886 displaced_step_restore (displaced, displaced->step_thread->ptid);
1887
1888 /* Did the instruction complete successfully? */
1889 if (signal == GDB_SIGNAL_TRAP
1890 && !(target_stopped_by_watchpoint ()
1891 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1892 || target_have_steppable_watchpoint ())))
1893 {
1894 /* Fix up the resulting state. */
1895 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1896 displaced->step_closure.get (),
1897 displaced->step_original,
1898 displaced->step_copy,
1899 get_thread_regcache (displaced->step_thread));
1900 ret = 1;
1901 }
1902 else
1903 {
1904 /* Since the instruction didn't complete, all we can do is
1905 relocate the PC. */
1906 struct regcache *regcache = get_thread_regcache (event_thread);
1907 CORE_ADDR pc = regcache_read_pc (regcache);
1908
1909 pc = displaced->step_original + (pc - displaced->step_copy);
1910 regcache_write_pc (regcache, pc);
1911 ret = -1;
1912 }
1913
1914 return ret;
1915 }
1916
1917 /* Data to be passed around while handling an event. This data is
1918 discarded between events. */
1919 struct execution_control_state
1920 {
1921 process_stratum_target *target;
1922 ptid_t ptid;
1923 /* The thread that got the event, if this was a thread event; NULL
1924 otherwise. */
1925 struct thread_info *event_thread;
1926
1927 struct target_waitstatus ws;
1928 int stop_func_filled_in;
1929 CORE_ADDR stop_func_start;
1930 CORE_ADDR stop_func_end;
1931 const char *stop_func_name;
1932 int wait_some_more;
1933
1934 /* True if the event thread hit the single-step breakpoint of
1935 another thread. Thus the event doesn't cause a stop, the thread
1936 needs to be single-stepped past the single-step breakpoint before
1937 we can switch back to the original stepping thread. */
1938 int hit_singlestep_breakpoint;
1939 };
1940
1941 /* Clear ECS and set it to point at TP. */
1942
1943 static void
1944 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1945 {
1946 memset (ecs, 0, sizeof (*ecs));
1947 ecs->event_thread = tp;
1948 ecs->ptid = tp->ptid;
1949 }
1950
1951 static void keep_going_pass_signal (struct execution_control_state *ecs);
1952 static void prepare_to_wait (struct execution_control_state *ecs);
1953 static int keep_going_stepped_thread (struct thread_info *tp);
1954 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1955
1956 /* Are there any pending step-over requests? If so, run all we can
1957 now and return true. Otherwise, return false. */
1958
1959 static int
1960 start_step_over (void)
1961 {
1962 struct thread_info *tp, *next;
1963
1964 /* Don't start a new step-over if we already have an in-line
1965 step-over operation ongoing. */
1966 if (step_over_info_valid_p ())
1967 return 0;
1968
1969 for (tp = step_over_queue_head; tp != NULL; tp = next)
1970 {
1971 struct execution_control_state ecss;
1972 struct execution_control_state *ecs = &ecss;
1973 step_over_what step_what;
1974 int must_be_in_line;
1975
1976 gdb_assert (!tp->stop_requested);
1977
1978 next = thread_step_over_chain_next (tp);
1979
1980 /* If this inferior already has a displaced step in process,
1981 don't start a new one. */
1982 if (displaced_step_in_progress (tp->inf))
1983 continue;
1984
1985 step_what = thread_still_needs_step_over (tp);
1986 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1987 || ((step_what & STEP_OVER_BREAKPOINT)
1988 && !use_displaced_stepping (tp)));
1989
1990 /* We currently stop all threads of all processes to step-over
1991 in-line. If we need to start a new in-line step-over, let
1992 any pending displaced steps finish first. */
1993 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1994 return 0;
1995
1996 thread_step_over_chain_remove (tp);
1997
1998 if (step_over_queue_head == NULL)
1999 infrun_debug_printf ("step-over queue now empty");
2000
2001 if (tp->control.trap_expected
2002 || tp->resumed
2003 || tp->executing)
2004 {
2005 internal_error (__FILE__, __LINE__,
2006 "[%s] has inconsistent state: "
2007 "trap_expected=%d, resumed=%d, executing=%d\n",
2008 target_pid_to_str (tp->ptid).c_str (),
2009 tp->control.trap_expected,
2010 tp->resumed,
2011 tp->executing);
2012 }
2013
2014 infrun_debug_printf ("resuming [%s] for step-over",
2015 target_pid_to_str (tp->ptid).c_str ());
2016
2017 /* keep_going_pass_signal skips the step-over if the breakpoint
2018 is no longer inserted. In all-stop, we want to keep looking
2019 for a thread that needs a step-over instead of resuming TP,
2020 because we wouldn't be able to resume anything else until the
2021 target stops again. In non-stop, the resume always resumes
2022 only TP, so it's OK to let the thread resume freely. */
2023 if (!target_is_non_stop_p () && !step_what)
2024 continue;
2025
2026 switch_to_thread (tp);
2027 reset_ecs (ecs, tp);
2028 keep_going_pass_signal (ecs);
2029
2030 if (!ecs->wait_some_more)
2031 error (_("Command aborted."));
2032
2033 gdb_assert (tp->resumed);
2034
2035 /* If we started a new in-line step-over, we're done. */
2036 if (step_over_info_valid_p ())
2037 {
2038 gdb_assert (tp->control.trap_expected);
2039 return 1;
2040 }
2041
2042 if (!target_is_non_stop_p ())
2043 {
2044 /* On all-stop, shouldn't have resumed unless we needed a
2045 step over. */
2046 gdb_assert (tp->control.trap_expected
2047 || tp->step_after_step_resume_breakpoint);
2048
2049 /* With remote targets (at least), in all-stop, we can't
2050 issue any further remote commands until the program stops
2051 again. */
2052 return 1;
2053 }
2054
2055 /* Either the thread no longer needed a step-over, or a new
2056 displaced stepping sequence started. Even in the latter
2057 case, continue looking. Maybe we can also start another
2058 displaced step on a thread of other process. */
2059 }
2060
2061 return 0;
2062 }
2063
2064 /* Update global variables holding ptids to hold NEW_PTID if they were
2065 holding OLD_PTID. */
2066 static void
2067 infrun_thread_ptid_changed (process_stratum_target *target,
2068 ptid_t old_ptid, ptid_t new_ptid)
2069 {
2070 if (inferior_ptid == old_ptid
2071 && current_inferior ()->process_target () == target)
2072 inferior_ptid = new_ptid;
2073 }
2074
2075 \f
2076
2077 static const char schedlock_off[] = "off";
2078 static const char schedlock_on[] = "on";
2079 static const char schedlock_step[] = "step";
2080 static const char schedlock_replay[] = "replay";
2081 static const char *const scheduler_enums[] = {
2082 schedlock_off,
2083 schedlock_on,
2084 schedlock_step,
2085 schedlock_replay,
2086 NULL
2087 };
2088 static const char *scheduler_mode = schedlock_replay;
2089 static void
2090 show_scheduler_mode (struct ui_file *file, int from_tty,
2091 struct cmd_list_element *c, const char *value)
2092 {
2093 fprintf_filtered (file,
2094 _("Mode for locking scheduler "
2095 "during execution is \"%s\".\n"),
2096 value);
2097 }
2098
2099 static void
2100 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2101 {
2102 if (!target_can_lock_scheduler ())
2103 {
2104 scheduler_mode = schedlock_off;
2105 error (_("Target '%s' cannot support this command."), target_shortname);
2106 }
2107 }
2108
2109 /* True if execution commands resume all threads of all processes by
2110 default; otherwise, resume only threads of the current inferior
2111 process. */
2112 bool sched_multi = false;
2113
2114 /* Try to setup for software single stepping over the specified location.
2115 Return 1 if target_resume() should use hardware single step.
2116
2117 GDBARCH the current gdbarch.
2118 PC the location to step over. */
2119
2120 static int
2121 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2122 {
2123 int hw_step = 1;
2124
2125 if (execution_direction == EXEC_FORWARD
2126 && gdbarch_software_single_step_p (gdbarch))
2127 hw_step = !insert_single_step_breakpoints (gdbarch);
2128
2129 return hw_step;
2130 }
2131
2132 /* See infrun.h. */
2133
2134 ptid_t
2135 user_visible_resume_ptid (int step)
2136 {
2137 ptid_t resume_ptid;
2138
2139 if (non_stop)
2140 {
2141 /* With non-stop mode on, threads are always handled
2142 individually. */
2143 resume_ptid = inferior_ptid;
2144 }
2145 else if ((scheduler_mode == schedlock_on)
2146 || (scheduler_mode == schedlock_step && step))
2147 {
2148 /* User-settable 'scheduler' mode requires solo thread
2149 resume. */
2150 resume_ptid = inferior_ptid;
2151 }
2152 else if ((scheduler_mode == schedlock_replay)
2153 && target_record_will_replay (minus_one_ptid, execution_direction))
2154 {
2155 /* User-settable 'scheduler' mode requires solo thread resume in replay
2156 mode. */
2157 resume_ptid = inferior_ptid;
2158 }
2159 else if (!sched_multi && target_supports_multi_process ())
2160 {
2161 /* Resume all threads of the current process (and none of other
2162 processes). */
2163 resume_ptid = ptid_t (inferior_ptid.pid ());
2164 }
2165 else
2166 {
2167 /* Resume all threads of all processes. */
2168 resume_ptid = RESUME_ALL;
2169 }
2170
2171 return resume_ptid;
2172 }
2173
2174 /* See infrun.h. */
2175
2176 process_stratum_target *
2177 user_visible_resume_target (ptid_t resume_ptid)
2178 {
2179 return (resume_ptid == minus_one_ptid && sched_multi
2180 ? NULL
2181 : current_inferior ()->process_target ());
2182 }
2183
2184 /* Return a ptid representing the set of threads that we will resume,
2185 in the perspective of the target, assuming run control handling
2186 does not require leaving some threads stopped (e.g., stepping past
2187 breakpoint). USER_STEP indicates whether we're about to start the
2188 target for a stepping command. */
2189
2190 static ptid_t
2191 internal_resume_ptid (int user_step)
2192 {
2193 /* In non-stop, we always control threads individually. Note that
2194 the target may always work in non-stop mode even with "set
2195 non-stop off", in which case user_visible_resume_ptid could
2196 return a wildcard ptid. */
2197 if (target_is_non_stop_p ())
2198 return inferior_ptid;
2199 else
2200 return user_visible_resume_ptid (user_step);
2201 }
2202
2203 /* Wrapper for target_resume, that handles infrun-specific
2204 bookkeeping. */
2205
2206 static void
2207 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2208 {
2209 struct thread_info *tp = inferior_thread ();
2210
2211 gdb_assert (!tp->stop_requested);
2212
2213 /* Install inferior's terminal modes. */
2214 target_terminal::inferior ();
2215
2216 /* Avoid confusing the next resume, if the next stop/resume
2217 happens to apply to another thread. */
2218 tp->suspend.stop_signal = GDB_SIGNAL_0;
2219
2220 /* Advise target which signals may be handled silently.
2221
2222 If we have removed breakpoints because we are stepping over one
2223 in-line (in any thread), we need to receive all signals to avoid
2224 accidentally skipping a breakpoint during execution of a signal
2225 handler.
2226
2227 Likewise if we're displaced stepping, otherwise a trap for a
2228 breakpoint in a signal handler might be confused with the
2229 displaced step finishing. We don't make the displaced_step_fixup
2230 step distinguish the cases instead, because:
2231
2232 - a backtrace while stopped in the signal handler would show the
2233 scratch pad as frame older than the signal handler, instead of
2234 the real mainline code.
2235
2236 - when the thread is later resumed, the signal handler would
2237 return to the scratch pad area, which would no longer be
2238 valid. */
2239 if (step_over_info_valid_p ()
2240 || displaced_step_in_progress (tp->inf))
2241 target_pass_signals ({});
2242 else
2243 target_pass_signals (signal_pass);
2244
2245 target_resume (resume_ptid, step, sig);
2246
2247 target_commit_resume ();
2248
2249 if (target_can_async_p ())
2250 target_async (1);
2251 }
2252
2253 /* Resume the inferior. SIG is the signal to give the inferior
2254 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2255 call 'resume', which handles exceptions. */
2256
2257 static void
2258 resume_1 (enum gdb_signal sig)
2259 {
2260 struct regcache *regcache = get_current_regcache ();
2261 struct gdbarch *gdbarch = regcache->arch ();
2262 struct thread_info *tp = inferior_thread ();
2263 const address_space *aspace = regcache->aspace ();
2264 ptid_t resume_ptid;
2265 /* This represents the user's step vs continue request. When
2266 deciding whether "set scheduler-locking step" applies, it's the
2267 user's intention that counts. */
2268 const int user_step = tp->control.stepping_command;
2269 /* This represents what we'll actually request the target to do.
2270 This can decay from a step to a continue, if e.g., we need to
2271 implement single-stepping with breakpoints (software
2272 single-step). */
2273 int step;
2274
2275 gdb_assert (!tp->stop_requested);
2276 gdb_assert (!thread_is_in_step_over_chain (tp));
2277
2278 if (tp->suspend.waitstatus_pending_p)
2279 {
2280 infrun_debug_printf
2281 ("thread %s has pending wait "
2282 "status %s (currently_stepping=%d).",
2283 target_pid_to_str (tp->ptid).c_str (),
2284 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2285 currently_stepping (tp));
2286
2287 tp->inf->process_target ()->threads_executing = true;
2288 tp->resumed = true;
2289
2290 /* FIXME: What should we do if we are supposed to resume this
2291 thread with a signal? Maybe we should maintain a queue of
2292 pending signals to deliver. */
2293 if (sig != GDB_SIGNAL_0)
2294 {
2295 warning (_("Couldn't deliver signal %s to %s."),
2296 gdb_signal_to_name (sig),
2297 target_pid_to_str (tp->ptid).c_str ());
2298 }
2299
2300 tp->suspend.stop_signal = GDB_SIGNAL_0;
2301
2302 if (target_can_async_p ())
2303 {
2304 target_async (1);
2305 /* Tell the event loop we have an event to process. */
2306 mark_async_event_handler (infrun_async_inferior_event_token);
2307 }
2308 return;
2309 }
2310
2311 tp->stepped_breakpoint = 0;
2312
2313 /* Depends on stepped_breakpoint. */
2314 step = currently_stepping (tp);
2315
2316 if (current_inferior ()->waiting_for_vfork_done)
2317 {
2318 /* Don't try to single-step a vfork parent that is waiting for
2319 the child to get out of the shared memory region (by exec'ing
2320 or exiting). This is particularly important on software
2321 single-step archs, as the child process would trip on the
2322 software single step breakpoint inserted for the parent
2323 process. Since the parent will not actually execute any
2324 instruction until the child is out of the shared region (such
2325 are vfork's semantics), it is safe to simply continue it.
2326 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2327 the parent, and tell it to `keep_going', which automatically
2328 re-sets it stepping. */
2329 infrun_debug_printf ("resume : clear step");
2330 step = 0;
2331 }
2332
2333 CORE_ADDR pc = regcache_read_pc (regcache);
2334
2335 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2336 "current thread [%s] at %s",
2337 step, gdb_signal_to_symbol_string (sig),
2338 tp->control.trap_expected,
2339 target_pid_to_str (inferior_ptid).c_str (),
2340 paddress (gdbarch, pc));
2341
2342 /* Normally, by the time we reach `resume', the breakpoints are either
2343 removed or inserted, as appropriate. The exception is if we're sitting
2344 at a permanent breakpoint; we need to step over it, but permanent
2345 breakpoints can't be removed. So we have to test for it here. */
2346 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2347 {
2348 if (sig != GDB_SIGNAL_0)
2349 {
2350 /* We have a signal to pass to the inferior. The resume
2351 may, or may not take us to the signal handler. If this
2352 is a step, we'll need to stop in the signal handler, if
2353 there's one, (if the target supports stepping into
2354 handlers), or in the next mainline instruction, if
2355 there's no handler. If this is a continue, we need to be
2356 sure to run the handler with all breakpoints inserted.
2357 In all cases, set a breakpoint at the current address
2358 (where the handler returns to), and once that breakpoint
2359 is hit, resume skipping the permanent breakpoint. If
2360 that breakpoint isn't hit, then we've stepped into the
2361 signal handler (or hit some other event). We'll delete
2362 the step-resume breakpoint then. */
2363
2364 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2365 "deliver signal first");
2366
2367 clear_step_over_info ();
2368 tp->control.trap_expected = 0;
2369
2370 if (tp->control.step_resume_breakpoint == NULL)
2371 {
2372 /* Set a "high-priority" step-resume, as we don't want
2373 user breakpoints at PC to trigger (again) when this
2374 hits. */
2375 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2376 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2377
2378 tp->step_after_step_resume_breakpoint = step;
2379 }
2380
2381 insert_breakpoints ();
2382 }
2383 else
2384 {
2385 /* There's no signal to pass, we can go ahead and skip the
2386 permanent breakpoint manually. */
2387 infrun_debug_printf ("skipping permanent breakpoint");
2388 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2389 /* Update pc to reflect the new address from which we will
2390 execute instructions. */
2391 pc = regcache_read_pc (regcache);
2392
2393 if (step)
2394 {
2395 /* We've already advanced the PC, so the stepping part
2396 is done. Now we need to arrange for a trap to be
2397 reported to handle_inferior_event. Set a breakpoint
2398 at the current PC, and run to it. Don't update
2399 prev_pc, because if we end in
2400 switch_back_to_stepped_thread, we want the "expected
2401 thread advanced also" branch to be taken. IOW, we
2402 don't want this thread to step further from PC
2403 (overstep). */
2404 gdb_assert (!step_over_info_valid_p ());
2405 insert_single_step_breakpoint (gdbarch, aspace, pc);
2406 insert_breakpoints ();
2407
2408 resume_ptid = internal_resume_ptid (user_step);
2409 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2410 tp->resumed = true;
2411 return;
2412 }
2413 }
2414 }
2415
2416 /* If we have a breakpoint to step over, make sure to do a single
2417 step only. Same if we have software watchpoints. */
2418 if (tp->control.trap_expected || bpstat_should_step ())
2419 tp->control.may_range_step = 0;
2420
2421 /* If displaced stepping is enabled, step over breakpoints by executing a
2422 copy of the instruction at a different address.
2423
2424 We can't use displaced stepping when we have a signal to deliver;
2425 the comments for displaced_step_prepare explain why. The
2426 comments in the handle_inferior event for dealing with 'random
2427 signals' explain what we do instead.
2428
2429 We can't use displaced stepping when we are waiting for vfork_done
2430 event, displaced stepping breaks the vfork child similarly as single
2431 step software breakpoint. */
2432 if (tp->control.trap_expected
2433 && use_displaced_stepping (tp)
2434 && !step_over_info_valid_p ()
2435 && sig == GDB_SIGNAL_0
2436 && !current_inferior ()->waiting_for_vfork_done)
2437 {
2438 int prepared = displaced_step_prepare (tp);
2439
2440 if (prepared == 0)
2441 {
2442 infrun_debug_printf ("Got placed in step-over queue");
2443
2444 tp->control.trap_expected = 0;
2445 return;
2446 }
2447 else if (prepared < 0)
2448 {
2449 /* Fallback to stepping over the breakpoint in-line. */
2450
2451 if (target_is_non_stop_p ())
2452 stop_all_threads ();
2453
2454 set_step_over_info (regcache->aspace (),
2455 regcache_read_pc (regcache), 0, tp->global_num);
2456
2457 step = maybe_software_singlestep (gdbarch, pc);
2458
2459 insert_breakpoints ();
2460 }
2461 else if (prepared > 0)
2462 {
2463 struct displaced_step_inferior_state *displaced;
2464
2465 /* Update pc to reflect the new address from which we will
2466 execute instructions due to displaced stepping. */
2467 pc = regcache_read_pc (get_thread_regcache (tp));
2468
2469 displaced = get_displaced_stepping_state (tp->inf);
2470 step = gdbarch_displaced_step_hw_singlestep
2471 (gdbarch, displaced->step_closure.get ());
2472 }
2473 }
2474
2475 /* Do we need to do it the hard way, w/temp breakpoints? */
2476 else if (step)
2477 step = maybe_software_singlestep (gdbarch, pc);
2478
2479 /* Currently, our software single-step implementation leads to different
2480 results than hardware single-stepping in one situation: when stepping
2481 into delivering a signal which has an associated signal handler,
2482 hardware single-step will stop at the first instruction of the handler,
2483 while software single-step will simply skip execution of the handler.
2484
2485 For now, this difference in behavior is accepted since there is no
2486 easy way to actually implement single-stepping into a signal handler
2487 without kernel support.
2488
2489 However, there is one scenario where this difference leads to follow-on
2490 problems: if we're stepping off a breakpoint by removing all breakpoints
2491 and then single-stepping. In this case, the software single-step
2492 behavior means that even if there is a *breakpoint* in the signal
2493 handler, GDB still would not stop.
2494
2495 Fortunately, we can at least fix this particular issue. We detect
2496 here the case where we are about to deliver a signal while software
2497 single-stepping with breakpoints removed. In this situation, we
2498 revert the decisions to remove all breakpoints and insert single-
2499 step breakpoints, and instead we install a step-resume breakpoint
2500 at the current address, deliver the signal without stepping, and
2501 once we arrive back at the step-resume breakpoint, actually step
2502 over the breakpoint we originally wanted to step over. */
2503 if (thread_has_single_step_breakpoints_set (tp)
2504 && sig != GDB_SIGNAL_0
2505 && step_over_info_valid_p ())
2506 {
2507 /* If we have nested signals or a pending signal is delivered
2508 immediately after a handler returns, might already have
2509 a step-resume breakpoint set on the earlier handler. We cannot
2510 set another step-resume breakpoint; just continue on until the
2511 original breakpoint is hit. */
2512 if (tp->control.step_resume_breakpoint == NULL)
2513 {
2514 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2515 tp->step_after_step_resume_breakpoint = 1;
2516 }
2517
2518 delete_single_step_breakpoints (tp);
2519
2520 clear_step_over_info ();
2521 tp->control.trap_expected = 0;
2522
2523 insert_breakpoints ();
2524 }
2525
2526 /* If STEP is set, it's a request to use hardware stepping
2527 facilities. But in that case, we should never
2528 use singlestep breakpoint. */
2529 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2530
2531 /* Decide the set of threads to ask the target to resume. */
2532 if (tp->control.trap_expected)
2533 {
2534 /* We're allowing a thread to run past a breakpoint it has
2535 hit, either by single-stepping the thread with the breakpoint
2536 removed, or by displaced stepping, with the breakpoint inserted.
2537 In the former case, we need to single-step only this thread,
2538 and keep others stopped, as they can miss this breakpoint if
2539 allowed to run. That's not really a problem for displaced
2540 stepping, but, we still keep other threads stopped, in case
2541 another thread is also stopped for a breakpoint waiting for
2542 its turn in the displaced stepping queue. */
2543 resume_ptid = inferior_ptid;
2544 }
2545 else
2546 resume_ptid = internal_resume_ptid (user_step);
2547
2548 if (execution_direction != EXEC_REVERSE
2549 && step && breakpoint_inserted_here_p (aspace, pc))
2550 {
2551 /* There are two cases where we currently need to step a
2552 breakpoint instruction when we have a signal to deliver:
2553
2554 - See handle_signal_stop where we handle random signals that
2555 could take out us out of the stepping range. Normally, in
2556 that case we end up continuing (instead of stepping) over the
2557 signal handler with a breakpoint at PC, but there are cases
2558 where we should _always_ single-step, even if we have a
2559 step-resume breakpoint, like when a software watchpoint is
2560 set. Assuming single-stepping and delivering a signal at the
2561 same time would takes us to the signal handler, then we could
2562 have removed the breakpoint at PC to step over it. However,
2563 some hardware step targets (like e.g., Mac OS) can't step
2564 into signal handlers, and for those, we need to leave the
2565 breakpoint at PC inserted, as otherwise if the handler
2566 recurses and executes PC again, it'll miss the breakpoint.
2567 So we leave the breakpoint inserted anyway, but we need to
2568 record that we tried to step a breakpoint instruction, so
2569 that adjust_pc_after_break doesn't end up confused.
2570
2571 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2572 in one thread after another thread that was stepping had been
2573 momentarily paused for a step-over. When we re-resume the
2574 stepping thread, it may be resumed from that address with a
2575 breakpoint that hasn't trapped yet. Seen with
2576 gdb.threads/non-stop-fair-events.exp, on targets that don't
2577 do displaced stepping. */
2578
2579 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2580 target_pid_to_str (tp->ptid).c_str ());
2581
2582 tp->stepped_breakpoint = 1;
2583
2584 /* Most targets can step a breakpoint instruction, thus
2585 executing it normally. But if this one cannot, just
2586 continue and we will hit it anyway. */
2587 if (gdbarch_cannot_step_breakpoint (gdbarch))
2588 step = 0;
2589 }
2590
2591 if (debug_displaced
2592 && tp->control.trap_expected
2593 && use_displaced_stepping (tp)
2594 && !step_over_info_valid_p ())
2595 {
2596 struct regcache *resume_regcache = get_thread_regcache (tp);
2597 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2598 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2599 gdb_byte buf[4];
2600
2601 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2602 paddress (resume_gdbarch, actual_pc));
2603 read_memory (actual_pc, buf, sizeof (buf));
2604 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2605 }
2606
2607 if (tp->control.may_range_step)
2608 {
2609 /* If we're resuming a thread with the PC out of the step
2610 range, then we're doing some nested/finer run control
2611 operation, like stepping the thread out of the dynamic
2612 linker or the displaced stepping scratch pad. We
2613 shouldn't have allowed a range step then. */
2614 gdb_assert (pc_in_thread_step_range (pc, tp));
2615 }
2616
2617 do_target_resume (resume_ptid, step, sig);
2618 tp->resumed = true;
2619 }
2620
2621 /* Resume the inferior. SIG is the signal to give the inferior
2622 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2623 rolls back state on error. */
2624
2625 static void
2626 resume (gdb_signal sig)
2627 {
2628 try
2629 {
2630 resume_1 (sig);
2631 }
2632 catch (const gdb_exception &ex)
2633 {
2634 /* If resuming is being aborted for any reason, delete any
2635 single-step breakpoint resume_1 may have created, to avoid
2636 confusing the following resumption, and to avoid leaving
2637 single-step breakpoints perturbing other threads, in case
2638 we're running in non-stop mode. */
2639 if (inferior_ptid != null_ptid)
2640 delete_single_step_breakpoints (inferior_thread ());
2641 throw;
2642 }
2643 }
2644
2645 \f
2646 /* Proceeding. */
2647
2648 /* See infrun.h. */
2649
2650 /* Counter that tracks number of user visible stops. This can be used
2651 to tell whether a command has proceeded the inferior past the
2652 current location. This allows e.g., inferior function calls in
2653 breakpoint commands to not interrupt the command list. When the
2654 call finishes successfully, the inferior is standing at the same
2655 breakpoint as if nothing happened (and so we don't call
2656 normal_stop). */
2657 static ULONGEST current_stop_id;
2658
2659 /* See infrun.h. */
2660
2661 ULONGEST
2662 get_stop_id (void)
2663 {
2664 return current_stop_id;
2665 }
2666
2667 /* Called when we report a user visible stop. */
2668
2669 static void
2670 new_stop_id (void)
2671 {
2672 current_stop_id++;
2673 }
2674
2675 /* Clear out all variables saying what to do when inferior is continued.
2676 First do this, then set the ones you want, then call `proceed'. */
2677
2678 static void
2679 clear_proceed_status_thread (struct thread_info *tp)
2680 {
2681 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2682
2683 /* If we're starting a new sequence, then the previous finished
2684 single-step is no longer relevant. */
2685 if (tp->suspend.waitstatus_pending_p)
2686 {
2687 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2688 {
2689 infrun_debug_printf ("pending event of %s was a finished step. "
2690 "Discarding.",
2691 target_pid_to_str (tp->ptid).c_str ());
2692
2693 tp->suspend.waitstatus_pending_p = 0;
2694 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2695 }
2696 else
2697 {
2698 infrun_debug_printf
2699 ("thread %s has pending wait status %s (currently_stepping=%d).",
2700 target_pid_to_str (tp->ptid).c_str (),
2701 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2702 currently_stepping (tp));
2703 }
2704 }
2705
2706 /* If this signal should not be seen by program, give it zero.
2707 Used for debugging signals. */
2708 if (!signal_pass_state (tp->suspend.stop_signal))
2709 tp->suspend.stop_signal = GDB_SIGNAL_0;
2710
2711 delete tp->thread_fsm;
2712 tp->thread_fsm = NULL;
2713
2714 tp->control.trap_expected = 0;
2715 tp->control.step_range_start = 0;
2716 tp->control.step_range_end = 0;
2717 tp->control.may_range_step = 0;
2718 tp->control.step_frame_id = null_frame_id;
2719 tp->control.step_stack_frame_id = null_frame_id;
2720 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2721 tp->control.step_start_function = NULL;
2722 tp->stop_requested = 0;
2723
2724 tp->control.stop_step = 0;
2725
2726 tp->control.proceed_to_finish = 0;
2727
2728 tp->control.stepping_command = 0;
2729
2730 /* Discard any remaining commands or status from previous stop. */
2731 bpstat_clear (&tp->control.stop_bpstat);
2732 }
2733
2734 void
2735 clear_proceed_status (int step)
2736 {
2737 /* With scheduler-locking replay, stop replaying other threads if we're
2738 not replaying the user-visible resume ptid.
