Convert some frame functions to use gdb::array_view.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* PowerPC-related per-inferior data. */
157
158 struct ppc_inferior_data
159 {
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
163 gdb::optional<displaced_step_buffers> disp_step_buf;
164 };
165
166 static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168 /* Get the per-inferior PowerPC data for INF. */
169
170 static ppc_inferior_data *
171 get_ppc_per_inferior (inferior *inf)
172 {
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179 }
180
181 /* To be used by skip_prologue. */
182
183 struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
190 int saved_fpr; /* smallest # of saved fpr */
191 int saved_vr; /* smallest # of saved vr */
192 int saved_ev; /* smallest # of saved ev */
193 int alloca_reg; /* alloca register number (frame ptr) */
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
196 char used_bl; /* true if link register clobbered */
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
199 int vr_offset; /* offset of saved vrs from prev sp */
200 int ev_offset; /* offset of saved evs from prev sp */
201 int lr_offset; /* offset of saved lr */
202 int lr_register; /* register of saved lr, if trustworthy */
203 int cr_offset; /* offset of saved cr */
204 int vrsave_offset; /* offset of saved vrsave register */
205 };
206
207
208 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209 int
210 vsx_register_p (struct gdbarch *gdbarch, int regno)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218 }
219
220 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221 int
222 altivec_register_p (struct gdbarch *gdbarch, int regno)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229 }
230
231
232 /* Return true if REGNO is an SPE register, false otherwise. */
233 int
234 spe_register_p (struct gdbarch *gdbarch, int regno)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
239 if (IS_SPE_PSEUDOREG (tdep, regno))
240 return 1;
241
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260 }
261
262
263 /* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
265 int
266 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
271 && tdep->ppc_fpscr_regnum >= 0);
272 }
273
274 /* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276 int
277 ppc_altivec_support_p (struct gdbarch *gdbarch)
278 {
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
282 && tdep->ppc_vrsave_regnum >= 0);
283 }
284
285 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
292 static void
293 set_sim_regno (int *table, int gdb_regno, int sim_regno)
294 {
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299 }
300
301
302 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
305 static void
306 init_sim_regno_table (struct gdbarch *arch)
307 {
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
309 int total_regs = gdbarch_num_regs (arch);
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
358 we can treat this more like the other cases. */
359 set_sim_regno (sim_regno,
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
375 #ifdef WITH_PPC_SIM
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390 #endif
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394 }
395
396
397 /* Given a GDB register number REG, return the corresponding SIM
398 register number. */
399 static int
400 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
401 {
402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
403 int sim_regno;
404
405 if (tdep->sim_regno == NULL)
406 init_sim_regno_table (gdbarch);
407
408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415 }
416
417 \f
418
419 /* Register set support functions. */
420
421 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
424 void
425 ppc_supply_reg (struct regcache *regcache, int regnum,
426 const gdb_byte *regs, size_t offset, int regsize)
427 {
428 if (regnum != -1 && offset != -1)
429 {
430 if (regsize > 4)
431 {
432 struct gdbarch *gdbarch = regcache->arch ();
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
438 regcache->raw_supply (regnum, regs + offset);
439 }
440 }
441
442 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
445 void
446 ppc_collect_reg (const struct regcache *regcache, int regnum,
447 gdb_byte *regs, size_t offset, int regsize)
448 {
449 if (regnum != -1 && offset != -1)
450 {
451 if (regsize > 4)
452 {
453 struct gdbarch *gdbarch = regcache->arch ();
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
467 regcache->raw_collect (regnum, regs + offset);
468 }
469 }
470
471 static int
472 ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477 {
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507 }
508
509 static int
510 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513 {
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522 }
523
524 /* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528 void
529 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531 {
532 struct gdbarch *gdbarch = regcache->arch ();
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
536 size_t offset;
537 int regsize;
538
539 if (regnum == -1)
540 {
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
567 return;
568 }
569
570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
572 }
573
574 /* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578 void
579 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581 {
582 struct gdbarch *gdbarch = regcache->arch ();
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
585 size_t offset;
586
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
589
590 tdep = gdbarch_tdep (gdbarch);
591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
592 if (regnum == -1)
593 {
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
604 return;
605 }
606
607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
610 }
611
612 /* Collect register REGNUM in the general-purpose register set
613 REGSET from register cache REGCACHE into the buffer specified by
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617 void
618 ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621 {
622 struct gdbarch *gdbarch = regcache->arch ();
623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
626 size_t offset;
627 int regsize;
628
629 if (regnum == -1)
630 {
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
656 return;
657 }
658
659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
661 }
662
663 /* Collect register REGNUM in the floating-point register set
664 REGSET from register cache REGCACHE into the buffer specified by
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668 void
669 ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672 {
673 struct gdbarch *gdbarch = regcache->arch ();
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
676 size_t offset;
677
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
680
681 tdep = gdbarch_tdep (gdbarch);
682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
683 if (regnum == -1)
684 {
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
695 return;
696 }
697
698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
701 }
702
703 static int
704 insn_changes_sp_or_jumps (unsigned long insn)
705 {
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736 }
737
738 /* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
745 b) Stop scanning if you find a return instruction or reach the
746 end of the function or reach the hard limit for the size of
747 an epilogue.
748 2) scan backward from the point of execution:
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
754
755 static int
756 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
780 if (!safe_frame_unwind_memory (curfrm, scan_pc,
781 {insn_buf, PPC_INSN_SIZE}))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn == 0x4e800020)
785 break;
786 /* Assume a bctr is a tail call unless it points strictly within
787 this function. */
788 if (insn == 0x4e800420)
789 {
790 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
791 tdep->ppc_ctr_regnum);
792 if (ctr > func_start && ctr < func_end)
793 return 0;
794 else
795 break;
796 }
797 if (insn_changes_sp_or_jumps (insn))
798 return 0;
799 }
800
801 /* Scan backward until adjustment to stack pointer (R1). */
802
803 for (scan_pc = pc - PPC_INSN_SIZE;
804 scan_pc >= epilogue_start;
805 scan_pc -= PPC_INSN_SIZE)
806 {
807 if (!safe_frame_unwind_memory (curfrm, scan_pc,
808 {insn_buf, PPC_INSN_SIZE}))
809 return 0;
810 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
811 if (insn_changes_sp_or_jumps (insn))
812 return 1;
813 }
814
815 return 0;
816 }
817
818 /* Implement the stack_frame_destroyed_p gdbarch method. */
819
820 static int
821 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
822 {
823 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
824 gdbarch, pc);
825 }
826
827 /* Get the ith function argument for the current function. */
828 static CORE_ADDR
829 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
830 struct type *type)
831 {
832 return get_frame_register_unsigned (frame, 3 + argi);
833 }
834
835 /* Sequence of bytes for breakpoint instruction. */
836
837 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
838 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
839
840 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
841 rs6000_breakpoint;
842
843 /* Instruction masks for displaced stepping. */
844 #define BRANCH_MASK 0xfc000000
845 #define BP_MASK 0xFC0007FE
846 #define B_INSN 0x48000000
847 #define BC_INSN 0x40000000
848 #define BXL_INSN 0x4c000000
849 #define BP_INSN 0x7C000008
850
851 /* Instruction masks used during single-stepping of atomic
852 sequences. */
853 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
854 #define LWARX_INSTRUCTION 0x7c000028
855 #define LDARX_INSTRUCTION 0x7c0000A8
856 #define LBARX_INSTRUCTION 0x7c000068
857 #define LHARX_INSTRUCTION 0x7c0000e8
858 #define LQARX_INSTRUCTION 0x7c000228
859 #define STORE_CONDITIONAL_MASK 0xfc0007ff
860 #define STWCX_INSTRUCTION 0x7c00012d
861 #define STDCX_INSTRUCTION 0x7c0001ad
862 #define STBCX_INSTRUCTION 0x7c00056d
863 #define STHCX_INSTRUCTION 0x7c0005ad
864 #define STQCX_INSTRUCTION 0x7c00016d
865
866 /* Check if insn is one of the Load And Reserve instructions used for atomic
867 sequences. */
868 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
871 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
872 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
873 /* Check if insn is one of the Store Conditional instructions used for atomic
874 sequences. */
875 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
878 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
879 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
880
881 typedef buf_displaced_step_copy_insn_closure
882 ppc_displaced_step_copy_insn_closure;
883
884 /* We can't displaced step atomic sequences. */
885
886 static displaced_step_copy_insn_closure_up
887 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
888 CORE_ADDR from, CORE_ADDR to,
889 struct regcache *regs)
890 {
891 size_t len = gdbarch_max_insn_length (gdbarch);
892 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
893 (new ppc_displaced_step_copy_insn_closure (len));
894 gdb_byte *buf = closure->buf.data ();
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 int insn;
897
898 read_memory (from, buf, len);
899
900 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
901
902 /* Assume all atomic sequences start with a Load and Reserve instruction. */
903 if (IS_LOAD_AND_RESERVE_INSN (insn))
904 {
905 displaced_debug_printf ("can't displaced step atomic sequence at %s",
906 paddress (gdbarch, from));
907
908 return NULL;
909 }
910
911 write_memory (to, buf, len);
912
913 displaced_debug_printf ("copy %s->%s: %s",
914 paddress (gdbarch, from), paddress (gdbarch, to),
915 displaced_step_dump_bytes (buf, len).c_str ());;
916
917 /* This is a work around for a problem with g++ 4.8. */
918 return displaced_step_copy_insn_closure_up (closure.release ());
919 }
920
921 /* Fix up the state of registers and memory after having single-stepped
922 a displaced instruction. */
923 static void
924 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
925 struct displaced_step_copy_insn_closure *closure_,
926 CORE_ADDR from, CORE_ADDR to,
927 struct regcache *regs)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 /* Our closure is a copy of the instruction. */
931 ppc_displaced_step_copy_insn_closure *closure
932 = (ppc_displaced_step_copy_insn_closure *) closure_;
933 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
934 PPC_INSN_SIZE, byte_order);
935 ULONGEST opcode = 0;
936 /* Offset for non PC-relative instructions. */
937 LONGEST offset = PPC_INSN_SIZE;
938
939 opcode = insn & BRANCH_MASK;
940
941 displaced_debug_printf ("(ppc) fixup (%s, %s)",
942 paddress (gdbarch, from), paddress (gdbarch, to));
943
944 /* Handle PC-relative branch instructions. */
945 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
946 {
947 ULONGEST current_pc;
948
949 /* Read the current PC value after the instruction has been executed
950 in a displaced location. Calculate the offset to be applied to the
951 original PC value before the displaced stepping. */
952 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
953 &current_pc);
954 offset = current_pc - to;
955
956 if (opcode != BXL_INSN)
957 {
958 /* Check for AA bit indicating whether this is an absolute
959 addressing or PC-relative (1: absolute, 0: relative). */
960 if (!(insn & 0x2))
961 {
962 /* PC-relative addressing is being used in the branch. */
963 displaced_debug_printf ("(ppc) branch instruction: %s",
964 paddress (gdbarch, insn));
965 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
966 paddress (gdbarch, current_pc),
967 paddress (gdbarch, from + offset));
968
969 regcache_cooked_write_unsigned (regs,
970 gdbarch_pc_regnum (gdbarch),
971 from + offset);
972 }
973 }
974 else
975 {
976 /* If we're here, it means we have a branch to LR or CTR. If the
977 branch was taken, the offset is probably greater than 4 (the next
978 instruction), so it's safe to assume that an offset of 4 means we
979 did not take the branch. */
980 if (offset == PPC_INSN_SIZE)
981 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
982 from + PPC_INSN_SIZE);
983 }
984
985 /* Check for LK bit indicating whether we should set the link
986 register to point to the next instruction
987 (1: Set, 0: Don't set). */
988 if (insn & 0x1)
989 {
990 /* Link register needs to be set to the next instruction's PC. */
991 regcache_cooked_write_unsigned (regs,
992 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
993 from + PPC_INSN_SIZE);
994 displaced_debug_printf ("(ppc) adjusted LR to %s",
995 paddress (gdbarch, from + PPC_INSN_SIZE));
996
997 }
998 }
999 /* Check for breakpoints in the inferior. If we've found one, place the PC
1000 right at the breakpoint instruction. */
1001 else if ((insn & BP_MASK) == BP_INSN)
1002 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1003 else
1004 /* Handle any other instructions that do not fit in the categories above. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1007 }
1008
1009 /* Implementation of gdbarch_displaced_step_prepare. */
1010
1011 static displaced_step_prepare_status
1012 ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1013 CORE_ADDR &displaced_pc)
1014 {
1015 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1016
1017 if (!per_inferior->disp_step_buf.has_value ())
1018 {
1019 /* Figure out where the displaced step buffer is. */
1020 CORE_ADDR disp_step_buf_addr
1021 = displaced_step_at_entry_point (thread->inf->gdbarch);
1022
1023 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1024 }
1025
1026 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1027 }
1028
1029 /* Implementation of gdbarch_displaced_step_finish. */
1030
1031 static displaced_step_finish_status
1032 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1033 gdb_signal sig)
1034 {
1035 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1036
1037 gdb_assert (per_inferior->disp_step_buf.has_value ());
1038
1039 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1040 }
1041
1042 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1043
1044 static void
1045 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1046 {
1047 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1048
1049 if (per_inferior == nullptr
1050 || !per_inferior->disp_step_buf.has_value ())
1051 return;
1052
1053 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1054 }
1055
1056 /* Always use hardware single-stepping to execute the
1057 displaced instruction. */
1058 static bool
1059 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1060 {
1061 return true;
1062 }
1063
1064 /* Checks for an atomic sequence of instructions beginning with a
1065 Load And Reserve instruction and ending with a Store Conditional
1066 instruction. If such a sequence is found, attempt to step through it.
1067 A breakpoint is placed at the end of the sequence. */
1068 std::vector<CORE_ADDR>
1069 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1070 {
1071 struct gdbarch *gdbarch = regcache->arch ();
1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1073 CORE_ADDR pc = regcache_read_pc (regcache);
1074 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1075 CORE_ADDR loc = pc;
1076 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1077 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1078 int insn_count;
1079 int index;
1080 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1081 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1082 int bc_insn_count = 0; /* Conditional branch instruction count. */
1083
1084 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1085 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1086 return {};
1087
1088 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1089 instructions. */
1090 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1091 {
1092 loc += PPC_INSN_SIZE;
1093 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1094
1095 /* Assume that there is at most one conditional branch in the atomic
1096 sequence. If a conditional branch is found, put a breakpoint in
1097 its destination address. */
1098 if ((insn & BRANCH_MASK) == BC_INSN)
1099 {
1100 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1101 int absolute = insn & 2;
1102
1103 if (bc_insn_count >= 1)
1104 return {}; /* More than one conditional branch found, fallback
1105 to the standard single-step code. */
1106
1107 if (absolute)
1108 breaks[1] = immediate;
1109 else
1110 breaks[1] = loc + immediate;
1111
1112 bc_insn_count++;
1113 last_breakpoint++;
1114 }
1115
1116 if (IS_STORE_CONDITIONAL_INSN (insn))
1117 break;
1118 }
1119
1120 /* Assume that the atomic sequence ends with a Store Conditional
1121 instruction. */
1122 if (!IS_STORE_CONDITIONAL_INSN (insn))
1123 return {};
1124
1125 closing_insn = loc;
1126 loc += PPC_INSN_SIZE;
1127
1128 /* Insert a breakpoint right after the end of the atomic sequence. */
1129 breaks[0] = loc;
1130
1131 /* Check for duplicated breakpoints. Check also for a breakpoint
1132 placed (branch instruction's destination) anywhere in sequence. */
1133 if (last_breakpoint
1134 && (breaks[1] == breaks[0]
1135 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1136 last_breakpoint = 0;
1137
1138 std::vector<CORE_ADDR> next_pcs;
1139
1140 for (index = 0; index <= last_breakpoint; index++)
1141 next_pcs.push_back (breaks[index]);
1142
1143 return next_pcs;
1144 }
1145
1146
1147 #define SIGNED_SHORT(x) \
1148 ((sizeof (short) == 2) \
1149 ? ((int)(short)(x)) \
1150 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1151
1152 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1153
1154 /* Limit the number of skipped non-prologue instructions, as the examining
1155 of the prologue is expensive. */
1156 static int max_skip_non_prologue_insns = 10;
1157
1158 /* Return nonzero if the given instruction OP can be part of the prologue
1159 of a function and saves a parameter on the stack. FRAMEP should be
1160 set if one of the previous instructions in the function has set the
1161 Frame Pointer. */
1162
1163 static int
1164 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1165 {
1166 /* Move parameters from argument registers to temporary register. */
1167 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1168 {
1169 /* Rx must be scratch register r0. */
1170 const int rx_regno = (op >> 16) & 31;
1171 /* Ry: Only r3 - r10 are used for parameter passing. */
1172 const int ry_regno = GET_SRC_REG (op);
1173
1174 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1175 {
1176 *r0_contains_arg = 1;
1177 return 1;
1178 }
1179 else
1180 return 0;
1181 }
1182
1183 /* Save a General Purpose Register on stack. */
1184
1185 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1186 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1187 {
1188 /* Rx: Only r3 - r10 are used for parameter passing. */
1189 const int rx_regno = GET_SRC_REG (op);
1190
1191 return (rx_regno >= 3 && rx_regno <= 10);
1192 }
1193
1194 /* Save a General Purpose Register on stack via the Frame Pointer. */
1195
1196 if (framep &&
1197 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1198 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1199 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1200 {
1201 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1202 However, the compiler sometimes uses r0 to hold an argument. */
1203 const int rx_regno = GET_SRC_REG (op);
1204
1205 return ((rx_regno >= 3 && rx_regno <= 10)
1206 || (rx_regno == 0 && *r0_contains_arg));
1207 }
1208
1209 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1210 {
1211 /* Only f2 - f8 are used for parameter passing. */
1212 const int src_regno = GET_SRC_REG (op);
1213
1214 return (src_regno >= 2 && src_regno <= 8);
1215 }
1216
1217 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1218 {
1219 /* Only f2 - f8 are used for parameter passing. */
1220 const int src_regno = GET_SRC_REG (op);
1221
1222 return (src_regno >= 2 && src_regno <= 8);
1223 }
1224
1225 /* Not an insn that saves a parameter on stack. */
1226 return 0;
1227 }
1228
1229 /* Assuming that INSN is a "bl" instruction located at PC, return
1230 nonzero if the destination of the branch is a "blrl" instruction.
1231
1232 This sequence is sometimes found in certain function prologues.
1233 It allows the function to load the LR register with a value that
1234 they can use to access PIC data using PC-relative offsets. */
1235
1236 static int
1237 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1238 {
1239 CORE_ADDR dest;
1240 int immediate;
1241 int absolute;
1242 int dest_insn;
1243
1244 absolute = (int) ((insn >> 1) & 1);
1245 immediate = ((insn & ~3) << 6) >> 6;
1246 if (absolute)
1247 dest = immediate;
1248 else
1249 dest = pc + immediate;
1250
1251 dest_insn = read_memory_integer (dest, 4, byte_order);
1252 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1253 return 1;
1254
1255 return 0;
1256 }
1257
1258 /* Return true if OP is a stw or std instruction with
1259 register operands RS and RA and any immediate offset.
1260
1261 If WITH_UPDATE is true, also return true if OP is
1262 a stwu or stdu instruction with the same operands.
1263
1264 Return false otherwise.
1265 */
1266 static bool
1267 store_insn_p (unsigned long op, unsigned long rs,
1268 unsigned long ra, bool with_update)
1269 {
1270 rs = rs << 21;
1271 ra = ra << 16;
1272
1273 if (/* std RS, SIMM(RA) */
1274 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1275 /* stw RS, SIMM(RA) */
1276 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1277 return true;
1278
1279 if (with_update)
1280 {
1281 if (/* stdu RS, SIMM(RA) */
1282 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1283 /* stwu RS, SIMM(RA) */
1284 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1285 return true;
1286 }
1287
1288 return false;
1289 }
1290
1291 /* Masks for decoding a branch-and-link (bl) instruction.
1292
1293 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1294 The former is anded with the opcode in question; if the result of
1295 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1296 question is a ``bl'' instruction.
1297
1298 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1299 the branch displacement. */
1300
1301 #define BL_MASK 0xfc000001
1302 #define BL_INSTRUCTION 0x48000001
1303 #define BL_DISPLACEMENT_MASK 0x03fffffc
1304
1305 static unsigned long
1306 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1307 {
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1309 gdb_byte buf[4];
1310 unsigned long op;
1311
1312 /* Fetch the instruction and convert it to an integer. */
1313 if (target_read_memory (pc, buf, 4))
1314 return 0;
1315 op = extract_unsigned_integer (buf, 4, byte_order);
1316
1317 return op;
1318 }
1319
1320 /* GCC generates several well-known sequences of instructions at the begining
1321 of each function prologue when compiling with -fstack-check. If one of
1322 such sequences starts at START_PC, then return the address of the
1323 instruction immediately past this sequence. Otherwise, return START_PC. */
1324
1325 static CORE_ADDR
1326 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1327 {
1328 CORE_ADDR pc = start_pc;
1329 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1330
1331 /* First possible sequence: A small number of probes.
1332 stw 0, -<some immediate>(1)
1333 [repeat this instruction any (small) number of times]. */
1334
1335 if ((op & 0xffff0000) == 0x90010000)
1336 {
1337 while ((op & 0xffff0000) == 0x90010000)
1338 {
1339 pc = pc + 4;
1340 op = rs6000_fetch_instruction (gdbarch, pc);
1341 }
1342 return pc;
1343 }
1344
1345 /* Second sequence: A probing loop.
1346 addi 12,1,-<some immediate>
1347 lis 0,-<some immediate>
1348 [possibly ori 0,0,<some immediate>]
1349 add 0,12,0
1350 cmpw 0,12,0
1351 beq 0,<disp>
1352 addi 12,12,-<some immediate>
1353 stw 0,0(12)
1354 b <disp>
1355 [possibly one last probe: stw 0,<some immediate>(12)]. */
1356
1357 while (1)
1358 {
1359 /* addi 12,1,-<some immediate> */
1360 if ((op & 0xffff0000) != 0x39810000)
1361 break;
1362
1363 /* lis 0,-<some immediate> */
1364 pc = pc + 4;
1365 op = rs6000_fetch_instruction (gdbarch, pc);
1366 if ((op & 0xffff0000) != 0x3c000000)
1367 break;
1368
1369 pc = pc + 4;
1370 op = rs6000_fetch_instruction (gdbarch, pc);
1371 /* [possibly ori 0,0,<some immediate>] */
1372 if ((op & 0xffff0000) == 0x60000000)
1373 {
1374 pc = pc + 4;
1375 op = rs6000_fetch_instruction (gdbarch, pc);
1376 }
1377 /* add 0,12,0 */
1378 if (op != 0x7c0c0214)
1379 break;
1380
1381 /* cmpw 0,12,0 */
1382 pc = pc + 4;
1383 op = rs6000_fetch_instruction (gdbarch, pc);
1384 if (op != 0x7c0c0000)
1385 break;
1386
1387 /* beq 0,<disp> */
1388 pc = pc + 4;
1389 op = rs6000_fetch_instruction (gdbarch, pc);
1390 if ((op & 0xff9f0001) != 0x41820000)
1391 break;
1392
1393 /* addi 12,12,-<some immediate> */
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 if ((op & 0xffff0000) != 0x398c0000)
1397 break;
1398
1399 /* stw 0,0(12) */
1400 pc = pc + 4;
1401 op = rs6000_fetch_instruction (gdbarch, pc);
1402 if (op != 0x900c0000)
1403 break;
1404
1405 /* b <disp> */
1406 pc = pc + 4;
1407 op = rs6000_fetch_instruction (gdbarch, pc);
1408 if ((op & 0xfc000001) != 0x48000000)
1409 break;
1410
1411 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1412 pc = pc + 4;
1413 op = rs6000_fetch_instruction (gdbarch, pc);
1414 if ((op & 0xffff0000) == 0x900c0000)
1415 {
1416 pc = pc + 4;
1417 op = rs6000_fetch_instruction (gdbarch, pc);
1418 }
1419
1420 /* We found a valid stack-check sequence, return the new PC. */
1421 return pc;
1422 }
1423
1424 /* Third sequence: No probe; instead, a comparison between the stack size
1425 limit (saved in a run-time global variable) and the current stack
1426 pointer:
1427
1428 addi 0,1,-<some immediate>
1429 lis 12,__gnat_stack_limit@ha
1430 lwz 12,__gnat_stack_limit@l(12)
1431 twllt 0,12
1432
1433 or, with a small variant in the case of a bigger stack frame:
1434 addis 0,1,<some immediate>
1435 addic 0,0,-<some immediate>
1436 lis 12,__gnat_stack_limit@ha
1437 lwz 12,__gnat_stack_limit@l(12)
1438 twllt 0,12
1439 */
1440 while (1)
1441 {
1442 /* addi 0,1,-<some immediate> */
1443 if ((op & 0xffff0000) != 0x38010000)
1444 {
1445 /* small stack frame variant not recognized; try the
1446 big stack frame variant: */
1447
1448 /* addis 0,1,<some immediate> */
1449 if ((op & 0xffff0000) != 0x3c010000)
1450 break;
1451
1452 /* addic 0,0,-<some immediate> */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if ((op & 0xffff0000) != 0x30000000)
1456 break;
1457 }
1458
1459 /* lis 12,<some immediate> */
1460 pc = pc + 4;
1461 op = rs6000_fetch_instruction (gdbarch, pc);
1462 if ((op & 0xffff0000) != 0x3d800000)
1463 break;
1464
1465 /* lwz 12,<some immediate>(12) */
1466 pc = pc + 4;
1467 op = rs6000_fetch_instruction (gdbarch, pc);
1468 if ((op & 0xffff0000) != 0x818c0000)
1469 break;
1470
1471 /* twllt 0,12 */
1472 pc = pc + 4;
1473 op = rs6000_fetch_instruction (gdbarch, pc);
1474 if ((op & 0xfffffffe) != 0x7c406008)
1475 break;
1476
1477 /* We found a valid stack-check sequence, return the new PC. */
1478 return pc;
1479 }
1480
1481 /* No stack check code in our prologue, return the start_pc. */
1482 return start_pc;
1483 }
1484
1485 /* return pc value after skipping a function prologue and also return
1486 information about a function frame.
1487
1488 in struct rs6000_framedata fdata:
1489 - frameless is TRUE, if function does not have a frame.
