cgroup: remove a NULL check in cgroup_exit()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* IDs for cgroups in this hierarchy */
142 struct ida cgroup_ida;
143
144 /* The path to use for release notifications. */
145 char release_agent_path[PATH_MAX];
146
147 /* The name for this hierarchy - may be empty */
148 char name[MAX_CGROUP_ROOT_NAMELEN];
149 };
150
151 /*
152 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
153 * subsystems that are otherwise unattached - it never has more than a
154 * single cgroup, and all tasks are part of that cgroup.
155 */
156 static struct cgroupfs_root rootnode;
157
158 /*
159 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
160 */
161 struct cfent {
162 struct list_head node;
163 struct dentry *dentry;
164 struct cftype *type;
165 };
166
167 /*
168 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
169 * cgroup_subsys->use_id != 0.
170 */
171 #define CSS_ID_MAX (65535)
172 struct css_id {
173 /*
174 * The css to which this ID points. This pointer is set to valid value
175 * after cgroup is populated. If cgroup is removed, this will be NULL.
176 * This pointer is expected to be RCU-safe because destroy()
177 * is called after synchronize_rcu(). But for safe use, css_tryget()
178 * should be used for avoiding race.
179 */
180 struct cgroup_subsys_state __rcu *css;
181 /*
182 * ID of this css.
183 */
184 unsigned short id;
185 /*
186 * Depth in hierarchy which this ID belongs to.
187 */
188 unsigned short depth;
189 /*
190 * ID is freed by RCU. (and lookup routine is RCU safe.)
191 */
192 struct rcu_head rcu_head;
193 /*
194 * Hierarchy of CSS ID belongs to.
195 */
196 unsigned short stack[0]; /* Array of Length (depth+1) */
197 };
198
199 /*
200 * cgroup_event represents events which userspace want to receive.
201 */
202 struct cgroup_event {
203 /*
204 * Cgroup which the event belongs to.
205 */
206 struct cgroup *cgrp;
207 /*
208 * Control file which the event associated.
209 */
210 struct cftype *cft;
211 /*
212 * eventfd to signal userspace about the event.
213 */
214 struct eventfd_ctx *eventfd;
215 /*
216 * Each of these stored in a list by the cgroup.
217 */
218 struct list_head list;
219 /*
220 * All fields below needed to unregister event when
221 * userspace closes eventfd.
222 */
223 poll_table pt;
224 wait_queue_head_t *wqh;
225 wait_queue_t wait;
226 struct work_struct remove;
227 };
228
229 /* The list of hierarchy roots */
230
231 static LIST_HEAD(roots);
232 static int root_count;
233
234 static DEFINE_IDA(hierarchy_ida);
235 static int next_hierarchy_id;
236 static DEFINE_SPINLOCK(hierarchy_id_lock);
237
238 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
239 #define dummytop (&rootnode.top_cgroup)
240
241 /* This flag indicates whether tasks in the fork and exit paths should
242 * check for fork/exit handlers to call. This avoids us having to do
243 * extra work in the fork/exit path if none of the subsystems need to
244 * be called.