2739
2740 This is a convenience feature to not require the user to explicitly
2741 stop replaying the other threads. We're assuming that the user's
2742 intent is to resume tracing the recorded process. */
2743 if (!non_stop && scheduler_mode == schedlock_replay
2744 && target_record_is_replaying (minus_one_ptid)
2745 && !target_record_will_replay (user_visible_resume_ptid (step),
2746 execution_direction))
2747 target_record_stop_replaying ();
2748
2749 if (!non_stop && inferior_ptid != null_ptid)
2750 {
2751 ptid_t resume_ptid = user_visible_resume_ptid (step);
2752 process_stratum_target *resume_target
2753 = user_visible_resume_target (resume_ptid);
2754
2755 /* In all-stop mode, delete the per-thread status of all threads
2756 we're about to resume, implicitly and explicitly. */
2757 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2758 clear_proceed_status_thread (tp);
2759 }
2760
2761 if (inferior_ptid != null_ptid)
2762 {
2763 struct inferior *inferior;
2764
2765 if (non_stop)
2766 {
2767 /* If in non-stop mode, only delete the per-thread status of
2768 the current thread. */
2769 clear_proceed_status_thread (inferior_thread ());
2770 }
2771
2772 inferior = current_inferior ();
2773 inferior->control.stop_soon = NO_STOP_QUIETLY;
2774 }
2775
2776 gdb::observers::about_to_proceed.notify ();
2777 }
2778
2779 /* Returns true if TP is still stopped at a breakpoint that needs
2780 stepping-over in order to make progress. If the breakpoint is gone
2781 meanwhile, we can skip the whole step-over dance. */
2782
2783 static int
2784 thread_still_needs_step_over_bp (struct thread_info *tp)
2785 {
2786 if (tp->stepping_over_breakpoint)
2787 {
2788 struct regcache *regcache = get_thread_regcache (tp);
2789
2790 if (breakpoint_here_p (regcache->aspace (),
2791 regcache_read_pc (regcache))
2792 == ordinary_breakpoint_here)
2793 return 1;
2794
2795 tp->stepping_over_breakpoint = 0;
2796 }
2797
2798 return 0;
2799 }
2800
2801 /* Check whether thread TP still needs to start a step-over in order
2802 to make progress when resumed. Returns an bitwise or of enum
2803 step_over_what bits, indicating what needs to be stepped over. */
2804
2805 static step_over_what
2806 thread_still_needs_step_over (struct thread_info *tp)
2807 {
2808 step_over_what what = 0;
2809
2810 if (thread_still_needs_step_over_bp (tp))
2811 what |= STEP_OVER_BREAKPOINT;
2812
2813 if (tp->stepping_over_watchpoint
2814 && !target_have_steppable_watchpoint ())
2815 what |= STEP_OVER_WATCHPOINT;
2816
2817 return what;
2818 }
2819
2820 /* Returns true if scheduler locking applies. STEP indicates whether
2821 we're about to do a step/next-like command to a thread. */
2822
2823 static int
2824 schedlock_applies (struct thread_info *tp)
2825 {
2826 return (scheduler_mode == schedlock_on
2827 || (scheduler_mode == schedlock_step
2828 && tp->control.stepping_command)
2829 || (scheduler_mode == schedlock_replay
2830 && target_record_will_replay (minus_one_ptid,
2831 execution_direction)));
2832 }
2833
2834 /* Calls target_commit_resume on all targets. */
2835
2836 static void
2837 commit_resume_all_targets ()
2838 {
2839 scoped_restore_current_thread restore_thread;
2840
2841 /* Map between process_target and a representative inferior. This
2842 is to avoid committing a resume in the same target more than
2843 once. Resumptions must be idempotent, so this is an
2844 optimization. */
2845 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2846
2847 for (inferior *inf : all_non_exited_inferiors ())
2848 if (inf->has_execution ())
2849 conn_inf[inf->process_target ()] = inf;
2850
2851 for (const auto &ci : conn_inf)
2852 {
2853 inferior *inf = ci.second;
2854 switch_to_inferior_no_thread (inf);
2855 target_commit_resume ();
2856 }
2857 }
2858
2859 /* Check that all the targets we're about to resume are in non-stop
2860 mode. Ideally, we'd only care whether all targets support
2861 target-async, but we're not there yet. E.g., stop_all_threads
2862 doesn't know how to handle all-stop targets. Also, the remote
2863 protocol in all-stop mode is synchronous, irrespective of
2864 target-async, which means that things like a breakpoint re-set
2865 triggered by one target would try to read memory from all targets
2866 and fail. */
2867
2868 static void
2869 check_multi_target_resumption (process_stratum_target *resume_target)
2870 {
2871 if (!non_stop && resume_target == nullptr)
2872 {
2873 scoped_restore_current_thread restore_thread;
2874
2875 /* This is used to track whether we're resuming more than one
2876 target. */
2877 process_stratum_target *first_connection = nullptr;
2878
2879 /* The first inferior we see with a target that does not work in
2880 always-non-stop mode. */
2881 inferior *first_not_non_stop = nullptr;
2882
2883 for (inferior *inf : all_non_exited_inferiors (resume_target))
2884 {
2885 switch_to_inferior_no_thread (inf);
2886
2887 if (!target_has_execution ())
2888 continue;
2889
2890 process_stratum_target *proc_target
2891 = current_inferior ()->process_target();
2892
2893 if (!target_is_non_stop_p ())
2894 first_not_non_stop = inf;
2895
2896 if (first_connection == nullptr)
2897 first_connection = proc_target;
2898 else if (first_connection != proc_target
2899 && first_not_non_stop != nullptr)
2900 {
2901 switch_to_inferior_no_thread (first_not_non_stop);
2902
2903 proc_target = current_inferior ()->process_target();
2904
2905 error (_("Connection %d (%s) does not support "
2906 "multi-target resumption."),
2907 proc_target->connection_number,
2908 make_target_connection_string (proc_target).c_str ());
2909 }
2910 }
2911 }
2912 }
2913
2914 /* Basic routine for continuing the program in various fashions.
2915
2916 ADDR is the address to resume at, or -1 for resume where stopped.
2917 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2918 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2919
2920 You should call clear_proceed_status before calling proceed. */
2921
2922 void
2923 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2924 {
2925 struct regcache *regcache;
2926 struct gdbarch *gdbarch;
2927 CORE_ADDR pc;
2928 struct execution_control_state ecss;
2929 struct execution_control_state *ecs = &ecss;
2930 int started;
2931
2932 /* If we're stopped at a fork/vfork, follow the branch set by the
2933 "set follow-fork-mode" command; otherwise, we'll just proceed
2934 resuming the current thread. */
2935 if (!follow_fork ())
2936 {
2937 /* The target for some reason decided not to resume. */
2938 normal_stop ();
2939 if (target_can_async_p ())
2940 inferior_event_handler (INF_EXEC_COMPLETE);
2941 return;
2942 }
2943
2944 /* We'll update this if & when we switch to a new thread. */
2945 previous_inferior_ptid = inferior_ptid;
2946
2947 regcache = get_current_regcache ();
2948 gdbarch = regcache->arch ();
2949 const address_space *aspace = regcache->aspace ();
2950
2951 pc = regcache_read_pc_protected (regcache);
2952
2953 thread_info *cur_thr = inferior_thread ();
2954
2955 /* Fill in with reasonable starting values. */
2956 init_thread_stepping_state (cur_thr);
2957
2958 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2959
2960 ptid_t resume_ptid
2961 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2962 process_stratum_target *resume_target
2963 = user_visible_resume_target (resume_ptid);
2964
2965 check_multi_target_resumption (resume_target);
2966
2967 if (addr == (CORE_ADDR) -1)
2968 {
2969 if (pc == cur_thr->suspend.stop_pc
2970 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2971 && execution_direction != EXEC_REVERSE)
2972 /* There is a breakpoint at the address we will resume at,
2973 step one instruction before inserting breakpoints so that
2974 we do not stop right away (and report a second hit at this
2975 breakpoint).
2976
2977 Note, we don't do this in reverse, because we won't
2978 actually be executing the breakpoint insn anyway.
2979 We'll be (un-)executing the previous instruction. */
2980 cur_thr->stepping_over_breakpoint = 1;
2981 else if (gdbarch_single_step_through_delay_p (gdbarch)
2982 && gdbarch_single_step_through_delay (gdbarch,
2983 get_current_frame ()))
2984 /* We stepped onto an instruction that needs to be stepped
2985 again before re-inserting the breakpoint, do so. */
2986 cur_thr->stepping_over_breakpoint = 1;
2987 }
2988 else
2989 {
2990 regcache_write_pc (regcache, addr);
2991 }
2992
2993 if (siggnal != GDB_SIGNAL_DEFAULT)
2994 cur_thr->suspend.stop_signal = siggnal;
2995
2996 /* If an exception is thrown from this point on, make sure to
2997 propagate GDB's knowledge of the executing state to the
2998 frontend/user running state. */
2999 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3000
3001 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3002 threads (e.g., we might need to set threads stepping over
3003 breakpoints first), from the user/frontend's point of view, all
3004 threads in RESUME_PTID are now running. Unless we're calling an
3005 inferior function, as in that case we pretend the inferior
3006 doesn't run at all. */
3007 if (!cur_thr->control.in_infcall)
3008 set_running (resume_target, resume_ptid, true);
3009
3010 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3011 gdb_signal_to_symbol_string (siggnal));
3012
3013 annotate_starting ();
3014
3015 /* Make sure that output from GDB appears before output from the
3016 inferior. */
3017 gdb_flush (gdb_stdout);
3018
3019 /* Since we've marked the inferior running, give it the terminal. A
3020 QUIT/Ctrl-C from here on is forwarded to the target (which can
3021 still detect attempts to unblock a stuck connection with repeated
3022 Ctrl-C from within target_pass_ctrlc). */
3023 target_terminal::inferior ();
3024
3025 /* In a multi-threaded task we may select another thread and
3026 then continue or step.
3027
3028 But if a thread that we're resuming had stopped at a breakpoint,
3029 it will immediately cause another breakpoint stop without any
3030 execution (i.e. it will report a breakpoint hit incorrectly). So
3031 we must step over it first.
3032
3033 Look for threads other than the current (TP) that reported a
3034 breakpoint hit and haven't been resumed yet since. */
3035
3036 /* If scheduler locking applies, we can avoid iterating over all
3037 threads. */
3038 if (!non_stop && !schedlock_applies (cur_thr))
3039 {
3040 for (thread_info *tp : all_non_exited_threads (resume_target,
3041 resume_ptid))
3042 {
3043 switch_to_thread_no_regs (tp);
3044
3045 /* Ignore the current thread here. It's handled
3046 afterwards. */
3047 if (tp == cur_thr)
3048 continue;
3049
3050 if (!thread_still_needs_step_over (tp))
3051 continue;
3052
3053 gdb_assert (!thread_is_in_step_over_chain (tp));
3054
3055 infrun_debug_printf ("need to step-over [%s] first",
3056 target_pid_to_str (tp->ptid).c_str ());
3057
3058 thread_step_over_chain_enqueue (tp);
3059 }
3060
3061 switch_to_thread (cur_thr);
3062 }
3063
3064 /* Enqueue the current thread last, so that we move all other
3065 threads over their breakpoints first. */
3066 if (cur_thr->stepping_over_breakpoint)
3067 thread_step_over_chain_enqueue (cur_thr);
3068
3069 /* If the thread isn't started, we'll still need to set its prev_pc,
3070 so that switch_back_to_stepped_thread knows the thread hasn't
3071 advanced. Must do this before resuming any thread, as in
3072 all-stop/remote, once we resume we can't send any other packet
3073 until the target stops again. */
3074 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3075
3076 {
3077 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3078
3079 started = start_step_over ();
3080
3081 if (step_over_info_valid_p ())
3082 {
3083 /* Either this thread started a new in-line step over, or some
3084 other thread was already doing one. In either case, don't
3085 resume anything else until the step-over is finished. */
3086 }
3087 else if (started && !target_is_non_stop_p ())
3088 {
3089 /* A new displaced stepping sequence was started. In all-stop,
3090 we can't talk to the target anymore until it next stops. */
3091 }
3092 else if (!non_stop && target_is_non_stop_p ())
3093 {
3094 /* In all-stop, but the target is always in non-stop mode.
3095 Start all other threads that are implicitly resumed too. */
3096 for (thread_info *tp : all_non_exited_threads (resume_target,
3097 resume_ptid))
3098 {
3099 switch_to_thread_no_regs (tp);
3100
3101 if (!tp->inf->has_execution ())
3102 {
3103 infrun_debug_printf ("[%s] target has no execution",
3104 target_pid_to_str (tp->ptid).c_str ());
3105 continue;
3106 }
3107
3108 if (tp->resumed)
3109 {
3110 infrun_debug_printf ("[%s] resumed",
3111 target_pid_to_str (tp->ptid).c_str ());
3112 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3113 continue;
3114 }
3115
3116 if (thread_is_in_step_over_chain (tp))
3117 {
3118 infrun_debug_printf ("[%s] needs step-over",
3119 target_pid_to_str (tp->ptid).c_str ());
3120 continue;
3121 }
3122
3123 infrun_debug_printf ("resuming %s",
3124 target_pid_to_str (tp->ptid).c_str ());
3125
3126 reset_ecs (ecs, tp);
3127 switch_to_thread (tp);
3128 keep_going_pass_signal (ecs);
3129 if (!ecs->wait_some_more)
3130 error (_("Command aborted."));
3131 }
3132 }
3133 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3134 {
3135 /* The thread wasn't started, and isn't queued, run it now. */
3136 reset_ecs (ecs, cur_thr);
3137 switch_to_thread (cur_thr);
3138 keep_going_pass_signal (ecs);
3139 if (!ecs->wait_some_more)
3140 error (_("Command aborted."));
3141 }
3142 }
3143
3144 commit_resume_all_targets ();
3145
3146 finish_state.release ();
3147
3148 /* If we've switched threads above, switch back to the previously
3149 current thread. We don't want the user to see a different
3150 selected thread. */
3151 switch_to_thread (cur_thr);
3152
3153 /* Tell the event loop to wait for it to stop. If the target
3154 supports asynchronous execution, it'll do this from within
3155 target_resume. */
3156 if (!target_can_async_p ())
3157 mark_async_event_handler (infrun_async_inferior_event_token);
3158 }
3159 \f
3160
3161 /* Start remote-debugging of a machine over a serial link. */
3162
3163 void
3164 start_remote (int from_tty)
3165 {
3166 inferior *inf = current_inferior ();
3167 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3168
3169 /* Always go on waiting for the target, regardless of the mode. */
3170 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3171 indicate to wait_for_inferior that a target should timeout if
3172 nothing is returned (instead of just blocking). Because of this,
3173 targets expecting an immediate response need to, internally, set
3174 things up so that the target_wait() is forced to eventually
3175 timeout. */
3176 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3177 differentiate to its caller what the state of the target is after
3178 the initial open has been performed. Here we're assuming that
3179 the target has stopped. It should be possible to eventually have
3180 target_open() return to the caller an indication that the target
3181 is currently running and GDB state should be set to the same as
3182 for an async run. */
3183 wait_for_inferior (inf);
3184
3185 /* Now that the inferior has stopped, do any bookkeeping like
3186 loading shared libraries. We want to do this before normal_stop,
3187 so that the displayed frame is up to date. */
3188 post_create_inferior (current_top_target (), from_tty);
3189
3190 normal_stop ();
3191 }
3192
3193 /* Initialize static vars when a new inferior begins. */
3194
3195 void
3196 init_wait_for_inferior (void)
3197 {
3198 /* These are meaningless until the first time through wait_for_inferior. */
3199
3200 breakpoint_init_inferior (inf_starting);
3201
3202 clear_proceed_status (0);
3203
3204 nullify_last_target_wait_ptid ();
3205
3206 previous_inferior_ptid = inferior_ptid;
3207 }
3208
3209 \f
3210
3211 static void handle_inferior_event (struct execution_control_state *ecs);
3212
3213 static void handle_step_into_function (struct gdbarch *gdbarch,
3214 struct execution_control_state *ecs);
3215 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3216 struct execution_control_state *ecs);
3217 static void handle_signal_stop (struct execution_control_state *ecs);
3218 static void check_exception_resume (struct execution_control_state *,
3219 struct frame_info *);
3220
3221 static void end_stepping_range (struct execution_control_state *ecs);
3222 static void stop_waiting (struct execution_control_state *ecs);
3223 static void keep_going (struct execution_control_state *ecs);
3224 static void process_event_stop_test (struct execution_control_state *ecs);
3225 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3226
3227 /* This function is attached as a "thread_stop_requested" observer.
3228 Cleanup local state that assumed the PTID was to be resumed, and
3229 report the stop to the frontend. */
3230
3231 static void
3232 infrun_thread_stop_requested (ptid_t ptid)
3233 {
3234 process_stratum_target *curr_target = current_inferior ()->process_target ();
3235
3236 /* PTID was requested to stop. If the thread was already stopped,
3237 but the user/frontend doesn't know about that yet (e.g., the
3238 thread had been temporarily paused for some step-over), set up
3239 for reporting the stop now. */
3240 for (thread_info *tp : all_threads (curr_target, ptid))
3241 {
3242 if (tp->state != THREAD_RUNNING)
3243 continue;
3244 if (tp->executing)
3245 continue;
3246
3247 /* Remove matching threads from the step-over queue, so
3248 start_step_over doesn't try to resume them
3249 automatically. */
3250 if (thread_is_in_step_over_chain (tp))
3251 thread_step_over_chain_remove (tp);
3252
3253 /* If the thread is stopped, but the user/frontend doesn't
3254 know about that yet, queue a pending event, as if the
3255 thread had just stopped now. Unless the thread already had
3256 a pending event. */
3257 if (!tp->suspend.waitstatus_pending_p)
3258 {
3259 tp->suspend.waitstatus_pending_p = 1;
3260 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3261 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3262 }
3263
3264 /* Clear the inline-frame state, since we're re-processing the
3265 stop. */
3266 clear_inline_frame_state (tp);
3267
3268 /* If this thread was paused because some other thread was
3269 doing an inline-step over, let that finish first. Once
3270 that happens, we'll restart all threads and consume pending
3271 stop events then. */
3272 if (step_over_info_valid_p ())
3273 continue;
3274
3275 /* Otherwise we can process the (new) pending event now. Set
3276 it so this pending event is considered by
3277 do_target_wait. */
3278 tp->resumed = true;
3279 }
3280 }
3281
3282 static void
3283 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3284 {
3285 if (target_last_proc_target == tp->inf->process_target ()
3286 && target_last_wait_ptid == tp->ptid)
3287 nullify_last_target_wait_ptid ();
3288 }
3289
3290 /* Delete the step resume, single-step and longjmp/exception resume
3291 breakpoints of TP. */
3292
3293 static void
3294 delete_thread_infrun_breakpoints (struct thread_info *tp)
3295 {
3296 delete_step_resume_breakpoint (tp);
3297 delete_exception_resume_breakpoint (tp);
3298 delete_single_step_breakpoints (tp);
3299 }
3300
3301 /* If the target still has execution, call FUNC for each thread that
3302 just stopped. In all-stop, that's all the non-exited threads; in
3303 non-stop, that's the current thread, only. */
3304
3305 typedef void (*for_each_just_stopped_thread_callback_func)
3306 (struct thread_info *tp);
3307
3308 static void
3309 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3310 {
3311 if (!target_has_execution () || inferior_ptid == null_ptid)
3312 return;
3313
3314 if (target_is_non_stop_p ())
3315 {
3316 /* If in non-stop mode, only the current thread stopped. */
3317 func (inferior_thread ());
3318 }
3319 else
3320 {
3321 /* In all-stop mode, all threads have stopped. */
3322 for (thread_info *tp : all_non_exited_threads ())
3323 func (tp);
3324 }
3325 }
3326
3327 /* Delete the step resume and longjmp/exception resume breakpoints of
3328 the threads that just stopped. */
3329
3330 static void
3331 delete_just_stopped_threads_infrun_breakpoints (void)
3332 {
3333 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3334 }
3335
3336 /* Delete the single-step breakpoints of the threads that just
3337 stopped. */
3338
3339 static void
3340 delete_just_stopped_threads_single_step_breakpoints (void)
3341 {
3342 for_each_just_stopped_thread (delete_single_step_breakpoints);
3343 }
3344
3345 /* See infrun.h. */
3346
3347 void
3348 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3349 const struct target_waitstatus *ws)
3350 {
3351 std::string status_string = target_waitstatus_to_string (ws);
3352 string_file stb;
3353
3354 /* The text is split over several lines because it was getting too long.
3355 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3356 output as a unit; we want only one timestamp printed if debug_timestamp
3357 is set. */
3358
3359 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3360 waiton_ptid.pid (),
3361 waiton_ptid.lwp (),
3362 waiton_ptid.tid ());
3363 if (waiton_ptid.pid () != -1)
3364 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3365 stb.printf (", status) =\n");
3366 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3367 result_ptid.pid (),
3368 result_ptid.lwp (),
3369 result_ptid.tid (),
3370 target_pid_to_str (result_ptid).c_str ());
3371 stb.printf ("[infrun] %s\n", status_string.c_str ());
3372
3373 /* This uses %s in part to handle %'s in the text, but also to avoid
3374 a gcc error: the format attribute requires a string literal. */
3375 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3376 }
3377
3378 /* Select a thread at random, out of those which are resumed and have
3379 had events. */
3380
3381 static struct thread_info *
3382 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3383 {
3384 int num_events = 0;
3385
3386 auto has_event = [&] (thread_info *tp)
3387 {
3388 return (tp->ptid.matches (waiton_ptid)
3389 && tp->resumed
3390 && tp->suspend.waitstatus_pending_p);
3391 };
3392
3393 /* First see how many events we have. Count only resumed threads
3394 that have an event pending. */
3395 for (thread_info *tp : inf->non_exited_threads ())
3396 if (has_event (tp))
3397 num_events++;
3398
3399 if (num_events == 0)
3400 return NULL;
3401
3402 /* Now randomly pick a thread out of those that have had events. */
3403 int random_selector = (int) ((num_events * (double) rand ())
3404 / (RAND_MAX + 1.0));
3405
3406 if (num_events > 1)
3407 infrun_debug_printf ("Found %d events, selecting #%d",
3408 num_events, random_selector);
3409
3410 /* Select the Nth thread that has had an event. */
3411 for (thread_info *tp : inf->non_exited_threads ())
3412 if (has_event (tp))
3413 if (random_selector-- == 0)
3414 return tp;
3415
3416 gdb_assert_not_reached ("event thread not found");
3417 }
3418
3419 /* Wrapper for target_wait that first checks whether threads have
3420 pending statuses to report before actually asking the target for
3421 more events. INF is the inferior we're using to call target_wait
3422 on. */
3423
3424 static ptid_t
3425 do_target_wait_1 (inferior *inf, ptid_t ptid,
3426 target_waitstatus *status, target_wait_flags options)
3427 {
3428 ptid_t event_ptid;
3429 struct thread_info *tp;
3430
3431 /* We know that we are looking for an event in the target of inferior
3432 INF, but we don't know which thread the event might come from. As
3433 such we want to make sure that INFERIOR_PTID is reset so that none of
3434 the wait code relies on it - doing so is always a mistake. */
3435 switch_to_inferior_no_thread (inf);
3436
3437 /* First check if there is a resumed thread with a wait status
3438 pending. */
3439 if (ptid == minus_one_ptid || ptid.is_pid ())
3440 {
3441 tp = random_pending_event_thread (inf, ptid);
3442 }
3443 else
3444 {
3445 infrun_debug_printf ("Waiting for specific thread %s.",
3446 target_pid_to_str (ptid).c_str ());
3447
3448 /* We have a specific thread to check. */
3449 tp = find_thread_ptid (inf, ptid);
3450 gdb_assert (tp != NULL);
3451 if (!tp->suspend.waitstatus_pending_p)
3452 tp = NULL;
3453 }
3454
3455 if (tp != NULL
3456 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3457 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3458 {
3459 struct regcache *regcache = get_thread_regcache (tp);
3460 struct gdbarch *gdbarch = regcache->arch ();
3461 CORE_ADDR pc;
3462 int discard = 0;
3463
3464 pc = regcache_read_pc (regcache);
3465
3466 if (pc != tp->suspend.stop_pc)
3467 {
3468 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3469 target_pid_to_str (tp->ptid).c_str (),
3470 paddress (gdbarch, tp->suspend.stop_pc),
3471 paddress (gdbarch, pc));
3472 discard = 1;
3473 }
3474 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3475 {
3476 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3477 target_pid_to_str (tp->ptid).c_str (),
3478 paddress (gdbarch, pc));
3479
3480 discard = 1;
3481 }
3482
3483 if (discard)
3484 {
3485 infrun_debug_printf ("pending event of %s cancelled.",
3486 target_pid_to_str (tp->ptid).c_str ());
3487
3488 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3489 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3490 }
3491 }
3492
3493 if (tp != NULL)
3494 {
3495 infrun_debug_printf ("Using pending wait status %s for %s.",
3496 target_waitstatus_to_string
3497 (&tp->suspend.waitstatus).c_str (),
3498 target_pid_to_str (tp->ptid).c_str ());
3499
3500 /* Now that we've selected our final event LWP, un-adjust its PC
3501 if it was a software breakpoint (and the target doesn't
3502 always adjust the PC itself). */
3503 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3504 && !target_supports_stopped_by_sw_breakpoint ())
3505 {
3506 struct regcache *regcache;
3507 struct gdbarch *gdbarch;
3508 int decr_pc;
3509
3510 regcache = get_thread_regcache (tp);
3511 gdbarch = regcache->arch ();
3512
3513 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3514 if (decr_pc != 0)
3515 {
3516 CORE_ADDR pc;
3517
3518 pc = regcache_read_pc (regcache);
3519 regcache_write_pc (regcache, pc + decr_pc);
3520 }
3521 }
3522
3523 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3524 *status = tp->suspend.waitstatus;
3525 tp->suspend.waitstatus_pending_p = 0;
3526
3527 /* Wake up the event loop again, until all pending events are
3528 processed. */
3529 if (target_is_async_p ())
3530 mark_async_event_handler (infrun_async_inferior_event_token);
3531 return tp->ptid;
3532 }
3533
3534 /* But if we don't find one, we'll have to wait. */
3535
3536 if (deprecated_target_wait_hook)
3537 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3538 else
3539 event_ptid = target_wait (ptid, status, options);
3540
3541 return event_ptid;
3542 }
3543
3544 /* Wrapper for target_wait that first checks whether threads have
3545 pending statuses to report before actually asking the target for
3546 more events. Polls for events from all inferiors/targets. */
3547
3548 static bool
3549 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3550 target_wait_flags options)
3551 {
3552 int num_inferiors = 0;
3553 int random_selector;
3554
3555 /* For fairness, we pick the first inferior/target to poll at random
3556 out of all inferiors that may report events, and then continue
3557 polling the rest of the inferior list starting from that one in a
3558 circular fashion until the whole list is polled once. */
3559
3560 auto inferior_matches = [&wait_ptid] (inferior *inf)
3561 {
3562 return (inf->process_target () != NULL
3563 && ptid_t (inf->pid).matches (wait_ptid));
3564 };
3565
3566 /* First see how many matching inferiors we have. */
3567 for (inferior *inf : all_inferiors ())
3568 if (inferior_matches (inf))
3569 num_inferiors++;
3570
3571 if (num_inferiors == 0)
3572 {
3573 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3574 return false;
3575 }
3576
3577 /* Now randomly pick an inferior out of those that matched. */
3578 random_selector = (int)
3579 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3580
3581 if (num_inferiors > 1)
3582 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3583 num_inferiors, random_selector);
3584
3585 /* Select the Nth inferior that matched. */
3586
3587 inferior *selected = nullptr;
3588
3589 for (inferior *inf : all_inferiors ())
3590 if (inferior_matches (inf))
3591 if (random_selector-- == 0)
3592 {
3593 selected = inf;
3594 break;
3595 }
3596
3597 /* Now poll for events out of each of the matching inferior's
3598 targets, starting from the selected one. */
3599
3600 auto do_wait = [&] (inferior *inf)
3601 {
3602 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3603 ecs->target = inf->process_target ();
3604 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3605 };
3606
3607 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3608 here spuriously after the target is all stopped and we've already
3609 reported the stop to the user, polling for events. */
3610 scoped_restore_current_thread restore_thread;
3611
3612 int inf_num = selected->num;
3613 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3614 if (inferior_matches (inf))
3615 if (do_wait (inf))
3616 return true;
3617
3618 for (inferior *inf = inferior_list;
3619 inf != NULL && inf->num < inf_num;
3620 inf = inf->next)
3621 if (inferior_matches (inf))
3622 if (do_wait (inf))
3623 return true;
3624
3625 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3626 return false;
3627 }
3628
3629 /* Prepare and stabilize the inferior for detaching it. E.g.,
3630 detaching while a thread is displaced stepping is a recipe for
3631 crashing it, as nothing would readjust the PC out of the scratch
3632 pad. */
3633
3634 void
3635 prepare_for_detach (void)
3636 {
3637 struct inferior *inf = current_inferior ();
3638 ptid_t pid_ptid = ptid_t (inf->pid);
3639
3640 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3641
3642 /* Is any thread of this process displaced stepping? If not,
3643 there's nothing else to do. */
3644 if (displaced->step_thread == nullptr)
3645 return;
3646
3647 infrun_debug_printf ("displaced-stepping in-process while detaching");
3648
3649 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3650
3651 while (displaced->step_thread != nullptr)
3652 {
3653 struct execution_control_state ecss;
3654 struct execution_control_state *ecs;
3655
3656 ecs = &ecss;
3657 memset (ecs, 0, sizeof (*ecs));
3658
3659 overlay_cache_invalid = 1;
3660 /* Flush target cache before starting to handle each event.
3661 Target was running and cache could be stale. This is just a
3662 heuristic. Running threads may modify target memory, but we
3663 don't get any event. */
3664 target_dcache_invalidate ();
3665
3666 do_target_wait (pid_ptid, ecs, 0);
3667
3668 if (debug_infrun)
3669 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3670
3671 /* If an error happens while handling the event, propagate GDB's
3672 knowledge of the executing state to the frontend/user running
3673 state. */
3674 scoped_finish_thread_state finish_state (inf->process_target (),
3675 minus_one_ptid);
3676
3677 /* Now figure out what to do with the result of the result. */
3678 handle_inferior_event (ecs);
3679
3680 /* No error, don't finish the state yet. */
3681 finish_state.release ();
3682
3683 /* Breakpoints and watchpoints are not installed on the target
3684 at this point, and signals are passed directly to the
3685 inferior, so this must mean the process is gone. */
3686 if (!ecs->wait_some_more)
3687 {
3688 restore_detaching.release ();
3689 error (_("Program exited while detaching"));
3690 }
3691 }
3692
3693 restore_detaching.release ();
3694 }
3695
3696 /* Wait for control to return from inferior to debugger.
3697
3698 If inferior gets a signal, we may decide to start it up again
3699 instead of returning. That is why there is a loop in this function.
3700 When this function actually returns it means the inferior
3701 should be left stopped and GDB should read more commands. */
3702
3703 static void
3704 wait_for_inferior (inferior *inf)
3705 {
3706 infrun_debug_printf ("wait_for_inferior ()");
3707
3708 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3709
3710 /* If an error happens while handling the event, propagate GDB's
3711 knowledge of the executing state to the frontend/user running
3712 state. */
3713 scoped_finish_thread_state finish_state
3714 (inf->process_target (), minus_one_ptid);
3715
3716 while (1)
3717 {
3718 struct execution_control_state ecss;
3719 struct execution_control_state *ecs = &ecss;
3720
3721 memset (ecs, 0, sizeof (*ecs));
3722
3723 overlay_cache_invalid = 1;
3724
3725 /* Flush target cache before starting to handle each event.
