gdb.base/nodebug.exp: Rename called functions
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void overlay_auto_command (char *, int);
97
98 static void overlay_manual_command (char *, int);
99
100 static void overlay_off_command (char *, int);
101
102 static void overlay_load_command (char *, int);
103
104 static void overlay_command (char *, int);
105
106 static void simple_free_overlay_table (void);
107
108 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
110
111 static int simple_read_overlay_table (void);
112
113 static int simple_overlay_update_1 (struct obj_section *);
114
115 static void info_ext_lang_command (char *args, int from_tty);
116
117 static void symfile_find_segment_sections (struct objfile *objfile);
118
119 /* List of all available sym_fns. On gdb startup, each object file reader
120 calls add_symtab_fns() to register information on each format it is
121 prepared to read. */
122
123 typedef struct
124 {
125 /* BFD flavour that we handle. */
126 enum bfd_flavour sym_flavour;
127
128 /* The "vtable" of symbol functions. */
129 const struct sym_fns *sym_fns;
130 } registered_sym_fns;
131
132 DEF_VEC_O (registered_sym_fns);
133
134 static VEC (registered_sym_fns) *symtab_fns = NULL;
135
136 /* Values for "set print symbol-loading". */
137
138 const char print_symbol_loading_off[] = "off";
139 const char print_symbol_loading_brief[] = "brief";
140 const char print_symbol_loading_full[] = "full";
141 static const char *print_symbol_loading_enums[] =
142 {
143 print_symbol_loading_off,
144 print_symbol_loading_brief,
145 print_symbol_loading_full,
146 NULL
147 };
148 static const char *print_symbol_loading = print_symbol_loading_full;
149
150 /* If non-zero, shared library symbols will be added automatically
151 when the inferior is created, new libraries are loaded, or when
152 attaching to the inferior. This is almost always what users will
153 want to have happen; but for very large programs, the startup time
154 will be excessive, and so if this is a problem, the user can clear
155 this flag and then add the shared library symbols as needed. Note
156 that there is a potential for confusion, since if the shared
157 library symbols are not loaded, commands like "info fun" will *not*
158 report all the functions that are actually present. */
159
160 int auto_solib_add = 1;
161 \f
162
163 /* Return non-zero if symbol-loading messages should be printed.
164 FROM_TTY is the standard from_tty argument to gdb commands.
165 If EXEC is non-zero the messages are for the executable.
166 Otherwise, messages are for shared libraries.
167 If FULL is non-zero then the caller is printing a detailed message.
168 E.g., the message includes the shared library name.
169 Otherwise, the caller is printing a brief "summary" message. */
170
171 int
172 print_symbol_loading_p (int from_tty, int exec, int full)
173 {
174 if (!from_tty && !info_verbose)
175 return 0;
176
177 if (exec)
178 {
179 /* We don't check FULL for executables, there are few such
180 messages, therefore brief == full. */
181 return print_symbol_loading != print_symbol_loading_off;
182 }
183 if (full)
184 return print_symbol_loading == print_symbol_loading_full;
185 return print_symbol_loading == print_symbol_loading_brief;
186 }
187
188 /* True if we are reading a symbol table. */
189
190 int currently_reading_symtab = 0;
191
192 /* Increment currently_reading_symtab and return a cleanup that can be
193 used to decrement it. */
194
195 scoped_restore_tmpl<int>
196 increment_reading_symtab (void)
197 {
198 gdb_assert (currently_reading_symtab >= 0);
199 return make_scoped_restore (&currently_reading_symtab,
200 currently_reading_symtab + 1);
201 }
202
203 /* Remember the lowest-addressed loadable section we've seen.
204 This function is called via bfd_map_over_sections.
205
206 In case of equal vmas, the section with the largest size becomes the
207 lowest-addressed loadable section.
208
209 If the vmas and sizes are equal, the last section is considered the
210 lowest-addressed loadable section. */
211
212 void
213 find_lowest_section (bfd *abfd, asection *sect, void *obj)
214 {
215 asection **lowest = (asection **) obj;
216
217 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
218 return;
219 if (!*lowest)
220 *lowest = sect; /* First loadable section */
221 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
222 *lowest = sect; /* A lower loadable section */
223 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
224 && (bfd_section_size (abfd, (*lowest))
225 <= bfd_section_size (abfd, sect)))
226 *lowest = sect;
227 }
228
229 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
230 new object's 'num_sections' field is set to 0; it must be updated
231 by the caller. */
232
233 struct section_addr_info *
234 alloc_section_addr_info (size_t num_sections)
235 {
236 struct section_addr_info *sap;
237 size_t size;
238
239 size = (sizeof (struct section_addr_info)
240 + sizeof (struct other_sections) * (num_sections - 1));
241 sap = (struct section_addr_info *) xmalloc (size);
242 memset (sap, 0, size);
243
244 return sap;
245 }
246
247 /* Build (allocate and populate) a section_addr_info struct from
248 an existing section table. */
249
250 extern struct section_addr_info *
251 build_section_addr_info_from_section_table (const struct target_section *start,
252 const struct target_section *end)
253 {
254 struct section_addr_info *sap;
255 const struct target_section *stp;
256 int oidx;
257
258 sap = alloc_section_addr_info (end - start);
259
260 for (stp = start, oidx = 0; stp != end; stp++)
261 {
262 struct bfd_section *asect = stp->the_bfd_section;
263 bfd *abfd = asect->owner;
264
265 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
266 && oidx < end - start)
267 {
268 sap->other[oidx].addr = stp->addr;
269 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
270 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
271 oidx++;
272 }
273 }
274
275 sap->num_sections = oidx;
276
277 return sap;
278 }
279
280 /* Create a section_addr_info from section offsets in ABFD. */
281
282 static struct section_addr_info *
283 build_section_addr_info_from_bfd (bfd *abfd)
284 {
285 struct section_addr_info *sap;
286 int i;
287 struct bfd_section *sec;
288
289 sap = alloc_section_addr_info (bfd_count_sections (abfd));
290 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
291 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
292 {
293 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
294 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
295 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
296 i++;
297 }
298
299 sap->num_sections = i;
300
301 return sap;
302 }
303
304 /* Create a section_addr_info from section offsets in OBJFILE. */
305
306 struct section_addr_info *
307 build_section_addr_info_from_objfile (const struct objfile *objfile)
308 {
309 struct section_addr_info *sap;
310 int i;
311
312 /* Before reread_symbols gets rewritten it is not safe to call:
313 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
314 */
315 sap = build_section_addr_info_from_bfd (objfile->obfd);
316 for (i = 0; i < sap->num_sections; i++)
317 {
318 int sectindex = sap->other[i].sectindex;
319
320 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
321 }
322 return sap;
323 }
324
325 /* Free all memory allocated by build_section_addr_info_from_section_table. */
326
327 extern void
328 free_section_addr_info (struct section_addr_info *sap)
329 {
330 int idx;
331
332 for (idx = 0; idx < sap->num_sections; idx++)
333 xfree (sap->other[idx].name);
334 xfree (sap);
335 }
336
337 /* Initialize OBJFILE's sect_index_* members. */
338
339 static void
340 init_objfile_sect_indices (struct objfile *objfile)
341 {
342 asection *sect;
343 int i;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".text");
346 if (sect)
347 objfile->sect_index_text = sect->index;
348
349 sect = bfd_get_section_by_name (objfile->obfd, ".data");
350 if (sect)
351 objfile->sect_index_data = sect->index;
352
353 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
354 if (sect)
355 objfile->sect_index_bss = sect->index;
356
357 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
358 if (sect)
359 objfile->sect_index_rodata = sect->index;
360
361 /* This is where things get really weird... We MUST have valid
362 indices for the various sect_index_* members or gdb will abort.
363 So if for example, there is no ".text" section, we have to
364 accomodate that. First, check for a file with the standard
365 one or two segments. */
366
367 symfile_find_segment_sections (objfile);
368
369 /* Except when explicitly adding symbol files at some address,
370 section_offsets contains nothing but zeros, so it doesn't matter
371 which slot in section_offsets the individual sect_index_* members
372 index into. So if they are all zero, it is safe to just point
373 all the currently uninitialized indices to the first slot. But
374 beware: if this is the main executable, it may be relocated
375 later, e.g. by the remote qOffsets packet, and then this will
376 be wrong! That's why we try segments first. */
377
378 for (i = 0; i < objfile->num_sections; i++)
379 {
380 if (ANOFFSET (objfile->section_offsets, i) != 0)
381 {
382 break;
383 }
384 }
385 if (i == objfile->num_sections)
386 {
387 if (objfile->sect_index_text == -1)
388 objfile->sect_index_text = 0;
389 if (objfile->sect_index_data == -1)
390 objfile->sect_index_data = 0;
391 if (objfile->sect_index_bss == -1)
392 objfile->sect_index_bss = 0;
393 if (objfile->sect_index_rodata == -1)
394 objfile->sect_index_rodata = 0;
395 }
396 }
397
398 /* The arguments to place_section. */
399
400 struct place_section_arg
401 {
402 struct section_offsets *offsets;
403 CORE_ADDR lowest;
404 };
405
406 /* Find a unique offset to use for loadable section SECT if
407 the user did not provide an offset. */
408
409 static void
410 place_section (bfd *abfd, asection *sect, void *obj)
411 {
412 struct place_section_arg *arg = (struct place_section_arg *) obj;
413 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
414 int done;
415 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
416
417 /* We are only interested in allocated sections. */
418 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
419 return;
420
421 /* If the user specified an offset, honor it. */
422 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
423 return;
424
425 /* Otherwise, let's try to find a place for the section. */
426 start_addr = (arg->lowest + align - 1) & -align;
427
428 do {
429 asection *cur_sec;
430
431 done = 1;
432
433 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
434 {
435 int indx = cur_sec->index;
436
437 /* We don't need to compare against ourself. */
438 if (cur_sec == sect)
439 continue;
440
441 /* We can only conflict with allocated sections. */
442 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
443 continue;
444
445 /* If the section offset is 0, either the section has not been placed
446 yet, or it was the lowest section placed (in which case LOWEST
447 will be past its end). */
448 if (offsets[indx] == 0)
449 continue;
450
451 /* If this section would overlap us, then we must move up. */
452 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
453 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
454 {
455 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
456 start_addr = (start_addr + align - 1) & -align;
457 done = 0;
458 break;
459 }
460
461 /* Otherwise, we appear to be OK. So far. */
462 }
463 }
464 while (!done);
465
466 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
467 arg->lowest = start_addr + bfd_get_section_size (sect);
468 }
469
470 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
471 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
472 entries. */
473
474 void
475 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
476 int num_sections,
477 const struct section_addr_info *addrs)
478 {
479 int i;
480
481 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
482
483 /* Now calculate offsets for section that were specified by the caller. */
484 for (i = 0; i < addrs->num_sections; i++)
485 {
486 const struct other_sections *osp;
487
488 osp = &addrs->other[i];
489 if (osp->sectindex == -1)
490 continue;
491
492 /* Record all sections in offsets. */
493 /* The section_offsets in the objfile are here filled in using
494 the BFD index. */
495 section_offsets->offsets[osp->sectindex] = osp->addr;
496 }
497 }
498
499 /* Transform section name S for a name comparison. prelink can split section
500 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
501 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
502 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
503 (`.sbss') section has invalid (increased) virtual address. */
504
505 static const char *
506 addr_section_name (const char *s)
507 {
508 if (strcmp (s, ".dynbss") == 0)
509 return ".bss";
510 if (strcmp (s, ".sdynbss") == 0)
511 return ".sbss";
512
513 return s;
514 }
515
516 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
517 their (name, sectindex) pair. sectindex makes the sort by name stable. */
518
519 static int
520 addrs_section_compar (const void *ap, const void *bp)
521 {
522 const struct other_sections *a = *((struct other_sections **) ap);
523 const struct other_sections *b = *((struct other_sections **) bp);
524 int retval;
525
526 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
527 if (retval)
528 return retval;
529
530 return a->sectindex - b->sectindex;
531 }
532
533 /* Provide sorted array of pointers to sections of ADDRS. The array is
534 terminated by NULL. Caller is responsible to call xfree for it. */
535
536 static struct other_sections **
537 addrs_section_sort (struct section_addr_info *addrs)
538 {
539 struct other_sections **array;
540 int i;
541
542 /* `+ 1' for the NULL terminator. */
543 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
544 for (i = 0; i < addrs->num_sections; i++)
545 array[i] = &addrs->other[i];
546 array[i] = NULL;
547
548 qsort (array, i, sizeof (*array), addrs_section_compar);
549
550 return array;
551 }
552
553 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
554 also SECTINDEXes specific to ABFD there. This function can be used to
555 rebase ADDRS to start referencing different BFD than before. */
556
557 void
558 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
559 {
560 asection *lower_sect;
561 CORE_ADDR lower_offset;
562 int i;
563 struct cleanup *my_cleanup;
564 struct section_addr_info *abfd_addrs;
565 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
566 struct other_sections **addrs_to_abfd_addrs;
567
568 /* Find lowest loadable section to be used as starting point for
569 continguous sections. */
570 lower_sect = NULL;
571 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
572 if (lower_sect == NULL)
573 {
574 warning (_("no loadable sections found in added symbol-file %s"),
575 bfd_get_filename (abfd));
576 lower_offset = 0;
577 }
578 else
579 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
580
581 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
582 in ABFD. Section names are not unique - there can be multiple sections of
583 the same name. Also the sections of the same name do not have to be
584 adjacent to each other. Some sections may be present only in one of the
585 files. Even sections present in both files do not have to be in the same
586 order.
587
588 Use stable sort by name for the sections in both files. Then linearly
589 scan both lists matching as most of the entries as possible. */
590
591 addrs_sorted = addrs_section_sort (addrs);
592 my_cleanup = make_cleanup (xfree, addrs_sorted);
593
594 abfd_addrs = build_section_addr_info_from_bfd (abfd);
595 make_cleanup_free_section_addr_info (abfd_addrs);
596 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
597 make_cleanup (xfree, abfd_addrs_sorted);
598
599 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
600 ABFD_ADDRS_SORTED. */
601
602 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
603 make_cleanup (xfree, addrs_to_abfd_addrs);
604
605 while (*addrs_sorted)
606 {
607 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
608
609 while (*abfd_addrs_sorted
610 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
611 sect_name) < 0)
612 abfd_addrs_sorted++;
613
614 if (*abfd_addrs_sorted
615 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
616 sect_name) == 0)
617 {
618 int index_in_addrs;
619
620 /* Make the found item directly addressable from ADDRS. */
621 index_in_addrs = *addrs_sorted - addrs->other;
622 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
623 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
624
625 /* Never use the same ABFD entry twice. */
626 abfd_addrs_sorted++;
627 }
628
629 addrs_sorted++;
630 }
631
632 /* Calculate offsets for the loadable sections.
