Merge remote-tracking branches 'regulator/topic/lp8788', 'regulator/topic/mt6311...
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_SG,
72 DMA_PRIVATE,
73 DMA_ASYNC_TX,
74 DMA_SLAVE,
75 DMA_CYCLIC,
76 DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 DMA_TX_TYPE_END,
79 };
80
81 /**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88 enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
93 DMA_TRANS_NONE,
94 };
95
96 /**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119 /**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
133 */
134 struct data_chunk {
135 size_t size;
136 size_t icg;
137 size_t dst_icg;
138 size_t src_icg;
139 };
140
141 /**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159 struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170 };
171
172 /**
173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174 * control completion, and communicate status.
175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176 * this transaction
177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
189 */
190 enum dma_ctrl_flags {
191 DMA_PREP_INTERRUPT = (1 << 0),
192 DMA_CTRL_ACK = (1 << 1),
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
197 DMA_CTRL_REUSE = (1 << 6),
198 };
199
200 /**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203 enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206 };
207
208 /**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213 enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217
218
219 /**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
225 /**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231 struct dma_chan_percpu {
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235 };
236
237 /**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242 struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245 };
246
247 /**
248 * struct dma_chan - devices supply DMA channels, clients use them
249 * @device: ptr to the dma device who supplies this channel, always !%NULL
250 * @cookie: last cookie value returned to client
251 * @completed_cookie: last completed cookie for this channel
252 * @chan_id: channel ID for sysfs
253 * @dev: class device for sysfs
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
256 * @client_count: how many clients are using this channel
257 * @table_count: number of appearances in the mem-to-mem allocation table
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
260 * @private: private data for certain client-channel associations
261 */
262 struct dma_chan {
263 struct dma_device *device;
264 dma_cookie_t cookie;
265 dma_cookie_t completed_cookie;
266
267 /* sysfs */
268 int chan_id;
269 struct dma_chan_dev *dev;
270
271 struct list_head device_node;
272 struct dma_chan_percpu __percpu *local;
273 int client_count;
274 int table_count;
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
280 void *private;
281 };
282
283 /**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
289 */
290 struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
293 int dev_id;
294 atomic_t *idr_ref;
295 };
296
297 /**
298 * enum dma_slave_buswidth - defines bus width of the DMA slave
299 * device, source or target buses
300 */
301 enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312
313 /**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
345 *
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
351 *
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
357 */
358 struct dma_slave_config {
359 enum dma_transfer_direction direction;
360 dma_addr_t src_addr;
361 dma_addr_t dst_addr;
362 enum dma_slave_buswidth src_addr_width;
363 enum dma_slave_buswidth dst_addr_width;
364 u32 src_maxburst;
365 u32 dst_maxburst;
366 bool device_fc;
367 unsigned int slave_id;
368 };
369
370 /**
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
389 */
390 enum dma_residue_granularity {
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 DMA_RESIDUE_GRANULARITY_BURST = 2,
394 };
395
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
397 *
398 * @src_addr_widths: bit mask of src addr widths the channel supports
399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
404 * @cmd_pause: true, if pause and thereby resume is supported
405 * @cmd_terminate: true, if terminate cmd is supported
406 * @residue_granularity: granularity of the reported transfer residue
407 * @descriptor_reuse: if a descriptor can be reused by client and
408 * resubmitted multiple times
409 */
410 struct dma_slave_caps {
411 u32 src_addr_widths;
412 u32 dst_addr_widths;
413 u32 directions;
414 bool cmd_pause;
415 bool cmd_terminate;
416 enum dma_residue_granularity residue_granularity;
417 bool descriptor_reuse;
418 };
419
420 static inline const char *dma_chan_name(struct dma_chan *chan)
421 {
422 return dev_name(&chan->dev->device);
423 }
424
425 void dma_chan_cleanup(struct kref *kref);
426
427 /**
428 * typedef dma_filter_fn - callback filter for dma_request_channel
429 * @chan: channel to be reviewed
430 * @filter_param: opaque parameter passed through dma_request_channel
431 *
432 * When this optional parameter is specified in a call to dma_request_channel a
433 * suitable channel is passed to this routine for further dispositioning before
434 * being returned. Where 'suitable' indicates a non-busy channel that
435 * satisfies the given capability mask. It returns 'true' to indicate that the
436 * channel is suitable.