245 */
246 static int need_forkexit_callback __read_mostly;
247
248 static int cgroup_destroy_locked(struct cgroup *cgrp);
249 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
250 struct cftype cfts[], bool is_add);
251
252 #ifdef CONFIG_PROVE_LOCKING
253 int cgroup_lock_is_held(void)
254 {
255 return lockdep_is_held(&cgroup_mutex);
256 }
257 #else /* #ifdef CONFIG_PROVE_LOCKING */
258 int cgroup_lock_is_held(void)
259 {
260 return mutex_is_locked(&cgroup_mutex);
261 }
262 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
263
264 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
265
266 static int css_unbias_refcnt(int refcnt)
267 {
268 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
269 }
270
271 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
272 static int css_refcnt(struct cgroup_subsys_state *css)
273 {
274 int v = atomic_read(&css->refcnt);
275
276 return css_unbias_refcnt(v);
277 }
278
279 /* convenient tests for these bits */
280 inline int cgroup_is_removed(const struct cgroup *cgrp)
281 {
282 return test_bit(CGRP_REMOVED, &cgrp->flags);
283 }
284
285 /* bits in struct cgroupfs_root flags field */
286 enum {
287 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
288 ROOT_XATTR, /* supports extended attributes */
289 };
290
291 static int cgroup_is_releasable(const struct cgroup *cgrp)
292 {
293 const int bits =
294 (1 << CGRP_RELEASABLE) |
295 (1 << CGRP_NOTIFY_ON_RELEASE);
296 return (cgrp->flags & bits) == bits;
297 }
298
299 static int notify_on_release(const struct cgroup *cgrp)
300 {
301 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
302 }
303
304 /*
305 * for_each_subsys() allows you to iterate on each subsystem attached to
306 * an active hierarchy
307 */
308 #define for_each_subsys(_root, _ss) \
309 list_for_each_entry(_ss, &_root->subsys_list, sibling)
310
311 /* for_each_active_root() allows you to iterate across the active hierarchies */
312 #define for_each_active_root(_root) \
313 list_for_each_entry(_root, &roots, root_list)
314
315 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
316 {
317 return dentry->d_fsdata;
318 }
319
320 static inline struct cfent *__d_cfe(struct dentry *dentry)
321 {
322 return dentry->d_fsdata;
323 }
324
325 static inline struct cftype *__d_cft(struct dentry *dentry)
326 {
327 return __d_cfe(dentry)->type;
328 }
329
330 /* the list of cgroups eligible for automatic release. Protected by
331 * release_list_lock */
332 static LIST_HEAD(release_list);
333 static DEFINE_RAW_SPINLOCK(release_list_lock);
334 static void cgroup_release_agent(struct work_struct *work);
335 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
336 static void check_for_release(struct cgroup *cgrp);
337
338 /* Link structure for associating css_set objects with cgroups */
339 struct cg_cgroup_link {
340 /*
341 * List running through cg_cgroup_links associated with a
342 * cgroup, anchored on cgroup->css_sets
343 */
344 struct list_head cgrp_link_list;
345 struct cgroup *cgrp;
346 /*
347 * List running through cg_cgroup_links pointing at a
348 * single css_set object, anchored on css_set->cg_links
349 */
350 struct list_head cg_link_list;
351 struct css_set *cg;
352 };
353
354 /* The default css_set - used by init and its children prior to any
355 * hierarchies being mounted. It contains a pointer to the root state
356 * for each subsystem. Also used to anchor the list of css_sets. Not
357 * reference-counted, to improve performance when child cgroups
358 * haven't been created.
359 */
360
361 static struct css_set init_css_set;
362 static struct cg_cgroup_link init_css_set_link;
363
364 static int cgroup_init_idr(struct cgroup_subsys *ss,
365 struct cgroup_subsys_state *css);
366
367 /* css_set_lock protects the list of css_set objects, and the
368 * chain of tasks off each css_set. Nests outside task->alloc_lock
369 * due to cgroup_iter_start() */
370 static DEFINE_RWLOCK(css_set_lock);
371 static int css_set_count;
372
373 /*
374 * hash table for cgroup groups. This improves the performance to find
375 * an existing css_set. This hash doesn't (currently) take into
376 * account cgroups in empty hierarchies.