633 FIXME! Sections must be in order of increasing loadable section
634 so that contiguous sections can use the lower-offset!!!
635
636 Adjust offsets if the segments are not contiguous.
637 If the section is contiguous, its offset should be set to
638 the offset of the highest loadable section lower than it
639 (the loadable section directly below it in memory).
640 this_offset = lower_offset = lower_addr - lower_orig_addr */
641
642 for (i = 0; i < addrs->num_sections; i++)
643 {
644 struct other_sections *sect = addrs_to_abfd_addrs[i];
645
646 if (sect)
647 {
648 /* This is the index used by BFD. */
649 addrs->other[i].sectindex = sect->sectindex;
650
651 if (addrs->other[i].addr != 0)
652 {
653 addrs->other[i].addr -= sect->addr;
654 lower_offset = addrs->other[i].addr;
655 }
656 else
657 addrs->other[i].addr = lower_offset;
658 }
659 else
660 {
661 /* addr_section_name transformation is not used for SECT_NAME. */
662 const char *sect_name = addrs->other[i].name;
663
664 /* This section does not exist in ABFD, which is normally
665 unexpected and we want to issue a warning.
666
667 However, the ELF prelinker does create a few sections which are
668 marked in the main executable as loadable (they are loaded in
669 memory from the DYNAMIC segment) and yet are not present in
670 separate debug info files. This is fine, and should not cause
671 a warning. Shared libraries contain just the section
672 ".gnu.liblist" but it is not marked as loadable there. There is
673 no other way to identify them than by their name as the sections
674 created by prelink have no special flags.
675
676 For the sections `.bss' and `.sbss' see addr_section_name. */
677
678 if (!(strcmp (sect_name, ".gnu.liblist") == 0
679 || strcmp (sect_name, ".gnu.conflict") == 0
680 || (strcmp (sect_name, ".bss") == 0
681 && i > 0
682 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
683 && addrs_to_abfd_addrs[i - 1] != NULL)
684 || (strcmp (sect_name, ".sbss") == 0
685 && i > 0
686 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
687 && addrs_to_abfd_addrs[i - 1] != NULL)))
688 warning (_("section %s not found in %s"), sect_name,
689 bfd_get_filename (abfd));
690
691 addrs->other[i].addr = 0;
692 addrs->other[i].sectindex = -1;
693 }
694 }
695
696 do_cleanups (my_cleanup);
697 }
698
699 /* Parse the user's idea of an offset for dynamic linking, into our idea
700 of how to represent it for fast symbol reading. This is the default
701 version of the sym_fns.sym_offsets function for symbol readers that
702 don't need to do anything special. It allocates a section_offsets table
703 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
704
705 void
706 default_symfile_offsets (struct objfile *objfile,
707 const struct section_addr_info *addrs)
708 {
709 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
710 objfile->section_offsets = (struct section_offsets *)
711 obstack_alloc (&objfile->objfile_obstack,
712 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
713 relative_addr_info_to_section_offsets (objfile->section_offsets,
714 objfile->num_sections, addrs);
715
716 /* For relocatable files, all loadable sections will start at zero.
717 The zero is meaningless, so try to pick arbitrary addresses such
718 that no loadable sections overlap. This algorithm is quadratic,
719 but the number of sections in a single object file is generally
720 small. */
721 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
722 {
723 struct place_section_arg arg;
724 bfd *abfd = objfile->obfd;
725 asection *cur_sec;
726
727 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
728 /* We do not expect this to happen; just skip this step if the
729 relocatable file has a section with an assigned VMA. */
730 if (bfd_section_vma (abfd, cur_sec) != 0)
731 break;
732
733 if (cur_sec == NULL)
734 {
735 CORE_ADDR *offsets = objfile->section_offsets->offsets;
736
737 /* Pick non-overlapping offsets for sections the user did not
738 place explicitly. */
739 arg.offsets = objfile->section_offsets;
740 arg.lowest = 0;
741 bfd_map_over_sections (objfile->obfd, place_section, &arg);
742
743 /* Correctly filling in the section offsets is not quite
744 enough. Relocatable files have two properties that
745 (most) shared objects do not:
746
747 - Their debug information will contain relocations. Some
748 shared libraries do also, but many do not, so this can not
749 be assumed.
750
751 - If there are multiple code sections they will be loaded
752 at different relative addresses in memory than they are
753 in the objfile, since all sections in the file will start
754 at address zero.
755
756 Because GDB has very limited ability to map from an
757 address in debug info to the correct code section,
758 it relies on adding SECT_OFF_TEXT to things which might be
759 code. If we clear all the section offsets, and set the
760 section VMAs instead, then symfile_relocate_debug_section
761 will return meaningful debug information pointing at the
762 correct sections.
763
764 GDB has too many different data structures for section
765 addresses - a bfd, objfile, and so_list all have section
766 tables, as does exec_ops. Some of these could probably
767 be eliminated. */
768
769 for (cur_sec = abfd->sections; cur_sec != NULL;
770 cur_sec = cur_sec->next)
771 {
772 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
773 continue;
774
775 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
776 exec_set_section_address (bfd_get_filename (abfd),
777 cur_sec->index,
778 offsets[cur_sec->index]);
779 offsets[cur_sec->index] = 0;
780 }
781 }
782 }
783
784 /* Remember the bfd indexes for the .text, .data, .bss and
785 .rodata sections. */
786 init_objfile_sect_indices (objfile);
787 }
788
789 /* Divide the file into segments, which are individual relocatable units.
790 This is the default version of the sym_fns.sym_segments function for
791 symbol readers that do not have an explicit representation of segments.
792 It assumes that object files do not have segments, and fully linked
793 files have a single segment. */
794
795 struct symfile_segment_data *
796 default_symfile_segments (bfd *abfd)
797 {
798 int num_sections, i;
799 asection *sect;
800 struct symfile_segment_data *data;
801 CORE_ADDR low, high;
802
803 /* Relocatable files contain enough information to position each
804 loadable section independently; they should not be relocated
805 in segments. */
806 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
807 return NULL;
808
809 /* Make sure there is at least one loadable section in the file. */
810 for (sect = abfd->sections; sect != NULL; sect = sect->next)
811 {
812 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
813 continue;
814
815 break;
816 }
817 if (sect == NULL)
818 return NULL;
819
820 low = bfd_get_section_vma (abfd, sect);
821 high = low + bfd_get_section_size (sect);
822
823 data = XCNEW (struct symfile_segment_data);
824 data->num_segments = 1;
825 data->segment_bases = XCNEW (CORE_ADDR);
826 data->segment_sizes = XCNEW (CORE_ADDR);
827
828 num_sections = bfd_count_sections (abfd);
829 data->segment_info = XCNEWVEC (int, num_sections);
830
831 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
832 {
833 CORE_ADDR vma;
834
835 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
836 continue;
837
838 vma = bfd_get_section_vma (abfd, sect);
839 if (vma < low)
840 low = vma;
841 if (vma + bfd_get_section_size (sect) > high)
842 high = vma + bfd_get_section_size (sect);
843
844 data->segment_info[i] = 1;
845 }
846
847 data->segment_bases[0] = low;
848 data->segment_sizes[0] = high - low;
849
850 return data;
851 }
852
853 /* This is a convenience function to call sym_read for OBJFILE and
854 possibly force the partial symbols to be read. */
855
856 static void
857 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
858 {
859 (*objfile->sf->sym_read) (objfile, add_flags);
860 objfile->per_bfd->minsyms_read = true;
861
862 /* find_separate_debug_file_in_section should be called only if there is
863 single binary with no existing separate debug info file. */
864 if (!objfile_has_partial_symbols (objfile)
865 && objfile->separate_debug_objfile == NULL
866 && objfile->separate_debug_objfile_backlink == NULL)
867 {
868 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
869
870 if (abfd != NULL)
871 {
872 /* find_separate_debug_file_in_section uses the same filename for the
873 virtual section-as-bfd like the bfd filename containing the
874 section. Therefore use also non-canonical name form for the same
875 file containing the section. */
876 symbol_file_add_separate (abfd.get (), objfile->original_name,
877 add_flags, objfile);
878 }
879 }
880 if ((add_flags & SYMFILE_NO_READ) == 0)
881 require_partial_symbols (objfile, 0);
882 }
883
884 /* Initialize entry point information for this objfile. */
885
886 static void
887 init_entry_point_info (struct objfile *objfile)
888 {
889 struct entry_info *ei = &objfile->per_bfd->ei;
890
891 if (ei->initialized)
892 return;
893 ei->initialized = 1;
894
895 /* Save startup file's range of PC addresses to help blockframe.c
896 decide where the bottom of the stack is. */
897
898 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
899 {
900 /* Executable file -- record its entry point so we'll recognize
901 the startup file because it contains the entry point. */
902 ei->entry_point = bfd_get_start_address (objfile->obfd);
903 ei->entry_point_p = 1;
904 }
905 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
906 && bfd_get_start_address (objfile->obfd) != 0)
907 {
908 /* Some shared libraries may have entry points set and be
909 runnable. There's no clear way to indicate this, so just check
910 for values other than zero. */
911 ei->entry_point = bfd_get_start_address (objfile->obfd);
912 ei->entry_point_p = 1;
913 }
914 else
915 {
916 /* Examination of non-executable.o files. Short-circuit this stuff. */
917 ei->entry_point_p = 0;
918 }
919
920 if (ei->entry_point_p)
921 {
922 struct obj_section *osect;
923 CORE_ADDR entry_point = ei->entry_point;
924 int found;
925
926 /* Make certain that the address points at real code, and not a
927 function descriptor. */
928 entry_point
929 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
930 entry_point,
931 &current_target);
932
933 /* Remove any ISA markers, so that this matches entries in the
934 symbol table. */
935 ei->entry_point
936 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
937
938 found = 0;
939 ALL_OBJFILE_OSECTIONS (objfile, osect)
940 {
941 struct bfd_section *sect = osect->the_bfd_section;
942
943 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
944 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
945 + bfd_get_section_size (sect)))
946 {
947 ei->the_bfd_section_index
948 = gdb_bfd_section_index (objfile->obfd, sect);
949 found = 1;
950 break;
951 }
952 }
953
954 if (!found)
955 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
956 }
957 }
958
959 /* Process a symbol file, as either the main file or as a dynamically
960 loaded file.
961
962 This function does not set the OBJFILE's entry-point info.
963
964 OBJFILE is where the symbols are to be read from.
965
966 ADDRS is the list of section load addresses. If the user has given
967 an 'add-symbol-file' command, then this is the list of offsets and
968 addresses he or she provided as arguments to the command; or, if
969 we're handling a shared library, these are the actual addresses the
970 sections are loaded at, according to the inferior's dynamic linker
971 (as gleaned by GDB's shared library code). We convert each address
972 into an offset from the section VMA's as it appears in the object
973 file, and then call the file's sym_offsets function to convert this
974 into a format-specific offset table --- a `struct section_offsets'.
975
976 ADD_FLAGS encodes verbosity level, whether this is main symbol or
977 an extra symbol file such as dynamically loaded code, and wether
978 breakpoint reset should be deferred. */
979
980 static void
981 syms_from_objfile_1 (struct objfile *objfile,
982 struct section_addr_info *addrs,
983 symfile_add_flags add_flags)
984 {
985 struct section_addr_info *local_addr = NULL;
986 struct cleanup *old_chain;
987 const int mainline = add_flags & SYMFILE_MAINLINE;
988
989 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
990
991 if (objfile->sf == NULL)
992 {
993 /* No symbols to load, but we still need to make sure
994 that the section_offsets table is allocated. */
995 int num_sections = gdb_bfd_count_sections (objfile->obfd);
996 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
997
998 objfile->num_sections = num_sections;
999 objfile->section_offsets
1000 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1001 size);
1002 memset (objfile->section_offsets, 0, size);
1003 return;
1004 }
1005
1006 /* Make sure that partially constructed symbol tables will be cleaned up
1007 if an error occurs during symbol reading. */
1008 old_chain = make_cleanup_free_objfile (objfile);
1009
1010 /* If ADDRS is NULL, put together a dummy address list.
1011 We now establish the convention that an addr of zero means
1012 no load address was specified. */
1013 if (! addrs)
1014 {
1015 local_addr = alloc_section_addr_info (1);
1016 make_cleanup (xfree, local_addr);
1017 addrs = local_addr;
1018 }
1019
1020 if (mainline)
1021 {
1022 /* We will modify the main symbol table, make sure that all its users
1023 will be cleaned up if an error occurs during symbol reading. */
1024 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1025
1026 /* Since no error yet, throw away the old symbol table. */
1027
1028 if (symfile_objfile != NULL)
1029 {
1030 free_objfile (symfile_objfile);
1031 gdb_assert (symfile_objfile == NULL);
1032 }
1033
1034 /* Currently we keep symbols from the add-symbol-file command.
1035 If the user wants to get rid of them, they should do "symbol-file"
1036 without arguments first. Not sure this is the best behavior
1037 (PR 2207). */
1038
1039 (*objfile->sf->sym_new_init) (objfile);
1040 }
1041
1042 /* Convert addr into an offset rather than an absolute address.
1043 We find the lowest address of a loaded segment in the objfile,
1044 and assume that <addr> is where that got loaded.
1045
1046 We no longer warn if the lowest section is not a text segment (as
1047 happens for the PA64 port. */
1048 if (addrs->num_sections > 0)
1049 addr_info_make_relative (addrs, objfile->obfd);
1050
1051 /* Initialize symbol reading routines for this objfile, allow complaints to
1052 appear for this new file, and record how verbose to be, then do the
1053 initial symbol reading for this file. */
1054
1055 (*objfile->sf->sym_init) (objfile);
1056 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1057
1058 (*objfile->sf->sym_offsets) (objfile, addrs);
1059
1060 read_symbols (objfile, add_flags);
1061
1062 /* Discard cleanups as symbol reading was successful. */
1063
1064 discard_cleanups (old_chain);
1065 xfree (local_addr);
1066 }
1067
1068 /* Same as syms_from_objfile_1, but also initializes the objfile
1069 entry-point info. */
1070
1071 static void
1072 syms_from_objfile (struct objfile *objfile,
1073 struct section_addr_info *addrs,
1074 symfile_add_flags add_flags)
1075 {
1076 syms_from_objfile_1 (objfile, addrs, add_flags);
1077 init_entry_point_info (objfile);
1078 }
1079
1080 /* Perform required actions after either reading in the initial
1081 symbols for a new objfile, or mapping in the symbols from a reusable
1082 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1083
1084 static void
1085 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1086 {
1087 /* If this is the main symbol file we have to clean up all users of the
1088 old main symbol file. Otherwise it is sufficient to fixup all the
1089 breakpoints that may have been redefined by this symbol file. */
1090 if (add_flags & SYMFILE_MAINLINE)
1091 {
1092 /* OK, make it the "real" symbol file. */
1093 symfile_objfile = objfile;
1094
1095 clear_symtab_users (add_flags);
1096 }
1097 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1098 {
1099 breakpoint_re_set ();
1100 }
1101
1102 /* We're done reading the symbol file; finish off complaints. */
1103 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1104 }
1105
1106 /* Process a symbol file, as either the main file or as a dynamically
1107 loaded file.
