NFS: Remove nfs4_setup_sequence from generic unlink code
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* return minimum truesize of one skb containing X bytes of data */
51 #define SKB_TRUESIZE(X) ((X) + \
52 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
53 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
54
55 /* A. Checksumming of received packets by device.
56 *
57 * NONE: device failed to checksum this packet.
58 * skb->csum is undefined.
59 *
60 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
61 * skb->csum is undefined.
62 * It is bad option, but, unfortunately, many of vendors do this.
63 * Apparently with secret goal to sell you new device, when you
64 * will add new protocol to your host. F.e. IPv6. 8)
65 *
66 * COMPLETE: the most generic way. Device supplied checksum of _all_
67 * the packet as seen by netif_rx in skb->csum.
68 * NOTE: Even if device supports only some protocols, but
69 * is able to produce some skb->csum, it MUST use COMPLETE,
70 * not UNNECESSARY.
71 *
72 * PARTIAL: identical to the case for output below. This may occur
73 * on a packet received directly from another Linux OS, e.g.,
74 * a virtualised Linux kernel on the same host. The packet can
75 * be treated in the same way as UNNECESSARY except that on
76 * output (i.e., forwarding) the checksum must be filled in
77 * by the OS or the hardware.
78 *
79 * B. Checksumming on output.
80 *
81 * NONE: skb is checksummed by protocol or csum is not required.
82 *
83 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
84 * from skb->csum_start to the end and to record the checksum
85 * at skb->csum_start + skb->csum_offset.
86 *
87 * Device must show its capabilities in dev->features, set
88 * at device setup time.
89 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
90 * everything.
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
96 *
97 * Any questions? No questions, good. --ANK
98 */
99
100 struct net_device;
101 struct scatterlist;
102 struct pipe_inode_info;
103
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack {
106 atomic_t use;
107 };
108 #endif
109
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info {
112 atomic_t use;
113 struct net_device *physindev;
114 struct net_device *physoutdev;
115 unsigned int mask;
116 unsigned long data[32 / sizeof(unsigned long)];
117 };
118 #endif
119
120 struct sk_buff_head {
121 /* These two members must be first. */
122 struct sk_buff *next;
123 struct sk_buff *prev;
124
125 __u32 qlen;
126 spinlock_t lock;
127 };
128
129 struct sk_buff;
130
131 /* To allow 64K frame to be packed as single skb without frag_list we
132 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
133 * buffers which do not start on a page boundary.
134 *
135 * Since GRO uses frags we allocate at least 16 regardless of page
136 * size.
137 */
138 #if (65536/PAGE_SIZE + 1) < 16
139 #define MAX_SKB_FRAGS 16UL
140 #else
141 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
142 #endif
143
144 typedef struct skb_frag_struct skb_frag_t;
145
146 struct skb_frag_struct {
147 struct {
148 struct page *p;
149 } page;
150 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
151 __u32 page_offset;
152 __u32 size;
153 #else
154 __u16 page_offset;
155 __u16 size;
156 #endif
157 };
158
159 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
160 {
161 return frag->size;
162 }
163
164 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
165 {
166 frag->size = size;
167 }
168
169 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
170 {
171 frag->size += delta;
172 }
173
174 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
175 {
176 frag->size -= delta;
177 }
178
179 #define HAVE_HW_TIME_STAMP
180
181 /**
182 * struct skb_shared_hwtstamps - hardware time stamps
183 * @hwtstamp: hardware time stamp transformed into duration
184 * since arbitrary point in time
185 * @syststamp: hwtstamp transformed to system time base
186 *
187 * Software time stamps generated by ktime_get_real() are stored in
188 * skb->tstamp. The relation between the different kinds of time
189 * stamps is as follows:
190 *
191 * syststamp and tstamp can be compared against each other in
192 * arbitrary combinations. The accuracy of a
193 * syststamp/tstamp/"syststamp from other device" comparison is
194 * limited by the accuracy of the transformation into system time
195 * base. This depends on the device driver and its underlying
196 * hardware.
197 *
198 * hwtstamps can only be compared against other hwtstamps from
199 * the same device.
200 *
201 * This structure is attached to packets as part of the
202 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
203 */
204 struct skb_shared_hwtstamps {
205 ktime_t hwtstamp;
206 ktime_t syststamp;
207 };
208
209 /* Definitions for tx_flags in struct skb_shared_info */
210 enum {
211 /* generate hardware time stamp */
212 SKBTX_HW_TSTAMP = 1 << 0,
213
214 /* generate software time stamp */
215 SKBTX_SW_TSTAMP = 1 << 1,
216
217 /* device driver is going to provide hardware time stamp */
218 SKBTX_IN_PROGRESS = 1 << 2,
219
220 /* ensure the originating sk reference is available on driver level */
221 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
222
223 /* device driver supports TX zero-copy buffers */
224 SKBTX_DEV_ZEROCOPY = 1 << 4,
225
226 /* generate wifi status information (where possible) */
227 SKBTX_WIFI_STATUS = 1 << 5,
228 };
229
230 /*
231 * The callback notifies userspace to release buffers when skb DMA is done in
232 * lower device, the skb last reference should be 0 when calling this.
233 * The desc is used to track userspace buffer index.
234 */
235 struct ubuf_info {
236 void (*callback)(void *);
237 void *arg;
238 unsigned long desc;
239 };
240
241 /* This data is invariant across clones and lives at
242 * the end of the header data, ie. at skb->end.
243 */
244 struct skb_shared_info {
245 unsigned char nr_frags;
246 __u8 tx_flags;
247 unsigned short gso_size;
248 /* Warning: this field is not always filled in (UFO)! */
249 unsigned short gso_segs;
250 unsigned short gso_type;
251 struct sk_buff *frag_list;
252 struct skb_shared_hwtstamps hwtstamps;
253 __be32 ip6_frag_id;
254
255 /*
256 * Warning : all fields before dataref are cleared in __alloc_skb()
257 */
258 atomic_t dataref;
259
260 /* Intermediate layers must ensure that destructor_arg
261 * remains valid until skb destructor */
262 void * destructor_arg;
263
264 /* must be last field, see pskb_expand_head() */
265 skb_frag_t frags[MAX_SKB_FRAGS];
266 };
267
268 /* We divide dataref into two halves. The higher 16 bits hold references
269 * to the payload part of skb->data. The lower 16 bits hold references to
270 * the entire skb->data. A clone of a headerless skb holds the length of
271 * the header in skb->hdr_len.
272 *
273 * All users must obey the rule that the skb->data reference count must be
274 * greater than or equal to the payload reference count.
275 *
276 * Holding a reference to the payload part means that the user does not
277 * care about modifications to the header part of skb->data.
278 */
279 #define SKB_DATAREF_SHIFT 16
280 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
281
282
283 enum {
284 SKB_FCLONE_UNAVAILABLE,
285 SKB_FCLONE_ORIG,
286 SKB_FCLONE_CLONE,
287 };
288
289 enum {
290 SKB_GSO_TCPV4 = 1 << 0,
291 SKB_GSO_UDP = 1 << 1,
292
293 /* This indicates the skb is from an untrusted source. */
294 SKB_GSO_DODGY = 1 << 2,
295
296 /* This indicates the tcp segment has CWR set. */
297 SKB_GSO_TCP_ECN = 1 << 3,
298
299 SKB_GSO_TCPV6 = 1 << 4,
300
301 SKB_GSO_FCOE = 1 << 5,
302 };
303
304 #if BITS_PER_LONG > 32
305 #define NET_SKBUFF_DATA_USES_OFFSET 1
306 #endif
307
308 #ifdef NET_SKBUFF_DATA_USES_OFFSET
309 typedef unsigned int sk_buff_data_t;
310 #else
311 typedef unsigned char *sk_buff_data_t;
312 #endif
313
314 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
315 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
316 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
317 #endif
318
319 /**
320 * struct sk_buff - socket buffer
321 * @next: Next buffer in list
322 * @prev: Previous buffer in list
323 * @tstamp: Time we arrived
324 * @sk: Socket we are owned by
325 * @dev: Device we arrived on/are leaving by
326 * @cb: Control buffer. Free for use by every layer. Put private vars here
327 * @_skb_refdst: destination entry (with norefcount bit)
328 * @sp: the security path, used for xfrm
329 * @len: Length of actual data
330 * @data_len: Data length
331 * @mac_len: Length of link layer header
332 * @hdr_len: writable header length of cloned skb
333 * @csum: Checksum (must include start/offset pair)
334 * @csum_start: Offset from skb->head where checksumming should start
335 * @csum_offset: Offset from csum_start where checksum should be stored
336 * @priority: Packet queueing priority
337 * @local_df: allow local fragmentation
338 * @cloned: Head may be cloned (check refcnt to be sure)
339 * @ip_summed: Driver fed us an IP checksum
340 * @nohdr: Payload reference only, must not modify header
341 * @nfctinfo: Relationship of this skb to the connection
342 * @pkt_type: Packet class
343 * @fclone: skbuff clone status
344 * @ipvs_property: skbuff is owned by ipvs
345 * @peeked: this packet has been seen already, so stats have been
346 * done for it, don't do them again
347 * @nf_trace: netfilter packet trace flag
348 * @protocol: Packet protocol from driver
349 * @destructor: Destruct function
350 * @nfct: Associated connection, if any
351 * @nfct_reasm: netfilter conntrack re-assembly pointer
352 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
353 * @skb_iif: ifindex of device we arrived on
354 * @tc_index: Traffic control index
355 * @tc_verd: traffic control verdict
356 * @rxhash: the packet hash computed on receive
357 * @queue_mapping: Queue mapping for multiqueue devices
358 * @ndisc_nodetype: router type (from link layer)
359 * @ooo_okay: allow the mapping of a socket to a queue to be changed
360 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
361 * ports.