437 */
438 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
439
440 typedef void (*dma_async_tx_callback)(void *dma_async_param);
441
442 struct dmaengine_unmap_data {
443 u8 map_cnt;
444 u8 to_cnt;
445 u8 from_cnt;
446 u8 bidi_cnt;
447 struct device *dev;
448 struct kref kref;
449 size_t len;
450 dma_addr_t addr[0];
451 };
452
453 /**
454 * struct dma_async_tx_descriptor - async transaction descriptor
455 * ---dma generic offload fields---
456 * @cookie: tracking cookie for this transaction, set to -EBUSY if
457 * this tx is sitting on a dependency list
458 * @flags: flags to augment operation preparation, control completion, and
459 * communicate status
460 * @phys: physical address of the descriptor
461 * @chan: target channel for this operation
462 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
463 * descriptor pending. To be pushed on .issue_pending() call
464 * @callback: routine to call after this operation is complete
465 * @callback_param: general parameter to pass to the callback routine
466 * ---async_tx api specific fields---
467 * @next: at completion submit this descriptor
468 * @parent: pointer to the next level up in the dependency chain
469 * @lock: protect the parent and next pointers
470 */
471 struct dma_async_tx_descriptor {
472 dma_cookie_t cookie;
473 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
474 dma_addr_t phys;
475 struct dma_chan *chan;
476 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
477 int (*desc_free)(struct dma_async_tx_descriptor *tx);
478 dma_async_tx_callback callback;
479 void *callback_param;
480 struct dmaengine_unmap_data *unmap;
481 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
482 struct dma_async_tx_descriptor *next;
483 struct dma_async_tx_descriptor *parent;
484 spinlock_t lock;
485 #endif
486 };
487
488 #ifdef CONFIG_DMA_ENGINE
489 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
490 struct dmaengine_unmap_data *unmap)
491 {
492 kref_get(&unmap->kref);
493 tx->unmap = unmap;
494 }
495
496 struct dmaengine_unmap_data *
497 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
498 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
499 #else
500 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
501 struct dmaengine_unmap_data *unmap)
502 {
503 }
504 static inline struct dmaengine_unmap_data *
505 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
506 {
507 return NULL;
508 }
509 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
510 {
511 }
512 #endif
513
514 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
515 {
516 if (tx->unmap) {
517 dmaengine_unmap_put(tx->unmap);
518 tx->unmap = NULL;
519 }
520 }
521
522 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
523 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
524 {
525 }
526 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
527 {
528 }
529 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
530 {
531 BUG();
532 }
533 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
534 {
535 }
536 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
537 {
538 }
539 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
540 {
541 return NULL;
542 }
543 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
544 {
545 return NULL;
546 }
547
548 #else
549 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 {
551 spin_lock_bh(&txd->lock);
552 }
553 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
554 {
555 spin_unlock_bh(&txd->lock);
556 }
557 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
558 {
559 txd->next = next;
560 next->parent = txd;
561 }
562 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
563 {
564 txd->parent = NULL;
565 }
566 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
567 {
568 txd->next = NULL;
569 }
570 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
571 {
572 return txd->parent;
573 }
574 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
575 {
576 return txd->next;
577 }
578 #endif
579
580 /**
581 * struct dma_tx_state - filled in to report the status of
582 * a transfer.