1108
1109 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1110 A new reference is acquired by this function.
1111
1112 For NAME description see allocate_objfile's definition.
1113
1114 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1115 extra, such as dynamically loaded code, and what to do with breakpoins.
1116
1117 ADDRS is as described for syms_from_objfile_1, above.
1118 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1119
1120 PARENT is the original objfile if ABFD is a separate debug info file.
1121 Otherwise PARENT is NULL.
1122
1123 Upon success, returns a pointer to the objfile that was added.
1124 Upon failure, jumps back to command level (never returns). */
1125
1126 static struct objfile *
1127 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1128 symfile_add_flags add_flags,
1129 struct section_addr_info *addrs,
1130 objfile_flags flags, struct objfile *parent)
1131 {
1132 struct objfile *objfile;
1133 const int from_tty = add_flags & SYMFILE_VERBOSE;
1134 const int mainline = add_flags & SYMFILE_MAINLINE;
1135 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1136 && (readnow_symbol_files
1137 || (add_flags & SYMFILE_NO_READ) == 0));
1138
1139 if (readnow_symbol_files)
1140 {
1141 flags |= OBJF_READNOW;
1142 add_flags &= ~SYMFILE_NO_READ;
1143 }
1144
1145 /* Give user a chance to burp if we'd be
1146 interactively wiping out any existing symbols. */
1147
1148 if ((have_full_symbols () || have_partial_symbols ())
1149 && mainline
1150 && from_tty
1151 && !query (_("Load new symbol table from \"%s\"? "), name))
1152 error (_("Not confirmed."));
1153
1154 if (mainline)
1155 flags |= OBJF_MAINLINE;
1156 objfile = allocate_objfile (abfd, name, flags);
1157
1158 if (parent)
1159 add_separate_debug_objfile (objfile, parent);
1160
1161 /* We either created a new mapped symbol table, mapped an existing
1162 symbol table file which has not had initial symbol reading
1163 performed, or need to read an unmapped symbol table. */
1164 if (should_print)
1165 {
1166 if (deprecated_pre_add_symbol_hook)
1167 deprecated_pre_add_symbol_hook (name);
1168 else
1169 {
1170 printf_unfiltered (_("Reading symbols from %s..."), name);
1171 wrap_here ("");
1172 gdb_flush (gdb_stdout);
1173 }
1174 }
1175 syms_from_objfile (objfile, addrs, add_flags);
1176
1177 /* We now have at least a partial symbol table. Check to see if the
1178 user requested that all symbols be read on initial access via either
1179 the gdb startup command line or on a per symbol file basis. Expand
1180 all partial symbol tables for this objfile if so. */
1181
1182 if ((flags & OBJF_READNOW))
1183 {
1184 if (should_print)
1185 {
1186 printf_unfiltered (_("expanding to full symbols..."));
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190
1191 if (objfile->sf)
1192 objfile->sf->qf->expand_all_symtabs (objfile);
1193 }
1194
1195 if (should_print && !objfile_has_symbols (objfile))
1196 {
1197 wrap_here ("");
1198 printf_unfiltered (_("(no debugging symbols found)..."));
1199 wrap_here ("");
1200 }
1201
1202 if (should_print)
1203 {
1204 if (deprecated_post_add_symbol_hook)
1205 deprecated_post_add_symbol_hook ();
1206 else
1207 printf_unfiltered (_("done.\n"));
1208 }
1209
1210 /* We print some messages regardless of whether 'from_tty ||
1211 info_verbose' is true, so make sure they go out at the right
1212 time. */
1213 gdb_flush (gdb_stdout);
1214
1215 if (objfile->sf == NULL)
1216 {
1217 observer_notify_new_objfile (objfile);
1218 return objfile; /* No symbols. */
1219 }
1220
1221 finish_new_objfile (objfile, add_flags);
1222
1223 observer_notify_new_objfile (objfile);
1224
1225 bfd_cache_close_all ();
1226 return (objfile);
1227 }
1228
1229 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1230 see allocate_objfile's definition. */
1231
1232 void
1233 symbol_file_add_separate (bfd *bfd, const char *name,
1234 symfile_add_flags symfile_flags,
1235 struct objfile *objfile)
1236 {
1237 struct section_addr_info *sap;
1238 struct cleanup *my_cleanup;
1239
1240 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1241 because sections of BFD may not match sections of OBJFILE and because
1242 vma may have been modified by tools such as prelink. */
1243 sap = build_section_addr_info_from_objfile (objfile);
1244 my_cleanup = make_cleanup_free_section_addr_info (sap);
1245
1246 symbol_file_add_with_addrs
1247 (bfd, name, symfile_flags, sap,
1248 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1249 | OBJF_USERLOADED),
1250 objfile);
1251
1252 do_cleanups (my_cleanup);
1253 }
1254
1255 /* Process the symbol file ABFD, as either the main file or as a
1256 dynamically loaded file.
1257 See symbol_file_add_with_addrs's comments for details. */
1258
1259 struct objfile *
1260 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1261 symfile_add_flags add_flags,
1262 struct section_addr_info *addrs,
1263 objfile_flags flags, struct objfile *parent)
1264 {
1265 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1266 parent);
1267 }
1268
1269 /* Process a symbol file, as either the main file or as a dynamically
1270 loaded file. See symbol_file_add_with_addrs's comments for details. */
1271
1272 struct objfile *
1273 symbol_file_add (const char *name, symfile_add_flags add_flags,
1274 struct section_addr_info *addrs, objfile_flags flags)
1275 {
1276 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1277
1278 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1279 flags, NULL);
1280 }
1281
1282 /* Call symbol_file_add() with default values and update whatever is
1283 affected by the loading of a new main().
1284 Used when the file is supplied in the gdb command line
1285 and by some targets with special loading requirements.
1286 The auxiliary function, symbol_file_add_main_1(), has the flags
1287 argument for the switches that can only be specified in the symbol_file
1288 command itself. */
1289
1290 void
1291 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1292 {
1293 symbol_file_add_main_1 (args, add_flags, 0);
1294 }
1295
1296 static void
1297 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1298 objfile_flags flags)
1299 {
1300 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1301
1302 symbol_file_add (args, add_flags, NULL, flags);
1303
1304 /* Getting new symbols may change our opinion about
1305 what is frameless. */
1306 reinit_frame_cache ();
1307
1308 if ((add_flags & SYMFILE_NO_READ) == 0)
1309 set_initial_language ();
1310 }
1311
1312 void
1313 symbol_file_clear (int from_tty)
1314 {
1315 if ((have_full_symbols () || have_partial_symbols ())
1316 && from_tty
1317 && (symfile_objfile
1318 ? !query (_("Discard symbol table from `%s'? "),
1319 objfile_name (symfile_objfile))
1320 : !query (_("Discard symbol table? "))))
1321 error (_("Not confirmed."));
1322
1323 /* solib descriptors may have handles to objfiles. Wipe them before their
1324 objfiles get stale by free_all_objfiles. */
1325 no_shared_libraries (NULL, from_tty);
1326
1327 free_all_objfiles ();
1328
1329 gdb_assert (symfile_objfile == NULL);
1330 if (from_tty)
1331 printf_unfiltered (_("No symbol file now.\n"));
1332 }
1333
1334 /* See symfile.h. */
1335
1336 int separate_debug_file_debug = 0;
1337
1338 static int
1339 separate_debug_file_exists (const char *name, unsigned long crc,
1340 struct objfile *parent_objfile)
1341 {
1342 unsigned long file_crc;
1343 int file_crc_p;
1344 struct stat parent_stat, abfd_stat;
1345 int verified_as_different;
1346
1347 /* Find a separate debug info file as if symbols would be present in
1348 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1349 section can contain just the basename of PARENT_OBJFILE without any
1350 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1351 the separate debug infos with the same basename can exist. */
1352
1353 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1354 return 0;
1355
1356 if (separate_debug_file_debug)
1357 printf_unfiltered (_(" Trying %s\n"), name);
1358
1359 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1360
1361 if (abfd == NULL)
1362 return 0;
1363
1364 /* Verify symlinks were not the cause of filename_cmp name difference above.
1365
1366 Some operating systems, e.g. Windows, do not provide a meaningful
1367 st_ino; they always set it to zero. (Windows does provide a
1368 meaningful st_dev.) Files accessed from gdbservers that do not
1369 support the vFile:fstat packet will also have st_ino set to zero.
1370 Do not indicate a duplicate library in either case. While there
1371 is no guarantee that a system that provides meaningful inode
1372 numbers will never set st_ino to zero, this is merely an
1373 optimization, so we do not need to worry about false negatives. */
1374
1375 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1376 && abfd_stat.st_ino != 0
1377 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1378 {
1379 if (abfd_stat.st_dev == parent_stat.st_dev
1380 && abfd_stat.st_ino == parent_stat.st_ino)
1381 return 0;
1382 verified_as_different = 1;
1383 }
1384 else
1385 verified_as_different = 0;
1386
1387 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1388
1389 if (!file_crc_p)
1390 return 0;
1391
1392 if (crc != file_crc)
1393 {
1394 unsigned long parent_crc;
1395
1396 /* If the files could not be verified as different with
1397 bfd_stat then we need to calculate the parent's CRC
1398 to verify whether the files are different or not. */
1399
1400 if (!verified_as_different)
1401 {
1402 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1403 return 0;
1404 }
1405
1406 if (verified_as_different || parent_crc != file_crc)
1407 warning (_("the debug information found in \"%s\""
1408 " does not match \"%s\" (CRC mismatch).\n"),
1409 name, objfile_name (parent_objfile));
1410
1411 return 0;
1412 }
1413
1414 return 1;
1415 }
1416
1417 char *debug_file_directory = NULL;
1418 static void
1419 show_debug_file_directory (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file,
1423 _("The directory where separate debug "
1424 "symbols are searched for is \"%s\".\n"),
1425 value);
1426 }
1427
1428 #if ! defined (DEBUG_SUBDIRECTORY)
1429 #define DEBUG_SUBDIRECTORY ".debug"
1430 #endif
1431
1432 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1433 where the original file resides (may not be the same as
1434 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1435 looking for. CANON_DIR is the "realpath" form of DIR.
1436 DIR must contain a trailing '/'.
1437 Returns the path of the file with separate debug info, of NULL. */
1438
1439 static char *
1440 find_separate_debug_file (const char *dir,
1441 const char *canon_dir,
1442 const char *debuglink,
1443 unsigned long crc32, struct objfile *objfile)
1444 {
1445 char *debugdir;
1446 char *debugfile;
1447 int i;
1448 VEC (char_ptr) *debugdir_vec;
1449 struct cleanup *back_to;
1450 int ix;
1451
1452 if (separate_debug_file_debug)
1453 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1454 "%s\n"), objfile_name (objfile));
1455
1456 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1457 i = strlen (dir);
1458 if (canon_dir != NULL && strlen (canon_dir) > i)
1459 i = strlen (canon_dir);
1460
1461 debugfile
1462 = (char *) xmalloc (strlen (debug_file_directory) + 1
1463 + i
1464 + strlen (DEBUG_SUBDIRECTORY)
1465 + strlen ("/")
1466 + strlen (debuglink)
1467 + 1);
1468
1469 /* First try in the same directory as the original file. */
1470 strcpy (debugfile, dir);
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1477 strcpy (debugfile, dir);
1478 strcat (debugfile, DEBUG_SUBDIRECTORY);
1479 strcat (debugfile, "/");
1480 strcat (debugfile, debuglink);
1481
1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
1483 return debugfile;
1484
1485 /* Then try in the global debugfile directories.
1486
1487 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1488 cause "/..." lookups. */
1489
1490 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1491 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1492
1493 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1494 {
1495 strcpy (debugfile, debugdir);
1496 strcat (debugfile, "/");
1497 strcat (debugfile, dir);
1498 strcat (debugfile, debuglink);
1499
1500 if (separate_debug_file_exists (debugfile, crc32, objfile))
1501 {
1502 do_cleanups (back_to);
1503 return debugfile;
1504 }
1505
1506 /* If the file is in the sysroot, try using its base path in the
1507 global debugfile directory. */
1508 if (canon_dir != NULL
1509 && filename_ncmp (canon_dir, gdb_sysroot,
1510 strlen (gdb_sysroot)) == 0
1511 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1512 {
1513 strcpy (debugfile, debugdir);
1514 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1515 strcat (debugfile, "/");
1516 strcat (debugfile, debuglink);
1517
1518 if (separate_debug_file_exists (debugfile, crc32, objfile))
1519 {
1520 do_cleanups (back_to);
1521 return debugfile;
1522 }
1523 }
1524 }
1525
1526 do_cleanups (back_to);
1527 xfree (debugfile);
1528 return NULL;
1529 }
1530
1531 /* Modify PATH to contain only "[/]directory/" part of PATH.
1532 If there were no directory separators in PATH, PATH will be empty
1533 string on return. */
1534
1535 static void
1536 terminate_after_last_dir_separator (char *path)
1537 {
1538 int i;
1539
1540 /* Strip off the final filename part, leaving the directory name,
1541 followed by a slash. The directory can be relative or absolute. */
1542 for (i = strlen(path) - 1; i >= 0; i--)
1543 if (IS_DIR_SEPARATOR (path[i]))
1544 break;
1545
1546 /* If I is -1 then no directory is present there and DIR will be "". */
1547 path[i + 1] = '\0';
1548 }
1549
1550 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1551 Returns pathname, or NULL. */
1552
1553 char *
1554 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1555 {
1556 char *debuglink;
1557 char *dir, *canon_dir;
1558 char *debugfile;
1559 unsigned long crc32;
1560 struct cleanup *cleanups;
1561
1562 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1563
1564 if (debuglink == NULL)
1565 {
1566 /* There's no separate debug info, hence there's no way we could
1567 load it => no warning. */
1568 return NULL;
1569 }
1570
1571 cleanups = make_cleanup (xfree, debuglink);
1572 dir = xstrdup (objfile_name (objfile));
1573 make_cleanup (xfree, dir);
1574 terminate_after_last_dir_separator (dir);
1575 canon_dir = lrealpath (dir);
1576
1577 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1578 crc32, objfile);
1579 xfree (canon_dir);
1580
1581 if (debugfile == NULL)
1582 {
1583 /* For PR gdb/9538, try again with realpath (if different from the
1584 original). */
1585
1586 struct stat st_buf;
1587
1588 if (lstat (objfile_name (objfile), &st_buf) == 0
1589 && S_ISLNK (st_buf.st_mode))
1590 {
1591 char *symlink_dir;
1592
1593 symlink_dir = lrealpath (objfile_name (objfile));
1594 if (symlink_dir != NULL)
1595 {
1596 make_cleanup (xfree, symlink_dir);
1597 terminate_after_last_dir_separator (symlink_dir);
1598 if (strcmp (dir, symlink_dir) != 0)
1599 {
1600 /* Different directory, so try using it. */
1601 debugfile = find_separate_debug_file (symlink_dir,
1602 symlink_dir,
1603 debuglink,
1604 crc32,
1605 objfile);
1606 }
1607 }
1608 }
1609 }
1610
1611 do_cleanups (cleanups);
1612 return debugfile;
1613 }
1614
1615 /* This is the symbol-file command. Read the file, analyze its
1616 symbols, and add a struct symtab to a symtab list. The syntax of
1617 the command is rather bizarre:
1618
1619 1. The function buildargv implements various quoting conventions
1620 which are undocumented and have little or nothing in common with
1621 the way things are quoted (or not quoted) elsewhere in GDB.