362 * @wifi_acked_valid: wifi_acked was set
363 * @wifi_acked: whether frame was acked on wifi or not
364 * @dma_cookie: a cookie to one of several possible DMA operations
365 * done by skb DMA functions
366 * @secmark: security marking
367 * @mark: Generic packet mark
368 * @dropcount: total number of sk_receive_queue overflows
369 * @vlan_tci: vlan tag control information
370 * @transport_header: Transport layer header
371 * @network_header: Network layer header
372 * @mac_header: Link layer header
373 * @tail: Tail pointer
374 * @end: End pointer
375 * @head: Head of buffer
376 * @data: Data head pointer
377 * @truesize: Buffer size
378 * @users: User count - see {datagram,tcp}.c
379 */
380
381 struct sk_buff {
382 /* These two members must be first. */
383 struct sk_buff *next;
384 struct sk_buff *prev;
385
386 ktime_t tstamp;
387
388 struct sock *sk;
389 struct net_device *dev;
390
391 /*
392 * This is the control buffer. It is free to use for every
393 * layer. Please put your private variables there. If you
394 * want to keep them across layers you have to do a skb_clone()
395 * first. This is owned by whoever has the skb queued ATM.
396 */
397 char cb[48] __aligned(8);
398
399 unsigned long _skb_refdst;
400 #ifdef CONFIG_XFRM
401 struct sec_path *sp;
402 #endif
403 unsigned int len,
404 data_len;
405 __u16 mac_len,
406 hdr_len;
407 union {
408 __wsum csum;
409 struct {
410 __u16 csum_start;
411 __u16 csum_offset;
412 };
413 };
414 __u32 priority;
415 kmemcheck_bitfield_begin(flags1);
416 __u8 local_df:1,
417 cloned:1,
418 ip_summed:2,
419 nohdr:1,
420 nfctinfo:3;
421 __u8 pkt_type:3,
422 fclone:2,
423 ipvs_property:1,
424 peeked:1,
425 nf_trace:1;
426 kmemcheck_bitfield_end(flags1);
427 __be16 protocol;
428
429 void (*destructor)(struct sk_buff *skb);
430 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
431 struct nf_conntrack *nfct;
432 #endif
433 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
434 struct sk_buff *nfct_reasm;
435 #endif
436 #ifdef CONFIG_BRIDGE_NETFILTER
437 struct nf_bridge_info *nf_bridge;
438 #endif
439
440 int skb_iif;
441 #ifdef CONFIG_NET_SCHED
442 __u16 tc_index; /* traffic control index */
443 #ifdef CONFIG_NET_CLS_ACT
444 __u16 tc_verd; /* traffic control verdict */
445 #endif
446 #endif
447
448 __u32 rxhash;
449
450 __u16 queue_mapping;
451 kmemcheck_bitfield_begin(flags2);
452 #ifdef CONFIG_IPV6_NDISC_NODETYPE
453 __u8 ndisc_nodetype:2;
454 #endif
455 __u8 ooo_okay:1;
456 __u8 l4_rxhash:1;
457 __u8 wifi_acked_valid:1;
458 __u8 wifi_acked:1;
459 /* 10/12 bit hole (depending on ndisc_nodetype presence) */
460 kmemcheck_bitfield_end(flags2);
461
462 #ifdef CONFIG_NET_DMA
463 dma_cookie_t dma_cookie;
464 #endif
465 #ifdef CONFIG_NETWORK_SECMARK
466 __u32 secmark;
467 #endif
468 union {
469 __u32 mark;
470 __u32 dropcount;
471 };
472
473 __u16 vlan_tci;
474
475 sk_buff_data_t transport_header;
476 sk_buff_data_t network_header;
477 sk_buff_data_t mac_header;
478 /* These elements must be at the end, see alloc_skb() for details. */
479 sk_buff_data_t tail;
480 sk_buff_data_t end;
481 unsigned char *head,
482 *data;
483 unsigned int truesize;
484 atomic_t users;
485 };
486
487 #ifdef __KERNEL__
488 /*
489 * Handling routines are only of interest to the kernel
490 */
491 #include <linux/slab.h>
492
493 #include <asm/system.h>
494
495 /*
496 * skb might have a dst pointer attached, refcounted or not.
497 * _skb_refdst low order bit is set if refcount was _not_ taken
498 */
499 #define SKB_DST_NOREF 1UL
500 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
501
502 /**
503 * skb_dst - returns skb dst_entry
504 * @skb: buffer
505 *
506 * Returns skb dst_entry, regardless of reference taken or not.
507 */
508 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
509 {
510 /* If refdst was not refcounted, check we still are in a
511 * rcu_read_lock section
512 */
513 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
514 !rcu_read_lock_held() &&
515 !rcu_read_lock_bh_held());
516 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
517 }
518
519 /**
520 * skb_dst_set - sets skb dst
521 * @skb: buffer
522 * @dst: dst entry
523 *
524 * Sets skb dst, assuming a reference was taken on dst and should
525 * be released by skb_dst_drop()
526 */
527 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
528 {
529 skb->_skb_refdst = (unsigned long)dst;
530 }
531
532 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
533
534 /**
535 * skb_dst_is_noref - Test if skb dst isn't refcounted
536 * @skb: buffer
537 */
538 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
539 {
540 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
541 }
542
543 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
544 {
545 return (struct rtable *)skb_dst(skb);
546 }
547
548 extern void kfree_skb(struct sk_buff *skb);
549 extern void consume_skb(struct sk_buff *skb);
550 extern void __kfree_skb(struct sk_buff *skb);
551 extern struct sk_buff *__alloc_skb(unsigned int size,
552 gfp_t priority, int fclone, int node);
553 extern struct sk_buff *build_skb(void *data);
554 static inline struct sk_buff *alloc_skb(unsigned int size,
555 gfp_t priority)
556 {
557 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
558 }
559
560 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
561 gfp_t priority)
562 {
563 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
564 }
565
566 extern void skb_recycle(struct sk_buff *skb);
567 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
568
569 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
570 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
571 extern struct sk_buff *skb_clone(struct sk_buff *skb,
572 gfp_t priority);
573 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
574 gfp_t priority);
575 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
576 int headroom, gfp_t gfp_mask);
577
578 extern int pskb_expand_head(struct sk_buff *skb,
579 int nhead, int ntail,
580 gfp_t gfp_mask);
581 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
582 unsigned int headroom);
583 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
584 int newheadroom, int newtailroom,
585 gfp_t priority);
586 extern int skb_to_sgvec(struct sk_buff *skb,
587 struct scatterlist *sg, int offset,
588 int len);
589 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
590 struct sk_buff **trailer);
591 extern int skb_pad(struct sk_buff *skb, int pad);
592 #define dev_kfree_skb(a) consume_skb(a)
593
594 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
595 int getfrag(void *from, char *to, int offset,
596 int len,int odd, struct sk_buff *skb),
597 void *from, int length);
598
599 struct skb_seq_state {
600 __u32 lower_offset;
601 __u32 upper_offset;
602 __u32 frag_idx;
603 __u32 stepped_offset;
604 struct sk_buff *root_skb;
605 struct sk_buff *cur_skb;
606 __u8 *frag_data;
607 };
608
609 extern void skb_prepare_seq_read(struct sk_buff *skb,
610 unsigned int from, unsigned int to,
611 struct skb_seq_state *st);
612 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
613 struct skb_seq_state *st);
614 extern void skb_abort_seq_read(struct skb_seq_state *st);
615
616 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
617 unsigned int to, struct ts_config *config,
618 struct ts_state *state);
619
620 extern void __skb_get_rxhash(struct sk_buff *skb);
621 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
622 {
623 if (!skb->rxhash)
624 __skb_get_rxhash(skb);
625
626 return skb->rxhash;
627 }
628
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
631 {
632 return skb->head + skb->end;
633 }
634 #else
635 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
636 {
637 return skb->end;
638 }
639 #endif
640
641 /* Internal */
642 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
643
644 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
645 {
646 return &skb_shinfo(skb)->hwtstamps;
647 }
648
649 /**
650 * skb_queue_empty - check if a queue is empty
651 * @list: queue head
652 *
653 * Returns true if the queue is empty, false otherwise.