583 * @last: last completed DMA cookie
584 * @used: last issued DMA cookie (i.e. the one in progress)
585 * @residue: the remaining number of bytes left to transmit
586 * on the selected transfer for states DMA_IN_PROGRESS and
587 * DMA_PAUSED if this is implemented in the driver, else 0
588 */
589 struct dma_tx_state {
590 dma_cookie_t last;
591 dma_cookie_t used;
592 u32 residue;
593 };
594
595 /**
596 * enum dmaengine_alignment - defines alignment of the DMA async tx
597 * buffers
598 */
599 enum dmaengine_alignment {
600 DMAENGINE_ALIGN_1_BYTE = 0,
601 DMAENGINE_ALIGN_2_BYTES = 1,
602 DMAENGINE_ALIGN_4_BYTES = 2,
603 DMAENGINE_ALIGN_8_BYTES = 3,
604 DMAENGINE_ALIGN_16_BYTES = 4,
605 DMAENGINE_ALIGN_32_BYTES = 5,
606 DMAENGINE_ALIGN_64_BYTES = 6,
607 };
608
609 /**
610 * struct dma_device - info on the entity supplying DMA services
611 * @chancnt: how many DMA channels are supported
612 * @privatecnt: how many DMA channels are requested by dma_request_channel
613 * @channels: the list of struct dma_chan
614 * @global_node: list_head for global dma_device_list
615 * @cap_mask: one or more dma_capability flags
616 * @max_xor: maximum number of xor sources, 0 if no capability
617 * @max_pq: maximum number of PQ sources and PQ-continue capability
618 * @copy_align: alignment shift for memcpy operations
619 * @xor_align: alignment shift for xor operations
620 * @pq_align: alignment shift for pq operations
621 * @fill_align: alignment shift for memset operations
622 * @dev_id: unique device ID
623 * @dev: struct device reference for dma mapping api
624 * @src_addr_widths: bit mask of src addr widths the device supports
625 * @dst_addr_widths: bit mask of dst addr widths the device supports
626 * @directions: bit mask of slave direction the device supports since
627 * the enum dma_transfer_direction is not defined as bits for
628 * each type of direction, the dma controller should fill (1 <<
629 * <TYPE>) and same should be checked by controller as well
630 * @residue_granularity: granularity of the transfer residue reported
631 * by tx_status
632 * @device_alloc_chan_resources: allocate resources and return the
633 * number of allocated descriptors
634 * @device_free_chan_resources: release DMA channel's resources
635 * @device_prep_dma_memcpy: prepares a memcpy operation
636 * @device_prep_dma_xor: prepares a xor operation
637 * @device_prep_dma_xor_val: prepares a xor validation operation
638 * @device_prep_dma_pq: prepares a pq operation
639 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
640 * @device_prep_dma_memset: prepares a memset operation
641 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
642 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
643 * @device_prep_slave_sg: prepares a slave dma operation
644 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
645 * The function takes a buffer of size buf_len. The callback function will
646 * be called after period_len bytes have been transferred.
647 * @device_prep_interleaved_dma: Transfer expression in a generic way.
648 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
649 * @device_config: Pushes a new configuration to a channel, return 0 or an error
650 * code
651 * @device_pause: Pauses any transfer happening on a channel. Returns
652 * 0 or an error code
653 * @device_resume: Resumes any transfer on a channel previously
654 * paused. Returns 0 or an error code
655 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
656 * or an error code
657 * @device_tx_status: poll for transaction completion, the optional
658 * txstate parameter can be supplied with a pointer to get a
659 * struct with auxiliary transfer status information, otherwise the call
660 * will just return a simple status code
661 * @device_issue_pending: push pending transactions to hardware
662 */
663 struct dma_device {
664
665 unsigned int chancnt;
666 unsigned int privatecnt;
667 struct list_head channels;
668 struct list_head global_node;
669 dma_cap_mask_t cap_mask;
670 unsigned short max_xor;
671 unsigned short max_pq;
672 enum dmaengine_alignment copy_align;
673 enum dmaengine_alignment xor_align;
674 enum dmaengine_alignment pq_align;
675 enum dmaengine_alignment fill_align;
676 #define DMA_HAS_PQ_CONTINUE (1 << 15)
677
678 int dev_id;
679 struct device *dev;
680
681 u32 src_addr_widths;
682 u32 dst_addr_widths;
683 u32 directions;
684 enum dma_residue_granularity residue_granularity;
685
686 int (*device_alloc_chan_resources)(struct dma_chan *chan);
687 void (*device_free_chan_resources)(struct dma_chan *chan);
688
689 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
690 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
691 size_t len, unsigned long flags);
692 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
693 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
694 unsigned int src_cnt, size_t len, unsigned long flags);
695 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
696 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
697 size_t len, enum sum_check_flags *result, unsigned long flags);
698 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
699 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
700 unsigned int src_cnt, const unsigned char *scf,
701 size_t len, unsigned long flags);
702 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
703 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
704 unsigned int src_cnt, const unsigned char *scf, size_t len,
705 enum sum_check_flags *pqres, unsigned long flags);
