gdb: remove TYPE_VECTOR
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 /* Given a pointer, return the size of its target.
40 If the pointer type is void *, then return 1.
41 If the target type is incomplete, then error out.
42 This isn't a general purpose function, but just a
43 helper for value_ptradd. */
44
45 static LONGEST
46 find_size_for_pointer_math (struct type *ptr_type)
47 {
48 LONGEST sz = -1;
49 struct type *ptr_target;
50
51 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
52 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
53
54 sz = type_length_units (ptr_target);
55 if (sz == 0)
56 {
57 if (ptr_type->code () == TYPE_CODE_VOID)
58 sz = 1;
59 else
60 {
61 const char *name;
62
63 name = ptr_target->name ();
64 if (name == NULL)
65 error (_("Cannot perform pointer math on incomplete types, "
66 "try casting to a known type, or void *."));
67 else
68 error (_("Cannot perform pointer math on incomplete type \"%s\", "
69 "try casting to a known type, or void *."), name);
70 }
71 }
72 return sz;
73 }
74
75 /* Given a pointer ARG1 and an integral value ARG2, return the
76 result of C-style pointer arithmetic ARG1 + ARG2. */
77
78 struct value *
79 value_ptradd (struct value *arg1, LONGEST arg2)
80 {
81 struct type *valptrtype;
82 LONGEST sz;
83 struct value *result;
84
85 arg1 = coerce_array (arg1);
86 valptrtype = check_typedef (value_type (arg1));
87 sz = find_size_for_pointer_math (valptrtype);
88
89 result = value_from_pointer (valptrtype,
90 value_as_address (arg1) + sz * arg2);
91 if (VALUE_LVAL (result) != lval_internalvar)
92 set_value_component_location (result, arg1);
93 return result;
94 }
95
96 /* Given two compatible pointer values ARG1 and ARG2, return the
97 result of C-style pointer arithmetic ARG1 - ARG2. */
98
99 LONGEST
100 value_ptrdiff (struct value *arg1, struct value *arg2)
101 {
102 struct type *type1, *type2;
103 LONGEST sz;
104
105 arg1 = coerce_array (arg1);
106 arg2 = coerce_array (arg2);
107 type1 = check_typedef (value_type (arg1));
108 type2 = check_typedef (value_type (arg2));
109
110 gdb_assert (type1->code () == TYPE_CODE_PTR);
111 gdb_assert (type2->code () == TYPE_CODE_PTR);
112
113 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
114 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
115 error (_("First argument of `-' is a pointer and "
116 "second argument is neither\n"
117 "an integer nor a pointer of the same type."));
118
119 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
120 if (sz == 0)
121 {
122 warning (_("Type size unknown, assuming 1. "
123 "Try casting to a known type, or void *."));
124 sz = 1;
125 }
126
127 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
128 }
129
130 /* Return the value of ARRAY[IDX].
131
132 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
133 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
134
135 See comments in value_coerce_array() for rationale for reason for
136 doing lower bounds adjustment here rather than there.
137 FIXME: Perhaps we should validate that the index is valid and if
138 verbosity is set, warn about invalid indices (but still use them). */
139
140 struct value *
141 value_subscript (struct value *array, LONGEST index)
142 {
143 int c_style = current_language->c_style_arrays;
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (tarray->code () == TYPE_CODE_ARRAY
150 || tarray->code () == TYPE_CODE_STRING)
151 {
152 struct type *range_type = tarray->index_type ();
153 LONGEST lowerbound, upperbound;
154
155 get_discrete_bounds (range_type, &lowerbound, &upperbound);
156 if (VALUE_LVAL (array) != lval_memory)
157 return value_subscripted_rvalue (array, index, lowerbound);
158
159 if (c_style == 0)
160 {
161 if (index >= lowerbound && index <= upperbound)
162 return value_subscripted_rvalue (array, index, lowerbound);
163 /* Emit warning unless we have an array of unknown size.
164 An array of unknown size has lowerbound 0 and upperbound -1. */
165 if (upperbound > -1)
166 warning (_("array or string index out of range"));
167 /* fall doing C stuff */
168 c_style = 1;
169 }
170
171 index -= lowerbound;
172 array = value_coerce_array (array);
173 }
174
175 if (c_style)
176 return value_ind (value_ptradd (array, index));
177 else
178 error (_("not an array or string"));
179 }
180
181 /* Return the value of EXPR[IDX], expr an aggregate rvalue
182 (eg, a vector register). This routine used to promote floats
183 to doubles, but no longer does. */
184
185 struct value *
186 value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
187 {
188 struct type *array_type = check_typedef (value_type (array));
189 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
190 LONGEST elt_size = type_length_units (elt_type);
191
192 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
193 in a byte. */
194 LONGEST stride = array_type->bit_stride ();
195 if (stride != 0)
196 {
197 struct gdbarch *arch = get_type_arch (elt_type);
198 int unit_size = gdbarch_addressable_memory_unit_size (arch);
199 elt_size = stride / (unit_size * 8);
200 }
201
202 LONGEST elt_offs = elt_size * (index - lowerbound);
203 bool array_upper_bound_undefined
204 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
205
206 if (index < lowerbound
207 || (!array_upper_bound_undefined
208 && elt_offs >= type_length_units (array_type))
209 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
210 {
211 if (type_not_associated (array_type))
212 error (_("no such vector element (vector not associated)"));
213 else if (type_not_allocated (array_type))
214 error (_("no such vector element (vector not allocated)"));
215 else
216 error (_("no such vector element"));
217 }
218
219 if (is_dynamic_type (elt_type))
220 {
221 CORE_ADDR address;
222
223 address = value_address (array) + elt_offs;
224 elt_type = resolve_dynamic_type (elt_type, {}, address);
225 }
226
227 return value_from_component (array, elt_type, elt_offs);
228 }
229
230 \f
231 /* Check to see if either argument is a structure, or a reference to
232 one. This is called so we know whether to go ahead with the normal
233 binop or look for a user defined function instead.
234
235 For now, we do not overload the `=' operator. */
236
237 int
238 binop_types_user_defined_p (enum exp_opcode op,
239 struct type *type1, struct type *type2)
240 {
241 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
242 return 0;
243
244 type1 = check_typedef (type1);
245 if (TYPE_IS_REFERENCE (type1))
246 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
247
248 type2 = check_typedef (type2);
249 if (TYPE_IS_REFERENCE (type2))
250 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
251
252 return (type1->code () == TYPE_CODE_STRUCT
253 || type2->code () == TYPE_CODE_STRUCT);
254 }
255
256 /* Check to see if either argument is a structure, or a reference to
257 one. This is called so we know whether to go ahead with the normal
258 binop or look for a user defined function instead.