1490 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1491 - offset is the initial size of this stack frame --- the amount by
1492 which we decrement the sp to allocate the frame.
1493 - saved_gpr is the number of the first saved gpr.
1494 - saved_fpr is the number of the first saved fpr.
1495 - saved_vr is the number of the first saved vr.
1496 - saved_ev is the number of the first saved ev.
1497 - alloca_reg is the number of the register used for alloca() handling.
1498 Otherwise -1.
1499 - gpr_offset is the offset of the first saved gpr from the previous frame.
1500 - fpr_offset is the offset of the first saved fpr from the previous frame.
1501 - vr_offset is the offset of the first saved vr from the previous frame.
1502 - ev_offset is the offset of the first saved ev from the previous frame.
1503 - lr_offset is the offset of the saved lr
1504 - cr_offset is the offset of the saved cr
1505 - vrsave_offset is the offset of the saved vrsave register. */
1506
1507 static CORE_ADDR
1508 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1509 struct rs6000_framedata *fdata)
1510 {
1511 CORE_ADDR orig_pc = pc;
1512 CORE_ADDR last_prologue_pc = pc;
1513 CORE_ADDR li_found_pc = 0;
1514 gdb_byte buf[4];
1515 unsigned long op;
1516 long offset = 0;
1517 long alloca_reg_offset = 0;
1518 long vr_saved_offset = 0;
1519 int lr_reg = -1;
1520 int cr_reg = -1;
1521 int vr_reg = -1;
1522 int ev_reg = -1;
1523 long ev_offset = 0;
1524 int vrsave_reg = -1;
1525 int reg;
1526 int framep = 0;
1527 int minimal_toc_loaded = 0;
1528 int prev_insn_was_prologue_insn = 1;
1529 int num_skip_non_prologue_insns = 0;
1530 int r0_contains_arg = 0;
1531 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1534
1535 memset (fdata, 0, sizeof (struct rs6000_framedata));
1536 fdata->saved_gpr = -1;
1537 fdata->saved_fpr = -1;
1538 fdata->saved_vr = -1;
1539 fdata->saved_ev = -1;
1540 fdata->alloca_reg = -1;
1541 fdata->frameless = 1;
1542 fdata->nosavedpc = 1;
1543 fdata->lr_register = -1;
1544
1545 pc = rs6000_skip_stack_check (gdbarch, pc);
1546 if (pc >= lim_pc)
1547 pc = lim_pc;
1548
1549 for (;; pc += 4)
1550 {
1551 /* Sometimes it isn't clear if an instruction is a prologue
1552 instruction or not. When we encounter one of these ambiguous
1553 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1554 Otherwise, we'll assume that it really is a prologue instruction. */
1555 if (prev_insn_was_prologue_insn)
1556 last_prologue_pc = pc;
1557
1558 /* Stop scanning if we've hit the limit. */
1559 if (pc >= lim_pc)
1560 break;
1561
1562 prev_insn_was_prologue_insn = 1;
1563
1564 /* Fetch the instruction and convert it to an integer. */
1565 if (target_read_memory (pc, buf, 4))
1566 break;
1567 op = extract_unsigned_integer (buf, 4, byte_order);
1568
1569 if ((op & 0xfc1fffff) == 0x7c0802a6)
1570 { /* mflr Rx */
1571 /* Since shared library / PIC code, which needs to get its
1572 address at runtime, can appear to save more than one link
1573 register vis:
1574
1575 *INDENT-OFF*
1576 stwu r1,-304(r1)
1577 mflr r3
1578 bl 0xff570d0 (blrl)
1579 stw r30,296(r1)
1580 mflr r30
1581 stw r31,300(r1)
1582 stw r3,308(r1);
1583 ...
1584 *INDENT-ON*
1585
1586 remember just the first one, but skip over additional
1587 ones. */
1588 if (lr_reg == -1)
1589 lr_reg = (op & 0x03e00000) >> 21;
1590 if (lr_reg == 0)
1591 r0_contains_arg = 0;
1592 continue;
1593 }
1594 else if ((op & 0xfc1fffff) == 0x7c000026)
1595 { /* mfcr Rx */
1596 cr_reg = (op & 0x03e00000) >> 21;
1597 if (cr_reg == 0)
1598 r0_contains_arg = 0;
1599 continue;
1600
1601 }
1602 else if ((op & 0xfc1f0000) == 0xd8010000)
1603 { /* stfd Rx,NUM(r1) */
1604 reg = GET_SRC_REG (op);
1605 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1606 {
1607 fdata->saved_fpr = reg;
1608 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1609 }
1610 continue;
1611
1612 }
1613 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1614 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1615 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1616 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1617 {
1618
1619 reg = GET_SRC_REG (op);
1620 if ((op & 0xfc1f0000) == 0xbc010000)
1621 fdata->gpr_mask |= ~((1U << reg) - 1);
1622 else
1623 fdata->gpr_mask |= 1U << reg;
1624 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1625 {
1626 fdata->saved_gpr = reg;
1627 if ((op & 0xfc1f0003) == 0xf8010000)
1628 op &= ~3UL;
1629 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1630 }
1631 continue;
1632
1633 }
1634 else if ((op & 0xffff0000) == 0x3c4c0000
1635 || (op & 0xffff0000) == 0x3c400000
1636 || (op & 0xffff0000) == 0x38420000)
1637 {
1638 /* . 0: addis 2,12,.TOC.-0b@ha
1639 . addi 2,2,.TOC.-0b@l
1640 or
1641 . lis 2,.TOC.@ha
1642 . addi 2,2,.TOC.@l
1643 used by ELFv2 global entry points to set up r2. */
1644 continue;
1645 }
1646 else if (op == 0x60000000)
1647 {
1648 /* nop */
1649 /* Allow nops in the prologue, but do not consider them to
1650 be part of the prologue unless followed by other prologue
1651 instructions. */
1652 prev_insn_was_prologue_insn = 0;
1653 continue;
1654
1655 }
1656 else if ((op & 0xffff0000) == 0x3c000000)
1657 { /* addis 0,0,NUM, used for >= 32k frames */
1658 fdata->offset = (op & 0x0000ffff) << 16;
1659 fdata->frameless = 0;
1660 r0_contains_arg = 0;
1661 continue;
1662
1663 }
1664 else if ((op & 0xffff0000) == 0x60000000)
1665 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1666 fdata->offset |= (op & 0x0000ffff);
1667 fdata->frameless = 0;
1668 r0_contains_arg = 0;
1669 continue;
1670
1671 }
1672 else if (lr_reg >= 0 &&
1673 ((store_insn_p (op, lr_reg, 1, true)) ||
1674 (framep &&
1675 (store_insn_p (op, lr_reg,
1676 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1677 false)))))
1678 {
1679 if (store_insn_p (op, lr_reg, 1, true))
1680 fdata->lr_offset = offset;
1681 else /* LR save through frame pointer. */
1682 fdata->lr_offset = alloca_reg_offset;
1683
1684 fdata->nosavedpc = 0;
1685 /* Invalidate lr_reg, but don't set it to -1.
1686 That would mean that it had never been set. */
1687 lr_reg = -2;
1688 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1689 (op & 0xfc000000) == 0x90000000) /* stw */
1690 {
1691 /* Does not update r1, so add displacement to lr_offset. */
1692 fdata->lr_offset += SIGNED_SHORT (op);
1693 }
1694 continue;
1695
1696 }
1697 else if (cr_reg >= 0 &&
1698 (store_insn_p (op, cr_reg, 1, true)))
1699 {
1700 fdata->cr_offset = offset;
1701 /* Invalidate cr_reg, but don't set it to -1.
1702 That would mean that it had never been set. */
1703 cr_reg = -2;
1704 if ((op & 0xfc000003) == 0xf8000000 ||
1705 (op & 0xfc000000) == 0x90000000)
1706 {
1707 /* Does not update r1, so add displacement to cr_offset. */
1708 fdata->cr_offset += SIGNED_SHORT (op);
1709 }
1710 continue;
1711
1712 }
1713 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1714 {
1715 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1716 prediction bits. If the LR has already been saved, we can
1717 skip it. */
1718 continue;
1719 }
1720 else if (op == 0x48000005)
1721 { /* bl .+4 used in
1722 -mrelocatable */
1723 fdata->used_bl = 1;
1724 continue;
1725
1726 }
1727 else if (op == 0x48000004)
1728 { /* b .+4 (xlc) */
1729 break;
1730
1731 }
1732 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1733 in V.4 -mminimal-toc */
1734 (op & 0xffff0000) == 0x3bde0000)
1735 { /* addi 30,30,foo@l */
1736 continue;
1737
1738 }
1739 else if ((op & 0xfc000001) == 0x48000001)
1740 { /* bl foo,
1741 to save fprs??? */
1742
1743 fdata->frameless = 0;
1744
1745 /* If the return address has already been saved, we can skip
1746 calls to blrl (for PIC). */
1747 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1748 {
1749 fdata->used_bl = 1;
1750 continue;
1751 }
1752
1753 /* Don't skip over the subroutine call if it is not within
1754 the first three instructions of the prologue and either
1755 we have no line table information or the line info tells
1756 us that the subroutine call is not part of the line
1757 associated with the prologue. */
1758 if ((pc - orig_pc) > 8)
1759 {
1760 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1761 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1762
1763 if ((prologue_sal.line == 0)
1764 || (prologue_sal.line != this_sal.line))
1765 break;
1766 }
1767
1768 op = read_memory_integer (pc + 4, 4, byte_order);
1769
1770 /* At this point, make sure this is not a trampoline
1771 function (a function that simply calls another functions,
1772 and nothing else). If the next is not a nop, this branch
1773 was part of the function prologue. */
1774
1775 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1776 break; /* Don't skip over
1777 this branch. */
1778
1779 fdata->used_bl = 1;
1780 continue;
1781 }
1782 /* update stack pointer */
1783 else if ((op & 0xfc1f0000) == 0x94010000)
1784 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1785 fdata->frameless = 0;
1786 fdata->offset = SIGNED_SHORT (op);
1787 offset = fdata->offset;
1788 continue;
1789 }
1790 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1791 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1792 /* No way to figure out what r1 is going to be. */
1793 fdata->frameless = 0;
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 else if ((op & 0xfc1f0003) == 0xf8010001)
1798 { /* stdu rX,NUM(r1) */
1799 fdata->frameless = 0;
1800 fdata->offset = SIGNED_SHORT (op & ~3UL);
1801 offset = fdata->offset;
1802 continue;
1803 }
1804 else if ((op & 0xffff0000) == 0x38210000)
1805 { /* addi r1,r1,SIMM */
1806 fdata->frameless = 0;
1807 fdata->offset += SIGNED_SHORT (op);
1808 offset = fdata->offset;
1809 continue;
1810 }
1811 /* Load up minimal toc pointer. Do not treat an epilogue restore
1812 of r31 as a minimal TOC load. */
1813 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1814 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1815 && !framep
1816 && !minimal_toc_loaded)
1817 {
1818 minimal_toc_loaded = 1;
1819 continue;
1820
1821 /* move parameters from argument registers to local variable
1822 registers */
1823 }
1824 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1825 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1826 (((op >> 21) & 31) <= 10) &&
1827 ((long) ((op >> 16) & 31)
1828 >= fdata->saved_gpr)) /* Rx: local var reg */
1829 {
1830 continue;
1831
1832 /* store parameters in stack */
1833 }
1834 /* Move parameters from argument registers to temporary register. */
1835 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1836 {
1837 continue;
1838
1839 /* Set up frame pointer */
1840 }
1841 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1842 {
1843 fdata->frameless = 0;
1844 framep = 1;
1845 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1846 alloca_reg_offset = offset;
1847 continue;
1848
1849 /* Another way to set up the frame pointer. */
1850 }
1851 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1852 || op == 0x7c3f0b78)
1853 { /* mr r31, r1 */
1854 fdata->frameless = 0;
1855 framep = 1;
1856 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1857 alloca_reg_offset = offset;
1858 continue;
1859
1860 /* Another way to set up the frame pointer. */
1861 }
1862 else if ((op & 0xfc1fffff) == 0x38010000)
1863 { /* addi rX, r1, 0x0 */
1864 fdata->frameless = 0;
1865 framep = 1;
1866 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1867 + ((op & ~0x38010000) >> 21));
1868 alloca_reg_offset = offset;
1869 continue;
1870 }
1871 /* AltiVec related instructions. */
1872 /* Store the vrsave register (spr 256) in another register for
1873 later manipulation, or load a register into the vrsave
1874 register. 2 instructions are used: mfvrsave and
1875 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1876 and mtspr SPR256, Rn. */
1877 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1878 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1879 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1880 {
1881 vrsave_reg = GET_SRC_REG (op);
1882 continue;
1883 }
1884 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1885 {
1886 continue;
1887 }
1888 /* Store the register where vrsave was saved to onto the stack:
1889 rS is the register where vrsave was stored in a previous
1890 instruction. */
1891 /* 100100 sssss 00001 dddddddd dddddddd */
1892 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1893 {
1894 if (vrsave_reg == GET_SRC_REG (op))
1895 {
1896 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1897 vrsave_reg = -1;
1898 }
1899 continue;
1900 }
1901 /* Compute the new value of vrsave, by modifying the register
1902 where vrsave was saved to. */
1903 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1904 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1905 {
1906 continue;
1907 }
1908 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1909 in a pair of insns to save the vector registers on the
1910 stack. */
1911 /* 001110 00000 00000 iiii iiii iiii iiii */
1912 /* 001110 01110 00000 iiii iiii iiii iiii */
1913 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1914 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1915 {
1916 if ((op & 0xffff0000) == 0x38000000)
1917 r0_contains_arg = 0;
1918 li_found_pc = pc;
1919 vr_saved_offset = SIGNED_SHORT (op);
1920
1921 /* This insn by itself is not part of the prologue, unless
1922 if part of the pair of insns mentioned above. So do not
1923 record this insn as part of the prologue yet. */
1924 prev_insn_was_prologue_insn = 0;
1925 }
1926 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1927 /* 011111 sssss 11111 00000 00111001110 */
1928 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1929 {
1930 if (pc == (li_found_pc + 4))
1931 {
1932 vr_reg = GET_SRC_REG (op);
1933 /* If this is the first vector reg to be saved, or if
1934 it has a lower number than others previously seen,
1935 reupdate the frame info. */
1936 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1937 {
1938 fdata->saved_vr = vr_reg;
1939 fdata->vr_offset = vr_saved_offset + offset;
1940 }
1941 vr_saved_offset = -1;
1942 vr_reg = -1;
1943 li_found_pc = 0;
1944 }
1945 }
1946 /* End AltiVec related instructions. */
1947
1948 /* Start BookE related instructions. */
1949 /* Store gen register S at (r31+uimm).
1950 Any register less than r13 is volatile, so we don't care. */
1951 /* 000100 sssss 11111 iiiii 01100100001 */
1952 else if (arch_info->mach == bfd_mach_ppc_e500
1953 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1954 {
1955 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1956 {
1957 unsigned int imm;
1958 ev_reg = GET_SRC_REG (op);
1959 imm = (op >> 11) & 0x1f;
1960 ev_offset = imm * 8;
1961 /* If this is the first vector reg to be saved, or if
1962 it has a lower number than others previously seen,
1963 reupdate the frame info. */
1964 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1965 {
1966 fdata->saved_ev = ev_reg;
1967 fdata->ev_offset = ev_offset + offset;
1968 }
1969 }
1970 continue;
1971 }
1972 /* Store gen register rS at (r1+rB). */
1973 /* 000100 sssss 00001 bbbbb 01100100000 */
1974 else if (arch_info->mach == bfd_mach_ppc_e500
1975 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1976 {
1977 if (pc == (li_found_pc + 4))
1978 {
1979 ev_reg = GET_SRC_REG (op);
1980 /* If this is the first vector reg to be saved, or if
1981 it has a lower number than others previously seen,
1982 reupdate the frame info. */
1983 /* We know the contents of rB from the previous instruction. */
1984 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1985 {
1986 fdata->saved_ev = ev_reg;
1987 fdata->ev_offset = vr_saved_offset + offset;
1988 }
1989 vr_saved_offset = -1;
1990 ev_reg = -1;
1991 li_found_pc = 0;
1992 }
1993 continue;
1994 }
1995 /* Store gen register r31 at (rA+uimm). */
1996 /* 000100 11111 aaaaa iiiii 01100100001 */
1997 else if (arch_info->mach == bfd_mach_ppc_e500
1998 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1999 {
2000 /* Wwe know that the source register is 31 already, but
2001 it can't hurt to compute it. */
2002 ev_reg = GET_SRC_REG (op);
2003 ev_offset = ((op >> 11) & 0x1f) * 8;
2004 /* If this is the first vector reg to be saved, or if
2005 it has a lower number than others previously seen,
2006 reupdate the frame info. */
2007 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2008 {
2009 fdata->saved_ev = ev_reg;
2010 fdata->ev_offset = ev_offset + offset;
2011 }
2012
2013 continue;
2014 }
2015 /* Store gen register S at (r31+r0).
2016 Store param on stack when offset from SP bigger than 4 bytes. */
2017 /* 000100 sssss 11111 00000 01100100000 */
2018 else if (arch_info->mach == bfd_mach_ppc_e500
2019 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2020 {
2021 if (pc == (li_found_pc + 4))
2022 {
2023 if ((op & 0x03e00000) >= 0x01a00000)
2024 {
2025 ev_reg = GET_SRC_REG (op);
2026 /* If this is the first vector reg to be saved, or if
2027 it has a lower number than others previously seen,
2028 reupdate the frame info. */
2029 /* We know the contents of r0 from the previous
2030 instruction. */
2031 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2032 {
2033 fdata->saved_ev = ev_reg;
2034 fdata->ev_offset = vr_saved_offset + offset;
2035 }
2036 ev_reg = -1;
2037 }
2038 vr_saved_offset = -1;
2039 li_found_pc = 0;
2040 continue;
2041 }
2042 }
2043 /* End BookE related instructions. */
2044
2045 else
2046 {
2047 /* Not a recognized prologue instruction.
2048 Handle optimizer code motions into the prologue by continuing
2049 the search if we have no valid frame yet or if the return
2050 address is not yet saved in the frame. Also skip instructions
2051 if some of the GPRs expected to be saved are not yet saved. */
2052 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2053 && fdata->saved_gpr != -1)
2054 {
2055 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2056
2057 if ((fdata->gpr_mask & all_mask) == all_mask)
2058 break;
2059 }
2060
2061 if (op == 0x4e800020 /* blr */
2062 || op == 0x4e800420) /* bctr */
2063 /* Do not scan past epilogue in frameless functions or
2064 trampolines. */
2065 break;
2066 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2067 /* Never skip branches. */
2068 break;
2069
2070 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2071 /* Do not scan too many insns, scanning insns is expensive with
2072 remote targets. */
2073 break;
2074
2075 /* Continue scanning. */
2076 prev_insn_was_prologue_insn = 0;
2077 continue;
2078 }
2079 }
2080
2081 #if 0
2082 /* I have problems with skipping over __main() that I need to address
2083 * sometime. Previously, I used to use misc_function_vector which
2084 * didn't work as well as I wanted to be. -MGO */
2085
2086 /* If the first thing after skipping a prolog is a branch to a function,
2087 this might be a call to an initializer in main(), introduced by gcc2.
2088 We'd like to skip over it as well. Fortunately, xlc does some extra
2089 work before calling a function right after a prologue, thus we can
2090 single out such gcc2 behaviour. */
2091
2092
2093 if ((op & 0xfc000001) == 0x48000001)
2094 { /* bl foo, an initializer function? */
2095 op = read_memory_integer (pc + 4, 4, byte_order);
2096
2097 if (op == 0x4def7b82)
2098 { /* cror 0xf, 0xf, 0xf (nop) */
2099
2100 /* Check and see if we are in main. If so, skip over this
2101 initializer function as well. */
2102
2103 tmp = find_pc_misc_function (pc);
2104 if (tmp >= 0
2105 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2106 return pc + 8;
2107 }
2108 }
2109 #endif /* 0 */
2110
2111 if (pc == lim_pc && lr_reg >= 0)
2112 fdata->lr_register = lr_reg;
2113
2114 fdata->offset = -fdata->offset;
2115 return last_prologue_pc;
2116 }
2117
2118 static CORE_ADDR
2119 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2120 {
2121 struct rs6000_framedata frame;
2122 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2123
2124 /* See if we can determine the end of the prologue via the symbol table.
2125 If so, then return either PC, or the PC after the prologue, whichever
2126 is greater. */
2127 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2128 {
2129 CORE_ADDR post_prologue_pc
2130 = skip_prologue_using_sal (gdbarch, func_addr);
2131 if (post_prologue_pc != 0)
2132 return std::max (pc, post_prologue_pc);
2133 }
2134
2135 /* Can't determine prologue from the symbol table, need to examine
2136 instructions. */
2137
2138 /* Find an upper limit on the function prologue using the debug
2139 information. If the debug information could not be used to provide
2140 that bound, then use an arbitrary large number as the upper bound. */
2141 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2142 if (limit_pc == 0)
2143 limit_pc = pc + 100; /* Magic. */
2144
2145 /* Do not allow limit_pc to be past the function end, if we know
2146 where that end is... */
2147 if (func_end_addr && limit_pc > func_end_addr)
2148 limit_pc = func_end_addr;
2149
2150 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2151 return pc;
2152 }
2153
2154 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2155 in the prologue of main().
2156
2157 The function below examines the code pointed at by PC and checks to
2158 see if it corresponds to a call to __eabi. If so, it returns the
2159 address of the instruction following that call. Otherwise, it simply
2160 returns PC. */
2161
2162 static CORE_ADDR
2163 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2164 {
2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2166 gdb_byte buf[4];
2167 unsigned long op;
2168
2169 if (target_read_memory (pc, buf, 4))
2170 return pc;
2171 op = extract_unsigned_integer (buf, 4, byte_order);
2172
2173 if ((op & BL_MASK) == BL_INSTRUCTION)
2174 {
2175 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2176 CORE_ADDR call_dest = pc + 4 + displ;
2177 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2178
2179 /* We check for ___eabi (three leading underscores) in addition
2180 to __eabi in case the GCC option "-fleading-underscore" was
2181 used to compile the program. */
2182 if (s.minsym != NULL
2183 && s.minsym->linkage_name () != NULL
2184 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2185 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2186 pc += 4;
2187 }
2188 return pc;
2189 }
2190
2191 /* All the ABI's require 16 byte alignment. */
2192 static CORE_ADDR
2193 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2194 {
2195 return (addr & -16);
2196 }
2197
2198 /* Return whether handle_inferior_event() should proceed through code
2199 starting at PC in function NAME when stepping.
2200
2201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2202 handle memory references that are too distant to fit in instructions
2203 generated by the compiler. For example, if 'foo' in the following
2204 instruction:
2205
2206 lwz r9,foo(r2)
2207
2208 is greater than 32767, the linker might replace the lwz with a branch to
2209 somewhere in @FIX1 that does the load in 2 instructions and then branches
2210 back to where execution should continue.
2211
2212 GDB should silently step over @FIX code, just like AIX dbx does.
2213 Unfortunately, the linker uses the "b" instruction for the
2214 branches, meaning that the link register doesn't get set.
2215 Therefore, GDB's usual step_over_function () mechanism won't work.
2216
2217 Instead, use the gdbarch_skip_trampoline_code and
2218 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2219 @FIX code. */
2220
2221 static int
2222 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2223 CORE_ADDR pc, const char *name)
2224 {
2225 return name && startswith (name, "@FIX");
2226 }
2227
2228 /* Skip code that the user doesn't want to see when stepping:
2229
2230 1. Indirect function calls use a piece of trampoline code to do context
2231 switching, i.e. to set the new TOC table. Skip such code if we are on
2232 its first instruction (as when we have single-stepped to here).
2233
2234 2. Skip shared library trampoline code (which is different from
2235 indirect function call trampolines).
2236
2237 3. Skip bigtoc fixup code.