706 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
707 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
708 unsigned long flags);
709 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
710 struct dma_chan *chan, struct scatterlist *sg,
711 unsigned int nents, int value, unsigned long flags);
712 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
713 struct dma_chan *chan, unsigned long flags);
714 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
715 struct dma_chan *chan,
716 struct scatterlist *dst_sg, unsigned int dst_nents,
717 struct scatterlist *src_sg, unsigned int src_nents,
718 unsigned long flags);
719
720 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
721 struct dma_chan *chan, struct scatterlist *sgl,
722 unsigned int sg_len, enum dma_transfer_direction direction,
723 unsigned long flags, void *context);
724 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
725 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
726 size_t period_len, enum dma_transfer_direction direction,
727 unsigned long flags);
728 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
729 struct dma_chan *chan, struct dma_interleaved_template *xt,
730 unsigned long flags);
731 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
732 struct dma_chan *chan, dma_addr_t dst, u64 data,
733 unsigned long flags);
734
735 int (*device_config)(struct dma_chan *chan,
736 struct dma_slave_config *config);
737 int (*device_pause)(struct dma_chan *chan);
738 int (*device_resume)(struct dma_chan *chan);
739 int (*device_terminate_all)(struct dma_chan *chan);
740
741 enum dma_status (*device_tx_status)(struct dma_chan *chan,
742 dma_cookie_t cookie,
743 struct dma_tx_state *txstate);
744 void (*device_issue_pending)(struct dma_chan *chan);
745 };
746
747 static inline int dmaengine_slave_config(struct dma_chan *chan,
748 struct dma_slave_config *config)
749 {
750 if (chan->device->device_config)
751 return chan->device->device_config(chan, config);
752
753 return -ENOSYS;
754 }
755
756 static inline bool is_slave_direction(enum dma_transfer_direction direction)
757 {
758 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
759 }
760
761 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
762 struct dma_chan *chan, dma_addr_t buf, size_t len,
763 enum dma_transfer_direction dir, unsigned long flags)
764 {
765 struct scatterlist sg;
766 sg_init_table(&sg, 1);
767 sg_dma_address(&sg) = buf;
768 sg_dma_len(&sg) = len;
769
770 return chan->device->device_prep_slave_sg(chan, &sg, 1,
771 dir, flags, NULL);
772 }
773
774 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
775 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
776 enum dma_transfer_direction dir, unsigned long flags)
777 {
778 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
779 dir, flags, NULL);
780 }
781
782 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
783 struct rio_dma_ext;
784 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
785 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
786 enum dma_transfer_direction dir, unsigned long flags,
787 struct rio_dma_ext *rio_ext)
788 {
789 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
790 dir, flags, rio_ext);
791 }
792 #endif
793
794 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
795 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
796 size_t period_len, enum dma_transfer_direction dir,
797 unsigned long flags)
798 {
799 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
800 period_len, dir, flags);
801 }
802
803 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
804 struct dma_chan *chan, struct dma_interleaved_template *xt,
805 unsigned long flags)
806 {
807 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
808 }
809
810 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
811 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
812 unsigned long flags)
813 {
814 if (!chan || !chan->device)
815 return NULL;
816
817 return chan->device->device_prep_dma_memset(chan, dest, value,
818 len, flags);
819 }
820
821 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
822 struct dma_chan *chan,
823 struct scatterlist *dst_sg, unsigned int dst_nents,
824 struct scatterlist *src_sg, unsigned int src_nents,
825 unsigned long flags)
826 {
827 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
828 src_sg, src_nents, flags);
829 }
830
831 static inline int dmaengine_terminate_all(struct dma_chan *chan)
832 {
833 if (chan->device->device_terminate_all)
834 return chan->device->device_terminate_all(chan);
835
836 return -ENOSYS;
837 }
838
839 static inline int dmaengine_pause(struct dma_chan *chan)
840 {
841 if (chan->device->device_pause)
842 return chan->device->device_pause(chan);
843
844 return -ENOSYS;
845 }
846
847 static inline int dmaengine_resume(struct dma_chan *chan)
848 {
849 if (chan->device->device_resume)
850 return chan->device->device_resume(chan);
851
852 return -ENOSYS;
853 }
854
855 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
856 dma_cookie_t cookie, struct dma_tx_state *state)
857 {
858 return chan->device->device_tx_status(chan, cookie, state);
859 }
860
861 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
862 {
863 return desc->tx_submit(desc);
864 }
865
866 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
867 size_t off1, size_t off2, size_t len)
868 {
869 size_t mask;
870
871 if (!align)
872 return true;
873 mask = (1 << align) - 1;
874 if (mask & (off1 | off2 | len))
875 return false;
876 return true;
877 }
878