654 */
655 static inline int skb_queue_empty(const struct sk_buff_head *list)
656 {
657 return list->next == (struct sk_buff *)list;
658 }
659
660 /**
661 * skb_queue_is_last - check if skb is the last entry in the queue
662 * @list: queue head
663 * @skb: buffer
664 *
665 * Returns true if @skb is the last buffer on the list.
666 */
667 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
668 const struct sk_buff *skb)
669 {
670 return skb->next == (struct sk_buff *)list;
671 }
672
673 /**
674 * skb_queue_is_first - check if skb is the first entry in the queue
675 * @list: queue head
676 * @skb: buffer
677 *
678 * Returns true if @skb is the first buffer on the list.
679 */
680 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
681 const struct sk_buff *skb)
682 {
683 return skb->prev == (struct sk_buff *)list;
684 }
685
686 /**
687 * skb_queue_next - return the next packet in the queue
688 * @list: queue head
689 * @skb: current buffer
690 *
691 * Return the next packet in @list after @skb. It is only valid to
692 * call this if skb_queue_is_last() evaluates to false.
693 */
694 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
695 const struct sk_buff *skb)
696 {
697 /* This BUG_ON may seem severe, but if we just return then we
698 * are going to dereference garbage.
699 */
700 BUG_ON(skb_queue_is_last(list, skb));
701 return skb->next;
702 }
703
704 /**
705 * skb_queue_prev - return the prev packet in the queue
706 * @list: queue head
707 * @skb: current buffer
708 *
709 * Return the prev packet in @list before @skb. It is only valid to
710 * call this if skb_queue_is_first() evaluates to false.
711 */
712 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
713 const struct sk_buff *skb)
714 {
715 /* This BUG_ON may seem severe, but if we just return then we
716 * are going to dereference garbage.
717 */
718 BUG_ON(skb_queue_is_first(list, skb));
719 return skb->prev;
720 }
721
722 /**
723 * skb_get - reference buffer
724 * @skb: buffer to reference
725 *
726 * Makes another reference to a socket buffer and returns a pointer
727 * to the buffer.
728 */
729 static inline struct sk_buff *skb_get(struct sk_buff *skb)
730 {
731 atomic_inc(&skb->users);
732 return skb;
733 }
734
735 /*
736 * If users == 1, we are the only owner and are can avoid redundant
737 * atomic change.
738 */
739
740 /**
741 * skb_cloned - is the buffer a clone
742 * @skb: buffer to check
743 *
744 * Returns true if the buffer was generated with skb_clone() and is
745 * one of multiple shared copies of the buffer. Cloned buffers are
746 * shared data so must not be written to under normal circumstances.
747 */
748 static inline int skb_cloned(const struct sk_buff *skb)
749 {
750 return skb->cloned &&
751 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
752 }
753
754 /**
755 * skb_header_cloned - is the header a clone
756 * @skb: buffer to check
757 *
758 * Returns true if modifying the header part of the buffer requires
759 * the data to be copied.
760 */
761 static inline int skb_header_cloned(const struct sk_buff *skb)
762 {
763 int dataref;
764
765 if (!skb->cloned)
766 return 0;
767
768 dataref = atomic_read(&skb_shinfo(skb)->dataref);
769 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
770 return dataref != 1;
771 }
772
773 /**
774 * skb_header_release - release reference to header
775 * @skb: buffer to operate on
776 *
777 * Drop a reference to the header part of the buffer. This is done
778 * by acquiring a payload reference. You must not read from the header
779 * part of skb->data after this.
780 */
781 static inline void skb_header_release(struct sk_buff *skb)
782 {
783 BUG_ON(skb->nohdr);
784 skb->nohdr = 1;
785 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
786 }
787
788 /**
789 * skb_shared - is the buffer shared
790 * @skb: buffer to check
791 *
792 * Returns true if more than one person has a reference to this
793 * buffer.
794 */
795 static inline int skb_shared(const struct sk_buff *skb)
796 {
797 return atomic_read(&skb->users) != 1;
798 }
799
800 /**
801 * skb_share_check - check if buffer is shared and if so clone it
802 * @skb: buffer to check
803 * @pri: priority for memory allocation
804 *
805 * If the buffer is shared the buffer is cloned and the old copy
806 * drops a reference. A new clone with a single reference is returned.
807 * If the buffer is not shared the original buffer is returned. When
808 * being called from interrupt status or with spinlocks held pri must
809 * be GFP_ATOMIC.
810 *
811 * NULL is returned on a memory allocation failure.
812 */
813 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
814 gfp_t pri)
815 {
816 might_sleep_if(pri & __GFP_WAIT);
817 if (skb_shared(skb)) {
818 struct sk_buff *nskb = skb_clone(skb, pri);
819 kfree_skb(skb);
820 skb = nskb;
821 }
822 return skb;
823 }
824
825 /*
826 * Copy shared buffers into a new sk_buff. We effectively do COW on
827 * packets to handle cases where we have a local reader and forward
828 * and a couple of other messy ones. The normal one is tcpdumping
829 * a packet thats being forwarded.
830 */
831
832 /**
833 * skb_unshare - make a copy of a shared buffer
834 * @skb: buffer to check
835 * @pri: priority for memory allocation
836 *
837 * If the socket buffer is a clone then this function creates a new
838 * copy of the data, drops a reference count on the old copy and returns
839 * the new copy with the reference count at 1. If the buffer is not a clone
840 * the original buffer is returned. When called with a spinlock held or
841 * from interrupt state @pri must be %GFP_ATOMIC
842 *
843 * %NULL is returned on a memory allocation failure.
844 */
845 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
846 gfp_t pri)
847 {
848 might_sleep_if(pri & __GFP_WAIT);
849 if (skb_cloned(skb)) {
850 struct sk_buff *nskb = skb_copy(skb, pri);
851 kfree_skb(skb); /* Free our shared copy */
852 skb = nskb;
853 }
854 return skb;
855 }
856
857 /**
858 * skb_peek - peek at the head of an &sk_buff_head
859 * @list_: list to peek at
860 *
861 * Peek an &sk_buff. Unlike most other operations you _MUST_
862 * be careful with this one. A peek leaves the buffer on the
863 * list and someone else may run off with it. You must hold
864 * the appropriate locks or have a private queue to do this.
865 *
866 * Returns %NULL for an empty list or a pointer to the head element.
867 * The reference count is not incremented and the reference is therefore
868 * volatile. Use with caution.
869 */
870 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
871 {
872 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
873 if (list == (struct sk_buff *)list_)
874 list = NULL;
875 return list;
876 }
877
878 /**
879 * skb_peek_tail - peek at the tail of an &sk_buff_head
880 * @list_: list to peek at
881 *
882 * Peek an &sk_buff. Unlike most other operations you _MUST_
883 * be careful with this one. A peek leaves the buffer on the
884 * list and someone else may run off with it. You must hold
885 * the appropriate locks or have a private queue to do this.
886 *
887 * Returns %NULL for an empty list or a pointer to the tail element.
888 * The reference count is not incremented and the reference is therefore
889 * volatile. Use with caution.
890 */
891 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
892 {
893 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
894 if (list == (struct sk_buff *)list_)
895 list = NULL;
896 return list;
897 }
898
899 /**
900 * skb_queue_len - get queue length
901 * @list_: list to measure
902 *
903 * Return the length of an &sk_buff queue.
904 */
905 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
906 {
907 return list_->qlen;
908 }
909
910 /**
911 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
912 * @list: queue to initialize
913 *
914 * This initializes only the list and queue length aspects of
915 * an sk_buff_head object. This allows to initialize the list
916 * aspects of an sk_buff_head without reinitializing things like
917 * the spinlock. It can also be used for on-stack sk_buff_head
918 * objects where the spinlock is known to not be used.