2238
2239 Result is desired PC to step until, or NULL if we are not in
2240 code that should be skipped. */
2241
2242 static CORE_ADDR
2243 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2244 {
2245 struct gdbarch *gdbarch = get_frame_arch (frame);
2246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2248 unsigned int ii, op;
2249 int rel;
2250 CORE_ADDR solib_target_pc;
2251 struct bound_minimal_symbol msymbol;
2252
2253 static unsigned trampoline_code[] =
2254 {
2255 0x800b0000, /* l r0,0x0(r11) */
2256 0x90410014, /* st r2,0x14(r1) */
2257 0x7c0903a6, /* mtctr r0 */
2258 0x804b0004, /* l r2,0x4(r11) */
2259 0x816b0008, /* l r11,0x8(r11) */
2260 0x4e800420, /* bctr */
2261 0x4e800020, /* br */
2262 0
2263 };
2264
2265 /* Check for bigtoc fixup code. */
2266 msymbol = lookup_minimal_symbol_by_pc (pc);
2267 if (msymbol.minsym
2268 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2269 msymbol.minsym->linkage_name ()))
2270 {
2271 /* Double-check that the third instruction from PC is relative "b". */
2272 op = read_memory_integer (pc + 8, 4, byte_order);
2273 if ((op & 0xfc000003) == 0x48000000)
2274 {
2275 /* Extract bits 6-29 as a signed 24-bit relative word address and
2276 add it to the containing PC. */
2277 rel = ((int)(op << 6) >> 6);
2278 return pc + 8 + rel;
2279 }
2280 }
2281
2282 /* If pc is in a shared library trampoline, return its target. */
2283 solib_target_pc = find_solib_trampoline_target (frame, pc);
2284 if (solib_target_pc)
2285 return solib_target_pc;
2286
2287 for (ii = 0; trampoline_code[ii]; ++ii)
2288 {
2289 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2290 if (op != trampoline_code[ii])
2291 return 0;
2292 }
2293 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2294 addr. */
2295 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2296 return pc;
2297 }
2298
2299 /* ISA-specific vector types. */
2300
2301 static struct type *
2302 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2303 {
2304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2305
2306 if (!tdep->ppc_builtin_type_vec64)
2307 {
2308 const struct builtin_type *bt = builtin_type (gdbarch);
2309
2310 /* The type we're building is this: */
2311 #if 0
2312 union __gdb_builtin_type_vec64
2313 {
2314 int64_t uint64;
2315 float v2_float[2];
2316 int32_t v2_int32[2];
2317 int16_t v4_int16[4];
2318 int8_t v8_int8[8];
2319 };
2320 #endif
2321
2322 struct type *t;
2323
2324 t = arch_composite_type (gdbarch,
2325 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2326 append_composite_type_field (t, "uint64", bt->builtin_int64);
2327 append_composite_type_field (t, "v2_float",
2328 init_vector_type (bt->builtin_float, 2));
2329 append_composite_type_field (t, "v2_int32",
2330 init_vector_type (bt->builtin_int32, 2));
2331 append_composite_type_field (t, "v4_int16",
2332 init_vector_type (bt->builtin_int16, 4));
2333 append_composite_type_field (t, "v8_int8",
2334 init_vector_type (bt->builtin_int8, 8));
2335
2336 t->set_is_vector (true);
2337 t->set_name ("ppc_builtin_type_vec64");
2338 tdep->ppc_builtin_type_vec64 = t;
2339 }
2340
2341 return tdep->ppc_builtin_type_vec64;
2342 }
2343
2344 /* Vector 128 type. */
2345
2346 static struct type *
2347 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2348 {
2349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2350
2351 if (!tdep->ppc_builtin_type_vec128)
2352 {
2353 const struct builtin_type *bt = builtin_type (gdbarch);
2354
2355 /* The type we're building is this
2356
2357 type = union __ppc_builtin_type_vec128 {
2358 uint128_t uint128;
2359 double v2_double[2];
2360 float v4_float[4];
2361 int32_t v4_int32[4];
2362 int16_t v8_int16[8];
2363 int8_t v16_int8[16];
2364 }
2365 */
2366
2367 struct type *t;
2368
2369 t = arch_composite_type (gdbarch,
2370 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2371 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2372 append_composite_type_field (t, "v2_double",
2373 init_vector_type (bt->builtin_double, 2));
2374 append_composite_type_field (t, "v4_float",
2375 init_vector_type (bt->builtin_float, 4));
2376 append_composite_type_field (t, "v4_int32",
2377 init_vector_type (bt->builtin_int32, 4));
2378 append_composite_type_field (t, "v8_int16",
2379 init_vector_type (bt->builtin_int16, 8));
2380 append_composite_type_field (t, "v16_int8",
2381 init_vector_type (bt->builtin_int8, 16));
2382
2383 t->set_is_vector (true);
2384 t->set_name ("ppc_builtin_type_vec128");
2385 tdep->ppc_builtin_type_vec128 = t;
2386 }
2387
2388 return tdep->ppc_builtin_type_vec128;
2389 }
2390
2391 /* Return the name of register number REGNO, or the empty string if it
2392 is an anonymous register. */
2393
2394 static const char *
2395 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2396 {
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2398
2399 /* The upper half "registers" have names in the XML description,
2400 but we present only the low GPRs and the full 64-bit registers
2401 to the user. */
2402 if (tdep->ppc_ev0_upper_regnum >= 0
2403 && tdep->ppc_ev0_upper_regnum <= regno
2404 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2405 return "";
2406
2407 /* Hide the upper halves of the vs0~vs31 registers. */
2408 if (tdep->ppc_vsr0_regnum >= 0
2409 && tdep->ppc_vsr0_upper_regnum <= regno
2410 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2411 return "";
2412
2413 /* Hide the upper halves of the cvs0~cvs31 registers. */
2414 if (PPC_CVSR0_UPPER_REGNUM <= regno
2415 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2416 return "";
2417
2418 /* Check if the SPE pseudo registers are available. */
2419 if (IS_SPE_PSEUDOREG (tdep, regno))
2420 {
2421 static const char *const spe_regnames[] = {
2422 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2423 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2424 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2425 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2426 };
2427 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2428 }
2429
2430 /* Check if the decimal128 pseudo-registers are available. */
2431 if (IS_DFP_PSEUDOREG (tdep, regno))
2432 {
2433 static const char *const dfp128_regnames[] = {
2434 "dl0", "dl1", "dl2", "dl3",
2435 "dl4", "dl5", "dl6", "dl7",
2436 "dl8", "dl9", "dl10", "dl11",
2437 "dl12", "dl13", "dl14", "dl15"
2438 };
2439 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2440 }
2441
2442 /* Check if this is a vX alias for a raw vrX vector register. */
2443 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2444 {
2445 static const char *const vector_alias_regnames[] = {
2446 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2447 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2448 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2449 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2450 };
2451 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2452 }
2453
2454 /* Check if this is a VSX pseudo-register. */
2455 if (IS_VSX_PSEUDOREG (tdep, regno))
2456 {
2457 static const char *const vsx_regnames[] = {
2458 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2459 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2460 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2461 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2462 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2463 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2464 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2465 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2466 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2467 };
2468 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2469 }
2470
2471 /* Check if the this is a Extended FP pseudo-register. */
2472 if (IS_EFP_PSEUDOREG (tdep, regno))
2473 {
2474 static const char *const efpr_regnames[] = {
2475 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2476 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2477 "f46", "f47", "f48", "f49", "f50", "f51",
2478 "f52", "f53", "f54", "f55", "f56", "f57",
2479 "f58", "f59", "f60", "f61", "f62", "f63"
2480 };
2481 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2482 }
2483
2484 /* Check if this is a Checkpointed DFP pseudo-register. */
2485 if (IS_CDFP_PSEUDOREG (tdep, regno))
2486 {
2487 static const char *const cdfp128_regnames[] = {
2488 "cdl0", "cdl1", "cdl2", "cdl3",
2489 "cdl4", "cdl5", "cdl6", "cdl7",
2490 "cdl8", "cdl9", "cdl10", "cdl11",
2491 "cdl12", "cdl13", "cdl14", "cdl15"
2492 };
2493 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2494 }
2495
2496 /* Check if this is a Checkpointed VSX pseudo-register. */
2497 if (IS_CVSX_PSEUDOREG (tdep, regno))
2498 {
2499 static const char *const cvsx_regnames[] = {
2500 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2501 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2502 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2503 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2504 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2505 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2506 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2507 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2508 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2509 };
2510 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2511 }
2512
2513 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2514 if (IS_CEFP_PSEUDOREG (tdep, regno))
2515 {
2516 static const char *const cefpr_regnames[] = {
2517 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2518 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2519 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2520 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2521 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2522 };
2523 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2524 }
2525
2526 return tdesc_register_name (gdbarch, regno);
2527 }
2528
2529 /* Return the GDB type object for the "standard" data type of data in
2530 register N. */
2531
2532 static struct type *
2533 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2534 {
2535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2536
2537 /* These are the e500 pseudo-registers. */
2538 if (IS_SPE_PSEUDOREG (tdep, regnum))
2539 return rs6000_builtin_type_vec64 (gdbarch);
2540 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2541 || IS_CDFP_PSEUDOREG (tdep, regnum))
2542 /* PPC decimal128 pseudo-registers. */
2543 return builtin_type (gdbarch)->builtin_declong;
2544 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2545 return gdbarch_register_type (gdbarch,
2546 tdep->ppc_vr0_regnum
2547 + (regnum
2548 - tdep->ppc_v0_alias_regnum));
2549 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2550 || IS_CVSX_PSEUDOREG (tdep, regnum))
2551 /* POWER7 VSX pseudo-registers. */
2552 return rs6000_builtin_type_vec128 (gdbarch);
2553 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2554 || IS_CEFP_PSEUDOREG (tdep, regnum))
2555 /* POWER7 Extended FP pseudo-registers. */
2556 return builtin_type (gdbarch)->builtin_double;
2557 else
2558 internal_error (__FILE__, __LINE__,
2559 _("rs6000_pseudo_register_type: "
2560 "called on unexpected register '%s' (%d)"),
2561 gdbarch_register_name (gdbarch, regnum), regnum);
2562 }
2563
2564 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2565 the vX aliases for the vector registers by always returning false
2566 to avoid duplicated information in "info register vector/all",
2567 since the raw vrX registers will already show in these cases. For
2568 other pseudo-registers we use the default membership function. */
2569
2570 static int
2571 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2572 struct reggroup *group)
2573 {
2574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2575
2576 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2577 return 0;
2578 else
2579 return default_register_reggroup_p (gdbarch, regnum, group);
2580 }
2581
2582 /* The register format for RS/6000 floating point registers is always
2583 double, we need a conversion if the memory format is float. */
2584
2585 static int
2586 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2587 struct type *type)
2588 {
2589 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2590
2591 return (tdep->ppc_fp0_regnum >= 0
2592 && regnum >= tdep->ppc_fp0_regnum
2593 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2594 && type->code () == TYPE_CODE_FLT
2595 && TYPE_LENGTH (type)
2596 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2597 }
2598
2599 static int
2600 rs6000_register_to_value (struct frame_info *frame,
2601 int regnum,
2602 struct type *type,
2603 gdb_byte *to,
2604 int *optimizedp, int *unavailablep)
2605 {
2606 struct gdbarch *gdbarch = get_frame_arch (frame);
2607 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2608
2609 gdb_assert (type->code () == TYPE_CODE_FLT);
2610
2611 if (!get_frame_register_bytes (frame, regnum, 0,
2612 gdb::make_array_view (from,
2613 register_size (gdbarch,
2614 regnum)),
2615 optimizedp, unavailablep))
2616 return 0;
2617
2618 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2619 to, type);
2620 *optimizedp = *unavailablep = 0;
2621 return 1;
2622 }
2623
2624 static void
2625 rs6000_value_to_register (struct frame_info *frame,
2626 int regnum,
2627 struct type *type,
2628 const gdb_byte *from)
2629 {
2630 struct gdbarch *gdbarch = get_frame_arch (frame);
2631 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2632
2633 gdb_assert (type->code () == TYPE_CODE_FLT);
2634
2635 target_float_convert (from, type,
2636 to, builtin_type (gdbarch)->builtin_double);
2637 put_frame_register (frame, regnum, to);
2638 }
2639
2640 /* The type of a function that moves the value of REG between CACHE
2641 or BUF --- in either direction. */
2642 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2643 int, void *);
2644
2645 /* Move SPE vector register values between a 64-bit buffer and the two
2646 32-bit raw register halves in a regcache. This function handles
2647 both splitting a 64-bit value into two 32-bit halves, and joining
2648 two halves into a whole 64-bit value, depending on the function
2649 passed as the MOVE argument.
2650
2651 EV_REG must be the number of an SPE evN vector register --- a
2652 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2653 64-bit buffer.
2654
2655 Call MOVE once for each 32-bit half of that register, passing
2656 REGCACHE, the number of the raw register corresponding to that
2657 half, and the address of the appropriate half of BUFFER.
2658
2659 For example, passing 'regcache_raw_read' as the MOVE function will
2660 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2661 'regcache_raw_supply' will supply the contents of BUFFER to the
2662 appropriate pair of raw registers in REGCACHE.
2663
2664 You may need to cast away some 'const' qualifiers when passing
2665 MOVE, since this function can't tell at compile-time which of
2666 REGCACHE or BUFFER is acting as the source of the data. If C had
2667 co-variant type qualifiers, ... */
2668
2669 static enum register_status
2670 e500_move_ev_register (move_ev_register_func move,
2671 struct regcache *regcache, int ev_reg, void *buffer)
2672 {
2673 struct gdbarch *arch = regcache->arch ();
2674 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2675 int reg_index;
2676 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2677 enum register_status status;
2678
2679 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2680
2681 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2682
2683 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2684 {
2685 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2686 byte_buffer);
2687 if (status == REG_VALID)
2688 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2689 byte_buffer + 4);
2690 }
2691 else
2692 {
2693 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2694 if (status == REG_VALID)
2695 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2696 byte_buffer + 4);
2697 }
2698
2699 return status;
2700 }
2701
2702 static enum register_status
2703 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2704 {
2705 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2706
2707 return REG_VALID;
2708 }
2709
2710 static enum register_status
2711 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2712 int ev_reg, gdb_byte *buffer)
2713 {
2714 struct gdbarch *arch = regcache->arch ();
2715 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2716 int reg_index;
2717 enum register_status status;
2718
2719 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2720
2721 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2722
2723 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2724 {
2725 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2726 buffer);
2727 if (status == REG_VALID)
2728 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2729 buffer + 4);
2730 }
2731 else
2732 {
2733 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2734 if (status == REG_VALID)
2735 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2736 buffer + 4);
2737 }
2738
2739 return status;
2740
2741 }
2742
2743 static void
2744 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2745 int reg_nr, const gdb_byte *buffer)
2746 {
2747 e500_move_ev_register (do_regcache_raw_write, regcache,
2748 reg_nr, (void *) buffer);
2749 }
2750
2751 /* Read method for DFP pseudo-registers. */
2752 static enum register_status
2753 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2754 int reg_nr, gdb_byte *buffer)
2755 {
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757 int reg_index, fp0;
2758 enum register_status status;
2759
2760 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2761 {
2762 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2763 fp0 = PPC_F0_REGNUM;
2764 }
2765 else
2766 {
2767 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2768
2769 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2770 fp0 = PPC_CF0_REGNUM;
2771 }
2772
2773 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2774 {
2775 /* Read two FP registers to form a whole dl register. */
2776 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2777 if (status == REG_VALID)
2778 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2779 buffer + 8);
2780 }
2781 else
2782 {
2783 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2784 if (status == REG_VALID)
2785 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2786 }
2787
2788 return status;
2789 }
2790
2791 /* Write method for DFP pseudo-registers. */
2792 static void
2793 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2794 int reg_nr, const gdb_byte *buffer)
2795 {
2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2797 int reg_index, fp0;
2798
2799 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2800 {
2801 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2802 fp0 = PPC_F0_REGNUM;
2803 }
2804 else
2805 {
2806 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2807
2808 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2809 fp0 = PPC_CF0_REGNUM;
2810 }
2811
2812 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2813 {
2814 /* Write each half of the dl register into a separate
2815 FP register. */
2816 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2817 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2818 }
2819 else
2820 {
2821 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2822 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2823 }
2824 }
2825
2826 /* Read method for the vX aliases for the raw vrX registers. */
2827
2828 static enum register_status
2829 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2830 readable_regcache *regcache, int reg_nr,
2831 gdb_byte *buffer)
2832 {
2833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2834 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2835
2836 return regcache->raw_read (tdep->ppc_vr0_regnum
2837 + (reg_nr - tdep->ppc_v0_alias_regnum),
2838 buffer);
2839 }
2840
2841 /* Write method for the vX aliases for the raw vrX registers. */
2842
2843 static void
2844 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2845 struct regcache *regcache,
2846 int reg_nr, const gdb_byte *buffer)
2847 {
2848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2849 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2850
2851 regcache->raw_write (tdep->ppc_vr0_regnum
2852 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2853 }
2854
2855 /* Read method for POWER7 VSX pseudo-registers. */
2856 static enum register_status
2857 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2858 int reg_nr, gdb_byte *buffer)
2859 {
2860 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2861 int reg_index, vr0, fp0, vsr0_upper;
2862 enum register_status status;
2863
2864 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2865 {
2866 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2867 vr0 = PPC_VR0_REGNUM;
2868 fp0 = PPC_F0_REGNUM;
2869 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2870 }
2871 else
2872 {
2873 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2874
2875 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2876 vr0 = PPC_CVR0_REGNUM;
2877 fp0 = PPC_CF0_REGNUM;
2878 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2879 }
2880
2881 /* Read the portion that overlaps the VMX registers. */
2882 if (reg_index > 31)
2883 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2884 else
2885 /* Read the portion that overlaps the FPR registers. */
2886 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2887 {
2888 status = regcache->raw_read (fp0 + reg_index, buffer);
2889 if (status == REG_VALID)
2890 status = regcache->raw_read (vsr0_upper + reg_index,
2891 buffer + 8);
2892 }
2893 else
2894 {
2895 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2896 if (status == REG_VALID)
2897 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2898 }
2899
2900 return status;
2901 }
2902
2903 /* Write method for POWER7 VSX pseudo-registers. */
2904 static void
2905 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2906 int reg_nr, const gdb_byte *buffer)
2907 {
2908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2909 int reg_index, vr0, fp0, vsr0_upper;
2910
2911 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2912 {
2913 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2914 vr0 = PPC_VR0_REGNUM;
2915 fp0 = PPC_F0_REGNUM;
2916 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2917 }
2918 else
2919 {
2920 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2921
2922 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2923 vr0 = PPC_CVR0_REGNUM;
2924 fp0 = PPC_CF0_REGNUM;
2925 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2926 }
2927
2928 /* Write the portion that overlaps the VMX registers. */
2929 if (reg_index > 31)
2930 regcache->raw_write (vr0 + reg_index - 32, buffer);
2931 else
2932 /* Write the portion that overlaps the FPR registers. */
2933 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2934 {
2935 regcache->raw_write (fp0 + reg_index, buffer);
2936 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2937 }
2938 else
2939 {
2940 regcache->raw_write (fp0 + reg_index, buffer + 8);
2941 regcache->raw_write (vsr0_upper + reg_index, buffer);
2942 }
2943 }
2944
2945 /* Read method for POWER7 Extended FP pseudo-registers. */
2946 static enum register_status
2947 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2948 int reg_nr, gdb_byte *buffer)
2949 {
2950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2951 int reg_index, vr0;
2952
2953 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2954 {
2955 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2956 vr0 = PPC_VR0_REGNUM;
2957 }
2958 else
2959 {
2960 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2961
2962 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2963 vr0 = PPC_CVR0_REGNUM;
2964 }
2965
2966 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2967
2968 /* Read the portion that overlaps the VMX register. */
2969 return regcache->raw_read_part (vr0 + reg_index, offset,
2970 register_size (gdbarch, reg_nr),
2971 buffer);
2972 }
2973
2974 /* Write method for POWER7 Extended FP pseudo-registers. */
2975 static void
2976 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2977 int reg_nr, const gdb_byte *buffer)
2978 {
2979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2980 int reg_index, vr0;
2981 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2982
2983 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2984 {
2985 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2986 vr0 = PPC_VR0_REGNUM;
2987 }
2988 else
2989 {
2990 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2991
2992 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2993 vr0 = PPC_CVR0_REGNUM;
2994
2995 /* The call to raw_write_part fails silently if the initial read
2996 of the read-update-write sequence returns an invalid status,
2997 so we check this manually and throw an error if needed. */
2998 regcache->raw_update (vr0 + reg_index);
2999 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3000 error (_("Cannot write to the checkpointed EFP register, "
3001 "the corresponding vector register is unavailable."));
3002 }
3003
3004 /* Write the portion that overlaps the VMX register. */
3005 regcache->raw_write_part (vr0 + reg_index, offset,
3006 register_size (gdbarch, reg_nr), buffer);
3007 }
3008
3009 static enum register_status
3010 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3011 readable_regcache *regcache,
3012 int reg_nr, gdb_byte *buffer)
3013 {
3014 struct gdbarch *regcache_arch = regcache->arch ();
3015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3016
3017 gdb_assert (regcache_arch == gdbarch);
3018
3019 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3020 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3021 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3022 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3023 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3024 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3025 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3026 buffer);
3027 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3028 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3029 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3030 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3031 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3032 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3033 else
3034 internal_error (__FILE__, __LINE__,
3035 _("rs6000_pseudo_register_read: "
3036 "called on unexpected register '%s' (%d)"),
3037 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3038 }
3039
3040 static void
3041 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3042 struct regcache *regcache,
3043 int reg_nr, const gdb_byte *buffer)
3044 {
3045 struct gdbarch *regcache_arch = regcache->arch ();
3046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3047
3048 gdb_assert (regcache_arch == gdbarch);
3049
3050 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3051 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3052 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3053 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3054 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3055 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3056 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3057 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3058 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3059 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3060 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3061 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3062 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3063 else
3064 internal_error (__FILE__, __LINE__,
3065 _("rs6000_pseudo_register_write: "
3066 "called on unexpected register '%s' (%d)"),
3067 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3068 }
3069
3070 /* Set the register mask in AX with the registers that form the DFP or
3071 checkpointed DFP pseudo-register REG_NR. */
3072
3073 static void
3074 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3075 struct agent_expr *ax, int reg_nr)
3076 {
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3078 int reg_index, fp0;
3079
3080 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3081 {
3082 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3083 fp0 = PPC_F0_REGNUM;
3084 }
3085 else
3086 {
3087 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3088
3089 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3090 fp0 = PPC_CF0_REGNUM;
3091 }
3092
3093 ax_reg_mask (ax, fp0 + 2 * reg_index);
3094 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3095 }
3096
3097 /* Set the register mask in AX with the raw vector register that
3098 corresponds to its REG_NR alias. */
3099
3100 static void
3101 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3102 struct agent_expr *ax, int reg_nr)
3103 {
3104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3105 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3106
3107 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3108 + (reg_nr - tdep->ppc_v0_alias_regnum));
3109 }
3110
3111 /* Set the register mask in AX with the registers that form the VSX or
3112 checkpointed VSX pseudo-register REG_NR. */
3113
3114 static void
3115 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3116 struct agent_expr *ax, int reg_nr)
3117 {
3118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3119 int reg_index, vr0, fp0, vsr0_upper;
3120
3121 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3122 {
3123 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3124 vr0 = PPC_VR0_REGNUM;
3125 fp0 = PPC_F0_REGNUM;
3126 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3127 }
3128 else
3129 {
3130 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3131
3132 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3133 vr0 = PPC_CVR0_REGNUM;
3134 fp0 = PPC_CF0_REGNUM;
3135 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3136 }
3137
3138 if (reg_index > 31)
3139 {
3140 ax_reg_mask (ax, vr0 + reg_index - 32);
3141 }
3142 else
3143 {
3144 ax_reg_mask (ax, fp0 + reg_index);
3145 ax_reg_mask (ax, vsr0_upper + reg_index);
3146 }
3147 }
3148
3149 /* Set the register mask in AX with the register that corresponds to
3150 the EFP or checkpointed EFP pseudo-register REG_NR. */
3151
3152 static void
3153 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3154 struct agent_expr *ax, int reg_nr)
3155 {
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157 int reg_index, vr0;
3158
3159 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3160 {
3161 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3162 vr0 = PPC_VR0_REGNUM;
3163 }
3164 else
3165 {
3166 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3167
3168 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3169 vr0 = PPC_CVR0_REGNUM;
3170 }
3171
3172 ax_reg_mask (ax, vr0 + reg_index);
3173 }
3174
3175 static int
3176 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3177 struct agent_expr *ax, int reg_nr)
3178 {
3179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3181 {
3182 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3183 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3184 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3185 }
3186 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3187 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3188 {
3189 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3190 }
3191 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3192 {
3193 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3194 }
3195 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3196 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3197 {
3198 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3199 }
3200 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3201 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3202 {
3203 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3204 }
3205 else
3206 internal_error (__FILE__, __LINE__,
3207 _("rs6000_pseudo_register_collect: "
3208 "called on unexpected register '%s' (%d)"),
3209 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3210 return 0;
3211 }
3212
3213
3214 static void
3215 rs6000_gen_return_address (struct gdbarch *gdbarch,
3216 struct agent_expr *ax, struct axs_value *value,
3217 CORE_ADDR scope)
3218 {
3219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3220 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3221 value->kind = axs_lvalue_register;
3222 value->u.reg = tdep->ppc_lr_regnum;
3223 }
3224
3225
3226 /* Convert a DBX STABS register number to a GDB register number. */
3227 static int
3228 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3229 {
3230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3231
3232 if (0 <= num && num <= 31)
3233 return tdep->ppc_gp0_regnum + num;
3234 else if (32 <= num && num <= 63)
3235 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3236 specifies registers the architecture doesn't have? Our
3237 callers don't check the value we return. */
3238 return tdep->ppc_fp0_regnum + (num - 32);
3239 else if (77 <= num && num <= 108)
3240 return tdep->ppc_vr0_regnum + (num - 77);
3241 else if (1200 <= num && num < 1200 + 32)
3242 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3243 else
3244 switch (num)
3245 {
3246 case 64:
3247 return tdep->ppc_mq_regnum;
3248 case 65:
3249 return tdep->ppc_lr_regnum;
3250 case 66:
3251 return tdep->ppc_ctr_regnum;
3252 case 76:
3253 return tdep->ppc_xer_regnum;
3254 case 109:
3255 return tdep->ppc_vrsave_regnum;
3256 case 110:
3257 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3258 case 111:
3259 return tdep->ppc_acc_regnum;
3260 case 112:
3261 return tdep->ppc_spefscr_regnum;
3262 default:
3263 return num;
3264 }
3265 }
3266
3267
3268 /* Convert a Dwarf 2 register number to a GDB register number. */
3269 static int
3270 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3271 {
3272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3273
3274 if (0 <= num && num <= 31)
3275 return tdep->ppc_gp0_regnum + num;
3276 else if (32 <= num && num <= 63)
3277 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3278 specifies registers the architecture doesn't have? Our
3279 callers don't check the value we return. */
3280 return tdep->ppc_fp0_regnum + (num - 32);
3281 else if (1124 <= num && num < 1124 + 32)
3282 return tdep->ppc_vr0_regnum + (num - 1124);
3283 else if (1200 <= num && num < 1200 + 32)
3284 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3285 else
3286 switch (num)
3287 {
3288 case 64:
3289 return tdep->ppc_cr_regnum;
3290 case 67:
3291 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3292 case 99:
3293 return tdep->ppc_acc_regnum;
3294 case 100:
3295 return tdep->ppc_mq_regnum;
3296 case 101:
3297 return tdep->ppc_xer_regnum;
3298 case 108:
3299 return tdep->ppc_lr_regnum;
3300 case 109:
3301 return tdep->ppc_ctr_regnum;
3302 case 356:
3303 return tdep->ppc_vrsave_regnum;
3304 case 612:
3305 return tdep->ppc_spefscr_regnum;
3306 }
3307
3308 /* Unknown DWARF register number. */
3309 return -1;
3310 }
3311
3312 /* Translate a .eh_frame register to DWARF register, or adjust a
3313 .debug_frame register. */
3314
3315 static int
3316 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3317 {
3318 /* GCC releases before 3.4 use GCC internal register numbering in
3319 .debug_frame (and .debug_info, et cetera). The numbering is
3320 different from the standard SysV numbering for everything except
3321 for GPRs and FPRs. We can not detect this problem in most cases
3322 - to get accurate debug info for variables living in lr, ctr, v0,
3323 et cetera, use a newer version of GCC. But we must detect
3324 one important case - lr is in column 65 in .debug_frame output,
3325 instead of 108.
