Merge branch 'for-4.8-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / include / linux / filter.h
1 /*
2 * Linux Socket Filter Data Structures
3 */
4 #ifndef __LINUX_FILTER_H__
5 #define __LINUX_FILTER_H__
6
7 #include <stdarg.h>
8
9 #include <linux/atomic.h>
10 #include <linux/compat.h>
11 #include <linux/skbuff.h>
12 #include <linux/linkage.h>
13 #include <linux/printk.h>
14 #include <linux/workqueue.h>
15 #include <linux/sched.h>
16 #include <linux/capability.h>
17
18 #include <net/sch_generic.h>
19
20 #include <asm/cacheflush.h>
21
22 #include <uapi/linux/filter.h>
23 #include <uapi/linux/bpf.h>
24
25 struct sk_buff;
26 struct sock;
27 struct seccomp_data;
28 struct bpf_prog_aux;
29
30 /* ArgX, context and stack frame pointer register positions. Note,
31 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
32 * calls in BPF_CALL instruction.
33 */
34 #define BPF_REG_ARG1 BPF_REG_1
35 #define BPF_REG_ARG2 BPF_REG_2
36 #define BPF_REG_ARG3 BPF_REG_3
37 #define BPF_REG_ARG4 BPF_REG_4
38 #define BPF_REG_ARG5 BPF_REG_5
39 #define BPF_REG_CTX BPF_REG_6
40 #define BPF_REG_FP BPF_REG_10
41
42 /* Additional register mappings for converted user programs. */
43 #define BPF_REG_A BPF_REG_0
44 #define BPF_REG_X BPF_REG_7
45 #define BPF_REG_TMP BPF_REG_8
46
47 /* Kernel hidden auxiliary/helper register for hardening step.
48 * Only used by eBPF JITs. It's nothing more than a temporary
49 * register that JITs use internally, only that here it's part
50 * of eBPF instructions that have been rewritten for blinding
51 * constants. See JIT pre-step in bpf_jit_blind_constants().
52 */
53 #define BPF_REG_AX MAX_BPF_REG
54 #define MAX_BPF_JIT_REG (MAX_BPF_REG + 1)
55
56 /* BPF program can access up to 512 bytes of stack space. */
57 #define MAX_BPF_STACK 512
58
59 /* Helper macros for filter block array initializers. */
60
61 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
62
63 #define BPF_ALU64_REG(OP, DST, SRC) \
64 ((struct bpf_insn) { \
65 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
66 .dst_reg = DST, \
67 .src_reg = SRC, \
68 .off = 0, \
69 .imm = 0 })
70
71 #define BPF_ALU32_REG(OP, DST, SRC) \
72 ((struct bpf_insn) { \
73 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
74 .dst_reg = DST, \
75 .src_reg = SRC, \
76 .off = 0, \
77 .imm = 0 })
78
79 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
80
81 #define BPF_ALU64_IMM(OP, DST, IMM) \
82 ((struct bpf_insn) { \
83 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
84 .dst_reg = DST, \
85 .src_reg = 0, \
86 .off = 0, \
87 .imm = IMM })
88
89 #define BPF_ALU32_IMM(OP, DST, IMM) \
90 ((struct bpf_insn) { \
91 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
92 .dst_reg = DST, \
93 .src_reg = 0, \
94 .off = 0, \
95 .imm = IMM })
96
97 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
98
99 #define BPF_ENDIAN(TYPE, DST, LEN) \
100 ((struct bpf_insn) { \
101 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
102 .dst_reg = DST, \
103 .src_reg = 0, \
104 .off = 0, \
105 .imm = LEN })
106
107 /* Short form of mov, dst_reg = src_reg */
108
109 #define BPF_MOV64_REG(DST, SRC) \
110 ((struct bpf_insn) { \
111 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
112 .dst_reg = DST, \
113 .src_reg = SRC, \
114 .off = 0, \
115 .imm = 0 })
116
117 #define BPF_MOV32_REG(DST, SRC) \
118 ((struct bpf_insn) { \
119 .code = BPF_ALU | BPF_MOV | BPF_X, \
120 .dst_reg = DST, \
121 .src_reg = SRC, \
122 .off = 0, \
123 .imm = 0 })
124
125 /* Short form of mov, dst_reg = imm32 */
126
127 #define BPF_MOV64_IMM(DST, IMM) \
128 ((struct bpf_insn) { \
129 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
130 .dst_reg = DST, \
131 .src_reg = 0, \
132 .off = 0, \