259
260 For now, we do not overload the `=' operator. */
261
262 int
263 binop_user_defined_p (enum exp_opcode op,
264 struct value *arg1, struct value *arg2)
265 {
266 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
267 }
268
269 /* Check to see if argument is a structure. This is called so
270 we know whether to go ahead with the normal unop or look for a
271 user defined function instead.
272
273 For now, we do not overload the `&' operator. */
274
275 int
276 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
277 {
278 struct type *type1;
279
280 if (op == UNOP_ADDR)
281 return 0;
282 type1 = check_typedef (value_type (arg1));
283 if (TYPE_IS_REFERENCE (type1))
284 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
285 return type1->code () == TYPE_CODE_STRUCT;
286 }
287
288 /* Try to find an operator named OPERATOR which takes NARGS arguments
289 specified in ARGS. If the operator found is a static member operator
290 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
291 The search if performed through find_overload_match which will handle
292 member operators, non member operators, operators imported implicitly or
293 explicitly, and perform correct overload resolution in all of the above
294 situations or combinations thereof. */
295
296 static struct value *
297 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
298 int *static_memfuncp, enum noside noside)
299 {
300
301 struct symbol *symp = NULL;
302 struct value *valp = NULL;
303
304 find_overload_match (args, oper, BOTH /* could be method */,
305 &args[0] /* objp */,
306 NULL /* pass NULL symbol since symbol is unknown */,
307 &valp, &symp, static_memfuncp, 0, noside);
308
309 if (valp)
310 return valp;
311
312 if (symp)
313 {
314 /* This is a non member function and does not
315 expect a reference as its first argument
316 rather the explicit structure. */
317 args[0] = value_ind (args[0]);
318 return value_of_variable (symp, 0);
319 }
320
321 error (_("Could not find %s."), oper);
322 }
323
324 /* Lookup user defined operator NAME. Return a value representing the
325 function, otherwise return NULL. */
326
327 static struct value *
328 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
329 char *name, int *static_memfuncp, enum noside noside)
330 {
331 struct value *result = NULL;
332
333 if (current_language->la_language == language_cplus)
334 {
335 result = value_user_defined_cpp_op (args, name, static_memfuncp,
336 noside);
337 }
338 else
339 result = value_struct_elt (argp, args.data (), name, static_memfuncp,
340 "structure");
341
342 return result;
343 }
344
345 /* We know either arg1 or arg2 is a structure, so try to find the right
346 user defined function. Create an argument vector that calls
347 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
348 binary operator which is legal for GNU C++).
349
350 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
351 is the opcode saying how to modify it. Otherwise, OTHEROP is
352 unused. */
353
354 struct value *
355 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
356 enum exp_opcode otherop, enum noside noside)
357 {
358 char *ptr;
359 char tstr[13];
360 int static_memfuncp;
361
362 arg1 = coerce_ref (arg1);
363 arg2 = coerce_ref (arg2);
364
365 /* now we know that what we have to do is construct our
366 arg vector and find the right function to call it with. */
367
368 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
369 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
370
371 value *argvec_storage[3];
372 gdb::array_view<value *> argvec = argvec_storage;
373
374 argvec[1] = value_addr (arg1);
375 argvec[2] = arg2;
376
377 /* Make the right function name up. */
378 strcpy (tstr, "operator__");
379 ptr = tstr + 8;
380 switch (op)
381 {
382 case BINOP_ADD:
383 strcpy (ptr, "+");
384 break;
385 case BINOP_SUB:
386 strcpy (ptr, "-");
387 break;
388 case BINOP_MUL:
389 strcpy (ptr, "*");
390 break;
391 case BINOP_DIV:
392 strcpy (ptr, "/");
393 break;
394 case BINOP_REM:
395 strcpy (ptr, "%");
396 break;
397 case BINOP_LSH:
398 strcpy (ptr, "<<");
399 break;
400 case BINOP_RSH:
401 strcpy (ptr, ">>");
402 break;
403 case BINOP_BITWISE_AND:
404 strcpy (ptr, "&");
405 break;
406 case BINOP_BITWISE_IOR:
407 strcpy (ptr, "|");
408 break;
409 case BINOP_BITWISE_XOR:
410 strcpy (ptr, "^");
411 break;
412 case BINOP_LOGICAL_AND:
413 strcpy (ptr, "&&");
414 break;
415 case BINOP_LOGICAL_OR:
416 strcpy (ptr, "||");
417 break;
418 case BINOP_MIN:
419 strcpy (ptr, "<?");
420 break;
421 case BINOP_MAX:
422 strcpy (ptr, ">?");
423 break;
424 case BINOP_ASSIGN:
425 strcpy (ptr, "=");
426 break;
427 case BINOP_ASSIGN_MODIFY:
428 switch (otherop)
429 {
430 case BINOP_ADD:
431 strcpy (ptr, "+=");
432 break;
433 case BINOP_SUB:
434 strcpy (ptr, "-=");
435 break;
436 case BINOP_MUL:
437 strcpy (ptr, "*=");
438 break;
439 case BINOP_DIV:
440 strcpy (ptr, "/=");
441 break;
442 case BINOP_REM:
443 strcpy (ptr, "%=");
444 break;
445 case BINOP_BITWISE_AND:
446 strcpy (ptr, "&=");
447 break;
448 case BINOP_BITWISE_IOR:
449 strcpy (ptr, "|=");
450 break;
451 case BINOP_BITWISE_XOR:
452 strcpy (ptr, "^=");
453 break;
454 case BINOP_MOD: /* invalid */
455 default:
456 error (_("Invalid binary operation specified."));
457 }
458 break;
459 case BINOP_SUBSCRIPT:
460 strcpy (ptr, "[]");
461 break;
462 case BINOP_EQUAL:
463 strcpy (ptr, "==");
464 break;
465 case BINOP_NOTEQUAL:
466 strcpy (ptr, "!=");
467 break;
468 case BINOP_LESS:
469 strcpy (ptr, "<");
470 break;
471 case BINOP_GTR:
472 strcpy (ptr, ">");
473 break;
474 case BINOP_GEQ:
475 strcpy (ptr, ">=");
476 break;
477 case BINOP_LEQ:
478 strcpy (ptr, "<=");
479 break;
480 case BINOP_MOD: /* invalid */
481 default:
482 error (_("Invalid binary operation specified."));
483 }
484
485 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
486 &static_memfuncp, noside);
487
488 if (argvec[0])
489 {
490 if (static_memfuncp)
491 {
492 argvec[1] = argvec[0];
493 argvec = argvec.slice (1);
494 }
495 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
496 {
497 /* Static xmethods are not supported yet. */
498 gdb_assert (static_memfuncp == 0);
499 if (noside == EVAL_AVOID_SIDE_EFFECTS)
500 {
501 struct type *return_type
502 = result_type_of_xmethod (argvec[0], argvec.slice (1));
503
504 if (return_type == NULL)
505 error (_("Xmethod is missing return type."));
506 return value_zero (return_type, VALUE_LVAL (arg1));
507 }
508 return call_xmethod (argvec[0], argvec.slice (1));
509 }
510 if (noside == EVAL_AVOID_SIDE_EFFECTS)
511 {
512 struct type *return_type;
513
514 return_type
515 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
516 return value_zero (return_type, VALUE_LVAL (arg1));
517 }
518 return call_function_by_hand (argvec[0], NULL,
519 argvec.slice (1, 2 - static_memfuncp));
520 }
521 throw_error (NOT_FOUND_ERROR,
522 _("member function %s not found"), tstr);
523 }
524
525 /* We know that arg1 is a structure, so try to find a unary user
526 defined operator that matches the operator in question.