3726 Target was running and cache could be stale. This is just a
3727 heuristic. Running threads may modify target memory, but we
3728 don't get any event. */
3729 target_dcache_invalidate ();
3730
3731 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3732 ecs->target = inf->process_target ();
3733
3734 if (debug_infrun)
3735 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3736
3737 /* Now figure out what to do with the result of the result. */
3738 handle_inferior_event (ecs);
3739
3740 if (!ecs->wait_some_more)
3741 break;
3742 }
3743
3744 /* No error, don't finish the state yet. */
3745 finish_state.release ();
3746 }
3747
3748 /* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758 static void
3759 reinstall_readline_callback_handler_cleanup ()
3760 {
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3774 gdb_rl_callback_handler_reinstall ();
3775 }
3776
3777 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780 static void
3781 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782 {
3783 if (ecs->event_thread != NULL
3784 && ecs->event_thread->thread_fsm != NULL)
3785 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3786
3787 if (!non_stop)
3788 {
3789 for (thread_info *thr : all_non_exited_threads ())
3790 {
3791 if (thr->thread_fsm == NULL)
3792 continue;
3793 if (thr == ecs->event_thread)
3794 continue;
3795
3796 switch_to_thread (thr);
3797 thr->thread_fsm->clean_up (thr);
3798 }
3799
3800 if (ecs->event_thread != NULL)
3801 switch_to_thread (ecs->event_thread);
3802 }
3803 }
3804
3805 /* Helper for all_uis_check_sync_execution_done that works on the
3806 current UI. */
3807
3808 static void
3809 check_curr_ui_sync_execution_done (void)
3810 {
3811 struct ui *ui = current_ui;
3812
3813 if (ui->prompt_state == PROMPT_NEEDED
3814 && ui->async
3815 && !gdb_in_secondary_prompt_p (ui))
3816 {
3817 target_terminal::ours ();
3818 gdb::observers::sync_execution_done.notify ();
3819 ui_register_input_event_handler (ui);
3820 }
3821 }
3822
3823 /* See infrun.h. */
3824
3825 void
3826 all_uis_check_sync_execution_done (void)
3827 {
3828 SWITCH_THRU_ALL_UIS ()
3829 {
3830 check_curr_ui_sync_execution_done ();
3831 }
3832 }
3833
3834 /* See infrun.h. */
3835
3836 void
3837 all_uis_on_sync_execution_starting (void)
3838 {
3839 SWITCH_THRU_ALL_UIS ()
3840 {
3841 if (current_ui->prompt_state == PROMPT_NEEDED)
3842 async_disable_stdin ();
3843 }
3844 }
3845
3846 /* Asynchronous version of wait_for_inferior. It is called by the
3847 event loop whenever a change of state is detected on the file
3848 descriptor corresponding to the target. It can be called more than
3849 once to complete a single execution command. In such cases we need
3850 to keep the state in a global variable ECSS. If it is the last time
3851 that this function is called for a single execution command, then
3852 report to the user that the inferior has stopped, and do the
3853 necessary cleanups. */
3854
3855 void
3856 fetch_inferior_event ()
3857 {
3858 struct execution_control_state ecss;
3859 struct execution_control_state *ecs = &ecss;
3860 int cmd_done = 0;
3861
3862 memset (ecs, 0, sizeof (*ecs));
3863
3864 /* Events are always processed with the main UI as current UI. This
3865 way, warnings, debug output, etc. are always consistently sent to
3866 the main console. */
3867 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3868
3869 /* End up with readline processing input, if necessary. */
3870 {
3871 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3872
3873 /* We're handling a live event, so make sure we're doing live
3874 debugging. If we're looking at traceframes while the target is
3875 running, we're going to need to get back to that mode after
3876 handling the event. */
3877 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3878 if (non_stop)
3879 {
3880 maybe_restore_traceframe.emplace ();
3881 set_current_traceframe (-1);
3882 }
3883
3884 /* The user/frontend should not notice a thread switch due to
3885 internal events. Make sure we revert to the user selected
3886 thread and frame after handling the event and running any
3887 breakpoint commands. */
3888 scoped_restore_current_thread restore_thread;
3889
3890 overlay_cache_invalid = 1;
3891 /* Flush target cache before starting to handle each event. Target
3892 was running and cache could be stale. This is just a heuristic.
3893 Running threads may modify target memory, but we don't get any
3894 event. */
3895 target_dcache_invalidate ();
3896
3897 scoped_restore save_exec_dir
3898 = make_scoped_restore (&execution_direction,
3899 target_execution_direction ());
3900
3901 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3902 return;
3903
3904 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3905
3906 /* Switch to the target that generated the event, so we can do
3907 target calls. */
3908 switch_to_target_no_thread (ecs->target);
3909
3910 if (debug_infrun)
3911 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3912
3913 /* If an error happens while handling the event, propagate GDB's
3914 knowledge of the executing state to the frontend/user running
3915 state. */
3916 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3917 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3918
3919 /* Get executed before scoped_restore_current_thread above to apply
3920 still for the thread which has thrown the exception. */
3921 auto defer_bpstat_clear
3922 = make_scope_exit (bpstat_clear_actions);
3923 auto defer_delete_threads
3924 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3925
3926 /* Now figure out what to do with the result of the result. */
3927 handle_inferior_event (ecs);
3928
3929 if (!ecs->wait_some_more)
3930 {
3931 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3932 int should_stop = 1;
3933 struct thread_info *thr = ecs->event_thread;
3934
3935 delete_just_stopped_threads_infrun_breakpoints ();
3936
3937 if (thr != NULL)
3938 {
3939 struct thread_fsm *thread_fsm = thr->thread_fsm;
3940
3941 if (thread_fsm != NULL)
3942 should_stop = thread_fsm->should_stop (thr);
3943 }
3944
3945 if (!should_stop)
3946 {
3947 keep_going (ecs);
3948 }
3949 else
3950 {
3951 bool should_notify_stop = true;
3952 int proceeded = 0;
3953
3954 clean_up_just_stopped_threads_fsms (ecs);
3955
3956 if (thr != NULL && thr->thread_fsm != NULL)
3957 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3958
3959 if (should_notify_stop)
3960 {
3961 /* We may not find an inferior if this was a process exit. */
3962 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3963 proceeded = normal_stop ();
3964 }
3965
3966 if (!proceeded)
3967 {
3968 inferior_event_handler (INF_EXEC_COMPLETE);
3969 cmd_done = 1;
3970 }
3971
3972 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3973 previously selected thread is gone. We have two
3974 choices - switch to no thread selected, or restore the
3975 previously selected thread (now exited). We chose the
3976 later, just because that's what GDB used to do. After
3977 this, "info threads" says "The current thread <Thread
3978 ID 2> has terminated." instead of "No thread
3979 selected.". */
3980 if (!non_stop
3981 && cmd_done
3982 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3983 restore_thread.dont_restore ();
3984 }
3985 }
3986
3987 defer_delete_threads.release ();
3988 defer_bpstat_clear.release ();
3989
3990 /* No error, don't finish the thread states yet. */
3991 finish_state.release ();
3992
3993 /* This scope is used to ensure that readline callbacks are
3994 reinstalled here. */
3995 }
3996
3997 /* If a UI was in sync execution mode, and now isn't, restore its
3998 prompt (a synchronous execution command has finished, and we're
3999 ready for input). */
4000 all_uis_check_sync_execution_done ();
4001
4002 if (cmd_done
4003 && exec_done_display_p
4004 && (inferior_ptid == null_ptid
4005 || inferior_thread ()->state != THREAD_RUNNING))
4006 printf_unfiltered (_("completed.\n"));
4007 }
4008
4009 /* See infrun.h. */
4010
4011 void
4012 set_step_info (thread_info *tp, struct frame_info *frame,
4013 struct symtab_and_line sal)
4014 {
4015 /* This can be removed once this function no longer implicitly relies on the
4016 inferior_ptid value. */
4017 gdb_assert (inferior_ptid == tp->ptid);
4018
4019 tp->control.step_frame_id = get_frame_id (frame);
4020 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4021
4022 tp->current_symtab = sal.symtab;
4023 tp->current_line = sal.line;
4024 }
4025
4026 /* Clear context switchable stepping state. */
4027
4028 void
4029 init_thread_stepping_state (struct thread_info *tss)
4030 {
4031 tss->stepped_breakpoint = 0;
4032 tss->stepping_over_breakpoint = 0;
4033 tss->stepping_over_watchpoint = 0;
4034 tss->step_after_step_resume_breakpoint = 0;
4035 }
4036
4037 /* See infrun.h. */
4038
4039 void
4040 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4041 target_waitstatus status)
4042 {
4043 target_last_proc_target = target;
4044 target_last_wait_ptid = ptid;
4045 target_last_waitstatus = status;
4046 }
4047
4048 /* See infrun.h. */
4049
4050 void
4051 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4052 target_waitstatus *status)
4053 {
4054 if (target != nullptr)
4055 *target = target_last_proc_target;
4056 if (ptid != nullptr)
4057 *ptid = target_last_wait_ptid;
4058 if (status != nullptr)
4059 *status = target_last_waitstatus;
4060 }
4061
4062 /* See infrun.h. */
4063
4064 void
4065 nullify_last_target_wait_ptid (void)
4066 {
4067 target_last_proc_target = nullptr;
4068 target_last_wait_ptid = minus_one_ptid;
4069 target_last_waitstatus = {};
4070 }
4071
4072 /* Switch thread contexts. */
4073
4074 static void
4075 context_switch (execution_control_state *ecs)
4076 {
4077 if (ecs->ptid != inferior_ptid
4078 && (inferior_ptid == null_ptid
4079 || ecs->event_thread != inferior_thread ()))
4080 {
4081 infrun_debug_printf ("Switching context from %s to %s",
4082 target_pid_to_str (inferior_ptid).c_str (),
4083 target_pid_to_str (ecs->ptid).c_str ());
4084 }
4085
4086 switch_to_thread (ecs->event_thread);
4087 }
4088
4089 /* If the target can't tell whether we've hit breakpoints
4090 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4091 check whether that could have been caused by a breakpoint. If so,
4092 adjust the PC, per gdbarch_decr_pc_after_break. */
4093
4094 static void
4095 adjust_pc_after_break (struct thread_info *thread,
4096 struct target_waitstatus *ws)
4097 {
4098 struct regcache *regcache;
4099 struct gdbarch *gdbarch;
4100 CORE_ADDR breakpoint_pc, decr_pc;
4101
4102 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4103 we aren't, just return.
4104
4105 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4106 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4107 implemented by software breakpoints should be handled through the normal
4108 breakpoint layer.
4109
4110 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4111 different signals (SIGILL or SIGEMT for instance), but it is less
4112 clear where the PC is pointing afterwards. It may not match
4113 gdbarch_decr_pc_after_break. I don't know any specific target that
4114 generates these signals at breakpoints (the code has been in GDB since at
4115 least 1992) so I can not guess how to handle them here.
4116
4117 In earlier versions of GDB, a target with
4118 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4119 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4120 target with both of these set in GDB history, and it seems unlikely to be
4121 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4122
4123 if (ws->kind != TARGET_WAITKIND_STOPPED)
4124 return;
4125
4126 if (ws->value.sig != GDB_SIGNAL_TRAP)
4127 return;
4128
4129 /* In reverse execution, when a breakpoint is hit, the instruction
4130 under it has already been de-executed. The reported PC always
4131 points at the breakpoint address, so adjusting it further would
4132 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4133 architecture:
4134
4135 B1 0x08000000 : INSN1
4136 B2 0x08000001 : INSN2
4137 0x08000002 : INSN3
4138 PC -> 0x08000003 : INSN4
4139
4140 Say you're stopped at 0x08000003 as above. Reverse continuing
4141 from that point should hit B2 as below. Reading the PC when the
4142 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4143 been de-executed already.
4144
4145 B1 0x08000000 : INSN1
4146 B2 PC -> 0x08000001 : INSN2
4147 0x08000002 : INSN3
4148 0x08000003 : INSN4
4149
4150 We can't apply the same logic as for forward execution, because
4151 we would wrongly adjust the PC to 0x08000000, since there's a
4152 breakpoint at PC - 1. We'd then report a hit on B1, although
4153 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4154 behaviour. */
4155 if (execution_direction == EXEC_REVERSE)
4156 return;
4157
4158 /* If the target can tell whether the thread hit a SW breakpoint,
4159 trust it. Targets that can tell also adjust the PC
4160 themselves. */
4161 if (target_supports_stopped_by_sw_breakpoint ())
4162 return;
4163
4164 /* Note that relying on whether a breakpoint is planted in memory to
4165 determine this can fail. E.g,. the breakpoint could have been
4166 removed since. Or the thread could have been told to step an
4167 instruction the size of a breakpoint instruction, and only
4168 _after_ was a breakpoint inserted at its address. */
4169
4170 /* If this target does not decrement the PC after breakpoints, then
4171 we have nothing to do. */
4172 regcache = get_thread_regcache (thread);
4173 gdbarch = regcache->arch ();
4174
4175 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4176 if (decr_pc == 0)
4177 return;
4178
4179 const address_space *aspace = regcache->aspace ();
4180
4181 /* Find the location where (if we've hit a breakpoint) the
4182 breakpoint would be. */
4183 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4184
4185 /* If the target can't tell whether a software breakpoint triggered,
4186 fallback to figuring it out based on breakpoints we think were
4187 inserted in the target, and on whether the thread was stepped or
4188 continued. */
4189
4190 /* Check whether there actually is a software breakpoint inserted at
4191 that location.
4192
4193 If in non-stop mode, a race condition is possible where we've
4194 removed a breakpoint, but stop events for that breakpoint were
4195 already queued and arrive later. To suppress those spurious
4196 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4197 and retire them after a number of stop events are reported. Note
4198 this is an heuristic and can thus get confused. The real fix is
4199 to get the "stopped by SW BP and needs adjustment" info out of
4200 the target/kernel (and thus never reach here; see above). */
4201 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4202 || (target_is_non_stop_p ()
4203 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4204 {
4205 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4206
4207 if (record_full_is_used ())
4208 restore_operation_disable.emplace
4209 (record_full_gdb_operation_disable_set ());
4210
4211 /* When using hardware single-step, a SIGTRAP is reported for both
4212 a completed single-step and a software breakpoint. Need to
4213 differentiate between the two, as the latter needs adjusting
4214 but the former does not.
4215
4216 The SIGTRAP can be due to a completed hardware single-step only if
4217 - we didn't insert software single-step breakpoints
4218 - this thread is currently being stepped
4219
4220 If any of these events did not occur, we must have stopped due
4221 to hitting a software breakpoint, and have to back up to the
4222 breakpoint address.
4223
4224 As a special case, we could have hardware single-stepped a
4225 software breakpoint. In this case (prev_pc == breakpoint_pc),
4226 we also need to back up to the breakpoint address. */
4227
4228 if (thread_has_single_step_breakpoints_set (thread)
4229 || !currently_stepping (thread)
4230 || (thread->stepped_breakpoint
4231 && thread->prev_pc == breakpoint_pc))
4232 regcache_write_pc (regcache, breakpoint_pc);
4233 }
4234 }
4235
4236 static int
4237 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4238 {
4239 for (frame = get_prev_frame (frame);
4240 frame != NULL;
4241 frame = get_prev_frame (frame))
4242 {
4243 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4244 return 1;
4245 if (get_frame_type (frame) != INLINE_FRAME)
4246 break;
4247 }
4248
4249 return 0;
4250 }
4251
4252 /* Look for an inline frame that is marked for skip.
4253 If PREV_FRAME is TRUE start at the previous frame,
4254 otherwise start at the current frame. Stop at the
4255 first non-inline frame, or at the frame where the
4256 step started. */
4257
4258 static bool
4259 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4260 {
4261 struct frame_info *frame = get_current_frame ();
4262
4263 if (prev_frame)
4264 frame = get_prev_frame (frame);
4265
4266 for (; frame != NULL; frame = get_prev_frame (frame))
4267 {
4268 const char *fn = NULL;
4269 symtab_and_line sal;
4270 struct symbol *sym;
4271
4272 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4273 break;
4274 if (get_frame_type (frame) != INLINE_FRAME)
4275 break;
4276
4277 sal = find_frame_sal (frame);
4278 sym = get_frame_function (frame);
4279
4280 if (sym != NULL)
4281 fn = sym->print_name ();
4282
4283 if (sal.line != 0
4284 && function_name_is_marked_for_skip (fn, sal))
4285 return true;
4286 }
4287
4288 return false;
4289 }
4290
4291 /* If the event thread has the stop requested flag set, pretend it
4292 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4293 target_stop). */
4294
4295 static bool
4296 handle_stop_requested (struct execution_control_state *ecs)
4297 {
4298 if (ecs->event_thread->stop_requested)
4299 {
4300 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4301 ecs->ws.value.sig = GDB_SIGNAL_0;
4302 handle_signal_stop (ecs);
4303 return true;
4304 }
4305 return false;
4306 }
4307
4308 /* Auxiliary function that handles syscall entry/return events.
4309 It returns 1 if the inferior should keep going (and GDB
4310 should ignore the event), or 0 if the event deserves to be
4311 processed. */
4312
4313 static int
4314 handle_syscall_event (struct execution_control_state *ecs)
4315 {
4316 struct regcache *regcache;
4317 int syscall_number;
4318
4319 context_switch (ecs);
4320
4321 regcache = get_thread_regcache (ecs->event_thread);
4322 syscall_number = ecs->ws.value.syscall_number;
4323 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4324
4325 if (catch_syscall_enabled () > 0
4326 && catching_syscall_number (syscall_number) > 0)
4327 {
4328 infrun_debug_printf ("syscall number=%d", syscall_number);
4329
4330 ecs->event_thread->control.stop_bpstat
4331 = bpstat_stop_status (regcache->aspace (),
4332 ecs->event_thread->suspend.stop_pc,
4333 ecs->event_thread, &ecs->ws);
4334
4335 if (handle_stop_requested (ecs))
4336 return 0;
4337
4338 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4339 {
4340 /* Catchpoint hit. */
4341 return 0;
4342 }
4343 }
4344
4345 if (handle_stop_requested (ecs))
4346 return 0;
4347
4348 /* If no catchpoint triggered for this, then keep going. */
4349 keep_going (ecs);
4350 return 1;
4351 }
4352
4353 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4354
4355 static void
4356 fill_in_stop_func (struct gdbarch *gdbarch,
4357 struct execution_control_state *ecs)
4358 {
4359 if (!ecs->stop_func_filled_in)
4360 {
4361 const block *block;
4362 const general_symbol_info *gsi;
4363
4364 /* Don't care about return value; stop_func_start and stop_func_name
4365 will both be 0 if it doesn't work. */
4366 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4367 &gsi,
4368 &ecs->stop_func_start,
4369 &ecs->stop_func_end,
4370 &block);
4371 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4372
4373 /* The call to find_pc_partial_function, above, will set
4374 stop_func_start and stop_func_end to the start and end
4375 of the range containing the stop pc. If this range
4376 contains the entry pc for the block (which is always the
4377 case for contiguous blocks), advance stop_func_start past
4378 the function's start offset and entrypoint. Note that
4379 stop_func_start is NOT advanced when in a range of a
4380 non-contiguous block that does not contain the entry pc. */
4381 if (block != nullptr
4382 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4383 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4384 {
4385 ecs->stop_func_start
4386 += gdbarch_deprecated_function_start_offset (gdbarch);
4387
4388 if (gdbarch_skip_entrypoint_p (gdbarch))
4389 ecs->stop_func_start
4390 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4391 }
4392
4393 ecs->stop_func_filled_in = 1;
4394 }
4395 }
4396
4397
4398 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4399
4400 static enum stop_kind
4401 get_inferior_stop_soon (execution_control_state *ecs)
4402 {
4403 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4404
4405 gdb_assert (inf != NULL);
4406 return inf->control.stop_soon;
4407 }
4408
4409 /* Poll for one event out of the current target. Store the resulting
4410 waitstatus in WS, and return the event ptid. Does not block. */
4411
4412 static ptid_t
4413 poll_one_curr_target (struct target_waitstatus *ws)
4414 {
4415 ptid_t event_ptid;
4416
4417 overlay_cache_invalid = 1;
4418
4419 /* Flush target cache before starting to handle each event.
4420 Target was running and cache could be stale. This is just a
4421 heuristic. Running threads may modify target memory, but we
4422 don't get any event. */
4423 target_dcache_invalidate ();
4424
4425 if (deprecated_target_wait_hook)
4426 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4427 else
4428 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4429
4430 if (debug_infrun)
4431 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4432
4433 return event_ptid;
4434 }
4435
4436 /* An event reported by wait_one. */
4437
4438 struct wait_one_event
4439 {
4440 /* The target the event came out of. */
4441 process_stratum_target *target;
4442
4443 /* The PTID the event was for. */
4444 ptid_t ptid;
4445
4446 /* The waitstatus. */
4447 target_waitstatus ws;
4448 };
4449
4450 /* Wait for one event out of any target. */
4451
4452 static wait_one_event
4453 wait_one ()
4454 {
4455 while (1)
4456 {
4457 for (inferior *inf : all_inferiors ())
4458 {
4459 process_stratum_target *target = inf->process_target ();
4460 if (target == NULL
4461 || !target->is_async_p ()
4462 || !target->threads_executing)
4463 continue;
4464
4465 switch_to_inferior_no_thread (inf);
4466
4467 wait_one_event event;
4468 event.target = target;
4469 event.ptid = poll_one_curr_target (&event.ws);
4470
4471 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4472 {
4473 /* If nothing is resumed, remove the target from the
4474 event loop. */
4475 target_async (0);
4476 }
4477 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4478 return event;
4479 }
4480
4481 /* Block waiting for some event. */
4482
4483 fd_set readfds;
4484 int nfds = 0;
4485
4486 FD_ZERO (&readfds);
4487
4488 for (inferior *inf : all_inferiors ())
4489 {
4490 process_stratum_target *target = inf->process_target ();
4491 if (target == NULL
4492 || !target->is_async_p ()
4493 || !target->threads_executing)
4494 continue;
4495
4496 int fd = target->async_wait_fd ();
4497 FD_SET (fd, &readfds);
4498 if (nfds <= fd)
4499 nfds = fd + 1;
4500 }
4501
4502 if (nfds == 0)
4503 {
4504 /* No waitable targets left. All must be stopped. */
4505 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4506 }
4507
4508 QUIT;
4509
4510 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4511 if (numfds < 0)
4512 {
4513 if (errno == EINTR)
4514 continue;
4515 else
4516 perror_with_name ("interruptible_select");
4517 }
4518 }
4519 }
4520
4521 /* Save the thread's event and stop reason to process it later. */
4522
4523 static void
4524 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4525 {
4526 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4527 target_waitstatus_to_string (ws).c_str (),
4528 tp->ptid.pid (),
4529 tp->ptid.lwp (),
4530 tp->ptid.tid ());
4531
4532 /* Record for later. */
4533 tp->suspend.waitstatus = *ws;
4534 tp->suspend.waitstatus_pending_p = 1;
4535
4536 struct regcache *regcache = get_thread_regcache (tp);
4537 const address_space *aspace = regcache->aspace ();
4538
4539 if (ws->kind == TARGET_WAITKIND_STOPPED
4540 && ws->value.sig == GDB_SIGNAL_TRAP)
4541 {
4542 CORE_ADDR pc = regcache_read_pc (regcache);
4543
4544 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4545
4546 scoped_restore_current_thread restore_thread;
4547 switch_to_thread (tp);
4548
4549 if (target_stopped_by_watchpoint ())
4550 {
4551 tp->suspend.stop_reason
4552 = TARGET_STOPPED_BY_WATCHPOINT;
4553 }
4554 else if (target_supports_stopped_by_sw_breakpoint ()
4555 && target_stopped_by_sw_breakpoint ())
4556 {
4557 tp->suspend.stop_reason
4558 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4559 }
4560 else if (target_supports_stopped_by_hw_breakpoint ()
4561 && target_stopped_by_hw_breakpoint ())
4562 {
4563 tp->suspend.stop_reason
4564 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4565 }
4566 else if (!target_supports_stopped_by_hw_breakpoint ()
4567 && hardware_breakpoint_inserted_here_p (aspace,
4568 pc))
4569 {
4570 tp->suspend.stop_reason
4571 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4572 }
4573 else if (!target_supports_stopped_by_sw_breakpoint ()
4574 && software_breakpoint_inserted_here_p (aspace,
4575 pc))
4576 {
4577 tp->suspend.stop_reason
4578 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4579 }
4580 else if (!thread_has_single_step_breakpoints_set (tp)
4581 && currently_stepping (tp))
4582 {
4583 tp->suspend.stop_reason
4584 = TARGET_STOPPED_BY_SINGLE_STEP;
4585 }
4586 }
4587 }
4588
4589 /* Mark the non-executing threads accordingly. In all-stop, all
4590 threads of all processes are stopped when we get any event
4591 reported. In non-stop mode, only the event thread stops. */
4592
4593 static void
4594 mark_non_executing_threads (process_stratum_target *target,
4595 ptid_t event_ptid,
4596 struct target_waitstatus ws)
4597 {
4598 ptid_t mark_ptid;
4599
4600 if (!target_is_non_stop_p ())
4601 mark_ptid = minus_one_ptid;
4602 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4603 || ws.kind == TARGET_WAITKIND_EXITED)
4604 {
4605 /* If we're handling a process exit in non-stop mode, even
4606 though threads haven't been deleted yet, one would think
4607 that there is nothing to do, as threads of the dead process
4608 will be soon deleted, and threads of any other process were
4609 left running. However, on some targets, threads survive a
4610 process exit event. E.g., for the "checkpoint" command,
4611 when the current checkpoint/fork exits, linux-fork.c
4612 automatically switches to another fork from within
4613 target_mourn_inferior, by associating the same
4614 inferior/thread to another fork. We haven't mourned yet at
4615 this point, but we must mark any threads left in the
4616 process as not-executing so that finish_thread_state marks
4617 them stopped (in the user's perspective) if/when we present
4618 the stop to the user. */
4619 mark_ptid = ptid_t (event_ptid.pid ());
4620 }
4621 else
4622 mark_ptid = event_ptid;
4623
4624 set_executing (target, mark_ptid, false);
4625
4626 /* Likewise the resumed flag. */
4627 set_resumed (target, mark_ptid, false);
4628 }
4629
4630 /* See infrun.h. */
4631
4632 void
4633 stop_all_threads (void)
4634 {
4635 /* We may need multiple passes to discover all threads. */
4636 int pass;
4637 int iterations = 0;
4638
4639 gdb_assert (exists_non_stop_target ());
4640
4641 infrun_debug_printf ("starting");
4642
4643 scoped_restore_current_thread restore_thread;
4644
4645 /* Enable thread events of all targets. */
4646 for (auto *target : all_non_exited_process_targets ())
4647 {
4648 switch_to_target_no_thread (target);
4649 target_thread_events (true);
4650 }
4651
4652 SCOPE_EXIT
4653 {
4654 /* Disable thread events of all targets. */
4655 for (auto *target : all_non_exited_process_targets ())
4656 {
4657 switch_to_target_no_thread (target);
4658 target_thread_events (false);
4659 }
4660
4661 /* Use infrun_debug_printf_1 directly to get a meaningful function
4662 name. */
4663 if (debug_infrun)
4664 infrun_debug_printf_1 ("stop_all_threads", "done");
4665 };
4666
4667 /* Request threads to stop, and then wait for the stops. Because
4668 threads we already know about can spawn more threads while we're
4669 trying to stop them, and we only learn about new threads when we
4670 update the thread list, do this in a loop, and keep iterating
4671 until two passes find no threads that need to be stopped. */
4672 for (pass = 0; pass < 2; pass++, iterations++)
4673 {
4674 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4675 while (1)
4676 {
4677 int waits_needed = 0;
4678
4679 for (auto *target : all_non_exited_process_targets ())
4680 {
4681 switch_to_target_no_thread (target);
4682 update_thread_list ();
4683 }
4684
4685 /* Go through all threads looking for threads that we need
4686 to tell the target to stop. */
4687 for (thread_info *t : all_non_exited_threads ())
4688 {
4689 /* For a single-target setting with an all-stop target,
4690 we would not even arrive here. For a multi-target
4691 setting, until GDB is able to handle a mixture of
4692 all-stop and non-stop targets, simply skip all-stop
4693 targets' threads. This should be fine due to the
4694 protection of 'check_multi_target_resumption'. */
4695
4696 switch_to_thread_no_regs (t);
4697 if (!target_is_non_stop_p ())
4698 continue;
4699
4700 if (t->executing)
4701 {
4702 /* If already stopping, don't request a stop again.
4703 We just haven't seen the notification yet. */
4704 if (!t->stop_requested)
4705 {
4706 infrun_debug_printf (" %s executing, need stop",
4707 target_pid_to_str (t->ptid).c_str ());
4708 target_stop (t->ptid);
4709 t->stop_requested = 1;
4710 }
4711 else
4712 {
4713 infrun_debug_printf (" %s executing, already stopping",
4714 target_pid_to_str (t->ptid).c_str ());
4715 }
4716
4717 if (t->stop_requested)
4718 waits_needed++;
4719 }
4720 else
4721 {
4722 infrun_debug_printf (" %s not executing",
4723 target_pid_to_str (t->ptid).c_str ());
4724
4725 /* The thread may be not executing, but still be
4726 resumed with a pending status to process. */
4727 t->resumed = false;
4728 }
4729 }
4730
4731 if (waits_needed == 0)
4732 break;
4733
4734 /* If we find new threads on the second iteration, restart
4735 over. We want to see two iterations in a row with all
4736 threads stopped. */
4737 if (pass > 0)
4738 pass = -1;
4739
4740 for (int i = 0; i < waits_needed; i++)
4741 {
4742 wait_one_event event = wait_one ();
4743
4744 infrun_debug_printf
4745 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4746 target_pid_to_str (event.ptid).c_str ());
4747
4748 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4749 {
4750 /* All resumed threads exited. */
4751 break;
4752 }
4753 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4754 || event.ws.kind == TARGET_WAITKIND_EXITED
4755 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4756 {
4757 /* One thread/process exited/signalled. */
4758
4759 thread_info *t = nullptr;
4760
4761 /* The target may have reported just a pid. If so, try
4762 the first non-exited thread. */
4763 if (event.ptid.is_pid ())
4764 {
4765 int pid = event.ptid.pid ();
4766 inferior *inf = find_inferior_pid (event.target, pid);
4767 for (thread_info *tp : inf->non_exited_threads ())
4768 {
4769 t = tp;
4770 break;
4771 }
4772
4773 /* If there is no available thread, the event would
4774 have to be appended to a per-inferior event list,
4775 which does not exist (and if it did, we'd have
4776 to adjust run control command to be able to
4777 resume such an inferior). We assert here instead
4778 of going into an infinite loop. */
4779 gdb_assert (t != nullptr);
4780
4781 infrun_debug_printf
4782 ("using %s", target_pid_to_str (t->ptid).c_str ());
4783 }
4784 else
4785 {
4786 t = find_thread_ptid (event.target, event.ptid);
4787 /* Check if this is the first time we see this thread.
