Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void cpu_load_update_nohz_start(void);
181 extern void cpu_load_update_nohz_stop(void);
182 #else
183 static inline void cpu_load_update_nohz_start(void) { }
184 static inline void cpu_load_update_nohz_stop(void) { }
185 #endif
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376 extern int sched_cpu_starting(unsigned int cpu);
377 extern int sched_cpu_activate(unsigned int cpu);
378 extern int sched_cpu_deactivate(unsigned int cpu);
379
380 #ifdef CONFIG_HOTPLUG_CPU
381 extern int sched_cpu_dying(unsigned int cpu);
382 #else
383 # define sched_cpu_dying NULL
384 #endif
385
386 extern void sched_show_task(struct task_struct *p);
387
388 #ifdef CONFIG_LOCKUP_DETECTOR
389 extern void touch_softlockup_watchdog_sched(void);
390 extern void touch_softlockup_watchdog(void);
391 extern void touch_softlockup_watchdog_sync(void);
392 extern void touch_all_softlockup_watchdogs(void);
393 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
394 void __user *buffer,
395 size_t *lenp, loff_t *ppos);
396 extern unsigned int softlockup_panic;
397 extern unsigned int hardlockup_panic;
398 void lockup_detector_init(void);
399 #else
400 static inline void touch_softlockup_watchdog_sched(void)
401 {
402 }
403 static inline void touch_softlockup_watchdog(void)
404 {
405 }
406 static inline void touch_softlockup_watchdog_sync(void)
407 {
408 }
409 static inline void touch_all_softlockup_watchdogs(void)
410 {
411 }
412 static inline void lockup_detector_init(void)
413 {
414 }
415 #endif
416
417 #ifdef CONFIG_DETECT_HUNG_TASK
418 void reset_hung_task_detector(void);
419 #else
420 static inline void reset_hung_task_detector(void)
421 {
422 }
423 #endif
424
425 /* Attach to any functions which should be ignored in wchan output. */
426 #define __sched __attribute__((__section__(".sched.text")))
427
428 /* Linker adds these: start and end of __sched functions */
429 extern char __sched_text_start[], __sched_text_end[];
430
431 /* Is this address in the __sched functions? */
432 extern int in_sched_functions(unsigned long addr);
433
434 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
435 extern signed long schedule_timeout(signed long timeout);
436 extern signed long schedule_timeout_interruptible(signed long timeout);
437 extern signed long schedule_timeout_killable(signed long timeout);
438 extern signed long schedule_timeout_uninterruptible(signed long timeout);
439 extern signed long schedule_timeout_idle(signed long timeout);
440 asmlinkage void schedule(void);
441 extern void schedule_preempt_disabled(void);
442
443 extern long io_schedule_timeout(long timeout);
444
445 static inline void io_schedule(void)
446 {
447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
448 }
449
450 struct nsproxy;
451 struct user_namespace;
452
453 #ifdef CONFIG_MMU
454 extern void arch_pick_mmap_layout(struct mm_struct *mm);
455 extern unsigned long
456 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
457 unsigned long, unsigned long);
458 extern unsigned long
459 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
460 unsigned long len, unsigned long pgoff,
461 unsigned long flags);
462 #else
463 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
464 #endif
465
466 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
467 #define SUID_DUMP_USER 1 /* Dump as user of process */
468 #define SUID_DUMP_ROOT 2 /* Dump as root */
469
470 /* mm flags */
471
472 /* for SUID_DUMP_* above */
473 #define MMF_DUMPABLE_BITS 2
474 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
475
476 extern void set_dumpable(struct mm_struct *mm, int value);
477 /*
478 * This returns the actual value of the suid_dumpable flag. For things
479 * that are using this for checking for privilege transitions, it must
480 * test against SUID_DUMP_USER rather than treating it as a boolean
481 * value.
482 */
483 static inline int __get_dumpable(unsigned long mm_flags)
484 {
485 return mm_flags & MMF_DUMPABLE_MASK;
486 }
487
488 static inline int get_dumpable(struct mm_struct *mm)
489 {
490 return __get_dumpable(mm->flags);
491 }
492
493 /* coredump filter bits */
494 #define MMF_DUMP_ANON_PRIVATE 2
495 #define MMF_DUMP_ANON_SHARED 3
496 #define MMF_DUMP_MAPPED_PRIVATE 4
497 #define MMF_DUMP_MAPPED_SHARED 5
498 #define MMF_DUMP_ELF_HEADERS 6
499 #define MMF_DUMP_HUGETLB_PRIVATE 7
500 #define MMF_DUMP_HUGETLB_SHARED 8
501 #define MMF_DUMP_DAX_PRIVATE 9
502 #define MMF_DUMP_DAX_SHARED 10
503
504 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
505 #define MMF_DUMP_FILTER_BITS 9
506 #define MMF_DUMP_FILTER_MASK \
507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
508 #define MMF_DUMP_FILTER_DEFAULT \
509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
511
512 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
513 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
514 #else
515 # define MMF_DUMP_MASK_DEFAULT_ELF 0
516 #endif
517 /* leave room for more dump flags */
518 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
519 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
520 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
521
522 #define MMF_HAS_UPROBES 19 /* has uprobes */
523 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
524 #define MMF_OOM_REAPED 21 /* mm has been already reaped */
525
526 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
527
528 struct sighand_struct {
529 atomic_t count;
530 struct k_sigaction action[_NSIG];
531 spinlock_t siglock;
532 wait_queue_head_t signalfd_wqh;
533 };
534
535 struct pacct_struct {
536 int ac_flag;
537 long ac_exitcode;
538 unsigned long ac_mem;
539 cputime_t ac_utime, ac_stime;
540 unsigned long ac_minflt, ac_majflt;
541 };
542
543 struct cpu_itimer {
544 cputime_t expires;
545 cputime_t incr;
546 u32 error;
547 u32 incr_error;
548 };
549
550 /**
551 * struct prev_cputime - snaphsot of system and user cputime
552 * @utime: time spent in user mode
553 * @stime: time spent in system mode
554 * @lock: protects the above two fields
555 *
556 * Stores previous user/system time values such that we can guarantee
557 * monotonicity.
558 */
559 struct prev_cputime {
560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
561 cputime_t utime;
562 cputime_t stime;
563 raw_spinlock_t lock;
564 #endif
565 };
566
567 static inline void prev_cputime_init(struct prev_cputime *prev)
568 {
569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
570 prev->utime = prev->stime = 0;
571 raw_spin_lock_init(&prev->lock);
572 #endif
573 }
574
575 /**
576 * struct task_cputime - collected CPU time counts
577 * @utime: time spent in user mode, in &cputime_t units
578 * @stime: time spent in kernel mode, in &cputime_t units
579 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
580 *
581 * This structure groups together three kinds of CPU time that are tracked for
582 * threads and thread groups. Most things considering CPU time want to group
583 * these counts together and treat all three of them in parallel.
584 */
585 struct task_cputime {
586 cputime_t utime;
587 cputime_t stime;
588 unsigned long long sum_exec_runtime;
589 };
590
591 /* Alternate field names when used to cache expirations. */
592 #define virt_exp utime
593 #define prof_exp stime
594 #define sched_exp sum_exec_runtime
595
596 #define INIT_CPUTIME \
597 (struct task_cputime) { \
598 .utime = 0, \
599 .stime = 0, \
600 .sum_exec_runtime = 0, \
601 }
602
603 /*
604 * This is the atomic variant of task_cputime, which can be used for
605 * storing and updating task_cputime statistics without locking.
606 */
607 struct task_cputime_atomic {
608 atomic64_t utime;
609 atomic64_t stime;
610 atomic64_t sum_exec_runtime;
611 };
612
613 #define INIT_CPUTIME_ATOMIC \
614 (struct task_cputime_atomic) { \
615 .utime = ATOMIC64_INIT(0), \
616 .stime = ATOMIC64_INIT(0), \
617 .sum_exec_runtime = ATOMIC64_INIT(0), \
618 }
619
620 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
621
622 /*
623 * Disable preemption until the scheduler is running -- use an unconditional
624 * value so that it also works on !PREEMPT_COUNT kernels.
625 *
626 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
627 */
628 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
629
630 /*
631 * Initial preempt_count value; reflects the preempt_count schedule invariant
632 * which states that during context switches:
633 *
634 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
635 *
636 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
637 * Note: See finish_task_switch().
638 */
639 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
640
641 /**
642 * struct thread_group_cputimer - thread group interval timer counts
643 * @cputime_atomic: atomic thread group interval timers.
644 * @running: true when there are timers running and
645 * @cputime_atomic receives updates.
646 * @checking_timer: true when a thread in the group is in the
647 * process of checking for thread group timers.
648 *
649 * This structure contains the version of task_cputime, above, that is
650 * used for thread group CPU timer calculations.
651 */
652 struct thread_group_cputimer {
653 struct task_cputime_atomic cputime_atomic;
654 bool running;
655 bool checking_timer;
656 };
657
658 #include <linux/rwsem.h>
659 struct autogroup;
660
661 /*
662 * NOTE! "signal_struct" does not have its own
663 * locking, because a shared signal_struct always
664 * implies a shared sighand_struct, so locking
665 * sighand_struct is always a proper superset of
666 * the locking of signal_struct.
667 */
668 struct signal_struct {
669 atomic_t sigcnt;
670 atomic_t live;
671 int nr_threads;
672 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
673 struct list_head thread_head;
674
675 wait_queue_head_t wait_chldexit; /* for wait4() */
676
677 /* current thread group signal load-balancing target: */
678 struct task_struct *curr_target;
679
680 /* shared signal handling: */
681 struct sigpending shared_pending;
682
683 /* thread group exit support */
684 int group_exit_code;
685 /* overloaded:
686 * - notify group_exit_task when ->count is equal to notify_count
687 * - everyone except group_exit_task is stopped during signal delivery
688 * of fatal signals, group_exit_task processes the signal.
689 */
690 int notify_count;
691 struct task_struct *group_exit_task;
692
693 /* thread group stop support, overloads group_exit_code too */
694 int group_stop_count;
695 unsigned int flags; /* see SIGNAL_* flags below */
696
697 /*
698 * PR_SET_CHILD_SUBREAPER marks a process, like a service
699 * manager, to re-parent orphan (double-forking) child processes
700 * to this process instead of 'init'. The service manager is
701 * able to receive SIGCHLD signals and is able to investigate
702 * the process until it calls wait(). All children of this
703 * process will inherit a flag if they should look for a
704 * child_subreaper process at exit.
705 */
706 unsigned int is_child_subreaper:1;
707 unsigned int has_child_subreaper:1;
708
709 /* POSIX.1b Interval Timers */
710 int posix_timer_id;
711 struct list_head posix_timers;
712
713 /* ITIMER_REAL timer for the process */
714 struct hrtimer real_timer;
715 struct pid *leader_pid;
716 ktime_t it_real_incr;
717
718 /*
719 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
720 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
721 * values are defined to 0 and 1 respectively
722 */
723 struct cpu_itimer it[2];
724
725 /*
726 * Thread group totals for process CPU timers.
727 * See thread_group_cputimer(), et al, for details.
728 */
729 struct thread_group_cputimer cputimer;
730
731 /* Earliest-expiration cache. */
732 struct task_cputime cputime_expires;
733
734 #ifdef CONFIG_NO_HZ_FULL
735 atomic_t tick_dep_mask;
736 #endif
737
738 struct list_head cpu_timers[3];
739
740 struct pid *tty_old_pgrp;
741
742 /* boolean value for session group leader */
743 int leader;
744
745 struct tty_struct *tty; /* NULL if no tty */
746
747 #ifdef CONFIG_SCHED_AUTOGROUP
748 struct autogroup *autogroup;
749 #endif
750 /*
751 * Cumulative resource counters for dead threads in the group,
752 * and for reaped dead child processes forked by this group.
