audit: x86: drop arch from __audit_syscall_entry() interface
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75
76 #include "audit.h"
77
78 /* flags stating the success for a syscall */
79 #define AUDITSC_INVALID 0
80 #define AUDITSC_SUCCESS 1
81 #define AUDITSC_FAILURE 2
82
83 /* no execve audit message should be longer than this (userspace limits) */
84 #define MAX_EXECVE_AUDIT_LEN 7500
85
86 /* max length to print of cmdline/proctitle value during audit */
87 #define MAX_PROCTITLE_AUDIT_LEN 128
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_aux_data {
96 struct audit_aux_data *next;
97 int type;
98 };
99
100 #define AUDIT_AUX_IPCPERM 0
101
102 /* Number of target pids per aux struct. */
103 #define AUDIT_AUX_PIDS 16
104
105 struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
108 kuid_t target_auid[AUDIT_AUX_PIDS];
109 kuid_t target_uid[AUDIT_AUX_PIDS];
110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
111 u32 target_sid[AUDIT_AUX_PIDS];
112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
113 int pid_count;
114 };
115
116 struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122 };
123
124 struct audit_tree_refs {
125 struct audit_tree_refs *next;
126 struct audit_chunk *c[31];
127 };
128
129 static inline int open_arg(int flags, int mask)
130 {
131 int n = ACC_MODE(flags);
132 if (flags & (O_TRUNC | O_CREAT))
133 n |= AUDIT_PERM_WRITE;
134 return n & mask;
135 }
136
137 static int audit_match_perm(struct audit_context *ctx, int mask)
138 {
139 unsigned n;
140 if (unlikely(!ctx))
141 return 0;
142 n = ctx->major;
143
144 switch (audit_classify_syscall(ctx->arch, n)) {
145 case 0: /* native */
146 if ((mask & AUDIT_PERM_WRITE) &&
147 audit_match_class(AUDIT_CLASS_WRITE, n))
148 return 1;
149 if ((mask & AUDIT_PERM_READ) &&
150 audit_match_class(AUDIT_CLASS_READ, n))
151 return 1;
152 if ((mask & AUDIT_PERM_ATTR) &&
153 audit_match_class(AUDIT_CLASS_CHATTR, n))
154 return 1;
155 return 0;
156 case 1: /* 32bit on biarch */
157 if ((mask & AUDIT_PERM_WRITE) &&
158 audit_match_class(AUDIT_CLASS_WRITE_32, n))
159 return 1;
160 if ((mask & AUDIT_PERM_READ) &&
161 audit_match_class(AUDIT_CLASS_READ_32, n))
162 return 1;
163 if ((mask & AUDIT_PERM_ATTR) &&
164 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
165 return 1;
166 return 0;
167 case 2: /* open */
168 return mask & ACC_MODE(ctx->argv[1]);
169 case 3: /* openat */
170 return mask & ACC_MODE(ctx->argv[2]);
171 case 4: /* socketcall */
172 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
173 case 5: /* execve */
174 return mask & AUDIT_PERM_EXEC;
175 default:
176 return 0;
177 }
178 }
179
180 static int audit_match_filetype(struct audit_context *ctx, int val)
181 {
182 struct audit_names *n;
183 umode_t mode = (umode_t)val;
184
185 if (unlikely(!ctx))
186 return 0;
187
188 list_for_each_entry(n, &ctx->names_list, list) {
189 if ((n->ino != -1) &&
190 ((n->mode & S_IFMT) == mode))
191 return 1;
192 }
193
194 return 0;
195 }
196
197 /*
198 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
199 * ->first_trees points to its beginning, ->trees - to the current end of data.
200 * ->tree_count is the number of free entries in array pointed to by ->trees.
201 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
202 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
203 * it's going to remain 1-element for almost any setup) until we free context itself.
204 * References in it _are_ dropped - at the same time we free/drop aux stuff.
205 */
206
207 #ifdef CONFIG_AUDIT_TREE
208 static void audit_set_auditable(struct audit_context *ctx)
209 {
210 if (!ctx->prio) {
211 ctx->prio = 1;
212 ctx->current_state = AUDIT_RECORD_CONTEXT;
213 }
214 }
215
216 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
217 {
218 struct audit_tree_refs *p = ctx->trees;
219 int left = ctx->tree_count;
220 if (likely(left)) {
221 p->c[--left] = chunk;
222 ctx->tree_count = left;
223 return 1;
224 }
225 if (!p)
226 return 0;
227 p = p->next;
228 if (p) {
229 p->c[30] = chunk;
230 ctx->trees = p;
231 ctx->tree_count = 30;
232 return 1;
233 }
234 return 0;
235 }
236
237 static int grow_tree_refs(struct audit_context *ctx)
238 {
239 struct audit_tree_refs *p = ctx->trees;
240 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
241 if (!ctx->trees) {
242 ctx->trees = p;
243 return 0;
244 }
245 if (p)
246 p->next = ctx->trees;
247 else
248 ctx->first_trees = ctx->trees;
249 ctx->tree_count = 31;
250 return 1;
251 }
252 #endif
253
254 static void unroll_tree_refs(struct audit_context *ctx,
255 struct audit_tree_refs *p, int count)
256 {
257 #ifdef CONFIG_AUDIT_TREE
258 struct audit_tree_refs *q;
259 int n;
260 if (!p) {
261 /* we started with empty chain */
262 p = ctx->first_trees;
263 count = 31;
264 /* if the very first allocation has failed, nothing to do */
265 if (!p)
266 return;
267 }
268 n = count;
269 for (q = p; q != ctx->trees; q = q->next, n = 31) {
270 while (n--) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
273 }
274 }
275 while (n-- > ctx->tree_count) {
276 audit_put_chunk(q->c[n]);
277 q->c[n] = NULL;
278 }
279 ctx->trees = p;
280 ctx->tree_count = count;
281 #endif
282 }
283
284 static void free_tree_refs(struct audit_context *ctx)
285 {
286 struct audit_tree_refs *p, *q;
287 for (p = ctx->first_trees; p; p = q) {
288 q = p->next;
289 kfree(p);
290 }
291 }
292
293 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
294 {
295 #ifdef CONFIG_AUDIT_TREE
296 struct audit_tree_refs *p;
297 int n;
298 if (!tree)
299 return 0;
300 /* full ones */
301 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
302 for (n = 0; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306 /* partial */
307 if (p) {
308 for (n = ctx->tree_count; n < 31; n++)
309 if (audit_tree_match(p->c[n], tree))
310 return 1;
311 }
312 #endif
313 return 0;
314 }
315
316 static int audit_compare_uid(kuid_t uid,
317 struct audit_names *name,
318 struct audit_field *f,
319 struct audit_context *ctx)
320 {
321 struct audit_names *n;
322 int rc;
323
324 if (name) {
325 rc = audit_uid_comparator(uid, f->op, name->uid);
326 if (rc)
327 return rc;
328 }
329
330 if (ctx) {
331 list_for_each_entry(n, &ctx->names_list, list) {
332 rc = audit_uid_comparator(uid, f->op, n->uid);
333 if (rc)
334 return rc;
335 }
336 }
337 return 0;
338 }
339
340 static int audit_compare_gid(kgid_t gid,
341 struct audit_names *name,
342 struct audit_field *f,
343 struct audit_context *ctx)
344 {
345 struct audit_names *n;
346 int rc;
347
348 if (name) {
349 rc = audit_gid_comparator(gid, f->op, name->gid);
350 if (rc)
351 return rc;
352 }
353
354 if (ctx) {
355 list_for_each_entry(n, &ctx->names_list, list) {
356 rc = audit_gid_comparator(gid, f->op, n->gid);
357 if (rc)
358 return rc;
359 }
360 }
361 return 0;
362 }
363
364 static int audit_field_compare(struct task_struct *tsk,
365 const struct cred *cred,
366 struct audit_field *f,
367 struct audit_context *ctx,
368 struct audit_names *name)
369 {
370 switch (f->val) {
371 /* process to file object comparisons */
372 case AUDIT_COMPARE_UID_TO_OBJ_UID:
373 return audit_compare_uid(cred->uid, name, f, ctx);
374 case AUDIT_COMPARE_GID_TO_OBJ_GID:
375 return audit_compare_gid(cred->gid, name, f, ctx);
376 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->euid, name, f, ctx);
378 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->egid, name, f, ctx);
380 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
381 return audit_compare_uid(tsk->loginuid, name, f, ctx);
382 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->suid, name, f, ctx);
384 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->sgid, name, f, ctx);
386 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
387 return audit_compare_uid(cred->fsuid, name, f, ctx);
388 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
389 return audit_compare_gid(cred->fsgid, name, f, ctx);
390 /* uid comparisons */
391 case AUDIT_COMPARE_UID_TO_AUID:
392 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
393 case AUDIT_COMPARE_UID_TO_EUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->euid);
395 case AUDIT_COMPARE_UID_TO_SUID:
396 return audit_uid_comparator(cred->uid, f->op, cred->suid);
397 case AUDIT_COMPARE_UID_TO_FSUID:
398 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
399 /* auid comparisons */
400 case AUDIT_COMPARE_AUID_TO_EUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
402 case AUDIT_COMPARE_AUID_TO_SUID:
403 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
404 case AUDIT_COMPARE_AUID_TO_FSUID:
405 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
406 /* euid comparisons */
407 case AUDIT_COMPARE_EUID_TO_SUID:
408 return audit_uid_comparator(cred->euid, f->op, cred->suid);
409 case AUDIT_COMPARE_EUID_TO_FSUID:
410 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
411 /* suid comparisons */
412 case AUDIT_COMPARE_SUID_TO_FSUID:
413 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
414 /* gid comparisons */
415 case AUDIT_COMPARE_GID_TO_EGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->egid);
417 case AUDIT_COMPARE_GID_TO_SGID:
418 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
419 case AUDIT_COMPARE_GID_TO_FSGID:
420 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
421 /* egid comparisons */
422 case AUDIT_COMPARE_EGID_TO_SGID:
423 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
424 case AUDIT_COMPARE_EGID_TO_FSGID:
425 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
426 /* sgid comparison */
427 case AUDIT_COMPARE_SGID_TO_FSGID:
428 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
429 default:
430 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
431 return 0;
432 }
433 return 0;
434 }
435
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
438 * otherwise.