133 .imm = IMM })
134
135 #define BPF_MOV32_IMM(DST, IMM) \
136 ((struct bpf_insn) { \
137 .code = BPF_ALU | BPF_MOV | BPF_K, \
138 .dst_reg = DST, \
139 .src_reg = 0, \
140 .off = 0, \
141 .imm = IMM })
142
143 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
144 #define BPF_LD_IMM64(DST, IMM) \
145 BPF_LD_IMM64_RAW(DST, 0, IMM)
146
147 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
148 ((struct bpf_insn) { \
149 .code = BPF_LD | BPF_DW | BPF_IMM, \
150 .dst_reg = DST, \
151 .src_reg = SRC, \
152 .off = 0, \
153 .imm = (__u32) (IMM) }), \
154 ((struct bpf_insn) { \
155 .code = 0, /* zero is reserved opcode */ \
156 .dst_reg = 0, \
157 .src_reg = 0, \
158 .off = 0, \
159 .imm = ((__u64) (IMM)) >> 32 })
160
161 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
162 #define BPF_LD_MAP_FD(DST, MAP_FD) \
163 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
164
165 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
166
167 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
168 ((struct bpf_insn) { \
169 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
170 .dst_reg = DST, \
171 .src_reg = SRC, \
172 .off = 0, \
173 .imm = IMM })
174
175 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
176 ((struct bpf_insn) { \
177 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
178 .dst_reg = DST, \
179 .src_reg = SRC, \
180 .off = 0, \
181 .imm = IMM })
182
183 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
184
185 #define BPF_LD_ABS(SIZE, IMM) \
186 ((struct bpf_insn) { \
187 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
188 .dst_reg = 0, \
189 .src_reg = 0, \
190 .off = 0, \
191 .imm = IMM })
192
193 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
194
195 #define BPF_LD_IND(SIZE, SRC, IMM) \
196 ((struct bpf_insn) { \
197 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
198 .dst_reg = 0, \
199 .src_reg = SRC, \
200 .off = 0, \
201 .imm = IMM })
202
203 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
204
205 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
206 ((struct bpf_insn) { \
207 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
208 .dst_reg = DST, \
209 .src_reg = SRC, \
210 .off = OFF, \
211 .imm = 0 })
212
213 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
214
215 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
216 ((struct bpf_insn) { \
217 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
218 .dst_reg = DST, \
219 .src_reg = SRC, \
220 .off = OFF, \
221 .imm = 0 })
222
223 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
224
225 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
226 ((struct bpf_insn) { \
227 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
228 .dst_reg = DST, \
229 .src_reg = SRC, \
230 .off = OFF, \
231 .imm = 0 })
232
233 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
234
235 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
236 ((struct bpf_insn) { \
237 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
238 .dst_reg = DST, \
239 .src_reg = 0, \
240 .off = OFF, \
241 .imm = IMM })
242
243 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
244
245 #define BPF_JMP_REG(OP, DST, SRC, OFF) \
246 ((struct bpf_insn) { \
247 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
248 .dst_reg = DST, \
249 .src_reg = SRC, \
250 .off = OFF, \
251 .imm = 0 })
252
253 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
254
255 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \
256 ((struct bpf_insn) { \
257 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
258 .dst_reg = DST, \
259 .src_reg = 0, \
260 .off = OFF, \
261 .imm = IMM })
262
263 /* Function call */
264
265 #define BPF_EMIT_CALL(FUNC) \