377 */
378 #define CSS_SET_HASH_BITS 7
379 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
380
381 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
382 {
383 int i;
384 unsigned long key = 0UL;
385
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 key += (unsigned long)css[i];
388 key = (key >> 16) ^ key;
389
390 return key;
391 }
392
393 /* We don't maintain the lists running through each css_set to its
394 * task until after the first call to cgroup_iter_start(). This
395 * reduces the fork()/exit() overhead for people who have cgroups
396 * compiled into their kernel but not actually in use */
397 static int use_task_css_set_links __read_mostly;
398
399 static void __put_css_set(struct css_set *cg, int taskexit)
400 {
401 struct cg_cgroup_link *link;
402 struct cg_cgroup_link *saved_link;
403 /*
404 * Ensure that the refcount doesn't hit zero while any readers
405 * can see it. Similar to atomic_dec_and_lock(), but for an
406 * rwlock
407 */
408 if (atomic_add_unless(&cg->refcount, -1, 1))
409 return;
410 write_lock(&css_set_lock);
411 if (!atomic_dec_and_test(&cg->refcount)) {
412 write_unlock(&css_set_lock);
413 return;
414 }
415
416 /* This css_set is dead. unlink it and release cgroup refcounts */
417 hash_del(&cg->hlist);
418 css_set_count--;
419
420 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
421 cg_link_list) {
422 struct cgroup *cgrp = link->cgrp;
423 list_del(&link->cg_link_list);
424 list_del(&link->cgrp_link_list);
425 if (atomic_dec_and_test(&cgrp->count) &&
426 notify_on_release(cgrp)) {
427 if (taskexit)
428 set_bit(CGRP_RELEASABLE, &cgrp->flags);
429 check_for_release(cgrp);
430 }
431
432 kfree(link);
433 }
434
435 write_unlock(&css_set_lock);
436 kfree_rcu(cg, rcu_head);
437 }
438
439 /*
440 * refcounted get/put for css_set objects
441 */
442 static inline void get_css_set(struct css_set *cg)
443 {
444 atomic_inc(&cg->refcount);
445 }
446
447 static inline void put_css_set(struct css_set *cg)
448 {
449 __put_css_set(cg, 0);
450 }
451
452 static inline void put_css_set_taskexit(struct css_set *cg)
453 {
454 __put_css_set(cg, 1);
455 }
456
457 /*
458 * compare_css_sets - helper function for find_existing_css_set().
459 * @cg: candidate css_set being tested
460 * @old_cg: existing css_set for a task
461 * @new_cgrp: cgroup that's being entered by the task
462 * @template: desired set of css pointers in css_set (pre-calculated)
463 *
464 * Returns true if "cg" matches "old_cg" except for the hierarchy
465 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
466 */
467 static bool compare_css_sets(struct css_set *cg,
468 struct css_set *old_cg,
469 struct cgroup *new_cgrp,
470 struct cgroup_subsys_state *template[])
471 {
472 struct list_head *l1, *l2;
473
474 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
475 /* Not all subsystems matched */
476 return false;
477 }
478
479 /*
480 * Compare cgroup pointers in order to distinguish between
481 * different cgroups in heirarchies with no subsystems. We
482 * could get by with just this check alone (and skip the
483 * memcmp above) but on most setups the memcmp check will
484 * avoid the need for this more expensive check on almost all
485 * candidates.
486 */
487
488 l1 = &cg->cg_links;
489 l2 = &old_cg->cg_links;
490 while (1) {
491 struct cg_cgroup_link *cgl1, *cgl2;
492 struct cgroup *cg1, *cg2;
493
494 l1 = l1->next;
495 l2 = l2->next;
496 /* See if we reached the end - both lists are equal length. */
497 if (l1 == &cg->cg_links) {
498 BUG_ON(l2 != &old_cg->cg_links);
499 break;
500 } else {
501 BUG_ON(l2 == &old_cg->cg_links);
502 }
503 /* Locate the cgroups associated with these links. */
504 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
505 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
506 cg1 = cgl1->cgrp;
507 cg2 = cgl2->cgrp;
508 /* Hierarchies should be linked in the same order. */
509 BUG_ON(cg1->root != cg2->root);
510
511 /*
512 * If this hierarchy is the hierarchy of the cgroup
513 * that's changing, then we need to check that this
514 * css_set points to the new cgroup; if it's any other
515 * hierarchy, then this css_set should point to the
516 * same cgroup as the old css_set.
517 */
518 if (cg1->root == new_cgrp->root) {
519 if (cg1 != new_cgrp)
520 return false;
521 } else {
522 if (cg1 != cg2)
523 return false;
524 }
525 }
526 return true;
527 }
528
529 /*
530 * find_existing_css_set() is a helper for
531 * find_css_set(), and checks to see whether an existing
532 * css_set is suitable.