919 */
920 static inline void __skb_queue_head_init(struct sk_buff_head *list)
921 {
922 list->prev = list->next = (struct sk_buff *)list;
923 list->qlen = 0;
924 }
925
926 /*
927 * This function creates a split out lock class for each invocation;
928 * this is needed for now since a whole lot of users of the skb-queue
929 * infrastructure in drivers have different locking usage (in hardirq)
930 * than the networking core (in softirq only). In the long run either the
931 * network layer or drivers should need annotation to consolidate the
932 * main types of usage into 3 classes.
933 */
934 static inline void skb_queue_head_init(struct sk_buff_head *list)
935 {
936 spin_lock_init(&list->lock);
937 __skb_queue_head_init(list);
938 }
939
940 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
941 struct lock_class_key *class)
942 {
943 skb_queue_head_init(list);
944 lockdep_set_class(&list->lock, class);
945 }
946
947 /*
948 * Insert an sk_buff on a list.
949 *
950 * The "__skb_xxxx()" functions are the non-atomic ones that
951 * can only be called with interrupts disabled.
952 */
953 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
954 static inline void __skb_insert(struct sk_buff *newsk,
955 struct sk_buff *prev, struct sk_buff *next,
956 struct sk_buff_head *list)
957 {
958 newsk->next = next;
959 newsk->prev = prev;
960 next->prev = prev->next = newsk;
961 list->qlen++;
962 }
963
964 static inline void __skb_queue_splice(const struct sk_buff_head *list,
965 struct sk_buff *prev,
966 struct sk_buff *next)
967 {
968 struct sk_buff *first = list->next;
969 struct sk_buff *last = list->prev;
970
971 first->prev = prev;
972 prev->next = first;
973
974 last->next = next;
975 next->prev = last;
976 }
977
978 /**
979 * skb_queue_splice - join two skb lists, this is designed for stacks
980 * @list: the new list to add
981 * @head: the place to add it in the first list
982 */
983 static inline void skb_queue_splice(const struct sk_buff_head *list,
984 struct sk_buff_head *head)
985 {
986 if (!skb_queue_empty(list)) {
987 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
988 head->qlen += list->qlen;
989 }
990 }
991
992 /**
993 * skb_queue_splice - join two skb lists and reinitialise the emptied list
994 * @list: the new list to add
995 * @head: the place to add it in the first list
996 *
997 * The list at @list is reinitialised
998 */
999 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1000 struct sk_buff_head *head)
1001 {
1002 if (!skb_queue_empty(list)) {
1003 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1004 head->qlen += list->qlen;
1005 __skb_queue_head_init(list);
1006 }
1007 }
1008
1009 /**
1010 * skb_queue_splice_tail - join two skb lists, each list being a queue
1011 * @list: the new list to add
1012 * @head: the place to add it in the first list
1013 */
1014 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1015 struct sk_buff_head *head)
1016 {
1017 if (!skb_queue_empty(list)) {
1018 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1019 head->qlen += list->qlen;
1020 }
1021 }
1022
1023 /**
1024 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1025 * @list: the new list to add
1026 * @head: the place to add it in the first list
1027 *
1028 * Each of the lists is a queue.
1029 * The list at @list is reinitialised
1030 */
1031 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1032 struct sk_buff_head *head)
1033 {
1034 if (!skb_queue_empty(list)) {
1035 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1036 head->qlen += list->qlen;
1037 __skb_queue_head_init(list);
1038 }
1039 }
1040
1041 /**
1042 * __skb_queue_after - queue a buffer at the list head
1043 * @list: list to use
1044 * @prev: place after this buffer
1045 * @newsk: buffer to queue
1046 *
1047 * Queue a buffer int the middle of a list. This function takes no locks
1048 * and you must therefore hold required locks before calling it.
1049 *
1050 * A buffer cannot be placed on two lists at the same time.
1051 */
1052 static inline void __skb_queue_after(struct sk_buff_head *list,
1053 struct sk_buff *prev,
1054 struct sk_buff *newsk)
1055 {
1056 __skb_insert(newsk, prev, prev->next, list);
1057 }
1058
1059 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1060 struct sk_buff_head *list);
1061
1062 static inline void __skb_queue_before(struct sk_buff_head *list,
1063 struct sk_buff *next,
1064 struct sk_buff *newsk)
1065 {
1066 __skb_insert(newsk, next->prev, next, list);
1067 }
1068
1069 /**
1070 * __skb_queue_head - queue a buffer at the list head
1071 * @list: list to use
1072 * @newsk: buffer to queue
1073 *
1074 * Queue a buffer at the start of a list. This function takes no locks
1075 * and you must therefore hold required locks before calling it.
1076 *
1077 * A buffer cannot be placed on two lists at the same time.
1078 */
1079 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1080 static inline void __skb_queue_head(struct sk_buff_head *list,
1081 struct sk_buff *newsk)
1082 {
1083 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1084 }
1085
1086 /**
1087 * __skb_queue_tail - queue a buffer at the list tail
1088 * @list: list to use
1089 * @newsk: buffer to queue
1090 *
1091 * Queue a buffer at the end of a list. This function takes no locks
1092 * and you must therefore hold required locks before calling it.
1093 *
1094 * A buffer cannot be placed on two lists at the same time.
1095 */
1096 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1097 static inline void __skb_queue_tail(struct sk_buff_head *list,
1098 struct sk_buff *newsk)
1099 {
1100 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1101 }
1102
1103 /*
1104 * remove sk_buff from list. _Must_ be called atomically, and with
1105 * the list known..
1106 */
1107 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1108 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1109 {
1110 struct sk_buff *next, *prev;
1111
1112 list->qlen--;
1113 next = skb->next;
1114 prev = skb->prev;
1115 skb->next = skb->prev = NULL;
1116 next->prev = prev;
1117 prev->next = next;
1118 }
1119
1120 /**
1121 * __skb_dequeue - remove from the head of the queue
1122 * @list: list to dequeue from
1123 *
1124 * Remove the head of the list. This function does not take any locks
1125 * so must be used with appropriate locks held only. The head item is
1126 * returned or %NULL if the list is empty.
1127 */
1128 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1129 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1130 {
1131 struct sk_buff *skb = skb_peek(list);
1132 if (skb)
1133 __skb_unlink(skb, list);
1134 return skb;
1135 }
1136
1137 /**
1138 * __skb_dequeue_tail - remove from the tail of the queue
1139 * @list: list to dequeue from
1140 *
1141 * Remove the tail of the list. This function does not take any locks
1142 * so must be used with appropriate locks held only. The tail item is
1143 * returned or %NULL if the list is empty.
1144 */
1145 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1146 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1147 {
1148 struct sk_buff *skb = skb_peek_tail(list);
1149 if (skb)
1150 __skb_unlink(skb, list);
1151 return skb;
1152 }
1153
1154
1155 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1156 {
1157 return skb->data_len;
1158 }
1159
1160 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1161 {
1162 return skb->len - skb->data_len;
1163 }
1164
1165 static inline int skb_pagelen(const struct sk_buff *skb)
1166 {
1167 int i, len = 0;
1168
1169 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1170 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1171 return len + skb_headlen(skb);
1172 }
1173
1174 /**
1175 * __skb_fill_page_desc - initialise a paged fragment in an skb
1176 * @skb: buffer containing fragment to be initialised
1177 * @i: paged fragment index to initialise
1178 * @page: the page to use for this fragment
1179 * @off: the offset to the data with @page
1180 * @size: the length of the data
1181 *
1182 * Initialises the @i'th fragment of @skb to point to &size bytes at
1183 * offset @off within @page.
1184 *
1185 * Does not take any additional reference on the fragment.
1186 */
1187 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1188 struct page *page, int off, int size)
1189 {
1190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191
1192 frag->page.p = page;
1193 frag->page_offset = off;
1194 skb_frag_size_set(frag, size);
1195 }
1196
1197 /**
1198 * skb_fill_page_desc - initialise a paged fragment in an skb
1199 * @skb: buffer containing fragment to be initialised
1200 * @i: paged fragment index to initialise
1201 * @page: the page to use for this fragment
1202 * @off: the offset to the data with @page
1203 * @size: the length of the data
1204 *
1205 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1206 * @skb to point to &size bytes at offset @off within @page. In
1207 * addition updates @skb such that @i is the last fragment.
1208 *
1209 * Does not take any additional reference on the fragment.