527 Create an argument vector that calls arg1.operator @ (arg1)
528 and return that value (where '@' is (almost) any unary operator which
529 is legal for GNU C++). */
530
531 struct value *
532 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
533 {
534 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
535 char *ptr;
536 char tstr[13], mangle_tstr[13];
537 int static_memfuncp, nargs;
538
539 arg1 = coerce_ref (arg1);
540
541 /* now we know that what we have to do is construct our
542 arg vector and find the right function to call it with. */
543
544 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
545 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
546
547 value *argvec_storage[3];
548 gdb::array_view<value *> argvec = argvec_storage;
549
550 argvec[1] = value_addr (arg1);
551 argvec[2] = 0;
552
553 nargs = 1;
554
555 /* Make the right function name up. */
556 strcpy (tstr, "operator__");
557 ptr = tstr + 8;
558 strcpy (mangle_tstr, "__");
559 switch (op)
560 {
561 case UNOP_PREINCREMENT:
562 strcpy (ptr, "++");
563 break;
564 case UNOP_PREDECREMENT:
565 strcpy (ptr, "--");
566 break;
567 case UNOP_POSTINCREMENT:
568 strcpy (ptr, "++");
569 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
570 nargs ++;
571 break;
572 case UNOP_POSTDECREMENT:
573 strcpy (ptr, "--");
574 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
575 nargs ++;
576 break;
577 case UNOP_LOGICAL_NOT:
578 strcpy (ptr, "!");
579 break;
580 case UNOP_COMPLEMENT:
581 strcpy (ptr, "~");
582 break;
583 case UNOP_NEG:
584 strcpy (ptr, "-");
585 break;
586 case UNOP_PLUS:
587 strcpy (ptr, "+");
588 break;
589 case UNOP_IND:
590 strcpy (ptr, "*");
591 break;
592 case STRUCTOP_PTR:
593 strcpy (ptr, "->");
594 break;
595 default:
596 error (_("Invalid unary operation specified."));
597 }
598
599 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
600 &static_memfuncp, noside);
601
602 if (argvec[0])
603 {
604 if (static_memfuncp)
605 {
606 argvec[1] = argvec[0];
607 argvec = argvec.slice (1);
608 }
609 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
610 {
611 /* Static xmethods are not supported yet. */
612 gdb_assert (static_memfuncp == 0);
613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
614 {
615 struct type *return_type
616 = result_type_of_xmethod (argvec[0], argvec[1]);
617
618 if (return_type == NULL)
619 error (_("Xmethod is missing return type."));
620 return value_zero (return_type, VALUE_LVAL (arg1));
621 }
622 return call_xmethod (argvec[0], argvec[1]);
623 }
624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
625 {
626 struct type *return_type;
627
628 return_type
629 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
630 return value_zero (return_type, VALUE_LVAL (arg1));
631 }
632 return call_function_by_hand (argvec[0], NULL,
633 argvec.slice (1, nargs));
634 }
635 throw_error (NOT_FOUND_ERROR,
636 _("member function %s not found"), tstr);
637 }
638 \f
639
640 /* Concatenate two values with the following conditions:
641
642 (1) Both values must be either bitstring values or character string
643 values and the resulting value consists of the concatenation of
644 ARG1 followed by ARG2.
645
646 or
647
648 One value must be an integer value and the other value must be
649 either a bitstring value or character string value, which is
650 to be repeated by the number of times specified by the integer
651 value.
652
653
654 (2) Boolean values are also allowed and are treated as bit string
655 values of length 1.
656
657 (3) Character values are also allowed and are treated as character
658 string values of length 1. */
659
660 struct value *
661 value_concat (struct value *arg1, struct value *arg2)
662 {
663 struct value *inval1;
664 struct value *inval2;
665 struct value *outval = NULL;
666 int inval1len, inval2len;
667 int count, idx;
668 char inchar;
669 struct type *type1 = check_typedef (value_type (arg1));
670 struct type *type2 = check_typedef (value_type (arg2));
671 struct type *char_type;
672
673 /* First figure out if we are dealing with two values to be concatenated
674 or a repeat count and a value to be repeated. INVAL1 is set to the
675 first of two concatenated values, or the repeat count. INVAL2 is set
676 to the second of the two concatenated values or the value to be
677 repeated. */
678
679 if (type2->code () == TYPE_CODE_INT)
680 {
681 struct type *tmp = type1;
682
683 type1 = tmp;
684 tmp = type2;
685 inval1 = arg2;
686 inval2 = arg1;
687 }
688 else
689 {
690 inval1 = arg1;
691 inval2 = arg2;
692 }
693
694 /* Now process the input values. */
695
696 if (type1->code () == TYPE_CODE_INT)
697 {
698 /* We have a repeat count. Validate the second value and then
699 construct a value repeated that many times. */
700 if (type2->code () == TYPE_CODE_STRING
701 || type2->code () == TYPE_CODE_CHAR)
702 {
703 count = longest_to_int (value_as_long (inval1));
704 inval2len = TYPE_LENGTH (type2);
705 std::vector<char> ptr (count * inval2len);
706 if (type2->code () == TYPE_CODE_CHAR)
707 {
708 char_type = type2;
709
710 inchar = (char) unpack_long (type2,
711 value_contents (inval2));
712 for (idx = 0; idx < count; idx++)
713 {
714 ptr[idx] = inchar;
715 }
716 }
717 else
718 {
719 char_type = TYPE_TARGET_TYPE (type2);
720
721 for (idx = 0; idx < count; idx++)
722 {