533 *
534 * oldcg: the cgroup group that we're using before the cgroup
535 * transition
536 *
537 * cgrp: the cgroup that we're moving into
538 *
539 * template: location in which to build the desired set of subsystem
540 * state objects for the new cgroup group
541 */
542 static struct css_set *find_existing_css_set(
543 struct css_set *oldcg,
544 struct cgroup *cgrp,
545 struct cgroup_subsys_state *template[])
546 {
547 int i;
548 struct cgroupfs_root *root = cgrp->root;
549 struct hlist_node *node;
550 struct css_set *cg;
551 unsigned long key;
552
553 /*
554 * Build the set of subsystem state objects that we want to see in the
555 * new css_set. while subsystems can change globally, the entries here
556 * won't change, so no need for locking.
557 */
558 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
559 if (root->subsys_mask & (1UL << i)) {
560 /* Subsystem is in this hierarchy. So we want
561 * the subsystem state from the new
562 * cgroup */
563 template[i] = cgrp->subsys[i];
564 } else {
565 /* Subsystem is not in this hierarchy, so we
566 * don't want to change the subsystem state */
567 template[i] = oldcg->subsys[i];
568 }
569 }
570
571 key = css_set_hash(template);
572 hash_for_each_possible(css_set_table, cg, node, hlist, key) {
573 if (!compare_css_sets(cg, oldcg, cgrp, template))
574 continue;
575
576 /* This css_set matches what we need */
577 return cg;
578 }
579
580 /* No existing cgroup group matched */
581 return NULL;
582 }
583
584 static void free_cg_links(struct list_head *tmp)
585 {
586 struct cg_cgroup_link *link;
587 struct cg_cgroup_link *saved_link;
588
589 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
590 list_del(&link->cgrp_link_list);
591 kfree(link);
592 }
593 }
594
595 /*
596 * allocate_cg_links() allocates "count" cg_cgroup_link structures
597 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
598 * success or a negative error
599 */
600 static int allocate_cg_links(int count, struct list_head *tmp)
601 {
602 struct cg_cgroup_link *link;
603 int i;
604 INIT_LIST_HEAD(tmp);
605 for (i = 0; i < count; i++) {
606 link = kmalloc(sizeof(*link), GFP_KERNEL);
607 if (!link) {
608 free_cg_links(tmp);
609 return -ENOMEM;
610 }
611 list_add(&link->cgrp_link_list, tmp);
612 }
613 return 0;
614 }
615
616 /**
617 * link_css_set - a helper function to link a css_set to a cgroup
618 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
619 * @cg: the css_set to be linked
620 * @cgrp: the destination cgroup
621 */
622 static void link_css_set(struct list_head *tmp_cg_links,
623 struct css_set *cg, struct cgroup *cgrp)
624 {
625 struct cg_cgroup_link *link;
626
627 BUG_ON(list_empty(tmp_cg_links));
628 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
629 cgrp_link_list);
630 link->cg = cg;
631 link->cgrp = cgrp;
632 atomic_inc(&cgrp->count);
633 list_move(&link->cgrp_link_list, &cgrp->css_sets);
634 /*
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
637 */
638 list_add_tail(&link->cg_link_list, &cg->cg_links);
639 }
640
641 /*
642 * find_css_set() takes an existing cgroup group and a
643 * cgroup object, and returns a css_set object that's
644 * equivalent to the old group, but with the given cgroup
645 * substituted into the appropriate hierarchy. Must be called with
646 * cgroup_mutex held
647 */
648 static struct css_set *find_css_set(
649 struct css_set *oldcg, struct cgroup *cgrp)
650 {
651 struct css_set *res;
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
653
654 struct list_head tmp_cg_links;
655
656 struct cg_cgroup_link *link;
657 unsigned long key;
658
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
661 read_lock(&css_set_lock);
662 res = find_existing_css_set(oldcg, cgrp, template);
663 if (res)
664 get_css_set(res);
665 read_unlock(&css_set_lock);
666
667 if (res)
668 return res;
669
670 res = kmalloc(sizeof(*res), GFP_KERNEL);
671 if (!res)
672 return NULL;
673
674 /* Allocate all the cg_cgroup_link objects that we'll need */
675 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
676 kfree(res);
677 return NULL;
678 }
679
680 atomic_set(&res->refcount, 1);
681 INIT_LIST_HEAD(&res->cg_links);
682 INIT_LIST_HEAD(&res->tasks);
683 INIT_HLIST_NODE(&res->hlist);
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(res->subsys, template, sizeof(res->subsys));
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
691 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
692 struct cgroup *c = link->cgrp;
693 if (c->root == cgrp->root)
694 c = cgrp;
695 link_css_set(&tmp_cg_links, res, c);
696 }
697
698 BUG_ON(!list_empty(&tmp_cg_links));
699
700 css_set_count++;
701
702 /* Add this cgroup group to the hash table */
703 key = css_set_hash(res->subsys);
704 hash_add(css_set_table, &res->hlist, key);
705
706 write_unlock(&css_set_lock);
707
708 return res;
709 }
710
711 /*
712 * Return the cgroup for "task" from the given hierarchy. Must be
713 * called with cgroup_mutex held.