266 ((struct bpf_insn) { \
267 .code = BPF_JMP | BPF_CALL, \
268 .dst_reg = 0, \
269 .src_reg = 0, \
270 .off = 0, \
271 .imm = ((FUNC) - __bpf_call_base) })
272
273 /* Raw code statement block */
274
275 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
276 ((struct bpf_insn) { \
277 .code = CODE, \
278 .dst_reg = DST, \
279 .src_reg = SRC, \
280 .off = OFF, \
281 .imm = IMM })
282
283 /* Program exit */
284
285 #define BPF_EXIT_INSN() \
286 ((struct bpf_insn) { \
287 .code = BPF_JMP | BPF_EXIT, \
288 .dst_reg = 0, \
289 .src_reg = 0, \
290 .off = 0, \
291 .imm = 0 })
292
293 /* Internal classic blocks for direct assignment */
294
295 #define __BPF_STMT(CODE, K) \
296 ((struct sock_filter) BPF_STMT(CODE, K))
297
298 #define __BPF_JUMP(CODE, K, JT, JF) \
299 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
300
301 #define bytes_to_bpf_size(bytes) \
302 ({ \
303 int bpf_size = -EINVAL; \
304 \
305 if (bytes == sizeof(u8)) \
306 bpf_size = BPF_B; \
307 else if (bytes == sizeof(u16)) \
308 bpf_size = BPF_H; \
309 else if (bytes == sizeof(u32)) \
310 bpf_size = BPF_W; \
311 else if (bytes == sizeof(u64)) \
312 bpf_size = BPF_DW; \
313 \
314 bpf_size; \
315 })
316
317 #ifdef CONFIG_COMPAT
318 /* A struct sock_filter is architecture independent. */
319 struct compat_sock_fprog {
320 u16 len;
321 compat_uptr_t filter; /* struct sock_filter * */
322 };
323 #endif
324
325 struct sock_fprog_kern {
326 u16 len;
327 struct sock_filter *filter;
328 };
329
330 struct bpf_binary_header {
331 unsigned int pages;
332 u8 image[];
333 };
334
335 struct bpf_prog {
336 u16 pages; /* Number of allocated pages */
337 kmemcheck_bitfield_begin(meta);
338 u16 jited:1, /* Is our filter JIT'ed? */
339 gpl_compatible:1, /* Is filter GPL compatible? */
340 cb_access:1, /* Is control block accessed? */
341 dst_needed:1; /* Do we need dst entry? */
342 kmemcheck_bitfield_end(meta);
343 u32 len; /* Number of filter blocks */
344 enum bpf_prog_type type; /* Type of BPF program */
345 struct bpf_prog_aux *aux; /* Auxiliary fields */
346 struct sock_fprog_kern *orig_prog; /* Original BPF program */
347 unsigned int (*bpf_func)(const struct sk_buff *skb,
348 const struct bpf_insn *filter);
349 /* Instructions for interpreter */
350 union {
351 struct sock_filter insns[0];
352 struct bpf_insn insnsi[0];
353 };
354 };
355
356 struct sk_filter {
357 atomic_t refcnt;
358 struct rcu_head rcu;
359 struct bpf_prog *prog;
360 };
361
362 #define BPF_PROG_RUN(filter, ctx) (*filter->bpf_func)(ctx, filter->insnsi)
363
364 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
365
366 struct bpf_skb_data_end {
367 struct qdisc_skb_cb qdisc_cb;
368 void *data_end;
369 };
370
371 struct xdp_buff {
372 void *data;
373 void *data_end;
374 };
375
376 /* compute the linear packet data range [data, data_end) which
377 * will be accessed by cls_bpf and act_bpf programs
378 */
379 static inline void bpf_compute_data_end(struct sk_buff *skb)
380 {
381 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
382
383 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
384 cb->data_end = skb->data + skb_headlen(skb);
385 }
386
387 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
388 {
389 /* eBPF programs may read/write skb->cb[] area to transfer meta
390 * data between tail calls. Since this also needs to work with
391 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
392 *
393 * In some socket filter cases, the cb unfortunately needs to be
394 * saved/restored so that protocol specific skb->cb[] data won't
395 * be lost. In any case, due to unpriviledged eBPF programs
396 * attached to sockets, we need to clear the bpf_skb_cb() area
397 * to not leak previous contents to user space.