753 * Live threads maintain their own counters and add to these
754 * in __exit_signal, except for the group leader.
755 */
756 seqlock_t stats_lock;
757 cputime_t utime, stime, cutime, cstime;
758 cputime_t gtime;
759 cputime_t cgtime;
760 struct prev_cputime prev_cputime;
761 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
762 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
763 unsigned long inblock, oublock, cinblock, coublock;
764 unsigned long maxrss, cmaxrss;
765 struct task_io_accounting ioac;
766
767 /*
768 * Cumulative ns of schedule CPU time fo dead threads in the
769 * group, not including a zombie group leader, (This only differs
770 * from jiffies_to_ns(utime + stime) if sched_clock uses something
771 * other than jiffies.)
772 */
773 unsigned long long sum_sched_runtime;
774
775 /*
776 * We don't bother to synchronize most readers of this at all,
777 * because there is no reader checking a limit that actually needs
778 * to get both rlim_cur and rlim_max atomically, and either one
779 * alone is a single word that can safely be read normally.
780 * getrlimit/setrlimit use task_lock(current->group_leader) to
781 * protect this instead of the siglock, because they really
782 * have no need to disable irqs.
783 */
784 struct rlimit rlim[RLIM_NLIMITS];
785
786 #ifdef CONFIG_BSD_PROCESS_ACCT
787 struct pacct_struct pacct; /* per-process accounting information */
788 #endif
789 #ifdef CONFIG_TASKSTATS
790 struct taskstats *stats;
791 #endif
792 #ifdef CONFIG_AUDIT
793 unsigned audit_tty;
794 struct tty_audit_buf *tty_audit_buf;
795 #endif
796
797 /*
798 * Thread is the potential origin of an oom condition; kill first on
799 * oom
800 */
801 bool oom_flag_origin;
802 short oom_score_adj; /* OOM kill score adjustment */
803 short oom_score_adj_min; /* OOM kill score adjustment min value.
804 * Only settable by CAP_SYS_RESOURCE. */
805
806 struct mutex cred_guard_mutex; /* guard against foreign influences on
807 * credential calculations
808 * (notably. ptrace) */
809 };
810
811 /*
812 * Bits in flags field of signal_struct.
813 */
814 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
815 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
816 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
817 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
818 /*
819 * Pending notifications to parent.
820 */
821 #define SIGNAL_CLD_STOPPED 0x00000010
822 #define SIGNAL_CLD_CONTINUED 0x00000020
823 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
824
825 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
826
827 /* If true, all threads except ->group_exit_task have pending SIGKILL */
828 static inline int signal_group_exit(const struct signal_struct *sig)
829 {
830 return (sig->flags & SIGNAL_GROUP_EXIT) ||
831 (sig->group_exit_task != NULL);
832 }
833
834 /*
835 * Some day this will be a full-fledged user tracking system..
836 */
837 struct user_struct {
838 atomic_t __count; /* reference count */
839 atomic_t processes; /* How many processes does this user have? */
840 atomic_t sigpending; /* How many pending signals does this user have? */
841 #ifdef CONFIG_INOTIFY_USER
842 atomic_t inotify_watches; /* How many inotify watches does this user have? */
843 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
844 #endif
845 #ifdef CONFIG_FANOTIFY
846 atomic_t fanotify_listeners;
847 #endif
848 #ifdef CONFIG_EPOLL
849 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
850 #endif
851 #ifdef CONFIG_POSIX_MQUEUE
852 /* protected by mq_lock */
853 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
854 #endif
855 unsigned long locked_shm; /* How many pages of mlocked shm ? */
856 unsigned long unix_inflight; /* How many files in flight in unix sockets */
857 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
858
859 #ifdef CONFIG_KEYS
860 struct key *uid_keyring; /* UID specific keyring */
861 struct key *session_keyring; /* UID's default session keyring */
862 #endif
863
864 /* Hash table maintenance information */
865 struct hlist_node uidhash_node;
866 kuid_t uid;
867
868 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
869 atomic_long_t locked_vm;
870 #endif
871 };
872
873 extern int uids_sysfs_init(void);
874
875 extern struct user_struct *find_user(kuid_t);
876
877 extern struct user_struct root_user;
878 #define INIT_USER (&root_user)
879
880
881 struct backing_dev_info;
882 struct reclaim_state;
883
884 #ifdef CONFIG_SCHED_INFO
885 struct sched_info {
886 /* cumulative counters */
887 unsigned long pcount; /* # of times run on this cpu */
888 unsigned long long run_delay; /* time spent waiting on a runqueue */
889
890 /* timestamps */
891 unsigned long long last_arrival,/* when we last ran on a cpu */
892 last_queued; /* when we were last queued to run */
893 };
894 #endif /* CONFIG_SCHED_INFO */
895
896 #ifdef CONFIG_TASK_DELAY_ACCT
897 struct task_delay_info {
898 spinlock_t lock;
899 unsigned int flags; /* Private per-task flags */
900
901 /* For each stat XXX, add following, aligned appropriately
902 *
903 * struct timespec XXX_start, XXX_end;
904 * u64 XXX_delay;
905 * u32 XXX_count;
906 *
907 * Atomicity of updates to XXX_delay, XXX_count protected by
908 * single lock above (split into XXX_lock if contention is an issue).
909 */
910
911 /*
912 * XXX_count is incremented on every XXX operation, the delay
913 * associated with the operation is added to XXX_delay.
914 * XXX_delay contains the accumulated delay time in nanoseconds.
915 */
916 u64 blkio_start; /* Shared by blkio, swapin */
917 u64 blkio_delay; /* wait for sync block io completion */
918 u64 swapin_delay; /* wait for swapin block io completion */
919 u32 blkio_count; /* total count of the number of sync block */
920 /* io operations performed */
921 u32 swapin_count; /* total count of the number of swapin block */
922 /* io operations performed */
923
924 u64 freepages_start;
925 u64 freepages_delay; /* wait for memory reclaim */
926 u32 freepages_count; /* total count of memory reclaim */
927 };
928 #endif /* CONFIG_TASK_DELAY_ACCT */
929
930 static inline int sched_info_on(void)
931 {
932 #ifdef CONFIG_SCHEDSTATS
933 return 1;
934 #elif defined(CONFIG_TASK_DELAY_ACCT)
935 extern int delayacct_on;
936 return delayacct_on;
937 #else
938 return 0;
939 #endif
940 }
941
942 #ifdef CONFIG_SCHEDSTATS
943 void force_schedstat_enabled(void);
944 #endif
945
946 enum cpu_idle_type {
947 CPU_IDLE,
948 CPU_NOT_IDLE,
949 CPU_NEWLY_IDLE,
950 CPU_MAX_IDLE_TYPES
951 };
952
953 /*
954 * Integer metrics need fixed point arithmetic, e.g., sched/fair
955 * has a few: load, load_avg, util_avg, freq, and capacity.
956 *
957 * We define a basic fixed point arithmetic range, and then formalize
958 * all these metrics based on that basic range.
959 */
960 # define SCHED_FIXEDPOINT_SHIFT 10
961 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
962
963 /*
964 * Increase resolution of cpu_capacity calculations
965 */
966 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
967 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
968
969 /*
970 * Wake-queues are lists of tasks with a pending wakeup, whose
971 * callers have already marked the task as woken internally,
972 * and can thus carry on. A common use case is being able to
973 * do the wakeups once the corresponding user lock as been
974 * released.
975 *
976 * We hold reference to each task in the list across the wakeup,
977 * thus guaranteeing that the memory is still valid by the time
978 * the actual wakeups are performed in wake_up_q().
979 *
980 * One per task suffices, because there's never a need for a task to be
981 * in two wake queues simultaneously; it is forbidden to abandon a task
982 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
983 * already in a wake queue, the wakeup will happen soon and the second
984 * waker can just skip it.
985 *
986 * The WAKE_Q macro declares and initializes the list head.
987 * wake_up_q() does NOT reinitialize the list; it's expected to be
988 * called near the end of a function, where the fact that the queue is
989 * not used again will be easy to see by inspection.
990 *
991 * Note that this can cause spurious wakeups. schedule() callers
992 * must ensure the call is done inside a loop, confirming that the
993 * wakeup condition has in fact occurred.
994 */
995 struct wake_q_node {
996 struct wake_q_node *next;
997 };
998
999 struct wake_q_head {
1000 struct wake_q_node *first;
1001 struct wake_q_node **lastp;
1002 };
1003
1004 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1005
1006 #define WAKE_Q(name) \
1007 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1008
1009 extern void wake_q_add(struct wake_q_head *head,
1010 struct task_struct *task);
1011 extern void wake_up_q(struct wake_q_head *head);
1012
1013 /*
1014 * sched-domains (multiprocessor balancing) declarations:
1015 */
1016 #ifdef CONFIG_SMP
1017 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1018 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1019 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1020 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1021 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1022 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1023 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
1024 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1025 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1026 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1027 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1028 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1029 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1030 #define SD_NUMA 0x4000 /* cross-node balancing */
1031
1032 #ifdef CONFIG_SCHED_SMT
1033 static inline int cpu_smt_flags(void)
1034 {
1035 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1036 }
1037 #endif
1038
1039 #ifdef CONFIG_SCHED_MC
1040 static inline int cpu_core_flags(void)
1041 {
1042 return SD_SHARE_PKG_RESOURCES;
1043 }
1044 #endif
1045
1046 #ifdef CONFIG_NUMA
1047 static inline int cpu_numa_flags(void)
1048 {
1049 return SD_NUMA;
1050 }
1051 #endif
1052
1053 struct sched_domain_attr {
1054 int relax_domain_level;
1055 };
1056
1057 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1058 .relax_domain_level = -1, \
1059 }
1060
1061 extern int sched_domain_level_max;
1062
1063 struct sched_group;
1064
1065 struct sched_domain {
1066 /* These fields must be setup */
1067 struct sched_domain *parent; /* top domain must be null terminated */
1068 struct sched_domain *child; /* bottom domain must be null terminated */
1069 struct sched_group *groups; /* the balancing groups of the domain */
1070 unsigned long min_interval; /* Minimum balance interval ms */
1071 unsigned long max_interval; /* Maximum balance interval ms */
1072 unsigned int busy_factor; /* less balancing by factor if busy */
1073 unsigned int imbalance_pct; /* No balance until over watermark */
1074 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1075 unsigned int busy_idx;
1076 unsigned int idle_idx;
1077 unsigned int newidle_idx;
1078 unsigned int wake_idx;
1079 unsigned int forkexec_idx;
1080 unsigned int smt_gain;
1081
1082 int nohz_idle; /* NOHZ IDLE status */
1083 int flags; /* See SD_* */
1084 int level;
1085
1086 /* Runtime fields. */
1087 unsigned long last_balance; /* init to jiffies. units in jiffies */
1088 unsigned int balance_interval; /* initialise to 1. units in ms. */
1089 unsigned int nr_balance_failed; /* initialise to 0 */
1090
1091 /* idle_balance() stats */
1092 u64 max_newidle_lb_cost;
1093 unsigned long next_decay_max_lb_cost;
1094
1095 #ifdef CONFIG_SCHEDSTATS
1096 /* load_balance() stats */
1097 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1098 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1099 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1100 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1101 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1102 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1103 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1104 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1105
1106 /* Active load balancing */
1107 unsigned int alb_count;
1108 unsigned int alb_failed;
1109 unsigned int alb_pushed;
1110
1111 /* SD_BALANCE_EXEC stats */
1112 unsigned int sbe_count;
1113 unsigned int sbe_balanced;
1114 unsigned int sbe_pushed;
1115
1116 /* SD_BALANCE_FORK stats */
1117 unsigned int sbf_count;
1118 unsigned int sbf_balanced;
1119 unsigned int sbf_pushed;
1120
1121 /* try_to_wake_up() stats */
1122 unsigned int ttwu_wake_remote;
1123 unsigned int ttwu_move_affine;
1124 unsigned int ttwu_move_balance;
1125 #endif
1126 #ifdef CONFIG_SCHED_DEBUG
1127 char *name;
1128 #endif
1129 union {
1130 void *private; /* used during construction */
1131 struct rcu_head rcu; /* used during destruction */
1132 };
1133
1134 unsigned int span_weight;
1135 /*
1136 * Span of all CPUs in this domain.