723 memcpy (&ptr[idx * inval2len], value_contents (inval2),
724 inval2len);
725 }
726 }
727 outval = value_string (ptr.data (), count * inval2len, char_type);
728 }
729 else if (type2->code () == TYPE_CODE_BOOL)
730 {
731 error (_("unimplemented support for boolean repeats"));
732 }
733 else
734 {
735 error (_("can't repeat values of that type"));
736 }
737 }
738 else if (type1->code () == TYPE_CODE_STRING
739 || type1->code () == TYPE_CODE_CHAR)
740 {
741 /* We have two character strings to concatenate. */
742 if (type2->code () != TYPE_CODE_STRING
743 && type2->code () != TYPE_CODE_CHAR)
744 {
745 error (_("Strings can only be concatenated with other strings."));
746 }
747 inval1len = TYPE_LENGTH (type1);
748 inval2len = TYPE_LENGTH (type2);
749 std::vector<char> ptr (inval1len + inval2len);
750 if (type1->code () == TYPE_CODE_CHAR)
751 {
752 char_type = type1;
753
754 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
755 }
756 else
757 {
758 char_type = TYPE_TARGET_TYPE (type1);
759
760 memcpy (ptr.data (), value_contents (inval1), inval1len);
761 }
762 if (type2->code () == TYPE_CODE_CHAR)
763 {
764 ptr[inval1len] =
765 (char) unpack_long (type2, value_contents (inval2));
766 }
767 else
768 {
769 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
770 }
771 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
772 }
773 else if (type1->code () == TYPE_CODE_BOOL)
774 {
775 /* We have two bitstrings to concatenate. */
776 if (type2->code () != TYPE_CODE_BOOL)
777 {
778 error (_("Booleans can only be concatenated "
779 "with other bitstrings or booleans."));
780 }
781 error (_("unimplemented support for boolean concatenation."));
782 }
783 else
784 {
785 /* We don't know how to concatenate these operands. */
786 error (_("illegal operands for concatenation."));
787 }
788 return (outval);
789 }
790 \f
791 /* Integer exponentiation: V1**V2, where both arguments are
792 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
793
794 static LONGEST
795 integer_pow (LONGEST v1, LONGEST v2)
796 {
797 if (v2 < 0)
798 {
799 if (v1 == 0)
800 error (_("Attempt to raise 0 to negative power."));
801 else
802 return 0;
803 }
804 else
805 {
806 /* The Russian Peasant's Algorithm. */
807 LONGEST v;
808
809 v = 1;
810 for (;;)
811 {
812 if (v2 & 1L)
813 v *= v1;
814 v2 >>= 1;
815 if (v2 == 0)
816 return v;
817 v1 *= v1;
818 }
819 }
820 }
821
822 /* Integer exponentiation: V1**V2, where both arguments are
823 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
824
825 static ULONGEST
826 uinteger_pow (ULONGEST v1, LONGEST v2)
827 {
828 if (v2 < 0)
829 {
830 if (v1 == 0)
831 error (_("Attempt to raise 0 to negative power."));
832 else
833 return 0;
834 }
835 else
836 {
837 /* The Russian Peasant's Algorithm. */
838 ULONGEST v;
839
840 v = 1;
841 for (;;)
842 {
843 if (v2 & 1L)
844 v *= v1;
845 v2 >>= 1;
846 if (v2 == 0)
847 return v;
848 v1 *= v1;
849 }
850 }
851 }
852
853 /* Obtain argument values for binary operation, converting from
854 other types if one of them is not floating point. */
855 static void
856 value_args_as_target_float (struct value *arg1, struct value *arg2,
857 gdb_byte *x, struct type **eff_type_x,
858 gdb_byte *y, struct type **eff_type_y)
859 {
860 struct type *type1, *type2;
861
862 type1 = check_typedef (value_type (arg1));
863 type2 = check_typedef (value_type (arg2));
864
865 /* At least one of the arguments must be of floating-point type. */
866 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
867
868 if (is_floating_type (type1) && is_floating_type (type2)
869 && type1->code () != type2->code ())
870 /* The DFP extension to the C language does not allow mixing of
871 * decimal float types with other float types in expressions
872 * (see WDTR 24732, page 12). */
873 error (_("Mixing decimal floating types with "
874 "other floating types is not allowed."));
875
876 /* Obtain value of arg1, converting from other types if necessary. */
877
878 if (is_floating_type (type1))
879 {
880 *eff_type_x = type1;
881 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
882 }
883 else if (is_integral_type (type1))
884 {
885 *eff_type_x = type2;
886 if (type1->is_unsigned ())
887 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
888 else
889 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
890 }
891 else
892 error (_("Don't know how to convert from %s to %s."), type1->name (),
893 type2->name ());
894
895 /* Obtain value of arg2, converting from other types if necessary. */
896
897 if (is_floating_type (type2))
898 {
899 *eff_type_y = type2;
900 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
901 }
902 else if (is_integral_type (type2))
903 {
904 *eff_type_y = type1;
905 if (type2->is_unsigned ())
906 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
907 else
908 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
909 }
910 else
911 error (_("Don't know how to convert from %s to %s."), type1->name (),
912 type2->name ());
913 }
914
915 /* A helper function that finds the type to use for a binary operation
916 involving TYPE1 and TYPE2. */
917
918 static struct type *
919 promotion_type (struct type *type1, struct type *type2)
920 {
921 struct type *result_type;
922
923 if (is_floating_type (type1) || is_floating_type (type2))
924 {
925 /* If only one type is floating-point, use its type.