4788 Don't bother adding if it individually exited. */
4789 if (t == nullptr
4790 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4791 t = add_thread (event.target, event.ptid);
4792 }
4793
4794 if (t != nullptr)
4795 {
4796 /* Set the threads as non-executing to avoid
4797 another stop attempt on them. */
4798 switch_to_thread_no_regs (t);
4799 mark_non_executing_threads (event.target, event.ptid,
4800 event.ws);
4801 save_waitstatus (t, &event.ws);
4802 t->stop_requested = false;
4803 }
4804 }
4805 else
4806 {
4807 thread_info *t = find_thread_ptid (event.target, event.ptid);
4808 if (t == NULL)
4809 t = add_thread (event.target, event.ptid);
4810
4811 t->stop_requested = 0;
4812 t->executing = 0;
4813 t->resumed = false;
4814 t->control.may_range_step = 0;
4815
4816 /* This may be the first time we see the inferior report
4817 a stop. */
4818 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4819 if (inf->needs_setup)
4820 {
4821 switch_to_thread_no_regs (t);
4822 setup_inferior (0);
4823 }
4824
4825 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4826 && event.ws.value.sig == GDB_SIGNAL_0)
4827 {
4828 /* We caught the event that we intended to catch, so
4829 there's no event pending. */
4830 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4831 t->suspend.waitstatus_pending_p = 0;
4832
4833 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4834 {
4835 /* Add it back to the step-over queue. */
4836 infrun_debug_printf
4837 ("displaced-step of %s canceled: adding back to "
4838 "the step-over queue",
4839 target_pid_to_str (t->ptid).c_str ());
4840
4841 t->control.trap_expected = 0;
4842 thread_step_over_chain_enqueue (t);
4843 }
4844 }
4845 else
4846 {
4847 enum gdb_signal sig;
4848 struct regcache *regcache;
4849
4850 infrun_debug_printf
4851 ("target_wait %s, saving status for %d.%ld.%ld",
4852 target_waitstatus_to_string (&event.ws).c_str (),
4853 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4854
4855 /* Record for later. */
4856 save_waitstatus (t, &event.ws);
4857
4858 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4859 ? event.ws.value.sig : GDB_SIGNAL_0);
4860
4861 if (displaced_step_fixup (t, sig) < 0)
4862 {
4863 /* Add it back to the step-over queue. */
4864 t->control.trap_expected = 0;
4865 thread_step_over_chain_enqueue (t);
4866 }
4867
4868 regcache = get_thread_regcache (t);
4869 t->suspend.stop_pc = regcache_read_pc (regcache);
4870
4871 infrun_debug_printf ("saved stop_pc=%s for %s "
4872 "(currently_stepping=%d)",
4873 paddress (target_gdbarch (),
4874 t->suspend.stop_pc),
4875 target_pid_to_str (t->ptid).c_str (),
4876 currently_stepping (t));
4877 }
4878 }
4879 }
4880 }
4881 }
4882 }
4883
4884 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4885
4886 static int
4887 handle_no_resumed (struct execution_control_state *ecs)
4888 {
4889 if (target_can_async_p ())
4890 {
4891 int any_sync = 0;
4892
4893 for (ui *ui : all_uis ())
4894 {
4895 if (ui->prompt_state == PROMPT_BLOCKED)
4896 {
4897 any_sync = 1;
4898 break;
4899 }
4900 }
4901 if (!any_sync)
4902 {
4903 /* There were no unwaited-for children left in the target, but,
4904 we're not synchronously waiting for events either. Just
4905 ignore. */
4906
4907 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4908 prepare_to_wait (ecs);
4909 return 1;
4910 }
4911 }
4912
4913 /* Otherwise, if we were running a synchronous execution command, we
4914 may need to cancel it and give the user back the terminal.
4915
4916 In non-stop mode, the target can't tell whether we've already
4917 consumed previous stop events, so it can end up sending us a
4918 no-resumed event like so:
4919
4920 #0 - thread 1 is left stopped
4921
4922 #1 - thread 2 is resumed and hits breakpoint
4923 -> TARGET_WAITKIND_STOPPED
4924
4925 #2 - thread 3 is resumed and exits
4926 this is the last resumed thread, so
4927 -> TARGET_WAITKIND_NO_RESUMED
4928
4929 #3 - gdb processes stop for thread 2 and decides to re-resume
4930 it.
4931
4932 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4933 thread 2 is now resumed, so the event should be ignored.
4934
4935 IOW, if the stop for thread 2 doesn't end a foreground command,
4936 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4937 event. But it could be that the event meant that thread 2 itself
4938 (or whatever other thread was the last resumed thread) exited.
4939
4940 To address this we refresh the thread list and check whether we
4941 have resumed threads _now_. In the example above, this removes
4942 thread 3 from the thread list. If thread 2 was re-resumed, we
4943 ignore this event. If we find no thread resumed, then we cancel
4944 the synchronous command and show "no unwaited-for " to the
4945 user. */
4946
4947 inferior *curr_inf = current_inferior ();
4948
4949 scoped_restore_current_thread restore_thread;
4950
4951 for (auto *target : all_non_exited_process_targets ())
4952 {
4953 switch_to_target_no_thread (target);
4954 update_thread_list ();
4955 }
4956
4957 /* If:
4958
4959 - the current target has no thread executing, and
4960 - the current inferior is native, and
4961 - the current inferior is the one which has the terminal, and
4962 - we did nothing,
4963
4964 then a Ctrl-C from this point on would remain stuck in the
4965 kernel, until a thread resumes and dequeues it. That would
4966 result in the GDB CLI not reacting to Ctrl-C, not able to
4967 interrupt the program. To address this, if the current inferior
4968 no longer has any thread executing, we give the terminal to some
4969 other inferior that has at least one thread executing. */
4970 bool swap_terminal = true;
4971
4972 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4973 whether to report it to the user. */
4974 bool ignore_event = false;
4975
4976 for (thread_info *thread : all_non_exited_threads ())
4977 {
4978 if (swap_terminal && thread->executing)
4979 {
4980 if (thread->inf != curr_inf)
4981 {
4982 target_terminal::ours ();
4983
4984 switch_to_thread (thread);
4985 target_terminal::inferior ();
4986 }
4987 swap_terminal = false;
4988 }
4989
4990 if (!ignore_event
4991 && (thread->executing
4992 || thread->suspend.waitstatus_pending_p))
4993 {
4994 /* Either there were no unwaited-for children left in the
4995 target at some point, but there are now, or some target
4996 other than the eventing one has unwaited-for children
4997 left. Just ignore. */
4998 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4999 "(ignoring: found resumed)");
5000
5001 ignore_event = true;
5002 }
5003
5004 if (ignore_event && !swap_terminal)
5005 break;
5006 }
5007
5008 if (ignore_event)
5009 {
5010 switch_to_inferior_no_thread (curr_inf);
5011 prepare_to_wait (ecs);
5012 return 1;
5013 }
5014
5015 /* Go ahead and report the event. */
5016 return 0;
5017 }
5018
5019 /* Given an execution control state that has been freshly filled in by
5020 an event from the inferior, figure out what it means and take
5021 appropriate action.
5022
5023 The alternatives are:
5024
5025 1) stop_waiting and return; to really stop and return to the
5026 debugger.
5027
5028 2) keep_going and return; to wait for the next event (set
5029 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5030 once). */
5031
5032 static void
5033 handle_inferior_event (struct execution_control_state *ecs)
5034 {
5035 /* Make sure that all temporary struct value objects that were
5036 created during the handling of the event get deleted at the
5037 end. */
5038 scoped_value_mark free_values;
5039
5040 enum stop_kind stop_soon;
5041
5042 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5043
5044 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5045 {
5046 /* We had an event in the inferior, but we are not interested in
5047 handling it at this level. The lower layers have already
5048 done what needs to be done, if anything.
5049
5050 One of the possible circumstances for this is when the
5051 inferior produces output for the console. The inferior has
5052 not stopped, and we are ignoring the event. Another possible
5053 circumstance is any event which the lower level knows will be
5054 reported multiple times without an intervening resume. */
5055 prepare_to_wait (ecs);
5056 return;
5057 }
5058
5059 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5060 {
5061 prepare_to_wait (ecs);
5062 return;
5063 }
5064
5065 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5066 && handle_no_resumed (ecs))
5067 return;
5068
5069 /* Cache the last target/ptid/waitstatus. */
5070 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5071
5072 /* Always clear state belonging to the previous time we stopped. */
5073 stop_stack_dummy = STOP_NONE;
5074
5075 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5076 {
5077 /* No unwaited-for children left. IOW, all resumed children
5078 have exited. */
5079 stop_print_frame = 0;
5080 stop_waiting (ecs);
5081 return;
5082 }
5083
5084 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5085 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5086 {
5087 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5088 /* If it's a new thread, add it to the thread database. */
5089 if (ecs->event_thread == NULL)
5090 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5091
5092 /* Disable range stepping. If the next step request could use a
5093 range, this will be end up re-enabled then. */
5094 ecs->event_thread->control.may_range_step = 0;
5095 }
5096
5097 /* Dependent on valid ECS->EVENT_THREAD. */
5098 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5099
5100 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5101 reinit_frame_cache ();
5102
5103 breakpoint_retire_moribund ();
5104
5105 /* First, distinguish signals caused by the debugger from signals
5106 that have to do with the program's own actions. Note that
5107 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5108 on the operating system version. Here we detect when a SIGILL or
5109 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5110 something similar for SIGSEGV, since a SIGSEGV will be generated
5111 when we're trying to execute a breakpoint instruction on a
5112 non-executable stack. This happens for call dummy breakpoints
5113 for architectures like SPARC that place call dummies on the
5114 stack. */
5115 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5116 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5117 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5118 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5119 {
5120 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5121
5122 if (breakpoint_inserted_here_p (regcache->aspace (),
5123 regcache_read_pc (regcache)))
5124 {
5125 infrun_debug_printf ("Treating signal as SIGTRAP");
5126 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5127 }
5128 }
5129
5130 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5131
5132 switch (ecs->ws.kind)
5133 {
5134 case TARGET_WAITKIND_LOADED:
5135 context_switch (ecs);
5136 /* Ignore gracefully during startup of the inferior, as it might
5137 be the shell which has just loaded some objects, otherwise
5138 add the symbols for the newly loaded objects. Also ignore at
5139 the beginning of an attach or remote session; we will query
5140 the full list of libraries once the connection is
5141 established. */
5142
5143 stop_soon = get_inferior_stop_soon (ecs);
5144 if (stop_soon == NO_STOP_QUIETLY)
5145 {
5146 struct regcache *regcache;
5147
5148 regcache = get_thread_regcache (ecs->event_thread);
5149
5150 handle_solib_event ();
5151
5152 ecs->event_thread->control.stop_bpstat
5153 = bpstat_stop_status (regcache->aspace (),
5154 ecs->event_thread->suspend.stop_pc,
5155 ecs->event_thread, &ecs->ws);
5156
5157 if (handle_stop_requested (ecs))
5158 return;
5159
5160 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5161 {
5162 /* A catchpoint triggered. */
5163 process_event_stop_test (ecs);
5164 return;
5165 }
5166
5167 /* If requested, stop when the dynamic linker notifies
5168 gdb of events. This allows the user to get control
5169 and place breakpoints in initializer routines for
5170 dynamically loaded objects (among other things). */
5171 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5172 if (stop_on_solib_events)
5173 {
5174 /* Make sure we print "Stopped due to solib-event" in
5175 normal_stop. */
5176 stop_print_frame = 1;
5177
5178 stop_waiting (ecs);
5179 return;
5180 }
5181 }
5182
5183 /* If we are skipping through a shell, or through shared library
5184 loading that we aren't interested in, resume the program. If
5185 we're running the program normally, also resume. */
5186 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5187 {
5188 /* Loading of shared libraries might have changed breakpoint
5189 addresses. Make sure new breakpoints are inserted. */
5190 if (stop_soon == NO_STOP_QUIETLY)
5191 insert_breakpoints ();
5192 resume (GDB_SIGNAL_0);
5193 prepare_to_wait (ecs);
5194 return;
5195 }
5196
5197 /* But stop if we're attaching or setting up a remote
5198 connection. */
5199 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5200 || stop_soon == STOP_QUIETLY_REMOTE)
5201 {
5202 infrun_debug_printf ("quietly stopped");
5203 stop_waiting (ecs);
5204 return;
5205 }
5206
5207 internal_error (__FILE__, __LINE__,
5208 _("unhandled stop_soon: %d"), (int) stop_soon);
5209
5210 case TARGET_WAITKIND_SPURIOUS:
5211 if (handle_stop_requested (ecs))
5212 return;
5213 context_switch (ecs);
5214 resume (GDB_SIGNAL_0);
5215 prepare_to_wait (ecs);
5216 return;
5217
5218 case TARGET_WAITKIND_THREAD_CREATED:
5219 if (handle_stop_requested (ecs))
5220 return;
5221 context_switch (ecs);
5222 if (!switch_back_to_stepped_thread (ecs))
5223 keep_going (ecs);
5224 return;
5225
5226 case TARGET_WAITKIND_EXITED:
5227 case TARGET_WAITKIND_SIGNALLED:
5228 {
5229 /* Depending on the system, ecs->ptid may point to a thread or
5230 to a process. On some targets, target_mourn_inferior may
5231 need to have access to the just-exited thread. That is the
5232 case of GNU/Linux's "checkpoint" support, for example.
5233 Call the switch_to_xxx routine as appropriate. */
5234 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5235 if (thr != nullptr)
5236 switch_to_thread (thr);
5237 else
5238 {
5239 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5240 switch_to_inferior_no_thread (inf);
5241 }
5242 }
5243 handle_vfork_child_exec_or_exit (0);
5244 target_terminal::ours (); /* Must do this before mourn anyway. */
5245
5246 /* Clearing any previous state of convenience variables. */
5247 clear_exit_convenience_vars ();
5248
5249 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5250 {
5251 /* Record the exit code in the convenience variable $_exitcode, so
5252 that the user can inspect this again later. */
5253 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5254 (LONGEST) ecs->ws.value.integer);
5255
5256 /* Also record this in the inferior itself. */
5257 current_inferior ()->has_exit_code = 1;
5258 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5259
5260 /* Support the --return-child-result option. */
5261 return_child_result_value = ecs->ws.value.integer;
5262
5263 gdb::observers::exited.notify (ecs->ws.value.integer);
5264 }
5265 else
5266 {
5267 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5268
5269 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5270 {
5271 /* Set the value of the internal variable $_exitsignal,
5272 which holds the signal uncaught by the inferior. */
5273 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5274 gdbarch_gdb_signal_to_target (gdbarch,
5275 ecs->ws.value.sig));
5276 }
5277 else
5278 {
5279 /* We don't have access to the target's method used for
5280 converting between signal numbers (GDB's internal
5281 representation <-> target's representation).
5282 Therefore, we cannot do a good job at displaying this
5283 information to the user. It's better to just warn
5284 her about it (if infrun debugging is enabled), and
5285 give up. */
5286 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5287 "signal number.");
5288 }
5289
5290 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5291 }
5292
5293 gdb_flush (gdb_stdout);
5294 target_mourn_inferior (inferior_ptid);
5295 stop_print_frame = 0;
5296 stop_waiting (ecs);
5297 return;
5298
5299 case TARGET_WAITKIND_FORKED:
5300 case TARGET_WAITKIND_VFORKED:
5301 /* Check whether the inferior is displaced stepping. */
5302 {
5303 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5304 struct gdbarch *gdbarch = regcache->arch ();
5305
5306 /* If checking displaced stepping is supported, and thread
5307 ecs->ptid is displaced stepping. */
5308 if (displaced_step_in_progress_thread (ecs->event_thread))
5309 {
5310 struct inferior *parent_inf
5311 = find_inferior_ptid (ecs->target, ecs->ptid);
5312 struct regcache *child_regcache;
5313 CORE_ADDR parent_pc;
5314
5315 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5316 {
5317 struct displaced_step_inferior_state *displaced
5318 = get_displaced_stepping_state (parent_inf);
5319
5320 /* Restore scratch pad for child process. */
5321 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5322 }
5323
5324 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5325 indicating that the displaced stepping of syscall instruction
5326 has been done. Perform cleanup for parent process here. Note
5327 that this operation also cleans up the child process for vfork,
5328 because their pages are shared. */
5329 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5330 /* Start a new step-over in another thread if there's one
5331 that needs it. */
5332 start_step_over ();
5333
5334 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5335 the child's PC is also within the scratchpad. Set the child's PC
5336 to the parent's PC value, which has already been fixed up.
5337 FIXME: we use the parent's aspace here, although we're touching
5338 the child, because the child hasn't been added to the inferior
5339 list yet at this point. */
5340
5341 child_regcache
5342 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5343 ecs->ws.value.related_pid,
5344 gdbarch,
5345 parent_inf->aspace);
5346 /* Read PC value of parent process. */
5347 parent_pc = regcache_read_pc (regcache);
5348
5349 if (debug_displaced)
5350 fprintf_unfiltered (gdb_stdlog,
5351 "displaced: write child pc from %s to %s\n",
5352 paddress (gdbarch,
5353 regcache_read_pc (child_regcache)),
5354 paddress (gdbarch, parent_pc));
5355
5356 regcache_write_pc (child_regcache, parent_pc);
5357 }
5358 }
5359
5360 context_switch (ecs);
5361
5362 /* Immediately detach breakpoints from the child before there's
5363 any chance of letting the user delete breakpoints from the
5364 breakpoint lists. If we don't do this early, it's easy to
5365 leave left over traps in the child, vis: "break foo; catch
5366 fork; c; <fork>; del; c; <child calls foo>". We only follow
5367 the fork on the last `continue', and by that time the
5368 breakpoint at "foo" is long gone from the breakpoint table.
5369 If we vforked, then we don't need to unpatch here, since both
5370 parent and child are sharing the same memory pages; we'll
5371 need to unpatch at follow/detach time instead to be certain
5372 that new breakpoints added between catchpoint hit time and
5373 vfork follow are detached. */
5374 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5375 {
5376 /* This won't actually modify the breakpoint list, but will
5377 physically remove the breakpoints from the child. */
5378 detach_breakpoints (ecs->ws.value.related_pid);
5379 }
5380
5381 delete_just_stopped_threads_single_step_breakpoints ();
5382
5383 /* In case the event is caught by a catchpoint, remember that
5384 the event is to be followed at the next resume of the thread,
5385 and not immediately. */
5386 ecs->event_thread->pending_follow = ecs->ws;
5387
5388 ecs->event_thread->suspend.stop_pc
5389 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5390
5391 ecs->event_thread->control.stop_bpstat
5392 = bpstat_stop_status (get_current_regcache ()->aspace (),
5393 ecs->event_thread->suspend.stop_pc,
5394 ecs->event_thread, &ecs->ws);
5395
5396 if (handle_stop_requested (ecs))
5397 return;
5398
5399 /* If no catchpoint triggered for this, then keep going. Note
5400 that we're interested in knowing the bpstat actually causes a
5401 stop, not just if it may explain the signal. Software
5402 watchpoints, for example, always appear in the bpstat. */
5403 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5404 {
5405 bool follow_child
5406 = (follow_fork_mode_string == follow_fork_mode_child);
5407
5408 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5409
5410 process_stratum_target *targ
5411 = ecs->event_thread->inf->process_target ();
5412
5413 bool should_resume = follow_fork ();
5414
5415 /* Note that one of these may be an invalid pointer,
5416 depending on detach_fork. */
5417 thread_info *parent = ecs->event_thread;
5418 thread_info *child
5419 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5420
5421 /* At this point, the parent is marked running, and the
5422 child is marked stopped. */
5423
5424 /* If not resuming the parent, mark it stopped. */
5425 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5426 parent->set_running (false);
5427
5428 /* If resuming the child, mark it running. */
5429 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5430 child->set_running (true);
5431
5432 /* In non-stop mode, also resume the other branch. */
5433 if (!detach_fork && (non_stop
5434 || (sched_multi && target_is_non_stop_p ())))
5435 {
5436 if (follow_child)
5437 switch_to_thread (parent);
5438 else
5439 switch_to_thread (child);
5440
5441 ecs->event_thread = inferior_thread ();
5442 ecs->ptid = inferior_ptid;
5443 keep_going (ecs);
5444 }
5445
5446 if (follow_child)
5447 switch_to_thread (child);
5448 else
5449 switch_to_thread (parent);
5450
5451 ecs->event_thread = inferior_thread ();
5452 ecs->ptid = inferior_ptid;
5453
5454 if (should_resume)
5455 keep_going (ecs);
5456 else
5457 stop_waiting (ecs);
5458 return;
5459 }
5460 process_event_stop_test (ecs);
5461 return;
5462
5463 case TARGET_WAITKIND_VFORK_DONE:
5464 /* Done with the shared memory region. Re-insert breakpoints in
5465 the parent, and keep going. */
5466
5467 context_switch (ecs);
5468
5469 current_inferior ()->waiting_for_vfork_done = 0;
5470 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5471
5472 if (handle_stop_requested (ecs))
5473 return;
5474
5475 /* This also takes care of reinserting breakpoints in the
5476 previously locked inferior. */
5477 keep_going (ecs);
5478 return;
5479
5480 case TARGET_WAITKIND_EXECD:
5481
5482 /* Note we can't read registers yet (the stop_pc), because we
5483 don't yet know the inferior's post-exec architecture.
5484 'stop_pc' is explicitly read below instead. */
5485 switch_to_thread_no_regs (ecs->event_thread);
5486
5487 /* Do whatever is necessary to the parent branch of the vfork. */
5488 handle_vfork_child_exec_or_exit (1);
5489
5490 /* This causes the eventpoints and symbol table to be reset.
5491 Must do this now, before trying to determine whether to
5492 stop. */
5493 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5494
5495 /* In follow_exec we may have deleted the original thread and
5496 created a new one. Make sure that the event thread is the
5497 execd thread for that case (this is a nop otherwise). */
5498 ecs->event_thread = inferior_thread ();
5499
5500 ecs->event_thread->suspend.stop_pc
5501 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5502
5503 ecs->event_thread->control.stop_bpstat
5504 = bpstat_stop_status (get_current_regcache ()->aspace (),
5505 ecs->event_thread->suspend.stop_pc,
5506 ecs->event_thread, &ecs->ws);
5507
5508 /* Note that this may be referenced from inside
5509 bpstat_stop_status above, through inferior_has_execd. */
5510 xfree (ecs->ws.value.execd_pathname);
5511 ecs->ws.value.execd_pathname = NULL;
5512
5513 if (handle_stop_requested (ecs))
5514 return;
5515
5516 /* If no catchpoint triggered for this, then keep going. */
5517 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5518 {
5519 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5520 keep_going (ecs);
5521 return;
5522 }
5523 process_event_stop_test (ecs);
5524 return;
5525
5526 /* Be careful not to try to gather much state about a thread
5527 that's in a syscall. It's frequently a losing proposition. */
5528 case TARGET_WAITKIND_SYSCALL_ENTRY:
5529 /* Getting the current syscall number. */
5530 if (handle_syscall_event (ecs) == 0)
5531 process_event_stop_test (ecs);
5532 return;
5533
5534 /* Before examining the threads further, step this thread to
5535 get it entirely out of the syscall. (We get notice of the
5536 event when the thread is just on the verge of exiting a
5537 syscall. Stepping one instruction seems to get it back
5538 into user code.) */
5539 case TARGET_WAITKIND_SYSCALL_RETURN:
5540 if (handle_syscall_event (ecs) == 0)
5541 process_event_stop_test (ecs);
5542 return;
5543
5544 case TARGET_WAITKIND_STOPPED:
5545 handle_signal_stop (ecs);
5546 return;
5547
5548 case TARGET_WAITKIND_NO_HISTORY:
5549 /* Reverse execution: target ran out of history info. */
5550
5551 /* Switch to the stopped thread. */
5552 context_switch (ecs);
5553 infrun_debug_printf ("stopped");
5554
5555 delete_just_stopped_threads_single_step_breakpoints ();
5556 ecs->event_thread->suspend.stop_pc
5557 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5558
5559 if (handle_stop_requested (ecs))
5560 return;
5561
5562 gdb::observers::no_history.notify ();
5563 stop_waiting (ecs);
5564 return;
5565 }
5566 }
5567
5568 /* Restart threads back to what they were trying to do back when we
5569 paused them for an in-line step-over. The EVENT_THREAD thread is
5570 ignored. */
5571
5572 static void
5573 restart_threads (struct thread_info *event_thread)
5574 {
5575 /* In case the instruction just stepped spawned a new thread. */
5576 update_thread_list ();
5577
5578 for (thread_info *tp : all_non_exited_threads ())
5579 {
5580 switch_to_thread_no_regs (tp);
5581
5582 if (tp == event_thread)
5583 {
5584 infrun_debug_printf ("restart threads: [%s] is event thread",
5585 target_pid_to_str (tp->ptid).c_str ());
5586 continue;
5587 }
5588
5589 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5590 {
5591 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5592 target_pid_to_str (tp->ptid).c_str ());
5593 continue;
5594 }
5595
5596 if (tp->resumed)
5597 {
5598 infrun_debug_printf ("restart threads: [%s] resumed",
5599 target_pid_to_str (tp->ptid).c_str ());
5600 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5601 continue;
5602 }
5603
5604 if (thread_is_in_step_over_chain (tp))
5605 {
5606 infrun_debug_printf ("restart threads: [%s] needs step-over",
5607 target_pid_to_str (tp->ptid).c_str ());
5608 gdb_assert (!tp->resumed);
5609 continue;
5610 }
5611
5612
5613 if (tp->suspend.waitstatus_pending_p)
5614 {
5615 infrun_debug_printf ("restart threads: [%s] has pending status",
5616 target_pid_to_str (tp->ptid).c_str ());
5617 tp->resumed = true;
5618 continue;
5619 }
5620
5621 gdb_assert (!tp->stop_requested);
5622
5623 /* If some thread needs to start a step-over at this point, it
5624 should still be in the step-over queue, and thus skipped
5625 above. */
5626 if (thread_still_needs_step_over (tp))
5627 {
5628 internal_error (__FILE__, __LINE__,
5629 "thread [%s] needs a step-over, but not in "
5630 "step-over queue\n",
5631 target_pid_to_str (tp->ptid).c_str ());
5632 }
5633
5634 if (currently_stepping (tp))
5635 {
5636 infrun_debug_printf ("restart threads: [%s] was stepping",
5637 target_pid_to_str (tp->ptid).c_str ());
5638 keep_going_stepped_thread (tp);
5639 }
5640 else
5641 {
5642 struct execution_control_state ecss;
5643 struct execution_control_state *ecs = &ecss;
5644
5645 infrun_debug_printf ("restart threads: [%s] continuing",
5646 target_pid_to_str (tp->ptid).c_str ());
5647 reset_ecs (ecs, tp);
5648 switch_to_thread (tp);
5649 keep_going_pass_signal (ecs);
5650 }
5651 }
5652 }
5653
5654 /* Callback for iterate_over_threads. Find a resumed thread that has
5655 a pending waitstatus. */
5656
5657 static int
5658 resumed_thread_with_pending_status (struct thread_info *tp,
5659 void *arg)
5660 {
5661 return (tp->resumed
5662 && tp->suspend.waitstatus_pending_p);
5663 }
5664
5665 /* Called when we get an event that may finish an in-line or
5666 out-of-line (displaced stepping) step-over started previously.
5667 Return true if the event is processed and we should go back to the
5668 event loop; false if the caller should continue processing the
5669 event. */
5670
5671 static int
5672 finish_step_over (struct execution_control_state *ecs)
5673 {
5674 int had_step_over_info;
5675
5676 displaced_step_fixup (ecs->event_thread,
5677 ecs->event_thread->suspend.stop_signal);
5678
5679 had_step_over_info = step_over_info_valid_p ();
5680
5681 if (had_step_over_info)
5682 {
5683 /* If we're stepping over a breakpoint with all threads locked,
5684 then only the thread that was stepped should be reporting
5685 back an event. */
5686 gdb_assert (ecs->event_thread->control.trap_expected);
5687
5688 clear_step_over_info ();
5689 }
5690
5691 if (!target_is_non_stop_p ())
5692 return 0;
5693
5694 /* Start a new step-over in another thread if there's one that
5695 needs it. */
5696 start_step_over ();
5697
5698 /* If we were stepping over a breakpoint before, and haven't started
5699 a new in-line step-over sequence, then restart all other threads
5700 (except the event thread). We can't do this in all-stop, as then
5701 e.g., we wouldn't be able to issue any other remote packet until
5702 these other threads stop. */
5703 if (had_step_over_info && !step_over_info_valid_p ())
5704 {
5705 struct thread_info *pending;
5706
5707 /* If we only have threads with pending statuses, the restart
5708 below won't restart any thread and so nothing re-inserts the
5709 breakpoint we just stepped over. But we need it inserted
5710 when we later process the pending events, otherwise if
5711 another thread has a pending event for this breakpoint too,
5712 we'd discard its event (because the breakpoint that
5713 originally caused the event was no longer inserted). */
5714 context_switch (ecs);
5715 insert_breakpoints ();
5716
5717 restart_threads (ecs->event_thread);
5718
5719 /* If we have events pending, go through handle_inferior_event
5720 again, picking up a pending event at random. This avoids
5721 thread starvation. */
5722
5723 /* But not if we just stepped over a watchpoint in order to let
5724 the instruction execute so we can evaluate its expression.
5725 The set of watchpoints that triggered is recorded in the
5726 breakpoint objects themselves (see bp->watchpoint_triggered).