1137 *
1138 * NOTE: this field is variable length. (Allocated dynamically
1139 * by attaching extra space to the end of the structure,
1140 * depending on how many CPUs the kernel has booted up with)
1141 */
1142 unsigned long span[0];
1143 };
1144
1145 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1146 {
1147 return to_cpumask(sd->span);
1148 }
1149
1150 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1151 struct sched_domain_attr *dattr_new);
1152
1153 /* Allocate an array of sched domains, for partition_sched_domains(). */
1154 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1155 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1156
1157 bool cpus_share_cache(int this_cpu, int that_cpu);
1158
1159 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1160 typedef int (*sched_domain_flags_f)(void);
1161
1162 #define SDTL_OVERLAP 0x01
1163
1164 struct sd_data {
1165 struct sched_domain **__percpu sd;
1166 struct sched_group **__percpu sg;
1167 struct sched_group_capacity **__percpu sgc;
1168 };
1169
1170 struct sched_domain_topology_level {
1171 sched_domain_mask_f mask;
1172 sched_domain_flags_f sd_flags;
1173 int flags;
1174 int numa_level;
1175 struct sd_data data;
1176 #ifdef CONFIG_SCHED_DEBUG
1177 char *name;
1178 #endif
1179 };
1180
1181 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1182 extern void wake_up_if_idle(int cpu);
1183
1184 #ifdef CONFIG_SCHED_DEBUG
1185 # define SD_INIT_NAME(type) .name = #type
1186 #else
1187 # define SD_INIT_NAME(type)
1188 #endif
1189
1190 #else /* CONFIG_SMP */
1191
1192 struct sched_domain_attr;
1193
1194 static inline void
1195 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1196 struct sched_domain_attr *dattr_new)
1197 {
1198 }
1199
1200 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1201 {
1202 return true;
1203 }
1204
1205 #endif /* !CONFIG_SMP */
1206
1207
1208 struct io_context; /* See blkdev.h */
1209
1210
1211 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1212 extern void prefetch_stack(struct task_struct *t);
1213 #else
1214 static inline void prefetch_stack(struct task_struct *t) { }
1215 #endif
1216
1217 struct audit_context; /* See audit.c */
1218 struct mempolicy;
1219 struct pipe_inode_info;
1220 struct uts_namespace;
1221
1222 struct load_weight {
1223 unsigned long weight;
1224 u32 inv_weight;
1225 };
1226
1227 /*
1228 * The load_avg/util_avg accumulates an infinite geometric series
1229 * (see __update_load_avg() in kernel/sched/fair.c).
1230 *
1231 * [load_avg definition]
1232 *
1233 * load_avg = runnable% * scale_load_down(load)
1234 *
1235 * where runnable% is the time ratio that a sched_entity is runnable.
1236 * For cfs_rq, it is the aggregated load_avg of all runnable and
1237 * blocked sched_entities.
1238 *
1239 * load_avg may also take frequency scaling into account:
1240 *
1241 * load_avg = runnable% * scale_load_down(load) * freq%
1242 *
1243 * where freq% is the CPU frequency normalized to the highest frequency.
1244 *
1245 * [util_avg definition]
1246 *
1247 * util_avg = running% * SCHED_CAPACITY_SCALE
1248 *
1249 * where running% is the time ratio that a sched_entity is running on
1250 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1251 * and blocked sched_entities.
1252 *
1253 * util_avg may also factor frequency scaling and CPU capacity scaling:
1254 *
1255 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1256 *
1257 * where freq% is the same as above, and capacity% is the CPU capacity
1258 * normalized to the greatest capacity (due to uarch differences, etc).
1259 *
1260 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1261 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1262 * we therefore scale them to as large a range as necessary. This is for
1263 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1264 *
1265 * [Overflow issue]
1266 *
1267 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1268 * with the highest load (=88761), always runnable on a single cfs_rq,
1269 * and should not overflow as the number already hits PID_MAX_LIMIT.
1270 *
1271 * For all other cases (including 32-bit kernels), struct load_weight's
1272 * weight will overflow first before we do, because:
1273 *
1274 * Max(load_avg) <= Max(load.weight)
1275 *
1276 * Then it is the load_weight's responsibility to consider overflow
1277 * issues.
1278 */
1279 struct sched_avg {
1280 u64 last_update_time, load_sum;
1281 u32 util_sum, period_contrib;
1282 unsigned long load_avg, util_avg;
1283 };
1284
1285 #ifdef CONFIG_SCHEDSTATS
1286 struct sched_statistics {
1287 u64 wait_start;
1288 u64 wait_max;
1289 u64 wait_count;
1290 u64 wait_sum;
1291 u64 iowait_count;
1292 u64 iowait_sum;
1293
1294 u64 sleep_start;
1295 u64 sleep_max;
1296 s64 sum_sleep_runtime;
1297
1298 u64 block_start;
1299 u64 block_max;
1300 u64 exec_max;
1301 u64 slice_max;
1302
1303 u64 nr_migrations_cold;
1304 u64 nr_failed_migrations_affine;
1305 u64 nr_failed_migrations_running;
1306 u64 nr_failed_migrations_hot;
1307 u64 nr_forced_migrations;
1308
1309 u64 nr_wakeups;
1310 u64 nr_wakeups_sync;
1311 u64 nr_wakeups_migrate;
1312 u64 nr_wakeups_local;
1313 u64 nr_wakeups_remote;
1314 u64 nr_wakeups_affine;
1315 u64 nr_wakeups_affine_attempts;
1316 u64 nr_wakeups_passive;
1317 u64 nr_wakeups_idle;
1318 };
1319 #endif
1320
1321 struct sched_entity {
1322 struct load_weight load; /* for load-balancing */
1323 struct rb_node run_node;
1324 struct list_head group_node;
1325 unsigned int on_rq;
1326
1327 u64 exec_start;
1328 u64 sum_exec_runtime;
1329 u64 vruntime;
1330 u64 prev_sum_exec_runtime;
1331
1332 u64 nr_migrations;
1333
1334 #ifdef CONFIG_SCHEDSTATS
1335 struct sched_statistics statistics;
1336 #endif
1337
1338 #ifdef CONFIG_FAIR_GROUP_SCHED
1339 int depth;
1340 struct sched_entity *parent;
1341 /* rq on which this entity is (to be) queued: */
1342 struct cfs_rq *cfs_rq;
1343 /* rq "owned" by this entity/group: */
1344 struct cfs_rq *my_q;
1345 #endif
1346
1347 #ifdef CONFIG_SMP
1348 /*
1349 * Per entity load average tracking.
1350 *
1351 * Put into separate cache line so it does not
1352 * collide with read-mostly values above.
1353 */
1354 struct sched_avg avg ____cacheline_aligned_in_smp;
1355 #endif
1356 };
1357
1358 struct sched_rt_entity {
1359 struct list_head run_list;
1360 unsigned long timeout;
1361 unsigned long watchdog_stamp;
1362 unsigned int time_slice;
1363 unsigned short on_rq;
1364 unsigned short on_list;
1365
1366 struct sched_rt_entity *back;
1367 #ifdef CONFIG_RT_GROUP_SCHED
1368 struct sched_rt_entity *parent;
1369 /* rq on which this entity is (to be) queued: */
1370 struct rt_rq *rt_rq;
1371 /* rq "owned" by this entity/group: */
1372 struct rt_rq *my_q;
1373 #endif
1374 };
1375
1376 struct sched_dl_entity {
1377 struct rb_node rb_node;
1378
1379 /*
1380 * Original scheduling parameters. Copied here from sched_attr
1381 * during sched_setattr(), they will remain the same until
1382 * the next sched_setattr().
1383 */
1384 u64 dl_runtime; /* maximum runtime for each instance */
1385 u64 dl_deadline; /* relative deadline of each instance */
1386 u64 dl_period; /* separation of two instances (period) */
1387 u64 dl_bw; /* dl_runtime / dl_deadline */
1388
1389 /*
1390 * Actual scheduling parameters. Initialized with the values above,
1391 * they are continously updated during task execution. Note that
1392 * the remaining runtime could be < 0 in case we are in overrun.
1393 */
1394 s64 runtime; /* remaining runtime for this instance */
1395 u64 deadline; /* absolute deadline for this instance */
1396 unsigned int flags; /* specifying the scheduler behaviour */
1397
1398 /*
1399 * Some bool flags:
1400 *
1401 * @dl_throttled tells if we exhausted the runtime. If so, the
1402 * task has to wait for a replenishment to be performed at the
1403 * next firing of dl_timer.
1404 *
1405 * @dl_boosted tells if we are boosted due to DI. If so we are
1406 * outside bandwidth enforcement mechanism (but only until we
1407 * exit the critical section);
1408 *
1409 * @dl_yielded tells if task gave up the cpu before consuming
1410 * all its available runtime during the last job.
1411 */
1412 int dl_throttled, dl_boosted, dl_yielded;
1413
1414 /*
1415 * Bandwidth enforcement timer. Each -deadline task has its
1416 * own bandwidth to be enforced, thus we need one timer per task.
1417 */
1418 struct hrtimer dl_timer;
1419 };
1420
1421 union rcu_special {
1422 struct {
1423 u8 blocked;
1424 u8 need_qs;
1425 u8 exp_need_qs;
1426 u8 pad; /* Otherwise the compiler can store garbage here. */
1427 } b; /* Bits. */
1428 u32 s; /* Set of bits. */
1429 };
1430 struct rcu_node;
1431
1432 enum perf_event_task_context {
1433 perf_invalid_context = -1,
1434 perf_hw_context = 0,
1435 perf_sw_context,
1436 perf_nr_task_contexts,
1437 };
1438
1439 /* Track pages that require TLB flushes */
1440 struct tlbflush_unmap_batch {
1441 /*
1442 * Each bit set is a CPU that potentially has a TLB entry for one of
1443 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1444 */
1445 struct cpumask cpumask;
1446
1447 /* True if any bit in cpumask is set */
1448 bool flush_required;
1449
1450 /*
1451 * If true then the PTE was dirty when unmapped. The entry must be
1452 * flushed before IO is initiated or a stale TLB entry potentially
1453 * allows an update without redirtying the page.