1210 */
1211 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1212 struct page *page, int off, int size)
1213 {
1214 __skb_fill_page_desc(skb, i, page, off, size);
1215 skb_shinfo(skb)->nr_frags = i + 1;
1216 }
1217
1218 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1219 int off, int size);
1220
1221 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1222 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1223 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1224
1225 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1226 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1227 {
1228 return skb->head + skb->tail;
1229 }
1230
1231 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1232 {
1233 skb->tail = skb->data - skb->head;
1234 }
1235
1236 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1237 {
1238 skb_reset_tail_pointer(skb);
1239 skb->tail += offset;
1240 }
1241 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1242 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1243 {
1244 return skb->tail;
1245 }
1246
1247 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1248 {
1249 skb->tail = skb->data;
1250 }
1251
1252 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1253 {
1254 skb->tail = skb->data + offset;
1255 }
1256
1257 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1258
1259 /*
1260 * Add data to an sk_buff
1261 */
1262 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1263 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1264 {
1265 unsigned char *tmp = skb_tail_pointer(skb);
1266 SKB_LINEAR_ASSERT(skb);
1267 skb->tail += len;
1268 skb->len += len;
1269 return tmp;
1270 }
1271
1272 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1273 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1274 {
1275 skb->data -= len;
1276 skb->len += len;
1277 return skb->data;
1278 }
1279
1280 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1281 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1282 {
1283 skb->len -= len;
1284 BUG_ON(skb->len < skb->data_len);
1285 return skb->data += len;
1286 }
1287
1288 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1289 {
1290 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1291 }
1292
1293 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1294
1295 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1296 {
1297 if (len > skb_headlen(skb) &&
1298 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1299 return NULL;
1300 skb->len -= len;
1301 return skb->data += len;
1302 }
1303
1304 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1305 {
1306 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1307 }
1308
1309 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1310 {
1311 if (likely(len <= skb_headlen(skb)))
1312 return 1;
1313 if (unlikely(len > skb->len))
1314 return 0;
1315 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1316 }
1317
1318 /**
1319 * skb_headroom - bytes at buffer head
1320 * @skb: buffer to check
1321 *
1322 * Return the number of bytes of free space at the head of an &sk_buff.
1323 */
1324 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1325 {
1326 return skb->data - skb->head;
1327 }
1328
1329 /**
1330 * skb_tailroom - bytes at buffer end
1331 * @skb: buffer to check
1332 *
1333 * Return the number of bytes of free space at the tail of an sk_buff
1334 */
1335 static inline int skb_tailroom(const struct sk_buff *skb)
1336 {
1337 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1338 }
1339
1340 /**
1341 * skb_reserve - adjust headroom
1342 * @skb: buffer to alter
1343 * @len: bytes to move
1344 *
1345 * Increase the headroom of an empty &sk_buff by reducing the tail
1346 * room. This is only allowed for an empty buffer.
1347 */
1348 static inline void skb_reserve(struct sk_buff *skb, int len)
1349 {
1350 skb->data += len;
1351 skb->tail += len;
1352 }
1353
1354 static inline void skb_reset_mac_len(struct sk_buff *skb)
1355 {
1356 skb->mac_len = skb->network_header - skb->mac_header;
1357 }
1358
1359 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1360 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1361 {
1362 return skb->head + skb->transport_header;
1363 }
1364
1365 static inline void skb_reset_transport_header(struct sk_buff *skb)
1366 {
1367 skb->transport_header = skb->data - skb->head;
1368 }
1369
1370 static inline void skb_set_transport_header(struct sk_buff *skb,
1371 const int offset)
1372 {
1373 skb_reset_transport_header(skb);
1374 skb->transport_header += offset;
1375 }
1376
1377 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1378 {
1379 return skb->head + skb->network_header;
1380 }
1381
1382 static inline void skb_reset_network_header(struct sk_buff *skb)
1383 {
1384 skb->network_header = skb->data - skb->head;
1385 }
1386
1387 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1388 {
1389 skb_reset_network_header(skb);
1390 skb->network_header += offset;
1391 }
1392
1393 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1394 {
1395 return skb->head + skb->mac_header;
1396 }
1397
1398 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1399 {
1400 return skb->mac_header != ~0U;
1401 }
1402
1403 static inline void skb_reset_mac_header(struct sk_buff *skb)
1404 {
1405 skb->mac_header = skb->data - skb->head;
1406 }
1407
1408 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1409 {
1410 skb_reset_mac_header(skb);
1411 skb->mac_header += offset;
1412 }
1413
1414 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1415
1416 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1417 {
1418 return skb->transport_header;
1419 }
1420
1421 static inline void skb_reset_transport_header(struct sk_buff *skb)
1422 {
1423 skb->transport_header = skb->data;
1424 }
1425
1426 static inline void skb_set_transport_header(struct sk_buff *skb,
1427 const int offset)
1428 {
1429 skb->transport_header = skb->data + offset;
1430 }
1431
1432 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1433 {
1434 return skb->network_header;
1435 }
1436
1437 static inline void skb_reset_network_header(struct sk_buff *skb)
1438 {
1439 skb->network_header = skb->data;
1440 }
1441
1442 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1443 {
1444 skb->network_header = skb->data + offset;
1445 }
1446
1447 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1448 {
1449 return skb->mac_header;
1450 }
1451
1452 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1453 {
1454 return skb->mac_header != NULL;
1455 }
1456
1457 static inline void skb_reset_mac_header(struct sk_buff *skb)
1458 {
1459 skb->mac_header = skb->data;
1460 }
1461
1462 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1463 {
1464 skb->mac_header = skb->data + offset;
1465 }
1466 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1467
1468 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1469 {
1470 return skb->csum_start - skb_headroom(skb);
1471 }
1472
1473 static inline int skb_transport_offset(const struct sk_buff *skb)
1474 {
1475 return skb_transport_header(skb) - skb->data;
1476 }
1477
1478 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1479 {
1480 return skb->transport_header - skb->network_header;
1481 }
1482
1483 static inline int skb_network_offset(const struct sk_buff *skb)
1484 {
1485 return skb_network_header(skb) - skb->data;
1486 }
1487
1488 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1489 {
1490 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1491 }
1492
1493 /*
1494 * CPUs often take a performance hit when accessing unaligned memory
1495 * locations. The actual performance hit varies, it can be small if the
1496 * hardware handles it or large if we have to take an exception and fix it
1497 * in software.
1498 *
1499 * Since an ethernet header is 14 bytes network drivers often end up with
1500 * the IP header at an unaligned offset. The IP header can be aligned by
1501 * shifting the start of the packet by 2 bytes. Drivers should do this
1502 * with:
1503 *
1504 * skb_reserve(skb, NET_IP_ALIGN);
1505 *
1506 * The downside to this alignment of the IP header is that the DMA is now
1507 * unaligned. On some architectures the cost of an unaligned DMA is high
1508 * and this cost outweighs the gains made by aligning the IP header.
1509 *
1510 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1511 * to be overridden.
1512 */
1513 #ifndef NET_IP_ALIGN
1514 #define NET_IP_ALIGN 2
1515 #endif
1516
1517 /*
1518 * The networking layer reserves some headroom in skb data (via
1519 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1520 * the header has to grow. In the default case, if the header has to grow
1521 * 32 bytes or less we avoid the reallocation.
1522 *
1523 * Unfortunately this headroom changes the DMA alignment of the resulting
1524 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1525 * on some architectures. An architecture can override this value,
1526 * perhaps setting it to a cacheline in size (since that will maintain
1527 * cacheline alignment of the DMA). It must be a power of 2.
1528 *
1529 * Various parts of the networking layer expect at least 32 bytes of
1530 * headroom, you should not reduce this.
1531 *
1532 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1533 * to reduce average number of cache lines per packet.
1534 * get_rps_cpus() for example only access one 64 bytes aligned block :
1535 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1536 */
1537 #ifndef NET_SKB_PAD
1538 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1539 #endif
1540
1541 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1542
1543 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1544 {
1545 if (unlikely(skb_is_nonlinear(skb))) {
1546 WARN_ON(1);
1547 return;
1548 }
1549 skb->len = len;
1550 skb_set_tail_pointer(skb, len);
1551 }
1552
1553 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1554
1555 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1556 {
1557 if (skb->data_len)
1558 return ___pskb_trim(skb, len);
1559 __skb_trim(skb, len);
1560 return 0;
1561 }
1562
1563 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1564 {
1565 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1566 }
1567
1568 /**
1569 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1570 * @skb: buffer to alter
1571 * @len: new length
1572 *
1573 * This is identical to pskb_trim except that the caller knows that
1574 * the skb is not cloned so we should never get an error due to out-
1575 * of-memory.