926 Otherwise use the bigger type. */
927 if (!is_floating_type (type1))
928 result_type = type2;
929 else if (!is_floating_type (type2))
930 result_type = type1;
931 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
932 result_type = type2;
933 else
934 result_type = type1;
935 }
936 else
937 {
938 /* Integer types. */
939 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
940 result_type = type1;
941 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
942 result_type = type2;
943 else if (type1->is_unsigned ())
944 result_type = type1;
945 else if (type2->is_unsigned ())
946 result_type = type2;
947 else
948 result_type = type1;
949 }
950
951 return result_type;
952 }
953
954 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
955 enum exp_opcode op);
956
957 /* Perform a binary operation on complex operands. */
958
959 static struct value *
960 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
961 {
962 struct type *arg1_type = check_typedef (value_type (arg1));
963 struct type *arg2_type = check_typedef (value_type (arg2));
964
965 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
966 if (arg1_type->code () == TYPE_CODE_COMPLEX)
967 {
968 arg1_real = value_real_part (arg1);
969 arg1_imag = value_imaginary_part (arg1);
970 }
971 else
972 {
973 arg1_real = arg1;
974 arg1_imag = value_zero (arg1_type, not_lval);
975 }
976 if (arg2_type->code () == TYPE_CODE_COMPLEX)
977 {
978 arg2_real = value_real_part (arg2);
979 arg2_imag = value_imaginary_part (arg2);
980 }
981 else
982 {
983 arg2_real = arg2;
984 arg2_imag = value_zero (arg2_type, not_lval);
985 }
986
987 struct type *comp_type = promotion_type (value_type (arg1_real),
988 value_type (arg2_real));
989 arg1_real = value_cast (comp_type, arg1_real);
990 arg1_imag = value_cast (comp_type, arg1_imag);
991 arg2_real = value_cast (comp_type, arg2_real);
992 arg2_imag = value_cast (comp_type, arg2_imag);
993
994 struct type *result_type = init_complex_type (nullptr, comp_type);
995
996 struct value *result_real, *result_imag;
997 switch (op)
998 {
999 case BINOP_ADD:
1000 case BINOP_SUB:
1001 result_real = scalar_binop (arg1_real, arg2_real, op);
1002 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1003 break;
1004
1005 case BINOP_MUL:
1006 {
1007 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1008 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1009 result_real = scalar_binop (x1, x2, BINOP_SUB);
1010
1011 x1 = scalar_binop (arg1_real, arg2_imag, op);
1012 x2 = scalar_binop (arg1_imag, arg2_real, op);
1013 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1014 }
1015 break;
1016
1017 case BINOP_DIV:
1018 {
1019 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1020 {
1021 struct value *conjugate = value_complement (arg2);
1022 /* We have to reconstruct ARG1, in case the type was
1023 promoted. */
1024 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1025
1026 struct value *numerator = scalar_binop (arg1, conjugate,
1027 BINOP_MUL);
1028 arg1_real = value_real_part (numerator);
1029 arg1_imag = value_imaginary_part (numerator);
1030
1031 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1032 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1033 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1034 }
1035
1036 result_real = scalar_binop (arg1_real, arg2_real, op);
1037 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1038 }
1039 break;
1040
1041 case BINOP_EQUAL:
1042 case BINOP_NOTEQUAL:
1043 {
1044 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1045 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1046
1047 LONGEST v1 = value_as_long (x1);
1048 LONGEST v2 = value_as_long (x2);
1049
1050 if (op == BINOP_EQUAL)
1051 v1 = v1 && v2;
1052 else
1053 v1 = v1 || v2;
1054
1055 return value_from_longest (value_type (x1), v1);
1056 }
1057 break;
1058
1059 default:
1060 error (_("Invalid binary operation on numbers."));
1061 }
1062
1063 return value_literal_complex (result_real, result_imag, result_type);
1064 }
1065
1066 /* Perform a binary operation on two operands which have reasonable
1067 representations as integers or floats. This includes booleans,
1068 characters, integers, or floats.
1069 Does not support addition and subtraction on pointers;
1070 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1071
1072 static struct value *
1073 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1074 {
1075 struct value *val;
1076 struct type *type1, *type2, *result_type;
1077
1078 arg1 = coerce_ref (arg1);
1079 arg2 = coerce_ref (arg2);
1080
1081 type1 = check_typedef (value_type (arg1));
1082 type2 = check_typedef (value_type (arg2));
1083
1084 if (type1->code () == TYPE_CODE_COMPLEX
1085 || type2->code () == TYPE_CODE_COMPLEX)
1086 return complex_binop (arg1, arg2, op);
1087
1088 if ((!is_floating_value (arg1) && !is_integral_type (type1))
1089 || (!is_floating_value (arg2) && !is_integral_type (type2)))
1090 error (_("Argument to arithmetic operation not a number or boolean."));
1091
1092 if (is_floating_type (type1) || is_floating_type (type2))
1093 {
1094 result_type = promotion_type (type1, type2);
1095 val = allocate_value (result_type);
1096
1097 struct type *eff_type_v1, *eff_type_v2;
1098 gdb::byte_vector v1, v2;
1099 v1.resize (TYPE_LENGTH (result_type));
1100 v2.resize (TYPE_LENGTH (result_type));
1101
1102 value_args_as_target_float (arg1, arg2,
1103 v1.data (), &eff_type_v1,
1104 v2.data (), &eff_type_v2);
1105 target_float_binop (op, v1.data (), eff_type_v1,
1106 v2.data (), eff_type_v2,
1107 value_contents_raw (val), result_type);
1108 }
1109 else if (type1->code () == TYPE_CODE_BOOL
1110 || type2->code () == TYPE_CODE_BOOL)
1111 {
1112 LONGEST v1, v2, v = 0;
1113
1114 v1 = value_as_long (arg1);
1115 v2 = value_as_long (arg2);
1116
1117 switch (op)
1118 {
1119 case BINOP_BITWISE_AND:
1120 v = v1 & v2;
1121 break;
1122
1123 case BINOP_BITWISE_IOR:
1124 v = v1 | v2;
1125 break;
1126
1127 case BINOP_BITWISE_XOR:
1128 v = v1 ^ v2;
1129 break;
1130
1131 case BINOP_EQUAL:
1132 v = v1 == v2;
1133 break;
1134
1135 case BINOP_NOTEQUAL:
1136 v = v1 != v2;
1137 break;
1138
1139 default:
1140 error (_("Invalid operation on booleans."));
1141 }
1142
1143 result_type = type1;
1144
1145 val = allocate_value (result_type);
1146 store_signed_integer (value_contents_raw (val),
1147 TYPE_LENGTH (result_type),
1148 type_byte_order (result_type),
1149 v);
1150 }
1151 else
1152 /* Integral operations here. */
1153 {
1154 /* Determine type length of the result, and if the operation should
1155 be done unsigned. For exponentiation and shift operators,
1156 use the length and type of the left operand. Otherwise,
1157 use the signedness of the operand with the greater length.