1454 */
1455 bool writable;
1456 };
1457
1458 struct task_struct {
1459 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1460 void *stack;
1461 atomic_t usage;
1462 unsigned int flags; /* per process flags, defined below */
1463 unsigned int ptrace;
1464
1465 #ifdef CONFIG_SMP
1466 struct llist_node wake_entry;
1467 int on_cpu;
1468 unsigned int wakee_flips;
1469 unsigned long wakee_flip_decay_ts;
1470 struct task_struct *last_wakee;
1471
1472 int wake_cpu;
1473 #endif
1474 int on_rq;
1475
1476 int prio, static_prio, normal_prio;
1477 unsigned int rt_priority;
1478 const struct sched_class *sched_class;
1479 struct sched_entity se;
1480 struct sched_rt_entity rt;
1481 #ifdef CONFIG_CGROUP_SCHED
1482 struct task_group *sched_task_group;
1483 #endif
1484 struct sched_dl_entity dl;
1485
1486 #ifdef CONFIG_PREEMPT_NOTIFIERS
1487 /* list of struct preempt_notifier: */
1488 struct hlist_head preempt_notifiers;
1489 #endif
1490
1491 #ifdef CONFIG_BLK_DEV_IO_TRACE
1492 unsigned int btrace_seq;
1493 #endif
1494
1495 unsigned int policy;
1496 int nr_cpus_allowed;
1497 cpumask_t cpus_allowed;
1498
1499 #ifdef CONFIG_PREEMPT_RCU
1500 int rcu_read_lock_nesting;
1501 union rcu_special rcu_read_unlock_special;
1502 struct list_head rcu_node_entry;
1503 struct rcu_node *rcu_blocked_node;
1504 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1505 #ifdef CONFIG_TASKS_RCU
1506 unsigned long rcu_tasks_nvcsw;
1507 bool rcu_tasks_holdout;
1508 struct list_head rcu_tasks_holdout_list;
1509 int rcu_tasks_idle_cpu;
1510 #endif /* #ifdef CONFIG_TASKS_RCU */
1511
1512 #ifdef CONFIG_SCHED_INFO
1513 struct sched_info sched_info;
1514 #endif
1515
1516 struct list_head tasks;
1517 #ifdef CONFIG_SMP
1518 struct plist_node pushable_tasks;
1519 struct rb_node pushable_dl_tasks;
1520 #endif
1521
1522 struct mm_struct *mm, *active_mm;
1523 /* per-thread vma caching */
1524 u32 vmacache_seqnum;
1525 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1526 #if defined(SPLIT_RSS_COUNTING)
1527 struct task_rss_stat rss_stat;
1528 #endif
1529 /* task state */
1530 int exit_state;
1531 int exit_code, exit_signal;
1532 int pdeath_signal; /* The signal sent when the parent dies */
1533 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1534
1535 /* Used for emulating ABI behavior of previous Linux versions */
1536 unsigned int personality;
1537
1538 /* scheduler bits, serialized by scheduler locks */
1539 unsigned sched_reset_on_fork:1;
1540 unsigned sched_contributes_to_load:1;
1541 unsigned sched_migrated:1;
1542 unsigned :0; /* force alignment to the next boundary */
1543
1544 /* unserialized, strictly 'current' */
1545 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1546 unsigned in_iowait:1;
1547 #ifdef CONFIG_MEMCG
1548 unsigned memcg_may_oom:1;
1549 #ifndef CONFIG_SLOB
1550 unsigned memcg_kmem_skip_account:1;
1551 #endif
1552 #endif
1553 #ifdef CONFIG_COMPAT_BRK
1554 unsigned brk_randomized:1;
1555 #endif
1556
1557 unsigned long atomic_flags; /* Flags needing atomic access. */
1558
1559 struct restart_block restart_block;
1560
1561 pid_t pid;
1562 pid_t tgid;
1563
1564 #ifdef CONFIG_CC_STACKPROTECTOR
1565 /* Canary value for the -fstack-protector gcc feature */
1566 unsigned long stack_canary;
1567 #endif
1568 /*
1569 * pointers to (original) parent process, youngest child, younger sibling,
1570 * older sibling, respectively. (p->father can be replaced with
1571 * p->real_parent->pid)
1572 */
1573 struct task_struct __rcu *real_parent; /* real parent process */
1574 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1575 /*
1576 * children/sibling forms the list of my natural children
1577 */
1578 struct list_head children; /* list of my children */
1579 struct list_head sibling; /* linkage in my parent's children list */
1580 struct task_struct *group_leader; /* threadgroup leader */
1581
1582 /*
1583 * ptraced is the list of tasks this task is using ptrace on.
1584 * This includes both natural children and PTRACE_ATTACH targets.
1585 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1586 */
1587 struct list_head ptraced;
1588 struct list_head ptrace_entry;
1589
1590 /* PID/PID hash table linkage. */
1591 struct pid_link pids[PIDTYPE_MAX];
1592 struct list_head thread_group;
1593 struct list_head thread_node;
1594
1595 struct completion *vfork_done; /* for vfork() */
1596 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1597 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1598
1599 cputime_t utime, stime, utimescaled, stimescaled;
1600 cputime_t gtime;
1601 struct prev_cputime prev_cputime;
1602 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1603 seqcount_t vtime_seqcount;
1604 unsigned long long vtime_snap;
1605 enum {
1606 /* Task is sleeping or running in a CPU with VTIME inactive */
1607 VTIME_INACTIVE = 0,
1608 /* Task runs in userspace in a CPU with VTIME active */
1609 VTIME_USER,
1610 /* Task runs in kernelspace in a CPU with VTIME active */
1611 VTIME_SYS,
1612 } vtime_snap_whence;
1613 #endif
1614
1615 #ifdef CONFIG_NO_HZ_FULL
1616 atomic_t tick_dep_mask;
1617 #endif
1618 unsigned long nvcsw, nivcsw; /* context switch counts */
1619 u64 start_time; /* monotonic time in nsec */
1620 u64 real_start_time; /* boot based time in nsec */
1621 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1622 unsigned long min_flt, maj_flt;
1623
1624 struct task_cputime cputime_expires;
1625 struct list_head cpu_timers[3];
1626
1627 /* process credentials */
1628 const struct cred __rcu *real_cred; /* objective and real subjective task
1629 * credentials (COW) */
1630 const struct cred __rcu *cred; /* effective (overridable) subjective task
1631 * credentials (COW) */
1632 char comm[TASK_COMM_LEN]; /* executable name excluding path
1633 - access with [gs]et_task_comm (which lock
1634 it with task_lock())
1635 - initialized normally by setup_new_exec */
1636 /* file system info */
1637 struct nameidata *nameidata;
1638 #ifdef CONFIG_SYSVIPC
1639 /* ipc stuff */
1640 struct sysv_sem sysvsem;
1641 struct sysv_shm sysvshm;
1642 #endif
1643 #ifdef CONFIG_DETECT_HUNG_TASK
1644 /* hung task detection */
1645 unsigned long last_switch_count;
1646 #endif
1647 /* filesystem information */
1648 struct fs_struct *fs;
1649 /* open file information */
1650 struct files_struct *files;
1651 /* namespaces */
1652 struct nsproxy *nsproxy;
1653 /* signal handlers */
1654 struct signal_struct *signal;
1655 struct sighand_struct *sighand;
1656
1657 sigset_t blocked, real_blocked;
1658 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1659 struct sigpending pending;
1660
1661 unsigned long sas_ss_sp;
1662 size_t sas_ss_size;
1663 unsigned sas_ss_flags;
1664
1665 struct callback_head *task_works;
1666
1667 struct audit_context *audit_context;
1668 #ifdef CONFIG_AUDITSYSCALL
1669 kuid_t loginuid;
1670 unsigned int sessionid;
1671 #endif
1672 struct seccomp seccomp;
1673
1674 /* Thread group tracking */
1675 u32 parent_exec_id;
1676 u32 self_exec_id;
1677 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1678 * mempolicy */
1679 spinlock_t alloc_lock;
1680
1681 /* Protection of the PI data structures: */
1682 raw_spinlock_t pi_lock;
1683
1684 struct wake_q_node wake_q;
1685
1686 #ifdef CONFIG_RT_MUTEXES
1687 /* PI waiters blocked on a rt_mutex held by this task */
1688 struct rb_root pi_waiters;
1689 struct rb_node *pi_waiters_leftmost;
1690 /* Deadlock detection and priority inheritance handling */
1691 struct rt_mutex_waiter *pi_blocked_on;
1692 #endif
1693
1694 #ifdef CONFIG_DEBUG_MUTEXES
1695 /* mutex deadlock detection */
1696 struct mutex_waiter *blocked_on;
1697 #endif
1698 #ifdef CONFIG_TRACE_IRQFLAGS
1699 unsigned int irq_events;
1700 unsigned long hardirq_enable_ip;
1701 unsigned long hardirq_disable_ip;
1702 unsigned int hardirq_enable_event;
1703 unsigned int hardirq_disable_event;
1704 int hardirqs_enabled;
1705 int hardirq_context;
1706 unsigned long softirq_disable_ip;
1707 unsigned long softirq_enable_ip;
1708 unsigned int softirq_disable_event;
1709 unsigned int softirq_enable_event;
1710 int softirqs_enabled;
1711 int softirq_context;
1712 #endif
1713 #ifdef CONFIG_LOCKDEP
1714 # define MAX_LOCK_DEPTH 48UL
1715 u64 curr_chain_key;
1716 int lockdep_depth;
1717 unsigned int lockdep_recursion;
1718 struct held_lock held_locks[MAX_LOCK_DEPTH];
1719 gfp_t lockdep_reclaim_gfp;
1720 #endif
1721 #ifdef CONFIG_UBSAN
1722 unsigned int in_ubsan;
1723 #endif
1724
1725 /* journalling filesystem info */
1726 void *journal_info;
1727
1728 /* stacked block device info */
1729 struct bio_list *bio_list;
1730
1731 #ifdef CONFIG_BLOCK
1732 /* stack plugging */
1733 struct blk_plug *plug;
1734 #endif
1735
1736 /* VM state */
1737 struct reclaim_state *reclaim_state;
1738
1739 struct backing_dev_info *backing_dev_info;
1740
1741 struct io_context *io_context;
1742
1743 unsigned long ptrace_message;
1744 siginfo_t *last_siginfo; /* For ptrace use. */
1745 struct task_io_accounting ioac;
1746 #if defined(CONFIG_TASK_XACCT)
1747 u64 acct_rss_mem1; /* accumulated rss usage */
1748 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1749 cputime_t acct_timexpd; /* stime + utime since last update */
1750 #endif
1751 #ifdef CONFIG_CPUSETS
1752 nodemask_t mems_allowed; /* Protected by alloc_lock */
1753 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1754 int cpuset_mem_spread_rotor;
1755 int cpuset_slab_spread_rotor;
1756 #endif
1757 #ifdef CONFIG_CGROUPS
1758 /* Control Group info protected by css_set_lock */
1759 struct css_set __rcu *cgroups;
1760 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1761 struct list_head cg_list;
1762 #endif
1763 #ifdef CONFIG_FUTEX
1764 struct robust_list_head __user *robust_list;
1765 #ifdef CONFIG_COMPAT
1766 struct compat_robust_list_head __user *compat_robust_list;
1767 #endif
1768 struct list_head pi_state_list;
1769 struct futex_pi_state *pi_state_cache;
1770 #endif
1771 #ifdef CONFIG_PERF_EVENTS
1772 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1773 struct mutex perf_event_mutex;
1774 struct list_head perf_event_list;
1775 #endif
1776 #ifdef CONFIG_DEBUG_PREEMPT
1777 unsigned long preempt_disable_ip;
1778 #endif
1779 #ifdef CONFIG_NUMA
1780 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1781 short il_next;
1782 short pref_node_fork;
1783 #endif
1784 #ifdef CONFIG_NUMA_BALANCING
1785 int numa_scan_seq;
1786 unsigned int numa_scan_period;
1787 unsigned int numa_scan_period_max;
1788 int numa_preferred_nid;
1789 unsigned long numa_migrate_retry;
1790 u64 node_stamp; /* migration stamp */
1791 u64 last_task_numa_placement;
1792 u64 last_sum_exec_runtime;
1793 struct callback_head numa_work;
1794
1795 struct list_head numa_entry;
1796 struct numa_group *numa_group;
1797
1798 /*
1799 * numa_faults is an array split into four regions:
1800 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1801 * in this precise order.