1622
1623 2. Options are used, which are not generally used in GDB (perhaps
1624 "set mapped on", "set readnow on" would be better)
1625
1626 3. The order of options matters, which is contrary to GNU
1627 conventions (because it is confusing and inconvenient). */
1628
1629 void
1630 symbol_file_command (char *args, int from_tty)
1631 {
1632 dont_repeat ();
1633
1634 if (args == NULL)
1635 {
1636 symbol_file_clear (from_tty);
1637 }
1638 else
1639 {
1640 objfile_flags flags = OBJF_USERLOADED;
1641 symfile_add_flags add_flags = 0;
1642 struct cleanup *cleanups;
1643 char *name = NULL;
1644
1645 if (from_tty)
1646 add_flags |= SYMFILE_VERBOSE;
1647
1648 gdb_argv built_argv (args);
1649 for (char *arg : built_argv)
1650 {
1651 if (strcmp (arg, "-readnow") == 0)
1652 flags |= OBJF_READNOW;
1653 else if (*arg == '-')
1654 error (_("unknown option `%s'"), arg);
1655 else
1656 {
1657 symbol_file_add_main_1 (arg, add_flags, flags);
1658 name = arg;
1659 }
1660 }
1661
1662 if (name == NULL)
1663 error (_("no symbol file name was specified"));
1664 }
1665 }
1666
1667 /* Set the initial language.
1668
1669 FIXME: A better solution would be to record the language in the
1670 psymtab when reading partial symbols, and then use it (if known) to
1671 set the language. This would be a win for formats that encode the
1672 language in an easily discoverable place, such as DWARF. For
1673 stabs, we can jump through hoops looking for specially named
1674 symbols or try to intuit the language from the specific type of
1675 stabs we find, but we can't do that until later when we read in
1676 full symbols. */
1677
1678 void
1679 set_initial_language (void)
1680 {
1681 enum language lang = main_language ();
1682
1683 if (lang == language_unknown)
1684 {
1685 char *name = main_name ();
1686 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1687
1688 if (sym != NULL)
1689 lang = SYMBOL_LANGUAGE (sym);
1690 }
1691
1692 if (lang == language_unknown)
1693 {
1694 /* Make C the default language */
1695 lang = language_c;
1696 }
1697
1698 set_language (lang);
1699 expected_language = current_language; /* Don't warn the user. */
1700 }
1701
1702 /* Open the file specified by NAME and hand it off to BFD for
1703 preliminary analysis. Return a newly initialized bfd *, which
1704 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1705 absolute). In case of trouble, error() is called. */
1706
1707 gdb_bfd_ref_ptr
1708 symfile_bfd_open (const char *name)
1709 {
1710 int desc = -1;
1711 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1712
1713 if (!is_target_filename (name))
1714 {
1715 char *absolute_name;
1716
1717 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1718
1719 /* Look down path for it, allocate 2nd new malloc'd copy. */
1720 desc = openp (getenv ("PATH"),
1721 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1722 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1723 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1724 if (desc < 0)
1725 {
1726 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1727
1728 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1729 desc = openp (getenv ("PATH"),
1730 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1731 exename, O_RDONLY | O_BINARY, &absolute_name);
1732 }
1733 #endif
1734 if (desc < 0)
1735 perror_with_name (expanded_name.get ());
1736
1737 make_cleanup (xfree, absolute_name);
1738 name = absolute_name;
1739 }
1740
1741 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1742 if (sym_bfd == NULL)
1743 error (_("`%s': can't open to read symbols: %s."), name,
1744 bfd_errmsg (bfd_get_error ()));
1745
1746 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1747 bfd_set_cacheable (sym_bfd.get (), 1);
1748
1749 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1750 error (_("`%s': can't read symbols: %s."), name,
1751 bfd_errmsg (bfd_get_error ()));
1752
1753 do_cleanups (back_to);
1754
1755 return sym_bfd;
1756 }
1757
1758 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1759 the section was not found. */
1760
1761 int
1762 get_section_index (struct objfile *objfile, const char *section_name)
1763 {
1764 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1765
1766 if (sect)
1767 return sect->index;
1768 else
1769 return -1;
1770 }
1771
1772 /* Link SF into the global symtab_fns list.
1773 FLAVOUR is the file format that SF handles.
1774 Called on startup by the _initialize routine in each object file format
1775 reader, to register information about each format the reader is prepared
1776 to handle. */
1777
1778 void
1779 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1780 {
1781 registered_sym_fns fns = { flavour, sf };
1782
1783 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1784 }
1785
1786 /* Initialize OBJFILE to read symbols from its associated BFD. It
1787 either returns or calls error(). The result is an initialized
1788 struct sym_fns in the objfile structure, that contains cached
1789 information about the symbol file. */
1790
1791 static const struct sym_fns *
1792 find_sym_fns (bfd *abfd)
1793 {
1794 registered_sym_fns *rsf;
1795 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1796 int i;
1797
1798 if (our_flavour == bfd_target_srec_flavour
1799 || our_flavour == bfd_target_ihex_flavour
1800 || our_flavour == bfd_target_tekhex_flavour)
1801 return NULL; /* No symbols. */
1802
1803 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1804 if (our_flavour == rsf->sym_flavour)
1805 return rsf->sym_fns;
1806
1807 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1808 bfd_get_target (abfd));
1809 }
1810 \f
1811
1812 /* This function runs the load command of our current target. */
1813
1814 static void
1815 load_command (char *arg, int from_tty)
1816 {
1817 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1818
1819 dont_repeat ();
1820
1821 /* The user might be reloading because the binary has changed. Take
1822 this opportunity to check. */
1823 reopen_exec_file ();
1824 reread_symbols ();
1825
1826 if (arg == NULL)
1827 {
1828 char *parg;
1829 int count = 0;
1830
1831 parg = arg = get_exec_file (1);
1832
1833 /* Count how many \ " ' tab space there are in the name. */
1834 while ((parg = strpbrk (parg, "\\\"'\t ")))
1835 {
1836 parg++;
1837 count++;
1838 }
1839
1840 if (count)
1841 {
1842 /* We need to quote this string so buildargv can pull it apart. */
1843 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1844 char *ptemp = temp;
1845 char *prev;
1846
1847 make_cleanup (xfree, temp);
1848
1849 prev = parg = arg;
1850 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 {
1852 strncpy (ptemp, prev, parg - prev);
1853 ptemp += parg - prev;
1854 prev = parg++;
1855 *ptemp++ = '\\';
1856 }
1857 strcpy (ptemp, prev);
1858
1859 arg = temp;
1860 }
1861 }
1862
1863 target_load (arg, from_tty);
1864
1865 /* After re-loading the executable, we don't really know which
1866 overlays are mapped any more. */
1867 overlay_cache_invalid = 1;
1868
1869 do_cleanups (cleanup);
1870 }
1871
1872 /* This version of "load" should be usable for any target. Currently
1873 it is just used for remote targets, not inftarg.c or core files,
1874 on the theory that only in that case is it useful.
1875
1876 Avoiding xmodem and the like seems like a win (a) because we don't have
1877 to worry about finding it, and (b) On VMS, fork() is very slow and so
1878 we don't want to run a subprocess. On the other hand, I'm not sure how
1879 performance compares. */
1880
1881 static int validate_download = 0;
1882
1883 /* Callback service function for generic_load (bfd_map_over_sections). */
1884
1885 static void
1886 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1887 {
1888 bfd_size_type *sum = (bfd_size_type *) data;
1889
1890 *sum += bfd_get_section_size (asec);
1891 }
1892
1893 /* Opaque data for load_section_callback. */
1894 struct load_section_data {
1895 CORE_ADDR load_offset;
1896 struct load_progress_data *progress_data;
1897 VEC(memory_write_request_s) *requests;
1898 };
1899
1900 /* Opaque data for load_progress. */
1901 struct load_progress_data {
1902 /* Cumulative data. */
1903 unsigned long write_count;
1904 unsigned long data_count;
1905 bfd_size_type total_size;
1906 };
1907
1908 /* Opaque data for load_progress for a single section. */
1909 struct load_progress_section_data {
1910 struct load_progress_data *cumulative;
1911
1912 /* Per-section data. */
1913 const char *section_name;
1914 ULONGEST section_sent;
1915 ULONGEST section_size;
1916 CORE_ADDR lma;
1917 gdb_byte *buffer;
1918 };
1919
1920 /* Target write callback routine for progress reporting. */
1921
1922 static void
1923 load_progress (ULONGEST bytes, void *untyped_arg)
1924 {
1925 struct load_progress_section_data *args
1926 = (struct load_progress_section_data *) untyped_arg;
1927 struct load_progress_data *totals;
1928
1929 if (args == NULL)
1930 /* Writing padding data. No easy way to get at the cumulative
1931 stats, so just ignore this. */
1932 return;
1933
1934 totals = args->cumulative;
1935
1936 if (bytes == 0 && args->section_sent == 0)
1937 {
1938 /* The write is just starting. Let the user know we've started
1939 this section. */
1940 current_uiout->message ("Loading section %s, size %s lma %s\n",
1941 args->section_name,
1942 hex_string (args->section_size),
1943 paddress (target_gdbarch (), args->lma));
1944 return;
1945 }
1946
1947 if (validate_download)
1948 {
1949 /* Broken memories and broken monitors manifest themselves here
1950 when bring new computers to life. This doubles already slow
1951 downloads. */
1952 /* NOTE: cagney/1999-10-18: A more efficient implementation
1953 might add a verify_memory() method to the target vector and
1954 then use that. remote.c could implement that method using
1955 the ``qCRC'' packet. */
1956 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1957 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1958
1959 if (target_read_memory (args->lma, check, bytes) != 0)
1960 error (_("Download verify read failed at %s"),
1961 paddress (target_gdbarch (), args->lma));
1962 if (memcmp (args->buffer, check, bytes) != 0)
1963 error (_("Download verify compare failed at %s"),
1964 paddress (target_gdbarch (), args->lma));
1965 do_cleanups (verify_cleanups);
1966 }
1967 totals->data_count += bytes;
1968 args->lma += bytes;
1969 args->buffer += bytes;
1970 totals->write_count += 1;
1971 args->section_sent += bytes;
1972 if (check_quit_flag ()
1973 || (deprecated_ui_load_progress_hook != NULL
1974 && deprecated_ui_load_progress_hook (args->section_name,
1975 args->section_sent)))
1976 error (_("Canceled the download"));
1977
1978 if (deprecated_show_load_progress != NULL)
1979 deprecated_show_load_progress (args->section_name,
1980 args->section_sent,
1981 args->section_size,
1982 totals->data_count,
1983 totals->total_size);
1984 }
1985
1986 /* Callback service function for generic_load (bfd_map_over_sections). */
1987
1988 static void
1989 load_section_callback (bfd *abfd, asection *asec, void *data)
1990 {
1991 struct memory_write_request *new_request;
1992 struct load_section_data *args = (struct load_section_data *) data;
1993 struct load_progress_section_data *section_data;
1994 bfd_size_type size = bfd_get_section_size (asec);
1995 gdb_byte *buffer;
1996 const char *sect_name = bfd_get_section_name (abfd, asec);
1997
1998 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1999 return;
2000
2001 if (size == 0)
2002 return;
2003
2004 new_request = VEC_safe_push (memory_write_request_s,
2005 args->requests, NULL);
2006 memset (new_request, 0, sizeof (struct memory_write_request));
2007 section_data = XCNEW (struct load_progress_section_data);
2008 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2009 new_request->end = new_request->begin + size; /* FIXME Should size
2010 be in instead? */
2011 new_request->data = (gdb_byte *) xmalloc (size);
2012 new_request->baton = section_data;
2013
2014 buffer = new_request->data;
2015
2016 section_data->cumulative = args->progress_data;
2017 section_data->section_name = sect_name;
2018 section_data->section_size = size;
2019 section_data->lma = new_request->begin;
2020 section_data->buffer = buffer;
2021
2022 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2023 }
2024
2025 /* Clean up an entire memory request vector, including load
2026 data and progress records. */
2027
2028 static void
2029 clear_memory_write_data (void *arg)
2030 {
2031 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2032 VEC(memory_write_request_s) *vec = *vec_p;
2033 int i;
2034 struct memory_write_request *mr;
2035
2036 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2037 {
2038 xfree (mr->data);
2039 xfree (mr->baton);
2040 }
2041 VEC_free (memory_write_request_s, vec);
2042 }
2043
2044 static void print_transfer_performance (struct ui_file *stream,
2045 unsigned long data_count,
2046 unsigned long write_count,
2047 std::chrono::steady_clock::duration d);
2048
2049 void
2050 generic_load (const char *args, int from_tty)
2051 {
2052 struct cleanup *old_cleanups;
2053 struct load_section_data cbdata;
2054 struct load_progress_data total_progress;
2055 struct ui_out *uiout = current_uiout;
2056
2057 CORE_ADDR entry;
2058
2059 memset (&cbdata, 0, sizeof (cbdata));
2060 memset (&total_progress, 0, sizeof (total_progress));
2061 cbdata.progress_data = &total_progress;
2062
2063 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2064
2065 if (args == NULL)
2066 error_no_arg (_("file to load"));
2067
2068 gdb_argv argv (args);
2069
2070 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2071
2072 if (argv[1] != NULL)
2073 {
2074 const char *endptr;
2075
2076 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2077
2078 /* If the last word was not a valid number then
2079 treat it as a file name with spaces in. */
2080 if (argv[1] == endptr)
2081 error (_("Invalid download offset:%s."), argv[1]);
2082
2083 if (argv[2] != NULL)
2084 error (_("Too many parameters."));
2085 }
2086
2087 /* Open the file for loading. */
2088 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2089 if (loadfile_bfd == NULL)
2090 perror_with_name (filename.get ());
2091
2092 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2093 {
2094 error (_("\"%s\" is not an object file: %s"), filename.get (),
2095 bfd_errmsg (bfd_get_error ()));
2096 }
2097
2098 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2099 (void *) &total_progress.total_size);
2100
2101 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2102
2103 using namespace std::chrono;
2104
2105 steady_clock::time_point start_time = steady_clock::now ();
2106
2107 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2108 load_progress) != 0)
2109 error (_("Load failed"));
2110
2111 steady_clock::time_point end_time = steady_clock::now ();
2112
2113 entry = bfd_get_start_address (loadfile_bfd.get ());
2114 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2115 uiout->text ("Start address ");
2116 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2117 uiout->text (", load size ");
2118 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2119 uiout->text ("\n");
2120 regcache_write_pc (get_current_regcache (), entry);
2121
2122 /* Reset breakpoints, now that we have changed the load image. For
2123 instance, breakpoints may have been set (or reset, by
2124 post_create_inferior) while connected to the target but before we
2125 loaded the program. In that case, the prologue analyzer could
2126 have read instructions from the target to find the right
2127 breakpoint locations. Loading has changed the contents of that
2128 memory. */
2129
2130 breakpoint_re_set ();
2131
2132 print_transfer_performance (gdb_stdout, total_progress.data_count,
2133 total_progress.write_count,
2134 end_time - start_time);
2135
2136 do_cleanups (old_cleanups);
2137 }
2138
2139 /* Report on STREAM the performance of a memory transfer operation,
2140 such as 'load'. DATA_COUNT is the number of bytes transferred.