439 *
440 * If task_creation is true, this is an explicit indication that we are
441 * filtering a task rule at task creation time. This and tsk == current are
442 * the only situations where tsk->cred may be accessed without an rcu read lock.
443 */
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state,
449 bool task_creation)
450 {
451 const struct cred *cred;
452 int i, need_sid = 1;
453 u32 sid;
454
455 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
456
457 for (i = 0; i < rule->field_count; i++) {
458 struct audit_field *f = &rule->fields[i];
459 struct audit_names *n;
460 int result = 0;
461 pid_t pid;
462
463 switch (f->type) {
464 case AUDIT_PID:
465 pid = task_pid_nr(tsk);
466 result = audit_comparator(pid, f->op, f->val);
467 break;
468 case AUDIT_PPID:
469 if (ctx) {
470 if (!ctx->ppid)
471 ctx->ppid = task_ppid_nr(tsk);
472 result = audit_comparator(ctx->ppid, f->op, f->val);
473 }
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_PERS:
514 result = audit_comparator(tsk->personality, f->op, f->val);
515 break;
516 case AUDIT_ARCH:
517 if (ctx)
518 result = audit_comparator(ctx->arch, f->op, f->val);
519 break;
520
521 case AUDIT_EXIT:
522 if (ctx && ctx->return_valid)
523 result = audit_comparator(ctx->return_code, f->op, f->val);
524 break;
525 case AUDIT_SUCCESS:
526 if (ctx && ctx->return_valid) {
527 if (f->val)
528 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
529 else
530 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
531 }
532 break;
533 case AUDIT_DEVMAJOR:
534 if (name) {
535 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
536 audit_comparator(MAJOR(name->rdev), f->op, f->val))
537 ++result;
538 } else if (ctx) {
539 list_for_each_entry(n, &ctx->names_list, list) {
540 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
541 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
542 ++result;
543 break;
544 }
545 }
546 }
547 break;
548 case AUDIT_DEVMINOR:
549 if (name) {
550 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
551 audit_comparator(MINOR(name->rdev), f->op, f->val))
552 ++result;
553 } else if (ctx) {
554 list_for_each_entry(n, &ctx->names_list, list) {
555 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
556 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
557 ++result;
558 break;
559 }
560 }
561 }
562 break;
563 case AUDIT_INODE:
564 if (name)
565 result = audit_comparator(name->ino, f->op, f->val);
566 else if (ctx) {
567 list_for_each_entry(n, &ctx->names_list, list) {
568 if (audit_comparator(n->ino, f->op, f->val)) {
569 ++result;
570 break;
571 }
572 }
573 }
574 break;
575 case AUDIT_OBJ_UID:
576 if (name) {
577 result = audit_uid_comparator(name->uid, f->op, f->uid);
578 } else if (ctx) {
579 list_for_each_entry(n, &ctx->names_list, list) {
580 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
581 ++result;
582 break;
583 }
584 }
585 }
586 break;
587 case AUDIT_OBJ_GID:
588 if (name) {
589 result = audit_gid_comparator(name->gid, f->op, f->gid);
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
593 ++result;
594 break;
595 }
596 }
597 }
598 break;
599 case AUDIT_WATCH:
600 if (name)
601 result = audit_watch_compare(rule->watch, name->ino, name->dev);
602 break;
603 case AUDIT_DIR:
604 if (ctx)
605 result = match_tree_refs(ctx, rule->tree);
606 break;
607 case AUDIT_LOGINUID:
608 result = 0;
609 if (ctx)
610 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
611 break;
612 case AUDIT_LOGINUID_SET:
613 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
614 break;
615 case AUDIT_SUBJ_USER:
616 case AUDIT_SUBJ_ROLE:
617 case AUDIT_SUBJ_TYPE:
618 case AUDIT_SUBJ_SEN:
619 case AUDIT_SUBJ_CLR:
620 /* NOTE: this may return negative values indicating
621 a temporary error. We simply treat this as a
622 match for now to avoid losing information that
623 may be wanted. An error message will also be
624 logged upon error */
625 if (f->lsm_rule) {
626 if (need_sid) {
627 security_task_getsecid(tsk, &sid);
628 need_sid = 0;
629 }
630 result = security_audit_rule_match(sid, f->type,
631 f->op,
632 f->lsm_rule,
633 ctx);
634 }
635 break;
636 case AUDIT_OBJ_USER:
637 case AUDIT_OBJ_ROLE:
638 case AUDIT_OBJ_TYPE:
639 case AUDIT_OBJ_LEV_LOW:
640 case AUDIT_OBJ_LEV_HIGH:
641 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
642 also applies here */
643 if (f->lsm_rule) {
644 /* Find files that match */
645 if (name) {
646 result = security_audit_rule_match(
647 name->osid, f->type, f->op,
648 f->lsm_rule, ctx);
649 } else if (ctx) {
650 list_for_each_entry(n, &ctx->names_list, list) {
651 if (security_audit_rule_match(n->osid, f->type,
652 f->op, f->lsm_rule,
653 ctx)) {
654 ++result;
655 break;
656 }
657 }
658 }
659 /* Find ipc objects that match */
660 if (!ctx || ctx->type != AUDIT_IPC)
661 break;
662 if (security_audit_rule_match(ctx->ipc.osid,
663 f->type, f->op,
664 f->lsm_rule, ctx))
665 ++result;
666 }
667 break;
668 case AUDIT_ARG0:
669 case AUDIT_ARG1:
670 case AUDIT_ARG2:
671 case AUDIT_ARG3:
672 if (ctx)
673 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
674 break;
675 case AUDIT_FILTERKEY:
676 /* ignore this field for filtering */
677 result = 1;
678 break;
679 case AUDIT_PERM:
680 result = audit_match_perm(ctx, f->val);
681 break;
682 case AUDIT_FILETYPE:
683 result = audit_match_filetype(ctx, f->val);
684 break;
685 case AUDIT_FIELD_COMPARE:
686 result = audit_field_compare(tsk, cred, f, ctx, name);
687 break;
688 }
689 if (!result)
690 return 0;
691 }
692
693 if (ctx) {
694 if (rule->prio <= ctx->prio)
695 return 0;
696 if (rule->filterkey) {
697 kfree(ctx->filterkey);
698 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
699 }
700 ctx->prio = rule->prio;
701 }
702 switch (rule->action) {
703 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
704 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
705 }
706 return 1;
707 }
708
709 /* At process creation time, we can determine if system-call auditing is
710 * completely disabled for this task. Since we only have the task
711 * structure at this point, we can only check uid and gid.
712 */
713 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
714 {
715 struct audit_entry *e;
716 enum audit_state state;
717
718 rcu_read_lock();
719 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
720 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
721 &state, true)) {
722 if (state == AUDIT_RECORD_CONTEXT)
723 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
724 rcu_read_unlock();
725 return state;
726 }
727 }
728 rcu_read_unlock();
729 return AUDIT_BUILD_CONTEXT;
730 }
731
732 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
733 {
734 int word, bit;
735
736 if (val > 0xffffffff)
737 return false;
738
739 word = AUDIT_WORD(val);
740 if (word >= AUDIT_BITMASK_SIZE)
741 return false;
742
743 bit = AUDIT_BIT(val);
744
745 return rule->mask[word] & bit;
746 }
747
748 /* At syscall entry and exit time, this filter is called if the
749 * audit_state is not low enough that auditing cannot take place, but is
750 * also not high enough that we already know we have to write an audit
751 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
752 */
753 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
754 struct audit_context *ctx,
755 struct list_head *list)
756 {
757 struct audit_entry *e;
758 enum audit_state state;
759
760 if (audit_pid && tsk->tgid == audit_pid)
761 return AUDIT_DISABLED;
762
763 rcu_read_lock();
764 if (!list_empty(list)) {
765 list_for_each_entry_rcu(e, list, list) {
766 if (audit_in_mask(&e->rule, ctx->major) &&
767 audit_filter_rules(tsk, &e->rule, ctx, NULL,
768 &state, false)) {
769 rcu_read_unlock();
770 ctx->current_state = state;
771 return state;
772 }
773 }
774 }
775 rcu_read_unlock();
776 return AUDIT_BUILD_CONTEXT;
777 }
778
779 /*
780 * Given an audit_name check the inode hash table to see if they match.