1802 *
1803 * faults_memory: Exponential decaying average of faults on a per-node
1804 * basis. Scheduling placement decisions are made based on these
1805 * counts. The values remain static for the duration of a PTE scan.
1806 * faults_cpu: Track the nodes the process was running on when a NUMA
1807 * hinting fault was incurred.
1808 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1809 * during the current scan window. When the scan completes, the counts
1810 * in faults_memory and faults_cpu decay and these values are copied.
1811 */
1812 unsigned long *numa_faults;
1813 unsigned long total_numa_faults;
1814
1815 /*
1816 * numa_faults_locality tracks if faults recorded during the last
1817 * scan window were remote/local or failed to migrate. The task scan
1818 * period is adapted based on the locality of the faults with different
1819 * weights depending on whether they were shared or private faults
1820 */
1821 unsigned long numa_faults_locality[3];
1822
1823 unsigned long numa_pages_migrated;
1824 #endif /* CONFIG_NUMA_BALANCING */
1825
1826 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1827 struct tlbflush_unmap_batch tlb_ubc;
1828 #endif
1829
1830 struct rcu_head rcu;
1831
1832 /*
1833 * cache last used pipe for splice
1834 */
1835 struct pipe_inode_info *splice_pipe;
1836
1837 struct page_frag task_frag;
1838
1839 #ifdef CONFIG_TASK_DELAY_ACCT
1840 struct task_delay_info *delays;
1841 #endif
1842 #ifdef CONFIG_FAULT_INJECTION
1843 int make_it_fail;
1844 #endif
1845 /*
1846 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1847 * balance_dirty_pages() for some dirty throttling pause
1848 */
1849 int nr_dirtied;
1850 int nr_dirtied_pause;
1851 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1852
1853 #ifdef CONFIG_LATENCYTOP
1854 int latency_record_count;
1855 struct latency_record latency_record[LT_SAVECOUNT];
1856 #endif
1857 /*
1858 * time slack values; these are used to round up poll() and
1859 * select() etc timeout values. These are in nanoseconds.
1860 */
1861 u64 timer_slack_ns;
1862 u64 default_timer_slack_ns;
1863
1864 #ifdef CONFIG_KASAN
1865 unsigned int kasan_depth;
1866 #endif
1867 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1868 /* Index of current stored address in ret_stack */
1869 int curr_ret_stack;
1870 /* Stack of return addresses for return function tracing */
1871 struct ftrace_ret_stack *ret_stack;
1872 /* time stamp for last schedule */
1873 unsigned long long ftrace_timestamp;
1874 /*
1875 * Number of functions that haven't been traced
1876 * because of depth overrun.
1877 */
1878 atomic_t trace_overrun;
1879 /* Pause for the tracing */
1880 atomic_t tracing_graph_pause;
1881 #endif
1882 #ifdef CONFIG_TRACING
1883 /* state flags for use by tracers */
1884 unsigned long trace;
1885 /* bitmask and counter of trace recursion */
1886 unsigned long trace_recursion;
1887 #endif /* CONFIG_TRACING */
1888 #ifdef CONFIG_KCOV
1889 /* Coverage collection mode enabled for this task (0 if disabled). */
1890 enum kcov_mode kcov_mode;
1891 /* Size of the kcov_area. */
1892 unsigned kcov_size;
1893 /* Buffer for coverage collection. */
1894 void *kcov_area;
1895 /* kcov desciptor wired with this task or NULL. */
1896 struct kcov *kcov;
1897 #endif
1898 #ifdef CONFIG_MEMCG
1899 struct mem_cgroup *memcg_in_oom;
1900 gfp_t memcg_oom_gfp_mask;
1901 int memcg_oom_order;
1902
1903 /* number of pages to reclaim on returning to userland */
1904 unsigned int memcg_nr_pages_over_high;
1905 #endif
1906 #ifdef CONFIG_UPROBES
1907 struct uprobe_task *utask;
1908 #endif
1909 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1910 unsigned int sequential_io;
1911 unsigned int sequential_io_avg;
1912 #endif
1913 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1914 unsigned long task_state_change;
1915 #endif
1916 int pagefault_disabled;
1917 #ifdef CONFIG_MMU
1918 struct task_struct *oom_reaper_list;
1919 #endif
1920 /* CPU-specific state of this task */
1921 struct thread_struct thread;
1922 /*
1923 * WARNING: on x86, 'thread_struct' contains a variable-sized
1924 * structure. It *MUST* be at the end of 'task_struct'.
1925 *
1926 * Do not put anything below here!
1927 */
1928 };
1929
1930 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1931 extern int arch_task_struct_size __read_mostly;
1932 #else
1933 # define arch_task_struct_size (sizeof(struct task_struct))
1934 #endif
1935
1936 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1937 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1938
1939 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1940 {
1941 return p->nr_cpus_allowed;
1942 }
1943
1944 #define TNF_MIGRATED 0x01
1945 #define TNF_NO_GROUP 0x02
1946 #define TNF_SHARED 0x04
1947 #define TNF_FAULT_LOCAL 0x08
1948 #define TNF_MIGRATE_FAIL 0x10
1949
1950 #ifdef CONFIG_NUMA_BALANCING
1951 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1952 extern pid_t task_numa_group_id(struct task_struct *p);
1953 extern void set_numabalancing_state(bool enabled);
1954 extern void task_numa_free(struct task_struct *p);
1955 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1956 int src_nid, int dst_cpu);
1957 #else
1958 static inline void task_numa_fault(int last_node, int node, int pages,
1959 int flags)
1960 {
1961 }
1962 static inline pid_t task_numa_group_id(struct task_struct *p)
1963 {
1964 return 0;
1965 }
1966 static inline void set_numabalancing_state(bool enabled)
1967 {
1968 }
1969 static inline void task_numa_free(struct task_struct *p)
1970 {
1971 }
1972 static inline bool should_numa_migrate_memory(struct task_struct *p,
1973 struct page *page, int src_nid, int dst_cpu)
1974 {
1975 return true;
1976 }
1977 #endif
1978
1979 static inline struct pid *task_pid(struct task_struct *task)
1980 {
1981 return task->pids[PIDTYPE_PID].pid;
1982 }
1983
1984 static inline struct pid *task_tgid(struct task_struct *task)
1985 {
1986 return task->group_leader->pids[PIDTYPE_PID].pid;
1987 }
1988
1989 /*
1990 * Without tasklist or rcu lock it is not safe to dereference
1991 * the result of task_pgrp/task_session even if task == current,
1992 * we can race with another thread doing sys_setsid/sys_setpgid.
1993 */
1994 static inline struct pid *task_pgrp(struct task_struct *task)
1995 {
1996 return task->group_leader->pids[PIDTYPE_PGID].pid;
1997 }
1998
1999 static inline struct pid *task_session(struct task_struct *task)
2000 {
2001 return task->group_leader->pids[PIDTYPE_SID].pid;
2002 }
2003
2004 struct pid_namespace;
2005
2006 /*
2007 * the helpers to get the task's different pids as they are seen
2008 * from various namespaces
2009 *
2010 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2011 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2012 * current.
2013 * task_xid_nr_ns() : id seen from the ns specified;
2014 *
2015 * set_task_vxid() : assigns a virtual id to a task;
2016 *
2017 * see also pid_nr() etc in include/linux/pid.h
2018 */
2019 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2020 struct pid_namespace *ns);
2021
2022 static inline pid_t task_pid_nr(struct task_struct *tsk)
2023 {
2024 return tsk->pid;
2025 }
2026
2027 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2028 struct pid_namespace *ns)
2029 {
2030 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2031 }
2032
2033 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2034 {
2035 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2036 }
2037
2038
2039 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2040 {
2041 return tsk->tgid;
2042 }
2043
2044 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2045
2046 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2047 {
2048 return pid_vnr(task_tgid(tsk));
2049 }
2050
2051
2052 static inline int pid_alive(const struct task_struct *p);
2053 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2054 {
2055 pid_t pid = 0;
2056
2057 rcu_read_lock();
2058 if (pid_alive(tsk))
2059 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2060 rcu_read_unlock();
2061
2062 return pid;
2063 }
2064
2065 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2066 {
2067 return task_ppid_nr_ns(tsk, &init_pid_ns);
2068 }
2069
2070 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2071 struct pid_namespace *ns)
2072 {
2073 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2074 }
2075
2076 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2077 {
2078 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2079 }
2080
2081
2082 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2083 struct pid_namespace *ns)
2084 {
2085 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2086 }
2087
2088 static inline pid_t task_session_vnr(struct task_struct *tsk)
2089 {
2090 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2091 }
2092
2093 /* obsolete, do not use */
2094 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2095 {
2096 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2097 }
2098
2099 /**
2100 * pid_alive - check that a task structure is not stale
2101 * @p: Task structure to be checked.
2102 *
2103 * Test if a process is not yet dead (at most zombie state)
2104 * If pid_alive fails, then pointers within the task structure
2105 * can be stale and must not be dereferenced.
2106 *
2107 * Return: 1 if the process is alive. 0 otherwise.
2108 */
2109 static inline int pid_alive(const struct task_struct *p)
2110 {
2111 return p->pids[PIDTYPE_PID].pid != NULL;
2112 }
2113
2114 /**
2115 * is_global_init - check if a task structure is init. Since init
2116 * is free to have sub-threads we need to check tgid.
2117 * @tsk: Task structure to be checked.
2118 *
2119 * Check if a task structure is the first user space task the kernel created.
2120 *
2121 * Return: 1 if the task structure is init. 0 otherwise.
2122 */
2123 static inline int is_global_init(struct task_struct *tsk)
2124 {
2125 return task_tgid_nr(tsk) == 1;
2126 }
2127
2128 extern struct pid *cad_pid;
2129
2130 extern void free_task(struct task_struct *tsk);
2131 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2132
2133 extern void __put_task_struct(struct task_struct *t);
2134
2135 static inline void put_task_struct(struct task_struct *t)
2136 {
2137 if (atomic_dec_and_test(&t->usage))
2138 __put_task_struct(t);
2139 }
2140
2141 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2142 extern void task_cputime(struct task_struct *t,
2143 cputime_t *utime, cputime_t *stime);
2144 extern void task_cputime_scaled(struct task_struct *t,
2145 cputime_t *utimescaled, cputime_t *stimescaled);
2146 extern cputime_t task_gtime(struct task_struct *t);
2147 #else
2148 static inline void task_cputime(struct task_struct *t,
2149 cputime_t *utime, cputime_t *stime)
2150 {
2151 if (utime)
2152 *utime = t->utime;
2153 if (stime)
2154 *stime = t->stime;
2155 }
2156
2157 static inline void task_cputime_scaled(struct task_struct *t,
2158 cputime_t *utimescaled,
2159 cputime_t *stimescaled)
2160 {
2161 if (utimescaled)
2162 *utimescaled = t->utimescaled;
2163 if (stimescaled)
2164 *stimescaled = t->stimescaled;
2165 }
2166
2167 static inline cputime_t task_gtime(struct task_struct *t)
2168 {
2169 return t->gtime;
2170 }
2171 #endif
2172 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2173 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2174
2175 /*
2176 * Per process flags
2177 */
2178 #define PF_EXITING 0x00000004 /* getting shut down */
2179 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2180 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2181 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2182 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2183 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2184 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2185 #define PF_DUMPCORE 0x00000200 /* dumped core */
2186 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2187 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2188 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2189 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2190 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2191 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2192 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2193 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2194 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2195 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2196 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2197 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2198 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2199 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2200 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2201 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2202 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2203 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2204 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2205
2206 /*
2207 * Only the _current_ task can read/write to tsk->flags, but other
2208 * tasks can access tsk->flags in readonly mode for example
2209 * with tsk_used_math (like during threaded core dumping).