3326
3327 GCC 3.4, and the "hammer" branch, have a related problem. They
3328 record lr register saves in .debug_frame as 108, but still record
3329 the return column as 65. We fix that up too.
3330
3331 We can do this because 65 is assigned to fpsr, and GCC never
3332 generates debug info referring to it. To add support for
3333 handwritten debug info that restores fpsr, we would need to add a
3334 producer version check to this. */
3335 if (!eh_frame_p)
3336 {
3337 if (num == 65)
3338 return 108;
3339 else
3340 return num;
3341 }
3342
3343 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3344 internal register numbering; translate that to the standard DWARF2
3345 register numbering. */
3346 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3347 return num;
3348 else if (68 <= num && num <= 75) /* cr0-cr8 */
3349 return num - 68 + 86;
3350 else if (77 <= num && num <= 108) /* vr0-vr31 */
3351 return num - 77 + 1124;
3352 else
3353 switch (num)
3354 {
3355 case 64: /* mq */
3356 return 100;
3357 case 65: /* lr */
3358 return 108;
3359 case 66: /* ctr */
3360 return 109;
3361 case 76: /* xer */
3362 return 101;
3363 case 109: /* vrsave */
3364 return 356;
3365 case 110: /* vscr */
3366 return 67;
3367 case 111: /* spe_acc */
3368 return 99;
3369 case 112: /* spefscr */
3370 return 612;
3371 default:
3372 return num;
3373 }
3374 }
3375 \f
3376
3377 /* Handling the various POWER/PowerPC variants. */
3378
3379 /* Information about a particular processor variant. */
3380
3381 struct ppc_variant
3382 {
3383 /* Name of this variant. */
3384 const char *name;
3385
3386 /* English description of the variant. */
3387 const char *description;
3388
3389 /* bfd_arch_info.arch corresponding to variant. */
3390 enum bfd_architecture arch;
3391
3392 /* bfd_arch_info.mach corresponding to variant. */
3393 unsigned long mach;
3394
3395 /* Target description for this variant. */
3396 struct target_desc **tdesc;
3397 };
3398
3399 static struct ppc_variant variants[] =
3400 {
3401 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3402 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3403 {"power", "POWER user-level", bfd_arch_rs6000,
3404 bfd_mach_rs6k, &tdesc_rs6000},
3405 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3406 bfd_mach_ppc_403, &tdesc_powerpc_403},
3407 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3408 bfd_mach_ppc_405, &tdesc_powerpc_405},
3409 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3410 bfd_mach_ppc_601, &tdesc_powerpc_601},
3411 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3412 bfd_mach_ppc_602, &tdesc_powerpc_602},
3413 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3414 bfd_mach_ppc_603, &tdesc_powerpc_603},
3415 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3416 604, &tdesc_powerpc_604},
3417 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3418 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3419 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3420 bfd_mach_ppc_505, &tdesc_powerpc_505},
3421 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3422 bfd_mach_ppc_860, &tdesc_powerpc_860},
3423 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3424 bfd_mach_ppc_750, &tdesc_powerpc_750},
3425 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3426 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3427 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3428 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3429
3430 /* 64-bit */
3431 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3432 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3433 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3434 bfd_mach_ppc_620, &tdesc_powerpc_64},
3435 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3436 bfd_mach_ppc_630, &tdesc_powerpc_64},
3437 {"a35", "PowerPC A35", bfd_arch_powerpc,
3438 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3439 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3440 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3441 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3442 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3443
3444 /* FIXME: I haven't checked the register sets of the following. */
3445 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3446 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3447 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3448 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3449 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3450 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3451
3452 {0, 0, (enum bfd_architecture) 0, 0, 0}
3453 };
3454
3455 /* Return the variant corresponding to architecture ARCH and machine number
3456 MACH. If no such variant exists, return null. */
3457
3458 static const struct ppc_variant *
3459 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3460 {
3461 const struct ppc_variant *v;
3462
3463 for (v = variants; v->name; v++)
3464 if (arch == v->arch && mach == v->mach)
3465 return v;
3466
3467 return NULL;
3468 }
3469
3470 \f
3471
3472 struct rs6000_frame_cache
3473 {
3474 CORE_ADDR base;
3475 CORE_ADDR initial_sp;
3476 trad_frame_saved_reg *saved_regs;
3477
3478 /* Set BASE_P to true if this frame cache is properly initialized.
3479 Otherwise set to false because some registers or memory cannot
3480 collected. */
3481 int base_p;
3482 /* Cache PC for building unavailable frame. */
3483 CORE_ADDR pc;
3484 };
3485
3486 static struct rs6000_frame_cache *
3487 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3488 {
3489 struct rs6000_frame_cache *cache;
3490 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3493 struct rs6000_framedata fdata;
3494 int wordsize = tdep->wordsize;
3495 CORE_ADDR func = 0, pc = 0;
3496
3497 if ((*this_cache) != NULL)
3498 return (struct rs6000_frame_cache *) (*this_cache);
3499 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3500 (*this_cache) = cache;
3501 cache->pc = 0;
3502 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3503
3504 try
3505 {
3506 func = get_frame_func (this_frame);
3507 cache->pc = func;
3508 pc = get_frame_pc (this_frame);
3509 skip_prologue (gdbarch, func, pc, &fdata);
3510
3511 /* Figure out the parent's stack pointer. */
3512
3513 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3514 address of the current frame. Things might be easier if the
3515 ->frame pointed to the outer-most address of the frame. In
3516 the mean time, the address of the prev frame is used as the
3517 base address of this frame. */
3518 cache->base = get_frame_register_unsigned
3519 (this_frame, gdbarch_sp_regnum (gdbarch));
3520 }
3521 catch (const gdb_exception_error &ex)
3522 {
3523 if (ex.error != NOT_AVAILABLE_ERROR)
3524 throw;
3525 return (struct rs6000_frame_cache *) (*this_cache);
3526 }
3527
3528 /* If the function appears to be frameless, check a couple of likely
3529 indicators that we have simply failed to find the frame setup.
3530 Two common cases of this are missing symbols (i.e.
3531 get_frame_func returns the wrong address or 0), and assembly
3532 stubs which have a fast exit path but set up a frame on the slow
3533 path.
3534
3535 If the LR appears to return to this function, then presume that
3536 we have an ABI compliant frame that we failed to find. */
3537 if (fdata.frameless && fdata.lr_offset == 0)
3538 {
3539 CORE_ADDR saved_lr;
3540 int make_frame = 0;
3541
3542 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3543 if (func == 0 && saved_lr == pc)
3544 make_frame = 1;
3545 else if (func != 0)
3546 {
3547 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3548 if (func == saved_func)
3549 make_frame = 1;
3550 }
3551
3552 if (make_frame)
3553 {
3554 fdata.frameless = 0;
3555 fdata.lr_offset = tdep->lr_frame_offset;
3556 }
3557 }
3558
3559 if (!fdata.frameless)
3560 {
3561 /* Frameless really means stackless. */
3562 ULONGEST backchain;
3563
3564 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3565 byte_order, &backchain))
3566 cache->base = (CORE_ADDR) backchain;
3567 }
3568
3569 trad_frame_set_value (cache->saved_regs,
3570 gdbarch_sp_regnum (gdbarch), cache->base);
3571
3572 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3573 All fpr's from saved_fpr to fp31 are saved. */
3574
3575 if (fdata.saved_fpr >= 0)
3576 {
3577 int i;
3578 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3579
3580 /* If skip_prologue says floating-point registers were saved,
3581 but the current architecture has no floating-point registers,
3582 then that's strange. But we have no indices to even record
3583 the addresses under, so we just ignore it. */
3584 if (ppc_floating_point_unit_p (gdbarch))
3585 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3586 {
3587 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
3588 fpr_addr += 8;
3589 }
3590 }
3591
3592 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3593 All gpr's from saved_gpr to gpr31 are saved (except during the
3594 prologue). */
3595
3596 if (fdata.saved_gpr >= 0)
3597 {
3598 int i;
3599 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3600 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3601 {
3602 if (fdata.gpr_mask & (1U << i))
3603 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3604 gpr_addr += wordsize;
3605 }
3606 }
3607
3608 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3609 All vr's from saved_vr to vr31 are saved. */
3610 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3611 {
3612 if (fdata.saved_vr >= 0)
3613 {
3614 int i;
3615 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3616 for (i = fdata.saved_vr; i < 32; i++)
3617 {
3618 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
3619 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3620 }
3621 }
3622 }
3623
3624 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3625 All vr's from saved_ev to ev31 are saved. ????? */
3626 if (tdep->ppc_ev0_regnum != -1)
3627 {
3628 if (fdata.saved_ev >= 0)
3629 {
3630 int i;
3631 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3632 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3633
3634 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3635 {
3636 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3637 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3638 + off);
3639 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3640 }
3641 }
3642 }
3643
3644 /* If != 0, fdata.cr_offset is the offset from the frame that
3645 holds the CR. */
3646 if (fdata.cr_offset != 0)
3647 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3648 + fdata.cr_offset);
3649
3650 /* If != 0, fdata.lr_offset is the offset from the frame that
3651 holds the LR. */
3652 if (fdata.lr_offset != 0)
3653 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3654 + fdata.lr_offset);
3655 else if (fdata.lr_register != -1)
3656 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3657 /* The PC is found in the link register. */
3658 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3659 cache->saved_regs[tdep->ppc_lr_regnum];
3660
3661 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3662 holds the VRSAVE. */
3663 if (fdata.vrsave_offset != 0)
3664 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3665 + fdata.vrsave_offset);
3666
3667 if (fdata.alloca_reg < 0)
3668 /* If no alloca register used, then fi->frame is the value of the
3669 %sp for this frame, and it is good enough. */
3670 cache->initial_sp
3671 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3672 else
3673 cache->initial_sp
3674 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3675
3676 cache->base_p = 1;
3677 return cache;
3678 }
3679
3680 static void
3681 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3682 struct frame_id *this_id)
3683 {
3684 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3685 this_cache);
3686
3687 if (!info->base_p)
3688 {
3689 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3690 return;
3691 }
3692
3693 /* This marks the outermost frame. */
3694 if (info->base == 0)
3695 return;
3696
3697 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3698 }
3699
3700 static struct value *
3701 rs6000_frame_prev_register (struct frame_info *this_frame,
3702 void **this_cache, int regnum)
3703 {
3704 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3705 this_cache);
3706 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3707 }
3708
3709 static const struct frame_unwind rs6000_frame_unwind =
3710 {
3711 NORMAL_FRAME,
3712 default_frame_unwind_stop_reason,
3713 rs6000_frame_this_id,
3714 rs6000_frame_prev_register,
3715 NULL,
3716 default_frame_sniffer
3717 };
3718
3719 /* Allocate and initialize a frame cache for an epilogue frame.
3720 SP is restored and prev-PC is stored in LR. */
3721
3722 static struct rs6000_frame_cache *
3723 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3724 {
3725 struct rs6000_frame_cache *cache;
3726 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3728
3729 if (*this_cache)
3730 return (struct rs6000_frame_cache *) *this_cache;
3731
3732 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3733 (*this_cache) = cache;
3734 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3735
3736 try
3737 {
3738 /* At this point the stack looks as if we just entered the
3739 function, and the return address is stored in LR. */
3740 CORE_ADDR sp, lr;
3741
3742 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3743 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3744
3745 cache->base = sp;
3746 cache->initial_sp = sp;
3747
3748 trad_frame_set_value (cache->saved_regs,
3749 gdbarch_pc_regnum (gdbarch), lr);
3750 }
3751 catch (const gdb_exception_error &ex)
3752 {
3753 if (ex.error != NOT_AVAILABLE_ERROR)
3754 throw;
3755 }
3756
3757 return cache;
3758 }
3759
3760 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3761 Return the frame ID of an epilogue frame. */
3762
3763 static void
3764 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3765 void **this_cache, struct frame_id *this_id)
3766 {
3767 CORE_ADDR pc;
3768 struct rs6000_frame_cache *info =
3769 rs6000_epilogue_frame_cache (this_frame, this_cache);
3770
3771 pc = get_frame_func (this_frame);
3772 if (info->base == 0)
3773 (*this_id) = frame_id_build_unavailable_stack (pc);
3774 else
3775 (*this_id) = frame_id_build (info->base, pc);
3776 }
3777
3778 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3779 Return the register value of REGNUM in previous frame. */
3780
3781 static struct value *
3782 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3783 void **this_cache, int regnum)
3784 {
3785 struct rs6000_frame_cache *info =
3786 rs6000_epilogue_frame_cache (this_frame, this_cache);
3787 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3788 }
3789
3790 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3791 Check whether this an epilogue frame. */
3792
3793 static int
3794 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3795 struct frame_info *this_frame,
3796 void **this_prologue_cache)
3797 {
3798 if (frame_relative_level (this_frame) == 0)
3799 return rs6000_in_function_epilogue_frame_p (this_frame,
3800 get_frame_arch (this_frame),
3801 get_frame_pc (this_frame));
3802 else
3803 return 0;
3804 }
3805
3806 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3807 a function without debug information. */
3808
3809 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3810 {
3811 NORMAL_FRAME,
3812 default_frame_unwind_stop_reason,
3813 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3814 NULL,
3815 rs6000_epilogue_frame_sniffer
3816 };
3817 \f
3818
3819 static CORE_ADDR
3820 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3821 {
3822 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3823 this_cache);
3824 return info->initial_sp;
3825 }
3826
3827 static const struct frame_base rs6000_frame_base = {
3828 &rs6000_frame_unwind,
3829 rs6000_frame_base_address,
3830 rs6000_frame_base_address,
3831 rs6000_frame_base_address
3832 };
3833
3834 static const struct frame_base *
3835 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3836 {
3837 return &rs6000_frame_base;
3838 }
3839
3840 /* DWARF-2 frame support. Used to handle the detection of
3841 clobbered registers during function calls. */
3842
3843 static void
3844 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3845 struct dwarf2_frame_state_reg *reg,
3846 struct frame_info *this_frame)
3847 {
3848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849
3850 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3851 non-volatile registers. We will use the same code for both. */
3852
3853 /* Call-saved GP registers. */
3854 if ((regnum >= tdep->ppc_gp0_regnum + 14
3855 && regnum <= tdep->ppc_gp0_regnum + 31)
3856 || (regnum == tdep->ppc_gp0_regnum + 1))
3857 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3858
3859 /* Call-clobbered GP registers. */
3860 if ((regnum >= tdep->ppc_gp0_regnum + 3
3861 && regnum <= tdep->ppc_gp0_regnum + 12)
3862 || (regnum == tdep->ppc_gp0_regnum))
3863 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3864
3865 /* Deal with FP registers, if supported. */
3866 if (tdep->ppc_fp0_regnum >= 0)
3867 {
3868 /* Call-saved FP registers. */
3869 if ((regnum >= tdep->ppc_fp0_regnum + 14
3870 && regnum <= tdep->ppc_fp0_regnum + 31))
3871 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3872
3873 /* Call-clobbered FP registers. */
3874 if ((regnum >= tdep->ppc_fp0_regnum
3875 && regnum <= tdep->ppc_fp0_regnum + 13))
3876 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3877 }
3878
3879 /* Deal with ALTIVEC registers, if supported. */
3880 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3881 {
3882 /* Call-saved Altivec registers. */
3883 if ((regnum >= tdep->ppc_vr0_regnum + 20
3884 && regnum <= tdep->ppc_vr0_regnum + 31)
3885 || regnum == tdep->ppc_vrsave_regnum)
3886 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3887
3888 /* Call-clobbered Altivec registers. */
3889 if ((regnum >= tdep->ppc_vr0_regnum
3890 && regnum <= tdep->ppc_vr0_regnum + 19))
3891 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3892 }
3893
3894 /* Handle PC register and Stack Pointer correctly. */
3895 if (regnum == gdbarch_pc_regnum (gdbarch))
3896 reg->how = DWARF2_FRAME_REG_RA;
3897 else if (regnum == gdbarch_sp_regnum (gdbarch))
3898 reg->how = DWARF2_FRAME_REG_CFA;
3899 }
3900
3901
3902 /* Return true if a .gnu_attributes section exists in BFD and it
3903 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3904 section exists in BFD and it indicates that SPE extensions are in
3905 use. Check the .gnu.attributes section first, as the binary might be
3906 compiled for SPE, but not actually using SPE instructions. */
3907
3908 static int
3909 bfd_uses_spe_extensions (bfd *abfd)
3910 {
3911 asection *sect;
3912 gdb_byte *contents = NULL;
3913 bfd_size_type size;
3914 gdb_byte *ptr;
3915 int success = 0;
3916
3917 if (!abfd)
3918 return 0;
3919
3920 #ifdef HAVE_ELF
3921 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3922 could be using the SPE vector abi without actually using any spe
3923 bits whatsoever. But it's close enough for now. */
3924 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3925 Tag_GNU_Power_ABI_Vector);
3926 if (vector_abi == 3)
3927 return 1;
3928 #endif
3929
3930 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3931 if (!sect)
3932 return 0;
3933
3934 size = bfd_section_size (sect);
3935 contents = (gdb_byte *) xmalloc (size);
3936 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3937 {
3938 xfree (contents);
3939 return 0;
3940 }
3941
3942 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3943
3944 struct {
3945 uint32 name_len;
3946 uint32 data_len;
3947 uint32 type;
3948 char name[name_len rounded up to 4-byte alignment];
3949 char data[data_len];
3950 };
3951
3952 Technically, there's only supposed to be one such structure in a
3953 given apuinfo section, but the linker is not always vigilant about
3954 merging apuinfo sections from input files. Just go ahead and parse
3955 them all, exiting early when we discover the binary uses SPE
3956 insns.
3957
3958 It's not specified in what endianness the information in this
3959 section is stored. Assume that it's the endianness of the BFD. */
3960 ptr = contents;
3961 while (1)
3962 {
3963 unsigned int name_len;
3964 unsigned int data_len;
3965 unsigned int type;
3966
3967 /* If we can't read the first three fields, we're done. */
3968 if (size < 12)
3969 break;
3970
3971 name_len = bfd_get_32 (abfd, ptr);
3972 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3973 data_len = bfd_get_32 (abfd, ptr + 4);
3974 type = bfd_get_32 (abfd, ptr + 8);
3975 ptr += 12;
3976
3977 /* The name must be "APUinfo\0". */
3978 if (name_len != 8
3979 && strcmp ((const char *) ptr, "APUinfo") != 0)
3980 break;
3981 ptr += name_len;
3982
3983 /* The type must be 2. */
3984 if (type != 2)
3985 break;
3986
3987 /* The data is stored as a series of uint32. The upper half of
3988 each uint32 indicates the particular APU used and the lower
3989 half indicates the revision of that APU. We just care about
3990 the upper half. */
3991
3992 /* Not 4-byte quantities. */
3993 if (data_len & 3U)
3994 break;
3995
3996 while (data_len)
3997 {
3998 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3999 unsigned int apu = apuinfo >> 16;
4000 ptr += 4;
4001 data_len -= 4;
4002
4003 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4004 either. */
4005 if (apu == 0x100 || apu == 0x101)
4006 {
4007 success = 1;
4008 data_len = 0;
4009 }
4010 }
4011
4012 if (success)
4013 break;
4014 }
4015
4016 xfree (contents);
4017 return success;
4018 }
4019
4020 /* These are macros for parsing instruction fields (I.1.6.28) */
4021
4022 #define PPC_FIELD(value, from, len) \
4023 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4024 #define PPC_SEXT(v, bs) \
4025 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4026 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4027 - ((CORE_ADDR) 1 << ((bs) - 1)))
4028 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4029 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4030 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4031 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4032 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4033 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4034 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4035 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4036 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4037 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4038 | (PPC_FIELD (insn, 16, 5) << 5))
4039 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4040 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4041 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4042 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4043 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4044 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4045 #define PPC_OE(insn) PPC_BIT (insn, 21)
4046 #define PPC_RC(insn) PPC_BIT (insn, 31)
4047 #define PPC_Rc(insn) PPC_BIT (insn, 21)
4048 #define PPC_LK(insn) PPC_BIT (insn, 31)
4049 #define PPC_TX(insn) PPC_BIT (insn, 31)
4050 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4051
4052 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4053 #define PPC_XER_NB(xer) (xer & 0x7f)
4054
4055 /* Record Vector-Scalar Registers.
4056 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4057 Otherwise, it's just a VR register. Record them accordingly. */
4058
4059 static int
4060 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4061 {
4062 if (vsr < 0 || vsr >= 64)
4063 return -1;
4064
4065 if (vsr >= 32)
4066 {
4067 if (tdep->ppc_vr0_regnum >= 0)
4068 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4069 }
4070 else
4071 {
4072 if (tdep->ppc_fp0_regnum >= 0)
4073 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4074 if (tdep->ppc_vsr0_upper_regnum >= 0)
4075 record_full_arch_list_add_reg (regcache,
4076 tdep->ppc_vsr0_upper_regnum + vsr);
4077 }
4078
4079 return 0;
4080 }
4081
4082 /* Parse and record instructions primary opcode-4 at ADDR.