781 * Called holding the rcu read lock to protect the use of audit_inode_hash
782 */
783 static int audit_filter_inode_name(struct task_struct *tsk,
784 struct audit_names *n,
785 struct audit_context *ctx) {
786 int h = audit_hash_ino((u32)n->ino);
787 struct list_head *list = &audit_inode_hash[h];
788 struct audit_entry *e;
789 enum audit_state state;
790
791 if (list_empty(list))
792 return 0;
793
794 list_for_each_entry_rcu(e, list, list) {
795 if (audit_in_mask(&e->rule, ctx->major) &&
796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
797 ctx->current_state = state;
798 return 1;
799 }
800 }
801
802 return 0;
803 }
804
805 /* At syscall exit time, this filter is called if any audit_names have been
806 * collected during syscall processing. We only check rules in sublists at hash
807 * buckets applicable to the inode numbers in audit_names.
808 * Regarding audit_state, same rules apply as for audit_filter_syscall().
809 */
810 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
811 {
812 struct audit_names *n;
813
814 if (audit_pid && tsk->tgid == audit_pid)
815 return;
816
817 rcu_read_lock();
818
819 list_for_each_entry(n, &ctx->names_list, list) {
820 if (audit_filter_inode_name(tsk, n, ctx))
821 break;
822 }
823 rcu_read_unlock();
824 }
825
826 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
827 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
828 int return_valid,
829 long return_code)
830 {
831 struct audit_context *context = tsk->audit_context;
832
833 if (!context)
834 return NULL;
835 context->return_valid = return_valid;
836
837 /*
838 * we need to fix up the return code in the audit logs if the actual
839 * return codes are later going to be fixed up by the arch specific
840 * signal handlers
841 *
842 * This is actually a test for:
843 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
844 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
845 *
846 * but is faster than a bunch of ||
847 */
848 if (unlikely(return_code <= -ERESTARTSYS) &&
849 (return_code >= -ERESTART_RESTARTBLOCK) &&
850 (return_code != -ENOIOCTLCMD))
851 context->return_code = -EINTR;
852 else
853 context->return_code = return_code;
854
855 if (context->in_syscall && !context->dummy) {
856 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
857 audit_filter_inodes(tsk, context);
858 }
859
860 tsk->audit_context = NULL;
861 return context;
862 }
863
864 static inline void audit_proctitle_free(struct audit_context *context)
865 {
866 kfree(context->proctitle.value);
867 context->proctitle.value = NULL;
868 context->proctitle.len = 0;
869 }
870
871 static inline void audit_free_names(struct audit_context *context)
872 {
873 struct audit_names *n, *next;
874
875 #if AUDIT_DEBUG == 2
876 if (context->put_count + context->ino_count != context->name_count) {
877 int i = 0;
878
879 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
880 " name_count=%d put_count=%d ino_count=%d"
881 " [NOT freeing]\n", __FILE__, __LINE__,
882 context->serial, context->major, context->in_syscall,
883 context->name_count, context->put_count,
884 context->ino_count);
885 list_for_each_entry(n, &context->names_list, list) {
886 pr_err("names[%d] = %p = %s\n", i++, n->name,
887 n->name->name ?: "(null)");
888 }
889 dump_stack();
890 return;
891 }
892 #endif
893 #if AUDIT_DEBUG
894 context->put_count = 0;
895 context->ino_count = 0;
896 #endif
897
898 list_for_each_entry_safe(n, next, &context->names_list, list) {
899 list_del(&n->list);
900 if (n->name && n->name_put)
901 final_putname(n->name);
902 if (n->should_free)
903 kfree(n);
904 }
905 context->name_count = 0;
906 path_put(&context->pwd);
907 context->pwd.dentry = NULL;
908 context->pwd.mnt = NULL;
909 }
910
911 static inline void audit_free_aux(struct audit_context *context)
912 {
913 struct audit_aux_data *aux;
914
915 while ((aux = context->aux)) {
916 context->aux = aux->next;
917 kfree(aux);
918 }
919 while ((aux = context->aux_pids)) {
920 context->aux_pids = aux->next;
921 kfree(aux);
922 }
923 }
924
925 static inline struct audit_context *audit_alloc_context(enum audit_state state)
926 {
927 struct audit_context *context;
928
929 context = kzalloc(sizeof(*context), GFP_KERNEL);
930 if (!context)
931 return NULL;
932 context->state = state;
933 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
934 INIT_LIST_HEAD(&context->killed_trees);
935 INIT_LIST_HEAD(&context->names_list);
936 return context;
937 }
938
939 /**
940 * audit_alloc - allocate an audit context block for a task
941 * @tsk: task
942 *
943 * Filter on the task information and allocate a per-task audit context
944 * if necessary. Doing so turns on system call auditing for the
945 * specified task. This is called from copy_process, so no lock is
946 * needed.
947 */
948 int audit_alloc(struct task_struct *tsk)
949 {
950 struct audit_context *context;
951 enum audit_state state;
952 char *key = NULL;
953
954 if (likely(!audit_ever_enabled))
955 return 0; /* Return if not auditing. */
956
957 state = audit_filter_task(tsk, &key);
958 if (state == AUDIT_DISABLED) {
959 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
960 return 0;
961 }
962
963 if (!(context = audit_alloc_context(state))) {
964 kfree(key);
965 audit_log_lost("out of memory in audit_alloc");
966 return -ENOMEM;
967 }
968 context->filterkey = key;
969
970 tsk->audit_context = context;
971 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
972 return 0;
973 }
974
975 static inline void audit_free_context(struct audit_context *context)
976 {
977 audit_free_names(context);
978 unroll_tree_refs(context, NULL, 0);
979 free_tree_refs(context);
980 audit_free_aux(context);
981 kfree(context->filterkey);
982 kfree(context->sockaddr);
983 audit_proctitle_free(context);
984 kfree(context);
985 }
986
987 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
988 kuid_t auid, kuid_t uid, unsigned int sessionid,
989 u32 sid, char *comm)
990 {
991 struct audit_buffer *ab;
992 char *ctx = NULL;
993 u32 len;
994 int rc = 0;
995
996 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
997 if (!ab)
998 return rc;
999
1000 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1001 from_kuid(&init_user_ns, auid),
1002 from_kuid(&init_user_ns, uid), sessionid);
1003 if (sid) {
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
1011 }
1012 audit_log_format(ab, " ocomm=");
1013 audit_log_untrustedstring(ab, comm);
1014 audit_log_end(ab);
1015
1016 return rc;
1017 }
1018
1019 /*
1020 * to_send and len_sent accounting are very loose estimates. We aren't
1021 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1022 * within about 500 bytes (next page boundary)
1023 *
1024 * why snprintf? an int is up to 12 digits long. if we just assumed when
1025 * logging that a[%d]= was going to be 16 characters long we would be wasting
1026 * space in every audit message. In one 7500 byte message we can log up to
1027 * about 1000 min size arguments. That comes down to about 50% waste of space
1028 * if we didn't do the snprintf to find out how long arg_num_len was.
1029 */
1030 static int audit_log_single_execve_arg(struct audit_context *context,
1031 struct audit_buffer **ab,
1032 int arg_num,
1033 size_t *len_sent,
1034 const char __user *p,
1035 char *buf)
1036 {
1037 char arg_num_len_buf[12];
1038 const char __user *tmp_p = p;
1039 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1040 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1041 size_t len, len_left, to_send;
1042 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1043 unsigned int i, has_cntl = 0, too_long = 0;
1044 int ret;
1045
1046 /* strnlen_user includes the null we don't want to send */
1047 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1048
1049 /*
1050 * We just created this mm, if we can't find the strings
1051 * we just copied into it something is _very_ wrong. Similar
1052 * for strings that are too long, we should not have created
1053 * any.
1054 */
1055 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1056 WARN_ON(1);
1057 send_sig(SIGKILL, current, 0);
1058 return -1;
1059 }
1060
1061 /* walk the whole argument looking for non-ascii chars */
1062 do {
1063 if (len_left > MAX_EXECVE_AUDIT_LEN)
1064 to_send = MAX_EXECVE_AUDIT_LEN;
1065 else
1066 to_send = len_left;
1067 ret = copy_from_user(buf, tmp_p, to_send);
1068 /*
1069 * There is no reason for this copy to be short. We just
1070 * copied them here, and the mm hasn't been exposed to user-
1071 * space yet.