5727 If we processed another event first, that other event could
5728 clobber this info. */
5729 if (ecs->event_thread->stepping_over_watchpoint)
5730 return 0;
5731
5732 pending = iterate_over_threads (resumed_thread_with_pending_status,
5733 NULL);
5734 if (pending != NULL)
5735 {
5736 struct thread_info *tp = ecs->event_thread;
5737 struct regcache *regcache;
5738
5739 infrun_debug_printf ("found resumed threads with "
5740 "pending events, saving status");
5741
5742 gdb_assert (pending != tp);
5743
5744 /* Record the event thread's event for later. */
5745 save_waitstatus (tp, &ecs->ws);
5746 /* This was cleared early, by handle_inferior_event. Set it
5747 so this pending event is considered by
5748 do_target_wait. */
5749 tp->resumed = true;
5750
5751 gdb_assert (!tp->executing);
5752
5753 regcache = get_thread_regcache (tp);
5754 tp->suspend.stop_pc = regcache_read_pc (regcache);
5755
5756 infrun_debug_printf ("saved stop_pc=%s for %s "
5757 "(currently_stepping=%d)",
5758 paddress (target_gdbarch (),
5759 tp->suspend.stop_pc),
5760 target_pid_to_str (tp->ptid).c_str (),
5761 currently_stepping (tp));
5762
5763 /* This in-line step-over finished; clear this so we won't
5764 start a new one. This is what handle_signal_stop would
5765 do, if we returned false. */
5766 tp->stepping_over_breakpoint = 0;
5767
5768 /* Wake up the event loop again. */
5769 mark_async_event_handler (infrun_async_inferior_event_token);
5770
5771 prepare_to_wait (ecs);
5772 return 1;
5773 }
5774 }
5775
5776 return 0;
5777 }
5778
5779 /* Come here when the program has stopped with a signal. */
5780
5781 static void
5782 handle_signal_stop (struct execution_control_state *ecs)
5783 {
5784 struct frame_info *frame;
5785 struct gdbarch *gdbarch;
5786 int stopped_by_watchpoint;
5787 enum stop_kind stop_soon;
5788 int random_signal;
5789
5790 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5791
5792 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5793
5794 /* Do we need to clean up the state of a thread that has
5795 completed a displaced single-step? (Doing so usually affects
5796 the PC, so do it here, before we set stop_pc.) */
5797 if (finish_step_over (ecs))
5798 return;
5799
5800 /* If we either finished a single-step or hit a breakpoint, but
5801 the user wanted this thread to be stopped, pretend we got a
5802 SIG0 (generic unsignaled stop). */
5803 if (ecs->event_thread->stop_requested
5804 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5805 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5806
5807 ecs->event_thread->suspend.stop_pc
5808 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5809
5810 if (debug_infrun)
5811 {
5812 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5813 struct gdbarch *reg_gdbarch = regcache->arch ();
5814
5815 switch_to_thread (ecs->event_thread);
5816
5817 infrun_debug_printf ("stop_pc=%s",
5818 paddress (reg_gdbarch,
5819 ecs->event_thread->suspend.stop_pc));
5820 if (target_stopped_by_watchpoint ())
5821 {
5822 CORE_ADDR addr;
5823
5824 infrun_debug_printf ("stopped by watchpoint");
5825
5826 if (target_stopped_data_address (current_top_target (), &addr))
5827 infrun_debug_printf ("stopped data address=%s",
5828 paddress (reg_gdbarch, addr));
5829 else
5830 infrun_debug_printf ("(no data address available)");
5831 }
5832 }
5833
5834 /* This is originated from start_remote(), start_inferior() and
5835 shared libraries hook functions. */
5836 stop_soon = get_inferior_stop_soon (ecs);
5837 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5838 {
5839 context_switch (ecs);
5840 infrun_debug_printf ("quietly stopped");
5841 stop_print_frame = 1;
5842 stop_waiting (ecs);
5843 return;
5844 }
5845
5846 /* This originates from attach_command(). We need to overwrite
5847 the stop_signal here, because some kernels don't ignore a
5848 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5849 See more comments in inferior.h. On the other hand, if we
5850 get a non-SIGSTOP, report it to the user - assume the backend
5851 will handle the SIGSTOP if it should show up later.
5852
5853 Also consider that the attach is complete when we see a
5854 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5855 target extended-remote report it instead of a SIGSTOP
5856 (e.g. gdbserver). We already rely on SIGTRAP being our
5857 signal, so this is no exception.
5858
5859 Also consider that the attach is complete when we see a
5860 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5861 the target to stop all threads of the inferior, in case the
5862 low level attach operation doesn't stop them implicitly. If
5863 they weren't stopped implicitly, then the stub will report a
5864 GDB_SIGNAL_0, meaning: stopped for no particular reason
5865 other than GDB's request. */
5866 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5867 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5868 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5869 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5870 {
5871 stop_print_frame = 1;
5872 stop_waiting (ecs);
5873 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5874 return;
5875 }
5876
5877 /* See if something interesting happened to the non-current thread. If
5878 so, then switch to that thread. */
5879 if (ecs->ptid != inferior_ptid)
5880 {
5881 infrun_debug_printf ("context switch");
5882
5883 context_switch (ecs);
5884
5885 if (deprecated_context_hook)
5886 deprecated_context_hook (ecs->event_thread->global_num);
5887 }
5888
5889 /* At this point, get hold of the now-current thread's frame. */
5890 frame = get_current_frame ();
5891 gdbarch = get_frame_arch (frame);
5892
5893 /* Pull the single step breakpoints out of the target. */
5894 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5895 {
5896 struct regcache *regcache;
5897 CORE_ADDR pc;
5898
5899 regcache = get_thread_regcache (ecs->event_thread);
5900 const address_space *aspace = regcache->aspace ();
5901
5902 pc = regcache_read_pc (regcache);
5903
5904 /* However, before doing so, if this single-step breakpoint was
5905 actually for another thread, set this thread up for moving
5906 past it. */
5907 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5908 aspace, pc))
5909 {
5910 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5911 {
5912 infrun_debug_printf ("[%s] hit another thread's single-step "
5913 "breakpoint",
5914 target_pid_to_str (ecs->ptid).c_str ());
5915 ecs->hit_singlestep_breakpoint = 1;
5916 }
5917 }
5918 else
5919 {
5920 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5921 target_pid_to_str (ecs->ptid).c_str ());
5922 }
5923 }
5924 delete_just_stopped_threads_single_step_breakpoints ();
5925
5926 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5927 && ecs->event_thread->control.trap_expected
5928 && ecs->event_thread->stepping_over_watchpoint)
5929 stopped_by_watchpoint = 0;
5930 else
5931 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5932
5933 /* If necessary, step over this watchpoint. We'll be back to display
5934 it in a moment. */
5935 if (stopped_by_watchpoint
5936 && (target_have_steppable_watchpoint ()
5937 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5938 {
5939 /* At this point, we are stopped at an instruction which has
5940 attempted to write to a piece of memory under control of
5941 a watchpoint. The instruction hasn't actually executed
5942 yet. If we were to evaluate the watchpoint expression
5943 now, we would get the old value, and therefore no change
5944 would seem to have occurred.
5945
5946 In order to make watchpoints work `right', we really need
5947 to complete the memory write, and then evaluate the
5948 watchpoint expression. We do this by single-stepping the
5949 target.
5950
5951 It may not be necessary to disable the watchpoint to step over
5952 it. For example, the PA can (with some kernel cooperation)
5953 single step over a watchpoint without disabling the watchpoint.
5954
5955 It is far more common to need to disable a watchpoint to step
5956 the inferior over it. If we have non-steppable watchpoints,
5957 we must disable the current watchpoint; it's simplest to
5958 disable all watchpoints.
5959
5960 Any breakpoint at PC must also be stepped over -- if there's
5961 one, it will have already triggered before the watchpoint
5962 triggered, and we either already reported it to the user, or
5963 it didn't cause a stop and we called keep_going. In either
5964 case, if there was a breakpoint at PC, we must be trying to
5965 step past it. */
5966 ecs->event_thread->stepping_over_watchpoint = 1;
5967 keep_going (ecs);
5968 return;
5969 }
5970
5971 ecs->event_thread->stepping_over_breakpoint = 0;
5972 ecs->event_thread->stepping_over_watchpoint = 0;
5973 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5974 ecs->event_thread->control.stop_step = 0;
5975 stop_print_frame = 1;
5976 stopped_by_random_signal = 0;
5977 bpstat stop_chain = NULL;
5978
5979 /* Hide inlined functions starting here, unless we just performed stepi or
5980 nexti. After stepi and nexti, always show the innermost frame (not any
5981 inline function call sites). */
5982 if (ecs->event_thread->control.step_range_end != 1)
5983 {
5984 const address_space *aspace
5985 = get_thread_regcache (ecs->event_thread)->aspace ();
5986
5987 /* skip_inline_frames is expensive, so we avoid it if we can
5988 determine that the address is one where functions cannot have
5989 been inlined. This improves performance with inferiors that
5990 load a lot of shared libraries, because the solib event
5991 breakpoint is defined as the address of a function (i.e. not
5992 inline). Note that we have to check the previous PC as well
5993 as the current one to catch cases when we have just
5994 single-stepped off a breakpoint prior to reinstating it.
5995 Note that we're assuming that the code we single-step to is
5996 not inline, but that's not definitive: there's nothing
5997 preventing the event breakpoint function from containing
5998 inlined code, and the single-step ending up there. If the
5999 user had set a breakpoint on that inlined code, the missing
6000 skip_inline_frames call would break things. Fortunately
6001 that's an extremely unlikely scenario. */
6002 if (!pc_at_non_inline_function (aspace,
6003 ecs->event_thread->suspend.stop_pc,
6004 &ecs->ws)
6005 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6006 && ecs->event_thread->control.trap_expected
6007 && pc_at_non_inline_function (aspace,
6008 ecs->event_thread->prev_pc,
6009 &ecs->ws)))
6010 {
6011 stop_chain = build_bpstat_chain (aspace,
6012 ecs->event_thread->suspend.stop_pc,
6013 &ecs->ws);
6014 skip_inline_frames (ecs->event_thread, stop_chain);
6015
6016 /* Re-fetch current thread's frame in case that invalidated
6017 the frame cache. */
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
6020 }
6021 }
6022
6023 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6024 && ecs->event_thread->control.trap_expected
6025 && gdbarch_single_step_through_delay_p (gdbarch)
6026 && currently_stepping (ecs->event_thread))
6027 {
6028 /* We're trying to step off a breakpoint. Turns out that we're
6029 also on an instruction that needs to be stepped multiple
6030 times before it's been fully executing. E.g., architectures
6031 with a delay slot. It needs to be stepped twice, once for
6032 the instruction and once for the delay slot. */
6033 int step_through_delay
6034 = gdbarch_single_step_through_delay (gdbarch, frame);
6035
6036 if (step_through_delay)
6037 infrun_debug_printf ("step through delay");
6038
6039 if (ecs->event_thread->control.step_range_end == 0
6040 && step_through_delay)
6041 {
6042 /* The user issued a continue when stopped at a breakpoint.
6043 Set up for another trap and get out of here. */
6044 ecs->event_thread->stepping_over_breakpoint = 1;
6045 keep_going (ecs);
6046 return;
6047 }
6048 else if (step_through_delay)
6049 {
6050 /* The user issued a step when stopped at a breakpoint.
6051 Maybe we should stop, maybe we should not - the delay
6052 slot *might* correspond to a line of source. In any
6053 case, don't decide that here, just set
6054 ecs->stepping_over_breakpoint, making sure we
6055 single-step again before breakpoints are re-inserted. */
6056 ecs->event_thread->stepping_over_breakpoint = 1;
6057 }
6058 }
6059
6060 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6061 handles this event. */
6062 ecs->event_thread->control.stop_bpstat
6063 = bpstat_stop_status (get_current_regcache ()->aspace (),
6064 ecs->event_thread->suspend.stop_pc,
6065 ecs->event_thread, &ecs->ws, stop_chain);
6066
6067 /* Following in case break condition called a
6068 function. */
6069 stop_print_frame = 1;
6070
6071 /* This is where we handle "moribund" watchpoints. Unlike
6072 software breakpoints traps, hardware watchpoint traps are
6073 always distinguishable from random traps. If no high-level
6074 watchpoint is associated with the reported stop data address
6075 anymore, then the bpstat does not explain the signal ---
6076 simply make sure to ignore it if `stopped_by_watchpoint' is
6077 set. */
6078
6079 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6080 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6081 GDB_SIGNAL_TRAP)
6082 && stopped_by_watchpoint)
6083 {
6084 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6085 "ignoring");
6086 }
6087
6088 /* NOTE: cagney/2003-03-29: These checks for a random signal
6089 at one stage in the past included checks for an inferior
6090 function call's call dummy's return breakpoint. The original
6091 comment, that went with the test, read:
6092
6093 ``End of a stack dummy. Some systems (e.g. Sony news) give
6094 another signal besides SIGTRAP, so check here as well as
6095 above.''
6096
6097 If someone ever tries to get call dummys on a
6098 non-executable stack to work (where the target would stop
6099 with something like a SIGSEGV), then those tests might need
6100 to be re-instated. Given, however, that the tests were only
6101 enabled when momentary breakpoints were not being used, I
6102 suspect that it won't be the case.
6103
6104 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6105 be necessary for call dummies on a non-executable stack on
6106 SPARC. */
6107
6108 /* See if the breakpoints module can explain the signal. */
6109 random_signal
6110 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6111 ecs->event_thread->suspend.stop_signal);
6112
6113 /* Maybe this was a trap for a software breakpoint that has since
6114 been removed. */
6115 if (random_signal && target_stopped_by_sw_breakpoint ())
6116 {
6117 if (gdbarch_program_breakpoint_here_p (gdbarch,
6118 ecs->event_thread->suspend.stop_pc))
6119 {
6120 struct regcache *regcache;
6121 int decr_pc;
6122
6123 /* Re-adjust PC to what the program would see if GDB was not
6124 debugging it. */
6125 regcache = get_thread_regcache (ecs->event_thread);
6126 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6127 if (decr_pc != 0)
6128 {
6129 gdb::optional<scoped_restore_tmpl<int>>
6130 restore_operation_disable;
6131
6132 if (record_full_is_used ())
6133 restore_operation_disable.emplace
6134 (record_full_gdb_operation_disable_set ());
6135
6136 regcache_write_pc (regcache,
6137 ecs->event_thread->suspend.stop_pc + decr_pc);
6138 }
6139 }
6140 else
6141 {
6142 /* A delayed software breakpoint event. Ignore the trap. */
6143 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6144 random_signal = 0;
6145 }
6146 }
6147
6148 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6149 has since been removed. */
6150 if (random_signal && target_stopped_by_hw_breakpoint ())
6151 {
6152 /* A delayed hardware breakpoint event. Ignore the trap. */
6153 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6154 "trap, ignoring");
6155 random_signal = 0;
6156 }
6157
6158 /* If not, perhaps stepping/nexting can. */
6159 if (random_signal)
6160 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6161 && currently_stepping (ecs->event_thread));
6162
6163 /* Perhaps the thread hit a single-step breakpoint of _another_
6164 thread. Single-step breakpoints are transparent to the
6165 breakpoints module. */
6166 if (random_signal)
6167 random_signal = !ecs->hit_singlestep_breakpoint;
6168
6169 /* No? Perhaps we got a moribund watchpoint. */
6170 if (random_signal)
6171 random_signal = !stopped_by_watchpoint;
6172
6173 /* Always stop if the user explicitly requested this thread to
6174 remain stopped. */
6175 if (ecs->event_thread->stop_requested)
6176 {
6177 random_signal = 1;
6178 infrun_debug_printf ("user-requested stop");
6179 }
6180
6181 /* For the program's own signals, act according to
6182 the signal handling tables. */
6183
6184 if (random_signal)
6185 {
6186 /* Signal not for debugging purposes. */
6187 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6188 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6189
6190 infrun_debug_printf ("random signal (%s)",
6191 gdb_signal_to_symbol_string (stop_signal));
6192
6193 stopped_by_random_signal = 1;
6194
6195 /* Always stop on signals if we're either just gaining control
6196 of the program, or the user explicitly requested this thread
6197 to remain stopped. */
6198 if (stop_soon != NO_STOP_QUIETLY
6199 || ecs->event_thread->stop_requested
6200 || (!inf->detaching
6201 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6202 {
6203 stop_waiting (ecs);
6204 return;
6205 }
6206
6207 /* Notify observers the signal has "handle print" set. Note we
6208 returned early above if stopping; normal_stop handles the
6209 printing in that case. */
6210 if (signal_print[ecs->event_thread->suspend.stop_signal])
6211 {
6212 /* The signal table tells us to print about this signal. */
6213 target_terminal::ours_for_output ();
6214 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6215 target_terminal::inferior ();
6216 }
6217
6218 /* Clear the signal if it should not be passed. */
6219 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6220 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6221
6222 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6223 && ecs->event_thread->control.trap_expected
6224 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6225 {
6226 /* We were just starting a new sequence, attempting to
6227 single-step off of a breakpoint and expecting a SIGTRAP.
6228 Instead this signal arrives. This signal will take us out
6229 of the stepping range so GDB needs to remember to, when
6230 the signal handler returns, resume stepping off that
6231 breakpoint. */
6232 /* To simplify things, "continue" is forced to use the same
6233 code paths as single-step - set a breakpoint at the
6234 signal return address and then, once hit, step off that
6235 breakpoint. */
6236 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6237
6238 insert_hp_step_resume_breakpoint_at_frame (frame);
6239 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6240 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6241 ecs->event_thread->control.trap_expected = 0;
6242
6243 /* If we were nexting/stepping some other thread, switch to
6244 it, so that we don't continue it, losing control. */
6245 if (!switch_back_to_stepped_thread (ecs))
6246 keep_going (ecs);
6247 return;
6248 }
6249
6250 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6251 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6252 ecs->event_thread)
6253 || ecs->event_thread->control.step_range_end == 1)
6254 && frame_id_eq (get_stack_frame_id (frame),
6255 ecs->event_thread->control.step_stack_frame_id)
6256 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6257 {
6258 /* The inferior is about to take a signal that will take it
6259 out of the single step range. Set a breakpoint at the
6260 current PC (which is presumably where the signal handler
6261 will eventually return) and then allow the inferior to
6262 run free.
6263
6264 Note that this is only needed for a signal delivered
6265 while in the single-step range. Nested signals aren't a
6266 problem as they eventually all return. */
6267 infrun_debug_printf ("signal may take us out of single-step range");
6268
6269 clear_step_over_info ();
6270 insert_hp_step_resume_breakpoint_at_frame (frame);
6271 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6272 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6273 ecs->event_thread->control.trap_expected = 0;
6274 keep_going (ecs);
6275 return;
6276 }
6277
6278 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6279 when either there's a nested signal, or when there's a
6280 pending signal enabled just as the signal handler returns
6281 (leaving the inferior at the step-resume-breakpoint without
6282 actually executing it). Either way continue until the
6283 breakpoint is really hit. */
6284
6285 if (!switch_back_to_stepped_thread (ecs))
6286 {
6287 infrun_debug_printf ("random signal, keep going");
6288
6289 keep_going (ecs);
6290 }
6291 return;
6292 }
6293
6294 process_event_stop_test (ecs);
6295 }
6296
6297 /* Come here when we've got some debug event / signal we can explain
6298 (IOW, not a random signal), and test whether it should cause a
6299 stop, or whether we should resume the inferior (transparently).
6300 E.g., could be a breakpoint whose condition evaluates false; we
6301 could be still stepping within the line; etc. */
6302
6303 static void
6304 process_event_stop_test (struct execution_control_state *ecs)
6305 {
6306 struct symtab_and_line stop_pc_sal;
6307 struct frame_info *frame;
6308 struct gdbarch *gdbarch;
6309 CORE_ADDR jmp_buf_pc;
6310 struct bpstat_what what;
6311
6312 /* Handle cases caused by hitting a breakpoint. */
6313
6314 frame = get_current_frame ();
6315 gdbarch = get_frame_arch (frame);
6316
6317 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6318
6319 if (what.call_dummy)
6320 {
6321 stop_stack_dummy = what.call_dummy;
6322 }
6323
6324 /* A few breakpoint types have callbacks associated (e.g.,
6325 bp_jit_event). Run them now. */
6326 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6327
6328 /* If we hit an internal event that triggers symbol changes, the
6329 current frame will be invalidated within bpstat_what (e.g., if we
6330 hit an internal solib event). Re-fetch it. */
6331 frame = get_current_frame ();
6332 gdbarch = get_frame_arch (frame);
6333
6334 switch (what.main_action)
6335 {
6336 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6337 /* If we hit the breakpoint at longjmp while stepping, we
6338 install a momentary breakpoint at the target of the
6339 jmp_buf. */
6340
6341 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6342
6343 ecs->event_thread->stepping_over_breakpoint = 1;
6344
6345 if (what.is_longjmp)
6346 {
6347 struct value *arg_value;
6348
6349 /* If we set the longjmp breakpoint via a SystemTap probe,
6350 then use it to extract the arguments. The destination PC
6351 is the third argument to the probe. */
6352 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6353 if (arg_value)
6354 {
6355 jmp_buf_pc = value_as_address (arg_value);
6356 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6357 }
6358 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6359 || !gdbarch_get_longjmp_target (gdbarch,
6360 frame, &jmp_buf_pc))
6361 {
6362 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6363 "(!gdbarch_get_longjmp_target)");
6364 keep_going (ecs);
6365 return;
6366 }
6367
6368 /* Insert a breakpoint at resume address. */
6369 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6370 }
6371 else
6372 check_exception_resume (ecs, frame);
6373 keep_going (ecs);
6374 return;
6375
6376 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6377 {
6378 struct frame_info *init_frame;
6379
6380 /* There are several cases to consider.
6381
6382 1. The initiating frame no longer exists. In this case we
6383 must stop, because the exception or longjmp has gone too
6384 far.
6385
6386 2. The initiating frame exists, and is the same as the
6387 current frame. We stop, because the exception or longjmp
6388 has been caught.
6389
6390 3. The initiating frame exists and is different from the
6391 current frame. This means the exception or longjmp has
6392 been caught beneath the initiating frame, so keep going.
6393
6394 4. longjmp breakpoint has been placed just to protect
6395 against stale dummy frames and user is not interested in
6396 stopping around longjmps. */
6397
6398 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6399
6400 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6401 != NULL);
6402 delete_exception_resume_breakpoint (ecs->event_thread);
6403
6404 if (what.is_longjmp)
6405 {
6406 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6407
6408 if (!frame_id_p (ecs->event_thread->initiating_frame))
6409 {
6410 /* Case 4. */
6411 keep_going (ecs);
6412 return;
6413 }
6414 }
6415
6416 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6417
6418 if (init_frame)
6419 {
6420 struct frame_id current_id
6421 = get_frame_id (get_current_frame ());
6422 if (frame_id_eq (current_id,
6423 ecs->event_thread->initiating_frame))
6424 {
6425 /* Case 2. Fall through. */
6426 }
6427 else
6428 {
6429 /* Case 3. */
6430 keep_going (ecs);
6431 return;
6432 }
6433 }
6434
6435 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6436 exists. */
6437 delete_step_resume_breakpoint (ecs->event_thread);
6438
6439 end_stepping_range (ecs);
6440 }
6441 return;
6442
6443 case BPSTAT_WHAT_SINGLE:
6444 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6445 ecs->event_thread->stepping_over_breakpoint = 1;
6446 /* Still need to check other stuff, at least the case where we
6447 are stepping and step out of the right range. */
6448 break;
6449
6450 case BPSTAT_WHAT_STEP_RESUME:
6451 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6452
6453 delete_step_resume_breakpoint (ecs->event_thread);
6454 if (ecs->event_thread->control.proceed_to_finish
6455 && execution_direction == EXEC_REVERSE)
6456 {
6457 struct thread_info *tp = ecs->event_thread;
6458
6459 /* We are finishing a function in reverse, and just hit the
6460 step-resume breakpoint at the start address of the
6461 function, and we're almost there -- just need to back up
6462 by one more single-step, which should take us back to the
6463 function call. */
6464 tp->control.step_range_start = tp->control.step_range_end = 1;
6465 keep_going (ecs);
6466 return;
6467 }
6468 fill_in_stop_func (gdbarch, ecs);
6469 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6470 && execution_direction == EXEC_REVERSE)
6471 {
6472 /* We are stepping over a function call in reverse, and just
6473 hit the step-resume breakpoint at the start address of
6474 the function. Go back to single-stepping, which should
6475 take us back to the function call. */
6476 ecs->event_thread->stepping_over_breakpoint = 1;
6477 keep_going (ecs);
6478 return;
6479 }
6480 break;
6481
6482 case BPSTAT_WHAT_STOP_NOISY:
6483 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6484 stop_print_frame = 1;
6485
6486 /* Assume the thread stopped for a breakpoint. We'll still check
6487 whether a/the breakpoint is there when the thread is next
6488 resumed. */
6489 ecs->event_thread->stepping_over_breakpoint = 1;
6490
6491 stop_waiting (ecs);
6492 return;
6493
6494 case BPSTAT_WHAT_STOP_SILENT:
6495 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6496 stop_print_frame = 0;
6497
6498 /* Assume the thread stopped for a breakpoint. We'll still check
6499 whether a/the breakpoint is there when the thread is next
6500 resumed. */
6501 ecs->event_thread->stepping_over_breakpoint = 1;
6502 stop_waiting (ecs);
6503 return;
6504
6505 case BPSTAT_WHAT_HP_STEP_RESUME:
6506 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6507
6508 delete_step_resume_breakpoint (ecs->event_thread);
6509 if (ecs->event_thread->step_after_step_resume_breakpoint)
6510 {
6511 /* Back when the step-resume breakpoint was inserted, we
6512 were trying to single-step off a breakpoint. Go back to
6513 doing that. */
6514 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6515 ecs->event_thread->stepping_over_breakpoint = 1;
6516 keep_going (ecs);
6517 return;
6518 }
6519 break;
6520
6521 case BPSTAT_WHAT_KEEP_CHECKING:
6522 break;
6523 }
6524
6525 /* If we stepped a permanent breakpoint and we had a high priority
6526 step-resume breakpoint for the address we stepped, but we didn't
6527 hit it, then we must have stepped into the signal handler. The
6528 step-resume was only necessary to catch the case of _not_
6529 stepping into the handler, so delete it, and fall through to
6530 checking whether the step finished. */
6531 if (ecs->event_thread->stepped_breakpoint)
6532 {
6533 struct breakpoint *sr_bp
6534 = ecs->event_thread->control.step_resume_breakpoint;
6535
6536 if (sr_bp != NULL
6537 && sr_bp->loc->permanent
6538 && sr_bp->type == bp_hp_step_resume
6539 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6540 {
6541 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6542 delete_step_resume_breakpoint (ecs->event_thread);
6543 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6544 }
6545 }
6546
6547 /* We come here if we hit a breakpoint but should not stop for it.
6548 Possibly we also were stepping and should stop for that. So fall
6549 through and test for stepping. But, if not stepping, do not
6550 stop. */
6551
6552 /* In all-stop mode, if we're currently stepping but have stopped in
6553 some other thread, we need to switch back to the stepped thread. */
6554 if (switch_back_to_stepped_thread (ecs))
6555 return;
6556
6557 if (ecs->event_thread->control.step_resume_breakpoint)
6558 {
6559 infrun_debug_printf ("step-resume breakpoint is inserted");
6560
6561 /* Having a step-resume breakpoint overrides anything
6562 else having to do with stepping commands until
6563 that breakpoint is reached. */
6564 keep_going (ecs);
6565 return;
6566 }
6567
6568 if (ecs->event_thread->control.step_range_end == 0)
6569 {
6570 infrun_debug_printf ("no stepping, continue");
6571 /* Likewise if we aren't even stepping. */
6572 keep_going (ecs);
6573 return;
6574 }
6575
6576 /* Re-fetch current thread's frame in case the code above caused
6577 the frame cache to be re-initialized, making our FRAME variable
6578 a dangling pointer. */
6579 frame = get_current_frame ();
6580 gdbarch = get_frame_arch (frame);
6581 fill_in_stop_func (gdbarch, ecs);
6582
6583 /* If stepping through a line, keep going if still within it.
6584
6585 Note that step_range_end is the address of the first instruction
6586 beyond the step range, and NOT the address of the last instruction
6587 within it!
6588
6589 Note also that during reverse execution, we may be stepping
6590 through a function epilogue and therefore must detect when
6591 the current-frame changes in the middle of a line. */
6592
6593 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6594 ecs->event_thread)
6595 && (execution_direction != EXEC_REVERSE
6596 || frame_id_eq (get_frame_id (frame),
6597 ecs->event_thread->control.step_frame_id)))
6598 {
6599 infrun_debug_printf
6600 ("stepping inside range [%s-%s]",
6601 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6602 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6603
6604 /* Tentatively re-enable range stepping; `resume' disables it if
6605 necessary (e.g., if we're stepping over a breakpoint or we
6606 have software watchpoints). */
6607 ecs->event_thread->control.may_range_step = 1;
6608
6609 /* When stepping backward, stop at beginning of line range
6610 (unless it's the function entry point, in which case
6611 keep going back to the call point). */
6612 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6613 if (stop_pc == ecs->event_thread->control.step_range_start
6614 && stop_pc != ecs->stop_func_start
6615 && execution_direction == EXEC_REVERSE)
6616 end_stepping_range (ecs);
6617 else
6618 keep_going (ecs);
6619
6620 return;
6621 }
6622
6623 /* We stepped out of the stepping range. */
6624
6625 /* If we are stepping at the source level and entered the runtime
6626 loader dynamic symbol resolution code...
6627
6628 EXEC_FORWARD: we keep on single stepping until we exit the run
6629 time loader code and reach the callee's address.
6630
6631 EXEC_REVERSE: we've already executed the callee (backward), and
6632 the runtime loader code is handled just like any other
6633 undebuggable function call. Now we need only keep stepping
6634 backward through the trampoline code, and that's handled further
6635 down, so there is nothing for us to do here. */
6636
6637 if (execution_direction != EXEC_REVERSE
6638 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6639 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6640 {
6641 CORE_ADDR pc_after_resolver =
6642 gdbarch_skip_solib_resolver (gdbarch,
6643 ecs->event_thread->suspend.stop_pc);
6644
6645 infrun_debug_printf ("stepped into dynsym resolve code");
6646
6647 if (pc_after_resolver)
6648 {
6649 /* Set up a step-resume breakpoint at the address
6650 indicated by SKIP_SOLIB_RESOLVER. */
6651 symtab_and_line sr_sal;
6652 sr_sal.pc = pc_after_resolver;
6653 sr_sal.pspace = get_frame_program_space (frame);
6654
6655 insert_step_resume_breakpoint_at_sal (gdbarch,
6656 sr_sal, null_frame_id);
6657 }
6658
6659 keep_going (ecs);
6660 return;
6661 }
6662
6663 /* Step through an indirect branch thunk. */
6664 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6665 && gdbarch_in_indirect_branch_thunk (gdbarch,
6666 ecs->event_thread->suspend.stop_pc))
6667 {
6668 infrun_debug_printf ("stepped into indirect branch thunk");
6669 keep_going (ecs);
6670 return;
6671 }
6672
6673 if (ecs->event_thread->control.step_range_end != 1
6674 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6675 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6676 && get_frame_type (frame) == SIGTRAMP_FRAME)
6677 {
6678 infrun_debug_printf ("stepped into signal trampoline");
6679 /* The inferior, while doing a "step" or "next", has ended up in
6680 a signal trampoline (either by a signal being delivered or by
6681 the signal handler returning). Just single-step until the
6682 inferior leaves the trampoline (either by calling the handler
6683 or returning). */
6684 keep_going (ecs);
6685 return;
6686 }
6687
6688 /* If we're in the return path from a shared library trampoline,
6689 we want to proceed through the trampoline when stepping. */
6690 /* macro/2012-04-25: This needs to come before the subroutine
6691 call check below as on some targets return trampolines look
6692 like subroutine calls (MIPS16 return thunks). */
6693 if (gdbarch_in_solib_return_trampoline (gdbarch,
6694 ecs->event_thread->suspend.stop_pc,
6695 ecs->stop_func_name)
6696 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6697 {
6698 /* Determine where this trampoline returns. */
6699 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6700 CORE_ADDR real_stop_pc
6701 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6702
6703 infrun_debug_printf ("stepped into solib return tramp");
6704
6705 /* Only proceed through if we know where it's going. */
6706 if (real_stop_pc)
6707 {
6708 /* And put the step-breakpoint there and go until there. */
6709 symtab_and_line sr_sal;
6710 sr_sal.pc = real_stop_pc;
6711 sr_sal.section = find_pc_overlay (sr_sal.pc);
6712 sr_sal.pspace = get_frame_program_space (frame);
6713
6714 /* Do not specify what the fp should be when we stop since
6715 on some machines the prologue is where the new fp value
6716 is established. */
6717 insert_step_resume_breakpoint_at_sal (gdbarch,
6718 sr_sal, null_frame_id);
6719
6720 /* Restart without fiddling with the step ranges or
6721 other state. */
6722 keep_going (ecs);
6723 return;
6724 }
6725 }
6726
6727 /* Check for subroutine calls. The check for the current frame
6728 equalling the step ID is not necessary - the check of the
6729 previous frame's ID is sufficient - but it is a common case and
6730 cheaper than checking the previous frame's ID.