1158 If both operands are of equal length, use unsigned operation
1159 if one of the operands is unsigned. */
1160 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1161 result_type = type1;
1162 else
1163 result_type = promotion_type (type1, type2);
1164
1165 if (result_type->is_unsigned ())
1166 {
1167 LONGEST v2_signed = value_as_long (arg2);
1168 ULONGEST v1, v2, v = 0;
1169
1170 v1 = (ULONGEST) value_as_long (arg1);
1171 v2 = (ULONGEST) v2_signed;
1172
1173 switch (op)
1174 {
1175 case BINOP_ADD:
1176 v = v1 + v2;
1177 break;
1178
1179 case BINOP_SUB:
1180 v = v1 - v2;
1181 break;
1182
1183 case BINOP_MUL:
1184 v = v1 * v2;
1185 break;
1186
1187 case BINOP_DIV:
1188 case BINOP_INTDIV:
1189 if (v2 != 0)
1190 v = v1 / v2;
1191 else
1192 error (_("Division by zero"));
1193 break;
1194
1195 case BINOP_EXP:
1196 v = uinteger_pow (v1, v2_signed);
1197 break;
1198
1199 case BINOP_REM:
1200 if (v2 != 0)
1201 v = v1 % v2;
1202 else
1203 error (_("Division by zero"));
1204 break;
1205
1206 case BINOP_MOD:
1207 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1208 v1 mod 0 has a defined value, v1. */
1209 if (v2 == 0)
1210 {
1211 v = v1;
1212 }
1213 else
1214 {
1215 v = v1 / v2;
1216 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1217 v = v1 - (v2 * v);
1218 }
1219 break;
1220
1221 case BINOP_LSH:
1222 v = v1 << v2;
1223 break;
1224
1225 case BINOP_RSH:
1226 v = v1 >> v2;
1227 break;
1228
1229 case BINOP_BITWISE_AND:
1230 v = v1 & v2;
1231 break;
1232
1233 case BINOP_BITWISE_IOR:
1234 v = v1 | v2;
1235 break;
1236
1237 case BINOP_BITWISE_XOR:
1238 v = v1 ^ v2;
1239 break;
1240
1241 case BINOP_LOGICAL_AND:
1242 v = v1 && v2;
1243 break;
1244
1245 case BINOP_LOGICAL_OR:
1246 v = v1 || v2;
1247 break;
1248
1249 case BINOP_MIN:
1250 v = v1 < v2 ? v1 : v2;
1251 break;
1252
1253 case BINOP_MAX:
1254 v = v1 > v2 ? v1 : v2;
1255 break;
1256
1257 case BINOP_EQUAL:
1258 v = v1 == v2;
1259 break;
1260
1261 case BINOP_NOTEQUAL:
1262 v = v1 != v2;
1263 break;
1264
1265 case BINOP_LESS:
1266 v = v1 < v2;
1267 break;
1268
1269 case BINOP_GTR:
1270 v = v1 > v2;
1271 break;
1272
1273 case BINOP_LEQ:
1274 v = v1 <= v2;
1275 break;
1276
1277 case BINOP_GEQ:
1278 v = v1 >= v2;
1279 break;
1280
1281 default:
1282 error (_("Invalid binary operation on numbers."));
1283 }
1284
1285 val = allocate_value (result_type);
1286 store_unsigned_integer (value_contents_raw (val),
1287 TYPE_LENGTH (value_type (val)),
1288 type_byte_order (result_type),
1289 v);
1290 }
1291 else
1292 {
1293 LONGEST v1, v2, v = 0;
1294
1295 v1 = value_as_long (arg1);
1296 v2 = value_as_long (arg2);
1297
1298 switch (op)
1299 {
1300 case BINOP_ADD:
1301 v = v1 + v2;
1302 break;
1303
1304 case BINOP_SUB:
1305 v = v1 - v2;
1306 break;
1307
1308 case BINOP_MUL:
1309 v = v1 * v2;
1310 break;
1311
1312 case BINOP_DIV:
1313 case BINOP_INTDIV:
1314 if (v2 != 0)
1315 v = v1 / v2;
1316 else
1317 error (_("Division by zero"));
1318 break;
1319
1320 case BINOP_EXP:
1321 v = integer_pow (v1, v2);
1322 break;
1323
1324 case BINOP_REM:
1325 if (v2 != 0)
1326 v = v1 % v2;
1327 else
1328 error (_("Division by zero"));
1329 break;
1330
1331 case BINOP_MOD:
1332 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1333 X mod 0 has a defined value, X. */
1334 if (v2 == 0)
1335 {
1336 v = v1;
1337 }
1338 else
1339 {
1340 v = v1 / v2;
1341 /* Compute floor. */
1342 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1343 {
1344 v--;
1345 }
1346 v = v1 - (v2 * v);
1347 }
1348 break;
1349
1350 case BINOP_LSH:
1351 v = v1 << v2;
1352 break;
1353
1354 case BINOP_RSH:
1355 v = v1 >> v2;
1356 break;
1357
1358 case BINOP_BITWISE_AND:
1359 v = v1 & v2;
1360 break;
1361
1362 case BINOP_BITWISE_IOR:
1363 v = v1 | v2;
1364 break;
1365
1366 case BINOP_BITWISE_XOR:
1367 v = v1 ^ v2;
1368 break;
1369
1370 case BINOP_LOGICAL_AND:
1371 v = v1 && v2;
1372 break;
1373
1374 case BINOP_LOGICAL_OR:
1375 v = v1 || v2;
1376 break;
1377
1378 case BINOP_MIN:
1379 v = v1 < v2 ? v1 : v2;
1380 break;
1381
1382 case BINOP_MAX:
1383 v = v1 > v2 ? v1 : v2;
1384 break;
1385
1386 case BINOP_EQUAL:
1387 v = v1 == v2;
1388 break;
1389
1390 case BINOP_NOTEQUAL:
1391 v = v1 != v2;
1392 break;
1393
1394 case BINOP_LESS:
1395 v = v1 < v2;
1396 break;
1397
1398 case BINOP_GTR:
1399 v = v1 > v2;
1400 break;
1401
1402 case BINOP_LEQ:
1403 v = v1 <= v2;
1404 break;
1405
1406 case BINOP_GEQ:
1407 v = v1 >= v2;
1408 break;
1409
1410 default:
1411 error (_("Invalid binary operation on numbers."));
1412 }
1413
1414 val = allocate_value (result_type);
1415 store_signed_integer (value_contents_raw (val),
1416 TYPE_LENGTH (value_type (val)),
1417 type_byte_order (result_type),
1418 v);
1419 }
1420 }
1421
1422 return val;
1423 }
1424
1425 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1426 replicating SCALAR_VALUE for each element of the vector. Only scalar
1427 types that can be cast to the type of one element of the vector are
1428 acceptable. The newly created vector value is returned upon success,
1429 otherwise an error is thrown. */
1430
1431 struct value *
1432 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1433 {
1434 /* Widen the scalar to a vector. */
1435 struct type *eltype, *scalar_type;
1436 struct value *val, *elval;
1437 LONGEST low_bound, high_bound;
1438 int i;
1439
1440 vector_type = check_typedef (vector_type);
1441
1442 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1443 && vector_type->is_vector ());
1444
1445 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1446 error (_("Could not determine the vector bounds"));
1447
1448 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1449 elval = value_cast (eltype, scalar_value);
1450
1451 scalar_type = check_typedef (value_type (scalar_value));
1452
1453 /* If we reduced the length of the scalar then check we didn't loose any
1454 important bits. */
1455 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1456 && !value_equal (elval, scalar_value))
1457 error (_("conversion of scalar to vector involves truncation"));
1458
1459 val = allocate_value (vector_type);
1460 for (i = 0; i < high_bound - low_bound + 1; i++)
1461 /* Duplicate the contents of elval into the destination vector. */
1462 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1463 value_contents_all (elval), TYPE_LENGTH (eltype));
1464
1465 return val;
1466 }
1467
1468 /* Performs a binary operation on two vector operands by calling scalar_binop
1469 for each pair of vector components. */
1470
1471 static struct value *
1472 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1473 {
1474 struct value *val, *tmp, *mark;
1475 struct type *type1, *type2, *eltype1, *eltype2;
1476 int t1_is_vec, t2_is_vec, elsize, i;
1477 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1478