1072 */
1073 if (ret) {
1074 WARN_ON(1);
1075 send_sig(SIGKILL, current, 0);
1076 return -1;
1077 }
1078 buf[to_send] = '\0';
1079 has_cntl = audit_string_contains_control(buf, to_send);
1080 if (has_cntl) {
1081 /*
1082 * hex messages get logged as 2 bytes, so we can only
1083 * send half as much in each message
1084 */
1085 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1086 break;
1087 }
1088 len_left -= to_send;
1089 tmp_p += to_send;
1090 } while (len_left > 0);
1091
1092 len_left = len;
1093
1094 if (len > max_execve_audit_len)
1095 too_long = 1;
1096
1097 /* rewalk the argument actually logging the message */
1098 for (i = 0; len_left > 0; i++) {
1099 int room_left;
1100
1101 if (len_left > max_execve_audit_len)
1102 to_send = max_execve_audit_len;
1103 else
1104 to_send = len_left;
1105
1106 /* do we have space left to send this argument in this ab? */
1107 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1108 if (has_cntl)
1109 room_left -= (to_send * 2);
1110 else
1111 room_left -= to_send;
1112 if (room_left < 0) {
1113 *len_sent = 0;
1114 audit_log_end(*ab);
1115 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1116 if (!*ab)
1117 return 0;
1118 }
1119
1120 /*
1121 * first record needs to say how long the original string was
1122 * so we can be sure nothing was lost.
1123 */
1124 if ((i == 0) && (too_long))
1125 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1126 has_cntl ? 2*len : len);
1127
1128 /*
1129 * normally arguments are small enough to fit and we already
1130 * filled buf above when we checked for control characters
1131 * so don't bother with another copy_from_user
1132 */
1133 if (len >= max_execve_audit_len)
1134 ret = copy_from_user(buf, p, to_send);
1135 else
1136 ret = 0;
1137 if (ret) {
1138 WARN_ON(1);
1139 send_sig(SIGKILL, current, 0);
1140 return -1;
1141 }
1142 buf[to_send] = '\0';
1143
1144 /* actually log it */
1145 audit_log_format(*ab, " a%d", arg_num);
1146 if (too_long)
1147 audit_log_format(*ab, "[%d]", i);
1148 audit_log_format(*ab, "=");
1149 if (has_cntl)
1150 audit_log_n_hex(*ab, buf, to_send);
1151 else
1152 audit_log_string(*ab, buf);
1153
1154 p += to_send;
1155 len_left -= to_send;
1156 *len_sent += arg_num_len;
1157 if (has_cntl)
1158 *len_sent += to_send * 2;
1159 else
1160 *len_sent += to_send;
1161 }
1162 /* include the null we didn't log */
1163 return len + 1;
1164 }
1165
1166 static void audit_log_execve_info(struct audit_context *context,
1167 struct audit_buffer **ab)
1168 {
1169 int i, len;
1170 size_t len_sent = 0;
1171 const char __user *p;
1172 char *buf;
1173
1174 p = (const char __user *)current->mm->arg_start;
1175
1176 audit_log_format(*ab, "argc=%d", context->execve.argc);
1177
1178 /*
1179 * we need some kernel buffer to hold the userspace args. Just
1180 * allocate one big one rather than allocating one of the right size
1181 * for every single argument inside audit_log_single_execve_arg()
1182 * should be <8k allocation so should be pretty safe.
1183 */
1184 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1185 if (!buf) {
1186 audit_panic("out of memory for argv string");
1187 return;
1188 }
1189
1190 for (i = 0; i < context->execve.argc; i++) {
1191 len = audit_log_single_execve_arg(context, ab, i,
1192 &len_sent, p, buf);
1193 if (len <= 0)
1194 break;
1195 p += len;
1196 }
1197 kfree(buf);
1198 }
1199
1200 static void show_special(struct audit_context *context, int *call_panic)
1201 {
1202 struct audit_buffer *ab;
1203 int i;
1204
1205 ab = audit_log_start(context, GFP_KERNEL, context->type);
1206 if (!ab)
1207 return;
1208
1209 switch (context->type) {
1210 case AUDIT_SOCKETCALL: {
1211 int nargs = context->socketcall.nargs;
1212 audit_log_format(ab, "nargs=%d", nargs);
1213 for (i = 0; i < nargs; i++)
1214 audit_log_format(ab, " a%d=%lx", i,
1215 context->socketcall.args[i]);
1216 break; }
1217 case AUDIT_IPC: {
1218 u32 osid = context->ipc.osid;
1219
1220 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1221 from_kuid(&init_user_ns, context->ipc.uid),
1222 from_kgid(&init_user_ns, context->ipc.gid),
1223 context->ipc.mode);
1224 if (osid) {
1225 char *ctx = NULL;
1226 u32 len;
1227 if (security_secid_to_secctx(osid, &ctx, &len)) {
1228 audit_log_format(ab, " osid=%u", osid);
1229 *call_panic = 1;
1230 } else {
1231 audit_log_format(ab, " obj=%s", ctx);
1232 security_release_secctx(ctx, len);
1233 }
1234 }
1235 if (context->ipc.has_perm) {
1236 audit_log_end(ab);
1237 ab = audit_log_start(context, GFP_KERNEL,
1238 AUDIT_IPC_SET_PERM);
1239 if (unlikely(!ab))
1240 return;
1241 audit_log_format(ab,
1242 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1243 context->ipc.qbytes,
1244 context->ipc.perm_uid,
1245 context->ipc.perm_gid,
1246 context->ipc.perm_mode);
1247 }
1248 break; }
1249 case AUDIT_MQ_OPEN: {
1250 audit_log_format(ab,
1251 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1252 "mq_msgsize=%ld mq_curmsgs=%ld",
1253 context->mq_open.oflag, context->mq_open.mode,
1254 context->mq_open.attr.mq_flags,
1255 context->mq_open.attr.mq_maxmsg,
1256 context->mq_open.attr.mq_msgsize,
1257 context->mq_open.attr.mq_curmsgs);
1258 break; }
1259 case AUDIT_MQ_SENDRECV: {
1260 audit_log_format(ab,
1261 "mqdes=%d msg_len=%zd msg_prio=%u "
1262 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1263 context->mq_sendrecv.mqdes,
1264 context->mq_sendrecv.msg_len,
1265 context->mq_sendrecv.msg_prio,
1266 context->mq_sendrecv.abs_timeout.tv_sec,
1267 context->mq_sendrecv.abs_timeout.tv_nsec);
1268 break; }
1269 case AUDIT_MQ_NOTIFY: {
1270 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1271 context->mq_notify.mqdes,
1272 context->mq_notify.sigev_signo);
1273 break; }
1274 case AUDIT_MQ_GETSETATTR: {
1275 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1276 audit_log_format(ab,
1277 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1278 "mq_curmsgs=%ld ",
1279 context->mq_getsetattr.mqdes,
1280 attr->mq_flags, attr->mq_maxmsg,
1281 attr->mq_msgsize, attr->mq_curmsgs);
1282 break; }
1283 case AUDIT_CAPSET: {
1284 audit_log_format(ab, "pid=%d", context->capset.pid);
1285 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1286 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1287 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1288 break; }
1289 case AUDIT_MMAP: {
1290 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1291 context->mmap.flags);
1292 break; }
1293 case AUDIT_EXECVE: {
1294 audit_log_execve_info(context, &ab);
1295 break; }
1296 }
1297 audit_log_end(ab);
1298 }
1299
1300 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1301 {
1302 char *end = proctitle + len - 1;
1303 while (end > proctitle && !isprint(*end))
1304 end--;
1305
1306 /* catch the case where proctitle is only 1 non-print character */
1307 len = end - proctitle + 1;
1308 len -= isprint(proctitle[len-1]) == 0;
1309 return len;
1310 }
1311
1312 static void audit_log_proctitle(struct task_struct *tsk,
1313 struct audit_context *context)
1314 {
1315 int res;
1316 char *buf;
1317 char *msg = "(null)";
1318 int len = strlen(msg);
1319 struct audit_buffer *ab;
1320
1321 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1322 if (!ab)
1323 return; /* audit_panic or being filtered */
1324
1325 audit_log_format(ab, "proctitle=");
1326
1327 /* Not cached */
1328 if (!context->proctitle.value) {
1329 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1330 if (!buf)
1331 goto out;
1332 /* Historically called this from procfs naming */