2141 WRITE_COUNT is the number of separate write operations, or 0, if
2142 that information is not available. TIME is how long the operation
2143 lasted. */
2144
2145 static void
2146 print_transfer_performance (struct ui_file *stream,
2147 unsigned long data_count,
2148 unsigned long write_count,
2149 std::chrono::steady_clock::duration time)
2150 {
2151 using namespace std::chrono;
2152 struct ui_out *uiout = current_uiout;
2153
2154 milliseconds ms = duration_cast<milliseconds> (time);
2155
2156 uiout->text ("Transfer rate: ");
2157 if (ms.count () > 0)
2158 {
2159 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2160
2161 if (uiout->is_mi_like_p ())
2162 {
2163 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2164 uiout->text (" bits/sec");
2165 }
2166 else if (rate < 1024)
2167 {
2168 uiout->field_fmt ("transfer-rate", "%lu", rate);
2169 uiout->text (" bytes/sec");
2170 }
2171 else
2172 {
2173 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2174 uiout->text (" KB/sec");
2175 }
2176 }
2177 else
2178 {
2179 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2180 uiout->text (" bits in <1 sec");
2181 }
2182 if (write_count > 0)
2183 {
2184 uiout->text (", ");
2185 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2186 uiout->text (" bytes/write");
2187 }
2188 uiout->text (".\n");
2189 }
2190
2191 /* This function allows the addition of incrementally linked object files.
2192 It does not modify any state in the target, only in the debugger. */
2193 /* Note: ezannoni 2000-04-13 This function/command used to have a
2194 special case syntax for the rombug target (Rombug is the boot
2195 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2196 rombug case, the user doesn't need to supply a text address,
2197 instead a call to target_link() (in target.c) would supply the
2198 value to use. We are now discontinuing this type of ad hoc syntax. */
2199
2200 static void
2201 add_symbol_file_command (char *args, int from_tty)
2202 {
2203 struct gdbarch *gdbarch = get_current_arch ();
2204 gdb::unique_xmalloc_ptr<char> filename;
2205 char *arg;
2206 int argcnt = 0;
2207 int sec_num = 0;
2208 int expecting_sec_name = 0;
2209 int expecting_sec_addr = 0;
2210 struct objfile *objf;
2211 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2212 symfile_add_flags add_flags = 0;
2213
2214 if (from_tty)
2215 add_flags |= SYMFILE_VERBOSE;
2216
2217 struct sect_opt
2218 {
2219 const char *name;
2220 const char *value;
2221 };
2222
2223 struct section_addr_info *section_addrs;
2224 std::vector<sect_opt> sect_opts;
2225 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2226
2227 dont_repeat ();
2228
2229 if (args == NULL)
2230 error (_("add-symbol-file takes a file name and an address"));
2231
2232 gdb_argv argv (args);
2233
2234 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2235 {
2236 /* Process the argument. */
2237 if (argcnt == 0)
2238 {
2239 /* The first argument is the file name. */
2240 filename.reset (tilde_expand (arg));
2241 }
2242 else if (argcnt == 1)
2243 {
2244 /* The second argument is always the text address at which
2245 to load the program. */
2246 sect_opt sect = { ".text", arg };
2247 sect_opts.push_back (sect);
2248 }
2249 else
2250 {
2251 /* It's an option (starting with '-') or it's an argument
2252 to an option. */
2253 if (expecting_sec_name)
2254 {
2255 sect_opt sect = { arg, NULL };
2256 sect_opts.push_back (sect);
2257 expecting_sec_name = 0;
2258 }
2259 else if (expecting_sec_addr)
2260 {
2261 sect_opts.back ().value = arg;
2262 expecting_sec_addr = 0;
2263 }
2264 else if (strcmp (arg, "-readnow") == 0)
2265 flags |= OBJF_READNOW;
2266 else if (strcmp (arg, "-s") == 0)
2267 {
2268 expecting_sec_name = 1;
2269 expecting_sec_addr = 1;
2270 }
2271 else
2272 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2273 " [-readnow] [-s <secname> <addr>]*"));
2274 }
2275 }
2276
2277 /* This command takes at least two arguments. The first one is a
2278 filename, and the second is the address where this file has been
2279 loaded. Abort now if this address hasn't been provided by the
2280 user. */
2281 if (sect_opts.empty ())
2282 error (_("The address where %s has been loaded is missing"),
2283 filename.get ());
2284
2285 /* Print the prompt for the query below. And save the arguments into
2286 a sect_addr_info structure to be passed around to other
2287 functions. We have to split this up into separate print
2288 statements because hex_string returns a local static
2289 string. */
2290
2291 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2292 filename.get ());
2293 section_addrs = alloc_section_addr_info (sect_opts.size ());
2294 make_cleanup (xfree, section_addrs);
2295 for (sect_opt &sect : sect_opts)
2296 {
2297 CORE_ADDR addr;
2298 const char *val = sect.value;
2299 const char *sec = sect.name;
2300
2301 addr = parse_and_eval_address (val);
2302
2303 /* Here we store the section offsets in the order they were
2304 entered on the command line. */
2305 section_addrs->other[sec_num].name = (char *) sec;
2306 section_addrs->other[sec_num].addr = addr;
2307 printf_unfiltered ("\t%s_addr = %s\n", sec,
2308 paddress (gdbarch, addr));
2309 sec_num++;
2310
2311 /* The object's sections are initialized when a
2312 call is made to build_objfile_section_table (objfile).
2313 This happens in reread_symbols.
2314 At this point, we don't know what file type this is,
2315 so we can't determine what section names are valid. */
2316 }
2317 section_addrs->num_sections = sec_num;
2318
2319 if (from_tty && (!query ("%s", "")))
2320 error (_("Not confirmed."));
2321
2322 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2323
2324 add_target_sections_of_objfile (objf);
2325
2326 /* Getting new symbols may change our opinion about what is
2327 frameless. */
2328 reinit_frame_cache ();
2329 do_cleanups (my_cleanups);
2330 }
2331 \f
2332
2333 /* This function removes a symbol file that was added via add-symbol-file. */
2334
2335 static void
2336 remove_symbol_file_command (char *args, int from_tty)
2337 {
2338 struct objfile *objf = NULL;
2339 struct program_space *pspace = current_program_space;
2340
2341 dont_repeat ();
2342
2343 if (args == NULL)
2344 error (_("remove-symbol-file: no symbol file provided"));
2345
2346 gdb_argv argv (args);
2347
2348 if (strcmp (argv[0], "-a") == 0)
2349 {
2350 /* Interpret the next argument as an address. */
2351 CORE_ADDR addr;
2352
2353 if (argv[1] == NULL)
2354 error (_("Missing address argument"));
2355
2356 if (argv[2] != NULL)
2357 error (_("Junk after %s"), argv[1]);
2358
2359 addr = parse_and_eval_address (argv[1]);
2360
2361 ALL_OBJFILES (objf)
2362 {
2363 if ((objf->flags & OBJF_USERLOADED) != 0
2364 && (objf->flags & OBJF_SHARED) != 0
2365 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2366 break;
2367 }
2368 }
2369 else if (argv[0] != NULL)
2370 {
2371 /* Interpret the current argument as a file name. */
2372
2373 if (argv[1] != NULL)
2374 error (_("Junk after %s"), argv[0]);
2375
2376 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2377
2378 ALL_OBJFILES (objf)
2379 {
2380 if ((objf->flags & OBJF_USERLOADED) != 0
2381 && (objf->flags & OBJF_SHARED) != 0
2382 && objf->pspace == pspace
2383 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2384 break;
2385 }
2386 }
2387
2388 if (objf == NULL)
2389 error (_("No symbol file found"));
2390
2391 if (from_tty
2392 && !query (_("Remove symbol table from file \"%s\"? "),
2393 objfile_name (objf)))
2394 error (_("Not confirmed."));
2395
2396 free_objfile (objf);
2397 clear_symtab_users (0);
2398 }
2399
2400 /* Re-read symbols if a symbol-file has changed. */
2401
2402 void
2403 reread_symbols (void)
2404 {
2405 struct objfile *objfile;
2406 long new_modtime;
2407 struct stat new_statbuf;
2408 int res;
2409 std::vector<struct objfile *> new_objfiles;
2410
2411 /* With the addition of shared libraries, this should be modified,
2412 the load time should be saved in the partial symbol tables, since
2413 different tables may come from different source files. FIXME.
2414 This routine should then walk down each partial symbol table
2415 and see if the symbol table that it originates from has been changed. */
2416
2417 for (objfile = object_files; objfile; objfile = objfile->next)
2418 {
2419 if (objfile->obfd == NULL)
2420 continue;
2421
2422 /* Separate debug objfiles are handled in the main objfile. */
2423 if (objfile->separate_debug_objfile_backlink)
2424 continue;
2425
2426 /* If this object is from an archive (what you usually create with
2427 `ar', often called a `static library' on most systems, though
2428 a `shared library' on AIX is also an archive), then you should
2429 stat on the archive name, not member name. */
2430 if (objfile->obfd->my_archive)
2431 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2432 else
2433 res = stat (objfile_name (objfile), &new_statbuf);
2434 if (res != 0)
2435 {
2436 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2437 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2438 objfile_name (objfile));
2439 continue;
2440 }
2441 new_modtime = new_statbuf.st_mtime;
2442 if (new_modtime != objfile->mtime)
2443 {
2444 struct cleanup *old_cleanups;
2445 struct section_offsets *offsets;
2446 int num_offsets;
2447 char *original_name;
2448
2449 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2450 objfile_name (objfile));
2451
2452 /* There are various functions like symbol_file_add,
2453 symfile_bfd_open, syms_from_objfile, etc., which might
2454 appear to do what we want. But they have various other
2455 effects which we *don't* want. So we just do stuff
2456 ourselves. We don't worry about mapped files (for one thing,
2457 any mapped file will be out of date). */
2458
2459 /* If we get an error, blow away this objfile (not sure if
2460 that is the correct response for things like shared
2461 libraries). */
2462 old_cleanups = make_cleanup_free_objfile (objfile);
2463 /* We need to do this whenever any symbols go away. */
2464 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2465
2466 if (exec_bfd != NULL
2467 && filename_cmp (bfd_get_filename (objfile->obfd),
2468 bfd_get_filename (exec_bfd)) == 0)
2469 {
2470 /* Reload EXEC_BFD without asking anything. */
2471
2472 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2473 }
2474
2475 /* Keep the calls order approx. the same as in free_objfile. */
2476
2477 /* Free the separate debug objfiles. It will be
2478 automatically recreated by sym_read. */
2479 free_objfile_separate_debug (objfile);
2480
2481 /* Remove any references to this objfile in the global
2482 value lists. */
2483 preserve_values (objfile);
2484
2485 /* Nuke all the state that we will re-read. Much of the following
2486 code which sets things to NULL really is necessary to tell
2487 other parts of GDB that there is nothing currently there.