1479 type1 = check_typedef (value_type (val1));
1480 type2 = check_typedef (value_type (val2));
1481
1482 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1483 && type1->is_vector ()) ? 1 : 0;
1484 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1485 && type2->is_vector ()) ? 1 : 0;
1486
1487 if (!t1_is_vec || !t2_is_vec)
1488 error (_("Vector operations are only supported among vectors"));
1489
1490 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1491 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1492 error (_("Could not determine the vector bounds"));
1493
1494 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1495 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1496 elsize = TYPE_LENGTH (eltype1);
1497
1498 if (eltype1->code () != eltype2->code ()
1499 || elsize != TYPE_LENGTH (eltype2)
1500 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1501 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1502 error (_("Cannot perform operation on vectors with different types"));
1503
1504 val = allocate_value (type1);
1505 mark = value_mark ();
1506 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1507 {
1508 tmp = value_binop (value_subscript (val1, i),
1509 value_subscript (val2, i), op);
1510 memcpy (value_contents_writeable (val) + i * elsize,
1511 value_contents_all (tmp),
1512 elsize);
1513 }
1514 value_free_to_mark (mark);
1515
1516 return val;
1517 }
1518
1519 /* Perform a binary operation on two operands. */
1520
1521 struct value *
1522 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1523 {
1524 struct value *val;
1525 struct type *type1 = check_typedef (value_type (arg1));
1526 struct type *type2 = check_typedef (value_type (arg2));
1527 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1528 && type1->is_vector ());
1529 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1530 && type2->is_vector ());
1531
1532 if (!t1_is_vec && !t2_is_vec)
1533 val = scalar_binop (arg1, arg2, op);
1534 else if (t1_is_vec && t2_is_vec)
1535 val = vector_binop (arg1, arg2, op);
1536 else
1537 {
1538 /* Widen the scalar operand to a vector. */
1539 struct value **v = t1_is_vec ? &arg2 : &arg1;
1540 struct type *t = t1_is_vec ? type2 : type1;
1541
1542 if (t->code () != TYPE_CODE_FLT
1543 && t->code () != TYPE_CODE_DECFLOAT
1544 && !is_integral_type (t))
1545 error (_("Argument to operation not a number or boolean."));
1546
1547 /* Replicate the scalar value to make a vector value. */
1548 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1549
1550 val = vector_binop (arg1, arg2, op);
1551 }
1552
1553 return val;
1554 }
1555 \f
1556 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1557
1558 int
1559 value_logical_not (struct value *arg1)
1560 {
1561 int len;
1562 const gdb_byte *p;
1563 struct type *type1;
1564
1565 arg1 = coerce_array (arg1);
1566 type1 = check_typedef (value_type (arg1));
1567
1568 if (is_floating_value (arg1))
1569 return target_float_is_zero (value_contents (arg1), type1);
1570
1571 len = TYPE_LENGTH (type1);
1572 p = value_contents (arg1);
1573
1574 while (--len >= 0)
1575 {
1576 if (*p++)
1577 break;
1578 }
1579
1580 return len < 0;
1581 }
1582
1583 /* Perform a comparison on two string values (whose content are not
1584 necessarily null terminated) based on their length. */
1585
1586 static int
1587 value_strcmp (struct value *arg1, struct value *arg2)
1588 {
1589 int len1 = TYPE_LENGTH (value_type (arg1));
1590 int len2 = TYPE_LENGTH (value_type (arg2));
1591 const gdb_byte *s1 = value_contents (arg1);
1592 const gdb_byte *s2 = value_contents (arg2);
1593 int i, len = len1 < len2 ? len1 : len2;
1594
1595 for (i = 0; i < len; i++)
1596 {
1597 if (s1[i] < s2[i])
1598 return -1;
1599 else if (s1[i] > s2[i])
1600 return 1;
1601 else
1602 continue;
1603 }
1604
1605 if (len1 < len2)
1606 return -1;
1607 else if (len1 > len2)
1608 return 1;
1609 else
1610 return 0;
1611 }
1612
1613 /* Simulate the C operator == by returning a 1
1614 iff ARG1 and ARG2 have equal contents. */
1615
1616 int
1617 value_equal (struct value *arg1, struct value *arg2)
1618 {
1619 int len;
1620 const gdb_byte *p1;
1621 const gdb_byte *p2;
1622 struct type *type1, *type2;
1623 enum type_code code1;
1624 enum type_code code2;
1625 int is_int1, is_int2;
1626
1627 arg1 = coerce_array (arg1);
1628 arg2 = coerce_array (arg2);
1629
1630 type1 = check_typedef (value_type (arg1));
1631 type2 = check_typedef (value_type (arg2));
1632 code1 = type1->code ();
1633 code2 = type2->code ();
1634 is_int1 = is_integral_type (type1);
1635 is_int2 = is_integral_type (type2);
1636
1637 if (is_int1 && is_int2)
1638 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1639 BINOP_EQUAL)));
1640 else if ((is_floating_value (arg1) || is_int1)
1641 && (is_floating_value (arg2) || is_int2))
1642 {
1643 struct type *eff_type_v1, *eff_type_v2;
1644 gdb::byte_vector v1, v2;
1645 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1646 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1647
1648 value_args_as_target_float (arg1, arg2,
1649 v1.data (), &eff_type_v1,
1650 v2.data (), &eff_type_v2);
1651
1652 return target_float_compare (v1.data (), eff_type_v1,
1653 v2.data (), eff_type_v2) == 0;
1654 }
1655
1656 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1657 is bigger. */
1658 else if (code1 == TYPE_CODE_PTR && is_int2)
1659 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1660 else if (code2 == TYPE_CODE_PTR && is_int1)
1661 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1662
1663 else if (code1 == code2
1664 && ((len = (int) TYPE_LENGTH (type1))
1665 == (int) TYPE_LENGTH (type2)))
1666 {
1667 p1 = value_contents (arg1);
1668 p2 = value_contents (arg2);
1669 while (--len >= 0)
1670 {
1671 if (*p1++ != *p2++)
1672 break;
1673 }
1674 return len < 0;
1675 }
1676 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1677 {
1678 return value_strcmp (arg1, arg2) == 0;
1679 }
1680 else
1681 error (_("Invalid type combination in equality test."));
1682 }
1683
1684 /* Compare values based on their raw contents. Useful for arrays since
1685 value_equal coerces them to pointers, thus comparing just the address
1686 of the array instead of its contents. */
1687
1688 int
1689 value_equal_contents (struct value *arg1, struct value *arg2)
1690 {
1691 struct type *type1, *type2;
1692
1693 type1 = check_typedef (value_type (arg1));
1694 type2 = check_typedef (value_type (arg2));
1695
1696 return (type1->code () == type2->code ()
1697 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1698 && memcmp (value_contents (arg1), value_contents (arg2),
1699 TYPE_LENGTH (type1)) == 0);
1700 }
1701
1702 /* Simulate the C operator < by returning 1
1703 iff ARG1's contents are less than ARG2's. */
1704
1705 int