398 */
399 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
400 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
401 FIELD_SIZEOF(struct qdisc_skb_cb, data));
402
403 return qdisc_skb_cb(skb)->data;
404 }
405
406 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
407 struct sk_buff *skb)
408 {
409 u8 *cb_data = bpf_skb_cb(skb);
410 u8 cb_saved[BPF_SKB_CB_LEN];
411 u32 res;
412
413 if (unlikely(prog->cb_access)) {
414 memcpy(cb_saved, cb_data, sizeof(cb_saved));
415 memset(cb_data, 0, sizeof(cb_saved));
416 }
417
418 res = BPF_PROG_RUN(prog, skb);
419
420 if (unlikely(prog->cb_access))
421 memcpy(cb_data, cb_saved, sizeof(cb_saved));
422
423 return res;
424 }
425
426 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
427 struct sk_buff *skb)
428 {
429 u8 *cb_data = bpf_skb_cb(skb);
430
431 if (unlikely(prog->cb_access))
432 memset(cb_data, 0, BPF_SKB_CB_LEN);
433
434 return BPF_PROG_RUN(prog, skb);
435 }
436
437 static inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
438 struct xdp_buff *xdp)
439 {
440 u32 ret;
441
442 rcu_read_lock();
443 ret = BPF_PROG_RUN(prog, (void *)xdp);
444 rcu_read_unlock();
445
446 return ret;
447 }
448
449 static inline unsigned int bpf_prog_size(unsigned int proglen)
450 {
451 return max(sizeof(struct bpf_prog),
452 offsetof(struct bpf_prog, insns[proglen]));
453 }
454
455 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
456 {
457 /* When classic BPF programs have been loaded and the arch
458 * does not have a classic BPF JIT (anymore), they have been
459 * converted via bpf_migrate_filter() to eBPF and thus always
460 * have an unspec program type.
461 */
462 return prog->type == BPF_PROG_TYPE_UNSPEC;
463 }
464
465 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
466
467 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
468 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
469 {
470 set_memory_ro((unsigned long)fp, fp->pages);
471 }
472
473 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
474 {
475 set_memory_rw((unsigned long)fp, fp->pages);
476 }
477 #else
478 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
479 {
480 }
481
482 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
483 {
484 }
485 #endif /* CONFIG_DEBUG_SET_MODULE_RONX */
486
487 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
488 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
489 {
490 return sk_filter_trim_cap(sk, skb, 1);
491 }
492
493 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
494 void bpf_prog_free(struct bpf_prog *fp);
495
496 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
497 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
498 gfp_t gfp_extra_flags);
499 void __bpf_prog_free(struct bpf_prog *fp);
500
501 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
502 {
503 bpf_prog_unlock_ro(fp);
504 __bpf_prog_free(fp);
505 }
506
507 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
508 unsigned int flen);
509
510 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
511 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
512 bpf_aux_classic_check_t trans, bool save_orig);
513 void bpf_prog_destroy(struct bpf_prog *fp);
514
515 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
516 int sk_attach_bpf(u32 ufd, struct sock *sk);
517 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
518 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
519 int sk_detach_filter(struct sock *sk);
520 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
521 unsigned int len);
522
523 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
524 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
525
526 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
527
528 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
529 bool bpf_helper_changes_skb_data(void *func);
530
531 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
532 const struct bpf_insn *patch, u32 len);
533 void bpf_warn_invalid_xdp_action(u32 act);
534
535 #ifdef CONFIG_BPF_JIT
536 extern int bpf_jit_enable;
537 extern int bpf_jit_harden;
538
539 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
540
541 struct bpf_binary_header *
542 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
543 unsigned int alignment,
544 bpf_jit_fill_hole_t bpf_fill_ill_insns);
545 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
546
547 void bpf_jit_compile(struct bpf_prog *fp);
548 void bpf_jit_free(struct bpf_prog *fp);
549
550 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
551 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
552
553 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
554 u32 pass, void *image)
555 {
556 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
557 proglen, pass, image, current->comm, task_pid_nr(current));
558
559 if (image)
560 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
561 16, 1, image, proglen, false);
562 }
563
564 static inline bool bpf_jit_is_ebpf(void)
565 {
566 # ifdef CONFIG_HAVE_EBPF_JIT
567 return true;
568 # else
569 return false;
570 # endif
571 }
572
573 static inline bool bpf_jit_blinding_enabled(void)
574 {
575 /* These are the prerequisites, should someone ever have the
576 * idea to call blinding outside of them, we make sure to
577 * bail out.