4083 Return 0 if successful. */
4084
4085 static int
4086 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4087 CORE_ADDR addr, uint32_t insn)
4088 {
4089 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4090 int ext = PPC_FIELD (insn, 21, 11);
4091 int vra = PPC_FIELD (insn, 11, 5);
4092
4093 switch (ext & 0x3f)
4094 {
4095 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4096 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4097 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4098 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4099 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4100 /* FALL-THROUGH */
4101 case 42: /* Vector Select */
4102 case 43: /* Vector Permute */
4103 case 59: /* Vector Permute Right-indexed */
4104 case 44: /* Vector Shift Left Double by Octet Immediate */
4105 case 45: /* Vector Permute and Exclusive-OR */
4106 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4107 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4108 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4109 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4110 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4111 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4112 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4113 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4114 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4115 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4116 case 46: /* Vector Multiply-Add Single-Precision */
4117 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4118 record_full_arch_list_add_reg (regcache,
4119 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4120 return 0;
4121
4122 case 48: /* Multiply-Add High Doubleword */
4123 case 49: /* Multiply-Add High Doubleword Unsigned */
4124 case 51: /* Multiply-Add Low Doubleword */
4125 record_full_arch_list_add_reg (regcache,
4126 tdep->ppc_gp0_regnum + PPC_RT (insn));
4127 return 0;
4128 }
4129
4130 switch ((ext & 0x1ff))
4131 {
4132 case 385:
4133 if (vra != 0 /* Decimal Convert To Signed Quadword */
4134 && vra != 2 /* Decimal Convert From Signed Quadword */
4135 && vra != 4 /* Decimal Convert To Zoned */
4136 && vra != 5 /* Decimal Convert To National */
4137 && vra != 6 /* Decimal Convert From Zoned */
4138 && vra != 7 /* Decimal Convert From National */
4139 && vra != 31) /* Decimal Set Sign */
4140 break;
4141 /* Fall through. */
4142 /* 5.16 Decimal Integer Arithmetic Instructions */
4143 case 1: /* Decimal Add Modulo */
4144 case 65: /* Decimal Subtract Modulo */
4145
4146 case 193: /* Decimal Shift */
4147 case 129: /* Decimal Unsigned Shift */
4148 case 449: /* Decimal Shift and Round */
4149
4150 case 257: /* Decimal Truncate */
4151 case 321: /* Decimal Unsigned Truncate */
4152
4153 /* Bit-21 should be set. */
4154 if (!PPC_BIT (insn, 21))
4155 break;
4156
4157 record_full_arch_list_add_reg (regcache,
4158 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4159 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4160 return 0;
4161 }
4162
4163 /* Bit-21 is used for RC */
4164 switch (ext & 0x3ff)
4165 {
4166 case 6: /* Vector Compare Equal To Unsigned Byte */
4167 case 70: /* Vector Compare Equal To Unsigned Halfword */
4168 case 134: /* Vector Compare Equal To Unsigned Word */
4169 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4170 case 774: /* Vector Compare Greater Than Signed Byte */
4171 case 838: /* Vector Compare Greater Than Signed Halfword */
4172 case 902: /* Vector Compare Greater Than Signed Word */
4173 case 967: /* Vector Compare Greater Than Signed Doubleword */
4174 case 518: /* Vector Compare Greater Than Unsigned Byte */
4175 case 646: /* Vector Compare Greater Than Unsigned Word */
4176 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4177 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4178 case 966: /* Vector Compare Bounds Single-Precision */
4179 case 198: /* Vector Compare Equal To Single-Precision */
4180 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4181 case 710: /* Vector Compare Greater Than Single-Precision */
4182 case 7: /* Vector Compare Not Equal Byte */
4183 case 71: /* Vector Compare Not Equal Halfword */
4184 case 135: /* Vector Compare Not Equal Word */
4185 case 263: /* Vector Compare Not Equal or Zero Byte */
4186 case 327: /* Vector Compare Not Equal or Zero Halfword */
4187 case 391: /* Vector Compare Not Equal or Zero Word */
4188 if (PPC_Rc (insn))
4189 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4190 record_full_arch_list_add_reg (regcache,
4191 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4192 return 0;
4193 }
4194
4195 if (ext == 1538)
4196 {
4197 switch (vra)
4198 {
4199 case 0: /* Vector Count Leading Zero Least-Significant Bits
4200 Byte */
4201 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4202 Byte */
4203 record_full_arch_list_add_reg (regcache,
4204 tdep->ppc_gp0_regnum + PPC_RT (insn));
4205 return 0;
4206
4207 case 6: /* Vector Negate Word */
4208 case 7: /* Vector Negate Doubleword */
4209 case 8: /* Vector Parity Byte Word */
4210 case 9: /* Vector Parity Byte Doubleword */
4211 case 10: /* Vector Parity Byte Quadword */
4212 case 16: /* Vector Extend Sign Byte To Word */
4213 case 17: /* Vector Extend Sign Halfword To Word */
4214 case 24: /* Vector Extend Sign Byte To Doubleword */
4215 case 25: /* Vector Extend Sign Halfword To Doubleword */
4216 case 26: /* Vector Extend Sign Word To Doubleword */
4217 case 28: /* Vector Count Trailing Zeros Byte */
4218 case 29: /* Vector Count Trailing Zeros Halfword */
4219 case 30: /* Vector Count Trailing Zeros Word */
4220 case 31: /* Vector Count Trailing Zeros Doubleword */
4221 record_full_arch_list_add_reg (regcache,
4222 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4223 return 0;
4224 }
4225 }
4226
4227 switch (ext)
4228 {
4229 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4230 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4231 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4232 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4233 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4234 case 462: /* Vector Pack Signed Word Signed Saturate */
4235 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4236 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4237 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4238 case 512: /* Vector Add Unsigned Byte Saturate */
4239 case 576: /* Vector Add Unsigned Halfword Saturate */
4240 case 640: /* Vector Add Unsigned Word Saturate */
4241 case 768: /* Vector Add Signed Byte Saturate */
4242 case 832: /* Vector Add Signed Halfword Saturate */
4243 case 896: /* Vector Add Signed Word Saturate */
4244 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4245 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4246 case 1664: /* Vector Subtract Unsigned Word Saturate */
4247 case 1792: /* Vector Subtract Signed Byte Saturate */
4248 case 1856: /* Vector Subtract Signed Halfword Saturate */
4249 case 1920: /* Vector Subtract Signed Word Saturate */
4250
4251 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4252 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4253 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4254 case 1672: /* Vector Sum across Half Signed Word Saturate */
4255 case 1928: /* Vector Sum across Signed Word Saturate */
4256 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4257 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4258 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4259 /* FALL-THROUGH */
4260 case 12: /* Vector Merge High Byte */
4261 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4262 case 76: /* Vector Merge High Halfword */
4263 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4264 case 140: /* Vector Merge High Word */
4265 case 268: /* Vector Merge Low Byte */
4266 case 332: /* Vector Merge Low Halfword */
4267 case 396: /* Vector Merge Low Word */
4268 case 526: /* Vector Unpack High Signed Byte */
4269 case 590: /* Vector Unpack High Signed Halfword */
4270 case 654: /* Vector Unpack Low Signed Byte */
4271 case 718: /* Vector Unpack Low Signed Halfword */
4272 case 782: /* Vector Pack Pixel */
4273 case 846: /* Vector Unpack High Pixel */
4274 case 974: /* Vector Unpack Low Pixel */
4275 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4276 case 1614: /* Vector Unpack High Signed Word */
4277 case 1676: /* Vector Merge Odd Word */
4278 case 1742: /* Vector Unpack Low Signed Word */
4279 case 1932: /* Vector Merge Even Word */
4280 case 524: /* Vector Splat Byte */
4281 case 588: /* Vector Splat Halfword */
4282 case 652: /* Vector Splat Word */
4283 case 780: /* Vector Splat Immediate Signed Byte */
4284 case 844: /* Vector Splat Immediate Signed Halfword */
4285 case 908: /* Vector Splat Immediate Signed Word */
4286 case 452: /* Vector Shift Left */
4287 case 708: /* Vector Shift Right */
4288 case 1036: /* Vector Shift Left by Octet */
4289 case 1100: /* Vector Shift Right by Octet */
4290 case 0: /* Vector Add Unsigned Byte Modulo */
4291 case 64: /* Vector Add Unsigned Halfword Modulo */
4292 case 128: /* Vector Add Unsigned Word Modulo */
4293 case 192: /* Vector Add Unsigned Doubleword Modulo */
4294 case 256: /* Vector Add Unsigned Quadword Modulo */
4295 case 320: /* Vector Add & write Carry Unsigned Quadword */
4296 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4297 case 8: /* Vector Multiply Odd Unsigned Byte */
4298 case 72: /* Vector Multiply Odd Unsigned Halfword */
4299 case 136: /* Vector Multiply Odd Unsigned Word */
4300 case 264: /* Vector Multiply Odd Signed Byte */
4301 case 328: /* Vector Multiply Odd Signed Halfword */
4302 case 392: /* Vector Multiply Odd Signed Word */
4303 case 520: /* Vector Multiply Even Unsigned Byte */
4304 case 584: /* Vector Multiply Even Unsigned Halfword */
4305 case 648: /* Vector Multiply Even Unsigned Word */
4306 case 776: /* Vector Multiply Even Signed Byte */
4307 case 840: /* Vector Multiply Even Signed Halfword */
4308 case 904: /* Vector Multiply Even Signed Word */
4309 case 137: /* Vector Multiply Unsigned Word Modulo */
4310 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4311 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4312 case 1152: /* Vector Subtract Unsigned Word Modulo */
4313 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4314 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4315 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4316 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4317 case 1282: /* Vector Average Signed Byte */
4318 case 1346: /* Vector Average Signed Halfword */
4319 case 1410: /* Vector Average Signed Word */
4320 case 1026: /* Vector Average Unsigned Byte */
4321 case 1090: /* Vector Average Unsigned Halfword */
4322 case 1154: /* Vector Average Unsigned Word */
4323 case 258: /* Vector Maximum Signed Byte */
4324 case 322: /* Vector Maximum Signed Halfword */
4325 case 386: /* Vector Maximum Signed Word */
4326 case 450: /* Vector Maximum Signed Doubleword */
4327 case 2: /* Vector Maximum Unsigned Byte */
4328 case 66: /* Vector Maximum Unsigned Halfword */
4329 case 130: /* Vector Maximum Unsigned Word */
4330 case 194: /* Vector Maximum Unsigned Doubleword */
4331 case 770: /* Vector Minimum Signed Byte */
4332 case 834: /* Vector Minimum Signed Halfword */
4333 case 898: /* Vector Minimum Signed Word */
4334 case 962: /* Vector Minimum Signed Doubleword */
4335 case 514: /* Vector Minimum Unsigned Byte */
4336 case 578: /* Vector Minimum Unsigned Halfword */
4337 case 642: /* Vector Minimum Unsigned Word */
4338 case 706: /* Vector Minimum Unsigned Doubleword */
4339 case 1028: /* Vector Logical AND */
4340 case 1668: /* Vector Logical Equivalent */
4341 case 1092: /* Vector Logical AND with Complement */
4342 case 1412: /* Vector Logical NAND */
4343 case 1348: /* Vector Logical OR with Complement */
4344 case 1156: /* Vector Logical OR */
4345 case 1284: /* Vector Logical NOR */
4346 case 1220: /* Vector Logical XOR */
4347 case 4: /* Vector Rotate Left Byte */
4348 case 132: /* Vector Rotate Left Word VX-form */
4349 case 68: /* Vector Rotate Left Halfword */
4350 case 196: /* Vector Rotate Left Doubleword */
4351 case 260: /* Vector Shift Left Byte */
4352 case 388: /* Vector Shift Left Word */
4353 case 324: /* Vector Shift Left Halfword */
4354 case 1476: /* Vector Shift Left Doubleword */
4355 case 516: /* Vector Shift Right Byte */
4356 case 644: /* Vector Shift Right Word */
4357 case 580: /* Vector Shift Right Halfword */
4358 case 1732: /* Vector Shift Right Doubleword */
4359 case 772: /* Vector Shift Right Algebraic Byte */
4360 case 900: /* Vector Shift Right Algebraic Word */
4361 case 836: /* Vector Shift Right Algebraic Halfword */
4362 case 964: /* Vector Shift Right Algebraic Doubleword */
4363 case 10: /* Vector Add Single-Precision */
4364 case 74: /* Vector Subtract Single-Precision */
4365 case 1034: /* Vector Maximum Single-Precision */
4366 case 1098: /* Vector Minimum Single-Precision */
4367 case 842: /* Vector Convert From Signed Fixed-Point Word */
4368 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4369 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4370 case 522: /* Vector Round to Single-Precision Integer Nearest */
4371 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4372 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4373 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4374 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4375 case 266: /* Vector Reciprocal Estimate Single-Precision */
4376 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4377 case 1288: /* Vector AES Cipher */
4378 case 1289: /* Vector AES Cipher Last */
4379 case 1352: /* Vector AES Inverse Cipher */
4380 case 1353: /* Vector AES Inverse Cipher Last */
4381 case 1480: /* Vector AES SubBytes */
4382 case 1730: /* Vector SHA-512 Sigma Doubleword */
4383 case 1666: /* Vector SHA-256 Sigma Word */
4384 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4385 case 1160: /* Vector Polynomial Multiply-Sum Word */
4386 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4387 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4388 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4389 case 1794: /* Vector Count Leading Zeros Byte */
4390 case 1858: /* Vector Count Leading Zeros Halfword */
4391 case 1922: /* Vector Count Leading Zeros Word */
4392 case 1986: /* Vector Count Leading Zeros Doubleword */
4393 case 1795: /* Vector Population Count Byte */
4394 case 1859: /* Vector Population Count Halfword */
4395 case 1923: /* Vector Population Count Word */
4396 case 1987: /* Vector Population Count Doubleword */
4397 case 1356: /* Vector Bit Permute Quadword */
4398 case 1484: /* Vector Bit Permute Doubleword */
4399 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4400 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4401 Quadword */
4402 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4403 case 65: /* Vector Multiply-by-10 Extended & write Carry
4404 Unsigned Quadword */
4405 case 1027: /* Vector Absolute Difference Unsigned Byte */
4406 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4407 case 1155: /* Vector Absolute Difference Unsigned Word */
4408 case 1796: /* Vector Shift Right Variable */
4409 case 1860: /* Vector Shift Left Variable */
4410 case 133: /* Vector Rotate Left Word then Mask Insert */
4411 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4412 case 389: /* Vector Rotate Left Word then AND with Mask */
4413 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4414 case 525: /* Vector Extract Unsigned Byte */
4415 case 589: /* Vector Extract Unsigned Halfword */
4416 case 653: /* Vector Extract Unsigned Word */
4417 case 717: /* Vector Extract Doubleword */
4418 case 781: /* Vector Insert Byte */
4419 case 845: /* Vector Insert Halfword */
4420 case 909: /* Vector Insert Word */
4421 case 973: /* Vector Insert Doubleword */
4422 record_full_arch_list_add_reg (regcache,
4423 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4424 return 0;
4425
4426 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4427 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4428 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4429 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4430 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4431 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4432 record_full_arch_list_add_reg (regcache,
4433 tdep->ppc_gp0_regnum + PPC_RT (insn));
4434 return 0;
4435
4436 case 1604: /* Move To Vector Status and Control Register */
4437 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4438 return 0;
4439 case 1540: /* Move From Vector Status and Control Register */
4440 record_full_arch_list_add_reg (regcache,
4441 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4442 return 0;
4443 case 833: /* Decimal Copy Sign */
4444 record_full_arch_list_add_reg (regcache,
4445 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4446 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4447 return 0;
4448 }
4449
4450 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4451 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4452 return -1;
4453 }
4454
4455 /* Parse and record instructions of primary opcode-19 at ADDR.
4456 Return 0 if successful. */
4457
4458 static int
4459 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4460 CORE_ADDR addr, uint32_t insn)
4461 {
4462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4463 int ext = PPC_EXTOP (insn);
4464
4465 switch (ext & 0x01f)
4466 {
4467 case 2: /* Add PC Immediate Shifted */
4468 record_full_arch_list_add_reg (regcache,
4469 tdep->ppc_gp0_regnum + PPC_RT (insn));
4470 return 0;
4471 }
4472
4473 switch (ext)
4474 {
4475 case 0: /* Move Condition Register Field */
4476 case 33: /* Condition Register NOR */
4477 case 129: /* Condition Register AND with Complement */
4478 case 193: /* Condition Register XOR */
4479 case 225: /* Condition Register NAND */
4480 case 257: /* Condition Register AND */
4481 case 289: /* Condition Register Equivalent */
4482 case 417: /* Condition Register OR with Complement */
4483 case 449: /* Condition Register OR */
4484 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4485 return 0;
4486
4487 case 16: /* Branch Conditional */
4488 case 560: /* Branch Conditional to Branch Target Address Register */
4489 if ((PPC_BO (insn) & 0x4) == 0)
4490 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4491 /* FALL-THROUGH */
4492 case 528: /* Branch Conditional to Count Register */
4493 if (PPC_LK (insn))
4494 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4495 return 0;
4496
4497 case 150: /* Instruction Synchronize */
4498 /* Do nothing. */
4499 return 0;
4500 }
4501
4502 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4503 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4504 return -1;
4505 }
4506
4507 /* Parse and record instructions of primary opcode-31 at ADDR.
4508 Return 0 if successful. */
4509
4510 static int
4511 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4512 CORE_ADDR addr, uint32_t insn)
4513 {
4514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4515 int ext = PPC_EXTOP (insn);
4516 int tmp, nr, nb, i;
4517 CORE_ADDR at_dcsz, ea = 0;
4518 ULONGEST rb, ra, xer;
4519 int size = 0;
4520
4521 /* These instructions have OE bit. */
4522 switch (ext & 0x1ff)
4523 {
4524 /* These write RT and XER. Update CR if RC is set. */
4525 case 8: /* Subtract from carrying */
4526 case 10: /* Add carrying */
4527 case 136: /* Subtract from extended */
4528 case 138: /* Add extended */
4529 case 200: /* Subtract from zero extended */
4530 case 202: /* Add to zero extended */
4531 case 232: /* Subtract from minus one extended */
4532 case 234: /* Add to minus one extended */
4533 /* CA is always altered, but SO/OV are only altered when OE=1.
4534 In any case, XER is always altered. */
4535 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4536 if (PPC_RC (insn))
4537 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4538 record_full_arch_list_add_reg (regcache,
4539 tdep->ppc_gp0_regnum + PPC_RT (insn));
4540 return 0;
4541
4542 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4543 case 40: /* Subtract from */
4544 case 104: /* Negate */
4545 case 233: /* Multiply low doubleword */
4546 case 235: /* Multiply low word */
4547 case 266: /* Add */
4548 case 393: /* Divide Doubleword Extended Unsigned */
4549 case 395: /* Divide Word Extended Unsigned */
4550 case 425: /* Divide Doubleword Extended */
4551 case 427: /* Divide Word Extended */
4552 case 457: /* Divide Doubleword Unsigned */
4553 case 459: /* Divide Word Unsigned */
4554 case 489: /* Divide Doubleword */
4555 case 491: /* Divide Word */
4556 if (PPC_OE (insn))
4557 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4558 /* FALL-THROUGH */
4559 case 9: /* Multiply High Doubleword Unsigned */
4560 case 11: /* Multiply High Word Unsigned */
4561 case 73: /* Multiply High Doubleword */
4562 case 75: /* Multiply High Word */
4563 if (PPC_RC (insn))
4564 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4565 record_full_arch_list_add_reg (regcache,
4566 tdep->ppc_gp0_regnum + PPC_RT (insn));
4567 return 0;
4568 }
4569
4570 if ((ext & 0x1f) == 15)
4571 {
4572 /* Integer Select. bit[16:20] is used for BC. */
4573 record_full_arch_list_add_reg (regcache,
4574 tdep->ppc_gp0_regnum + PPC_RT (insn));
4575 return 0;
4576 }
4577
4578 if ((ext & 0xff) == 170)
4579 {
4580 /* Add Extended using alternate carry bits */
4581 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4582 record_full_arch_list_add_reg (regcache,
4583 tdep->ppc_gp0_regnum + PPC_RT (insn));
4584 return 0;
4585 }
4586
4587 switch (ext)
4588 {
4589 case 78: /* Determine Leftmost Zero Byte */
4590 if (PPC_RC (insn))
4591 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4592 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4593 record_full_arch_list_add_reg (regcache,
4594 tdep->ppc_gp0_regnum + PPC_RT (insn));
4595 return 0;
4596
4597 /* These only write RT. */
4598 case 19: /* Move from condition register */
4599 /* Move From One Condition Register Field */
4600 case 74: /* Add and Generate Sixes */
4601 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4602 case 302: /* Move From Branch History Rolling Buffer */
4603 case 339: /* Move From Special Purpose Register */
4604 case 371: /* Move From Time Base [Phased-Out] */
4605 case 309: /* Load Doubleword Monitored Indexed */
4606 case 128: /* Set Boolean */
4607 case 755: /* Deliver A Random Number */
4608 record_full_arch_list_add_reg (regcache,
4609 tdep->ppc_gp0_regnum + PPC_RT (insn));
4610 return 0;
4611
4612 /* These only write to RA. */
4613 case 51: /* Move From VSR Doubleword */
4614 case 115: /* Move From VSR Word and Zero */
4615 case 122: /* Population count bytes */
4616 case 378: /* Population count words */
4617 case 506: /* Population count doublewords */
4618 case 154: /* Parity Word */
4619 case 186: /* Parity Doubleword */
4620 case 252: /* Bit Permute Doubleword */
4621 case 282: /* Convert Declets To Binary Coded Decimal */
4622 case 314: /* Convert Binary Coded Decimal To Declets */
4623 case 508: /* Compare bytes */
4624 case 307: /* Move From VSR Lower Doubleword */
4625 record_full_arch_list_add_reg (regcache,
4626 tdep->ppc_gp0_regnum + PPC_RA (insn));
4627 return 0;
4628
4629 /* These write CR and optional RA. */
4630 case 792: /* Shift Right Algebraic Word */
4631 case 794: /* Shift Right Algebraic Doubleword */
4632 case 824: /* Shift Right Algebraic Word Immediate */
4633 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4634 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4635 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4636 record_full_arch_list_add_reg (regcache,
4637 tdep->ppc_gp0_regnum + PPC_RA (insn));
4638 /* FALL-THROUGH */
4639 case 0: /* Compare */
4640 case 32: /* Compare logical */
4641 case 144: /* Move To Condition Register Fields */
4642 /* Move To One Condition Register Field */
4643 case 192: /* Compare Ranged Byte */
4644 case 224: /* Compare Equal Byte */
4645 case 576: /* Move XER to CR Extended */
4646 case 902: /* Paste (should always fail due to single-stepping and
4647 the memory location might not be accessible, so
4648 record only CR) */
4649 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4650 return 0;
4651
4652 /* These write to RT. Update RA if 'update indexed.' */
4653 case 53: /* Load Doubleword with Update Indexed */
4654 case 119: /* Load Byte and Zero with Update Indexed */
4655 case 311: /* Load Halfword and Zero with Update Indexed */
4656 case 55: /* Load Word and Zero with Update Indexed */
4657 case 375: /* Load Halfword Algebraic with Update Indexed */
4658 case 373: /* Load Word Algebraic with Update Indexed */
4659 record_full_arch_list_add_reg (regcache,
4660 tdep->ppc_gp0_regnum + PPC_RA (insn));
4661 /* FALL-THROUGH */
4662 case 21: /* Load Doubleword Indexed */
4663 case 52: /* Load Byte And Reserve Indexed */
4664 case 116: /* Load Halfword And Reserve Indexed */
4665 case 20: /* Load Word And Reserve Indexed */
4666 case 84: /* Load Doubleword And Reserve Indexed */
4667 case 87: /* Load Byte and Zero Indexed */
4668 case 279: /* Load Halfword and Zero Indexed */
4669 case 23: /* Load Word and Zero Indexed */
4670 case 343: /* Load Halfword Algebraic Indexed */
4671 case 341: /* Load Word Algebraic Indexed */
4672 case 790: /* Load Halfword Byte-Reverse Indexed */
4673 case 534: /* Load Word Byte-Reverse Indexed */
4674 case 532: /* Load Doubleword Byte-Reverse Indexed */
4675 case 582: /* Load Word Atomic */
4676 case 614: /* Load Doubleword Atomic */
4677 case 265: /* Modulo Unsigned Doubleword */
4678 case 777: /* Modulo Signed Doubleword */
4679 case 267: /* Modulo Unsigned Word */
4680 case 779: /* Modulo Signed Word */
4681 record_full_arch_list_add_reg (regcache,
4682 tdep->ppc_gp0_regnum + PPC_RT (insn));
4683 return 0;
4684
4685 case 597: /* Load String Word Immediate */
4686 case 533: /* Load String Word Indexed */
4687 if (ext == 597)
4688 {
4689 nr = PPC_NB (insn);
4690 if (nr == 0)
4691 nr = 32;
4692 }
4693 else
4694 {
4695 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4696 nr = PPC_XER_NB (xer);
4697 }
4698
4699 nr = (nr + 3) >> 2;
4700
4701 /* If n=0, the contents of register RT are undefined. */
4702 if (nr == 0)
4703 nr = 1;
4704
4705 for (i = 0; i < nr; i++)
4706 record_full_arch_list_add_reg (regcache,
4707 tdep->ppc_gp0_regnum
4708 + ((PPC_RT (insn) + i) & 0x1f));
4709 return 0;
4710
4711 case 276: /* Load Quadword And Reserve Indexed */
4712 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4713 record_full_arch_list_add_reg (regcache, tmp);
4714 record_full_arch_list_add_reg (regcache, tmp + 1);
4715 return 0;
4716
4717 /* These write VRT. */
4718 case 6: /* Load Vector for Shift Left Indexed */
4719 case 38: /* Load Vector for Shift Right Indexed */
4720 case 7: /* Load Vector Element Byte Indexed */
4721 case 39: /* Load Vector Element Halfword Indexed */
4722 case 71: /* Load Vector Element Word Indexed */
4723 case 103: /* Load Vector Indexed */
4724 case 359: /* Load Vector Indexed LRU */
4725 record_full_arch_list_add_reg (regcache,
4726 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4727 return 0;
4728
4729 /* These write FRT. Update RA if 'update indexed.' */
4730 case 567: /* Load Floating-Point Single with Update Indexed */
4731 case 631: /* Load Floating-Point Double with Update Indexed */
4732 record_full_arch_list_add_reg (regcache,
4733 tdep->ppc_gp0_regnum + PPC_RA (insn));
4734 /* FALL-THROUGH */
4735 case 535: /* Load Floating-Point Single Indexed */
4736 case 599: /* Load Floating-Point Double Indexed */
4737 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4738 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4739 record_full_arch_list_add_reg (regcache,
4740 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4741 return 0;
4742
4743 case 791: /* Load Floating-Point Double Pair Indexed */
4744 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4745 record_full_arch_list_add_reg (regcache, tmp);
4746 record_full_arch_list_add_reg (regcache, tmp + 1);
4747 return 0;
4748
4749 case 179: /* Move To VSR Doubleword */
4750 case 211: /* Move To VSR Word Algebraic */
4751 case 243: /* Move To VSR Word and Zero */
4752 case 588: /* Load VSX Scalar Doubleword Indexed */
4753 case 524: /* Load VSX Scalar Single-Precision Indexed */
4754 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4755 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4756 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4757 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4758 case 780: /* Load VSX Vector Word*4 Indexed */
4759 case 268: /* Load VSX Vector Indexed */
4760 case 364: /* Load VSX Vector Word & Splat Indexed */
4761 case 812: /* Load VSX Vector Halfword*8 Indexed */
4762 case 876: /* Load VSX Vector Byte*16 Indexed */
4763 case 269: /* Load VSX Vector with Length */
4764 case 301: /* Load VSX Vector Left-justified with Length */
4765 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4766 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4767 case 403: /* Move To VSR Word & Splat */
4768 case 435: /* Move To VSR Double Doubleword */
4769 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4770 return 0;
4771
4772 /* These write RA. Update CR if RC is set. */
4773 case 24: /* Shift Left Word */
4774 case 26: /* Count Leading Zeros Word */
4775 case 27: /* Shift Left Doubleword */
4776 case 28: /* AND */
4777 case 58: /* Count Leading Zeros Doubleword */
4778 case 60: /* AND with Complement */
4779 case 124: /* NOR */
4780 case 284: /* Equivalent */
4781 case 316: /* XOR */
4782 case 476: /* NAND */
4783 case 412: /* OR with Complement */
4784 case 444: /* OR */
4785 case 536: /* Shift Right Word */
4786 case 539: /* Shift Right Doubleword */
4787 case 922: /* Extend Sign Halfword */
4788 case 954: /* Extend Sign Byte */
4789 case 986: /* Extend Sign Word */
4790 case 538: /* Count Trailing Zeros Word */
4791 case 570: /* Count Trailing Zeros Doubleword */
4792 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4793 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4794
4795 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4796 && (PPC_RS (insn) == PPC_RA (insn))