6731
6732 NOTE: frame_id_eq will never report two invalid frame IDs as
6733 being equal, so to get into this block, both the current and
6734 previous frame must have valid frame IDs. */
6735 /* The outer_frame_id check is a heuristic to detect stepping
6736 through startup code. If we step over an instruction which
6737 sets the stack pointer from an invalid value to a valid value,
6738 we may detect that as a subroutine call from the mythical
6739 "outermost" function. This could be fixed by marking
6740 outermost frames as !stack_p,code_p,special_p. Then the
6741 initial outermost frame, before sp was valid, would
6742 have code_addr == &_start. See the comment in frame_id_eq
6743 for more. */
6744 if (!frame_id_eq (get_stack_frame_id (frame),
6745 ecs->event_thread->control.step_stack_frame_id)
6746 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6747 ecs->event_thread->control.step_stack_frame_id)
6748 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6749 outer_frame_id)
6750 || (ecs->event_thread->control.step_start_function
6751 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6752 {
6753 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6754 CORE_ADDR real_stop_pc;
6755
6756 infrun_debug_printf ("stepped into subroutine");
6757
6758 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6759 {
6760 /* I presume that step_over_calls is only 0 when we're
6761 supposed to be stepping at the assembly language level
6762 ("stepi"). Just stop. */
6763 /* And this works the same backward as frontward. MVS */
6764 end_stepping_range (ecs);
6765 return;
6766 }
6767
6768 /* Reverse stepping through solib trampolines. */
6769
6770 if (execution_direction == EXEC_REVERSE
6771 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6772 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6773 || (ecs->stop_func_start == 0
6774 && in_solib_dynsym_resolve_code (stop_pc))))
6775 {
6776 /* Any solib trampoline code can be handled in reverse
6777 by simply continuing to single-step. We have already
6778 executed the solib function (backwards), and a few
6779 steps will take us back through the trampoline to the
6780 caller. */
6781 keep_going (ecs);
6782 return;
6783 }
6784
6785 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6786 {
6787 /* We're doing a "next".
6788
6789 Normal (forward) execution: set a breakpoint at the
6790 callee's return address (the address at which the caller
6791 will resume).
6792
6793 Reverse (backward) execution. set the step-resume
6794 breakpoint at the start of the function that we just
6795 stepped into (backwards), and continue to there. When we
6796 get there, we'll need to single-step back to the caller. */
6797
6798 if (execution_direction == EXEC_REVERSE)
6799 {
6800 /* If we're already at the start of the function, we've either
6801 just stepped backward into a single instruction function,
6802 or stepped back out of a signal handler to the first instruction
6803 of the function. Just keep going, which will single-step back
6804 to the caller. */
6805 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6806 {
6807 /* Normal function call return (static or dynamic). */
6808 symtab_and_line sr_sal;
6809 sr_sal.pc = ecs->stop_func_start;
6810 sr_sal.pspace = get_frame_program_space (frame);
6811 insert_step_resume_breakpoint_at_sal (gdbarch,
6812 sr_sal, null_frame_id);
6813 }
6814 }
6815 else
6816 insert_step_resume_breakpoint_at_caller (frame);
6817
6818 keep_going (ecs);
6819 return;
6820 }
6821
6822 /* If we are in a function call trampoline (a stub between the
6823 calling routine and the real function), locate the real
6824 function. That's what tells us (a) whether we want to step
6825 into it at all, and (b) what prologue we want to run to the
6826 end of, if we do step into it. */
6827 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6828 if (real_stop_pc == 0)
6829 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6830 if (real_stop_pc != 0)
6831 ecs->stop_func_start = real_stop_pc;
6832
6833 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6834 {
6835 symtab_and_line sr_sal;
6836 sr_sal.pc = ecs->stop_func_start;
6837 sr_sal.pspace = get_frame_program_space (frame);
6838
6839 insert_step_resume_breakpoint_at_sal (gdbarch,
6840 sr_sal, null_frame_id);
6841 keep_going (ecs);
6842 return;
6843 }
6844
6845 /* If we have line number information for the function we are
6846 thinking of stepping into and the function isn't on the skip
6847 list, step into it.
6848
6849 If there are several symtabs at that PC (e.g. with include
6850 files), just want to know whether *any* of them have line
6851 numbers. find_pc_line handles this. */
6852 {
6853 struct symtab_and_line tmp_sal;
6854
6855 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6856 if (tmp_sal.line != 0
6857 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6858 tmp_sal)
6859 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6860 {
6861 if (execution_direction == EXEC_REVERSE)
6862 handle_step_into_function_backward (gdbarch, ecs);
6863 else
6864 handle_step_into_function (gdbarch, ecs);
6865 return;
6866 }
6867 }
6868
6869 /* If we have no line number and the step-stop-if-no-debug is
6870 set, we stop the step so that the user has a chance to switch
6871 in assembly mode. */
6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6873 && step_stop_if_no_debug)
6874 {
6875 end_stepping_range (ecs);
6876 return;
6877 }
6878
6879 if (execution_direction == EXEC_REVERSE)
6880 {
6881 /* If we're already at the start of the function, we've either just
6882 stepped backward into a single instruction function without line
6883 number info, or stepped back out of a signal handler to the first
6884 instruction of the function without line number info. Just keep
6885 going, which will single-step back to the caller. */
6886 if (ecs->stop_func_start != stop_pc)
6887 {
6888 /* Set a breakpoint at callee's start address.
6889 From there we can step once and be back in the caller. */
6890 symtab_and_line sr_sal;
6891 sr_sal.pc = ecs->stop_func_start;
6892 sr_sal.pspace = get_frame_program_space (frame);
6893 insert_step_resume_breakpoint_at_sal (gdbarch,
6894 sr_sal, null_frame_id);
6895 }
6896 }
6897 else
6898 /* Set a breakpoint at callee's return address (the address
6899 at which the caller will resume). */
6900 insert_step_resume_breakpoint_at_caller (frame);
6901
6902 keep_going (ecs);
6903 return;
6904 }
6905
6906 /* Reverse stepping through solib trampolines. */
6907
6908 if (execution_direction == EXEC_REVERSE
6909 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6910 {
6911 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6912
6913 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6914 || (ecs->stop_func_start == 0
6915 && in_solib_dynsym_resolve_code (stop_pc)))
6916 {
6917 /* Any solib trampoline code can be handled in reverse
6918 by simply continuing to single-step. We have already
6919 executed the solib function (backwards), and a few
6920 steps will take us back through the trampoline to the
6921 caller. */
6922 keep_going (ecs);
6923 return;
6924 }
6925 else if (in_solib_dynsym_resolve_code (stop_pc))
6926 {
6927 /* Stepped backward into the solib dynsym resolver.
6928 Set a breakpoint at its start and continue, then
6929 one more step will take us out. */
6930 symtab_and_line sr_sal;
6931 sr_sal.pc = ecs->stop_func_start;
6932 sr_sal.pspace = get_frame_program_space (frame);
6933 insert_step_resume_breakpoint_at_sal (gdbarch,
6934 sr_sal, null_frame_id);
6935 keep_going (ecs);
6936 return;
6937 }
6938 }
6939
6940 /* This always returns the sal for the inner-most frame when we are in a
6941 stack of inlined frames, even if GDB actually believes that it is in a
6942 more outer frame. This is checked for below by calls to
6943 inline_skipped_frames. */
6944 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6945
6946 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6947 the trampoline processing logic, however, there are some trampolines
6948 that have no names, so we should do trampoline handling first. */
6949 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6950 && ecs->stop_func_name == NULL
6951 && stop_pc_sal.line == 0)
6952 {
6953 infrun_debug_printf ("stepped into undebuggable function");
6954
6955 /* The inferior just stepped into, or returned to, an
6956 undebuggable function (where there is no debugging information
6957 and no line number corresponding to the address where the
6958 inferior stopped). Since we want to skip this kind of code,
6959 we keep going until the inferior returns from this
6960 function - unless the user has asked us not to (via
6961 set step-mode) or we no longer know how to get back
6962 to the call site. */
6963 if (step_stop_if_no_debug
6964 || !frame_id_p (frame_unwind_caller_id (frame)))
6965 {
6966 /* If we have no line number and the step-stop-if-no-debug
6967 is set, we stop the step so that the user has a chance to
6968 switch in assembly mode. */
6969 end_stepping_range (ecs);
6970 return;
6971 }
6972 else
6973 {
6974 /* Set a breakpoint at callee's return address (the address
6975 at which the caller will resume). */
6976 insert_step_resume_breakpoint_at_caller (frame);
6977 keep_going (ecs);
6978 return;
6979 }
6980 }
6981
6982 if (ecs->event_thread->control.step_range_end == 1)
6983 {
6984 /* It is stepi or nexti. We always want to stop stepping after
6985 one instruction. */
6986 infrun_debug_printf ("stepi/nexti");
6987 end_stepping_range (ecs);
6988 return;
6989 }
6990
6991 if (stop_pc_sal.line == 0)
6992 {
6993 /* We have no line number information. That means to stop
6994 stepping (does this always happen right after one instruction,
6995 when we do "s" in a function with no line numbers,
6996 or can this happen as a result of a return or longjmp?). */
6997 infrun_debug_printf ("line number info");
6998 end_stepping_range (ecs);
6999 return;
7000 }
7001
7002 /* Look for "calls" to inlined functions, part one. If the inline
7003 frame machinery detected some skipped call sites, we have entered
7004 a new inline function. */
7005
7006 if (frame_id_eq (get_frame_id (get_current_frame ()),
7007 ecs->event_thread->control.step_frame_id)
7008 && inline_skipped_frames (ecs->event_thread))
7009 {
7010 infrun_debug_printf ("stepped into inlined function");
7011
7012 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7013
7014 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7015 {
7016 /* For "step", we're going to stop. But if the call site
7017 for this inlined function is on the same source line as
7018 we were previously stepping, go down into the function
7019 first. Otherwise stop at the call site. */
7020
7021 if (call_sal.line == ecs->event_thread->current_line
7022 && call_sal.symtab == ecs->event_thread->current_symtab)
7023 {
7024 step_into_inline_frame (ecs->event_thread);
7025 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7026 {
7027 keep_going (ecs);
7028 return;
7029 }
7030 }
7031
7032 end_stepping_range (ecs);
7033 return;
7034 }
7035 else
7036 {
7037 /* For "next", we should stop at the call site if it is on a
7038 different source line. Otherwise continue through the
7039 inlined function. */
7040 if (call_sal.line == ecs->event_thread->current_line
7041 && call_sal.symtab == ecs->event_thread->current_symtab)
7042 keep_going (ecs);
7043 else
7044 end_stepping_range (ecs);
7045 return;
7046 }
7047 }
7048
7049 /* Look for "calls" to inlined functions, part two. If we are still
7050 in the same real function we were stepping through, but we have
7051 to go further up to find the exact frame ID, we are stepping
7052 through a more inlined call beyond its call site. */
7053
7054 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7055 && !frame_id_eq (get_frame_id (get_current_frame ()),
7056 ecs->event_thread->control.step_frame_id)
7057 && stepped_in_from (get_current_frame (),
7058 ecs->event_thread->control.step_frame_id))
7059 {
7060 infrun_debug_printf ("stepping through inlined function");
7061
7062 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7063 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7064 keep_going (ecs);
7065 else
7066 end_stepping_range (ecs);
7067 return;
7068 }
7069
7070 bool refresh_step_info = true;
7071 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7072 && (ecs->event_thread->current_line != stop_pc_sal.line
7073 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7074 {
7075 if (stop_pc_sal.is_stmt)
7076 {
7077 /* We are at the start of a different line. So stop. Note that
7078 we don't stop if we step into the middle of a different line.
7079 That is said to make things like for (;;) statements work
7080 better. */
7081 infrun_debug_printf ("stepped to a different line");
7082 end_stepping_range (ecs);
7083 return;
7084 }
7085 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7086 ecs->event_thread->control.step_frame_id))
7087 {
7088 /* We are at the start of a different line, however, this line is
7089 not marked as a statement, and we have not changed frame. We
7090 ignore this line table entry, and continue stepping forward,
7091 looking for a better place to stop. */
7092 refresh_step_info = false;
7093 infrun_debug_printf ("stepped to a different line, but "
7094 "it's not the start of a statement");
7095 }
7096 }
7097
7098 /* We aren't done stepping.
7099
7100 Optimize by setting the stepping range to the line.
7101 (We might not be in the original line, but if we entered a
7102 new line in mid-statement, we continue stepping. This makes
7103 things like for(;;) statements work better.)
7104
7105 If we entered a SAL that indicates a non-statement line table entry,
7106 then we update the stepping range, but we don't update the step info,
7107 which includes things like the line number we are stepping away from.
7108 This means we will stop when we find a line table entry that is marked
7109 as is-statement, even if it matches the non-statement one we just
7110 stepped into. */
7111
7112 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7113 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7114 ecs->event_thread->control.may_range_step = 1;
7115 if (refresh_step_info)
7116 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7117
7118 infrun_debug_printf ("keep going");
7119 keep_going (ecs);
7120 }
7121
7122 /* In all-stop mode, if we're currently stepping but have stopped in
7123 some other thread, we may need to switch back to the stepped
7124 thread. Returns true we set the inferior running, false if we left
7125 it stopped (and the event needs further processing). */
7126
7127 static int
7128 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7129 {
7130 if (!target_is_non_stop_p ())
7131 {
7132 struct thread_info *stepping_thread;
7133
7134 /* If any thread is blocked on some internal breakpoint, and we
7135 simply need to step over that breakpoint to get it going
7136 again, do that first. */
7137
7138 /* However, if we see an event for the stepping thread, then we
7139 know all other threads have been moved past their breakpoints
7140 already. Let the caller check whether the step is finished,
7141 etc., before deciding to move it past a breakpoint. */
7142 if (ecs->event_thread->control.step_range_end != 0)
7143 return 0;
7144
7145 /* Check if the current thread is blocked on an incomplete
7146 step-over, interrupted by a random signal. */
7147 if (ecs->event_thread->control.trap_expected
7148 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7149 {
7150 infrun_debug_printf
7151 ("need to finish step-over of [%s]",
7152 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7153 keep_going (ecs);
7154 return 1;
7155 }
7156
7157 /* Check if the current thread is blocked by a single-step
7158 breakpoint of another thread. */
7159 if (ecs->hit_singlestep_breakpoint)
7160 {
7161 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7162 target_pid_to_str (ecs->ptid).c_str ());
7163 keep_going (ecs);
7164 return 1;
7165 }
7166
7167 /* If this thread needs yet another step-over (e.g., stepping
7168 through a delay slot), do it first before moving on to
7169 another thread. */
7170 if (thread_still_needs_step_over (ecs->event_thread))
7171 {
7172 infrun_debug_printf
7173 ("thread [%s] still needs step-over",
7174 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7175 keep_going (ecs);
7176 return 1;
7177 }
7178
7179 /* If scheduler locking applies even if not stepping, there's no
7180 need to walk over threads. Above we've checked whether the
7181 current thread is stepping. If some other thread not the
7182 event thread is stepping, then it must be that scheduler
7183 locking is not in effect. */
7184 if (schedlock_applies (ecs->event_thread))
7185 return 0;
7186
7187 /* Otherwise, we no longer expect a trap in the current thread.
7188 Clear the trap_expected flag before switching back -- this is
7189 what keep_going does as well, if we call it. */
7190 ecs->event_thread->control.trap_expected = 0;
7191
7192 /* Likewise, clear the signal if it should not be passed. */
7193 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7194 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7195
7196 /* Do all pending step-overs before actually proceeding with
7197 step/next/etc. */
7198 if (start_step_over ())
7199 {
7200 prepare_to_wait (ecs);
7201 return 1;
7202 }
7203
7204 /* Look for the stepping/nexting thread. */
7205 stepping_thread = NULL;
7206
7207 for (thread_info *tp : all_non_exited_threads ())
7208 {
7209 switch_to_thread_no_regs (tp);
7210
7211 /* Ignore threads of processes the caller is not
7212 resuming. */
7213 if (!sched_multi
7214 && (tp->inf->process_target () != ecs->target
7215 || tp->inf->pid != ecs->ptid.pid ()))
7216 continue;
7217
7218 /* When stepping over a breakpoint, we lock all threads
7219 except the one that needs to move past the breakpoint.
7220 If a non-event thread has this set, the "incomplete
7221 step-over" check above should have caught it earlier. */
7222 if (tp->control.trap_expected)
7223 {
7224 internal_error (__FILE__, __LINE__,
7225 "[%s] has inconsistent state: "
7226 "trap_expected=%d\n",
7227 target_pid_to_str (tp->ptid).c_str (),
7228 tp->control.trap_expected);
7229 }
7230
7231 /* Did we find the stepping thread? */
7232 if (tp->control.step_range_end)
7233 {
7234 /* Yep. There should only one though. */
7235 gdb_assert (stepping_thread == NULL);
7236
7237 /* The event thread is handled at the top, before we
7238 enter this loop. */
7239 gdb_assert (tp != ecs->event_thread);
7240
7241 /* If some thread other than the event thread is
7242 stepping, then scheduler locking can't be in effect,
7243 otherwise we wouldn't have resumed the current event
7244 thread in the first place. */
7245 gdb_assert (!schedlock_applies (tp));
7246
7247 stepping_thread = tp;
7248 }
7249 }
7250
7251 if (stepping_thread != NULL)
7252 {
7253 infrun_debug_printf ("switching back to stepped thread");
7254
7255 if (keep_going_stepped_thread (stepping_thread))
7256 {
7257 prepare_to_wait (ecs);
7258 return 1;
7259 }
7260 }
7261
7262 switch_to_thread (ecs->event_thread);
7263 }
7264
7265 return 0;
7266 }
7267
7268 /* Set a previously stepped thread back to stepping. Returns true on
7269 success, false if the resume is not possible (e.g., the thread
7270 vanished). */
7271
7272 static int
7273 keep_going_stepped_thread (struct thread_info *tp)
7274 {
7275 struct frame_info *frame;
7276 struct execution_control_state ecss;
7277 struct execution_control_state *ecs = &ecss;
7278
7279 /* If the stepping thread exited, then don't try to switch back and
7280 resume it, which could fail in several different ways depending
7281 on the target. Instead, just keep going.
7282
7283 We can find a stepping dead thread in the thread list in two
7284 cases:
7285
7286 - The target supports thread exit events, and when the target
7287 tries to delete the thread from the thread list, inferior_ptid
7288 pointed at the exiting thread. In such case, calling
7289 delete_thread does not really remove the thread from the list;
7290 instead, the thread is left listed, with 'exited' state.
7291
7292 - The target's debug interface does not support thread exit
7293 events, and so we have no idea whatsoever if the previously
7294 stepping thread is still alive. For that reason, we need to
7295 synchronously query the target now. */
7296
7297 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7298 {
7299 infrun_debug_printf ("not resuming previously stepped thread, it has "
7300 "vanished");
7301
7302 delete_thread (tp);
7303 return 0;
7304 }
7305
7306 infrun_debug_printf ("resuming previously stepped thread");
7307
7308 reset_ecs (ecs, tp);
7309 switch_to_thread (tp);
7310
7311 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7312 frame = get_current_frame ();
7313
7314 /* If the PC of the thread we were trying to single-step has
7315 changed, then that thread has trapped or been signaled, but the
7316 event has not been reported to GDB yet. Re-poll the target
7317 looking for this particular thread's event (i.e. temporarily
7318 enable schedlock) by:
7319
7320 - setting a break at the current PC
7321 - resuming that particular thread, only (by setting trap
7322 expected)
7323
7324 This prevents us continuously moving the single-step breakpoint
7325 forward, one instruction at a time, overstepping. */
7326
7327 if (tp->suspend.stop_pc != tp->prev_pc)
7328 {
7329 ptid_t resume_ptid;
7330
7331 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7332 paddress (target_gdbarch (), tp->prev_pc),
7333 paddress (target_gdbarch (), tp->suspend.stop_pc));
7334
7335 /* Clear the info of the previous step-over, as it's no longer
7336 valid (if the thread was trying to step over a breakpoint, it
7337 has already succeeded). It's what keep_going would do too,
7338 if we called it. Do this before trying to insert the sss
7339 breakpoint, otherwise if we were previously trying to step
7340 over this exact address in another thread, the breakpoint is
7341 skipped. */
7342 clear_step_over_info ();
7343 tp->control.trap_expected = 0;
7344
7345 insert_single_step_breakpoint (get_frame_arch (frame),
7346 get_frame_address_space (frame),
7347 tp->suspend.stop_pc);
7348
7349 tp->resumed = true;
7350 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7351 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7352 }
7353 else
7354 {
7355 infrun_debug_printf ("expected thread still hasn't advanced");
7356
7357 keep_going_pass_signal (ecs);
7358 }
7359 return 1;
7360 }
7361
7362 /* Is thread TP in the middle of (software or hardware)
7363 single-stepping? (Note the result of this function must never be
7364 passed directly as target_resume's STEP parameter.) */
7365
7366 static int
7367 currently_stepping (struct thread_info *tp)
7368 {
7369 return ((tp->control.step_range_end
7370 && tp->control.step_resume_breakpoint == NULL)
7371 || tp->control.trap_expected
7372 || tp->stepped_breakpoint
7373 || bpstat_should_step ());
7374 }
7375
7376 /* Inferior has stepped into a subroutine call with source code that
7377 we should not step over. Do step to the first line of code in
7378 it. */
7379
7380 static void
7381 handle_step_into_function (struct gdbarch *gdbarch,
7382 struct execution_control_state *ecs)
7383 {
7384 fill_in_stop_func (gdbarch, ecs);
7385
7386 compunit_symtab *cust
7387 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7388 if (cust != NULL && compunit_language (cust) != language_asm)
7389 ecs->stop_func_start
7390 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7391
7392 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7393 /* Use the step_resume_break to step until the end of the prologue,
7394 even if that involves jumps (as it seems to on the vax under
7395 4.2). */
7396 /* If the prologue ends in the middle of a source line, continue to
7397 the end of that source line (if it is still within the function).
7398 Otherwise, just go to end of prologue. */
7399 if (stop_func_sal.end
7400 && stop_func_sal.pc != ecs->stop_func_start
7401 && stop_func_sal.end < ecs->stop_func_end)
7402 ecs->stop_func_start = stop_func_sal.end;
7403
7404 /* Architectures which require breakpoint adjustment might not be able
7405 to place a breakpoint at the computed address. If so, the test
7406 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7407 ecs->stop_func_start to an address at which a breakpoint may be
7408 legitimately placed.
7409
7410 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7411 made, GDB will enter an infinite loop when stepping through
7412 optimized code consisting of VLIW instructions which contain
7413 subinstructions corresponding to different source lines. On
7414 FR-V, it's not permitted to place a breakpoint on any but the
7415 first subinstruction of a VLIW instruction. When a breakpoint is
7416 set, GDB will adjust the breakpoint address to the beginning of
7417 the VLIW instruction. Thus, we need to make the corresponding
7418 adjustment here when computing the stop address. */
7419
7420 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7421 {
7422 ecs->stop_func_start
7423 = gdbarch_adjust_breakpoint_address (gdbarch,
7424 ecs->stop_func_start);
7425 }
7426
7427 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7428 {
7429 /* We are already there: stop now. */
7430 end_stepping_range (ecs);
7431 return;
7432 }
7433 else
7434 {
7435 /* Put the step-breakpoint there and go until there. */
7436 symtab_and_line sr_sal;
7437 sr_sal.pc = ecs->stop_func_start;
7438 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7439 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7440
7441 /* Do not specify what the fp should be when we stop since on
7442 some machines the prologue is where the new fp value is
7443 established. */
7444 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7445
7446 /* And make sure stepping stops right away then. */
7447 ecs->event_thread->control.step_range_end
7448 = ecs->event_thread->control.step_range_start;
7449 }
7450 keep_going (ecs);
7451 }
7452
7453 /* Inferior has stepped backward into a subroutine call with source
7454 code that we should not step over. Do step to the beginning of the
7455 last line of code in it. */
7456
7457 static void
7458 handle_step_into_function_backward (struct gdbarch *gdbarch,
7459 struct execution_control_state *ecs)
7460 {
7461 struct compunit_symtab *cust;
7462 struct symtab_and_line stop_func_sal;
7463
7464 fill_in_stop_func (gdbarch, ecs);
7465
7466 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7467 if (cust != NULL && compunit_language (cust) != language_asm)
7468 ecs->stop_func_start
7469 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7470
7471 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7472
7473 /* OK, we're just going to keep stepping here. */
7474 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7475 {
7476 /* We're there already. Just stop stepping now. */
7477 end_stepping_range (ecs);
7478 }
7479 else
7480 {
7481 /* Else just reset the step range and keep going.
7482 No step-resume breakpoint, they don't work for
7483 epilogues, which can have multiple entry paths. */
7484 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7485 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7486 keep_going (ecs);
7487 }
7488 return;
7489 }
7490
7491 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7492 This is used to both functions and to skip over code. */
7493
7494 static void
7495 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7496 struct symtab_and_line sr_sal,
7497 struct frame_id sr_id,
7498 enum bptype sr_type)
7499 {
7500 /* There should never be more than one step-resume or longjmp-resume
7501 breakpoint per thread, so we should never be setting a new
7502 step_resume_breakpoint when one is already active. */
7503 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7504 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7505
7506 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7507 paddress (gdbarch, sr_sal.pc));
7508
7509 inferior_thread ()->control.step_resume_breakpoint
7510 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7511 }
7512
7513 void
7514 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7515 struct symtab_and_line sr_sal,
7516 struct frame_id sr_id)
7517 {
7518 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7519 sr_sal, sr_id,
7520 bp_step_resume);
7521 }
7522
7523 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7524 This is used to skip a potential signal handler.
7525
7526 This is called with the interrupted function's frame. The signal
7527 handler, when it returns, will resume the interrupted function at
7528 RETURN_FRAME.pc. */
7529
7530 static void
7531 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7532 {
7533 gdb_assert (return_frame != NULL);
7534
7535 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7536
7537 symtab_and_line sr_sal;
7538 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7539 sr_sal.section = find_pc_overlay (sr_sal.pc);
7540 sr_sal.pspace = get_frame_program_space (return_frame);
7541
7542 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7543 get_stack_frame_id (return_frame),
7544 bp_hp_step_resume);
7545 }
7546
7547 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7548 is used to skip a function after stepping into it (for "next" or if
7549 the called function has no debugging information).
7550
7551 The current function has almost always been reached by single
7552 stepping a call or return instruction. NEXT_FRAME belongs to the
7553 current function, and the breakpoint will be set at the caller's
7554 resume address.
7555
7556 This is a separate function rather than reusing
7557 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7558 get_prev_frame, which may stop prematurely (see the implementation
7559 of frame_unwind_caller_id for an example). */
7560
7561 static void
7562 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7563 {
7564 /* We shouldn't have gotten here if we don't know where the call site
7565 is. */
7566 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7567
7568 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7569
7570 symtab_and_line sr_sal;
7571 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7572 frame_unwind_caller_pc (next_frame));
7573 sr_sal.section = find_pc_overlay (sr_sal.pc);
7574 sr_sal.pspace = frame_unwind_program_space (next_frame);
7575
7576 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7577 frame_unwind_caller_id (next_frame));
7578 }
7579
7580 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7581 new breakpoint at the target of a jmp_buf. The handling of
7582 longjmp-resume uses the same mechanisms used for handling
7583 "step-resume" breakpoints. */
7584
7585 static void
7586 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7587 {
7588 /* There should never be more than one longjmp-resume breakpoint per
7589 thread, so we should never be setting a new
7590 longjmp_resume_breakpoint when one is already active. */
7591 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7592
7593 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7594 paddress (gdbarch, pc));
7595
7596 inferior_thread ()->control.exception_resume_breakpoint =
7597 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7598 }
7599
7600 /* Insert an exception resume breakpoint. TP is the thread throwing
7601 the exception. The block B is the block of the unwinder debug hook
7602 function. FRAME is the frame corresponding to the call to this
7603 function. SYM is the symbol of the function argument holding the
7604 target PC of the exception. */
7605
7606 static void
7607 insert_exception_resume_breakpoint (struct thread_info *tp,
7608 const struct block *b,
7609 struct frame_info *frame,
7610 struct symbol *sym)
7611 {
7612 try
7613 {
7614 struct block_symbol vsym;
7615 struct value *value;
7616 CORE_ADDR handler;
7617 struct breakpoint *bp;
7618
7619 vsym = lookup_symbol_search_name (sym->search_name (),
7620 b, VAR_DOMAIN);
7621 value = read_var_value (vsym.symbol, vsym.block, frame);
7622 /* If the value was optimized out, revert to the old behavior. */
7623 if (! value_optimized_out (value))
7624 {
7625 handler = value_as_address (value);
7626
7627 infrun_debug_printf ("exception resume at %lx",
7628 (unsigned long) handler);
7629
7630 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7631 handler,
7632 bp_exception_resume).release ();
7633
7634 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7635 frame = NULL;
7636
7637 bp->thread = tp->global_num;
7638 inferior_thread ()->control.exception_resume_breakpoint = bp;
7639 }
7640 }
7641 catch (const gdb_exception_error &e)
7642 {
7643 /* We want to ignore errors here. */
7644 }
7645 }
7646
7647 /* A helper for check_exception_resume that sets an
7648 exception-breakpoint based on a SystemTap probe. */
7649
7650 static void
7651 insert_exception_resume_from_probe (struct thread_info *tp,
7652 const struct bound_probe *probe,
7653 struct frame_info *frame)
7654 {
7655 struct value *arg_value;
7656 CORE_ADDR handler;
7657 struct breakpoint *bp;
7658
7659 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7660 if (!arg_value)
7661 return;
7662
7663 handler = value_as_address (arg_value);
7664
7665 infrun_debug_printf ("exception resume at %s",
7666 paddress (probe->objfile->arch (), handler));
7667
7668 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7669 handler, bp_exception_resume).release ();
7670 bp->thread = tp->global_num;
7671 inferior_thread ()->control.exception_resume_breakpoint = bp;
7672 }
7673
7674 /* This is called when an exception has been intercepted. Check to
7675 see whether the exception's destination is of interest, and if so,
7676 set an exception resume breakpoint there. */
7677
7678 static void
7679 check_exception_resume (struct execution_control_state *ecs,
7680 struct frame_info *frame)
7681 {
7682 struct bound_probe probe;
7683 struct symbol *func;
7684
7685 /* First see if this exception unwinding breakpoint was set via a
7686 SystemTap probe point. If so, the probe has two arguments: the
7687 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7688 set a breakpoint there. */
7689 probe = find_probe_by_pc (get_frame_pc (frame));
7690 if (probe.prob)
7691 {
7692 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7693 return;
7694 }
7695
7696 func = get_frame_function (frame);
7697 if (!func)
7698 return;
7699
7700 try
7701 {
7702 const struct block *b;
7703 struct block_iterator iter;
7704 struct symbol *sym;
7705 int argno = 0;
7706
7707 /* The exception breakpoint is a thread-specific breakpoint on
7708 the unwinder's debug hook, declared as:
7709
7710 void _Unwind_DebugHook (void *cfa, void *handler);
7711
7712 The CFA argument indicates the frame to which control is
7713 about to be transferred. HANDLER is the destination PC.