2488
2489 Try to keep the freeing order compatible with free_objfile. */
2490
2491 if (objfile->sf != NULL)
2492 {
2493 (*objfile->sf->sym_finish) (objfile);
2494 }
2495
2496 clear_objfile_data (objfile);
2497
2498 /* Clean up any state BFD has sitting around. */
2499 {
2500 gdb_bfd_ref_ptr obfd (objfile->obfd);
2501 char *obfd_filename;
2502
2503 obfd_filename = bfd_get_filename (objfile->obfd);
2504 /* Open the new BFD before freeing the old one, so that
2505 the filename remains live. */
2506 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2507 objfile->obfd = temp.release ();
2508 if (objfile->obfd == NULL)
2509 error (_("Can't open %s to read symbols."), obfd_filename);
2510 }
2511
2512 original_name = xstrdup (objfile->original_name);
2513 make_cleanup (xfree, original_name);
2514
2515 /* bfd_openr sets cacheable to true, which is what we want. */
2516 if (!bfd_check_format (objfile->obfd, bfd_object))
2517 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2518 bfd_errmsg (bfd_get_error ()));
2519
2520 /* Save the offsets, we will nuke them with the rest of the
2521 objfile_obstack. */
2522 num_offsets = objfile->num_sections;
2523 offsets = ((struct section_offsets *)
2524 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2525 memcpy (offsets, objfile->section_offsets,
2526 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2527
2528 /* FIXME: Do we have to free a whole linked list, or is this
2529 enough? */
2530 if (objfile->global_psymbols.list)
2531 xfree (objfile->global_psymbols.list);
2532 memset (&objfile->global_psymbols, 0,
2533 sizeof (objfile->global_psymbols));
2534 if (objfile->static_psymbols.list)
2535 xfree (objfile->static_psymbols.list);
2536 memset (&objfile->static_psymbols, 0,
2537 sizeof (objfile->static_psymbols));
2538
2539 /* Free the obstacks for non-reusable objfiles. */
2540 psymbol_bcache_free (objfile->psymbol_cache);
2541 objfile->psymbol_cache = psymbol_bcache_init ();
2542
2543 /* NB: after this call to obstack_free, objfiles_changed
2544 will need to be called (see discussion below). */
2545 obstack_free (&objfile->objfile_obstack, 0);
2546 objfile->sections = NULL;
2547 objfile->compunit_symtabs = NULL;
2548 objfile->psymtabs = NULL;
2549 objfile->psymtabs_addrmap = NULL;
2550 objfile->free_psymtabs = NULL;
2551 objfile->template_symbols = NULL;
2552
2553 /* obstack_init also initializes the obstack so it is
2554 empty. We could use obstack_specify_allocation but
2555 gdb_obstack.h specifies the alloc/dealloc functions. */
2556 obstack_init (&objfile->objfile_obstack);
2557
2558 /* set_objfile_per_bfd potentially allocates the per-bfd
2559 data on the objfile's obstack (if sharing data across
2560 multiple users is not possible), so it's important to
2561 do it *after* the obstack has been initialized. */
2562 set_objfile_per_bfd (objfile);
2563
2564 objfile->original_name
2565 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2566 strlen (original_name));
2567
2568 /* Reset the sym_fns pointer. The ELF reader can change it
2569 based on whether .gdb_index is present, and we need it to
2570 start over. PR symtab/15885 */
2571 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2572
2573 build_objfile_section_table (objfile);
2574 terminate_minimal_symbol_table (objfile);
2575
2576 /* We use the same section offsets as from last time. I'm not
2577 sure whether that is always correct for shared libraries. */
2578 objfile->section_offsets = (struct section_offsets *)
2579 obstack_alloc (&objfile->objfile_obstack,
2580 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2581 memcpy (objfile->section_offsets, offsets,
2582 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2583 objfile->num_sections = num_offsets;
2584
2585 /* What the hell is sym_new_init for, anyway? The concept of
2586 distinguishing between the main file and additional files
2587 in this way seems rather dubious. */
2588 if (objfile == symfile_objfile)
2589 {
2590 (*objfile->sf->sym_new_init) (objfile);
2591 }
2592
2593 (*objfile->sf->sym_init) (objfile);
2594 clear_complaints (&symfile_complaints, 1, 1);
2595
2596 objfile->flags &= ~OBJF_PSYMTABS_READ;
2597
2598 /* We are about to read new symbols and potentially also
2599 DWARF information. Some targets may want to pass addresses
2600 read from DWARF DIE's through an adjustment function before
2601 saving them, like MIPS, which may call into
2602 "find_pc_section". When called, that function will make
2603 use of per-objfile program space data.
2604
2605 Since we discarded our section information above, we have
2606 dangling pointers in the per-objfile program space data
2607 structure. Force GDB to update the section mapping
2608 information by letting it know the objfile has changed,
2609 making the dangling pointers point to correct data
2610 again. */
2611
2612 objfiles_changed ();
2613
2614 read_symbols (objfile, 0);
2615
2616 if (!objfile_has_symbols (objfile))
2617 {
2618 wrap_here ("");
2619 printf_unfiltered (_("(no debugging symbols found)\n"));
2620 wrap_here ("");
2621 }
2622
2623 /* We're done reading the symbol file; finish off complaints. */
2624 clear_complaints (&symfile_complaints, 0, 1);
2625
2626 /* Getting new symbols may change our opinion about what is
2627 frameless. */
2628
2629 reinit_frame_cache ();
2630
2631 /* Discard cleanups as symbol reading was successful. */
2632 discard_cleanups (old_cleanups);
2633
2634 /* If the mtime has changed between the time we set new_modtime
2635 and now, we *want* this to be out of date, so don't call stat
2636 again now. */
2637 objfile->mtime = new_modtime;
2638 init_entry_point_info (objfile);
2639
2640 new_objfiles.push_back (objfile);
2641 }
2642 }
2643
2644 if (!new_objfiles.empty ())
2645 {
2646 clear_symtab_users (0);
2647
2648 /* clear_objfile_data for each objfile was called before freeing it and
2649 observer_notify_new_objfile (NULL) has been called by
2650 clear_symtab_users above. Notify the new files now. */
2651 for (auto iter : new_objfiles)
2652 observer_notify_new_objfile (iter);
2653
2654 /* At least one objfile has changed, so we can consider that
2655 the executable we're debugging has changed too. */
2656 observer_notify_executable_changed ();
2657 }
2658 }
2659 \f
2660
2661 typedef struct
2662 {
2663 char *ext;
2664 enum language lang;
2665 } filename_language;
2666
2667 DEF_VEC_O (filename_language);
2668
2669 static VEC (filename_language) *filename_language_table;
2670
2671 /* See symfile.h. */
2672
2673 void
2674 add_filename_language (const char *ext, enum language lang)
2675 {
2676 filename_language entry;
2677
2678 entry.ext = xstrdup (ext);
2679 entry.lang = lang;
2680
2681 VEC_safe_push (filename_language, filename_language_table, &entry);
2682 }
2683
2684 static char *ext_args;
2685 static void
2686 show_ext_args (struct ui_file *file, int from_tty,
2687 struct cmd_list_element *c, const char *value)
2688 {
2689 fprintf_filtered (file,
2690 _("Mapping between filename extension "
2691 "and source language is \"%s\".\n"),
2692 value);
2693 }
2694
2695 static void
2696 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2697 {
2698 int i;
2699 char *cp = ext_args;
2700 enum language lang;
2701 filename_language *entry;
2702
2703 /* First arg is filename extension, starting with '.' */
2704 if (*cp != '.')
2705 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2706
2707 /* Find end of first arg. */
2708 while (*cp && !isspace (*cp))
2709 cp++;
2710
2711 if (*cp == '\0')
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
2714 ext_args);
2715
2716 /* Null-terminate first arg. */
2717 *cp++ = '\0';
2718
2719 /* Find beginning of second arg, which should be a source language. */
2720 cp = skip_spaces (cp);
2721
2722 if (*cp == '\0')
2723 error (_("'%s': two arguments required -- "
2724 "filename extension and language"),
2725 ext_args);
2726
2727 /* Lookup the language from among those we know. */
2728 lang = language_enum (cp);
2729
2730 /* Now lookup the filename extension: do we already know it? */
2731 for (i = 0;
2732 VEC_iterate (filename_language, filename_language_table, i, entry);
2733 ++i)
2734 {
2735 if (0 == strcmp (ext_args, entry->ext))
2736 break;
2737 }
2738
2739 if (entry == NULL)
2740 {
2741 /* New file extension. */
2742 add_filename_language (ext_args, lang);
2743 }
2744 else
2745 {
2746 /* Redefining a previously known filename extension. */
2747
2748 /* if (from_tty) */
2749 /* query ("Really make files of type %s '%s'?", */
2750 /* ext_args, language_str (lang)); */
2751
2752 xfree (entry->ext);
2753 entry->ext = xstrdup (ext_args);
2754 entry->lang = lang;
2755 }
2756 }
2757
2758 static void
2759 info_ext_lang_command (char *args, int from_tty)
2760 {
2761 int i;
2762 filename_language *entry;
2763
2764 printf_filtered (_("Filename extensions and the languages they represent:"));
2765 printf_filtered ("\n\n");
2766 for (i = 0;
2767 VEC_iterate (filename_language, filename_language_table, i, entry);
2768 ++i)
2769 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2770 }
2771
2772 enum language
2773 deduce_language_from_filename (const char *filename)
2774 {
2775 int i;
2776 const char *cp;
2777
2778 if (filename != NULL)
2779 if ((cp = strrchr (filename, '.')) != NULL)
2780 {
2781 filename_language *entry;
2782
2783 for (i = 0;
2784 VEC_iterate (filename_language, filename_language_table, i, entry);
2785 ++i)
2786 if (strcmp (cp, entry->ext) == 0)
2787 return entry->lang;
2788 }
2789
2790 return language_unknown;
2791 }
2792 \f
2793 /* Allocate and initialize a new symbol table.
2794 CUST is from the result of allocate_compunit_symtab. */
2795
2796 struct symtab *
2797 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2798 {
2799 struct objfile *objfile = cust->objfile;
2800 struct symtab *symtab
2801 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2802
2803 symtab->filename
2804 = (const char *) bcache (filename, strlen (filename) + 1,
2805 objfile->per_bfd->filename_cache);
2806 symtab->fullname = NULL;
2807 symtab->language = deduce_language_from_filename (filename);
2808
2809 /* This can be very verbose with lots of headers.
2810 Only print at higher debug levels. */
2811 if (symtab_create_debug >= 2)
2812 {
2813 /* Be a bit clever with debugging messages, and don't print objfile
2814 every time, only when it changes. */
2815 static char *last_objfile_name = NULL;
2816
2817 if (last_objfile_name == NULL
2818 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2819 {
2820 xfree (last_objfile_name);
2821 last_objfile_name = xstrdup (objfile_name (objfile));
2822 fprintf_unfiltered (gdb_stdlog,
2823 "Creating one or more symtabs for objfile %s ...\n",
2824 last_objfile_name);
2825 }
2826 fprintf_unfiltered (gdb_stdlog,
2827 "Created symtab %s for module %s.\n",
2828 host_address_to_string (symtab), filename);
2829 }
2830
2831 /* Add it to CUST's list of symtabs. */
2832 if (cust->filetabs == NULL)
2833 {
2834 cust->filetabs = symtab;
2835 cust->last_filetab = symtab;
2836 }
2837 else
2838 {
2839 cust->last_filetab->next = symtab;
2840 cust->last_filetab = symtab;
2841 }
2842
2843 /* Backlink to the containing compunit symtab. */
2844 symtab->compunit_symtab = cust;
2845
2846 return symtab;
2847 }
2848
2849 /* Allocate and initialize a new compunit.
2850 NAME is the name of the main source file, if there is one, or some
2851 descriptive text if there are no source files. */
2852
2853 struct compunit_symtab *
2854 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2855 {
2856 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2857 struct compunit_symtab);
2858 const char *saved_name;
2859
2860 cu->objfile = objfile;
2861
2862 /* The name we record here is only for display/debugging purposes.
2863 Just save the basename to avoid path issues (too long for display,
2864 relative vs absolute, etc.). */
2865 saved_name = lbasename (name);
2866 cu->name
2867 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2868 strlen (saved_name));
2869
2870 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2871
2872 if (symtab_create_debug)
2873 {
2874 fprintf_unfiltered (gdb_stdlog,
2875 "Created compunit symtab %s for %s.\n",
2876 host_address_to_string (cu),
2877 cu->name);
2878 }
2879
2880 return cu;
2881 }
2882
2883 /* Hook CU to the objfile it comes from. */
2884
2885 void
2886 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2887 {
2888 cu->next = cu->objfile->compunit_symtabs;
2889 cu->objfile->compunit_symtabs = cu;
2890 }
2891 \f
2892
2893 /* Reset all data structures in gdb which may contain references to
2894 symbol table data. */
2895
2896 void
2897 clear_symtab_users (symfile_add_flags add_flags)
2898 {
2899 /* Someday, we should do better than this, by only blowing away
2900 the things that really need to be blown. */
2901
2902 /* Clear the "current" symtab first, because it is no longer valid.
2903 breakpoint_re_set may try to access the current symtab. */
2904 clear_current_source_symtab_and_line ();
2905
2906 clear_displays ();
2907 clear_last_displayed_sal ();
2908 clear_pc_function_cache ();
2909 observer_notify_new_objfile (NULL);
2910
2911 /* Clear globals which might have pointed into a removed objfile.
2912 FIXME: It's not clear which of these are supposed to persist
2913 between expressions and which ought to be reset each time. */
2914 expression_context_block = NULL;
2915 innermost_block = NULL;
2916
2917 /* Varobj may refer to old symbols, perform a cleanup. */
2918 varobj_invalidate ();
2919
2920 /* Now that the various caches have been cleared, we can re_set
2921 our breakpoints without risking it using stale data. */
2922 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2923 breakpoint_re_set ();
2924 }
2925
2926 static void
2927 clear_symtab_users_cleanup (void *ignore)
2928 {
2929 clear_symtab_users (0);
2930 }
2931 \f
2932 /* OVERLAYS:
2933 The following code implements an abstraction for debugging overlay sections.
2934
2935 The target model is as follows:
2936 1) The gnu linker will permit multiple sections to be mapped into the
2937 same VMA, each with its own unique LMA (or load address).
2938 2) It is assumed that some runtime mechanism exists for mapping the
2939 sections, one by one, from the load address into the VMA address.
2940 3) This code provides a mechanism for gdb to keep track of which
2941 sections should be considered to be mapped from the VMA to the LMA.
2942 This information is used for symbol lookup, and memory read/write.
2943 For instance, if a section has been mapped then its contents
2944 should be read from the VMA, otherwise from the LMA.
2945
2946 Two levels of debugger support for overlays are available. One is
2947 "manual", in which the debugger relies on the user to tell it which
2948 overlays are currently mapped. This level of support is
2949 implemented entirely in the core debugger, and the information about
2950 whether a section is mapped is kept in the objfile->obj_section table.
2951
2952 The second level of support is "automatic", and is only available if
2953 the target-specific code provides functionality to read the target's
2954 overlay mapping table, and translate its contents for the debugger
2955 (by updating the mapped state information in the obj_section tables).
2956
2957 The interface is as follows:
2958 User commands:
2959 overlay map <name> -- tell gdb to consider this section mapped
2960 overlay unmap <name> -- tell gdb to consider this section unmapped
2961 overlay list -- list the sections that GDB thinks are mapped
2962 overlay read-target -- get the target's state of what's mapped
2963 overlay off/manual/auto -- set overlay debugging state
2964 Functional interface:
2965 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2966 section, return that section.