879 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
880 size_t off2, size_t len)
881 {
882 return dmaengine_check_align(dev->copy_align, off1, off2, len);
883 }
884
885 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
886 size_t off2, size_t len)
887 {
888 return dmaengine_check_align(dev->xor_align, off1, off2, len);
889 }
890
891 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
892 size_t off2, size_t len)
893 {
894 return dmaengine_check_align(dev->pq_align, off1, off2, len);
895 }
896
897 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
898 size_t off2, size_t len)
899 {
900 return dmaengine_check_align(dev->fill_align, off1, off2, len);
901 }
902
903 static inline void
904 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
905 {
906 dma->max_pq = maxpq;
907 if (has_pq_continue)
908 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
909 }
910
911 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
912 {
913 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
914 }
915
916 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
917 {
918 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
919
920 return (flags & mask) == mask;
921 }
922
923 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
924 {
925 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
926 }
927
928 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
929 {
930 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
931 }
932
933 /* dma_maxpq - reduce maxpq in the face of continued operations
934 * @dma - dma device with PQ capability
935 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
936 *
937 * When an engine does not support native continuation we need 3 extra
938 * source slots to reuse P and Q with the following coefficients:
939 * 1/ {00} * P : remove P from Q', but use it as a source for P'
940 * 2/ {01} * Q : use Q to continue Q' calculation
941 * 3/ {00} * Q : subtract Q from P' to cancel (2)
942 *
943 * In the case where P is disabled we only need 1 extra source:
944 * 1/ {01} * Q : use Q to continue Q' calculation
945 */
946 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
947 {
948 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
949 return dma_dev_to_maxpq(dma);
950 else if (dmaf_p_disabled_continue(flags))
951 return dma_dev_to_maxpq(dma) - 1;
952 else if (dmaf_continue(flags))
953 return dma_dev_to_maxpq(dma) - 3;
954 BUG();
955 }
956
957 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
958 size_t dir_icg)
959 {
960 if (inc) {
961 if (dir_icg)
962 return dir_icg;
963 else if (sgl)
964 return icg;
965 }
966
967 return 0;
968 }
969
970 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
971 struct data_chunk *chunk)
972 {
973 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
974 chunk->icg, chunk->dst_icg);
975 }
976
977 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
978 struct data_chunk *chunk)
979 {
980 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
981 chunk->icg, chunk->src_icg);
982 }
983
984 /* --- public DMA engine API --- */
985
986 #ifdef CONFIG_DMA_ENGINE
987 void dmaengine_get(void);
988 void dmaengine_put(void);
989 #else
990 static inline void dmaengine_get(void)
991 {
992 }
993 static inline void dmaengine_put(void)
994 {
995 }
996 #endif
997
998 #ifdef CONFIG_ASYNC_TX_DMA
999 #define async_dmaengine_get() dmaengine_get()
1000 #define async_dmaengine_put() dmaengine_put()
1001 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1002 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1003 #else
1004 #define async_dma_find_channel(type) dma_find_channel(type)
1005 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1006 #else
1007 static inline void async_dmaengine_get(void)
1008 {
1009 }
1010 static inline void async_dmaengine_put(void)
1011 {
1012 }
1013 static inline struct dma_chan *
1014 async_dma_find_channel(enum dma_transaction_type type)
1015 {
1016 return NULL;
1017 }
1018 #endif /* CONFIG_ASYNC_TX_DMA */
1019 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1020 struct dma_chan *chan);
1021
1022 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1023 {
1024 tx->flags |= DMA_CTRL_ACK;
1025 }
1026
1027 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1028 {
1029 tx->flags &= ~DMA_CTRL_ACK;
1030 }
1031
1032 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1033 {
1034 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1035 }
1036
1037 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1038 static inline void
1039 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1040 {
1041 set_bit(tx_type, dstp->bits);
1042 }
1043
1044 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1045 static inline void
1046 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1047 {
1048 clear_bit(tx_type, dstp->bits);
1049 }
1050
1051 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1052 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1053 {
1054 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1055 }
1056
1057 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1058 static inline int
1059 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1060 {
1061 return test_bit(tx_type, srcp->bits);
1062 }
1063
1064 #define for_each_dma_cap_mask(cap, mask) \
1065 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1066
1067 /**
1068 * dma_async_issue_pending - flush pending transactions to HW
1069 * @chan: target DMA channel
1070 *
1071 * This allows drivers to push copies to HW in batches,
1072 * reducing MMIO writes where possible.