2210 * There is however an exception to this rule during ptrace
2211 * or during fork: the ptracer task is allowed to write to the
2212 * child->flags of its traced child (same goes for fork, the parent
2213 * can write to the child->flags), because we're guaranteed the
2214 * child is not running and in turn not changing child->flags
2215 * at the same time the parent does it.
2216 */
2217 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2218 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2219 #define clear_used_math() clear_stopped_child_used_math(current)
2220 #define set_used_math() set_stopped_child_used_math(current)
2221 #define conditional_stopped_child_used_math(condition, child) \
2222 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2223 #define conditional_used_math(condition) \
2224 conditional_stopped_child_used_math(condition, current)
2225 #define copy_to_stopped_child_used_math(child) \
2226 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2227 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2228 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2229 #define used_math() tsk_used_math(current)
2230
2231 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2232 * __GFP_FS is also cleared as it implies __GFP_IO.
2233 */
2234 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2235 {
2236 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2237 flags &= ~(__GFP_IO | __GFP_FS);
2238 return flags;
2239 }
2240
2241 static inline unsigned int memalloc_noio_save(void)
2242 {
2243 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2244 current->flags |= PF_MEMALLOC_NOIO;
2245 return flags;
2246 }
2247
2248 static inline void memalloc_noio_restore(unsigned int flags)
2249 {
2250 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2251 }
2252
2253 /* Per-process atomic flags. */
2254 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2255 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2256 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2257 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2258
2259
2260 #define TASK_PFA_TEST(name, func) \
2261 static inline bool task_##func(struct task_struct *p) \
2262 { return test_bit(PFA_##name, &p->atomic_flags); }
2263 #define TASK_PFA_SET(name, func) \
2264 static inline void task_set_##func(struct task_struct *p) \
2265 { set_bit(PFA_##name, &p->atomic_flags); }
2266 #define TASK_PFA_CLEAR(name, func) \
2267 static inline void task_clear_##func(struct task_struct *p) \
2268 { clear_bit(PFA_##name, &p->atomic_flags); }
2269
2270 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2271 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2272
2273 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2274 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2275 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2276
2277 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2278 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2279 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2280
2281 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2282 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2283
2284 /*
2285 * task->jobctl flags
2286 */
2287 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2288
2289 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2290 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2291 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2292 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2293 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2294 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2295 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2296
2297 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2298 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2299 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2300 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2301 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2302 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2303 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2304
2305 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2306 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2307
2308 extern bool task_set_jobctl_pending(struct task_struct *task,
2309 unsigned long mask);
2310 extern void task_clear_jobctl_trapping(struct task_struct *task);
2311 extern void task_clear_jobctl_pending(struct task_struct *task,
2312 unsigned long mask);
2313
2314 static inline void rcu_copy_process(struct task_struct *p)
2315 {
2316 #ifdef CONFIG_PREEMPT_RCU
2317 p->rcu_read_lock_nesting = 0;
2318 p->rcu_read_unlock_special.s = 0;
2319 p->rcu_blocked_node = NULL;
2320 INIT_LIST_HEAD(&p->rcu_node_entry);
2321 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2322 #ifdef CONFIG_TASKS_RCU
2323 p->rcu_tasks_holdout = false;
2324 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2325 p->rcu_tasks_idle_cpu = -1;
2326 #endif /* #ifdef CONFIG_TASKS_RCU */
2327 }
2328
2329 static inline void tsk_restore_flags(struct task_struct *task,
2330 unsigned long orig_flags, unsigned long flags)
2331 {
2332 task->flags &= ~flags;
2333 task->flags |= orig_flags & flags;
2334 }
2335
2336 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2337 const struct cpumask *trial);
2338 extern int task_can_attach(struct task_struct *p,
2339 const struct cpumask *cs_cpus_allowed);
2340 #ifdef CONFIG_SMP
2341 extern void do_set_cpus_allowed(struct task_struct *p,
2342 const struct cpumask *new_mask);
2343
2344 extern int set_cpus_allowed_ptr(struct task_struct *p,
2345 const struct cpumask *new_mask);
2346 #else
2347 static inline void do_set_cpus_allowed(struct task_struct *p,
2348 const struct cpumask *new_mask)
2349 {
2350 }
2351 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2352 const struct cpumask *new_mask)
2353 {
2354 if (!cpumask_test_cpu(0, new_mask))
2355 return -EINVAL;
2356 return 0;
2357 }
2358 #endif
2359
2360 #ifdef CONFIG_NO_HZ_COMMON
2361 void calc_load_enter_idle(void);
2362 void calc_load_exit_idle(void);
2363 #else
2364 static inline void calc_load_enter_idle(void) { }
2365 static inline void calc_load_exit_idle(void) { }
2366 #endif /* CONFIG_NO_HZ_COMMON */
2367
2368 /*
2369 * Do not use outside of architecture code which knows its limitations.
2370 *
2371 * sched_clock() has no promise of monotonicity or bounded drift between
2372 * CPUs, use (which you should not) requires disabling IRQs.
2373 *
2374 * Please use one of the three interfaces below.
2375 */
2376 extern unsigned long long notrace sched_clock(void);
2377 /*
2378 * See the comment in kernel/sched/clock.c
2379 */
2380 extern u64 running_clock(void);
2381 extern u64 sched_clock_cpu(int cpu);
2382
2383
2384 extern void sched_clock_init(void);
2385
2386 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2387 static inline void sched_clock_tick(void)
2388 {
2389 }
2390
2391 static inline void sched_clock_idle_sleep_event(void)
2392 {
2393 }
2394
2395 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2396 {
2397 }
2398
2399 static inline u64 cpu_clock(int cpu)
2400 {
2401 return sched_clock();
2402 }
2403
2404 static inline u64 local_clock(void)
2405 {
2406 return sched_clock();
2407 }
2408 #else
2409 /*
2410 * Architectures can set this to 1 if they have specified
2411 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2412 * but then during bootup it turns out that sched_clock()
2413 * is reliable after all:
2414 */
2415 extern int sched_clock_stable(void);
2416 extern void set_sched_clock_stable(void);
2417 extern void clear_sched_clock_stable(void);
2418
2419 extern void sched_clock_tick(void);
2420 extern void sched_clock_idle_sleep_event(void);
2421 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2422
2423 /*
2424 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2425 * time source that is monotonic per cpu argument and has bounded drift
2426 * between cpus.
2427 *
2428 * ######################### BIG FAT WARNING ##########################
2429 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2430 * # go backwards !! #
2431 * ####################################################################
2432 */
2433 static inline u64 cpu_clock(int cpu)
2434 {
2435 return sched_clock_cpu(cpu);
2436 }
2437
2438 static inline u64 local_clock(void)
2439 {
2440 return sched_clock_cpu(raw_smp_processor_id());
2441 }
2442 #endif
2443
2444 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2445 /*
2446 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2447 * The reason for this explicit opt-in is not to have perf penalty with
2448 * slow sched_clocks.
2449 */
2450 extern void enable_sched_clock_irqtime(void);
2451 extern void disable_sched_clock_irqtime(void);
2452 #else
2453 static inline void enable_sched_clock_irqtime(void) {}
2454 static inline void disable_sched_clock_irqtime(void) {}
2455 #endif
2456
2457 extern unsigned long long
2458 task_sched_runtime(struct task_struct *task);
2459
2460 /* sched_exec is called by processes performing an exec */
2461 #ifdef CONFIG_SMP
2462 extern void sched_exec(void);
2463 #else
2464 #define sched_exec() {}
2465 #endif
2466
2467 extern void sched_clock_idle_sleep_event(void);
2468 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2469
2470 #ifdef CONFIG_HOTPLUG_CPU
2471 extern void idle_task_exit(void);
2472 #else
2473 static inline void idle_task_exit(void) {}
2474 #endif
2475
2476 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2477 extern void wake_up_nohz_cpu(int cpu);
2478 #else
2479 static inline void wake_up_nohz_cpu(int cpu) { }
2480 #endif
2481
2482 #ifdef CONFIG_NO_HZ_FULL
2483 extern u64 scheduler_tick_max_deferment(void);
2484 #endif
2485
2486 #ifdef CONFIG_SCHED_AUTOGROUP
2487 extern void sched_autogroup_create_attach(struct task_struct *p);
2488 extern void sched_autogroup_detach(struct task_struct *p);
2489 extern void sched_autogroup_fork(struct signal_struct *sig);
2490 extern void sched_autogroup_exit(struct signal_struct *sig);
2491 #ifdef CONFIG_PROC_FS
2492 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2493 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2494 #endif
2495 #else
2496 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2497 static inline void sched_autogroup_detach(struct task_struct *p) { }
2498 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2499 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2500 #endif
2501
2502 extern int yield_to(struct task_struct *p, bool preempt);
2503 extern void set_user_nice(struct task_struct *p, long nice);
2504 extern int task_prio(const struct task_struct *p);
2505 /**
2506 * task_nice - return the nice value of a given task.
2507 * @p: the task in question.
2508 *
2509 * Return: The nice value [ -20 ... 0 ... 19 ].
2510 */
2511 static inline int task_nice(const struct task_struct *p)
2512 {
2513 return PRIO_TO_NICE((p)->static_prio);
2514 }
2515 extern int can_nice(const struct task_struct *p, const int nice);
2516 extern int task_curr(const struct task_struct *p);
2517 extern int idle_cpu(int cpu);
2518 extern int sched_setscheduler(struct task_struct *, int,
2519 const struct sched_param *);
2520 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2521 const struct sched_param *);
2522 extern int sched_setattr(struct task_struct *,
2523 const struct sched_attr *);
2524 extern struct task_struct *idle_task(int cpu);
2525 /**
2526 * is_idle_task - is the specified task an idle task?
2527 * @p: the task in question.
2528 *
2529 * Return: 1 if @p is an idle task. 0 otherwise.