1576 */
1577 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1578 {
1579 int err = pskb_trim(skb, len);
1580 BUG_ON(err);
1581 }
1582
1583 /**
1584 * skb_orphan - orphan a buffer
1585 * @skb: buffer to orphan
1586 *
1587 * If a buffer currently has an owner then we call the owner's
1588 * destructor function and make the @skb unowned. The buffer continues
1589 * to exist but is no longer charged to its former owner.
1590 */
1591 static inline void skb_orphan(struct sk_buff *skb)
1592 {
1593 if (skb->destructor)
1594 skb->destructor(skb);
1595 skb->destructor = NULL;
1596 skb->sk = NULL;
1597 }
1598
1599 /**
1600 * __skb_queue_purge - empty a list
1601 * @list: list to empty
1602 *
1603 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1604 * the list and one reference dropped. This function does not take the
1605 * list lock and the caller must hold the relevant locks to use it.
1606 */
1607 extern void skb_queue_purge(struct sk_buff_head *list);
1608 static inline void __skb_queue_purge(struct sk_buff_head *list)
1609 {
1610 struct sk_buff *skb;
1611 while ((skb = __skb_dequeue(list)) != NULL)
1612 kfree_skb(skb);
1613 }
1614
1615 /**
1616 * __dev_alloc_skb - allocate an skbuff for receiving
1617 * @length: length to allocate
1618 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1619 *
1620 * Allocate a new &sk_buff and assign it a usage count of one. The
1621 * buffer has unspecified headroom built in. Users should allocate
1622 * the headroom they think they need without accounting for the
1623 * built in space. The built in space is used for optimisations.
1624 *
1625 * %NULL is returned if there is no free memory.
1626 */
1627 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1628 gfp_t gfp_mask)
1629 {
1630 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1631 if (likely(skb))
1632 skb_reserve(skb, NET_SKB_PAD);
1633 return skb;
1634 }
1635
1636 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1637
1638 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1639 unsigned int length, gfp_t gfp_mask);
1640
1641 /**
1642 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1643 * @dev: network device to receive on
1644 * @length: length to allocate
1645 *
1646 * Allocate a new &sk_buff and assign it a usage count of one. The
1647 * buffer has unspecified headroom built in. Users should allocate
1648 * the headroom they think they need without accounting for the
1649 * built in space. The built in space is used for optimisations.
1650 *
1651 * %NULL is returned if there is no free memory. Although this function
1652 * allocates memory it can be called from an interrupt.
1653 */
1654 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1655 unsigned int length)
1656 {
1657 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1658 }
1659
1660 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1661 unsigned int length, gfp_t gfp)
1662 {
1663 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1664
1665 if (NET_IP_ALIGN && skb)
1666 skb_reserve(skb, NET_IP_ALIGN);
1667 return skb;
1668 }
1669
1670 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1671 unsigned int length)
1672 {
1673 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1674 }
1675
1676 /**
1677 * skb_frag_page - retrieve the page refered to by a paged fragment
1678 * @frag: the paged fragment
1679 *
1680 * Returns the &struct page associated with @frag.
1681 */
1682 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1683 {
1684 return frag->page.p;
1685 }
1686
1687 /**
1688 * __skb_frag_ref - take an addition reference on a paged fragment.
1689 * @frag: the paged fragment
1690 *
1691 * Takes an additional reference on the paged fragment @frag.
1692 */
1693 static inline void __skb_frag_ref(skb_frag_t *frag)
1694 {
1695 get_page(skb_frag_page(frag));
1696 }
1697
1698 /**
1699 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1700 * @skb: the buffer
1701 * @f: the fragment offset.
1702 *
1703 * Takes an additional reference on the @f'th paged fragment of @skb.
1704 */
1705 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1706 {
1707 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1708 }
1709
1710 /**
1711 * __skb_frag_unref - release a reference on a paged fragment.
1712 * @frag: the paged fragment
1713 *
1714 * Releases a reference on the paged fragment @frag.
1715 */
1716 static inline void __skb_frag_unref(skb_frag_t *frag)
1717 {
1718 put_page(skb_frag_page(frag));
1719 }
1720
1721 /**
1722 * skb_frag_unref - release a reference on a paged fragment of an skb.
1723 * @skb: the buffer
1724 * @f: the fragment offset
1725 *
1726 * Releases a reference on the @f'th paged fragment of @skb.
1727 */
1728 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1729 {
1730 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1731 }
1732
1733 /**
1734 * skb_frag_address - gets the address of the data contained in a paged fragment
1735 * @frag: the paged fragment buffer
1736 *
1737 * Returns the address of the data within @frag. The page must already
1738 * be mapped.
1739 */
1740 static inline void *skb_frag_address(const skb_frag_t *frag)
1741 {
1742 return page_address(skb_frag_page(frag)) + frag->page_offset;
1743 }
1744
1745 /**
1746 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1747 * @frag: the paged fragment buffer
1748 *
1749 * Returns the address of the data within @frag. Checks that the page
1750 * is mapped and returns %NULL otherwise.
1751 */
1752 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1753 {
1754 void *ptr = page_address(skb_frag_page(frag));
1755 if (unlikely(!ptr))
1756 return NULL;
1757
1758 return ptr + frag->page_offset;
1759 }
1760
1761 /**
1762 * __skb_frag_set_page - sets the page contained in a paged fragment
1763 * @frag: the paged fragment
1764 * @page: the page to set
1765 *
1766 * Sets the fragment @frag to contain @page.
1767 */
1768 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1769 {
1770 frag->page.p = page;
1771 }
1772
1773 /**
1774 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1775 * @skb: the buffer
1776 * @f: the fragment offset
1777 * @page: the page to set
1778 *
1779 * Sets the @f'th fragment of @skb to contain @page.
1780 */
1781 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1782 struct page *page)
1783 {
1784 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1785 }
1786
1787 /**
1788 * skb_frag_dma_map - maps a paged fragment via the DMA API
1789 * @dev: the device to map the fragment to
1790 * @frag: the paged fragment to map
1791 * @offset: the offset within the fragment (starting at the
1792 * fragment's own offset)
1793 * @size: the number of bytes to map
1794 * @dir: the direction of the mapping (%PCI_DMA_*)
1795 *
1796 * Maps the page associated with @frag to @device.
1797 */
1798 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1799 const skb_frag_t *frag,
1800 size_t offset, size_t size,
1801 enum dma_data_direction dir)
1802 {
1803 return dma_map_page(dev, skb_frag_page(frag),
1804 frag->page_offset + offset, size, dir);
1805 }
1806
1807 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1808 gfp_t gfp_mask)
1809 {
1810 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1811 }
1812
1813 /**
1814 * skb_clone_writable - is the header of a clone writable
1815 * @skb: buffer to check
1816 * @len: length up to which to write
1817 *
1818 * Returns true if modifying the header part of the cloned buffer
1819 * does not requires the data to be copied.
1820 */
1821 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1822 {
1823 return !skb_header_cloned(skb) &&
1824 skb_headroom(skb) + len <= skb->hdr_len;
1825 }
1826
1827 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1828 int cloned)
1829 {
1830 int delta = 0;
1831
1832 if (headroom < NET_SKB_PAD)
1833 headroom = NET_SKB_PAD;
1834 if (headroom > skb_headroom(skb))
1835 delta = headroom - skb_headroom(skb);
1836
1837 if (delta || cloned)
1838 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1839 GFP_ATOMIC);
1840 return 0;
1841 }
1842
1843 /**
1844 * skb_cow - copy header of skb when it is required
1845 * @skb: buffer to cow
1846 * @headroom: needed headroom
1847 *
1848 * If the skb passed lacks sufficient headroom or its data part
1849 * is shared, data is reallocated. If reallocation fails, an error
1850 * is returned and original skb is not changed.
1851 *
1852 * The result is skb with writable area skb->head...skb->tail
1853 * and at least @headroom of space at head.
1854 */
1855 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1856 {
1857 return __skb_cow(skb, headroom, skb_cloned(skb));
1858 }
1859
1860 /**
1861 * skb_cow_head - skb_cow but only making the head writable
1862 * @skb: buffer to cow
1863 * @headroom: needed headroom
1864 *
1865 * This function is identical to skb_cow except that we replace the
1866 * skb_cloned check by skb_header_cloned. It should be used when
1867 * you only need to push on some header and do not need to modify
1868 * the data.