4797 && (PPC_RA (insn) == PPC_RB (insn))
4798 && !PPC_RC (insn))
4799 {
4800 /* or Rx,Rx,Rx alters PRI in PPR. */
4801 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4802 return 0;
4803 }
4804
4805 if (PPC_RC (insn))
4806 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4807 record_full_arch_list_add_reg (regcache,
4808 tdep->ppc_gp0_regnum + PPC_RA (insn));
4809 return 0;
4810
4811 /* Store memory. */
4812 case 181: /* Store Doubleword with Update Indexed */
4813 case 183: /* Store Word with Update Indexed */
4814 case 247: /* Store Byte with Update Indexed */
4815 case 439: /* Store Half Word with Update Indexed */
4816 case 695: /* Store Floating-Point Single with Update Indexed */
4817 case 759: /* Store Floating-Point Double with Update Indexed */
4818 record_full_arch_list_add_reg (regcache,
4819 tdep->ppc_gp0_regnum + PPC_RA (insn));
4820 /* FALL-THROUGH */
4821 case 135: /* Store Vector Element Byte Indexed */
4822 case 167: /* Store Vector Element Halfword Indexed */
4823 case 199: /* Store Vector Element Word Indexed */
4824 case 231: /* Store Vector Indexed */
4825 case 487: /* Store Vector Indexed LRU */
4826 case 716: /* Store VSX Scalar Doubleword Indexed */
4827 case 140: /* Store VSX Scalar as Integer Word Indexed */
4828 case 652: /* Store VSX Scalar Single-Precision Indexed */
4829 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4830 case 908: /* Store VSX Vector Word*4 Indexed */
4831 case 149: /* Store Doubleword Indexed */
4832 case 151: /* Store Word Indexed */
4833 case 215: /* Store Byte Indexed */
4834 case 407: /* Store Half Word Indexed */
4835 case 694: /* Store Byte Conditional Indexed */
4836 case 726: /* Store Halfword Conditional Indexed */
4837 case 150: /* Store Word Conditional Indexed */
4838 case 214: /* Store Doubleword Conditional Indexed */
4839 case 182: /* Store Quadword Conditional Indexed */
4840 case 662: /* Store Word Byte-Reverse Indexed */
4841 case 918: /* Store Halfword Byte-Reverse Indexed */
4842 case 660: /* Store Doubleword Byte-Reverse Indexed */
4843 case 663: /* Store Floating-Point Single Indexed */
4844 case 727: /* Store Floating-Point Double Indexed */
4845 case 919: /* Store Floating-Point Double Pair Indexed */
4846 case 983: /* Store Floating-Point as Integer Word Indexed */
4847 case 396: /* Store VSX Vector Indexed */
4848 case 940: /* Store VSX Vector Halfword*8 Indexed */
4849 case 1004: /* Store VSX Vector Byte*16 Indexed */
4850 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4851 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4852 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4853 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4854
4855 ra = 0;
4856 if (PPC_RA (insn) != 0)
4857 regcache_raw_read_unsigned (regcache,
4858 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4859 regcache_raw_read_unsigned (regcache,
4860 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4861 ea = ra + rb;
4862
4863 switch (ext)
4864 {
4865 case 183: /* Store Word with Update Indexed */
4866 case 199: /* Store Vector Element Word Indexed */
4867 case 140: /* Store VSX Scalar as Integer Word Indexed */
4868 case 652: /* Store VSX Scalar Single-Precision Indexed */
4869 case 151: /* Store Word Indexed */
4870 case 150: /* Store Word Conditional Indexed */
4871 case 662: /* Store Word Byte-Reverse Indexed */
4872 case 663: /* Store Floating-Point Single Indexed */
4873 case 695: /* Store Floating-Point Single with Update Indexed */
4874 case 983: /* Store Floating-Point as Integer Word Indexed */
4875 size = 4;
4876 break;
4877 case 247: /* Store Byte with Update Indexed */
4878 case 135: /* Store Vector Element Byte Indexed */
4879 case 215: /* Store Byte Indexed */
4880 case 694: /* Store Byte Conditional Indexed */
4881 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4882 size = 1;
4883 break;
4884 case 439: /* Store Halfword with Update Indexed */
4885 case 167: /* Store Vector Element Halfword Indexed */
4886 case 407: /* Store Halfword Indexed */
4887 case 726: /* Store Halfword Conditional Indexed */
4888 case 918: /* Store Halfword Byte-Reverse Indexed */
4889 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4890 size = 2;
4891 break;
4892 case 181: /* Store Doubleword with Update Indexed */
4893 case 716: /* Store VSX Scalar Doubleword Indexed */
4894 case 149: /* Store Doubleword Indexed */
4895 case 214: /* Store Doubleword Conditional Indexed */
4896 case 660: /* Store Doubleword Byte-Reverse Indexed */
4897 case 727: /* Store Floating-Point Double Indexed */
4898 case 759: /* Store Floating-Point Double with Update Indexed */
4899 size = 8;
4900 break;
4901 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4902 case 908: /* Store VSX Vector Word*4 Indexed */
4903 case 182: /* Store Quadword Conditional Indexed */
4904 case 231: /* Store Vector Indexed */
4905 case 487: /* Store Vector Indexed LRU */
4906 case 919: /* Store Floating-Point Double Pair Indexed */
4907 case 396: /* Store VSX Vector Indexed */
4908 case 940: /* Store VSX Vector Halfword*8 Indexed */
4909 case 1004: /* Store VSX Vector Byte*16 Indexed */
4910 size = 16;
4911 break;
4912 default:
4913 gdb_assert (0);
4914 }
4915
4916 /* Align address for Store Vector instructions. */
4917 switch (ext)
4918 {
4919 case 167: /* Store Vector Element Halfword Indexed */
4920 addr = addr & ~0x1ULL;
4921 break;
4922
4923 case 199: /* Store Vector Element Word Indexed */
4924 addr = addr & ~0x3ULL;
4925 break;
4926
4927 case 231: /* Store Vector Indexed */
4928 case 487: /* Store Vector Indexed LRU */
4929 addr = addr & ~0xfULL;
4930 break;
4931 }
4932
4933 record_full_arch_list_add_mem (addr, size);
4934 return 0;
4935
4936 case 397: /* Store VSX Vector with Length */
4937 case 429: /* Store VSX Vector Left-justified with Length */
4938 ra = 0;
4939 if (PPC_RA (insn) != 0)
4940 regcache_raw_read_unsigned (regcache,
4941 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4942 ea = ra;
4943 regcache_raw_read_unsigned (regcache,
4944 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4945 /* Store up to 16 bytes. */
4946 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4947 if (nb > 0)
4948 record_full_arch_list_add_mem (ea, nb);
4949 return 0;
4950
4951 case 710: /* Store Word Atomic */
4952 case 742: /* Store Doubleword Atomic */
4953 ra = 0;
4954 if (PPC_RA (insn) != 0)
4955 regcache_raw_read_unsigned (regcache,
4956 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4957 ea = ra;
4958 switch (ext)
4959 {
4960 case 710: /* Store Word Atomic */
4961 size = 8;
4962 break;
4963 case 742: /* Store Doubleword Atomic */
4964 size = 16;
4965 break;
4966 default:
4967 gdb_assert (0);
4968 }
4969 record_full_arch_list_add_mem (ea, size);
4970 return 0;
4971
4972 case 725: /* Store String Word Immediate */
4973 ra = 0;
4974 if (PPC_RA (insn) != 0)
4975 regcache_raw_read_unsigned (regcache,
4976 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4977 ea += ra;
4978
4979 nb = PPC_NB (insn);
4980 if (nb == 0)
4981 nb = 32;
4982
4983 record_full_arch_list_add_mem (ea, nb);
4984
4985 return 0;
4986
4987 case 661: /* Store String Word Indexed */
4988 ra = 0;
4989 if (PPC_RA (insn) != 0)
4990 regcache_raw_read_unsigned (regcache,
4991 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4992 ea += ra;
4993
4994 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4995 nb = PPC_XER_NB (xer);
4996
4997 if (nb != 0)
4998 {
4999 regcache_raw_read_unsigned (regcache,
5000 tdep->ppc_gp0_regnum + PPC_RB (insn),
5001 &rb);
5002 ea += rb;
5003 record_full_arch_list_add_mem (ea, nb);
5004 }
5005
5006 return 0;
5007
5008 case 467: /* Move To Special Purpose Register */
5009 switch (PPC_SPR (insn))
5010 {
5011 case 1: /* XER */
5012 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5013 return 0;
5014 case 3: /* DSCR */
5015 if (tdep->ppc_dscr_regnum >= 0)
5016 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5017 return 0;
5018 case 8: /* LR */
5019 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5020 return 0;
5021 case 9: /* CTR */
5022 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5023 return 0;
5024 case 256: /* VRSAVE */
5025 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5026 return 0;
5027 case 815: /* TAR */
5028 if (tdep->ppc_tar_regnum >= 0)
5029 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5030 return 0;
5031 case 896:
5032 case 898: /* PPR */
5033 if (tdep->ppc_ppr_regnum >= 0)
5034 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5035 return 0;
5036 }
5037
5038 goto UNKNOWN_OP;
5039
5040 case 147: /* Move To Split Little Endian */
5041 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5042 return 0;
5043
5044 case 512: /* Move to Condition Register from XER */
5045 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5046 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5047 return 0;
5048
5049 case 4: /* Trap Word */
5050 case 68: /* Trap Doubleword */
5051 case 430: /* Clear BHRB */
5052 case 598: /* Synchronize */
5053 case 62: /* Wait for Interrupt */
5054 case 30: /* Wait */
5055 case 22: /* Instruction Cache Block Touch */
5056 case 854: /* Enforce In-order Execution of I/O */
5057 case 246: /* Data Cache Block Touch for Store */
5058 case 54: /* Data Cache Block Store */
5059 case 86: /* Data Cache Block Flush */
5060 case 278: /* Data Cache Block Touch */
5061 case 758: /* Data Cache Block Allocate */
5062 case 982: /* Instruction Cache Block Invalidate */
5063 case 774: /* Copy */
5064 case 838: /* CP_Abort */
5065 return 0;
5066
5067 case 654: /* Transaction Begin */
5068 case 686: /* Transaction End */
5069 case 750: /* Transaction Suspend or Resume */
5070 case 782: /* Transaction Abort Word Conditional */
5071 case 814: /* Transaction Abort Doubleword Conditional */
5072 case 846: /* Transaction Abort Word Conditional Immediate */
5073 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5074 case 910: /* Transaction Abort */
5075 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5076 /* FALL-THROUGH */
5077 case 718: /* Transaction Check */
5078 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5079 return 0;
5080
5081 case 1014: /* Data Cache Block set to Zero */
5082 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
5083 || at_dcsz == 0)
5084 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5085
5086 ra = 0;
5087 if (PPC_RA (insn) != 0)
5088 regcache_raw_read_unsigned (regcache,
5089 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5090 regcache_raw_read_unsigned (regcache,
5091 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5092 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5093 record_full_arch_list_add_mem (ea, at_dcsz);
5094 return 0;
5095 }
5096
5097 UNKNOWN_OP:
5098 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5099 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5100 return -1;
5101 }
5102
5103 /* Parse and record instructions of primary opcode-59 at ADDR.
5104 Return 0 if successful. */
5105
5106 static int
5107 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5108 CORE_ADDR addr, uint32_t insn)
5109 {
5110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5111 int ext = PPC_EXTOP (insn);
5112
5113 switch (ext & 0x1f)
5114 {
5115 case 18: /* Floating Divide */
5116 case 20: /* Floating Subtract */
5117 case 21: /* Floating Add */
5118 case 22: /* Floating Square Root */
5119 case 24: /* Floating Reciprocal Estimate */
5120 case 25: /* Floating Multiply */
5121 case 26: /* Floating Reciprocal Square Root Estimate */
5122 case 28: /* Floating Multiply-Subtract */
5123 case 29: /* Floating Multiply-Add */
5124 case 30: /* Floating Negative Multiply-Subtract */
5125 case 31: /* Floating Negative Multiply-Add */
5126 record_full_arch_list_add_reg (regcache,
5127 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5128 if (PPC_RC (insn))
5129 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5130 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5131
5132 return 0;
5133 }
5134
5135 switch (ext)
5136 {
5137 case 2: /* DFP Add */
5138 case 3: /* DFP Quantize */
5139 case 34: /* DFP Multiply */
5140 case 35: /* DFP Reround */
5141 case 67: /* DFP Quantize Immediate */
5142 case 99: /* DFP Round To FP Integer With Inexact */
5143 case 227: /* DFP Round To FP Integer Without Inexact */
5144 case 258: /* DFP Convert To DFP Long! */
5145 case 290: /* DFP Convert To Fixed */
5146 case 514: /* DFP Subtract */
5147 case 546: /* DFP Divide */
5148 case 770: /* DFP Round To DFP Short! */
5149 case 802: /* DFP Convert From Fixed */
5150 case 834: /* DFP Encode BCD To DPD */
5151 if (PPC_RC (insn))
5152 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5153 record_full_arch_list_add_reg (regcache,
5154 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5155 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5156 return 0;
5157
5158 case 130: /* DFP Compare Ordered */
5159 case 162: /* DFP Test Exponent */
5160 case 194: /* DFP Test Data Class */
5161 case 226: /* DFP Test Data Group */
5162 case 642: /* DFP Compare Unordered */
5163 case 674: /* DFP Test Significance */
5164 case 675: /* DFP Test Significance Immediate */
5165 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5166 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5167 return 0;
5168
5169 case 66: /* DFP Shift Significand Left Immediate */
5170 case 98: /* DFP Shift Significand Right Immediate */
5171 case 322: /* DFP Decode DPD To BCD */
5172 case 354: /* DFP Extract Biased Exponent */
5173 case 866: /* DFP Insert Biased Exponent */
5174 record_full_arch_list_add_reg (regcache,
5175 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5176 if (PPC_RC (insn))
5177 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5178 return 0;
5179
5180 case 846: /* Floating Convert From Integer Doubleword Single */
5181 case 974: /* Floating Convert From Integer Doubleword Unsigned
5182 Single */
5183 record_full_arch_list_add_reg (regcache,
5184 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5185 if (PPC_RC (insn))
5186 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5187 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5188
5189 return 0;
5190 }
5191
5192 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5193 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5194 return -1;
5195 }
5196
5197 /* Parse and record instructions of primary opcode-60 at ADDR.
5198 Return 0 if successful. */
5199
5200 static int
5201 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5202 CORE_ADDR addr, uint32_t insn)
5203 {
5204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5205 int ext = PPC_EXTOP (insn);
5206
5207 switch (ext >> 2)
5208 {
5209 case 0: /* VSX Scalar Add Single-Precision */
5210 case 32: /* VSX Scalar Add Double-Precision */
5211 case 24: /* VSX Scalar Divide Single-Precision */
5212 case 56: /* VSX Scalar Divide Double-Precision */
5213 case 176: /* VSX Scalar Copy Sign Double-Precision */
5214 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5215 case 41: /* ditto */
5216 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5217 case 9: /* ditto */
5218 case 160: /* VSX Scalar Maximum Double-Precision */
5219 case 168: /* VSX Scalar Minimum Double-Precision */
5220 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5221 case 57: /* ditto */
5222 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5223 case 25: /* ditto */
5224 case 48: /* VSX Scalar Multiply Double-Precision */
5225 case 16: /* VSX Scalar Multiply Single-Precision */
5226 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5227 case 169: /* ditto */
5228 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5229 case 137: /* ditto */
5230 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5231 case 185: /* ditto */
5232 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5233 case 153: /* ditto */
5234 case 40: /* VSX Scalar Subtract Double-Precision */
5235 case 8: /* VSX Scalar Subtract Single-Precision */
5236 case 96: /* VSX Vector Add Double-Precision */
5237 case 64: /* VSX Vector Add Single-Precision */
5238 case 120: /* VSX Vector Divide Double-Precision */
5239 case 88: /* VSX Vector Divide Single-Precision */
5240 case 97: /* VSX Vector Multiply-Add Double-Precision */
5241 case 105: /* ditto */
5242 case 65: /* VSX Vector Multiply-Add Single-Precision */
5243 case 73: /* ditto */
5244 case 224: /* VSX Vector Maximum Double-Precision */
5245 case 192: /* VSX Vector Maximum Single-Precision */
5246 case 232: /* VSX Vector Minimum Double-Precision */
5247 case 200: /* VSX Vector Minimum Single-Precision */
5248 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5249 case 121: /* ditto */
5250 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5251 case 89: /* ditto */
5252 case 112: /* VSX Vector Multiply Double-Precision */
5253 case 80: /* VSX Vector Multiply Single-Precision */
5254 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5255 case 233: /* ditto */
5256 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5257 case 201: /* ditto */
5258 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5259 case 249: /* ditto */
5260 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5261 case 217: /* ditto */
5262 case 104: /* VSX Vector Subtract Double-Precision */
5263 case 72: /* VSX Vector Subtract Single-Precision */
5264 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5265 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5266 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5267 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5268 case 3: /* VSX Scalar Compare Equal Double-Precision */
5269 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5270 case 19: /* VSX Scalar Compare Greater Than or Equal
5271 Double-Precision */
5272 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5273 /* FALL-THROUGH */
5274 case 240: /* VSX Vector Copy Sign Double-Precision */
5275 case 208: /* VSX Vector Copy Sign Single-Precision */
5276 case 130: /* VSX Logical AND */
5277 case 138: /* VSX Logical AND with Complement */
5278 case 186: /* VSX Logical Equivalence */
5279 case 178: /* VSX Logical NAND */
5280 case 170: /* VSX Logical OR with Complement */
5281 case 162: /* VSX Logical NOR */
5282 case 146: /* VSX Logical OR */
5283 case 154: /* VSX Logical XOR */
5284 case 18: /* VSX Merge High Word */
5285 case 50: /* VSX Merge Low Word */
5286 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5287 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5288 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5289 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5290 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5291 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5292 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5293 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5294 case 216: /* VSX Vector Insert Exponent Single-Precision */
5295 case 248: /* VSX Vector Insert Exponent Double-Precision */
5296 case 26: /* VSX Vector Permute */
5297 case 58: /* VSX Vector Permute Right-indexed */
5298 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5299 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5300 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5301 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5302 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5303 return 0;
5304
5305 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5306 case 125: /* VSX Vector Test for software Divide Double-Precision */
5307 case 93: /* VSX Vector Test for software Divide Single-Precision */
5308 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5309 return 0;
5310
5311 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5312 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5313 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5314 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5315 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5316 return 0;
5317 }
5318
5319 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5320 {
5321 case 99: /* VSX Vector Compare Equal To Double-Precision */
5322 case 67: /* VSX Vector Compare Equal To Single-Precision */
5323 case 115: /* VSX Vector Compare Greater Than or
5324 Equal To Double-Precision */
5325 case 83: /* VSX Vector Compare Greater Than or
5326 Equal To Single-Precision */
5327 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5328 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5329 if (PPC_Rc (insn))
5330 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5331 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5332 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5333 return 0;
5334 }
5335
5336 switch (ext >> 1)
5337 {
5338 case 265: /* VSX Scalar round Double-Precision to
5339 Single-Precision and Convert to
5340 Single-Precision format */
5341 case 344: /* VSX Scalar truncate Double-Precision to
5342 Integer and Convert to Signed Integer
5343 Doubleword format with Saturate */
5344 case 88: /* VSX Scalar truncate Double-Precision to
5345 Integer and Convert to Signed Integer Word
5346 Format with Saturate */
5347 case 328: /* VSX Scalar truncate Double-Precision integer
5348 and Convert to Unsigned Integer Doubleword
5349 Format with Saturate */
5350 case 72: /* VSX Scalar truncate Double-Precision to
5351 Integer and Convert to Unsigned Integer Word
5352 Format with Saturate */
5353 case 329: /* VSX Scalar Convert Single-Precision to
5354 Double-Precision format */
5355 case 376: /* VSX Scalar Convert Signed Integer
5356 Doubleword to floating-point format and
5357 Round to Double-Precision format */
5358 case 312: /* VSX Scalar Convert Signed Integer
5359 Doubleword to floating-point format and
5360 round to Single-Precision */
5361 case 360: /* VSX Scalar Convert Unsigned Integer
5362 Doubleword to floating-point format and
5363 Round to Double-Precision format */
5364 case 296: /* VSX Scalar Convert Unsigned Integer
5365 Doubleword to floating-point format and
5366 Round to Single-Precision */
5367 case 73: /* VSX Scalar Round to Double-Precision Integer
5368 Using Round to Nearest Away */
5369 case 107: /* VSX Scalar Round to Double-Precision Integer
5370 Exact using Current rounding mode */
5371 case 121: /* VSX Scalar Round to Double-Precision Integer
5372 Using Round toward -Infinity */
5373 case 105: /* VSX Scalar Round to Double-Precision Integer
5374 Using Round toward +Infinity */
5375 case 89: /* VSX Scalar Round to Double-Precision Integer
5376 Using Round toward Zero */
5377 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5378 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5379 case 281: /* VSX Scalar Round to Single-Precision */
5380 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5381 Double-Precision */
5382 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5383 Single-Precision */
5384 case 75: /* VSX Scalar Square Root Double-Precision */
5385 case 11: /* VSX Scalar Square Root Single-Precision */
5386 case 393: /* VSX Vector round Double-Precision to
5387 Single-Precision and Convert to
5388 Single-Precision format */
5389 case 472: /* VSX Vector truncate Double-Precision to
5390 Integer and Convert to Signed Integer
5391 Doubleword format with Saturate */
5392 case 216: /* VSX Vector truncate Double-Precision to
5393 Integer and Convert to Signed Integer Word
5394 Format with Saturate */
5395 case 456: /* VSX Vector truncate Double-Precision to
5396 Integer and Convert to Unsigned Integer
5397 Doubleword format with Saturate */
5398 case 200: /* VSX Vector truncate Double-Precision to
5399 Integer and Convert to Unsigned Integer Word
5400 Format with Saturate */
5401 case 457: /* VSX Vector Convert Single-Precision to
5402 Double-Precision format */
5403 case 408: /* VSX Vector truncate Single-Precision to
5404 Integer and Convert to Signed Integer
5405 Doubleword format with Saturate */
5406 case 152: /* VSX Vector truncate Single-Precision to
5407 Integer and Convert to Signed Integer Word
5408 Format with Saturate */
5409 case 392: /* VSX Vector truncate Single-Precision to
5410 Integer and Convert to Unsigned Integer
5411 Doubleword format with Saturate */
5412 case 136: /* VSX Vector truncate Single-Precision to
5413 Integer and Convert to Unsigned Integer Word
5414 Format with Saturate */
5415 case 504: /* VSX Vector Convert and round Signed Integer
5416 Doubleword to Double-Precision format */
5417 case 440: /* VSX Vector Convert and round Signed Integer
5418 Doubleword to Single-Precision format */
5419 case 248: /* VSX Vector Convert Signed Integer Word to
5420 Double-Precision format */
5421 case 184: /* VSX Vector Convert and round Signed Integer
5422 Word to Single-Precision format */
5423 case 488: /* VSX Vector Convert and round Unsigned
5424 Integer Doubleword to Double-Precision format */
5425 case 424: /* VSX Vector Convert and round Unsigned
5426 Integer Doubleword to Single-Precision format */
5427 case 232: /* VSX Vector Convert and round Unsigned
5428 Integer Word to Double-Precision format */
5429 case 168: /* VSX Vector Convert and round Unsigned
5430 Integer Word to Single-Precision format */
5431 case 201: /* VSX Vector Round to Double-Precision
5432 Integer using round to Nearest Away */
5433 case 235: /* VSX Vector Round to Double-Precision
5434 Integer Exact using Current rounding mode */
5435 case 249: /* VSX Vector Round to Double-Precision
5436 Integer using round toward -Infinity */
5437 case 233: /* VSX Vector Round to Double-Precision
5438 Integer using round toward +Infinity */
5439 case 217: /* VSX Vector Round to Double-Precision
5440 Integer using round toward Zero */
5441 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5442 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5443 case 137: /* VSX Vector Round to Single-Precision Integer
5444 Using Round to Nearest Away */
5445 case 171: /* VSX Vector Round to Single-Precision Integer
5446 Exact Using Current rounding mode */
5447 case 185: /* VSX Vector Round to Single-Precision Integer
5448 Using Round toward -Infinity */
5449 case 169: /* VSX Vector Round to Single-Precision Integer
5450 Using Round toward +Infinity */
5451 case 153: /* VSX Vector Round to Single-Precision Integer
5452 Using round toward Zero */
5453 case 202: /* VSX Vector Reciprocal Square Root Estimate
5454 Double-Precision */
5455 case 138: /* VSX Vector Reciprocal Square Root Estimate
5456 Single-Precision */
5457 case 203: /* VSX Vector Square Root Double-Precision */
5458 case 139: /* VSX Vector Square Root Single-Precision */
5459 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5460 /* FALL-THROUGH */
5461 case 345: /* VSX Scalar Absolute Value Double-Precision */
5462 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5463 Vector Single-Precision format Non-signalling */
5464 case 331: /* VSX Scalar Convert Single-Precision to
5465 Double-Precision format Non-signalling */
5466 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5467 case 377: /* VSX Scalar Negate Double-Precision */
5468 case 473: /* VSX Vector Absolute Value Double-Precision */
5469 case 409: /* VSX Vector Absolute Value Single-Precision */
5470 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5471 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5472 case 505: /* VSX Vector Negate Double-Precision */
5473 case 441: /* VSX Vector Negate Single-Precision */
5474 case 164: /* VSX Splat Word */
5475 case 165: /* VSX Vector Extract Unsigned Word */
5476 case 181: /* VSX Vector Insert Word */
5477 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5478 return 0;
5479
5480 case 298: /* VSX Scalar Test Data Class Single-Precision */
5481 case 362: /* VSX Scalar Test Data Class Double-Precision */
5482 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5483 /* FALL-THROUGH */
5484 case 106: /* VSX Scalar Test for software Square Root
5485 Double-Precision */
5486 case 234: /* VSX Vector Test for software Square Root
5487 Double-Precision */
5488 case 170: /* VSX Vector Test for software Square Root
5489 Single-Precision */
5490 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5491 return 0;
5492
5493 case 347:
5494 switch (PPC_FIELD (insn, 11, 5))
5495 {
5496 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5497 case 1: /* VSX Scalar Extract Significand Double-Precision */
5498 record_full_arch_list_add_reg (regcache,
5499 tdep->ppc_gp0_regnum + PPC_RT (insn));
5500 return 0;
5501 case 16: /* VSX Scalar Convert Half-Precision format to
5502 Double-Precision format */
5503 case 17: /* VSX Scalar round & Convert Double-Precision format
5504 to Half-Precision format */
5505 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5506 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5507 return 0;
5508 }
5509 break;
5510
5511 case 475:
5512 switch (PPC_FIELD (insn, 11, 5))
5513 {
5514 case 24: /* VSX Vector Convert Half-Precision format to
5515 Single-Precision format */
5516 case 25: /* VSX Vector round and Convert Single-Precision format
5517 to Half-Precision format */
5518 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5519 /* FALL-THROUGH */
5520 case 0: /* VSX Vector Extract Exponent Double-Precision */
5521 case 1: /* VSX Vector Extract Significand Double-Precision */
5522 case 7: /* VSX Vector Byte-Reverse Halfword */
5523 case 8: /* VSX Vector Extract Exponent Single-Precision */
5524 case 9: /* VSX Vector Extract Significand Single-Precision */
5525 case 15: /* VSX Vector Byte-Reverse Word */
5526 case 23: /* VSX Vector Byte-Reverse Doubleword */
5527 case 31: /* VSX Vector Byte-Reverse Quadword */
5528 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5529 return 0;
5530 }
5531 break;
5532 }
5533
5534 switch (ext)
5535 {
5536 case 360: /* VSX Vector Splat Immediate Byte */
5537 if (PPC_FIELD (insn, 11, 2) == 0)
5538 {
5539 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5540 return 0;
5541 }
5542 break;
5543 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5544 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5545 return 0;
5546 }
5547
5548 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5549 {
5550 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5551 return 0;
5552 }
5553
5554 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5555 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5556 return -1;
5557 }
5558
5559 /* Parse and record instructions of primary opcode-61 at ADDR.