714 */
715 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
716 struct cgroupfs_root *root)
717 {
718 struct css_set *css;
719 struct cgroup *res = NULL;
720
721 BUG_ON(!mutex_is_locked(&cgroup_mutex));
722 read_lock(&css_set_lock);
723 /*
724 * No need to lock the task - since we hold cgroup_mutex the
725 * task can't change groups, so the only thing that can happen
726 * is that it exits and its css is set back to init_css_set.
727 */
728 css = task->cgroups;
729 if (css == &init_css_set) {
730 res = &root->top_cgroup;
731 } else {
732 struct cg_cgroup_link *link;
733 list_for_each_entry(link, &css->cg_links, cg_link_list) {
734 struct cgroup *c = link->cgrp;
735 if (c->root == root) {
736 res = c;
737 break;
738 }
739 }
740 }
741 read_unlock(&css_set_lock);
742 BUG_ON(!res);
743 return res;
744 }
745
746 /*
747 * There is one global cgroup mutex. We also require taking
748 * task_lock() when dereferencing a task's cgroup subsys pointers.
749 * See "The task_lock() exception", at the end of this comment.
750 *
751 * A task must hold cgroup_mutex to modify cgroups.
752 *
753 * Any task can increment and decrement the count field without lock.
754 * So in general, code holding cgroup_mutex can't rely on the count
755 * field not changing. However, if the count goes to zero, then only
756 * cgroup_attach_task() can increment it again. Because a count of zero
757 * means that no tasks are currently attached, therefore there is no
758 * way a task attached to that cgroup can fork (the other way to
759 * increment the count). So code holding cgroup_mutex can safely
760 * assume that if the count is zero, it will stay zero. Similarly, if
761 * a task holds cgroup_mutex on a cgroup with zero count, it
762 * knows that the cgroup won't be removed, as cgroup_rmdir()
763 * needs that mutex.
764 *
765 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
766 * (usually) take cgroup_mutex. These are the two most performance
767 * critical pieces of code here. The exception occurs on cgroup_exit(),
768 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
769 * is taken, and if the cgroup count is zero, a usermode call made
770 * to the release agent with the name of the cgroup (path relative to
771 * the root of cgroup file system) as the argument.
772 *
773 * A cgroup can only be deleted if both its 'count' of using tasks
774 * is zero, and its list of 'children' cgroups is empty. Since all
775 * tasks in the system use _some_ cgroup, and since there is always at
776 * least one task in the system (init, pid == 1), therefore, top_cgroup
777 * always has either children cgroups and/or using tasks. So we don't
778 * need a special hack to ensure that top_cgroup cannot be deleted.
779 *
780 * The task_lock() exception
781 *
782 * The need for this exception arises from the action of
783 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
784 * another. It does so using cgroup_mutex, however there are
785 * several performance critical places that need to reference
786 * task->cgroup without the expense of grabbing a system global
787 * mutex. Therefore except as noted below, when dereferencing or, as
788 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
789 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
790 * the task_struct routinely used for such matters.
791 *
792 * P.S. One more locking exception. RCU is used to guard the
793 * update of a tasks cgroup pointer by cgroup_attach_task()
794 */
795
796 /**
797 * cgroup_lock - lock out any changes to cgroup structures
798 *
799 */
800 void cgroup_lock(void)
801 {
802 mutex_lock(&cgroup_mutex);
803 }
804 EXPORT_SYMBOL_GPL(cgroup_lock);
805
806 /**
807 * cgroup_unlock - release lock on cgroup changes
808 *
809 * Undo the lock taken in a previous cgroup_lock() call.