1869 */
1870 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1871 {
1872 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1873 }
1874
1875 /**
1876 * skb_padto - pad an skbuff up to a minimal size
1877 * @skb: buffer to pad
1878 * @len: minimal length
1879 *
1880 * Pads up a buffer to ensure the trailing bytes exist and are
1881 * blanked. If the buffer already contains sufficient data it
1882 * is untouched. Otherwise it is extended. Returns zero on
1883 * success. The skb is freed on error.
1884 */
1885
1886 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1887 {
1888 unsigned int size = skb->len;
1889 if (likely(size >= len))
1890 return 0;
1891 return skb_pad(skb, len - size);
1892 }
1893
1894 static inline int skb_add_data(struct sk_buff *skb,
1895 char __user *from, int copy)
1896 {
1897 const int off = skb->len;
1898
1899 if (skb->ip_summed == CHECKSUM_NONE) {
1900 int err = 0;
1901 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1902 copy, 0, &err);
1903 if (!err) {
1904 skb->csum = csum_block_add(skb->csum, csum, off);
1905 return 0;
1906 }
1907 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1908 return 0;
1909
1910 __skb_trim(skb, off);
1911 return -EFAULT;
1912 }
1913
1914 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1915 const struct page *page, int off)
1916 {
1917 if (i) {
1918 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1919
1920 return page == skb_frag_page(frag) &&
1921 off == frag->page_offset + skb_frag_size(frag);
1922 }
1923 return 0;
1924 }
1925
1926 static inline int __skb_linearize(struct sk_buff *skb)
1927 {
1928 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1929 }
1930
1931 /**
1932 * skb_linearize - convert paged skb to linear one
1933 * @skb: buffer to linarize
1934 *
1935 * If there is no free memory -ENOMEM is returned, otherwise zero
1936 * is returned and the old skb data released.
1937 */
1938 static inline int skb_linearize(struct sk_buff *skb)
1939 {
1940 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1941 }
1942
1943 /**
1944 * skb_linearize_cow - make sure skb is linear and writable
1945 * @skb: buffer to process
1946 *
1947 * If there is no free memory -ENOMEM is returned, otherwise zero
1948 * is returned and the old skb data released.
1949 */
1950 static inline int skb_linearize_cow(struct sk_buff *skb)
1951 {
1952 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1953 __skb_linearize(skb) : 0;
1954 }
1955
1956 /**
1957 * skb_postpull_rcsum - update checksum for received skb after pull
1958 * @skb: buffer to update
1959 * @start: start of data before pull
1960 * @len: length of data pulled
1961 *
1962 * After doing a pull on a received packet, you need to call this to
1963 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1964 * CHECKSUM_NONE so that it can be recomputed from scratch.
1965 */
1966
1967 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1968 const void *start, unsigned int len)
1969 {
1970 if (skb->ip_summed == CHECKSUM_COMPLETE)
1971 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1972 }
1973
1974 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1975
1976 /**
1977 * pskb_trim_rcsum - trim received skb and update checksum
1978 * @skb: buffer to trim
1979 * @len: new length
1980 *
1981 * This is exactly the same as pskb_trim except that it ensures the
1982 * checksum of received packets are still valid after the operation.
1983 */
1984
1985 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1986 {
1987 if (likely(len >= skb->len))
1988 return 0;
1989 if (skb->ip_summed == CHECKSUM_COMPLETE)
1990 skb->ip_summed = CHECKSUM_NONE;
1991 return __pskb_trim(skb, len);
1992 }
1993
1994 #define skb_queue_walk(queue, skb) \
1995 for (skb = (queue)->next; \
1996 skb != (struct sk_buff *)(queue); \
1997 skb = skb->next)
1998
1999 #define skb_queue_walk_safe(queue, skb, tmp) \
2000 for (skb = (queue)->next, tmp = skb->next; \
2001 skb != (struct sk_buff *)(queue); \
2002 skb = tmp, tmp = skb->next)
2003
2004 #define skb_queue_walk_from(queue, skb) \
2005 for (; skb != (struct sk_buff *)(queue); \
2006 skb = skb->next)
2007
2008 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2009 for (tmp = skb->next; \
2010 skb != (struct sk_buff *)(queue); \
2011 skb = tmp, tmp = skb->next)
2012
2013 #define skb_queue_reverse_walk(queue, skb) \
2014 for (skb = (queue)->prev; \
2015 skb != (struct sk_buff *)(queue); \
2016 skb = skb->prev)
2017
2018 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2019 for (skb = (queue)->prev, tmp = skb->prev; \
2020 skb != (struct sk_buff *)(queue); \
2021 skb = tmp, tmp = skb->prev)
2022
2023 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2024 for (tmp = skb->prev; \
2025 skb != (struct sk_buff *)(queue); \
2026 skb = tmp, tmp = skb->prev)
2027
2028 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2029 {
2030 return skb_shinfo(skb)->frag_list != NULL;
2031 }
2032
2033 static inline void skb_frag_list_init(struct sk_buff *skb)
2034 {
2035 skb_shinfo(skb)->frag_list = NULL;
2036 }
2037
2038 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2039 {
2040 frag->next = skb_shinfo(skb)->frag_list;
2041 skb_shinfo(skb)->frag_list = frag;
2042 }
2043
2044 #define skb_walk_frags(skb, iter) \
2045 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2046
2047 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2048 int *peeked, int *err);
2049 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2050 int noblock, int *err);
2051 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2052 struct poll_table_struct *wait);
2053 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2054 int offset, struct iovec *to,
2055 int size);
2056 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2057 int hlen,
2058 struct iovec *iov);
2059 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2060 int offset,
2061 const struct iovec *from,
2062 int from_offset,
2063 int len);
2064 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2065 int offset,
2066 const struct iovec *to,
2067 int to_offset,
2068 int size);
2069 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2070 extern void skb_free_datagram_locked(struct sock *sk,
2071 struct sk_buff *skb);
2072 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2073 unsigned int flags);
2074 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2075 int len, __wsum csum);
2076 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2077 void *to, int len);
2078 extern int skb_store_bits(struct sk_buff *skb, int offset,
2079 const void *from, int len);
2080 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2081 int offset, u8 *to, int len,
2082 __wsum csum);
2083 extern int skb_splice_bits(struct sk_buff *skb,
2084 unsigned int offset,
2085 struct pipe_inode_info *pipe,
2086 unsigned int len,
2087 unsigned int flags);
2088 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2089 extern void skb_split(struct sk_buff *skb,
2090 struct sk_buff *skb1, const u32 len);
2091 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2092 int shiftlen);
2093
2094 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2095 netdev_features_t features);
2096
2097 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2098 int len, void *buffer)
2099 {
2100 int hlen = skb_headlen(skb);
2101
2102 if (hlen - offset >= len)
2103 return skb->data + offset;
2104
2105 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2106 return NULL;
2107
2108 return buffer;
2109 }
2110
2111 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2112 void *to,
2113 const unsigned int len)
2114 {
2115 memcpy(to, skb->data, len);
2116 }
2117
2118 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2119 const int offset, void *to,
2120 const unsigned int len)
2121 {
2122 memcpy(to, skb->data + offset, len);
2123 }
2124
2125 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2126 const void *from,
2127 const unsigned int len)
2128 {
2129 memcpy(skb->data, from, len);
2130 }
2131
2132 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2133 const int offset,
2134 const void *from,
2135 const unsigned int len)
2136 {
2137 memcpy(skb->data + offset, from, len);
2138 }
2139
2140 extern void skb_init(void);
2141
2142 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2143 {
2144 return skb->tstamp;
2145 }
2146
2147 /**
2148 * skb_get_timestamp - get timestamp from a skb
2149 * @skb: skb to get stamp from
2150 * @stamp: pointer to struct timeval to store stamp in
2151 *
2152 * Timestamps are stored in the skb as offsets to a base timestamp.
2153 * This function converts the offset back to a struct timeval and stores
2154 * it in stamp.
2155 */
2156 static inline void skb_get_timestamp(const struct sk_buff *skb,
2157 struct timeval *stamp)
2158 {
2159 *stamp = ktime_to_timeval(skb->tstamp);
2160 }
2161
2162 static inline void skb_get_timestampns(const struct sk_buff *skb,
2163 struct timespec *stamp)
2164 {
2165 *stamp = ktime_to_timespec(skb->tstamp);
2166 }
2167
2168 static inline void __net_timestamp(struct sk_buff *skb)
2169 {
2170 skb->tstamp = ktime_get_real();
2171 }
2172
2173 static inline ktime_t net_timedelta(ktime_t t)
2174 {
2175 return ktime_sub(ktime_get_real(), t);
2176 }
2177
2178 static inline ktime_t net_invalid_timestamp(void)
2179 {
2180 return ktime_set(0, 0);
2181 }
2182
2183 extern void skb_timestamping_init(void);
2184
2185 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2186
2187 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2188 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2189
2190 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2191
2192 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2193 {
2194 }
2195
2196 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2197 {
2198 return false;
2199 }
2200
2201 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2202
2203 /**
2204 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2205 *
2206 * PHY drivers may accept clones of transmitted packets for
2207 * timestamping via their phy_driver.txtstamp method. These drivers
2208 * must call this function to return the skb back to the stack, with
2209 * or without a timestamp.