5560 Return 0 if successful. */
5561
5562 static int
5563 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5564 CORE_ADDR addr, uint32_t insn)
5565 {
5566 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5567 ULONGEST ea = 0;
5568 int size;
5569
5570 switch (insn & 0x3)
5571 {
5572 case 0: /* Store Floating-Point Double Pair */
5573 case 2: /* Store VSX Scalar Doubleword */
5574 case 3: /* Store VSX Scalar Single */
5575 if (PPC_RA (insn) != 0)
5576 regcache_raw_read_unsigned (regcache,
5577 tdep->ppc_gp0_regnum + PPC_RA (insn),
5578 &ea);
5579 ea += PPC_DS (insn) << 2;
5580 switch (insn & 0x3)
5581 {
5582 case 0: /* Store Floating-Point Double Pair */
5583 size = 16;
5584 break;
5585 case 2: /* Store VSX Scalar Doubleword */
5586 size = 8;
5587 break;
5588 case 3: /* Store VSX Scalar Single */
5589 size = 4;
5590 break;
5591 default:
5592 gdb_assert (0);
5593 }
5594 record_full_arch_list_add_mem (ea, size);
5595 return 0;
5596 }
5597
5598 switch (insn & 0x7)
5599 {
5600 case 1: /* Load VSX Vector */
5601 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5602 return 0;
5603 case 5: /* Store VSX Vector */
5604 if (PPC_RA (insn) != 0)
5605 regcache_raw_read_unsigned (regcache,
5606 tdep->ppc_gp0_regnum + PPC_RA (insn),
5607 &ea);
5608 ea += PPC_DQ (insn) << 4;
5609 record_full_arch_list_add_mem (ea, 16);
5610 return 0;
5611 }
5612
5613 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5614 "at %s.\n", insn, paddress (gdbarch, addr));
5615 return -1;
5616 }
5617
5618 /* Parse and record instructions of primary opcode-63 at ADDR.
5619 Return 0 if successful. */
5620
5621 static int
5622 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5623 CORE_ADDR addr, uint32_t insn)
5624 {
5625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5626 int ext = PPC_EXTOP (insn);
5627 int tmp;
5628
5629 switch (ext & 0x1f)
5630 {
5631 case 18: /* Floating Divide */
5632 case 20: /* Floating Subtract */
5633 case 21: /* Floating Add */
5634 case 22: /* Floating Square Root */
5635 case 24: /* Floating Reciprocal Estimate */
5636 case 25: /* Floating Multiply */
5637 case 26: /* Floating Reciprocal Square Root Estimate */
5638 case 28: /* Floating Multiply-Subtract */
5639 case 29: /* Floating Multiply-Add */
5640 case 30: /* Floating Negative Multiply-Subtract */
5641 case 31: /* Floating Negative Multiply-Add */
5642 record_full_arch_list_add_reg (regcache,
5643 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5644 if (PPC_RC (insn))
5645 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5646 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5647 return 0;
5648
5649 case 23: /* Floating Select */
5650 record_full_arch_list_add_reg (regcache,
5651 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5652 if (PPC_RC (insn))
5653 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5654 return 0;
5655 }
5656
5657 switch (ext & 0xff)
5658 {
5659 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5660 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5661 Precision */
5662 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5663 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5664 return 0;
5665 }
5666
5667 switch (ext)
5668 {
5669 case 2: /* DFP Add Quad */
5670 case 3: /* DFP Quantize Quad */
5671 case 34: /* DFP Multiply Quad */
5672 case 35: /* DFP Reround Quad */
5673 case 67: /* DFP Quantize Immediate Quad */
5674 case 99: /* DFP Round To FP Integer With Inexact Quad */
5675 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5676 case 258: /* DFP Convert To DFP Extended Quad */
5677 case 514: /* DFP Subtract Quad */
5678 case 546: /* DFP Divide Quad */
5679 case 770: /* DFP Round To DFP Long Quad */
5680 case 802: /* DFP Convert From Fixed Quad */
5681 case 834: /* DFP Encode BCD To DPD Quad */
5682 if (PPC_RC (insn))
5683 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5684 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5685 record_full_arch_list_add_reg (regcache, tmp);
5686 record_full_arch_list_add_reg (regcache, tmp + 1);
5687 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5688 return 0;
5689
5690 case 130: /* DFP Compare Ordered Quad */
5691 case 162: /* DFP Test Exponent Quad */
5692 case 194: /* DFP Test Data Class Quad */
5693 case 226: /* DFP Test Data Group Quad */
5694 case 642: /* DFP Compare Unordered Quad */
5695 case 674: /* DFP Test Significance Quad */
5696 case 675: /* DFP Test Significance Immediate Quad */
5697 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5698 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5699 return 0;
5700
5701 case 66: /* DFP Shift Significand Left Immediate Quad */
5702 case 98: /* DFP Shift Significand Right Immediate Quad */
5703 case 322: /* DFP Decode DPD To BCD Quad */
5704 case 866: /* DFP Insert Biased Exponent Quad */
5705 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5706 record_full_arch_list_add_reg (regcache, tmp);
5707 record_full_arch_list_add_reg (regcache, tmp + 1);
5708 if (PPC_RC (insn))
5709 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5710 return 0;
5711
5712 case 290: /* DFP Convert To Fixed Quad */
5713 record_full_arch_list_add_reg (regcache,
5714 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5715 if (PPC_RC (insn))
5716 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5718 return 0;
5719
5720 case 354: /* DFP Extract Biased Exponent Quad */
5721 record_full_arch_list_add_reg (regcache,
5722 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5723 if (PPC_RC (insn))
5724 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5725 return 0;
5726
5727 case 12: /* Floating Round to Single-Precision */
5728 case 14: /* Floating Convert To Integer Word */
5729 case 15: /* Floating Convert To Integer Word
5730 with round toward Zero */
5731 case 142: /* Floating Convert To Integer Word Unsigned */
5732 case 143: /* Floating Convert To Integer Word Unsigned
5733 with round toward Zero */
5734 case 392: /* Floating Round to Integer Nearest */
5735 case 424: /* Floating Round to Integer Toward Zero */
5736 case 456: /* Floating Round to Integer Plus */
5737 case 488: /* Floating Round to Integer Minus */
5738 case 814: /* Floating Convert To Integer Doubleword */
5739 case 815: /* Floating Convert To Integer Doubleword
5740 with round toward Zero */
5741 case 846: /* Floating Convert From Integer Doubleword */
5742 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5743 case 943: /* Floating Convert To Integer Doubleword Unsigned
5744 with round toward Zero */
5745 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5746 record_full_arch_list_add_reg (regcache,
5747 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5748 if (PPC_RC (insn))
5749 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5750 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5751 return 0;
5752
5753 case 583:
5754 switch (PPC_FIELD (insn, 11, 5))
5755 {
5756 case 1: /* Move From FPSCR & Clear Enables */
5757 case 20: /* Move From FPSCR Control & set DRN */
5758 case 21: /* Move From FPSCR Control & set DRN Immediate */
5759 case 22: /* Move From FPSCR Control & set RN */
5760 case 23: /* Move From FPSCR Control & set RN Immediate */
5761 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5762 /* Fall through. */
5763 case 0: /* Move From FPSCR */
5764 case 24: /* Move From FPSCR Lightweight */
5765 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5766 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5767 record_full_arch_list_add_reg (regcache,
5768 tdep->ppc_fp0_regnum
5769 + PPC_FRT (insn));
5770 return 0;
5771 }
5772 break;
5773
5774 case 8: /* Floating Copy Sign */
5775 case 40: /* Floating Negate */
5776 case 72: /* Floating Move Register */
5777 case 136: /* Floating Negative Absolute Value */
5778 case 264: /* Floating Absolute Value */
5779 record_full_arch_list_add_reg (regcache,
5780 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5781 if (PPC_RC (insn))
5782 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5783 return 0;
5784
5785 case 838: /* Floating Merge Odd Word */
5786 case 966: /* Floating Merge Even Word */
5787 record_full_arch_list_add_reg (regcache,
5788 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5789 return 0;
5790
5791 case 38: /* Move To FPSCR Bit 1 */
5792 case 70: /* Move To FPSCR Bit 0 */
5793 case 134: /* Move To FPSCR Field Immediate */
5794 case 711: /* Move To FPSCR Fields */
5795 if (PPC_RC (insn))
5796 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5797 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5798 return 0;
5799
5800 case 0: /* Floating Compare Unordered */
5801 case 32: /* Floating Compare Ordered */
5802 case 64: /* Move to Condition Register from FPSCR */
5803 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5804 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5805 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5806 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5807 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5808 /* FALL-THROUGH */
5809 case 128: /* Floating Test for software Divide */
5810 case 160: /* Floating Test for software Square Root */
5811 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5812 return 0;
5813
5814 case 4: /* VSX Scalar Add Quad-Precision */
5815 case 36: /* VSX Scalar Multiply Quad-Precision */
5816 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5817 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5818 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5819 case 484: /* VSX Scalar Negative Multiply-Subtract
5820 Quad-Precision */
5821 case 516: /* VSX Scalar Subtract Quad-Precision */
5822 case 548: /* VSX Scalar Divide Quad-Precision */
5823 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5824 /* FALL-THROUGH */
5825 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5826 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5827 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5828 return 0;
5829
5830 case 804:
5831 switch (PPC_FIELD (insn, 11, 5))
5832 {
5833 case 27: /* VSX Scalar Square Root Quad-Precision */
5834 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5835 /* FALL-THROUGH */
5836 case 0: /* VSX Scalar Absolute Quad-Precision */
5837 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5838 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5839 case 16: /* VSX Scalar Negate Quad-Precision */
5840 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5841 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5842 return 0;
5843 }
5844 break;
5845
5846 case 836:
5847 switch (PPC_FIELD (insn, 11, 5))
5848 {
5849 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5850 to Unsigned Word format */
5851 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5852 Quad-Precision format */
5853 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5854 to Signed Word format */
5855 case 10: /* VSX Scalar Convert Signed Doubleword format to
5856 Quad-Precision format */
5857 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5858 to Unsigned Doubleword format */
5859 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5860 Double-Precision format */
5861 case 22: /* VSX Scalar Convert Double-Precision format to
5862 Quad-Precision format */
5863 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5864 to Signed Doubleword format */
5865 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5866 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5867 return 0;
5868 }
5869 }
5870
5871 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5872 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5873 return -1;
5874 }
5875
5876 /* Parse the current instruction and record the values of the registers and
5877 memory that will be changed in current instruction to "record_arch_list".
5878 Return -1 if something wrong. */
5879
5880 int
5881 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5882 CORE_ADDR addr)
5883 {
5884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5886 uint32_t insn;
5887 int op6, tmp, i;
5888
5889 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5890 op6 = PPC_OP6 (insn);
5891
5892 switch (op6)
5893 {
5894 case 2: /* Trap Doubleword Immediate */
5895 case 3: /* Trap Word Immediate */
5896 /* Do nothing. */
5897 break;
5898
5899 case 4:
5900 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5901 return -1;
5902 break;
5903
5904 case 17: /* System call */
5905 if (PPC_LEV (insn) != 0)
5906 goto UNKNOWN_OP;
5907
5908 if (tdep->ppc_syscall_record != NULL)
5909 {
5910 if (tdep->ppc_syscall_record (regcache) != 0)
5911 return -1;
5912 }
5913 else
5914 {
5915 printf_unfiltered (_("no syscall record support\n"));
5916 return -1;
5917 }
5918 break;
5919
5920 case 7: /* Multiply Low Immediate */
5921 record_full_arch_list_add_reg (regcache,
5922 tdep->ppc_gp0_regnum + PPC_RT (insn));
5923 break;
5924
5925 case 8: /* Subtract From Immediate Carrying */
5926 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5927 record_full_arch_list_add_reg (regcache,
5928 tdep->ppc_gp0_regnum + PPC_RT (insn));
5929 break;
5930
5931 case 10: /* Compare Logical Immediate */
5932 case 11: /* Compare Immediate */
5933 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5934 break;
5935
5936 case 13: /* Add Immediate Carrying and Record */
5937 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5938 /* FALL-THROUGH */
5939 case 12: /* Add Immediate Carrying */
5940 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5941 /* FALL-THROUGH */
5942 case 14: /* Add Immediate */
5943 case 15: /* Add Immediate Shifted */
5944 record_full_arch_list_add_reg (regcache,
5945 tdep->ppc_gp0_regnum + PPC_RT (insn));
5946 break;
5947
5948 case 16: /* Branch Conditional */
5949 if ((PPC_BO (insn) & 0x4) == 0)
5950 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5951 /* FALL-THROUGH */
5952 case 18: /* Branch */
5953 if (PPC_LK (insn))
5954 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5955 break;
5956
5957 case 19:
5958 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5959 return -1;
5960 break;
5961
5962 case 20: /* Rotate Left Word Immediate then Mask Insert */
5963 case 21: /* Rotate Left Word Immediate then AND with Mask */
5964 case 23: /* Rotate Left Word then AND with Mask */
5965 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5966 /* Rotate Left Doubleword Immediate then Clear Right */
5967 /* Rotate Left Doubleword Immediate then Clear */
5968 /* Rotate Left Doubleword then Clear Left */
5969 /* Rotate Left Doubleword then Clear Right */
5970 /* Rotate Left Doubleword Immediate then Mask Insert */
5971 if (PPC_RC (insn))
5972 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5973 record_full_arch_list_add_reg (regcache,
5974 tdep->ppc_gp0_regnum + PPC_RA (insn));
5975 break;
5976
5977 case 28: /* AND Immediate */
5978 case 29: /* AND Immediate Shifted */
5979 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5980 /* FALL-THROUGH */
5981 case 24: /* OR Immediate */
5982 case 25: /* OR Immediate Shifted */
5983 case 26: /* XOR Immediate */
5984 case 27: /* XOR Immediate Shifted */
5985 record_full_arch_list_add_reg (regcache,
5986 tdep->ppc_gp0_regnum + PPC_RA (insn));
5987 break;
5988
5989 case 31:
5990 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5991 return -1;
5992 break;
5993
5994 case 33: /* Load Word and Zero with Update */
5995 case 35: /* Load Byte and Zero with Update */
5996 case 41: /* Load Halfword and Zero with Update */
5997 case 43: /* Load Halfword Algebraic with Update */
5998 record_full_arch_list_add_reg (regcache,
5999 tdep->ppc_gp0_regnum + PPC_RA (insn));
6000 /* FALL-THROUGH */
6001 case 32: /* Load Word and Zero */
6002 case 34: /* Load Byte and Zero */
6003 case 40: /* Load Halfword and Zero */
6004 case 42: /* Load Halfword Algebraic */
6005 record_full_arch_list_add_reg (regcache,
6006 tdep->ppc_gp0_regnum + PPC_RT (insn));
6007 break;
6008
6009 case 46: /* Load Multiple Word */
6010 for (i = PPC_RT (insn); i < 32; i++)
6011 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6012 break;
6013
6014 case 56: /* Load Quadword */
6015 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6016 record_full_arch_list_add_reg (regcache, tmp);
6017 record_full_arch_list_add_reg (regcache, tmp + 1);
6018 break;
6019
6020 case 49: /* Load Floating-Point Single with Update */
6021 case 51: /* Load Floating-Point Double with Update */
6022 record_full_arch_list_add_reg (regcache,
6023 tdep->ppc_gp0_regnum + PPC_RA (insn));
6024 /* FALL-THROUGH */
6025 case 48: /* Load Floating-Point Single */
6026 case 50: /* Load Floating-Point Double */
6027 record_full_arch_list_add_reg (regcache,
6028 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6029 break;
6030
6031 case 47: /* Store Multiple Word */
6032 {
6033 ULONGEST iaddr = 0;
6034
6035 if (PPC_RA (insn) != 0)
6036 regcache_raw_read_unsigned (regcache,
6037 tdep->ppc_gp0_regnum + PPC_RA (insn),
6038 &iaddr);
6039
6040 iaddr += PPC_D (insn);
6041 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
6042 }
6043 break;
6044
6045 case 37: /* Store Word with Update */
6046 case 39: /* Store Byte with Update */
6047 case 45: /* Store Halfword with Update */
6048 case 53: /* Store Floating-Point Single with Update */
6049 case 55: /* Store Floating-Point Double with Update */
6050 record_full_arch_list_add_reg (regcache,
6051 tdep->ppc_gp0_regnum + PPC_RA (insn));
6052 /* FALL-THROUGH */
6053 case 36: /* Store Word */
6054 case 38: /* Store Byte */
6055 case 44: /* Store Halfword */
6056 case 52: /* Store Floating-Point Single */
6057 case 54: /* Store Floating-Point Double */
6058 {
6059 ULONGEST iaddr = 0;
6060 int size = -1;
6061
6062 if (PPC_RA (insn) != 0)
6063 regcache_raw_read_unsigned (regcache,
6064 tdep->ppc_gp0_regnum + PPC_RA (insn),
6065 &iaddr);
6066 iaddr += PPC_D (insn);
6067
6068 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6069 size = 4;
6070 else if (op6 == 54 || op6 == 55)
6071 size = 8;
6072 else if (op6 == 44 || op6 == 45)
6073 size = 2;
6074 else if (op6 == 38 || op6 == 39)
6075 size = 1;
6076 else
6077 gdb_assert (0);
6078
6079 record_full_arch_list_add_mem (iaddr, size);
6080 }
6081 break;
6082
6083 case 57:
6084 switch (insn & 0x3)
6085 {
6086 case 0: /* Load Floating-Point Double Pair */
6087 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6088 record_full_arch_list_add_reg (regcache, tmp);
6089 record_full_arch_list_add_reg (regcache, tmp + 1);
6090 break;
6091 case 2: /* Load VSX Scalar Doubleword */
6092 case 3: /* Load VSX Scalar Single */
6093 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6094 break;
6095 default:
6096 goto UNKNOWN_OP;
6097 }
6098 break;
6099
6100 case 58: /* Load Doubleword */
6101 /* Load Doubleword with Update */
6102 /* Load Word Algebraic */
6103 if (PPC_FIELD (insn, 30, 2) > 2)
6104 goto UNKNOWN_OP;
6105
6106 record_full_arch_list_add_reg (regcache,
6107 tdep->ppc_gp0_regnum + PPC_RT (insn));
6108 if (PPC_BIT (insn, 31))
6109 record_full_arch_list_add_reg (regcache,
6110 tdep->ppc_gp0_regnum + PPC_RA (insn));
6111 break;
6112
6113 case 59:
6114 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6115 return -1;
6116 break;
6117
6118 case 60:
6119 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6120 return -1;
6121 break;
6122
6123 case 61:
6124 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6125 return -1;
6126 break;
6127
6128 case 62: /* Store Doubleword */
6129 /* Store Doubleword with Update */
6130 /* Store Quadword with Update */
6131 {
6132 ULONGEST iaddr = 0;
6133 int size;
6134 int sub2 = PPC_FIELD (insn, 30, 2);
6135
6136 if (sub2 > 2)
6137 goto UNKNOWN_OP;
6138
6139 if (PPC_RA (insn) != 0)
6140 regcache_raw_read_unsigned (regcache,
6141 tdep->ppc_gp0_regnum + PPC_RA (insn),
6142 &iaddr);
6143
6144 size = (sub2 == 2) ? 16 : 8;
6145
6146 iaddr += PPC_DS (insn) << 2;
6147 record_full_arch_list_add_mem (iaddr, size);
6148
6149 if (op6 == 62 && sub2 == 1)
6150 record_full_arch_list_add_reg (regcache,
6151 tdep->ppc_gp0_regnum +
6152 PPC_RA (insn));
6153
6154 break;
6155 }
6156
6157 case 63:
6158 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6159 return -1;
6160 break;
6161
6162 default:
6163 UNKNOWN_OP:
6164 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6165 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6166 return -1;
6167 }
6168
6169 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6170 return -1;
6171 if (record_full_arch_list_add_end ())
6172 return -1;
6173 return 0;
6174 }
6175
6176 /* Initialize the current architecture based on INFO. If possible, re-use an
6177 architecture from ARCHES, which is a list of architectures already created
6178 during this debugging session.
6179
6180 Called e.g. at program startup, when reading a core file, and when reading
6181 a binary file. */
6182
6183 static struct gdbarch *
6184 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6185 {
6186 struct gdbarch *gdbarch;
6187 struct gdbarch_tdep *tdep;
6188 int wordsize, from_xcoff_exec, from_elf_exec;
6189 enum bfd_architecture arch;
6190 unsigned long mach;
6191 bfd abfd;
6192 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6193 int soft_float;
6194 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6195 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6196 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6197 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6198 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6199 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6200 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6201 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6202 int have_htm_tar = 0;
6203 int tdesc_wordsize = -1;
6204 const struct target_desc *tdesc = info.target_desc;
6205 tdesc_arch_data_up tdesc_data;
6206 int num_pseudoregs = 0;
6207 int cur_reg;
6208
6209 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6210 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6211
6212 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6213 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6214
6215 /* Check word size. If INFO is from a binary file, infer it from
6216 that, else choose a likely default. */
6217 if (from_xcoff_exec)
6218 {
6219 if (bfd_xcoff_is_xcoff64 (info.abfd))
6220 wordsize = 8;
6221 else
6222 wordsize = 4;
6223 }
6224 else if (from_elf_exec)
6225 {
6226 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6227 wordsize = 8;
6228 else
6229 wordsize = 4;
6230 }
6231 else if (tdesc_has_registers (tdesc))
6232 wordsize = -1;
6233 else
6234 {
6235 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6236 wordsize = (info.bfd_arch_info->bits_per_word
6237 / info.bfd_arch_info->bits_per_byte);
6238 else
6239 wordsize = 4;
6240 }
6241
6242 /* Get the architecture and machine from the BFD. */
6243 arch = info.bfd_arch_info->arch;
6244 mach = info.bfd_arch_info->mach;
6245
6246 /* For e500 executables, the apuinfo section is of help here. Such
6247 section contains the identifier and revision number of each
6248 Application-specific Processing Unit that is present on the
6249 chip. The content of the section is determined by the assembler
6250 which looks at each instruction and determines which unit (and
6251 which version of it) can execute it. Grovel through the section
6252 looking for relevant e500 APUs. */
6253
6254 if (bfd_uses_spe_extensions (info.abfd))
6255 {
6256 arch = info.bfd_arch_info->arch;
6257 mach = bfd_mach_ppc_e500;
6258 bfd_default_set_arch_mach (&abfd, arch, mach);
6259 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6260 }
6261
6262 /* Find a default target description which describes our register
6263 layout, if we do not already have one. */
6264 if (! tdesc_has_registers (tdesc))
6265 {
6266 const struct ppc_variant *v;
6267
6268 /* Choose variant. */
6269 v = find_variant_by_arch (arch, mach);
6270 if (!v)
6271 return NULL;
6272
6273 tdesc = *v->tdesc;
6274 }
6275
6276 gdb_assert (tdesc_has_registers (tdesc));
6277
6278 /* Check any target description for validity. */
6279 if (tdesc_has_registers (tdesc))
6280 {
6281 static const char *const gprs[] = {
6282 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6283 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6284 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6285 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6286 };
6287 const struct tdesc_feature *feature;
6288 int i, valid_p;
6289 static const char *const msr_names[] = { "msr", "ps" };
6290 static const char *const cr_names[] = { "cr", "cnd" };
6291 static const char *const ctr_names[] = { "ctr", "cnt" };
6292
6293 feature = tdesc_find_feature (tdesc,
6294 "org.gnu.gdb.power.core");
6295 if (feature == NULL)
6296 return NULL;
6297
6298 tdesc_data = tdesc_data_alloc ();
6299
6300 valid_p = 1;
6301 for (i = 0; i < ppc_num_gprs; i++)
6302 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6303 i, gprs[i]);
6304 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6305 PPC_PC_REGNUM, "pc");
6306 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6307 PPC_LR_REGNUM, "lr");
6308 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6309 PPC_XER_REGNUM, "xer");
6310
6311 /* Allow alternate names for these registers, to accomodate GDB's
6312 historic naming. */
6313 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6314 PPC_MSR_REGNUM, msr_names);
6315 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6316 PPC_CR_REGNUM, cr_names);
6317 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6318 PPC_CTR_REGNUM, ctr_names);
6319
6320 if (!valid_p)
6321 return NULL;
6322
6323 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6324 PPC_MQ_REGNUM, "mq");
6325
6326 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6327 if (wordsize == -1)
6328 wordsize = tdesc_wordsize;
6329
6330 feature = tdesc_find_feature (tdesc,
6331 "org.gnu.gdb.power.fpu");
6332 if (feature != NULL)
6333 {
6334 static const char *const fprs[] = {
6335 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6336 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6337 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6338 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6339 };
6340 valid_p = 1;
6341 for (i = 0; i < ppc_num_fprs; i++)
6342 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6343 PPC_F0_REGNUM + i, fprs[i]);
6344 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6345 PPC_FPSCR_REGNUM, "fpscr");
6346
6347 if (!valid_p)
6348 return NULL;
6349 have_fpu = 1;
6350
6351 /* The fpscr register was expanded in isa 2.05 to 64 bits
6352 along with the addition of the decimal floating point
6353 facility. */
6354 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6355 have_dfp = 1;
6356 }
6357 else
6358 have_fpu = 0;
6359
6360 feature = tdesc_find_feature (tdesc,
6361 "org.gnu.gdb.power.altivec");
6362 if (feature != NULL)
6363 {
6364 static const char *const vector_regs[] = {
6365 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6366 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6367 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6368 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6369 };
6370
6371 valid_p = 1;
6372 for (i = 0; i < ppc_num_gprs; i++)
6373 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6374 PPC_VR0_REGNUM + i,
6375 vector_regs[i]);
6376 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6377 PPC_VSCR_REGNUM, "vscr");
6378 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6379 PPC_VRSAVE_REGNUM, "vrsave");
6380
6381 if (have_spe || !valid_p)
6382 return NULL;
6383 have_altivec = 1;
6384 }
6385 else
6386 have_altivec = 0;
6387
6388 /* Check for POWER7 VSX registers support. */
6389 feature = tdesc_find_feature (tdesc,
6390 "org.gnu.gdb.power.vsx");
6391
6392 if (feature != NULL)
6393 {
6394 static const char *const vsx_regs[] = {
6395 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6396 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6397 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6398 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6399 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6400 "vs30h", "vs31h"
6401 };
6402
6403 valid_p = 1;
6404
6405 for (i = 0; i < ppc_num_vshrs; i++)
6406 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6407 PPC_VSR0_UPPER_REGNUM + i,
6408 vsx_regs[i]);
6409
6410 if (!valid_p || !have_fpu || !have_altivec)
6411 return NULL;
6412
6413 have_vsx = 1;
6414 }
6415 else
6416 have_vsx = 0;
6417
6418 /* On machines supporting the SPE APU, the general-purpose registers
6419 are 64 bits long. There are SIMD vector instructions to treat them
6420 as pairs of floats, but the rest of the instruction set treats them
6421 as 32-bit registers, and only operates on their lower halves.
6422
6423 In the GDB regcache, we treat their high and low halves as separate
6424 registers. The low halves we present as the general-purpose
6425 registers, and then we have pseudo-registers that stitch together
6426 the upper and lower halves and present them as pseudo-registers.