1333 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1334 if (res == 0) {
1335 kfree(buf);
1336 goto out;
1337 }
1338 res = audit_proctitle_rtrim(buf, res);
1339 if (res == 0) {
1340 kfree(buf);
1341 goto out;
1342 }
1343 context->proctitle.value = buf;
1344 context->proctitle.len = res;
1345 }
1346 msg = context->proctitle.value;
1347 len = context->proctitle.len;
1348 out:
1349 audit_log_n_untrustedstring(ab, msg, len);
1350 audit_log_end(ab);
1351 }
1352
1353 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1354 {
1355 int i, call_panic = 0;
1356 struct audit_buffer *ab;
1357 struct audit_aux_data *aux;
1358 struct audit_names *n;
1359
1360 /* tsk == current */
1361 context->personality = tsk->personality;
1362
1363 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1364 if (!ab)
1365 return; /* audit_panic has been called */
1366 audit_log_format(ab, "arch=%x syscall=%d",
1367 context->arch, context->major);
1368 if (context->personality != PER_LINUX)
1369 audit_log_format(ab, " per=%lx", context->personality);
1370 if (context->return_valid)
1371 audit_log_format(ab, " success=%s exit=%ld",
1372 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1373 context->return_code);
1374
1375 audit_log_format(ab,
1376 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1377 context->argv[0],
1378 context->argv[1],
1379 context->argv[2],
1380 context->argv[3],
1381 context->name_count);
1382
1383 audit_log_task_info(ab, tsk);
1384 audit_log_key(ab, context->filterkey);
1385 audit_log_end(ab);
1386
1387 for (aux = context->aux; aux; aux = aux->next) {
1388
1389 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1390 if (!ab)
1391 continue; /* audit_panic has been called */
1392
1393 switch (aux->type) {
1394
1395 case AUDIT_BPRM_FCAPS: {
1396 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1397 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1398 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1399 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1400 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1401 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1402 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1403 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1404 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1405 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1406 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1407 break; }
1408
1409 }
1410 audit_log_end(ab);
1411 }
1412
1413 if (context->type)
1414 show_special(context, &call_panic);
1415
1416 if (context->fds[0] >= 0) {
1417 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1418 if (ab) {
1419 audit_log_format(ab, "fd0=%d fd1=%d",
1420 context->fds[0], context->fds[1]);
1421 audit_log_end(ab);
1422 }
1423 }
1424
1425 if (context->sockaddr_len) {
1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1427 if (ab) {
1428 audit_log_format(ab, "saddr=");
1429 audit_log_n_hex(ab, (void *)context->sockaddr,
1430 context->sockaddr_len);
1431 audit_log_end(ab);
1432 }
1433 }
1434
1435 for (aux = context->aux_pids; aux; aux = aux->next) {
1436 struct audit_aux_data_pids *axs = (void *)aux;
1437
1438 for (i = 0; i < axs->pid_count; i++)
1439 if (audit_log_pid_context(context, axs->target_pid[i],
1440 axs->target_auid[i],
1441 axs->target_uid[i],
1442 axs->target_sessionid[i],
1443 axs->target_sid[i],
1444 axs->target_comm[i]))
1445 call_panic = 1;
1446 }
1447
1448 if (context->target_pid &&
1449 audit_log_pid_context(context, context->target_pid,
1450 context->target_auid, context->target_uid,
1451 context->target_sessionid,
1452 context->target_sid, context->target_comm))
1453 call_panic = 1;
1454
1455 if (context->pwd.dentry && context->pwd.mnt) {
1456 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1457 if (ab) {
1458 audit_log_d_path(ab, " cwd=", &context->pwd);
1459 audit_log_end(ab);
1460 }
1461 }
1462
1463 i = 0;
1464 list_for_each_entry(n, &context->names_list, list) {
1465 if (n->hidden)
1466 continue;
1467 audit_log_name(context, n, NULL, i++, &call_panic);
1468 }
1469
1470 audit_log_proctitle(tsk, context);
1471
1472 /* Send end of event record to help user space know we are finished */
1473 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1474 if (ab)
1475 audit_log_end(ab);
1476 if (call_panic)
1477 audit_panic("error converting sid to string");
1478 }
1479
1480 /**
1481 * audit_free - free a per-task audit context
1482 * @tsk: task whose audit context block to free
1483 *
1484 * Called from copy_process and do_exit
1485 */
1486 void __audit_free(struct task_struct *tsk)
1487 {
1488 struct audit_context *context;
1489
1490 context = audit_take_context(tsk, 0, 0);
1491 if (!context)
1492 return;
1493
1494 /* Check for system calls that do not go through the exit
1495 * function (e.g., exit_group), then free context block.
1496 * We use GFP_ATOMIC here because we might be doing this
1497 * in the context of the idle thread */
1498 /* that can happen only if we are called from do_exit() */
1499 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1500 audit_log_exit(context, tsk);
1501 if (!list_empty(&context->killed_trees))
1502 audit_kill_trees(&context->killed_trees);
1503
1504 audit_free_context(context);
1505 }
1506
1507 /**
1508 * audit_syscall_entry - fill in an audit record at syscall entry
1509 * @major: major syscall type (function)
1510 * @a1: additional syscall register 1
1511 * @a2: additional syscall register 2
1512 * @a3: additional syscall register 3
1513 * @a4: additional syscall register 4
1514 *
1515 * Fill in audit context at syscall entry. This only happens if the
1516 * audit context was created when the task was created and the state or
1517 * filters demand the audit context be built. If the state from the
1518 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1519 * then the record will be written at syscall exit time (otherwise, it
1520 * will only be written if another part of the kernel requests that it
1521 * be written).
1522 */
1523 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1524 unsigned long a3, unsigned long a4)
1525 {
1526 struct task_struct *tsk = current;
1527 struct audit_context *context = tsk->audit_context;
1528 enum audit_state state;
1529
1530 if (!context)
1531 return;
1532
1533 BUG_ON(context->in_syscall || context->name_count);
1534
1535 if (!audit_enabled)
1536 return;
1537
1538 context->arch = syscall_get_arch();
1539 context->major = major;
1540 context->argv[0] = a1;
1541 context->argv[1] = a2;
1542 context->argv[2] = a3;
1543 context->argv[3] = a4;
1544
1545 state = context->state;
1546 context->dummy = !audit_n_rules;
1547 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1548 context->prio = 0;
1549 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1550 }
1551 if (state == AUDIT_DISABLED)
1552 return;
1553
1554 context->serial = 0;
1555 context->ctime = CURRENT_TIME;
1556 context->in_syscall = 1;
1557 context->current_state = state;
1558 context->ppid = 0;
1559 }
1560
1561 /**
1562 * audit_syscall_exit - deallocate audit context after a system call
1563 * @success: success value of the syscall
1564 * @return_code: return value of the syscall
1565 *
1566 * Tear down after system call. If the audit context has been marked as
1567 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1568 * filtering, or because some other part of the kernel wrote an audit
1569 * message), then write out the syscall information. In call cases,
1570 * free the names stored from getname().