1073 */
1074 static inline void dma_async_issue_pending(struct dma_chan *chan)
1075 {
1076 chan->device->device_issue_pending(chan);
1077 }
1078
1079 /**
1080 * dma_async_is_tx_complete - poll for transaction completion
1081 * @chan: DMA channel
1082 * @cookie: transaction identifier to check status of
1083 * @last: returns last completed cookie, can be NULL
1084 * @used: returns last issued cookie, can be NULL
1085 *
1086 * If @last and @used are passed in, upon return they reflect the driver
1087 * internal state and can be used with dma_async_is_complete() to check
1088 * the status of multiple cookies without re-checking hardware state.
1089 */
1090 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1091 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1092 {
1093 struct dma_tx_state state;
1094 enum dma_status status;
1095
1096 status = chan->device->device_tx_status(chan, cookie, &state);
1097 if (last)
1098 *last = state.last;
1099 if (used)
1100 *used = state.used;
1101 return status;
1102 }
1103
1104 /**
1105 * dma_async_is_complete - test a cookie against chan state
1106 * @cookie: transaction identifier to test status of
1107 * @last_complete: last know completed transaction
1108 * @last_used: last cookie value handed out
1109 *
1110 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1111 * the test logic is separated for lightweight testing of multiple cookies
1112 */
1113 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1114 dma_cookie_t last_complete, dma_cookie_t last_used)
1115 {
1116 if (last_complete <= last_used) {
1117 if ((cookie <= last_complete) || (cookie > last_used))
1118 return DMA_COMPLETE;
1119 } else {
1120 if ((cookie <= last_complete) && (cookie > last_used))
1121 return DMA_COMPLETE;
1122 }
1123 return DMA_IN_PROGRESS;
1124 }
1125
1126 static inline void
1127 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1128 {
1129 if (st) {
1130 st->last = last;
1131 st->used = used;
1132 st->residue = residue;
1133 }
1134 }
1135
1136 #ifdef CONFIG_DMA_ENGINE
1137 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1138 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1139 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1140 void dma_issue_pending_all(void);
1141 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1142 dma_filter_fn fn, void *fn_param);
1143 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1144 const char *name);
1145 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1146 void dma_release_channel(struct dma_chan *chan);
1147 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1148 #else
1149 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1150 {
1151 return NULL;
1152 }
1153 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1154 {
1155 return DMA_COMPLETE;
1156 }
1157 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1158 {
1159 return DMA_COMPLETE;
1160 }
1161 static inline void dma_issue_pending_all(void)
1162 {
1163 }
1164 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1165 dma_filter_fn fn, void *fn_param)
1166 {
1167 return NULL;
1168 }
1169 static inline struct dma_chan *dma_request_slave_channel_reason(
1170 struct device *dev, const char *name)
1171 {
1172 return ERR_PTR(-ENODEV);
1173 }
1174 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1175 const char *name)
1176 {
1177 return NULL;
1178 }
1179 static inline void dma_release_channel(struct dma_chan *chan)
1180 {
1181 }
1182 static inline int dma_get_slave_caps(struct dma_chan *chan,
1183 struct dma_slave_caps *caps)
1184 {
1185 return -ENXIO;
1186 }
1187 #endif
1188
1189 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1190 {
1191 struct dma_slave_caps caps;
1192
1193 dma_get_slave_caps(tx->chan, &caps);
1194
1195 if (caps.descriptor_reuse) {
1196 tx->flags |= DMA_CTRL_REUSE;
1197 return 0;
1198 } else {
1199 return -EPERM;
1200 }
1201 }
1202
1203 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1204 {
1205 tx->flags &= ~DMA_CTRL_REUSE;
1206 }
1207
1208 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1209 {
1210 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1211 }
1212
1213 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1214 {
1215 /* this is supported for reusable desc, so check that */
1216 if (dmaengine_desc_test_reuse(desc))
1217 return desc->desc_free(desc);
1218 else
1219 return -EPERM;
1220 }
1221
1222 /* --- DMA device --- */
1223
1224 int dma_async_device_register(struct dma_device *device);
1225 void dma_async_device_unregister(struct dma_device *device);
1226 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1227 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1228 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1229 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1230 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1231 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1232
1233 static inline struct dma_chan
1234 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1235 dma_filter_fn fn, void *fn_param,
1236 struct device *dev, const char *name)
1237 {
1238 struct dma_chan *chan;
1239
1240 chan = dma_request_slave_channel(dev, name);
1241 if (chan)
1242 return chan;
1243
1244 if (!fn || !fn_param)
1245 return NULL;
1246
1247 return __dma_request_channel(mask, fn, fn_param);
1248 }
1249 #endif /* DMAENGINE_H */
This page took 0.058067 seconds and 5 git commands to generate.