6427
6428 Thus, the target description is expected to supply the upper
6429 halves separately. */
6430
6431 feature = tdesc_find_feature (tdesc,
6432 "org.gnu.gdb.power.spe");
6433 if (feature != NULL)
6434 {
6435 static const char *const upper_spe[] = {
6436 "ev0h", "ev1h", "ev2h", "ev3h",
6437 "ev4h", "ev5h", "ev6h", "ev7h",
6438 "ev8h", "ev9h", "ev10h", "ev11h",
6439 "ev12h", "ev13h", "ev14h", "ev15h",
6440 "ev16h", "ev17h", "ev18h", "ev19h",
6441 "ev20h", "ev21h", "ev22h", "ev23h",
6442 "ev24h", "ev25h", "ev26h", "ev27h",
6443 "ev28h", "ev29h", "ev30h", "ev31h"
6444 };
6445
6446 valid_p = 1;
6447 for (i = 0; i < ppc_num_gprs; i++)
6448 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6449 PPC_SPE_UPPER_GP0_REGNUM + i,
6450 upper_spe[i]);
6451 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6452 PPC_SPE_ACC_REGNUM, "acc");
6453 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6454 PPC_SPE_FSCR_REGNUM, "spefscr");
6455
6456 if (have_mq || have_fpu || !valid_p)
6457 return NULL;
6458 have_spe = 1;
6459 }
6460 else
6461 have_spe = 0;
6462
6463 /* Program Priority Register. */
6464 feature = tdesc_find_feature (tdesc,
6465 "org.gnu.gdb.power.ppr");
6466 if (feature != NULL)
6467 {
6468 valid_p = 1;
6469 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6470 PPC_PPR_REGNUM, "ppr");
6471
6472 if (!valid_p)
6473 return NULL;
6474 have_ppr = 1;
6475 }
6476 else
6477 have_ppr = 0;
6478
6479 /* Data Stream Control Register. */
6480 feature = tdesc_find_feature (tdesc,
6481 "org.gnu.gdb.power.dscr");
6482 if (feature != NULL)
6483 {
6484 valid_p = 1;
6485 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6486 PPC_DSCR_REGNUM, "dscr");
6487
6488 if (!valid_p)
6489 return NULL;
6490 have_dscr = 1;
6491 }
6492 else
6493 have_dscr = 0;
6494
6495 /* Target Address Register. */
6496 feature = tdesc_find_feature (tdesc,
6497 "org.gnu.gdb.power.tar");
6498 if (feature != NULL)
6499 {
6500 valid_p = 1;
6501 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6502 PPC_TAR_REGNUM, "tar");
6503
6504 if (!valid_p)
6505 return NULL;
6506 have_tar = 1;
6507 }
6508 else
6509 have_tar = 0;
6510
6511 /* Event-based Branching Registers. */
6512 feature = tdesc_find_feature (tdesc,
6513 "org.gnu.gdb.power.ebb");
6514 if (feature != NULL)
6515 {
6516 static const char *const ebb_regs[] = {
6517 "bescr", "ebbhr", "ebbrr"
6518 };
6519
6520 valid_p = 1;
6521 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6522 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6523 PPC_BESCR_REGNUM + i,
6524 ebb_regs[i]);
6525 if (!valid_p)
6526 return NULL;
6527 have_ebb = 1;
6528 }
6529 else
6530 have_ebb = 0;
6531
6532 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6533 by Linux. */
6534 feature = tdesc_find_feature (tdesc,
6535 "org.gnu.gdb.power.linux.pmu");
6536 if (feature != NULL)
6537 {
6538 valid_p = 1;
6539
6540 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6541 PPC_MMCR0_REGNUM,
6542 "mmcr0");
6543 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6544 PPC_MMCR2_REGNUM,
6545 "mmcr2");
6546 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6547 PPC_SIAR_REGNUM,
6548 "siar");
6549 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6550 PPC_SDAR_REGNUM,
6551 "sdar");
6552 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6553 PPC_SIER_REGNUM,
6554 "sier");
6555
6556 if (!valid_p)
6557 return NULL;
6558 have_pmu = 1;
6559 }
6560 else
6561 have_pmu = 0;
6562
6563 /* Hardware Transactional Memory Registers. */
6564 feature = tdesc_find_feature (tdesc,
6565 "org.gnu.gdb.power.htm.spr");
6566 if (feature != NULL)
6567 {
6568 static const char *const tm_spr_regs[] = {
6569 "tfhar", "texasr", "tfiar"
6570 };
6571
6572 valid_p = 1;
6573 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6574 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6575 PPC_TFHAR_REGNUM + i,
6576 tm_spr_regs[i]);
6577 if (!valid_p)
6578 return NULL;
6579
6580 have_htm_spr = 1;
6581 }
6582 else
6583 have_htm_spr = 0;
6584
6585 feature = tdesc_find_feature (tdesc,
6586 "org.gnu.gdb.power.htm.core");
6587 if (feature != NULL)
6588 {
6589 static const char *const cgprs[] = {
6590 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6591 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6592 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6593 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6594 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6595 };
6596
6597 valid_p = 1;
6598
6599 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6600 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6601 PPC_CR0_REGNUM + i,
6602 cgprs[i]);
6603 if (!valid_p)
6604 return NULL;
6605
6606 have_htm_core = 1;
6607 }
6608 else
6609 have_htm_core = 0;
6610
6611 feature = tdesc_find_feature (tdesc,
6612 "org.gnu.gdb.power.htm.fpu");
6613 if (feature != NULL)
6614 {
6615 valid_p = 1;
6616
6617 static const char *const cfprs[] = {
6618 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6619 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6620 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6621 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6622 "cf30", "cf31", "cfpscr"
6623 };
6624
6625 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6626 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6627 PPC_CF0_REGNUM + i,
6628 cfprs[i]);
6629
6630 if (!valid_p)
6631 return NULL;
6632 have_htm_fpu = 1;
6633 }
6634 else
6635 have_htm_fpu = 0;
6636
6637 feature = tdesc_find_feature (tdesc,
6638 "org.gnu.gdb.power.htm.altivec");
6639 if (feature != NULL)
6640 {
6641 valid_p = 1;
6642
6643 static const char *const cvmx[] = {
6644 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6645 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6646 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6647 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6648 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6649 "cvrsave"
6650 };
6651
6652 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6653 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6654 PPC_CVR0_REGNUM + i,
6655 cvmx[i]);
6656
6657 if (!valid_p)
6658 return NULL;
6659 have_htm_altivec = 1;
6660 }
6661 else
6662 have_htm_altivec = 0;
6663
6664 feature = tdesc_find_feature (tdesc,
6665 "org.gnu.gdb.power.htm.vsx");
6666 if (feature != NULL)
6667 {
6668 valid_p = 1;
6669
6670 static const char *const cvsx[] = {
6671 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6672 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6673 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6674 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6675 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6676 "cvs30h", "cvs31h"
6677 };
6678
6679 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6680 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6681 (PPC_CVSR0_UPPER_REGNUM
6682 + i),
6683 cvsx[i]);
6684
6685 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6686 return NULL;
6687 have_htm_vsx = 1;
6688 }
6689 else
6690 have_htm_vsx = 0;
6691
6692 feature = tdesc_find_feature (tdesc,
6693 "org.gnu.gdb.power.htm.ppr");
6694 if (feature != NULL)
6695 {
6696 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6697 PPC_CPPR_REGNUM, "cppr");
6698
6699 if (!valid_p)
6700 return NULL;
6701 have_htm_ppr = 1;
6702 }
6703 else
6704 have_htm_ppr = 0;
6705
6706 feature = tdesc_find_feature (tdesc,
6707 "org.gnu.gdb.power.htm.dscr");
6708 if (feature != NULL)
6709 {
6710 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6711 PPC_CDSCR_REGNUM, "cdscr");
6712
6713 if (!valid_p)
6714 return NULL;
6715 have_htm_dscr = 1;
6716 }
6717 else
6718 have_htm_dscr = 0;
6719
6720 feature = tdesc_find_feature (tdesc,
6721 "org.gnu.gdb.power.htm.tar");
6722 if (feature != NULL)
6723 {
6724 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6725 PPC_CTAR_REGNUM, "ctar");
6726
6727 if (!valid_p)
6728 return NULL;
6729 have_htm_tar = 1;
6730 }
6731 else
6732 have_htm_tar = 0;
6733 }
6734
6735 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6736 complain for a 32-bit binary on a 64-bit target; we do not yet
6737 support that. For instance, the 32-bit ABI routines expect
6738 32-bit GPRs.
6739
6740 As long as there isn't an explicit target description, we'll
6741 choose one based on the BFD architecture and get a word size
6742 matching the binary (probably powerpc:common or
6743 powerpc:common64). So there is only trouble if a 64-bit target
6744 supplies a 64-bit description while debugging a 32-bit
6745 binary. */
6746 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6747 return NULL;
6748
6749 #ifdef HAVE_ELF
6750 if (from_elf_exec)
6751 {
6752 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6753 {
6754 case 1:
6755 elf_abi = POWERPC_ELF_V1;
6756 break;
6757 case 2:
6758 elf_abi = POWERPC_ELF_V2;
6759 break;
6760 default:
6761 break;
6762 }
6763 }
6764
6765 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6766 {
6767 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6768 Tag_GNU_Power_ABI_FP) & 3)
6769 {
6770 case 1:
6771 soft_float_flag = AUTO_BOOLEAN_FALSE;
6772 break;
6773 case 2:
6774 soft_float_flag = AUTO_BOOLEAN_TRUE;
6775 break;
6776 default:
6777 break;
6778 }
6779 }
6780
6781 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6782 {
6783 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6784 Tag_GNU_Power_ABI_FP) >> 2)
6785 {
6786 case 1:
6787 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6788 break;
6789 case 3:
6790 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6791 break;
6792 default:
6793 break;
6794 }
6795 }
6796
6797 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6798 {
6799 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6800 Tag_GNU_Power_ABI_Vector))
6801 {
6802 case 1:
6803 vector_abi = POWERPC_VEC_GENERIC;
6804 break;
6805 case 2:
6806 vector_abi = POWERPC_VEC_ALTIVEC;
6807 break;
6808 case 3:
6809 vector_abi = POWERPC_VEC_SPE;
6810 break;
6811 default:
6812 break;
6813 }
6814 }
6815 #endif
6816
6817 /* At this point, the only supported ELF-based 64-bit little-endian
6818 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6819 default. All other supported ELF-based operating systems use the
6820 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6821 e.g. because we run a legacy binary, or have attached to a process
6822 and have not found any associated binary file, set the default
6823 according to this heuristic. */
6824 if (elf_abi == POWERPC_ELF_AUTO)
6825 {
6826 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6827 elf_abi = POWERPC_ELF_V2;
6828 else
6829 elf_abi = POWERPC_ELF_V1;
6830 }
6831
6832 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6833 soft_float = 1;
6834 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6835 soft_float = 0;
6836 else
6837 soft_float = !have_fpu;
6838
6839 /* If we have a hard float binary or setting but no floating point
6840 registers, downgrade to soft float anyway. We're still somewhat
6841 useful in this scenario. */
6842 if (!soft_float && !have_fpu)
6843 soft_float = 1;
6844
6845 /* Similarly for vector registers. */
6846 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6847 vector_abi = POWERPC_VEC_GENERIC;
6848
6849 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6850 vector_abi = POWERPC_VEC_GENERIC;
6851
6852 if (vector_abi == POWERPC_VEC_AUTO)
6853 {
6854 if (have_altivec)
6855 vector_abi = POWERPC_VEC_ALTIVEC;
6856 else if (have_spe)
6857 vector_abi = POWERPC_VEC_SPE;
6858 else
6859 vector_abi = POWERPC_VEC_GENERIC;
6860 }
6861
6862 /* Do not limit the vector ABI based on available hardware, since we
6863 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6864
6865 /* Find a candidate among extant architectures. */
6866 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6867 arches != NULL;
6868 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6869 {
6870 /* Word size in the various PowerPC bfd_arch_info structs isn't
6871 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6872 separate word size check. */
6873 tdep = gdbarch_tdep (arches->gdbarch);
6874 if (tdep && tdep->elf_abi != elf_abi)
6875 continue;
6876 if (tdep && tdep->soft_float != soft_float)
6877 continue;
6878 if (tdep && tdep->long_double_abi != long_double_abi)
6879 continue;
6880 if (tdep && tdep->vector_abi != vector_abi)
6881 continue;
6882 if (tdep && tdep->wordsize == wordsize)
6883 return arches->gdbarch;
6884 }
6885
6886 /* None found, create a new architecture from INFO, whose bfd_arch_info
6887 validity depends on the source:
6888 - executable useless
6889 - rs6000_host_arch() good
6890 - core file good
6891 - "set arch" trust blindly
6892 - GDB startup useless but harmless */
6893
6894 tdep = XCNEW (struct gdbarch_tdep);
6895 tdep->wordsize = wordsize;
6896 tdep->elf_abi = elf_abi;
6897 tdep->soft_float = soft_float;
6898 tdep->long_double_abi = long_double_abi;
6899 tdep->vector_abi = vector_abi;
6900
6901 gdbarch = gdbarch_alloc (&info, tdep);
6902
6903 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6904 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6905 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6906 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6907 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6908 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6909 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6910 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6911
6912 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6913 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6914 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6915 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6916 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6917 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6918 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6919 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6920 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6921 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6922 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6923 tdep->have_ebb = have_ebb;
6924
6925 /* If additional pmu registers are added, care must be taken when
6926 setting new fields in the tdep below, to maintain compatibility
6927 with features that only provide some of the registers. Currently
6928 gdb access to the pmu registers is only supported in linux, and
6929 linux only provides a subset of the pmu registers defined in the
6930 architecture. */
6931
6932 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6933 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6934 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6935 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6936 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6937
6938 tdep->have_htm_spr = have_htm_spr;
6939 tdep->have_htm_core = have_htm_core;
6940 tdep->have_htm_fpu = have_htm_fpu;
6941 tdep->have_htm_altivec = have_htm_altivec;
6942 tdep->have_htm_vsx = have_htm_vsx;
6943 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6944 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6945 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6946
6947 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6948 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6949 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6950 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6951
6952 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6953 GDB traditionally called it "ps", though, so let GDB add an
6954 alias. */
6955 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6956
6957 if (wordsize == 8)
6958 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6959 else
6960 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6961
6962 /* Set lr_frame_offset. */
6963 if (wordsize == 8)
6964 tdep->lr_frame_offset = 16;
6965 else
6966 tdep->lr_frame_offset = 4;
6967
6968 if (have_spe || have_dfp || have_altivec
6969 || have_vsx || have_htm_fpu || have_htm_vsx)
6970 {
6971 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6972 set_gdbarch_pseudo_register_write (gdbarch,
6973 rs6000_pseudo_register_write);
6974 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6975 rs6000_ax_pseudo_register_collect);
6976 }
6977
6978 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6979
6980 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6981
6982 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6983
6984 if (have_spe)
6985 num_pseudoregs += 32;
6986 if (have_dfp)
6987 num_pseudoregs += 16;
6988 if (have_altivec)
6989 num_pseudoregs += 32;
6990 if (have_vsx)
6991 /* Include both VSX and Extended FP registers. */
6992 num_pseudoregs += 96;
6993 if (have_htm_fpu)
6994 num_pseudoregs += 16;
6995 /* Include both checkpointed VSX and EFP registers. */
6996 if (have_htm_vsx)
6997 num_pseudoregs += 64 + 32;
6998
6999 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7000
7001 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7002 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7003 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7004 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7005 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7006 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7007 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7008 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7009 set_gdbarch_char_signed (gdbarch, 0);
7010
7011 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7012 if (wordsize == 8)
7013 /* PPC64 SYSV. */
7014 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7015
7016 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7017 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7018 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7019
7020 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7021 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7022
7023 if (wordsize == 4)
7024 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7025 else if (wordsize == 8)
7026 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7027
7028 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7029 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7030 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7031
7032 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7033
7034 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7035 rs6000_breakpoint::kind_from_pc);
7036 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7037 rs6000_breakpoint::bp_from_kind);
7038
7039 /* The value of symbols of type N_SO and N_FUN maybe null when
7040 it shouldn't be. */
7041 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7042
7043 /* Handles single stepping of atomic sequences. */
7044 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7045
7046 /* Not sure on this. FIXMEmgo */
7047 set_gdbarch_frame_args_skip (gdbarch, 8);
7048
7049 /* Helpers for function argument information. */
7050 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7051
7052 /* Trampoline. */
7053 set_gdbarch_in_solib_return_trampoline
7054 (gdbarch, rs6000_in_solib_return_trampoline);
7055 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7056
7057 /* Hook in the DWARF CFI frame unwinder. */
7058 dwarf2_append_unwinders (gdbarch);
7059 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7060
7061 /* Frame handling. */
7062 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7063
7064 /* Setup displaced stepping. */
7065 set_gdbarch_displaced_step_copy_insn (gdbarch,
7066 ppc_displaced_step_copy_insn);
7067 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7068 ppc_displaced_step_hw_singlestep);
7069 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7070 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7071 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7072 set_gdbarch_displaced_step_restore_all_in_ptid
7073 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
7074
7075 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7076
7077 /* Hook in ABI-specific overrides, if they have been registered. */
7078 info.target_desc = tdesc;
7079 info.tdesc_data = tdesc_data.get ();
7080 gdbarch_init_osabi (info, gdbarch);
7081
7082 switch (info.osabi)
7083 {
7084 case GDB_OSABI_LINUX:
7085 case GDB_OSABI_NETBSD:
7086 case GDB_OSABI_UNKNOWN:
7087 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7088 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7089 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7090 break;
7091 default:
7092 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7093
7094 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7095 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7096 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7097 }
7098
7099 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7100 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7101 rs6000_pseudo_register_reggroup_p);
7102 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7103
7104 /* Override the normal target description method to make the SPE upper
7105 halves anonymous. */
7106 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7107
7108 /* Choose register numbers for all supported pseudo-registers. */
7109 tdep->ppc_ev0_regnum = -1;
7110 tdep->ppc_dl0_regnum = -1;
7111 tdep->ppc_v0_alias_regnum = -1;
7112 tdep->ppc_vsr0_regnum = -1;
7113 tdep->ppc_efpr0_regnum = -1;
7114 tdep->ppc_cdl0_regnum = -1;
7115 tdep->ppc_cvsr0_regnum = -1;
7116 tdep->ppc_cefpr0_regnum = -1;
7117
7118 cur_reg = gdbarch_num_regs (gdbarch);
7119
7120 if (have_spe)
7121 {
7122 tdep->ppc_ev0_regnum = cur_reg;
7123 cur_reg += 32;
7124 }
7125 if (have_dfp)
7126 {
7127 tdep->ppc_dl0_regnum = cur_reg;
7128 cur_reg += 16;
7129 }
7130 if (have_altivec)
7131 {
7132 tdep->ppc_v0_alias_regnum = cur_reg;
7133 cur_reg += 32;
7134 }
7135 if (have_vsx)
7136 {
7137 tdep->ppc_vsr0_regnum = cur_reg;
7138 cur_reg += 64;
7139 tdep->ppc_efpr0_regnum = cur_reg;
7140 cur_reg += 32;
7141 }
7142 if (have_htm_fpu)
7143 {
7144 tdep->ppc_cdl0_regnum = cur_reg;
7145 cur_reg += 16;
7146 }
7147 if (have_htm_vsx)
7148 {
7149 tdep->ppc_cvsr0_regnum = cur_reg;
7150 cur_reg += 64;
7151 tdep->ppc_cefpr0_regnum = cur_reg;
7152 cur_reg += 32;
7153 }
7154
7155 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7156
7157 /* Register the ravenscar_arch_ops. */
7158 if (mach == bfd_mach_ppc_e500)
7159 register_e500_ravenscar_ops (gdbarch);
7160 else
7161 register_ppc_ravenscar_ops (gdbarch);
7162
7163 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7164 set_gdbarch_valid_disassembler_options (gdbarch,
7165 disassembler_options_powerpc ());
7166
7167 return gdbarch;
7168 }
7169
7170 static void
7171 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7172 {
7173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7174
7175 if (tdep == NULL)
7176 return;
7177
7178 /* FIXME: Dump gdbarch_tdep. */
7179 }
7180
7181 static void
7182 powerpc_set_soft_float (const char *args, int from_tty,
7183 struct cmd_list_element *c)
7184 {
7185 struct gdbarch_info info;
7186
7187 /* Update the architecture. */
7188 gdbarch_info_init (&info);
7189 if (!gdbarch_update_p (info))
7190 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7191 }
7192
7193 static void
7194 powerpc_set_vector_abi (const char *args, int from_tty,
7195 struct cmd_list_element *c)
7196 {
7197 struct gdbarch_info info;
7198 int vector_abi;
7199
7200 for (vector_abi = POWERPC_VEC_AUTO;
7201 vector_abi != POWERPC_VEC_LAST;
7202 vector_abi++)
7203 if (strcmp (powerpc_vector_abi_string,
7204 powerpc_vector_strings[vector_abi]) == 0)
7205 {
7206 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7207 break;
7208 }
7209
7210 if (vector_abi == POWERPC_VEC_LAST)
7211 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7212 powerpc_vector_abi_string);
7213
7214 /* Update the architecture. */
7215 gdbarch_info_init (&info);
7216 if (!gdbarch_update_p (info))
7217 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7218 }
7219
7220 /* Show the current setting of the exact watchpoints flag. */
7221
7222 static void
7223 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7224 struct cmd_list_element *c,
7225 const char *value)
7226 {
7227 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7228 }
7229
7230 /* Read a PPC instruction from memory. */
7231
7232 static unsigned int
7233 read_insn (struct frame_info *frame, CORE_ADDR pc)
7234 {
7235 struct gdbarch *gdbarch = get_frame_arch (frame);
7236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7237
7238 return read_memory_unsigned_integer (pc, 4, byte_order);
7239 }
7240
7241 /* Return non-zero if the instructions at PC match the series
7242 described in PATTERN, or zero otherwise. PATTERN is an array of
7243 'struct ppc_insn_pattern' objects, terminated by an entry whose
7244 mask is zero.
7245
7246 When the match is successful, fill INSNS[i] with what PATTERN[i]
7247 matched. If PATTERN[i] is optional, and the instruction wasn't
7248 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7249 INSNS should have as many elements as PATTERN, minus the terminator.
7250 Note that, if PATTERN contains optional instructions which aren't
7251 present in memory, then INSNS will have holes, so INSNS[i] isn't
7252 necessarily the i'th instruction in memory. */
7253
7254 int
7255 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7256 const struct ppc_insn_pattern *pattern,
7257 unsigned int *insns)
7258 {
7259 int i;
7260 unsigned int insn;
7261
7262 for (i = 0, insn = 0; pattern[i].mask; i++)
7263 {
7264 if (insn == 0)
7265 insn = read_insn (frame, pc);
7266 insns[i] = 0;
7267 if ((insn & pattern[i].mask) == pattern[i].data)
7268 {
7269 insns[i] = insn;
7270 pc += 4;
7271 insn = 0;
7272 }
7273 else if (!pattern[i].optional)
7274 return 0;
7275 }
7276
7277 return 1;
7278 }
7279
7280 /* Return the 'd' field of the d-form instruction INSN, properly
7281 sign-extended. */
7282
7283 CORE_ADDR
7284 ppc_insn_d_field (unsigned int insn)
7285 {
7286 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7287 }
7288
7289 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7290 zero bits concatenated at the right, and properly
7291 sign-extended. */
7292
7293 CORE_ADDR
7294 ppc_insn_ds_field (unsigned int insn)
7295 {
7296 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7297 }
7298
7299 /* Initialization code. */
7300
7301 void _initialize_rs6000_tdep ();
7302 void
7303 _initialize_rs6000_tdep ()
7304 {
7305 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7306 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7307
7308 /* Initialize the standard target descriptions. */
7309 initialize_tdesc_powerpc_32 ();
7310 initialize_tdesc_powerpc_altivec32 ();
7311 initialize_tdesc_powerpc_vsx32 ();
7312 initialize_tdesc_powerpc_403 ();
7313 initialize_tdesc_powerpc_403gc ();
7314 initialize_tdesc_powerpc_405 ();
7315 initialize_tdesc_powerpc_505 ();
7316 initialize_tdesc_powerpc_601 ();
7317 initialize_tdesc_powerpc_602 ();
7318 initialize_tdesc_powerpc_603 ();
7319 initialize_tdesc_powerpc_604 ();
7320 initialize_tdesc_powerpc_64 ();
7321 initialize_tdesc_powerpc_altivec64 ();
7322 initialize_tdesc_powerpc_vsx64 ();
7323 initialize_tdesc_powerpc_7400 ();
7324 initialize_tdesc_powerpc_750 ();
7325 initialize_tdesc_powerpc_860 ();
7326 initialize_tdesc_powerpc_e500 ();
7327 initialize_tdesc_rs6000 ();
7328
7329 /* Add root prefix command for all "set powerpc"/"show powerpc"
7330 commands. */
7331 add_basic_prefix_cmd ("powerpc", no_class,
7332 _("Various PowerPC-specific commands."),
7333 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7334
7335 add_show_prefix_cmd ("powerpc", no_class,
7336 _("Various PowerPC-specific commands."),
7337 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7338
7339 /* Add a command to allow the user to force the ABI. */
7340 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7341 &powerpc_soft_float_global,
7342 _("Set whether to use a soft-float ABI."),
7343 _("Show whether to use a soft-float ABI."),
7344 NULL,
7345 powerpc_set_soft_float, NULL,
7346 &setpowerpccmdlist, &showpowerpccmdlist);
7347
7348 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7349 &powerpc_vector_abi_string,
7350 _("Set the vector ABI."),
7351 _("Show the vector ABI."),
7352 NULL, powerpc_set_vector_abi, NULL,
7353 &setpowerpccmdlist, &showpowerpccmdlist);
7354
7355 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7356 &target_exact_watchpoints,
7357 _("\
7358 Set whether to use just one debug register for watchpoints on scalars."),
7359 _("\
7360 Show whether to use just one debug register for watchpoints on scalars."),
7361 _("\
7362 If true, GDB will use only one debug register when watching a variable of\n\
7363 scalar type, thus assuming that the variable is accessed through the address\n\
7364 of its first byte."),
7365 NULL, show_powerpc_exact_watchpoints,
7366 &setpowerpccmdlist, &showpowerpccmdlist);
7367 }
This page took 0.183273 seconds and 4 git commands to generate.