1571 */
1572 void __audit_syscall_exit(int success, long return_code)
1573 {
1574 struct task_struct *tsk = current;
1575 struct audit_context *context;
1576
1577 if (success)
1578 success = AUDITSC_SUCCESS;
1579 else
1580 success = AUDITSC_FAILURE;
1581
1582 context = audit_take_context(tsk, success, return_code);
1583 if (!context)
1584 return;
1585
1586 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1587 audit_log_exit(context, tsk);
1588
1589 context->in_syscall = 0;
1590 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1591
1592 if (!list_empty(&context->killed_trees))
1593 audit_kill_trees(&context->killed_trees);
1594
1595 audit_free_names(context);
1596 unroll_tree_refs(context, NULL, 0);
1597 audit_free_aux(context);
1598 context->aux = NULL;
1599 context->aux_pids = NULL;
1600 context->target_pid = 0;
1601 context->target_sid = 0;
1602 context->sockaddr_len = 0;
1603 context->type = 0;
1604 context->fds[0] = -1;
1605 if (context->state != AUDIT_RECORD_CONTEXT) {
1606 kfree(context->filterkey);
1607 context->filterkey = NULL;
1608 }
1609 tsk->audit_context = context;
1610 }
1611
1612 static inline void handle_one(const struct inode *inode)
1613 {
1614 #ifdef CONFIG_AUDIT_TREE
1615 struct audit_context *context;
1616 struct audit_tree_refs *p;
1617 struct audit_chunk *chunk;
1618 int count;
1619 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1620 return;
1621 context = current->audit_context;
1622 p = context->trees;
1623 count = context->tree_count;
1624 rcu_read_lock();
1625 chunk = audit_tree_lookup(inode);
1626 rcu_read_unlock();
1627 if (!chunk)
1628 return;
1629 if (likely(put_tree_ref(context, chunk)))
1630 return;
1631 if (unlikely(!grow_tree_refs(context))) {
1632 pr_warn("out of memory, audit has lost a tree reference\n");
1633 audit_set_auditable(context);
1634 audit_put_chunk(chunk);
1635 unroll_tree_refs(context, p, count);
1636 return;
1637 }
1638 put_tree_ref(context, chunk);
1639 #endif
1640 }
1641
1642 static void handle_path(const struct dentry *dentry)
1643 {
1644 #ifdef CONFIG_AUDIT_TREE
1645 struct audit_context *context;
1646 struct audit_tree_refs *p;
1647 const struct dentry *d, *parent;
1648 struct audit_chunk *drop;
1649 unsigned long seq;
1650 int count;
1651
1652 context = current->audit_context;
1653 p = context->trees;
1654 count = context->tree_count;
1655 retry:
1656 drop = NULL;
1657 d = dentry;
1658 rcu_read_lock();
1659 seq = read_seqbegin(&rename_lock);
1660 for(;;) {
1661 struct inode *inode = d->d_inode;
1662 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1663 struct audit_chunk *chunk;
1664 chunk = audit_tree_lookup(inode);
1665 if (chunk) {
1666 if (unlikely(!put_tree_ref(context, chunk))) {
1667 drop = chunk;
1668 break;
1669 }
1670 }
1671 }
1672 parent = d->d_parent;
1673 if (parent == d)
1674 break;
1675 d = parent;
1676 }
1677 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1678 rcu_read_unlock();
1679 if (!drop) {
1680 /* just a race with rename */
1681 unroll_tree_refs(context, p, count);
1682 goto retry;
1683 }
1684 audit_put_chunk(drop);
1685 if (grow_tree_refs(context)) {
1686 /* OK, got more space */
1687 unroll_tree_refs(context, p, count);
1688 goto retry;
1689 }
1690 /* too bad */
1691 pr_warn("out of memory, audit has lost a tree reference\n");
1692 unroll_tree_refs(context, p, count);
1693 audit_set_auditable(context);
1694 return;
1695 }
1696 rcu_read_unlock();
1697 #endif
1698 }
1699
1700 static struct audit_names *audit_alloc_name(struct audit_context *context,
1701 unsigned char type)
1702 {
1703 struct audit_names *aname;
1704
1705 if (context->name_count < AUDIT_NAMES) {
1706 aname = &context->preallocated_names[context->name_count];
1707 memset(aname, 0, sizeof(*aname));
1708 } else {
1709 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1710 if (!aname)
1711 return NULL;
1712 aname->should_free = true;
1713 }
1714
1715 aname->ino = (unsigned long)-1;
1716 aname->type = type;
1717 list_add_tail(&aname->list, &context->names_list);
1718
1719 context->name_count++;
1720 #if AUDIT_DEBUG
1721 context->ino_count++;
1722 #endif
1723 return aname;
1724 }
1725
1726 /**
1727 * audit_reusename - fill out filename with info from existing entry
1728 * @uptr: userland ptr to pathname
1729 *
1730 * Search the audit_names list for the current audit context. If there is an
1731 * existing entry with a matching "uptr" then return the filename
1732 * associated with that audit_name. If not, return NULL.
1733 */
1734 struct filename *
1735 __audit_reusename(const __user char *uptr)
1736 {
1737 struct audit_context *context = current->audit_context;
1738 struct audit_names *n;
1739
1740 list_for_each_entry(n, &context->names_list, list) {
1741 if (!n->name)
1742 continue;
1743 if (n->name->uptr == uptr)
1744 return n->name;
1745 }
1746 return NULL;
1747 }
1748
1749 /**
1750 * audit_getname - add a name to the list
1751 * @name: name to add
1752 *
1753 * Add a name to the list of audit names for this context.
1754 * Called from fs/namei.c:getname().
1755 */
1756 void __audit_getname(struct filename *name)
1757 {
1758 struct audit_context *context = current->audit_context;
1759 struct audit_names *n;
1760
1761 if (!context->in_syscall) {
1762 #if AUDIT_DEBUG == 2
1763 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1764 __FILE__, __LINE__, context->serial, name);
1765 dump_stack();
1766 #endif
1767 return;
1768 }
1769
1770 #if AUDIT_DEBUG
1771 /* The filename _must_ have a populated ->name */
1772 BUG_ON(!name->name);
1773 #endif
1774
1775 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1776 if (!n)
1777 return;
1778
1779 n->name = name;
1780 n->name_len = AUDIT_NAME_FULL;
1781 n->name_put = true;
1782 name->aname = n;
1783
1784 if (!context->pwd.dentry)
1785 get_fs_pwd(current->fs, &context->pwd);
1786 }
1787
1788 /* audit_putname - intercept a putname request
1789 * @name: name to intercept and delay for putname
1790 *
1791 * If we have stored the name from getname in the audit context,
1792 * then we delay the putname until syscall exit.
1793 * Called from include/linux/fs.h:putname().
1794 */
1795 void audit_putname(struct filename *name)
1796 {
1797 struct audit_context *context = current->audit_context;
1798
1799 BUG_ON(!context);
1800 if (!name->aname || !context->in_syscall) {
1801 #if AUDIT_DEBUG == 2
1802 pr_err("%s:%d(:%d): final_putname(%p)\n",
1803 __FILE__, __LINE__, context->serial, name);
1804 if (context->name_count) {
1805 struct audit_names *n;
1806 int i = 0;
1807
1808 list_for_each_entry(n, &context->names_list, list)
1809 pr_err("name[%d] = %p = %s\n", i++, n->name,
1810 n->name->name ?: "(null)");
1811 }
1812 #endif
1813 final_putname(name);
1814 }
1815 #if AUDIT_DEBUG
1816 else {
1817 ++context->put_count;
1818 if (context->put_count > context->name_count) {
1819 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1820 " name_count=%d put_count=%d\n",
1821 __FILE__, __LINE__,
1822 context->serial, context->major,
1823 context->in_syscall, name->name,
1824 context->name_count, context->put_count);
1825 dump_stack();
1826 }
1827 }
1828 #endif
1829 }
1830
1831 /**
1832 * __audit_inode - store the inode and device from a lookup
1833 * @name: name being audited
1834 * @dentry: dentry being audited
1835 * @flags: attributes for this particular entry
1836 */
1837 void __audit_inode(struct filename *name, const struct dentry *dentry,
1838 unsigned int flags)
1839 {
1840 struct audit_context *context = current->audit_context;
1841 const struct inode *inode = dentry->d_inode;
1842 struct audit_names *n;
1843 bool parent = flags & AUDIT_INODE_PARENT;
1844
1845 if (!context->in_syscall)
1846 return;
1847
1848 if (!name)
1849 goto out_alloc;
1850
1851 #if AUDIT_DEBUG
1852 /* The struct filename _must_ have a populated ->name */
1853 BUG_ON(!name->name);
1854 #endif
1855 /*
1856 * If we have a pointer to an audit_names entry already, then we can
1857 * just use it directly if the type is correct.
1858 */
1859 n = name->aname;
1860 if (n) {
1861 if (parent) {
1862 if (n->type == AUDIT_TYPE_PARENT ||
1863 n->type == AUDIT_TYPE_UNKNOWN)
1864 goto out;
1865 } else {
1866 if (n->type != AUDIT_TYPE_PARENT)
1867 goto out;
1868 }
1869 }
1870
1871 list_for_each_entry_reverse(n, &context->names_list, list) {
1872 /* does the name pointer match? */
1873 if (!n->name || n->name->name != name->name)
1874 continue;
1875
1876 /* match the correct record type */
1877 if (parent) {
1878 if (n->type == AUDIT_TYPE_PARENT ||
1879 n->type == AUDIT_TYPE_UNKNOWN)
1880 goto out;
1881 } else {
1882 if (n->type != AUDIT_TYPE_PARENT)
1883 goto out;
1884 }
1885 }
1886
1887 out_alloc:
1888 /* unable to find the name from a previous getname(). Allocate a new
1889 * anonymous entry.
1890 */
1891 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1892 if (!n)
1893 return;
1894 out:
1895 if (parent) {
1896 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1897 n->type = AUDIT_TYPE_PARENT;
1898 if (flags & AUDIT_INODE_HIDDEN)
1899 n->hidden = true;
1900 } else {
1901 n->name_len = AUDIT_NAME_FULL;
1902 n->type = AUDIT_TYPE_NORMAL;
1903 }
1904 handle_path(dentry);
1905 audit_copy_inode(n, dentry, inode);
1906 }
1907
1908 /**
1909 * __audit_inode_child - collect inode info for created/removed objects
1910 * @parent: inode of dentry parent
1911 * @dentry: dentry being audited
1912 * @type: AUDIT_TYPE_* value that we're looking for
1913 *
1914 * For syscalls that create or remove filesystem objects, audit_inode
1915 * can only collect information for the filesystem object's parent.
1916 * This call updates the audit context with the child's information.
1917 * Syscalls that create a new filesystem object must be hooked after
1918 * the object is created. Syscalls that remove a filesystem object
1919 * must be hooked prior, in order to capture the target inode during
1920 * unsuccessful attempts.