2967 find_pc_overlay(pc): find any overlay section that contains
2968 the pc, either in its VMA or its LMA
2969 section_is_mapped(sect): true if overlay is marked as mapped
2970 section_is_overlay(sect): true if section's VMA != LMA
2971 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2972 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2973 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2974 overlay_mapped_address(...): map an address from section's LMA to VMA
2975 overlay_unmapped_address(...): map an address from section's VMA to LMA
2976 symbol_overlayed_address(...): Return a "current" address for symbol:
2977 either in VMA or LMA depending on whether
2978 the symbol's section is currently mapped. */
2979
2980 /* Overlay debugging state: */
2981
2982 enum overlay_debugging_state overlay_debugging = ovly_off;
2983 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2984
2985 /* Function: section_is_overlay (SECTION)
2986 Returns true if SECTION has VMA not equal to LMA, ie.
2987 SECTION is loaded at an address different from where it will "run". */
2988
2989 int
2990 section_is_overlay (struct obj_section *section)
2991 {
2992 if (overlay_debugging && section)
2993 {
2994 bfd *abfd = section->objfile->obfd;
2995 asection *bfd_section = section->the_bfd_section;
2996
2997 if (bfd_section_lma (abfd, bfd_section) != 0
2998 && bfd_section_lma (abfd, bfd_section)
2999 != bfd_section_vma (abfd, bfd_section))
3000 return 1;
3001 }
3002
3003 return 0;
3004 }
3005
3006 /* Function: overlay_invalidate_all (void)
3007 Invalidate the mapped state of all overlay sections (mark it as stale). */
3008
3009 static void
3010 overlay_invalidate_all (void)
3011 {
3012 struct objfile *objfile;
3013 struct obj_section *sect;
3014
3015 ALL_OBJSECTIONS (objfile, sect)
3016 if (section_is_overlay (sect))
3017 sect->ovly_mapped = -1;
3018 }
3019
3020 /* Function: section_is_mapped (SECTION)
3021 Returns true if section is an overlay, and is currently mapped.
3022
3023 Access to the ovly_mapped flag is restricted to this function, so
3024 that we can do automatic update. If the global flag
3025 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3026 overlay_invalidate_all. If the mapped state of the particular
3027 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3028
3029 int
3030 section_is_mapped (struct obj_section *osect)
3031 {
3032 struct gdbarch *gdbarch;
3033
3034 if (osect == 0 || !section_is_overlay (osect))
3035 return 0;
3036
3037 switch (overlay_debugging)
3038 {
3039 default:
3040 case ovly_off:
3041 return 0; /* overlay debugging off */
3042 case ovly_auto: /* overlay debugging automatic */
3043 /* Unles there is a gdbarch_overlay_update function,
3044 there's really nothing useful to do here (can't really go auto). */
3045 gdbarch = get_objfile_arch (osect->objfile);
3046 if (gdbarch_overlay_update_p (gdbarch))
3047 {
3048 if (overlay_cache_invalid)
3049 {
3050 overlay_invalidate_all ();
3051 overlay_cache_invalid = 0;
3052 }
3053 if (osect->ovly_mapped == -1)
3054 gdbarch_overlay_update (gdbarch, osect);
3055 }
3056 /* fall thru to manual case */
3057 case ovly_on: /* overlay debugging manual */
3058 return osect->ovly_mapped == 1;
3059 }
3060 }
3061
3062 /* Function: pc_in_unmapped_range
3063 If PC falls into the lma range of SECTION, return true, else false. */
3064
3065 CORE_ADDR
3066 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3067 {
3068 if (section_is_overlay (section))
3069 {
3070 bfd *abfd = section->objfile->obfd;
3071 asection *bfd_section = section->the_bfd_section;
3072
3073 /* We assume the LMA is relocated by the same offset as the VMA. */
3074 bfd_vma size = bfd_get_section_size (bfd_section);
3075 CORE_ADDR offset = obj_section_offset (section);
3076
3077 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3078 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3079 return 1;
3080 }
3081
3082 return 0;
3083 }
3084
3085 /* Function: pc_in_mapped_range
3086 If PC falls into the vma range of SECTION, return true, else false. */
3087
3088 CORE_ADDR
3089 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3090 {
3091 if (section_is_overlay (section))
3092 {
3093 if (obj_section_addr (section) <= pc
3094 && pc < obj_section_endaddr (section))
3095 return 1;
3096 }
3097
3098 return 0;
3099 }
3100
3101 /* Return true if the mapped ranges of sections A and B overlap, false
3102 otherwise. */
3103
3104 static int
3105 sections_overlap (struct obj_section *a, struct obj_section *b)
3106 {
3107 CORE_ADDR a_start = obj_section_addr (a);
3108 CORE_ADDR a_end = obj_section_endaddr (a);
3109 CORE_ADDR b_start = obj_section_addr (b);
3110 CORE_ADDR b_end = obj_section_endaddr (b);
3111
3112 return (a_start < b_end && b_start < a_end);
3113 }
3114
3115 /* Function: overlay_unmapped_address (PC, SECTION)
3116 Returns the address corresponding to PC in the unmapped (load) range.
3117 May be the same as PC. */
3118
3119 CORE_ADDR
3120 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3121 {
3122 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3123 {
3124 bfd *abfd = section->objfile->obfd;
3125 asection *bfd_section = section->the_bfd_section;
3126
3127 return pc + bfd_section_lma (abfd, bfd_section)
3128 - bfd_section_vma (abfd, bfd_section);
3129 }
3130
3131 return pc;
3132 }
3133
3134 /* Function: overlay_mapped_address (PC, SECTION)
3135 Returns the address corresponding to PC in the mapped (runtime) range.
3136 May be the same as PC. */
3137
3138 CORE_ADDR
3139 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3140 {
3141 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3142 {
3143 bfd *abfd = section->objfile->obfd;
3144 asection *bfd_section = section->the_bfd_section;
3145
3146 return pc + bfd_section_vma (abfd, bfd_section)
3147 - bfd_section_lma (abfd, bfd_section);
3148 }
3149
3150 return pc;
3151 }
3152
3153 /* Function: symbol_overlayed_address
3154 Return one of two addresses (relative to the VMA or to the LMA),
3155 depending on whether the section is mapped or not. */
3156
3157 CORE_ADDR
3158 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3159 {
3160 if (overlay_debugging)
3161 {
3162 /* If the symbol has no section, just return its regular address. */
3163 if (section == 0)
3164 return address;
3165 /* If the symbol's section is not an overlay, just return its
3166 address. */
3167 if (!section_is_overlay (section))
3168 return address;
3169 /* If the symbol's section is mapped, just return its address. */
3170 if (section_is_mapped (section))
3171 return address;
3172 /*
3173 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3174 * then return its LOADED address rather than its vma address!!
3175 */
3176 return overlay_unmapped_address (address, section);
3177 }
3178 return address;
3179 }
3180
3181 /* Function: find_pc_overlay (PC)
3182 Return the best-match overlay section for PC:
3183 If PC matches a mapped overlay section's VMA, return that section.
3184 Else if PC matches an unmapped section's VMA, return that section.
3185 Else if PC matches an unmapped section's LMA, return that section. */
3186
3187 struct obj_section *
3188 find_pc_overlay (CORE_ADDR pc)
3189 {
3190 struct objfile *objfile;
3191 struct obj_section *osect, *best_match = NULL;
3192
3193 if (overlay_debugging)
3194 {
3195 ALL_OBJSECTIONS (objfile, osect)
3196 if (section_is_overlay (osect))
3197 {
3198 if (pc_in_mapped_range (pc, osect))
3199 {
3200 if (section_is_mapped (osect))
3201 return osect;
3202 else
3203 best_match = osect;
3204 }
3205 else if (pc_in_unmapped_range (pc, osect))
3206 best_match = osect;
3207 }
3208 }
3209 return best_match;
3210 }
3211
3212 /* Function: find_pc_mapped_section (PC)
3213 If PC falls into the VMA address range of an overlay section that is
3214 currently marked as MAPPED, return that section. Else return NULL. */
3215
3216 struct obj_section *
3217 find_pc_mapped_section (CORE_ADDR pc)
3218 {
3219 struct objfile *objfile;
3220 struct obj_section *osect;
3221
3222 if (overlay_debugging)
3223 {
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
3227 }
3228
3229 return NULL;
3230 }
3231
3232 /* Function: list_overlays_command
3233 Print a list of mapped sections and their PC ranges. */
3234
3235 static void
3236 list_overlays_command (char *args, int from_tty)
3237 {
3238 int nmapped = 0;
3239 struct objfile *objfile;
3240 struct obj_section *osect;
3241
3242 if (overlay_debugging)
3243 {
3244 ALL_OBJSECTIONS (objfile, osect)
3245 if (section_is_mapped (osect))
3246 {
3247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3248 const char *name;
3249 bfd_vma lma, vma;
3250 int size;
3251
3252 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3253 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3254 size = bfd_get_section_size (osect->the_bfd_section);
3255 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3256
3257 printf_filtered ("Section %s, loaded at ", name);
3258 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3259 puts_filtered (" - ");
3260 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3261 printf_filtered (", mapped at ");
3262 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3263 puts_filtered (" - ");
3264 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3265 puts_filtered ("\n");
3266
3267 nmapped++;
3268 }
3269 }
3270 if (nmapped == 0)
3271 printf_filtered (_("No sections are mapped.\n"));
3272 }
3273
3274 /* Function: map_overlay_command
3275 Mark the named section as mapped (ie. residing at its VMA address). */
3276
3277 static void
3278 map_overlay_command (char *args, int from_tty)
3279 {
3280 struct objfile *objfile, *objfile2;
3281 struct obj_section *sec, *sec2;
3282
3283 if (!overlay_debugging)
3284 error (_("Overlay debugging not enabled. Use "
3285 "either the 'overlay auto' or\n"
3286 "the 'overlay manual' command."));
3287
3288 if (args == 0 || *args == 0)
3289 error (_("Argument required: name of an overlay section"));
3290
3291 /* First, find a section matching the user supplied argument. */
3292 ALL_OBJSECTIONS (objfile, sec)
3293 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3294 {
3295 /* Now, check to see if the section is an overlay. */
3296 if (!section_is_overlay (sec))
3297 continue; /* not an overlay section */
3298
3299 /* Mark the overlay as "mapped". */
3300 sec->ovly_mapped = 1;
3301
3302 /* Next, make a pass and unmap any sections that are
3303 overlapped by this new section: */
3304 ALL_OBJSECTIONS (objfile2, sec2)
3305 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3306 {
3307 if (info_verbose)
3308 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3309 bfd_section_name (objfile->obfd,
3310 sec2->the_bfd_section));
3311 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3312 }
3313 return;
3314 }
3315 error (_("No overlay section called %s"), args);
3316 }
3317
3318 /* Function: unmap_overlay_command
3319 Mark the overlay section as unmapped
3320 (ie. resident in its LMA address range, rather than the VMA range). */
3321
3322 static void
3323 unmap_overlay_command (char *args, int from_tty)
3324 {
3325 struct objfile *objfile;
3326 struct obj_section *sec = NULL;
3327
3328 if (!overlay_debugging)
3329 error (_("Overlay debugging not enabled. "
3330 "Use either the 'overlay auto' or\n"
3331 "the 'overlay manual' command."));
3332
3333 if (args == 0 || *args == 0)
3334 error (_("Argument required: name of an overlay section"));
3335
3336 /* First, find a section matching the user supplied argument. */
3337 ALL_OBJSECTIONS (objfile, sec)
3338 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3339 {
3340 if (!sec->ovly_mapped)
3341 error (_("Section %s is not mapped"), args);
3342 sec->ovly_mapped = 0;
3343 return;
3344 }
3345 error (_("No overlay section called %s"), args);
3346 }
3347
3348 /* Function: overlay_auto_command
3349 A utility command to turn on overlay debugging.
3350 Possibly this should be done via a set/show command. */
3351
3352 static void
3353 overlay_auto_command (char *args, int from_tty)
3354 {
3355 overlay_debugging = ovly_auto;
3356 enable_overlay_breakpoints ();
3357 if (info_verbose)
3358 printf_unfiltered (_("Automatic overlay debugging enabled."));
3359 }
3360
3361 /* Function: overlay_manual_command
3362 A utility command to turn on overlay debugging.
3363 Possibly this should be done via a set/show command. */
3364
3365 static void
3366 overlay_manual_command (char *args, int from_tty)
3367 {
3368 overlay_debugging = ovly_on;
3369 disable_overlay_breakpoints ();
3370 if (info_verbose)
3371 printf_unfiltered (_("Overlay debugging enabled."));
3372 }
3373
3374 /* Function: overlay_off_command
3375 A utility command to turn on overlay debugging.
3376 Possibly this should be done via a set/show command. */
3377
3378 static void
3379 overlay_off_command (char *args, int from_tty)
3380 {
3381 overlay_debugging = ovly_off;
3382 disable_overlay_breakpoints ();
3383 if (info_verbose)
3384 printf_unfiltered (_("Overlay debugging disabled."));
3385 }
3386
3387 static void
3388 overlay_load_command (char *args, int from_tty)
3389 {
3390 struct gdbarch *gdbarch = get_current_arch ();
3391
3392 if (gdbarch_overlay_update_p (gdbarch))
3393 gdbarch_overlay_update (gdbarch, NULL);
3394 else
3395 error (_("This target does not know how to read its overlay state."));
3396 }
3397
3398 /* Function: overlay_command
3399 A place-holder for a mis-typed command. */
3400
3401 /* Command list chain containing all defined "overlay" subcommands. */
3402 static struct cmd_list_element *overlaylist;
3403
3404 static void
3405 overlay_command (char *args, int from_tty)
3406 {
3407 printf_unfiltered
3408 ("\"overlay\" must be followed by the name of an overlay command.\n");
3409 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3410 }
3411
3412 /* Target Overlays for the "Simplest" overlay manager:
3413
3414 This is GDB's default target overlay layer. It works with the
3415 minimal overlay manager supplied as an example by Cygnus. The
3416 entry point is via a function pointer "gdbarch_overlay_update",
3417 so targets that use a different runtime overlay manager can
3418 substitute their own overlay_update function and take over the
3419 function pointer.
3420
3421 The overlay_update function pokes around in the target's data structures
3422 to see what overlays are mapped, and updates GDB's overlay mapping with
3423 this information.
3424
3425 In this simple implementation, the target data structures are as follows:
3426 unsigned _novlys; /# number of overlay sections #/
3427 unsigned _ovly_table[_novlys][4] = {
3428 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3429 {..., ..., ..., ...},
3430 }
3431 unsigned _novly_regions; /# number of overlay regions #/
3432 unsigned _ovly_region_table[_novly_regions][3] = {
3433 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3434 {..., ..., ...},
3435 }
3436 These functions will attempt to update GDB's mappedness state in the
3437 symbol section table, based on the target's mappedness state.
3438
3439 To do this, we keep a cached copy of the target's _ovly_table, and
3440 attempt to detect when the cached copy is invalidated. The main
3441 entry point is "simple_overlay_update(SECT), which looks up SECT in
3442 the cached table and re-reads only the entry for that section from
3443 the target (whenever possible). */
3444
3445 /* Cached, dynamically allocated copies of the target data structures: */
3446 static unsigned (*cache_ovly_table)[4] = 0;
3447 static unsigned cache_novlys = 0;
3448 static CORE_ADDR cache_ovly_table_base = 0;
3449 enum ovly_index
3450 {
3451 VMA, OSIZE, LMA, MAPPED
3452 };
3453
3454 /* Throw away the cached copy of _ovly_table. */
3455
3456 static void
3457 simple_free_overlay_table (void)
3458 {
3459 if (cache_ovly_table)
3460 xfree (cache_ovly_table);
3461 cache_novlys = 0;
3462 cache_ovly_table = NULL;
3463 cache_ovly_table_base = 0;
3464 }
3465
3466 /* Read an array of ints of size SIZE from the target into a local buffer.