7714
7715 We ignore the CFA and set a temporary breakpoint at HANDLER.
7716 This is not extremely efficient but it avoids issues in gdb
7717 with computing the DWARF CFA, and it also works even in weird
7718 cases such as throwing an exception from inside a signal
7719 handler. */
7720
7721 b = SYMBOL_BLOCK_VALUE (func);
7722 ALL_BLOCK_SYMBOLS (b, iter, sym)
7723 {
7724 if (!SYMBOL_IS_ARGUMENT (sym))
7725 continue;
7726
7727 if (argno == 0)
7728 ++argno;
7729 else
7730 {
7731 insert_exception_resume_breakpoint (ecs->event_thread,
7732 b, frame, sym);
7733 break;
7734 }
7735 }
7736 }
7737 catch (const gdb_exception_error &e)
7738 {
7739 }
7740 }
7741
7742 static void
7743 stop_waiting (struct execution_control_state *ecs)
7744 {
7745 infrun_debug_printf ("stop_waiting");
7746
7747 /* Let callers know we don't want to wait for the inferior anymore. */
7748 ecs->wait_some_more = 0;
7749
7750 /* If all-stop, but there exists a non-stop target, stop all
7751 threads now that we're presenting the stop to the user. */
7752 if (!non_stop && exists_non_stop_target ())
7753 stop_all_threads ();
7754 }
7755
7756 /* Like keep_going, but passes the signal to the inferior, even if the
7757 signal is set to nopass. */
7758
7759 static void
7760 keep_going_pass_signal (struct execution_control_state *ecs)
7761 {
7762 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7763 gdb_assert (!ecs->event_thread->resumed);
7764
7765 /* Save the pc before execution, to compare with pc after stop. */
7766 ecs->event_thread->prev_pc
7767 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7768
7769 if (ecs->event_thread->control.trap_expected)
7770 {
7771 struct thread_info *tp = ecs->event_thread;
7772
7773 infrun_debug_printf ("%s has trap_expected set, "
7774 "resuming to collect trap",
7775 target_pid_to_str (tp->ptid).c_str ());
7776
7777 /* We haven't yet gotten our trap, and either: intercepted a
7778 non-signal event (e.g., a fork); or took a signal which we
7779 are supposed to pass through to the inferior. Simply
7780 continue. */
7781 resume (ecs->event_thread->suspend.stop_signal);
7782 }
7783 else if (step_over_info_valid_p ())
7784 {
7785 /* Another thread is stepping over a breakpoint in-line. If
7786 this thread needs a step-over too, queue the request. In
7787 either case, this resume must be deferred for later. */
7788 struct thread_info *tp = ecs->event_thread;
7789
7790 if (ecs->hit_singlestep_breakpoint
7791 || thread_still_needs_step_over (tp))
7792 {
7793 infrun_debug_printf ("step-over already in progress: "
7794 "step-over for %s deferred",
7795 target_pid_to_str (tp->ptid).c_str ());
7796 thread_step_over_chain_enqueue (tp);
7797 }
7798 else
7799 {
7800 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7801 target_pid_to_str (tp->ptid).c_str ());
7802 }
7803 }
7804 else
7805 {
7806 struct regcache *regcache = get_current_regcache ();
7807 int remove_bp;
7808 int remove_wps;
7809 step_over_what step_what;
7810
7811 /* Either the trap was not expected, but we are continuing
7812 anyway (if we got a signal, the user asked it be passed to
7813 the child)
7814 -- or --
7815 We got our expected trap, but decided we should resume from
7816 it.
7817
7818 We're going to run this baby now!
7819
7820 Note that insert_breakpoints won't try to re-insert
7821 already inserted breakpoints. Therefore, we don't
7822 care if breakpoints were already inserted, or not. */
7823
7824 /* If we need to step over a breakpoint, and we're not using
7825 displaced stepping to do so, insert all breakpoints
7826 (watchpoints, etc.) but the one we're stepping over, step one
7827 instruction, and then re-insert the breakpoint when that step
7828 is finished. */
7829
7830 step_what = thread_still_needs_step_over (ecs->event_thread);
7831
7832 remove_bp = (ecs->hit_singlestep_breakpoint
7833 || (step_what & STEP_OVER_BREAKPOINT));
7834 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7835
7836 /* We can't use displaced stepping if we need to step past a
7837 watchpoint. The instruction copied to the scratch pad would
7838 still trigger the watchpoint. */
7839 if (remove_bp
7840 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7841 {
7842 set_step_over_info (regcache->aspace (),
7843 regcache_read_pc (regcache), remove_wps,
7844 ecs->event_thread->global_num);
7845 }
7846 else if (remove_wps)
7847 set_step_over_info (NULL, 0, remove_wps, -1);
7848
7849 /* If we now need to do an in-line step-over, we need to stop
7850 all other threads. Note this must be done before
7851 insert_breakpoints below, because that removes the breakpoint
7852 we're about to step over, otherwise other threads could miss
7853 it. */
7854 if (step_over_info_valid_p () && target_is_non_stop_p ())
7855 stop_all_threads ();
7856
7857 /* Stop stepping if inserting breakpoints fails. */
7858 try
7859 {
7860 insert_breakpoints ();
7861 }
7862 catch (const gdb_exception_error &e)
7863 {
7864 exception_print (gdb_stderr, e);
7865 stop_waiting (ecs);
7866 clear_step_over_info ();
7867 return;
7868 }
7869
7870 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7871
7872 resume (ecs->event_thread->suspend.stop_signal);
7873 }
7874
7875 prepare_to_wait (ecs);
7876 }
7877
7878 /* Called when we should continue running the inferior, because the
7879 current event doesn't cause a user visible stop. This does the
7880 resuming part; waiting for the next event is done elsewhere. */
7881
7882 static void
7883 keep_going (struct execution_control_state *ecs)
7884 {
7885 if (ecs->event_thread->control.trap_expected
7886 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7887 ecs->event_thread->control.trap_expected = 0;
7888
7889 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7890 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7891 keep_going_pass_signal (ecs);
7892 }
7893
7894 /* This function normally comes after a resume, before
7895 handle_inferior_event exits. It takes care of any last bits of
7896 housekeeping, and sets the all-important wait_some_more flag. */
7897
7898 static void
7899 prepare_to_wait (struct execution_control_state *ecs)
7900 {
7901 infrun_debug_printf ("prepare_to_wait");
7902
7903 ecs->wait_some_more = 1;
7904
7905 /* If the target can't async, emulate it by marking the infrun event
7906 handler such that as soon as we get back to the event-loop, we
7907 immediately end up in fetch_inferior_event again calling
7908 target_wait. */
7909 if (!target_can_async_p ())
7910 mark_infrun_async_event_handler ();
7911 }
7912
7913 /* We are done with the step range of a step/next/si/ni command.
7914 Called once for each n of a "step n" operation. */
7915
7916 static void
7917 end_stepping_range (struct execution_control_state *ecs)
7918 {
7919 ecs->event_thread->control.stop_step = 1;
7920 stop_waiting (ecs);
7921 }
7922
7923 /* Several print_*_reason functions to print why the inferior has stopped.
7924 We always print something when the inferior exits, or receives a signal.
7925 The rest of the cases are dealt with later on in normal_stop and
7926 print_it_typical. Ideally there should be a call to one of these
7927 print_*_reason functions functions from handle_inferior_event each time
7928 stop_waiting is called.
7929
7930 Note that we don't call these directly, instead we delegate that to
7931 the interpreters, through observers. Interpreters then call these
7932 with whatever uiout is right. */
7933
7934 void
7935 print_end_stepping_range_reason (struct ui_out *uiout)
7936 {
7937 /* For CLI-like interpreters, print nothing. */
7938
7939 if (uiout->is_mi_like_p ())
7940 {
7941 uiout->field_string ("reason",
7942 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7943 }
7944 }
7945
7946 void
7947 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7948 {
7949 annotate_signalled ();
7950 if (uiout->is_mi_like_p ())
7951 uiout->field_string
7952 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7953 uiout->text ("\nProgram terminated with signal ");
7954 annotate_signal_name ();
7955 uiout->field_string ("signal-name",
7956 gdb_signal_to_name (siggnal));
7957 annotate_signal_name_end ();
7958 uiout->text (", ");
7959 annotate_signal_string ();
7960 uiout->field_string ("signal-meaning",
7961 gdb_signal_to_string (siggnal));
7962 annotate_signal_string_end ();
7963 uiout->text (".\n");
7964 uiout->text ("The program no longer exists.\n");
7965 }
7966
7967 void
7968 print_exited_reason (struct ui_out *uiout, int exitstatus)
7969 {
7970 struct inferior *inf = current_inferior ();
7971 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7972
7973 annotate_exited (exitstatus);
7974 if (exitstatus)
7975 {
7976 if (uiout->is_mi_like_p ())
7977 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7978 std::string exit_code_str
7979 = string_printf ("0%o", (unsigned int) exitstatus);
7980 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7981 plongest (inf->num), pidstr.c_str (),
7982 string_field ("exit-code", exit_code_str.c_str ()));
7983 }
7984 else
7985 {
7986 if (uiout->is_mi_like_p ())
7987 uiout->field_string
7988 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7989 uiout->message ("[Inferior %s (%s) exited normally]\n",
7990 plongest (inf->num), pidstr.c_str ());
7991 }
7992 }
7993
7994 void
7995 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7996 {
7997 struct thread_info *thr = inferior_thread ();
7998
7999 annotate_signal ();
8000
8001 if (uiout->is_mi_like_p ())
8002 ;
8003 else if (show_thread_that_caused_stop ())
8004 {
8005 const char *name;
8006
8007 uiout->text ("\nThread ");
8008 uiout->field_string ("thread-id", print_thread_id (thr));
8009
8010 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8011 if (name != NULL)
8012 {
8013 uiout->text (" \"");
8014 uiout->field_string ("name", name);
8015 uiout->text ("\"");
8016 }
8017 }
8018 else
8019 uiout->text ("\nProgram");
8020
8021 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8022 uiout->text (" stopped");
8023 else
8024 {
8025 uiout->text (" received signal ");
8026 annotate_signal_name ();
8027 if (uiout->is_mi_like_p ())
8028 uiout->field_string
8029 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8030 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8031 annotate_signal_name_end ();
8032 uiout->text (", ");
8033 annotate_signal_string ();
8034 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8035
8036 struct regcache *regcache = get_current_regcache ();
8037 struct gdbarch *gdbarch = regcache->arch ();
8038 if (gdbarch_report_signal_info_p (gdbarch))
8039 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8040
8041 annotate_signal_string_end ();
8042 }
8043 uiout->text (".\n");
8044 }
8045
8046 void
8047 print_no_history_reason (struct ui_out *uiout)
8048 {
8049 uiout->text ("\nNo more reverse-execution history.\n");
8050 }
8051
8052 /* Print current location without a level number, if we have changed
8053 functions or hit a breakpoint. Print source line if we have one.
8054 bpstat_print contains the logic deciding in detail what to print,
8055 based on the event(s) that just occurred. */
8056
8057 static void
8058 print_stop_location (struct target_waitstatus *ws)
8059 {
8060 int bpstat_ret;
8061 enum print_what source_flag;
8062 int do_frame_printing = 1;
8063 struct thread_info *tp = inferior_thread ();
8064
8065 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8066 switch (bpstat_ret)
8067 {
8068 case PRINT_UNKNOWN:
8069 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8070 should) carry around the function and does (or should) use
8071 that when doing a frame comparison. */
8072 if (tp->control.stop_step
8073 && frame_id_eq (tp->control.step_frame_id,
8074 get_frame_id (get_current_frame ()))
8075 && (tp->control.step_start_function
8076 == find_pc_function (tp->suspend.stop_pc)))
8077 {
8078 /* Finished step, just print source line. */
8079 source_flag = SRC_LINE;
8080 }
8081 else
8082 {
8083 /* Print location and source line. */
8084 source_flag = SRC_AND_LOC;
8085 }
8086 break;
8087 case PRINT_SRC_AND_LOC:
8088 /* Print location and source line. */
8089 source_flag = SRC_AND_LOC;
8090 break;
8091 case PRINT_SRC_ONLY:
8092 source_flag = SRC_LINE;
8093 break;
8094 case PRINT_NOTHING:
8095 /* Something bogus. */
8096 source_flag = SRC_LINE;
8097 do_frame_printing = 0;
8098 break;
8099 default:
8100 internal_error (__FILE__, __LINE__, _("Unknown value."));
8101 }
8102
8103 /* The behavior of this routine with respect to the source
8104 flag is:
8105 SRC_LINE: Print only source line
8106 LOCATION: Print only location
8107 SRC_AND_LOC: Print location and source line. */
8108 if (do_frame_printing)
8109 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8110 }
8111
8112 /* See infrun.h. */
8113
8114 void
8115 print_stop_event (struct ui_out *uiout, bool displays)
8116 {
8117 struct target_waitstatus last;
8118 struct thread_info *tp;
8119
8120 get_last_target_status (nullptr, nullptr, &last);
8121
8122 {
8123 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8124
8125 print_stop_location (&last);
8126
8127 /* Display the auto-display expressions. */
8128 if (displays)
8129 do_displays ();
8130 }
8131
8132 tp = inferior_thread ();
8133 if (tp->thread_fsm != NULL
8134 && tp->thread_fsm->finished_p ())
8135 {
8136 struct return_value_info *rv;
8137
8138 rv = tp->thread_fsm->return_value ();
8139 if (rv != NULL)
8140 print_return_value (uiout, rv);
8141 }
8142 }
8143
8144 /* See infrun.h. */
8145
8146 void
8147 maybe_remove_breakpoints (void)
8148 {
8149 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8150 {
8151 if (remove_breakpoints ())
8152 {
8153 target_terminal::ours_for_output ();
8154 printf_filtered (_("Cannot remove breakpoints because "
8155 "program is no longer writable.\nFurther "
8156 "execution is probably impossible.\n"));
8157 }
8158 }
8159 }
8160
8161 /* The execution context that just caused a normal stop. */
8162
8163 struct stop_context
8164 {
8165 stop_context ();
8166 ~stop_context ();
8167
8168 DISABLE_COPY_AND_ASSIGN (stop_context);
8169
8170 bool changed () const;
8171
8172 /* The stop ID. */
8173 ULONGEST stop_id;
8174
8175 /* The event PTID. */
8176
8177 ptid_t ptid;
8178
8179 /* If stopp for a thread event, this is the thread that caused the
8180 stop. */
8181 struct thread_info *thread;
8182
8183 /* The inferior that caused the stop. */
8184 int inf_num;
8185 };
8186
8187 /* Initializes a new stop context. If stopped for a thread event, this
8188 takes a strong reference to the thread. */
8189
8190 stop_context::stop_context ()
8191 {
8192 stop_id = get_stop_id ();
8193 ptid = inferior_ptid;
8194 inf_num = current_inferior ()->num;
8195
8196 if (inferior_ptid != null_ptid)
8197 {
8198 /* Take a strong reference so that the thread can't be deleted
8199 yet. */
8200 thread = inferior_thread ();
8201 thread->incref ();
8202 }
8203 else
8204 thread = NULL;
8205 }
8206
8207 /* Release a stop context previously created with save_stop_context.
8208 Releases the strong reference to the thread as well. */
8209
8210 stop_context::~stop_context ()
8211 {
8212 if (thread != NULL)
8213 thread->decref ();
8214 }
8215
8216 /* Return true if the current context no longer matches the saved stop
8217 context. */
8218
8219 bool
8220 stop_context::changed () const
8221 {
8222 if (ptid != inferior_ptid)
8223 return true;
8224 if (inf_num != current_inferior ()->num)
8225 return true;
8226 if (thread != NULL && thread->state != THREAD_STOPPED)
8227 return true;
8228 if (get_stop_id () != stop_id)
8229 return true;
8230 return false;
8231 }
8232
8233 /* See infrun.h. */
8234
8235 int
8236 normal_stop (void)
8237 {
8238 struct target_waitstatus last;
8239
8240 get_last_target_status (nullptr, nullptr, &last);
8241
8242 new_stop_id ();
8243
8244 /* If an exception is thrown from this point on, make sure to
8245 propagate GDB's knowledge of the executing state to the
8246 frontend/user running state. A QUIT is an easy exception to see
8247 here, so do this before any filtered output. */
8248
8249 ptid_t finish_ptid = null_ptid;
8250
8251 if (!non_stop)
8252 finish_ptid = minus_one_ptid;
8253 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8254 || last.kind == TARGET_WAITKIND_EXITED)
8255 {
8256 /* On some targets, we may still have live threads in the
8257 inferior when we get a process exit event. E.g., for
8258 "checkpoint", when the current checkpoint/fork exits,
8259 linux-fork.c automatically switches to another fork from
8260 within target_mourn_inferior. */
8261 if (inferior_ptid != null_ptid)
8262 finish_ptid = ptid_t (inferior_ptid.pid ());
8263 }
8264 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8265 finish_ptid = inferior_ptid;
8266
8267 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8268 if (finish_ptid != null_ptid)
8269 {
8270 maybe_finish_thread_state.emplace
8271 (user_visible_resume_target (finish_ptid), finish_ptid);
8272 }
8273
8274 /* As we're presenting a stop, and potentially removing breakpoints,
8275 update the thread list so we can tell whether there are threads
8276 running on the target. With target remote, for example, we can
8277 only learn about new threads when we explicitly update the thread
8278 list. Do this before notifying the interpreters about signal
8279 stops, end of stepping ranges, etc., so that the "new thread"
8280 output is emitted before e.g., "Program received signal FOO",
8281 instead of after. */
8282 update_thread_list ();
8283
8284 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8285 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8286
8287 /* As with the notification of thread events, we want to delay
8288 notifying the user that we've switched thread context until
8289 the inferior actually stops.
8290
8291 There's no point in saying anything if the inferior has exited.
8292 Note that SIGNALLED here means "exited with a signal", not
8293 "received a signal".
8294
8295 Also skip saying anything in non-stop mode. In that mode, as we
8296 don't want GDB to switch threads behind the user's back, to avoid
8297 races where the user is typing a command to apply to thread x,
8298 but GDB switches to thread y before the user finishes entering
8299 the command, fetch_inferior_event installs a cleanup to restore
8300 the current thread back to the thread the user had selected right
8301 after this event is handled, so we're not really switching, only
8302 informing of a stop. */
8303 if (!non_stop
8304 && previous_inferior_ptid != inferior_ptid
8305 && target_has_execution ()
8306 && last.kind != TARGET_WAITKIND_SIGNALLED
8307 && last.kind != TARGET_WAITKIND_EXITED
8308 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8309 {
8310 SWITCH_THRU_ALL_UIS ()
8311 {
8312 target_terminal::ours_for_output ();
8313 printf_filtered (_("[Switching to %s]\n"),
8314 target_pid_to_str (inferior_ptid).c_str ());
8315 annotate_thread_changed ();
8316 }
8317 previous_inferior_ptid = inferior_ptid;
8318 }
8319
8320 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8321 {
8322 SWITCH_THRU_ALL_UIS ()
8323 if (current_ui->prompt_state == PROMPT_BLOCKED)
8324 {
8325 target_terminal::ours_for_output ();
8326 printf_filtered (_("No unwaited-for children left.\n"));
8327 }
8328 }
8329
8330 /* Note: this depends on the update_thread_list call above. */
8331 maybe_remove_breakpoints ();
8332
8333 /* If an auto-display called a function and that got a signal,
8334 delete that auto-display to avoid an infinite recursion. */
8335
8336 if (stopped_by_random_signal)
8337 disable_current_display ();
8338
8339 SWITCH_THRU_ALL_UIS ()
8340 {
8341 async_enable_stdin ();
8342 }
8343
8344 /* Let the user/frontend see the threads as stopped. */
8345 maybe_finish_thread_state.reset ();
8346
8347 /* Select innermost stack frame - i.e., current frame is frame 0,
8348 and current location is based on that. Handle the case where the
8349 dummy call is returning after being stopped. E.g. the dummy call
8350 previously hit a breakpoint. (If the dummy call returns
8351 normally, we won't reach here.) Do this before the stop hook is
8352 run, so that it doesn't get to see the temporary dummy frame,
8353 which is not where we'll present the stop. */
8354 if (has_stack_frames ())
8355 {
8356 if (stop_stack_dummy == STOP_STACK_DUMMY)
8357 {
8358 /* Pop the empty frame that contains the stack dummy. This
8359 also restores inferior state prior to the call (struct
8360 infcall_suspend_state). */
8361 struct frame_info *frame = get_current_frame ();
8362
8363 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8364 frame_pop (frame);
8365 /* frame_pop calls reinit_frame_cache as the last thing it
8366 does which means there's now no selected frame. */
8367 }
8368
8369 select_frame (get_current_frame ());
8370
8371 /* Set the current source location. */
8372 set_current_sal_from_frame (get_current_frame ());
8373 }
8374
8375 /* Look up the hook_stop and run it (CLI internally handles problem
8376 of stop_command's pre-hook not existing). */
8377 if (stop_command != NULL)
8378 {
8379 stop_context saved_context;
8380
8381 try
8382 {
8383 execute_cmd_pre_hook (stop_command);
8384 }
8385 catch (const gdb_exception &ex)
8386 {
8387 exception_fprintf (gdb_stderr, ex,
8388 "Error while running hook_stop:\n");
8389 }
8390
8391 /* If the stop hook resumes the target, then there's no point in
8392 trying to notify about the previous stop; its context is
8393 gone. Likewise if the command switches thread or inferior --
8394 the observers would print a stop for the wrong
8395 thread/inferior. */
8396 if (saved_context.changed ())
8397 return 1;
8398 }
8399
8400 /* Notify observers about the stop. This is where the interpreters
8401 print the stop event. */
8402 if (inferior_ptid != null_ptid)
8403 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8404 stop_print_frame);
8405 else
8406 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8407
8408 annotate_stopped ();
8409
8410 if (target_has_execution ())
8411 {
8412 if (last.kind != TARGET_WAITKIND_SIGNALLED
8413 && last.kind != TARGET_WAITKIND_EXITED
8414 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8415 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8416 Delete any breakpoint that is to be deleted at the next stop. */
8417 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8418 }
8419
8420 /* Try to get rid of automatically added inferiors that are no
8421 longer needed. Keeping those around slows down things linearly.
8422 Note that this never removes the current inferior. */
8423 prune_inferiors ();
8424
8425 return 0;
8426 }
8427 \f
8428 int
8429 signal_stop_state (int signo)
8430 {
8431 return signal_stop[signo];
8432 }
8433
8434 int
8435 signal_print_state (int signo)
8436 {
8437 return signal_print[signo];
8438 }
8439
8440 int
8441 signal_pass_state (int signo)
8442 {
8443 return signal_program[signo];
8444 }
8445
8446 static void
8447 signal_cache_update (int signo)
8448 {
8449 if (signo == -1)
8450 {
8451 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8452 signal_cache_update (signo);
8453
8454 return;
8455 }
8456
8457 signal_pass[signo] = (signal_stop[signo] == 0
8458 && signal_print[signo] == 0
8459 && signal_program[signo] == 1
8460 && signal_catch[signo] == 0);
8461 }
8462
8463 int
8464 signal_stop_update (int signo, int state)
8465 {
8466 int ret = signal_stop[signo];
8467
8468 signal_stop[signo] = state;
8469 signal_cache_update (signo);
8470 return ret;
8471 }
8472
8473 int
8474 signal_print_update (int signo, int state)
8475 {
8476 int ret = signal_print[signo];
8477
8478 signal_print[signo] = state;
8479 signal_cache_update (signo);
8480 return ret;
8481 }
8482
8483 int
8484 signal_pass_update (int signo, int state)
8485 {
8486 int ret = signal_program[signo];
8487
8488 signal_program[signo] = state;
8489 signal_cache_update (signo);
8490 return ret;
8491 }
8492
8493 /* Update the global 'signal_catch' from INFO and notify the
8494 target. */
8495
8496 void
8497 signal_catch_update (const unsigned int *info)
8498 {
8499 int i;
8500
8501 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8502 signal_catch[i] = info[i] > 0;
8503 signal_cache_update (-1);
8504 target_pass_signals (signal_pass);
8505 }
8506
8507 static void
8508 sig_print_header (void)
8509 {
8510 printf_filtered (_("Signal Stop\tPrint\tPass "
8511 "to program\tDescription\n"));
8512 }
8513
8514 static void
8515 sig_print_info (enum gdb_signal oursig)
8516 {
8517 const char *name = gdb_signal_to_name (oursig);
8518 int name_padding = 13 - strlen (name);
8519
8520 if (name_padding <= 0)
8521 name_padding = 0;
8522
8523 printf_filtered ("%s", name);
8524 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8525 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8526 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8527 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8528 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8529 }
8530
8531 /* Specify how various signals in the inferior should be handled. */
8532
8533 static void
8534 handle_command (const char *args, int from_tty)
8535 {
8536 int digits, wordlen;
8537 int sigfirst, siglast;
8538 enum gdb_signal oursig;
8539 int allsigs;
8540
8541 if (args == NULL)
8542 {
8543 error_no_arg (_("signal to handle"));
8544 }
8545
8546 /* Allocate and zero an array of flags for which signals to handle. */
8547
8548 const size_t nsigs = GDB_SIGNAL_LAST;
8549 unsigned char sigs[nsigs] {};
8550
8551 /* Break the command line up into args. */
8552
8553 gdb_argv built_argv (args);
8554
8555 /* Walk through the args, looking for signal oursigs, signal names, and
8556 actions. Signal numbers and signal names may be interspersed with
8557 actions, with the actions being performed for all signals cumulatively
8558 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8559
8560 for (char *arg : built_argv)
8561 {
8562 wordlen = strlen (arg);
8563 for (digits = 0; isdigit (arg[digits]); digits++)
8564 {;
8565 }
8566 allsigs = 0;
8567 sigfirst = siglast = -1;
8568
8569 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8570 {
8571 /* Apply action to all signals except those used by the
8572 debugger. Silently skip those. */
8573 allsigs = 1;
8574 sigfirst = 0;
8575 siglast = nsigs - 1;
8576 }
8577 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8578 {
8579 SET_SIGS (nsigs, sigs, signal_stop);
8580 SET_SIGS (nsigs, sigs, signal_print);
8581 }
8582 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8583 {
8584 UNSET_SIGS (nsigs, sigs, signal_program);
8585 }
8586 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8587 {
8588 SET_SIGS (nsigs, sigs, signal_print);
8589 }
8590 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8591 {
8592 SET_SIGS (nsigs, sigs, signal_program);
8593 }
8594 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8595 {
8596 UNSET_SIGS (nsigs, sigs, signal_stop);
8597 }
8598 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8599 {
8600 SET_SIGS (nsigs, sigs, signal_program);
8601 }
8602 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8603 {
8604 UNSET_SIGS (nsigs, sigs, signal_print);
8605 UNSET_SIGS (nsigs, sigs, signal_stop);
8606 }
8607 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8608 {
8609 UNSET_SIGS (nsigs, sigs, signal_program);
8610 }
8611 else if (digits > 0)
8612 {
8613 /* It is numeric. The numeric signal refers to our own
8614 internal signal numbering from target.h, not to host/target
8615 signal number. This is a feature; users really should be
8616 using symbolic names anyway, and the common ones like
8617 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8618
8619 sigfirst = siglast = (int)
8620 gdb_signal_from_command (atoi (arg));
8621 if (arg[digits] == '-')
8622 {
8623 siglast = (int)
8624 gdb_signal_from_command (atoi (arg + digits + 1));
8625 }
8626 if (sigfirst > siglast)
8627 {
8628 /* Bet he didn't figure we'd think of this case... */
8629 std::swap (sigfirst, siglast);
8630 }
8631 }
8632 else
8633 {
8634 oursig = gdb_signal_from_name (arg);
8635 if (oursig != GDB_SIGNAL_UNKNOWN)
8636 {
8637 sigfirst = siglast = (int) oursig;
8638 }
8639 else
8640 {
8641 /* Not a number and not a recognized flag word => complain. */
8642 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8643 }
8644 }
8645
8646 /* If any signal numbers or symbol names were found, set flags for
8647 which signals to apply actions to. */
8648
8649 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8650 {
8651 switch ((enum gdb_signal) signum)
8652 {
8653 case GDB_SIGNAL_TRAP:
8654 case GDB_SIGNAL_INT:
8655 if (!allsigs && !sigs[signum])
8656 {
8657 if (query (_("%s is used by the debugger.\n\
8658 Are you sure you want to change it? "),
8659 gdb_signal_to_name ((enum gdb_signal) signum)))
8660 {
8661 sigs[signum] = 1;
8662 }
8663 else
8664 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8665 }
8666 break;
8667 case GDB_SIGNAL_0:
8668 case GDB_SIGNAL_DEFAULT:
8669 case GDB_SIGNAL_UNKNOWN:
8670 /* Make sure that "all" doesn't print these. */
8671 break;
8672 default:
8673 sigs[signum] = 1;
8674 break;
8675 }
8676 }
8677 }
8678
8679 for (int signum = 0; signum < nsigs; signum++)
8680 if (sigs[signum])
8681 {
8682 signal_cache_update (-1);
8683 target_pass_signals (signal_pass);
8684 target_program_signals (signal_program);
8685
8686 if (from_tty)
8687 {
8688 /* Show the results. */
8689 sig_print_header ();
8690 for (; signum < nsigs; signum++)
8691 if (sigs[signum])
8692 sig_print_info ((enum gdb_signal) signum);
8693 }
8694
8695 break;
8696 }
8697 }
8698
8699 /* Complete the "handle" command. */
8700
8701 static void
8702 handle_completer (struct cmd_list_element *ignore,
8703 completion_tracker &tracker,
8704 const char *text, const char *word)
8705 {
8706 static const char * const keywords[] =
8707 {
8708 "all",
8709 "stop",
8710 "ignore",
8711 "print",
8712 "pass",
8713 "nostop",
8714 "noignore",
8715 "noprint",
8716 "nopass",
8717 NULL,
8718 };
8719
8720 signal_completer (ignore, tracker, text, word);
8721 complete_on_enum (tracker, keywords, word, word);
8722 }
8723
8724 enum gdb_signal
8725 gdb_signal_from_command (int num)
8726 {
8727 if (num >= 1 && num <= 15)
8728 return (enum gdb_signal) num;
8729 error (_("Only signals 1-15 are valid as numeric signals.\n\
8730 Use \"info signals\" for a list of symbolic signals."));
8731 }
8732
8733 /* Print current contents of the tables set by the handle command.