2530 */
2531 static inline bool is_idle_task(const struct task_struct *p)
2532 {
2533 return p->pid == 0;
2534 }
2535 extern struct task_struct *curr_task(int cpu);
2536 extern void set_curr_task(int cpu, struct task_struct *p);
2537
2538 void yield(void);
2539
2540 union thread_union {
2541 struct thread_info thread_info;
2542 unsigned long stack[THREAD_SIZE/sizeof(long)];
2543 };
2544
2545 #ifndef __HAVE_ARCH_KSTACK_END
2546 static inline int kstack_end(void *addr)
2547 {
2548 /* Reliable end of stack detection:
2549 * Some APM bios versions misalign the stack
2550 */
2551 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2552 }
2553 #endif
2554
2555 extern union thread_union init_thread_union;
2556 extern struct task_struct init_task;
2557
2558 extern struct mm_struct init_mm;
2559
2560 extern struct pid_namespace init_pid_ns;
2561
2562 /*
2563 * find a task by one of its numerical ids
2564 *
2565 * find_task_by_pid_ns():
2566 * finds a task by its pid in the specified namespace
2567 * find_task_by_vpid():
2568 * finds a task by its virtual pid
2569 *
2570 * see also find_vpid() etc in include/linux/pid.h
2571 */
2572
2573 extern struct task_struct *find_task_by_vpid(pid_t nr);
2574 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2575 struct pid_namespace *ns);
2576
2577 /* per-UID process charging. */
2578 extern struct user_struct * alloc_uid(kuid_t);
2579 static inline struct user_struct *get_uid(struct user_struct *u)
2580 {
2581 atomic_inc(&u->__count);
2582 return u;
2583 }
2584 extern void free_uid(struct user_struct *);
2585
2586 #include <asm/current.h>
2587
2588 extern void xtime_update(unsigned long ticks);
2589
2590 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2591 extern int wake_up_process(struct task_struct *tsk);
2592 extern void wake_up_new_task(struct task_struct *tsk);
2593 #ifdef CONFIG_SMP
2594 extern void kick_process(struct task_struct *tsk);
2595 #else
2596 static inline void kick_process(struct task_struct *tsk) { }
2597 #endif
2598 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2599 extern void sched_dead(struct task_struct *p);
2600
2601 extern void proc_caches_init(void);
2602 extern void flush_signals(struct task_struct *);
2603 extern void ignore_signals(struct task_struct *);
2604 extern void flush_signal_handlers(struct task_struct *, int force_default);
2605 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2606
2607 static inline int kernel_dequeue_signal(siginfo_t *info)
2608 {
2609 struct task_struct *tsk = current;
2610 siginfo_t __info;
2611 int ret;
2612
2613 spin_lock_irq(&tsk->sighand->siglock);
2614 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2615 spin_unlock_irq(&tsk->sighand->siglock);
2616
2617 return ret;
2618 }
2619
2620 static inline void kernel_signal_stop(void)
2621 {
2622 spin_lock_irq(&current->sighand->siglock);
2623 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2624 __set_current_state(TASK_STOPPED);
2625 spin_unlock_irq(&current->sighand->siglock);
2626
2627 schedule();
2628 }
2629
2630 extern void release_task(struct task_struct * p);
2631 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2632 extern int force_sigsegv(int, struct task_struct *);
2633 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2634 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2635 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2636 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2637 const struct cred *, u32);
2638 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2639 extern int kill_pid(struct pid *pid, int sig, int priv);
2640 extern int kill_proc_info(int, struct siginfo *, pid_t);
2641 extern __must_check bool do_notify_parent(struct task_struct *, int);
2642 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2643 extern void force_sig(int, struct task_struct *);
2644 extern int send_sig(int, struct task_struct *, int);
2645 extern int zap_other_threads(struct task_struct *p);
2646 extern struct sigqueue *sigqueue_alloc(void);
2647 extern void sigqueue_free(struct sigqueue *);
2648 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2649 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2650
2651 static inline void restore_saved_sigmask(void)
2652 {
2653 if (test_and_clear_restore_sigmask())
2654 __set_current_blocked(&current->saved_sigmask);
2655 }
2656
2657 static inline sigset_t *sigmask_to_save(void)
2658 {
2659 sigset_t *res = &current->blocked;
2660 if (unlikely(test_restore_sigmask()))
2661 res = &current->saved_sigmask;
2662 return res;
2663 }
2664
2665 static inline int kill_cad_pid(int sig, int priv)
2666 {
2667 return kill_pid(cad_pid, sig, priv);
2668 }
2669
2670 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2671 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2672 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2673 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2674
2675 /*
2676 * True if we are on the alternate signal stack.
2677 */
2678 static inline int on_sig_stack(unsigned long sp)
2679 {
2680 /*
2681 * If the signal stack is SS_AUTODISARM then, by construction, we
2682 * can't be on the signal stack unless user code deliberately set
2683 * SS_AUTODISARM when we were already on it.
2684 *
2685 * This improves reliability: if user state gets corrupted such that
2686 * the stack pointer points very close to the end of the signal stack,
2687 * then this check will enable the signal to be handled anyway.
2688 */
2689 if (current->sas_ss_flags & SS_AUTODISARM)
2690 return 0;
2691
2692 #ifdef CONFIG_STACK_GROWSUP
2693 return sp >= current->sas_ss_sp &&
2694 sp - current->sas_ss_sp < current->sas_ss_size;
2695 #else
2696 return sp > current->sas_ss_sp &&
2697 sp - current->sas_ss_sp <= current->sas_ss_size;
2698 #endif
2699 }
2700
2701 static inline int sas_ss_flags(unsigned long sp)
2702 {
2703 if (!current->sas_ss_size)
2704 return SS_DISABLE;
2705
2706 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2707 }
2708
2709 static inline void sas_ss_reset(struct task_struct *p)
2710 {
2711 p->sas_ss_sp = 0;
2712 p->sas_ss_size = 0;
2713 p->sas_ss_flags = SS_DISABLE;
2714 }
2715
2716 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2717 {
2718 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2719 #ifdef CONFIG_STACK_GROWSUP
2720 return current->sas_ss_sp;
2721 #else
2722 return current->sas_ss_sp + current->sas_ss_size;
2723 #endif
2724 return sp;
2725 }
2726
2727 /*
2728 * Routines for handling mm_structs
2729 */
2730 extern struct mm_struct * mm_alloc(void);
2731
2732 /* mmdrop drops the mm and the page tables */
2733 extern void __mmdrop(struct mm_struct *);
2734 static inline void mmdrop(struct mm_struct *mm)
2735 {
2736 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2737 __mmdrop(mm);
2738 }
2739
2740 static inline bool mmget_not_zero(struct mm_struct *mm)
2741 {
2742 return atomic_inc_not_zero(&mm->mm_users);
2743 }
2744
2745 /* mmput gets rid of the mappings and all user-space */
2746 extern void mmput(struct mm_struct *);
2747 /* same as above but performs the slow path from the async kontext. Can
2748 * be called from the atomic context as well
2749 */
2750 extern void mmput_async(struct mm_struct *);
2751
2752 /* Grab a reference to a task's mm, if it is not already going away */
2753 extern struct mm_struct *get_task_mm(struct task_struct *task);
2754 /*
2755 * Grab a reference to a task's mm, if it is not already going away
2756 * and ptrace_may_access with the mode parameter passed to it
2757 * succeeds.
2758 */
2759 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2760 /* Remove the current tasks stale references to the old mm_struct */
2761 extern void mm_release(struct task_struct *, struct mm_struct *);
2762
2763 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2764 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2765 struct task_struct *, unsigned long);
2766 #else
2767 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2768 struct task_struct *);
2769
2770 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2771 * via pt_regs, so ignore the tls argument passed via C. */
2772 static inline int copy_thread_tls(
2773 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2774 struct task_struct *p, unsigned long tls)
2775 {
2776 return copy_thread(clone_flags, sp, arg, p);
2777 }
2778 #endif
2779 extern void flush_thread(void);
2780
2781 #ifdef CONFIG_HAVE_EXIT_THREAD
2782 extern void exit_thread(struct task_struct *tsk);
2783 #else
2784 static inline void exit_thread(struct task_struct *tsk)
2785 {
2786 }
2787 #endif
2788
2789 extern void exit_files(struct task_struct *);
2790 extern void __cleanup_sighand(struct sighand_struct *);
2791
2792 extern void exit_itimers(struct signal_struct *);
2793 extern void flush_itimer_signals(void);
2794
2795 extern void do_group_exit(int);
2796
2797 extern int do_execve(struct filename *,
2798 const char __user * const __user *,
2799 const char __user * const __user *);
2800 extern int do_execveat(int, struct filename *,
2801 const char __user * const __user *,
2802 const char __user * const __user *,
2803 int);
2804 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2805 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2806 struct task_struct *fork_idle(int);
2807 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2808
2809 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2810 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2811 {
2812 __set_task_comm(tsk, from, false);
2813 }
2814 extern char *get_task_comm(char *to, struct task_struct *tsk);
2815
2816 #ifdef CONFIG_SMP
2817 void scheduler_ipi(void);
2818 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2819 #else
2820 static inline void scheduler_ipi(void) { }
2821 static inline unsigned long wait_task_inactive(struct task_struct *p,
2822 long match_state)
2823 {
2824 return 1;
2825 }
2826 #endif
2827
2828 #define tasklist_empty() \
2829 list_empty(&init_task.tasks)
2830
2831 #define next_task(p) \
2832 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2833
2834 #define for_each_process(p) \
2835 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2836
2837 extern bool current_is_single_threaded(void);
2838
2839 /*
2840 * Careful: do_each_thread/while_each_thread is a double loop so
2841 * 'break' will not work as expected - use goto instead.
2842 */
2843 #define do_each_thread(g, t) \
2844 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2845
2846 #define while_each_thread(g, t) \
2847 while ((t = next_thread(t)) != g)
2848
2849 #define __for_each_thread(signal, t) \
2850 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2851
2852 #define for_each_thread(p, t) \
2853 __for_each_thread((p)->signal, t)
2854
2855 /* Careful: this is a double loop, 'break' won't work as expected. */
2856 #define for_each_process_thread(p, t) \
2857 for_each_process(p) for_each_thread(p, t)
2858
2859 static inline int get_nr_threads(struct task_struct *tsk)
2860 {
2861 return tsk->signal->nr_threads;
2862 }
2863
2864 static inline bool thread_group_leader(struct task_struct *p)
2865 {
2866 return p->exit_signal >= 0;
2867 }
2868
2869 /* Do to the insanities of de_thread it is possible for a process
2870 * to have the pid of the thread group leader without actually being
2871 * the thread group leader. For iteration through the pids in proc
2872 * all we care about is that we have a task with the appropriate
2873 * pid, we don't actually care if we have the right task.
2874 */
2875 static inline bool has_group_leader_pid(struct task_struct *p)
2876 {
2877 return task_pid(p) == p->signal->leader_pid;
2878 }
2879
2880 static inline
2881 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2882 {
2883 return p1->signal == p2->signal;
2884 }
2885
2886 static inline struct task_struct *next_thread(const struct task_struct *p)
2887 {
2888 return list_entry_rcu(p->thread_group.next,
2889 struct task_struct, thread_group);
2890 }
2891
2892 static inline int thread_group_empty(struct task_struct *p)
2893 {
2894 return list_empty(&p->thread_group);
2895 }
2896
2897 #define delay_group_leader(p) \
2898 (thread_group_leader(p) && !thread_group_empty(p))
2899
2900 /*
2901 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2902 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2903 * pins the final release of task.io_context. Also protects ->cpuset and
2904 * ->cgroup.subsys[]. And ->vfork_done.
2905 *
2906 * Nests both inside and outside of read_lock(&tasklist_lock).
2907 * It must not be nested with write_lock_irq(&tasklist_lock),
2908 * neither inside nor outside.
2909 */
2910 static inline void task_lock(struct task_struct *p)
2911 {
2912 spin_lock(&p->alloc_lock);
2913 }
2914
2915 static inline void task_unlock(struct task_struct *p)
2916 {
2917 spin_unlock(&p->alloc_lock);
2918 }
2919
2920 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2921 unsigned long *flags);
2922
2923 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2924 unsigned long *flags)
2925 {
2926 struct sighand_struct *ret;
2927
2928 ret = __lock_task_sighand(tsk, flags);
2929 (void)__cond_lock(&tsk->sighand->siglock, ret);
2930 return ret;
2931 }
2932
2933 static inline void unlock_task_sighand(struct task_struct *tsk,
2934 unsigned long *flags)
2935 {
2936 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2937 }
2938
2939 /**
2940 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2941 * @tsk: task causing the changes
2942 *
2943 * All operations which modify a threadgroup - a new thread joining the
2944 * group, death of a member thread (the assertion of PF_EXITING) and
2945 * exec(2) dethreading the process and replacing the leader - are wrapped
2946 * by threadgroup_change_{begin|end}(). This is to provide a place which
2947 * subsystems needing threadgroup stability can hook into for
2948 * synchronization.