3467 Convert to host order. int LEN is number of ints. */
3468
3469 static void
3470 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3471 int len, int size, enum bfd_endian byte_order)
3472 {
3473 /* FIXME (alloca): Not safe if array is very large. */
3474 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3475 int i;
3476
3477 read_memory (memaddr, buf, len * size);
3478 for (i = 0; i < len; i++)
3479 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3480 }
3481
3482 /* Find and grab a copy of the target _ovly_table
3483 (and _novlys, which is needed for the table's size). */
3484
3485 static int
3486 simple_read_overlay_table (void)
3487 {
3488 struct bound_minimal_symbol novlys_msym;
3489 struct bound_minimal_symbol ovly_table_msym;
3490 struct gdbarch *gdbarch;
3491 int word_size;
3492 enum bfd_endian byte_order;
3493
3494 simple_free_overlay_table ();
3495 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3496 if (! novlys_msym.minsym)
3497 {
3498 error (_("Error reading inferior's overlay table: "
3499 "couldn't find `_novlys' variable\n"
3500 "in inferior. Use `overlay manual' mode."));
3501 return 0;
3502 }
3503
3504 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3505 if (! ovly_table_msym.minsym)
3506 {
3507 error (_("Error reading inferior's overlay table: couldn't find "
3508 "`_ovly_table' array\n"
3509 "in inferior. Use `overlay manual' mode."));
3510 return 0;
3511 }
3512
3513 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3514 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3515 byte_order = gdbarch_byte_order (gdbarch);
3516
3517 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3518 4, byte_order);
3519 cache_ovly_table
3520 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3521 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3522 read_target_long_array (cache_ovly_table_base,
3523 (unsigned int *) cache_ovly_table,
3524 cache_novlys * 4, word_size, byte_order);
3525
3526 return 1; /* SUCCESS */
3527 }
3528
3529 /* Function: simple_overlay_update_1
3530 A helper function for simple_overlay_update. Assuming a cached copy
3531 of _ovly_table exists, look through it to find an entry whose vma,
3532 lma and size match those of OSECT. Re-read the entry and make sure
3533 it still matches OSECT (else the table may no longer be valid).
3534 Set OSECT's mapped state to match the entry. Return: 1 for
3535 success, 0 for failure. */
3536
3537 static int
3538 simple_overlay_update_1 (struct obj_section *osect)
3539 {
3540 int i;
3541 bfd *obfd = osect->objfile->obfd;
3542 asection *bsect = osect->the_bfd_section;
3543 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3544 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3546
3547 for (i = 0; i < cache_novlys; i++)
3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3550 {
3551 read_target_long_array (cache_ovly_table_base + i * word_size,
3552 (unsigned int *) cache_ovly_table[i],
3553 4, word_size, byte_order);
3554 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3555 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3556 {
3557 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3558 return 1;
3559 }
3560 else /* Warning! Warning! Target's ovly table has changed! */
3561 return 0;
3562 }
3563 return 0;
3564 }
3565
3566 /* Function: simple_overlay_update
3567 If OSECT is NULL, then update all sections' mapped state
3568 (after re-reading the entire target _ovly_table).
3569 If OSECT is non-NULL, then try to find a matching entry in the
3570 cached ovly_table and update only OSECT's mapped state.
3571 If a cached entry can't be found or the cache isn't valid, then
3572 re-read the entire cache, and go ahead and update all sections. */
3573
3574 void
3575 simple_overlay_update (struct obj_section *osect)
3576 {
3577 struct objfile *objfile;
3578
3579 /* Were we given an osect to look up? NULL means do all of them. */
3580 if (osect)
3581 /* Have we got a cached copy of the target's overlay table? */
3582 if (cache_ovly_table != NULL)
3583 {
3584 /* Does its cached location match what's currently in the
3585 symtab? */
3586 struct bound_minimal_symbol minsym
3587 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3588
3589 if (minsym.minsym == NULL)
3590 error (_("Error reading inferior's overlay table: couldn't "
3591 "find `_ovly_table' array\n"
3592 "in inferior. Use `overlay manual' mode."));
3593
3594 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3595 /* Then go ahead and try to look up this single section in
3596 the cache. */
3597 if (simple_overlay_update_1 (osect))
3598 /* Found it! We're done. */
3599 return;
3600 }
3601
3602 /* Cached table no good: need to read the entire table anew.
3603 Or else we want all the sections, in which case it's actually
3604 more efficient to read the whole table in one block anyway. */
3605
3606 if (! simple_read_overlay_table ())
3607 return;
3608
3609 /* Now may as well update all sections, even if only one was requested. */
3610 ALL_OBJSECTIONS (objfile, osect)
3611 if (section_is_overlay (osect))
3612 {
3613 int i;
3614 bfd *obfd = osect->objfile->obfd;
3615 asection *bsect = osect->the_bfd_section;
3616
3617 for (i = 0; i < cache_novlys; i++)
3618 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3619 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3620 { /* obj_section matches i'th entry in ovly_table. */
3621 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3622 break; /* finished with inner for loop: break out. */
3623 }
3624 }
3625 }
3626
3627 /* Set the output sections and output offsets for section SECTP in
3628 ABFD. The relocation code in BFD will read these offsets, so we
3629 need to be sure they're initialized. We map each section to itself,
3630 with no offset; this means that SECTP->vma will be honored. */
3631
3632 static void
3633 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3634 {
3635 sectp->output_section = sectp;
3636 sectp->output_offset = 0;
3637 }
3638
3639 /* Default implementation for sym_relocate. */
3640
3641 bfd_byte *
3642 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644 {
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659 }
3660
3661 /* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
3674
3675 bfd_byte *
3676 symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
3678 {
3679 gdb_assert (objfile->sf->sym_relocate);
3680
3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3682 }
3683
3684 struct symfile_segment_data *
3685 get_symfile_segment_data (bfd *abfd)
3686 {
3687 const struct sym_fns *sf = find_sym_fns (abfd);
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693 }
3694
3695 void
3696 free_symfile_segment_data (struct symfile_segment_data *data)
3697 {
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702 }
3703
3704 /* Given:
3705 - DATA, containing segment addresses from the object file ABFD, and
3706 the mapping from ABFD's sections onto the segments that own them,
3707 and
3708 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3709 segment addresses reported by the target,
3710 store the appropriate offsets for each section in OFFSETS.
3711
3712 If there are fewer entries in SEGMENT_BASES than there are segments
3713 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3714
3715 If there are more entries, then ignore the extra. The target may
3716 not be able to distinguish between an empty data segment and a
3717 missing data segment; a missing text segment is less plausible. */
3718
3719 int
3720 symfile_map_offsets_to_segments (bfd *abfd,
3721 const struct symfile_segment_data *data,
3722 struct section_offsets *offsets,
3723 int num_segment_bases,
3724 const CORE_ADDR *segment_bases)
3725 {
3726 int i;
3727 asection *sect;
3728
3729 /* It doesn't make sense to call this function unless you have some
3730 segment base addresses. */
3731 gdb_assert (num_segment_bases > 0);
3732
3733 /* If we do not have segment mappings for the object file, we
3734 can not relocate it by segments. */
3735 gdb_assert (data != NULL);
3736 gdb_assert (data->num_segments > 0);
3737
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3739 {
3740 int which = data->segment_info[i];
3741
3742 gdb_assert (0 <= which && which <= data->num_segments);
3743
3744 /* Don't bother computing offsets for sections that aren't
3745 loaded as part of any segment. */
3746 if (! which)
3747 continue;
3748
3749 /* Use the last SEGMENT_BASES entry as the address of any extra
3750 segments mentioned in DATA->segment_info. */
3751 if (which > num_segment_bases)
3752 which = num_segment_bases;
3753
3754 offsets->offsets[i] = (segment_bases[which - 1]
3755 - data->segment_bases[which - 1]);
3756 }
3757
3758 return 1;
3759 }
3760
3761 static void
3762 symfile_find_segment_sections (struct objfile *objfile)
3763 {
3764 bfd *abfd = objfile->obfd;
3765 int i;
3766 asection *sect;
3767 struct symfile_segment_data *data;
3768
3769 data = get_symfile_segment_data (objfile->obfd);
3770 if (data == NULL)
3771 return;
3772
3773 if (data->num_segments != 1 && data->num_segments != 2)
3774 {
3775 free_symfile_segment_data (data);
3776 return;
3777 }
3778
3779 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3780 {
3781 int which = data->segment_info[i];
3782
3783 if (which == 1)
3784 {
3785 if (objfile->sect_index_text == -1)
3786 objfile->sect_index_text = sect->index;
3787
3788 if (objfile->sect_index_rodata == -1)
3789 objfile->sect_index_rodata = sect->index;
3790 }
3791 else if (which == 2)
3792 {
3793 if (objfile->sect_index_data == -1)
3794 objfile->sect_index_data = sect->index;
3795
3796 if (objfile->sect_index_bss == -1)
3797 objfile->sect_index_bss = sect->index;
3798 }
3799 }
3800
3801 free_symfile_segment_data (data);
3802 }
3803
3804 /* Listen for free_objfile events. */
3805
3806 static void
3807 symfile_free_objfile (struct objfile *objfile)
3808 {
3809 /* Remove the target sections owned by this objfile. */
3810 if (objfile != NULL)
3811 remove_target_sections ((void *) objfile);
3812 }
3813
3814 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3815 Expand all symtabs that match the specified criteria.
3816 See quick_symbol_functions.expand_symtabs_matching for details. */
3817
3818 void
3819 expand_symtabs_matching
3820 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3821 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3822 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3823 enum search_domain kind)
3824 {
3825 struct objfile *objfile;
3826
3827 ALL_OBJFILES (objfile)
3828 {
3829 if (objfile->sf)
3830 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3831 symbol_matcher,
3832 expansion_notify, kind);
3833 }
3834 }
3835
3836 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3837 Map function FUN over every file.
3838 See quick_symbol_functions.map_symbol_filenames for details. */
3839
3840 void
3841 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3842 int need_fullname)
3843 {
3844 struct objfile *objfile;
3845
3846 ALL_OBJFILES (objfile)
3847 {
3848 if (objfile->sf)
3849 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3850 need_fullname);
3851 }
3852 }
3853
3854 void
3855 _initialize_symfile (void)
3856 {
3857 struct cmd_list_element *c;
3858
3859 observer_attach_free_objfile (symfile_free_objfile);
3860
3861 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3862 Load symbol table from executable file FILE.\n\
3863 The `file' command can also load symbol tables, as well as setting the file\n\
3864 to execute."), &cmdlist);
3865 set_cmd_completer (c, filename_completer);
3866
3867 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3868 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3869 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3870 ...]\nADDR is the starting address of the file's text.\n\
3871 The optional arguments are section-name section-address pairs and\n\
3872 should be specified if the data and bss segments are not contiguous\n\
3873 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3874 &cmdlist);
3875 set_cmd_completer (c, filename_completer);
3876
3877 c = add_cmd ("remove-symbol-file", class_files,
3878 remove_symbol_file_command, _("\
3879 Remove a symbol file added via the add-symbol-file command.\n\
3880 Usage: remove-symbol-file FILENAME\n\
3881 remove-symbol-file -a ADDRESS\n\
3882 The file to remove can be identified by its filename or by an address\n\
3883 that lies within the boundaries of this symbol file in memory."),
3884 &cmdlist);
3885
3886 c = add_cmd ("load", class_files, load_command, _("\
3887 Dynamically load FILE into the running program, and record its symbols\n\
3888 for access from GDB.\n\
3889 An optional load OFFSET may also be given as a literal address.\n\
3890 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3891 on its own.\n\
3892 Usage: load [FILE] [OFFSET]"), &cmdlist);
3893 set_cmd_completer (c, filename_completer);
3894
3895 add_prefix_cmd ("overlay", class_support, overlay_command,
3896 _("Commands for debugging overlays."), &overlaylist,
3897 "overlay ", 0, &cmdlist);
3898
3899 add_com_alias ("ovly", "overlay", class_alias, 1);
3900 add_com_alias ("ov", "overlay", class_alias, 1);
3901
3902 add_cmd ("map-overlay", class_support, map_overlay_command,
3903 _("Assert that an overlay section is mapped."), &overlaylist);
3904
3905 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3906 _("Assert that an overlay section is unmapped."), &overlaylist);
3907
3908 add_cmd ("list-overlays", class_support, list_overlays_command,
3909 _("List mappings of overlay sections."), &overlaylist);
3910
3911 add_cmd ("manual", class_support, overlay_manual_command,
3912 _("Enable overlay debugging."), &overlaylist);
3913 add_cmd ("off", class_support, overlay_off_command,
3914 _("Disable overlay debugging."), &overlaylist);
3915 add_cmd ("auto", class_support, overlay_auto_command,
3916 _("Enable automatic overlay debugging."), &overlaylist);
3917 add_cmd ("load-target", class_support, overlay_load_command,
3918 _("Read the overlay mapping state from the target."), &overlaylist);
3919
3920 /* Filename extension to source language lookup table: */
3921 add_setshow_string_noescape_cmd ("extension-language", class_files,
3922 &ext_args, _("\
3923 Set mapping between filename extension and source language."), _("\
3924 Show mapping between filename extension and source language."), _("\
3925 Usage: set extension-language .foo bar"),
3926 set_ext_lang_command,
3927 show_ext_args,
3928 &setlist, &showlist);
3929
3930 add_info ("extensions", info_ext_lang_command,
3931 _("All filename extensions associated with a source language."));
3932
3933 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3934 &debug_file_directory, _("\
3935 Set the directories where separate debug symbols are searched for."), _("\
3936 Show the directories where separate debug symbols are searched for."), _("\
3937 Separate debug symbols are first searched for in the same\n\
3938 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3939 and lastly at the path of the directory of the binary with\n\
3940 each global debug-file-directory component prepended."),
3941 NULL,
3942 show_debug_file_directory,
3943 &setlist, &showlist);
3944
3945 add_setshow_enum_cmd ("symbol-loading", no_class,
3946 print_symbol_loading_enums, &print_symbol_loading,
3947 _("\
3948 Set printing of symbol loading messages."), _("\
3949 Show printing of symbol loading messages."), _("\
3950 off == turn all messages off\n\
3951 brief == print messages for the executable,\n\
3952 and brief messages for shared libraries\n\
3953 full == print messages for the executable,\n\
3954 and messages for each shared library."),
3955 NULL,
3956 NULL,
3957 &setprintlist, &showprintlist);
3958
3959 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3960 &separate_debug_file_debug, _("\
3961 Set printing of separate debug info file search debug."), _("\
3962 Show printing of separate debug info file search debug."), _("\
3963 When on, GDB prints the searched locations while looking for separate debug \
3964 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3965 }
This page took 0.14149 seconds and 4 git commands to generate.