2210 *
2211 * @skb: clone of the the original outgoing packet
2212 * @hwtstamps: hardware time stamps, may be NULL if not available
2213 *
2214 */
2215 void skb_complete_tx_timestamp(struct sk_buff *skb,
2216 struct skb_shared_hwtstamps *hwtstamps);
2217
2218 /**
2219 * skb_tstamp_tx - queue clone of skb with send time stamps
2220 * @orig_skb: the original outgoing packet
2221 * @hwtstamps: hardware time stamps, may be NULL if not available
2222 *
2223 * If the skb has a socket associated, then this function clones the
2224 * skb (thus sharing the actual data and optional structures), stores
2225 * the optional hardware time stamping information (if non NULL) or
2226 * generates a software time stamp (otherwise), then queues the clone
2227 * to the error queue of the socket. Errors are silently ignored.
2228 */
2229 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2230 struct skb_shared_hwtstamps *hwtstamps);
2231
2232 static inline void sw_tx_timestamp(struct sk_buff *skb)
2233 {
2234 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2235 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2236 skb_tstamp_tx(skb, NULL);
2237 }
2238
2239 /**
2240 * skb_tx_timestamp() - Driver hook for transmit timestamping
2241 *
2242 * Ethernet MAC Drivers should call this function in their hard_xmit()
2243 * function immediately before giving the sk_buff to the MAC hardware.
2244 *
2245 * @skb: A socket buffer.
2246 */
2247 static inline void skb_tx_timestamp(struct sk_buff *skb)
2248 {
2249 skb_clone_tx_timestamp(skb);
2250 sw_tx_timestamp(skb);
2251 }
2252
2253 /**
2254 * skb_complete_wifi_ack - deliver skb with wifi status
2255 *
2256 * @skb: the original outgoing packet
2257 * @acked: ack status
2258 *
2259 */
2260 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2261
2262 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2263 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2264
2265 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2266 {
2267 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2268 }
2269
2270 /**
2271 * skb_checksum_complete - Calculate checksum of an entire packet
2272 * @skb: packet to process
2273 *
2274 * This function calculates the checksum over the entire packet plus
2275 * the value of skb->csum. The latter can be used to supply the
2276 * checksum of a pseudo header as used by TCP/UDP. It returns the
2277 * checksum.
2278 *
2279 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2280 * this function can be used to verify that checksum on received
2281 * packets. In that case the function should return zero if the
2282 * checksum is correct. In particular, this function will return zero
2283 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2284 * hardware has already verified the correctness of the checksum.
2285 */
2286 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2287 {
2288 return skb_csum_unnecessary(skb) ?
2289 0 : __skb_checksum_complete(skb);
2290 }
2291
2292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2293 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2294 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2295 {
2296 if (nfct && atomic_dec_and_test(&nfct->use))
2297 nf_conntrack_destroy(nfct);
2298 }
2299 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2300 {
2301 if (nfct)
2302 atomic_inc(&nfct->use);
2303 }
2304 #endif
2305 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2306 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2307 {
2308 if (skb)
2309 atomic_inc(&skb->users);
2310 }
2311 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2312 {
2313 if (skb)
2314 kfree_skb(skb);
2315 }
2316 #endif
2317 #ifdef CONFIG_BRIDGE_NETFILTER
2318 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2319 {
2320 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2321 kfree(nf_bridge);
2322 }
2323 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2324 {
2325 if (nf_bridge)
2326 atomic_inc(&nf_bridge->use);
2327 }
2328 #endif /* CONFIG_BRIDGE_NETFILTER */
2329 static inline void nf_reset(struct sk_buff *skb)
2330 {
2331 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2332 nf_conntrack_put(skb->nfct);
2333 skb->nfct = NULL;
2334 #endif
2335 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2336 nf_conntrack_put_reasm(skb->nfct_reasm);
2337 skb->nfct_reasm = NULL;
2338 #endif
2339 #ifdef CONFIG_BRIDGE_NETFILTER
2340 nf_bridge_put(skb->nf_bridge);
2341 skb->nf_bridge = NULL;
2342 #endif
2343 }
2344
2345 /* Note: This doesn't put any conntrack and bridge info in dst. */
2346 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2347 {
2348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2349 dst->nfct = src->nfct;
2350 nf_conntrack_get(src->nfct);
2351 dst->nfctinfo = src->nfctinfo;
2352 #endif
2353 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2354 dst->nfct_reasm = src->nfct_reasm;
2355 nf_conntrack_get_reasm(src->nfct_reasm);
2356 #endif
2357 #ifdef CONFIG_BRIDGE_NETFILTER
2358 dst->nf_bridge = src->nf_bridge;
2359 nf_bridge_get(src->nf_bridge);
2360 #endif
2361 }
2362
2363 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2364 {
2365 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2366 nf_conntrack_put(dst->nfct);
2367 #endif
2368 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2369 nf_conntrack_put_reasm(dst->nfct_reasm);
2370 #endif
2371 #ifdef CONFIG_BRIDGE_NETFILTER
2372 nf_bridge_put(dst->nf_bridge);
2373 #endif
2374 __nf_copy(dst, src);
2375 }
2376
2377 #ifdef CONFIG_NETWORK_SECMARK
2378 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2379 {
2380 to->secmark = from->secmark;
2381 }
2382
2383 static inline void skb_init_secmark(struct sk_buff *skb)
2384 {
2385 skb->secmark = 0;
2386 }
2387 #else
2388 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2389 { }
2390
2391 static inline void skb_init_secmark(struct sk_buff *skb)
2392 { }
2393 #endif
2394
2395 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2396 {
2397 skb->queue_mapping = queue_mapping;
2398 }
2399
2400 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2401 {
2402 return skb->queue_mapping;
2403 }
2404
2405 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2406 {
2407 to->queue_mapping = from->queue_mapping;
2408 }
2409
2410 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2411 {
2412 skb->queue_mapping = rx_queue + 1;
2413 }
2414
2415 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2416 {
2417 return skb->queue_mapping - 1;
2418 }
2419
2420 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2421 {
2422 return skb->queue_mapping != 0;
2423 }
2424
2425 extern u16 __skb_tx_hash(const struct net_device *dev,
2426 const struct sk_buff *skb,
2427 unsigned int num_tx_queues);
2428
2429 #ifdef CONFIG_XFRM
2430 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2431 {
2432 return skb->sp;
2433 }
2434 #else
2435 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2436 {
2437 return NULL;
2438 }
2439 #endif
2440
2441 static inline int skb_is_gso(const struct sk_buff *skb)
2442 {
2443 return skb_shinfo(skb)->gso_size;
2444 }
2445
2446 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2447 {
2448 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2449 }
2450
2451 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2452
2453 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2454 {
2455 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2456 * wanted then gso_type will be set. */
2457 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2458
2459 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2460 unlikely(shinfo->gso_type == 0)) {
2461 __skb_warn_lro_forwarding(skb);
2462 return true;
2463 }
2464 return false;
2465 }
2466
2467 static inline void skb_forward_csum(struct sk_buff *skb)
2468 {
2469 /* Unfortunately we don't support this one. Any brave souls? */
2470 if (skb->ip_summed == CHECKSUM_COMPLETE)
2471 skb->ip_summed = CHECKSUM_NONE;
2472 }
2473
2474 /**
2475 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2476 * @skb: skb to check
2477 *
2478 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2479 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2480 * use this helper, to document places where we make this assertion.
2481 */
2482 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2483 {
2484 #ifdef DEBUG
2485 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2486 #endif
2487 }
2488
2489 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2490
2491 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2492 {
2493 if (irqs_disabled())
2494 return false;
2495
2496 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2497 return false;
2498
2499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2500 return false;
2501
2502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2503 if (skb_end_pointer(skb) - skb->head < skb_size)
2504 return false;
2505
2506 if (skb_shared(skb) || skb_cloned(skb))
2507 return false;
2508
2509 return true;
2510 }
2511 #endif /* __KERNEL__ */
2512 #endif /* _LINUX_SKBUFF_H */
This page took 0.084167 seconds and 5 git commands to generate.