2949 */
2950 static inline void threadgroup_change_begin(struct task_struct *tsk)
2951 {
2952 might_sleep();
2953 cgroup_threadgroup_change_begin(tsk);
2954 }
2955
2956 /**
2957 * threadgroup_change_end - mark the end of changes to a threadgroup
2958 * @tsk: task causing the changes
2959 *
2960 * See threadgroup_change_begin().
2961 */
2962 static inline void threadgroup_change_end(struct task_struct *tsk)
2963 {
2964 cgroup_threadgroup_change_end(tsk);
2965 }
2966
2967 #ifndef __HAVE_THREAD_FUNCTIONS
2968
2969 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2970 #define task_stack_page(task) ((task)->stack)
2971
2972 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2973 {
2974 *task_thread_info(p) = *task_thread_info(org);
2975 task_thread_info(p)->task = p;
2976 }
2977
2978 /*
2979 * Return the address of the last usable long on the stack.
2980 *
2981 * When the stack grows down, this is just above the thread
2982 * info struct. Going any lower will corrupt the threadinfo.
2983 *
2984 * When the stack grows up, this is the highest address.
2985 * Beyond that position, we corrupt data on the next page.
2986 */
2987 static inline unsigned long *end_of_stack(struct task_struct *p)
2988 {
2989 #ifdef CONFIG_STACK_GROWSUP
2990 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2991 #else
2992 return (unsigned long *)(task_thread_info(p) + 1);
2993 #endif
2994 }
2995
2996 #endif
2997 #define task_stack_end_corrupted(task) \
2998 (*(end_of_stack(task)) != STACK_END_MAGIC)
2999
3000 static inline int object_is_on_stack(void *obj)
3001 {
3002 void *stack = task_stack_page(current);
3003
3004 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3005 }
3006
3007 extern void thread_info_cache_init(void);
3008
3009 #ifdef CONFIG_DEBUG_STACK_USAGE
3010 static inline unsigned long stack_not_used(struct task_struct *p)
3011 {
3012 unsigned long *n = end_of_stack(p);
3013
3014 do { /* Skip over canary */
3015 # ifdef CONFIG_STACK_GROWSUP
3016 n--;
3017 # else
3018 n++;
3019 # endif
3020 } while (!*n);
3021
3022 # ifdef CONFIG_STACK_GROWSUP
3023 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3024 # else
3025 return (unsigned long)n - (unsigned long)end_of_stack(p);
3026 # endif
3027 }
3028 #endif
3029 extern void set_task_stack_end_magic(struct task_struct *tsk);
3030
3031 /* set thread flags in other task's structures
3032 * - see asm/thread_info.h for TIF_xxxx flags available
3033 */
3034 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3035 {
3036 set_ti_thread_flag(task_thread_info(tsk), flag);
3037 }
3038
3039 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3040 {
3041 clear_ti_thread_flag(task_thread_info(tsk), flag);
3042 }
3043
3044 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3045 {
3046 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3047 }
3048
3049 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3050 {
3051 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3052 }
3053
3054 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3055 {
3056 return test_ti_thread_flag(task_thread_info(tsk), flag);
3057 }
3058
3059 static inline void set_tsk_need_resched(struct task_struct *tsk)
3060 {
3061 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3062 }
3063
3064 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3065 {
3066 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3067 }
3068
3069 static inline int test_tsk_need_resched(struct task_struct *tsk)
3070 {
3071 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3072 }
3073
3074 static inline int restart_syscall(void)
3075 {
3076 set_tsk_thread_flag(current, TIF_SIGPENDING);
3077 return -ERESTARTNOINTR;
3078 }
3079
3080 static inline int signal_pending(struct task_struct *p)
3081 {
3082 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3083 }
3084
3085 static inline int __fatal_signal_pending(struct task_struct *p)
3086 {
3087 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3088 }
3089
3090 static inline int fatal_signal_pending(struct task_struct *p)
3091 {
3092 return signal_pending(p) && __fatal_signal_pending(p);
3093 }
3094
3095 static inline int signal_pending_state(long state, struct task_struct *p)
3096 {
3097 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3098 return 0;
3099 if (!signal_pending(p))
3100 return 0;
3101
3102 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3103 }
3104
3105 /*
3106 * cond_resched() and cond_resched_lock(): latency reduction via
3107 * explicit rescheduling in places that are safe. The return
3108 * value indicates whether a reschedule was done in fact.
3109 * cond_resched_lock() will drop the spinlock before scheduling,
3110 * cond_resched_softirq() will enable bhs before scheduling.
3111 */
3112 extern int _cond_resched(void);
3113
3114 #define cond_resched() ({ \
3115 ___might_sleep(__FILE__, __LINE__, 0); \
3116 _cond_resched(); \
3117 })
3118
3119 extern int __cond_resched_lock(spinlock_t *lock);
3120
3121 #define cond_resched_lock(lock) ({ \
3122 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3123 __cond_resched_lock(lock); \
3124 })
3125
3126 extern int __cond_resched_softirq(void);
3127
3128 #define cond_resched_softirq() ({ \
3129 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3130 __cond_resched_softirq(); \
3131 })
3132
3133 static inline void cond_resched_rcu(void)
3134 {
3135 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3136 rcu_read_unlock();
3137 cond_resched();
3138 rcu_read_lock();
3139 #endif
3140 }
3141
3142 /*
3143 * Does a critical section need to be broken due to another
3144 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3145 * but a general need for low latency)
3146 */
3147 static inline int spin_needbreak(spinlock_t *lock)
3148 {
3149 #ifdef CONFIG_PREEMPT
3150 return spin_is_contended(lock);
3151 #else
3152 return 0;
3153 #endif
3154 }
3155
3156 /*
3157 * Idle thread specific functions to determine the need_resched
3158 * polling state.
3159 */
3160 #ifdef TIF_POLLING_NRFLAG
3161 static inline int tsk_is_polling(struct task_struct *p)
3162 {
3163 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3164 }
3165
3166 static inline void __current_set_polling(void)
3167 {
3168 set_thread_flag(TIF_POLLING_NRFLAG);
3169 }
3170
3171 static inline bool __must_check current_set_polling_and_test(void)
3172 {
3173 __current_set_polling();
3174
3175 /*
3176 * Polling state must be visible before we test NEED_RESCHED,
3177 * paired by resched_curr()
3178 */
3179 smp_mb__after_atomic();
3180
3181 return unlikely(tif_need_resched());
3182 }
3183
3184 static inline void __current_clr_polling(void)
3185 {
3186 clear_thread_flag(TIF_POLLING_NRFLAG);
3187 }
3188
3189 static inline bool __must_check current_clr_polling_and_test(void)
3190 {
3191 __current_clr_polling();
3192
3193 /*
3194 * Polling state must be visible before we test NEED_RESCHED,
3195 * paired by resched_curr()
3196 */
3197 smp_mb__after_atomic();
3198
3199 return unlikely(tif_need_resched());
3200 }
3201
3202 #else
3203 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3204 static inline void __current_set_polling(void) { }
3205 static inline void __current_clr_polling(void) { }
3206
3207 static inline bool __must_check current_set_polling_and_test(void)
3208 {
3209 return unlikely(tif_need_resched());
3210 }
3211 static inline bool __must_check current_clr_polling_and_test(void)
3212 {
3213 return unlikely(tif_need_resched());
3214 }
3215 #endif
3216
3217 static inline void current_clr_polling(void)
3218 {
3219 __current_clr_polling();
3220
3221 /*
3222 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3223 * Once the bit is cleared, we'll get IPIs with every new
3224 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3225 * fold.
3226 */
3227 smp_mb(); /* paired with resched_curr() */
3228
3229 preempt_fold_need_resched();
3230 }
3231
3232 static __always_inline bool need_resched(void)
3233 {
3234 return unlikely(tif_need_resched());
3235 }
3236
3237 /*
3238 * Thread group CPU time accounting.
3239 */
3240 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3241 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3242
3243 /*
3244 * Reevaluate whether the task has signals pending delivery.
3245 * Wake the task if so.
3246 * This is required every time the blocked sigset_t changes.
3247 * callers must hold sighand->siglock.
3248 */
3249 extern void recalc_sigpending_and_wake(struct task_struct *t);
3250 extern void recalc_sigpending(void);
3251
3252 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3253
3254 static inline void signal_wake_up(struct task_struct *t, bool resume)
3255 {
3256 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3257 }
3258 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3259 {
3260 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3261 }
3262
3263 /*
3264 * Wrappers for p->thread_info->cpu access. No-op on UP.
3265 */
3266 #ifdef CONFIG_SMP
3267
3268 static inline unsigned int task_cpu(const struct task_struct *p)
3269 {
3270 return task_thread_info(p)->cpu;
3271 }
3272
3273 static inline int task_node(const struct task_struct *p)
3274 {
3275 return cpu_to_node(task_cpu(p));
3276 }
3277
3278 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3279
3280 #else
3281
3282 static inline unsigned int task_cpu(const struct task_struct *p)
3283 {
3284 return 0;
3285 }
3286
3287 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3288 {
3289 }
3290
3291 #endif /* CONFIG_SMP */
3292
3293 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3294 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3295
3296 #ifdef CONFIG_CGROUP_SCHED
3297 extern struct task_group root_task_group;
3298 #endif /* CONFIG_CGROUP_SCHED */
3299
3300 extern int task_can_switch_user(struct user_struct *up,
3301 struct task_struct *tsk);
3302
3303 #ifdef CONFIG_TASK_XACCT
3304 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3305 {
3306 tsk->ioac.rchar += amt;
3307 }
3308
3309 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3310 {
3311 tsk->ioac.wchar += amt;
3312 }
3313
3314 static inline void inc_syscr(struct task_struct *tsk)
3315 {
3316 tsk->ioac.syscr++;
3317 }
3318
3319 static inline void inc_syscw(struct task_struct *tsk)
3320 {
3321 tsk->ioac.syscw++;
3322 }
3323 #else
3324 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3325 {
3326 }
3327
3328 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3329 {
3330 }
3331
3332 static inline void inc_syscr(struct task_struct *tsk)
3333 {
3334 }
3335
3336 static inline void inc_syscw(struct task_struct *tsk)
3337 {
3338 }
3339 #endif
3340
3341 #ifndef TASK_SIZE_OF
3342 #define TASK_SIZE_OF(tsk) TASK_SIZE
3343 #endif
3344
3345 #ifdef CONFIG_MEMCG
3346 extern void mm_update_next_owner(struct mm_struct *mm);
3347 #else
3348 static inline void mm_update_next_owner(struct mm_struct *mm)
3349 {
3350 }
3351 #endif /* CONFIG_MEMCG */
3352
3353 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3354 unsigned int limit)
3355 {
3356 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3357 }
3358
3359 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3360 unsigned int limit)
3361 {
3362 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3363 }
3364
3365 static inline unsigned long rlimit(unsigned int limit)
3366 {
3367 return task_rlimit(current, limit);
3368 }
3369
3370 static inline unsigned long rlimit_max(unsigned int limit)
3371 {
3372 return task_rlimit_max(current, limit);
3373 }
3374
3375 #ifdef CONFIG_CPU_FREQ
3376 struct update_util_data {
3377 void (*func)(struct update_util_data *data,
3378 u64 time, unsigned long util, unsigned long max);
3379 };
3380
3381 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3382 void (*func)(struct update_util_data *data, u64 time,
3383 unsigned long util, unsigned long max));
3384 void cpufreq_remove_update_util_hook(int cpu);
3385 #endif /* CONFIG_CPU_FREQ */
3386
3387 #endif
This page took 0.096008 seconds and 6 git commands to generate.