578 */
579 if (!bpf_jit_is_ebpf())
580 return false;
581 if (!bpf_jit_enable)
582 return false;
583 if (!bpf_jit_harden)
584 return false;
585 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
586 return false;
587
588 return true;
589 }
590 #else
591 static inline void bpf_jit_compile(struct bpf_prog *fp)
592 {
593 }
594
595 static inline void bpf_jit_free(struct bpf_prog *fp)
596 {
597 bpf_prog_unlock_free(fp);
598 }
599 #endif /* CONFIG_BPF_JIT */
600
601 #define BPF_ANC BIT(15)
602
603 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
604 {
605 switch (first->code) {
606 case BPF_RET | BPF_K:
607 case BPF_LD | BPF_W | BPF_LEN:
608 return false;
609
610 case BPF_LD | BPF_W | BPF_ABS:
611 case BPF_LD | BPF_H | BPF_ABS:
612 case BPF_LD | BPF_B | BPF_ABS:
613 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
614 return true;
615 return false;
616
617 default:
618 return true;
619 }
620 }
621
622 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
623 {
624 BUG_ON(ftest->code & BPF_ANC);
625
626 switch (ftest->code) {
627 case BPF_LD | BPF_W | BPF_ABS:
628 case BPF_LD | BPF_H | BPF_ABS:
629 case BPF_LD | BPF_B | BPF_ABS:
630 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
631 return BPF_ANC | SKF_AD_##CODE
632 switch (ftest->k) {
633 BPF_ANCILLARY(PROTOCOL);
634 BPF_ANCILLARY(PKTTYPE);
635 BPF_ANCILLARY(IFINDEX);
636 BPF_ANCILLARY(NLATTR);
637 BPF_ANCILLARY(NLATTR_NEST);
638 BPF_ANCILLARY(MARK);
639 BPF_ANCILLARY(QUEUE);
640 BPF_ANCILLARY(HATYPE);
641 BPF_ANCILLARY(RXHASH);
642 BPF_ANCILLARY(CPU);
643 BPF_ANCILLARY(ALU_XOR_X);
644 BPF_ANCILLARY(VLAN_TAG);
645 BPF_ANCILLARY(VLAN_TAG_PRESENT);
646 BPF_ANCILLARY(PAY_OFFSET);
647 BPF_ANCILLARY(RANDOM);
648 BPF_ANCILLARY(VLAN_TPID);
649 }
650 /* Fallthrough. */
651 default:
652 return ftest->code;
653 }
654 }
655
656 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
657 int k, unsigned int size);
658
659 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
660 unsigned int size, void *buffer)
661 {
662 if (k >= 0)
663 return skb_header_pointer(skb, k, size, buffer);
664
665 return bpf_internal_load_pointer_neg_helper(skb, k, size);
666 }
667
668 static inline int bpf_tell_extensions(void)
669 {
670 return SKF_AD_MAX;
671 }
672
673 #endif /* __LINUX_FILTER_H__ */
This page took 0.044993 seconds and 5 git commands to generate.