1921 */
1922 void __audit_inode_child(const struct inode *parent,
1923 const struct dentry *dentry,
1924 const unsigned char type)
1925 {
1926 struct audit_context *context = current->audit_context;
1927 const struct inode *inode = dentry->d_inode;
1928 const char *dname = dentry->d_name.name;
1929 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1930
1931 if (!context->in_syscall)
1932 return;
1933
1934 if (inode)
1935 handle_one(inode);
1936
1937 /* look for a parent entry first */
1938 list_for_each_entry(n, &context->names_list, list) {
1939 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1940 continue;
1941
1942 if (n->ino == parent->i_ino &&
1943 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1944 found_parent = n;
1945 break;
1946 }
1947 }
1948
1949 /* is there a matching child entry? */
1950 list_for_each_entry(n, &context->names_list, list) {
1951 /* can only match entries that have a name */
1952 if (!n->name || n->type != type)
1953 continue;
1954
1955 /* if we found a parent, make sure this one is a child of it */
1956 if (found_parent && (n->name != found_parent->name))
1957 continue;
1958
1959 if (!strcmp(dname, n->name->name) ||
1960 !audit_compare_dname_path(dname, n->name->name,
1961 found_parent ?
1962 found_parent->name_len :
1963 AUDIT_NAME_FULL)) {
1964 found_child = n;
1965 break;
1966 }
1967 }
1968
1969 if (!found_parent) {
1970 /* create a new, "anonymous" parent record */
1971 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1972 if (!n)
1973 return;
1974 audit_copy_inode(n, NULL, parent);
1975 }
1976
1977 if (!found_child) {
1978 found_child = audit_alloc_name(context, type);
1979 if (!found_child)
1980 return;
1981
1982 /* Re-use the name belonging to the slot for a matching parent
1983 * directory. All names for this context are relinquished in
1984 * audit_free_names() */
1985 if (found_parent) {
1986 found_child->name = found_parent->name;
1987 found_child->name_len = AUDIT_NAME_FULL;
1988 /* don't call __putname() */
1989 found_child->name_put = false;
1990 }
1991 }
1992 if (inode)
1993 audit_copy_inode(found_child, dentry, inode);
1994 else
1995 found_child->ino = (unsigned long)-1;
1996 }
1997 EXPORT_SYMBOL_GPL(__audit_inode_child);
1998
1999 /**
2000 * auditsc_get_stamp - get local copies of audit_context values
2001 * @ctx: audit_context for the task
2002 * @t: timespec to store time recorded in the audit_context
2003 * @serial: serial value that is recorded in the audit_context
2004 *
2005 * Also sets the context as auditable.
2006 */
2007 int auditsc_get_stamp(struct audit_context *ctx,
2008 struct timespec *t, unsigned int *serial)
2009 {
2010 if (!ctx->in_syscall)
2011 return 0;
2012 if (!ctx->serial)
2013 ctx->serial = audit_serial();
2014 t->tv_sec = ctx->ctime.tv_sec;
2015 t->tv_nsec = ctx->ctime.tv_nsec;
2016 *serial = ctx->serial;
2017 if (!ctx->prio) {
2018 ctx->prio = 1;
2019 ctx->current_state = AUDIT_RECORD_CONTEXT;
2020 }
2021 return 1;
2022 }
2023
2024 /* global counter which is incremented every time something logs in */
2025 static atomic_t session_id = ATOMIC_INIT(0);
2026
2027 static int audit_set_loginuid_perm(kuid_t loginuid)
2028 {
2029 /* if we are unset, we don't need privs */
2030 if (!audit_loginuid_set(current))
2031 return 0;
2032 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2033 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2034 return -EPERM;
2035 /* it is set, you need permission */
2036 if (!capable(CAP_AUDIT_CONTROL))
2037 return -EPERM;
2038 /* reject if this is not an unset and we don't allow that */
2039 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2040 return -EPERM;
2041 return 0;
2042 }
2043
2044 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2045 unsigned int oldsessionid, unsigned int sessionid,
2046 int rc)
2047 {
2048 struct audit_buffer *ab;
2049 uid_t uid, oldloginuid, loginuid;
2050
2051 if (!audit_enabled)
2052 return;
2053
2054 uid = from_kuid(&init_user_ns, task_uid(current));
2055 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2056 loginuid = from_kuid(&init_user_ns, kloginuid),
2057
2058 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2059 if (!ab)
2060 return;
2061 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2062 audit_log_task_context(ab);
2063 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2064 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2065 audit_log_end(ab);
2066 }
2067
2068 /**
2069 * audit_set_loginuid - set current task's audit_context loginuid
2070 * @loginuid: loginuid value
2071 *
2072 * Returns 0.
2073 *
2074 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2075 */
2076 int audit_set_loginuid(kuid_t loginuid)
2077 {
2078 struct task_struct *task = current;
2079 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2080 kuid_t oldloginuid;
2081 int rc;
2082
2083 oldloginuid = audit_get_loginuid(current);
2084 oldsessionid = audit_get_sessionid(current);
2085
2086 rc = audit_set_loginuid_perm(loginuid);
2087 if (rc)
2088 goto out;
2089
2090 /* are we setting or clearing? */
2091 if (uid_valid(loginuid))
2092 sessionid = (unsigned int)atomic_inc_return(&session_id);
2093
2094 task->sessionid = sessionid;
2095 task->loginuid = loginuid;
2096 out:
2097 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2098 return rc;
2099 }
2100
2101 /**
2102 * __audit_mq_open - record audit data for a POSIX MQ open
2103 * @oflag: open flag
2104 * @mode: mode bits
2105 * @attr: queue attributes
2106 *
2107 */
2108 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2109 {
2110 struct audit_context *context = current->audit_context;
2111
2112 if (attr)
2113 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2114 else
2115 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2116
2117 context->mq_open.oflag = oflag;
2118 context->mq_open.mode = mode;
2119
2120 context->type = AUDIT_MQ_OPEN;
2121 }
2122
2123 /**
2124 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2125 * @mqdes: MQ descriptor
2126 * @msg_len: Message length
2127 * @msg_prio: Message priority
2128 * @abs_timeout: Message timeout in absolute time
2129 *
2130 */
2131 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2132 const struct timespec *abs_timeout)
2133 {
2134 struct audit_context *context = current->audit_context;
2135 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2136
2137 if (abs_timeout)
2138 memcpy(p, abs_timeout, sizeof(struct timespec));
2139 else
2140 memset(p, 0, sizeof(struct timespec));
2141
2142 context->mq_sendrecv.mqdes = mqdes;
2143 context->mq_sendrecv.msg_len = msg_len;
2144 context->mq_sendrecv.msg_prio = msg_prio;
2145
2146 context->type = AUDIT_MQ_SENDRECV;
2147 }
2148
2149 /**
2150 * __audit_mq_notify - record audit data for a POSIX MQ notify
2151 * @mqdes: MQ descriptor
2152 * @notification: Notification event
2153 *
2154 */
2155
2156 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2157 {
2158 struct audit_context *context = current->audit_context;
2159
2160 if (notification)
2161 context->mq_notify.sigev_signo = notification->sigev_signo;
2162 else
2163 context->mq_notify.sigev_signo = 0;
2164
2165 context->mq_notify.mqdes = mqdes;
2166 context->type = AUDIT_MQ_NOTIFY;
2167 }
2168
2169 /**
2170 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2171 * @mqdes: MQ descriptor
2172 * @mqstat: MQ flags
2173 *
2174 */
2175 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2176 {
2177 struct audit_context *context = current->audit_context;
2178 context->mq_getsetattr.mqdes = mqdes;
2179 context->mq_getsetattr.mqstat = *mqstat;
2180 context->type = AUDIT_MQ_GETSETATTR;
2181 }
2182
2183 /**
2184 * audit_ipc_obj - record audit data for ipc object
2185 * @ipcp: ipc permissions
2186 *
2187 */
2188 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2189 {
2190 struct audit_context *context = current->audit_context;
2191 context->ipc.uid = ipcp->uid;
2192 context->ipc.gid = ipcp->gid;
2193 context->ipc.mode = ipcp->mode;
2194 context->ipc.has_perm = 0;
2195 security_ipc_getsecid(ipcp, &context->ipc.osid);
2196 context->type = AUDIT_IPC;
2197 }
2198
2199 /**
2200 * audit_ipc_set_perm - record audit data for new ipc permissions
2201 * @qbytes: msgq bytes
2202 * @uid: msgq user id
2203 * @gid: msgq group id
2204 * @mode: msgq mode (permissions)
2205 *
2206 * Called only after audit_ipc_obj().