1706 value_less (struct value *arg1, struct value *arg2)
1707 {
1708 enum type_code code1;
1709 enum type_code code2;
1710 struct type *type1, *type2;
1711 int is_int1, is_int2;
1712
1713 arg1 = coerce_array (arg1);
1714 arg2 = coerce_array (arg2);
1715
1716 type1 = check_typedef (value_type (arg1));
1717 type2 = check_typedef (value_type (arg2));
1718 code1 = type1->code ();
1719 code2 = type2->code ();
1720 is_int1 = is_integral_type (type1);
1721 is_int2 = is_integral_type (type2);
1722
1723 if (is_int1 && is_int2)
1724 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1725 BINOP_LESS)));
1726 else if ((is_floating_value (arg1) || is_int1)
1727 && (is_floating_value (arg2) || is_int2))
1728 {
1729 struct type *eff_type_v1, *eff_type_v2;
1730 gdb::byte_vector v1, v2;
1731 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1732 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1733
1734 value_args_as_target_float (arg1, arg2,
1735 v1.data (), &eff_type_v1,
1736 v2.data (), &eff_type_v2);
1737
1738 return target_float_compare (v1.data (), eff_type_v1,
1739 v2.data (), eff_type_v2) == -1;
1740 }
1741 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1742 return value_as_address (arg1) < value_as_address (arg2);
1743
1744 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1745 is bigger. */
1746 else if (code1 == TYPE_CODE_PTR && is_int2)
1747 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1748 else if (code2 == TYPE_CODE_PTR && is_int1)
1749 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1750 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1751 return value_strcmp (arg1, arg2) < 0;
1752 else
1753 {
1754 error (_("Invalid type combination in ordering comparison."));
1755 return 0;
1756 }
1757 }
1758 \f
1759 /* The unary operators +, - and ~. They free the argument ARG1. */
1760
1761 struct value *
1762 value_pos (struct value *arg1)
1763 {
1764 struct type *type;
1765
1766 arg1 = coerce_ref (arg1);
1767 type = check_typedef (value_type (arg1));
1768
1769 if (is_integral_type (type) || is_floating_value (arg1)
1770 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1771 || type->code () == TYPE_CODE_COMPLEX)
1772 return value_from_contents (type, value_contents (arg1));
1773 else
1774 error (_("Argument to positive operation not a number."));
1775 }
1776
1777 struct value *
1778 value_neg (struct value *arg1)
1779 {
1780 struct type *type;
1781
1782 arg1 = coerce_ref (arg1);
1783 type = check_typedef (value_type (arg1));
1784
1785 if (is_integral_type (type) || is_floating_type (type))
1786 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1787 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1788 {
1789 struct value *tmp, *val = allocate_value (type);
1790 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1791 int i;
1792 LONGEST low_bound, high_bound;
1793
1794 if (!get_array_bounds (type, &low_bound, &high_bound))
1795 error (_("Could not determine the vector bounds"));
1796
1797 for (i = 0; i < high_bound - low_bound + 1; i++)
1798 {
1799 tmp = value_neg (value_subscript (arg1, i));
1800 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1801 value_contents_all (tmp), TYPE_LENGTH (eltype));
1802 }
1803 return val;
1804 }
1805 else if (type->code () == TYPE_CODE_COMPLEX)
1806 {
1807 struct value *real = value_real_part (arg1);
1808 struct value *imag = value_imaginary_part (arg1);
1809
1810 real = value_neg (real);
1811 imag = value_neg (imag);
1812 return value_literal_complex (real, imag, type);
1813 }
1814 else
1815 error (_("Argument to negate operation not a number."));
1816 }
1817
1818 struct value *
1819 value_complement (struct value *arg1)
1820 {
1821 struct type *type;
1822 struct value *val;
1823
1824 arg1 = coerce_ref (arg1);
1825 type = check_typedef (value_type (arg1));
1826
1827 if (is_integral_type (type))
1828 val = value_from_longest (type, ~value_as_long (arg1));
1829 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1830 {
1831 struct value *tmp;
1832 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1833 int i;
1834 LONGEST low_bound, high_bound;
1835
1836 if (!get_array_bounds (type, &low_bound, &high_bound))
1837 error (_("Could not determine the vector bounds"));
1838
1839 val = allocate_value (type);
1840 for (i = 0; i < high_bound - low_bound + 1; i++)
1841 {
1842 tmp = value_complement (value_subscript (arg1, i));
1843 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1844 value_contents_all (tmp), TYPE_LENGTH (eltype));
1845 }
1846 }
1847 else if (type->code () == TYPE_CODE_COMPLEX)
1848 {
1849 /* GCC has an extension that treats ~complex as the complex
1850 conjugate. */
1851 struct value *real = value_real_part (arg1);
1852 struct value *imag = value_imaginary_part (arg1);
1853
1854 imag = value_neg (imag);
1855 return value_literal_complex (real, imag, type);
1856 }
1857 else
1858 error (_("Argument to complement operation not an integer, boolean."));
1859
1860 return val;
1861 }
1862 \f
1863 /* The INDEX'th bit of SET value whose value_type is TYPE,
1864 and whose value_contents is valaddr.
1865 Return -1 if out of range, -2 other error. */
1866
1867 int
1868 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1869 {
1870 struct gdbarch *gdbarch = get_type_arch (type);
1871 LONGEST low_bound, high_bound;
1872 LONGEST word;
1873 unsigned rel_index;
1874 struct type *range = type->index_type ();
1875
1876 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1877 return -2;
1878 if (index < low_bound || index > high_bound)
1879 return -1;
1880 rel_index = index - low_bound;
1881 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1882 type_byte_order (type));
1883 rel_index %= TARGET_CHAR_BIT;
1884 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1885 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1886 return (word >> rel_index) & 1;
1887 }
1888
1889 int
1890 value_in (struct value *element, struct value *set)
1891 {
1892 int member;
1893 struct type *settype = check_typedef (value_type (set));
1894 struct type *eltype = check_typedef (value_type (element));
1895
1896 if (eltype->code () == TYPE_CODE_RANGE)
1897 eltype = TYPE_TARGET_TYPE (eltype);
1898 if (settype->code () != TYPE_CODE_SET)
1899 error (_("Second argument of 'IN' has wrong type"));
1900 if (eltype->code () != TYPE_CODE_INT
1901 && eltype->code () != TYPE_CODE_CHAR
1902 && eltype->code () != TYPE_CODE_ENUM
1903 && eltype->code () != TYPE_CODE_BOOL)
1904 error (_("First argument of 'IN' has wrong type"));
1905 member = value_bit_index (settype, value_contents (set),
1906 value_as_long (element));
1907 if (member < 0)
1908 error (_("First argument of 'IN' not in range"));
1909 return member;
1910 }
This page took 0.069954 seconds and 4 git commands to generate.