8734 It is possible we should just be printing signals actually used
8735 by the current target (but for things to work right when switching
8736 targets, all signals should be in the signal tables). */
8737
8738 static void
8739 info_signals_command (const char *signum_exp, int from_tty)
8740 {
8741 enum gdb_signal oursig;
8742
8743 sig_print_header ();
8744
8745 if (signum_exp)
8746 {
8747 /* First see if this is a symbol name. */
8748 oursig = gdb_signal_from_name (signum_exp);
8749 if (oursig == GDB_SIGNAL_UNKNOWN)
8750 {
8751 /* No, try numeric. */
8752 oursig =
8753 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8754 }
8755 sig_print_info (oursig);
8756 return;
8757 }
8758
8759 printf_filtered ("\n");
8760 /* These ugly casts brought to you by the native VAX compiler. */
8761 for (oursig = GDB_SIGNAL_FIRST;
8762 (int) oursig < (int) GDB_SIGNAL_LAST;
8763 oursig = (enum gdb_signal) ((int) oursig + 1))
8764 {
8765 QUIT;
8766
8767 if (oursig != GDB_SIGNAL_UNKNOWN
8768 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8769 sig_print_info (oursig);
8770 }
8771
8772 printf_filtered (_("\nUse the \"handle\" command "
8773 "to change these tables.\n"));
8774 }
8775
8776 /* The $_siginfo convenience variable is a bit special. We don't know
8777 for sure the type of the value until we actually have a chance to
8778 fetch the data. The type can change depending on gdbarch, so it is
8779 also dependent on which thread you have selected.
8780
8781 1. making $_siginfo be an internalvar that creates a new value on
8782 access.
8783
8784 2. making the value of $_siginfo be an lval_computed value. */
8785
8786 /* This function implements the lval_computed support for reading a
8787 $_siginfo value. */
8788
8789 static void
8790 siginfo_value_read (struct value *v)
8791 {
8792 LONGEST transferred;
8793
8794 /* If we can access registers, so can we access $_siginfo. Likewise
8795 vice versa. */
8796 validate_registers_access ();
8797
8798 transferred =
8799 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8800 NULL,
8801 value_contents_all_raw (v),
8802 value_offset (v),
8803 TYPE_LENGTH (value_type (v)));
8804
8805 if (transferred != TYPE_LENGTH (value_type (v)))
8806 error (_("Unable to read siginfo"));
8807 }
8808
8809 /* This function implements the lval_computed support for writing a
8810 $_siginfo value. */
8811
8812 static void
8813 siginfo_value_write (struct value *v, struct value *fromval)
8814 {
8815 LONGEST transferred;
8816
8817 /* If we can access registers, so can we access $_siginfo. Likewise
8818 vice versa. */
8819 validate_registers_access ();
8820
8821 transferred = target_write (current_top_target (),
8822 TARGET_OBJECT_SIGNAL_INFO,
8823 NULL,
8824 value_contents_all_raw (fromval),
8825 value_offset (v),
8826 TYPE_LENGTH (value_type (fromval)));
8827
8828 if (transferred != TYPE_LENGTH (value_type (fromval)))
8829 error (_("Unable to write siginfo"));
8830 }
8831
8832 static const struct lval_funcs siginfo_value_funcs =
8833 {
8834 siginfo_value_read,
8835 siginfo_value_write
8836 };
8837
8838 /* Return a new value with the correct type for the siginfo object of
8839 the current thread using architecture GDBARCH. Return a void value
8840 if there's no object available. */
8841
8842 static struct value *
8843 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8844 void *ignore)
8845 {
8846 if (target_has_stack ()
8847 && inferior_ptid != null_ptid
8848 && gdbarch_get_siginfo_type_p (gdbarch))
8849 {
8850 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8851
8852 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8853 }
8854
8855 return allocate_value (builtin_type (gdbarch)->builtin_void);
8856 }
8857
8858 \f
8859 /* infcall_suspend_state contains state about the program itself like its
8860 registers and any signal it received when it last stopped.
8861 This state must be restored regardless of how the inferior function call
8862 ends (either successfully, or after it hits a breakpoint or signal)
8863 if the program is to properly continue where it left off. */
8864
8865 class infcall_suspend_state
8866 {
8867 public:
8868 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8869 once the inferior function call has finished. */
8870 infcall_suspend_state (struct gdbarch *gdbarch,
8871 const struct thread_info *tp,
8872 struct regcache *regcache)
8873 : m_thread_suspend (tp->suspend),
8874 m_registers (new readonly_detached_regcache (*regcache))
8875 {
8876 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8877
8878 if (gdbarch_get_siginfo_type_p (gdbarch))
8879 {
8880 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8881 size_t len = TYPE_LENGTH (type);
8882
8883 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8884
8885 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8886 siginfo_data.get (), 0, len) != len)
8887 {
8888 /* Errors ignored. */
8889 siginfo_data.reset (nullptr);
8890 }
8891 }
8892
8893 if (siginfo_data)
8894 {
8895 m_siginfo_gdbarch = gdbarch;
8896 m_siginfo_data = std::move (siginfo_data);
8897 }
8898 }
8899
8900 /* Return a pointer to the stored register state. */
8901
8902 readonly_detached_regcache *registers () const
8903 {
8904 return m_registers.get ();
8905 }
8906
8907 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8908
8909 void restore (struct gdbarch *gdbarch,
8910 struct thread_info *tp,
8911 struct regcache *regcache) const
8912 {
8913 tp->suspend = m_thread_suspend;
8914
8915 if (m_siginfo_gdbarch == gdbarch)
8916 {
8917 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8918
8919 /* Errors ignored. */
8920 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8921 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8922 }
8923
8924 /* The inferior can be gone if the user types "print exit(0)"
8925 (and perhaps other times). */
8926 if (target_has_execution ())
8927 /* NB: The register write goes through to the target. */
8928 regcache->restore (registers ());
8929 }
8930
8931 private:
8932 /* How the current thread stopped before the inferior function call was
8933 executed. */
8934 struct thread_suspend_state m_thread_suspend;
8935
8936 /* The registers before the inferior function call was executed. */
8937 std::unique_ptr<readonly_detached_regcache> m_registers;
8938
8939 /* Format of SIGINFO_DATA or NULL if it is not present. */
8940 struct gdbarch *m_siginfo_gdbarch = nullptr;
8941
8942 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8943 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8944 content would be invalid. */
8945 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8946 };
8947
8948 infcall_suspend_state_up
8949 save_infcall_suspend_state ()
8950 {
8951 struct thread_info *tp = inferior_thread ();
8952 struct regcache *regcache = get_current_regcache ();
8953 struct gdbarch *gdbarch = regcache->arch ();
8954
8955 infcall_suspend_state_up inf_state
8956 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8957
8958 /* Having saved the current state, adjust the thread state, discarding
8959 any stop signal information. The stop signal is not useful when
8960 starting an inferior function call, and run_inferior_call will not use
8961 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8962 tp->suspend.stop_signal = GDB_SIGNAL_0;
8963
8964 return inf_state;
8965 }
8966
8967 /* Restore inferior session state to INF_STATE. */
8968
8969 void
8970 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8971 {
8972 struct thread_info *tp = inferior_thread ();
8973 struct regcache *regcache = get_current_regcache ();
8974 struct gdbarch *gdbarch = regcache->arch ();
8975
8976 inf_state->restore (gdbarch, tp, regcache);
8977 discard_infcall_suspend_state (inf_state);
8978 }
8979
8980 void
8981 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8982 {
8983 delete inf_state;
8984 }
8985
8986 readonly_detached_regcache *
8987 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8988 {
8989 return inf_state->registers ();
8990 }
8991
8992 /* infcall_control_state contains state regarding gdb's control of the
8993 inferior itself like stepping control. It also contains session state like
8994 the user's currently selected frame. */
8995
8996 struct infcall_control_state
8997 {
8998 struct thread_control_state thread_control;
8999 struct inferior_control_state inferior_control;
9000
9001 /* Other fields: */
9002 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9003 int stopped_by_random_signal = 0;
9004
9005 /* ID if the selected frame when the inferior function call was made. */
9006 struct frame_id selected_frame_id {};
9007 };
9008
9009 /* Save all of the information associated with the inferior<==>gdb
9010 connection. */
9011
9012 infcall_control_state_up
9013 save_infcall_control_state ()
9014 {
9015 infcall_control_state_up inf_status (new struct infcall_control_state);
9016 struct thread_info *tp = inferior_thread ();
9017 struct inferior *inf = current_inferior ();
9018
9019 inf_status->thread_control = tp->control;
9020 inf_status->inferior_control = inf->control;
9021
9022 tp->control.step_resume_breakpoint = NULL;
9023 tp->control.exception_resume_breakpoint = NULL;
9024
9025 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9026 chain. If caller's caller is walking the chain, they'll be happier if we
9027 hand them back the original chain when restore_infcall_control_state is
9028 called. */
9029 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9030
9031 /* Other fields: */
9032 inf_status->stop_stack_dummy = stop_stack_dummy;
9033 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9034
9035 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9036
9037 return inf_status;
9038 }
9039
9040 static void
9041 restore_selected_frame (const frame_id &fid)
9042 {
9043 frame_info *frame = frame_find_by_id (fid);
9044
9045 /* If inf_status->selected_frame_id is NULL, there was no previously
9046 selected frame. */
9047 if (frame == NULL)
9048 {
9049 warning (_("Unable to restore previously selected frame."));
9050 return;
9051 }
9052
9053 select_frame (frame);
9054 }
9055
9056 /* Restore inferior session state to INF_STATUS. */
9057
9058 void
9059 restore_infcall_control_state (struct infcall_control_state *inf_status)
9060 {
9061 struct thread_info *tp = inferior_thread ();
9062 struct inferior *inf = current_inferior ();
9063
9064 if (tp->control.step_resume_breakpoint)
9065 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9066
9067 if (tp->control.exception_resume_breakpoint)
9068 tp->control.exception_resume_breakpoint->disposition
9069 = disp_del_at_next_stop;
9070
9071 /* Handle the bpstat_copy of the chain. */
9072 bpstat_clear (&tp->control.stop_bpstat);
9073
9074 tp->control = inf_status->thread_control;
9075 inf->control = inf_status->inferior_control;
9076
9077 /* Other fields: */
9078 stop_stack_dummy = inf_status->stop_stack_dummy;
9079 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9080
9081 if (target_has_stack ())
9082 {
9083 /* The point of the try/catch is that if the stack is clobbered,
9084 walking the stack might encounter a garbage pointer and
9085 error() trying to dereference it. */
9086 try
9087 {
9088 restore_selected_frame (inf_status->selected_frame_id);
9089 }
9090 catch (const gdb_exception_error &ex)
9091 {
9092 exception_fprintf (gdb_stderr, ex,
9093 "Unable to restore previously selected frame:\n");
9094 /* Error in restoring the selected frame. Select the
9095 innermost frame. */
9096 select_frame (get_current_frame ());
9097 }
9098 }
9099
9100 delete inf_status;
9101 }
9102
9103 void
9104 discard_infcall_control_state (struct infcall_control_state *inf_status)
9105 {
9106 if (inf_status->thread_control.step_resume_breakpoint)
9107 inf_status->thread_control.step_resume_breakpoint->disposition
9108 = disp_del_at_next_stop;
9109
9110 if (inf_status->thread_control.exception_resume_breakpoint)
9111 inf_status->thread_control.exception_resume_breakpoint->disposition
9112 = disp_del_at_next_stop;
9113
9114 /* See save_infcall_control_state for info on stop_bpstat. */
9115 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9116
9117 delete inf_status;
9118 }
9119 \f
9120 /* See infrun.h. */
9121
9122 void
9123 clear_exit_convenience_vars (void)
9124 {
9125 clear_internalvar (lookup_internalvar ("_exitsignal"));
9126 clear_internalvar (lookup_internalvar ("_exitcode"));
9127 }
9128 \f
9129
9130 /* User interface for reverse debugging:
9131 Set exec-direction / show exec-direction commands
9132 (returns error unless target implements to_set_exec_direction method). */
9133
9134 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9135 static const char exec_forward[] = "forward";
9136 static const char exec_reverse[] = "reverse";
9137 static const char *exec_direction = exec_forward;
9138 static const char *const exec_direction_names[] = {
9139 exec_forward,
9140 exec_reverse,
9141 NULL
9142 };
9143
9144 static void
9145 set_exec_direction_func (const char *args, int from_tty,
9146 struct cmd_list_element *cmd)
9147 {
9148 if (target_can_execute_reverse ())
9149 {
9150 if (!strcmp (exec_direction, exec_forward))
9151 execution_direction = EXEC_FORWARD;
9152 else if (!strcmp (exec_direction, exec_reverse))
9153 execution_direction = EXEC_REVERSE;
9154 }
9155 else
9156 {
9157 exec_direction = exec_forward;
9158 error (_("Target does not support this operation."));
9159 }
9160 }
9161
9162 static void
9163 show_exec_direction_func (struct ui_file *out, int from_tty,
9164 struct cmd_list_element *cmd, const char *value)
9165 {
9166 switch (execution_direction) {
9167 case EXEC_FORWARD:
9168 fprintf_filtered (out, _("Forward.\n"));
9169 break;
9170 case EXEC_REVERSE:
9171 fprintf_filtered (out, _("Reverse.\n"));
9172 break;
9173 default:
9174 internal_error (__FILE__, __LINE__,
9175 _("bogus execution_direction value: %d"),
9176 (int) execution_direction);
9177 }
9178 }
9179
9180 static void
9181 show_schedule_multiple (struct ui_file *file, int from_tty,
9182 struct cmd_list_element *c, const char *value)
9183 {
9184 fprintf_filtered (file, _("Resuming the execution of threads "
9185 "of all processes is %s.\n"), value);
9186 }
9187
9188 /* Implementation of `siginfo' variable. */
9189
9190 static const struct internalvar_funcs siginfo_funcs =
9191 {
9192 siginfo_make_value,
9193 NULL,
9194 NULL
9195 };
9196
9197 /* Callback for infrun's target events source. This is marked when a
9198 thread has a pending status to process. */
9199
9200 static void
9201 infrun_async_inferior_event_handler (gdb_client_data data)
9202 {
9203 inferior_event_handler (INF_REG_EVENT);
9204 }
9205
9206 #if GDB_SELF_TEST
9207 namespace selftests
9208 {
9209
9210 /* Verify that when two threads with the same ptid exist (from two different
9211 targets) and one of them changes ptid, we only update inferior_ptid if
9212 it is appropriate. */
9213
9214 static void
9215 infrun_thread_ptid_changed ()
9216 {
9217 gdbarch *arch = current_inferior ()->gdbarch;
9218
9219 /* The thread which inferior_ptid represents changes ptid. */
9220 {
9221 scoped_restore_current_pspace_and_thread restore;
9222
9223 scoped_mock_context<test_target_ops> target1 (arch);
9224 scoped_mock_context<test_target_ops> target2 (arch);
9225 target2.mock_inferior.next = &target1.mock_inferior;
9226
9227 ptid_t old_ptid (111, 222);
9228 ptid_t new_ptid (111, 333);
9229
9230 target1.mock_inferior.pid = old_ptid.pid ();
9231 target1.mock_thread.ptid = old_ptid;
9232 target2.mock_inferior.pid = old_ptid.pid ();
9233 target2.mock_thread.ptid = old_ptid;
9234
9235 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9236 set_current_inferior (&target1.mock_inferior);
9237
9238 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9239
9240 gdb_assert (inferior_ptid == new_ptid);
9241 }
9242
9243 /* A thread with the same ptid as inferior_ptid, but from another target,
9244 changes ptid. */
9245 {
9246 scoped_restore_current_pspace_and_thread restore;
9247
9248 scoped_mock_context<test_target_ops> target1 (arch);
9249 scoped_mock_context<test_target_ops> target2 (arch);
9250 target2.mock_inferior.next = &target1.mock_inferior;
9251
9252 ptid_t old_ptid (111, 222);
9253 ptid_t new_ptid (111, 333);
9254
9255 target1.mock_inferior.pid = old_ptid.pid ();
9256 target1.mock_thread.ptid = old_ptid;
9257 target2.mock_inferior.pid = old_ptid.pid ();
9258 target2.mock_thread.ptid = old_ptid;
9259
9260 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9261 set_current_inferior (&target2.mock_inferior);
9262
9263 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9264
9265 gdb_assert (inferior_ptid == old_ptid);
9266 }
9267 }
9268
9269 } /* namespace selftests */
9270
9271 #endif /* GDB_SELF_TEST */
9272
9273 void _initialize_infrun ();
9274 void
9275 _initialize_infrun ()
9276 {
9277 struct cmd_list_element *c;
9278
9279 /* Register extra event sources in the event loop. */
9280 infrun_async_inferior_event_token
9281 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9282
9283 add_info ("signals", info_signals_command, _("\
9284 What debugger does when program gets various signals.\n\
9285 Specify a signal as argument to print info on that signal only."));
9286 add_info_alias ("handle", "signals", 0);
9287
9288 c = add_com ("handle", class_run, handle_command, _("\
9289 Specify how to handle signals.\n\
9290 Usage: handle SIGNAL [ACTIONS]\n\
9291 Args are signals and actions to apply to those signals.\n\
9292 If no actions are specified, the current settings for the specified signals\n\
9293 will be displayed instead.\n\
9294 \n\
9295 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9296 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9297 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9298 The special arg \"all\" is recognized to mean all signals except those\n\
9299 used by the debugger, typically SIGTRAP and SIGINT.\n\
9300 \n\
9301 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9302 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9303 Stop means reenter debugger if this signal happens (implies print).\n\
9304 Print means print a message if this signal happens.\n\
9305 Pass means let program see this signal; otherwise program doesn't know.\n\
9306 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9307 Pass and Stop may be combined.\n\
9308 \n\
9309 Multiple signals may be specified. Signal numbers and signal names\n\
9310 may be interspersed with actions, with the actions being performed for\n\
9311 all signals cumulatively specified."));
9312 set_cmd_completer (c, handle_completer);
9313
9314 if (!dbx_commands)
9315 stop_command = add_cmd ("stop", class_obscure,
9316 not_just_help_class_command, _("\
9317 There is no `stop' command, but you can set a hook on `stop'.\n\
9318 This allows you to set a list of commands to be run each time execution\n\
9319 of the program stops."), &cmdlist);
9320
9321 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9322 Set inferior debugging."), _("\
9323 Show inferior debugging."), _("\
9324 When non-zero, inferior specific debugging is enabled."),
9325 NULL,
9326 show_debug_infrun,
9327 &setdebuglist, &showdebuglist);
9328
9329 add_setshow_boolean_cmd ("displaced", class_maintenance,
9330 &debug_displaced, _("\
9331 Set displaced stepping debugging."), _("\
9332 Show displaced stepping debugging."), _("\
9333 When non-zero, displaced stepping specific debugging is enabled."),
9334 NULL,
9335 show_debug_displaced,
9336 &setdebuglist, &showdebuglist);
9337
9338 add_setshow_boolean_cmd ("non-stop", no_class,
9339 &non_stop_1, _("\
9340 Set whether gdb controls the inferior in non-stop mode."), _("\
9341 Show whether gdb controls the inferior in non-stop mode."), _("\
9342 When debugging a multi-threaded program and this setting is\n\
9343 off (the default, also called all-stop mode), when one thread stops\n\
9344 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9345 all other threads in the program while you interact with the thread of\n\
9346 interest. When you continue or step a thread, you can allow the other\n\
9347 threads to run, or have them remain stopped, but while you inspect any\n\
9348 thread's state, all threads stop.\n\
9349 \n\
9350 In non-stop mode, when one thread stops, other threads can continue\n\
9351 to run freely. You'll be able to step each thread independently,\n\
9352 leave it stopped or free to run as needed."),
9353 set_non_stop,
9354 show_non_stop,
9355 &setlist,
9356 &showlist);
9357
9358 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9359 {
9360 signal_stop[i] = 1;
9361 signal_print[i] = 1;
9362 signal_program[i] = 1;
9363 signal_catch[i] = 0;
9364 }
9365
9366 /* Signals caused by debugger's own actions should not be given to
9367 the program afterwards.
9368
9369 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9370 explicitly specifies that it should be delivered to the target
9371 program. Typically, that would occur when a user is debugging a
9372 target monitor on a simulator: the target monitor sets a
9373 breakpoint; the simulator encounters this breakpoint and halts
9374 the simulation handing control to GDB; GDB, noting that the stop
9375 address doesn't map to any known breakpoint, returns control back
9376 to the simulator; the simulator then delivers the hardware
9377 equivalent of a GDB_SIGNAL_TRAP to the program being
9378 debugged. */
9379 signal_program[GDB_SIGNAL_TRAP] = 0;
9380 signal_program[GDB_SIGNAL_INT] = 0;
9381
9382 /* Signals that are not errors should not normally enter the debugger. */
9383 signal_stop[GDB_SIGNAL_ALRM] = 0;
9384 signal_print[GDB_SIGNAL_ALRM] = 0;
9385 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9386 signal_print[GDB_SIGNAL_VTALRM] = 0;
9387 signal_stop[GDB_SIGNAL_PROF] = 0;
9388 signal_print[GDB_SIGNAL_PROF] = 0;
9389 signal_stop[GDB_SIGNAL_CHLD] = 0;
9390 signal_print[GDB_SIGNAL_CHLD] = 0;
9391 signal_stop[GDB_SIGNAL_IO] = 0;
9392 signal_print[GDB_SIGNAL_IO] = 0;
9393 signal_stop[GDB_SIGNAL_POLL] = 0;
9394 signal_print[GDB_SIGNAL_POLL] = 0;
9395 signal_stop[GDB_SIGNAL_URG] = 0;
9396 signal_print[GDB_SIGNAL_URG] = 0;
9397 signal_stop[GDB_SIGNAL_WINCH] = 0;
9398 signal_print[GDB_SIGNAL_WINCH] = 0;
9399 signal_stop[GDB_SIGNAL_PRIO] = 0;
9400 signal_print[GDB_SIGNAL_PRIO] = 0;
9401
9402 /* These signals are used internally by user-level thread
9403 implementations. (See signal(5) on Solaris.) Like the above
9404 signals, a healthy program receives and handles them as part of
9405 its normal operation. */
9406 signal_stop[GDB_SIGNAL_LWP] = 0;
9407 signal_print[GDB_SIGNAL_LWP] = 0;
9408 signal_stop[GDB_SIGNAL_WAITING] = 0;
9409 signal_print[GDB_SIGNAL_WAITING] = 0;
9410 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9411 signal_print[GDB_SIGNAL_CANCEL] = 0;
9412 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9413 signal_print[GDB_SIGNAL_LIBRT] = 0;
9414
9415 /* Update cached state. */
9416 signal_cache_update (-1);
9417
9418 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9419 &stop_on_solib_events, _("\
9420 Set stopping for shared library events."), _("\
9421 Show stopping for shared library events."), _("\
9422 If nonzero, gdb will give control to the user when the dynamic linker\n\
9423 notifies gdb of shared library events. The most common event of interest\n\
9424 to the user would be loading/unloading of a new library."),
9425 set_stop_on_solib_events,
9426 show_stop_on_solib_events,
9427 &setlist, &showlist);
9428
9429 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9430 follow_fork_mode_kind_names,
9431 &follow_fork_mode_string, _("\
9432 Set debugger response to a program call of fork or vfork."), _("\
9433 Show debugger response to a program call of fork or vfork."), _("\
9434 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9435 parent - the original process is debugged after a fork\n\
9436 child - the new process is debugged after a fork\n\
9437 The unfollowed process will continue to run.\n\
9438 By default, the debugger will follow the parent process."),
9439 NULL,
9440 show_follow_fork_mode_string,
9441 &setlist, &showlist);
9442
9443 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9444 follow_exec_mode_names,
9445 &follow_exec_mode_string, _("\
9446 Set debugger response to a program call of exec."), _("\
9447 Show debugger response to a program call of exec."), _("\
9448 An exec call replaces the program image of a process.\n\
9449 \n\
9450 follow-exec-mode can be:\n\
9451 \n\
9452 new - the debugger creates a new inferior and rebinds the process\n\
9453 to this new inferior. The program the process was running before\n\
9454 the exec call can be restarted afterwards by restarting the original\n\
9455 inferior.\n\
9456 \n\
9457 same - the debugger keeps the process bound to the same inferior.\n\
9458 The new executable image replaces the previous executable loaded in\n\
9459 the inferior. Restarting the inferior after the exec call restarts\n\
9460 the executable the process was running after the exec call.\n\
9461 \n\
9462 By default, the debugger will use the same inferior."),
9463 NULL,
9464 show_follow_exec_mode_string,
9465 &setlist, &showlist);
9466
9467 add_setshow_enum_cmd ("scheduler-locking", class_run,
9468 scheduler_enums, &scheduler_mode, _("\
9469 Set mode for locking scheduler during execution."), _("\
9470 Show mode for locking scheduler during execution."), _("\
9471 off == no locking (threads may preempt at any time)\n\
9472 on == full locking (no thread except the current thread may run)\n\
9473 This applies to both normal execution and replay mode.\n\
9474 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9475 In this mode, other threads may run during other commands.\n\
9476 This applies to both normal execution and replay mode.\n\
9477 replay == scheduler locked in replay mode and unlocked during normal execution."),
9478 set_schedlock_func, /* traps on target vector */
9479 show_scheduler_mode,
9480 &setlist, &showlist);
9481
9482 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9483 Set mode for resuming threads of all processes."), _("\
9484 Show mode for resuming threads of all processes."), _("\
9485 When on, execution commands (such as 'continue' or 'next') resume all\n\
9486 threads of all processes. When off (which is the default), execution\n\
9487 commands only resume the threads of the current process. The set of\n\
9488 threads that are resumed is further refined by the scheduler-locking\n\
9489 mode (see help set scheduler-locking)."),
9490 NULL,
9491 show_schedule_multiple,
9492 &setlist, &showlist);
9493
9494 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9495 Set mode of the step operation."), _("\
9496 Show mode of the step operation."), _("\
9497 When set, doing a step over a function without debug line information\n\
9498 will stop at the first instruction of that function. Otherwise, the\n\
9499 function is skipped and the step command stops at a different source line."),
9500 NULL,
9501 show_step_stop_if_no_debug,
9502 &setlist, &showlist);
9503
9504 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9505 &can_use_displaced_stepping, _("\
9506 Set debugger's willingness to use displaced stepping."), _("\
9507 Show debugger's willingness to use displaced stepping."), _("\
9508 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9509 supported by the target architecture. If off, gdb will not use displaced\n\
9510 stepping to step over breakpoints, even if such is supported by the target\n\
9511 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9512 if the target architecture supports it and non-stop mode is active, but will not\n\
9513 use it in all-stop mode (see help set non-stop)."),
9514 NULL,
9515 show_can_use_displaced_stepping,
9516 &setlist, &showlist);
9517
9518 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9519 &exec_direction, _("Set direction of execution.\n\
9520 Options are 'forward' or 'reverse'."),
9521 _("Show direction of execution (forward/reverse)."),
9522 _("Tells gdb whether to execute forward or backward."),
9523 set_exec_direction_func, show_exec_direction_func,
9524 &setlist, &showlist);
9525
9526 /* Set/show detach-on-fork: user-settable mode. */
9527
9528 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9529 Set whether gdb will detach the child of a fork."), _("\
9530 Show whether gdb will detach the child of a fork."), _("\
9531 Tells gdb whether to detach the child of a fork."),
9532 NULL, NULL, &setlist, &showlist);
9533
9534 /* Set/show disable address space randomization mode. */
9535
9536 add_setshow_boolean_cmd ("disable-randomization", class_support,
9537 &disable_randomization, _("\
9538 Set disabling of debuggee's virtual address space randomization."), _("\
9539 Show disabling of debuggee's virtual address space randomization."), _("\
9540 When this mode is on (which is the default), randomization of the virtual\n\
9541 address space is disabled. Standalone programs run with the randomization\n\
9542 enabled by default on some platforms."),
9543 &set_disable_randomization,
9544 &show_disable_randomization,
9545 &setlist, &showlist);
9546
9547 /* ptid initializations */
9548 inferior_ptid = null_ptid;
9549 target_last_wait_ptid = minus_one_ptid;
9550
9551 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9552 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9553 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9554 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9555
9556 /* Explicitly create without lookup, since that tries to create a
9557 value with a void typed value, and when we get here, gdbarch
9558 isn't initialized yet. At this point, we're quite sure there
9559 isn't another convenience variable of the same name. */
9560 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9561
9562 add_setshow_boolean_cmd ("observer", no_class,
9563 &observer_mode_1, _("\
9564 Set whether gdb controls the inferior in observer mode."), _("\
9565 Show whether gdb controls the inferior in observer mode."), _("\
9566 In observer mode, GDB can get data from the inferior, but not\n\
9567 affect its execution. Registers and memory may not be changed,\n\
9568 breakpoints may not be set, and the program cannot be interrupted\n\
9569 or signalled."),
9570 set_observer_mode,
9571 show_observer_mode,
9572 &setlist,
9573 &showlist);
9574
9575 #if GDB_SELF_TEST
9576 selftests::register_test ("infrun_thread_ptid_changed",
9577 selftests::infrun_thread_ptid_changed);
9578 #endif
9579 }
This page took 0.425096 seconds and 4 git commands to generate.