2207 */
2208 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2209 {
2210 struct audit_context *context = current->audit_context;
2211
2212 context->ipc.qbytes = qbytes;
2213 context->ipc.perm_uid = uid;
2214 context->ipc.perm_gid = gid;
2215 context->ipc.perm_mode = mode;
2216 context->ipc.has_perm = 1;
2217 }
2218
2219 void __audit_bprm(struct linux_binprm *bprm)
2220 {
2221 struct audit_context *context = current->audit_context;
2222
2223 context->type = AUDIT_EXECVE;
2224 context->execve.argc = bprm->argc;
2225 }
2226
2227
2228 /**
2229 * audit_socketcall - record audit data for sys_socketcall
2230 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2231 * @args: args array
2232 *
2233 */
2234 int __audit_socketcall(int nargs, unsigned long *args)
2235 {
2236 struct audit_context *context = current->audit_context;
2237
2238 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2239 return -EINVAL;
2240 context->type = AUDIT_SOCKETCALL;
2241 context->socketcall.nargs = nargs;
2242 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2243 return 0;
2244 }
2245
2246 /**
2247 * __audit_fd_pair - record audit data for pipe and socketpair
2248 * @fd1: the first file descriptor
2249 * @fd2: the second file descriptor
2250 *
2251 */
2252 void __audit_fd_pair(int fd1, int fd2)
2253 {
2254 struct audit_context *context = current->audit_context;
2255 context->fds[0] = fd1;
2256 context->fds[1] = fd2;
2257 }
2258
2259 /**
2260 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2261 * @len: data length in user space
2262 * @a: data address in kernel space
2263 *
2264 * Returns 0 for success or NULL context or < 0 on error.
2265 */
2266 int __audit_sockaddr(int len, void *a)
2267 {
2268 struct audit_context *context = current->audit_context;
2269
2270 if (!context->sockaddr) {
2271 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2272 if (!p)
2273 return -ENOMEM;
2274 context->sockaddr = p;
2275 }
2276
2277 context->sockaddr_len = len;
2278 memcpy(context->sockaddr, a, len);
2279 return 0;
2280 }
2281
2282 void __audit_ptrace(struct task_struct *t)
2283 {
2284 struct audit_context *context = current->audit_context;
2285
2286 context->target_pid = task_pid_nr(t);
2287 context->target_auid = audit_get_loginuid(t);
2288 context->target_uid = task_uid(t);
2289 context->target_sessionid = audit_get_sessionid(t);
2290 security_task_getsecid(t, &context->target_sid);
2291 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2292 }
2293
2294 /**
2295 * audit_signal_info - record signal info for shutting down audit subsystem
2296 * @sig: signal value
2297 * @t: task being signaled
2298 *
2299 * If the audit subsystem is being terminated, record the task (pid)
2300 * and uid that is doing that.
2301 */
2302 int __audit_signal_info(int sig, struct task_struct *t)
2303 {
2304 struct audit_aux_data_pids *axp;
2305 struct task_struct *tsk = current;
2306 struct audit_context *ctx = tsk->audit_context;
2307 kuid_t uid = current_uid(), t_uid = task_uid(t);
2308
2309 if (audit_pid && t->tgid == audit_pid) {
2310 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2311 audit_sig_pid = task_pid_nr(tsk);
2312 if (uid_valid(tsk->loginuid))
2313 audit_sig_uid = tsk->loginuid;
2314 else
2315 audit_sig_uid = uid;
2316 security_task_getsecid(tsk, &audit_sig_sid);
2317 }
2318 if (!audit_signals || audit_dummy_context())
2319 return 0;
2320 }
2321
2322 /* optimize the common case by putting first signal recipient directly
2323 * in audit_context */
2324 if (!ctx->target_pid) {
2325 ctx->target_pid = task_tgid_nr(t);
2326 ctx->target_auid = audit_get_loginuid(t);
2327 ctx->target_uid = t_uid;
2328 ctx->target_sessionid = audit_get_sessionid(t);
2329 security_task_getsecid(t, &ctx->target_sid);
2330 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2331 return 0;
2332 }
2333
2334 axp = (void *)ctx->aux_pids;
2335 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2336 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2337 if (!axp)
2338 return -ENOMEM;
2339
2340 axp->d.type = AUDIT_OBJ_PID;
2341 axp->d.next = ctx->aux_pids;
2342 ctx->aux_pids = (void *)axp;
2343 }
2344 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2345
2346 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2347 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2348 axp->target_uid[axp->pid_count] = t_uid;
2349 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2350 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2351 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2352 axp->pid_count++;
2353
2354 return 0;
2355 }
2356
2357 /**
2358 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2359 * @bprm: pointer to the bprm being processed
2360 * @new: the proposed new credentials
2361 * @old: the old credentials
2362 *
2363 * Simply check if the proc already has the caps given by the file and if not
2364 * store the priv escalation info for later auditing at the end of the syscall
2365 *
2366 * -Eric
2367 */
2368 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2369 const struct cred *new, const struct cred *old)
2370 {
2371 struct audit_aux_data_bprm_fcaps *ax;
2372 struct audit_context *context = current->audit_context;
2373 struct cpu_vfs_cap_data vcaps;
2374 struct dentry *dentry;
2375
2376 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2377 if (!ax)
2378 return -ENOMEM;
2379
2380 ax->d.type = AUDIT_BPRM_FCAPS;
2381 ax->d.next = context->aux;
2382 context->aux = (void *)ax;
2383
2384 dentry = dget(bprm->file->f_dentry);
2385 get_vfs_caps_from_disk(dentry, &vcaps);
2386 dput(dentry);
2387
2388 ax->fcap.permitted = vcaps.permitted;
2389 ax->fcap.inheritable = vcaps.inheritable;
2390 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2391 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2392
2393 ax->old_pcap.permitted = old->cap_permitted;
2394 ax->old_pcap.inheritable = old->cap_inheritable;
2395 ax->old_pcap.effective = old->cap_effective;
2396
2397 ax->new_pcap.permitted = new->cap_permitted;
2398 ax->new_pcap.inheritable = new->cap_inheritable;
2399 ax->new_pcap.effective = new->cap_effective;
2400 return 0;
2401 }
2402
2403 /**
2404 * __audit_log_capset - store information about the arguments to the capset syscall
2405 * @new: the new credentials
2406 * @old: the old (current) credentials
2407 *
2408 * Record the aguments userspace sent to sys_capset for later printing by the
2409 * audit system if applicable
2410 */
2411 void __audit_log_capset(const struct cred *new, const struct cred *old)
2412 {
2413 struct audit_context *context = current->audit_context;
2414 context->capset.pid = task_pid_nr(current);
2415 context->capset.cap.effective = new->cap_effective;
2416 context->capset.cap.inheritable = new->cap_effective;
2417 context->capset.cap.permitted = new->cap_permitted;
2418 context->type = AUDIT_CAPSET;
2419 }
2420
2421 void __audit_mmap_fd(int fd, int flags)
2422 {
2423 struct audit_context *context = current->audit_context;
2424 context->mmap.fd = fd;
2425 context->mmap.flags = flags;
2426 context->type = AUDIT_MMAP;
2427 }
2428
2429 static void audit_log_task(struct audit_buffer *ab)
2430 {
2431 kuid_t auid, uid;
2432 kgid_t gid;
2433 unsigned int sessionid;
2434 struct mm_struct *mm = current->mm;
2435
2436 auid = audit_get_loginuid(current);
2437 sessionid = audit_get_sessionid(current);
2438 current_uid_gid(&uid, &gid);
2439
2440 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2441 from_kuid(&init_user_ns, auid),
2442 from_kuid(&init_user_ns, uid),
2443 from_kgid(&init_user_ns, gid),
2444 sessionid);
2445 audit_log_task_context(ab);
2446 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2447 audit_log_untrustedstring(ab, current->comm);
2448 if (mm) {
2449 down_read(&mm->mmap_sem);
2450 if (mm->exe_file)
2451 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2452 up_read(&mm->mmap_sem);
2453 } else
2454 audit_log_format(ab, " exe=(null)");
2455 }
2456
2457 /**
2458 * audit_core_dumps - record information about processes that end abnormally
2459 * @signr: signal value
2460 *
2461 * If a process ends with a core dump, something fishy is going on and we
2462 * should record the event for investigation.
2463 */
2464 void audit_core_dumps(long signr)
2465 {
2466 struct audit_buffer *ab;
2467
2468 if (!audit_enabled)
2469 return;
2470
2471 if (signr == SIGQUIT) /* don't care for those */
2472 return;
2473
2474 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2475 if (unlikely(!ab))
2476 return;
2477 audit_log_task(ab);
2478 audit_log_format(ab, " sig=%ld", signr);
2479 audit_log_end(ab);
2480 }
2481
2482 void __audit_seccomp(unsigned long syscall, long signr, int code)
2483 {
2484 struct audit_buffer *ab;
2485
2486 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2487 if (unlikely(!ab))
2488 return;
2489 audit_log_task(ab);
2490 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2491 signr, syscall_get_arch(), syscall, is_compat_task(),
2492 KSTK_EIP(current), code);
2493 audit_log_end(ab);
2494 }
2495
2496 struct list_head *audit_killed_trees(void)
2497 {
2498 struct audit_context *ctx = current->audit_context;
2499 if (likely(!ctx || !ctx->in_syscall))
2500 return NULL;
2501 return &ctx->killed_trees;
2502 }
This page took 0.096762 seconds and 5 git commands to generate.