810 */
811 void cgroup_unlock(void)
812 {
813 mutex_unlock(&cgroup_mutex);
814 }
815 EXPORT_SYMBOL_GPL(cgroup_unlock);
816
817 /*
818 * A couple of forward declarations required, due to cyclic reference loop:
819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
821 * -> cgroup_mkdir.
822 */
823
824 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
825 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
826 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
827 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
828 unsigned long subsys_mask);
829 static const struct inode_operations cgroup_dir_inode_operations;
830 static const struct file_operations proc_cgroupstats_operations;
831
832 static struct backing_dev_info cgroup_backing_dev_info = {
833 .name = "cgroup",
834 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
835 };
836
837 static int alloc_css_id(struct cgroup_subsys *ss,
838 struct cgroup *parent, struct cgroup *child);
839
840 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
841 {
842 struct inode *inode = new_inode(sb);
843
844 if (inode) {
845 inode->i_ino = get_next_ino();
846 inode->i_mode = mode;
847 inode->i_uid = current_fsuid();
848 inode->i_gid = current_fsgid();
849 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
850 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
851 }
852 return inode;
853 }
854
855 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
856 {
857 /* is dentry a directory ? if so, kfree() associated cgroup */
858 if (S_ISDIR(inode->i_mode)) {
859 struct cgroup *cgrp = dentry->d_fsdata;
860 struct cgroup_subsys *ss;
861 BUG_ON(!(cgroup_is_removed(cgrp)));
862 /* It's possible for external users to be holding css
863 * reference counts on a cgroup; css_put() needs to
864 * be able to access the cgroup after decrementing
865 * the reference count in order to know if it needs to
866 * queue the cgroup to be handled by the release
867 * agent */
868 synchronize_rcu();
869
870 mutex_lock(&cgroup_mutex);
871 /*
872 * Release the subsystem state objects.
873 */
874 for_each_subsys(cgrp->root, ss)
875 ss->css_free(cgrp);
876
877 cgrp->root->number_of_cgroups--;
878 mutex_unlock(&cgroup_mutex);
879
880 /*
881 * Drop the active superblock reference that we took when we
882 * created the cgroup
883 */
884 deactivate_super(cgrp->root->sb);
885
886 /*
887 * if we're getting rid of the cgroup, refcount should ensure
888 * that there are no pidlists left.
889 */
890 BUG_ON(!list_empty(&cgrp->pidlists));
891
892 simple_xattrs_free(&cgrp->xattrs);
893
894 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
895 kfree_rcu(cgrp, rcu_head);
896 } else {
897 struct cfent *cfe = __d_cfe(dentry);
898 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
899 struct cftype *cft = cfe->type;
900
901 WARN_ONCE(!list_empty(&cfe->node) &&
902 cgrp != &cgrp->root->top_cgroup,
903 "cfe still linked for %s\n", cfe->type->name);
904 kfree(cfe);
905 simple_xattrs_free(&cft->xattrs);
906 }
907 iput(inode);
908 }
909
910 static int cgroup_delete(const struct dentry *d)
911 {
912 return 1;
913 }
914
915 static void remove_dir(struct dentry *d)
916 {
917 struct dentry *parent = dget(d->d_parent);
918
919 d_delete(d);
920 simple_rmdir(parent->d_inode, d);
921 dput(parent);
922 }
923
924 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
925 {
926 struct cfent *cfe;
927
928 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
929 lockdep_assert_held(&cgroup_mutex);
930
931 /*
932 * If we're doing cleanup due to failure of cgroup_create(),
933 * the corresponding @cfe may not exist.
934 */
935 list_for_each_entry(cfe, &cgrp->files, node) {
936 struct dentry *d = cfe->dentry;
937
938 if (cft && cfe->type != cft)
939 continue;
940
941 dget(d);
942 d_delete(d);
943 simple_unlink(cgrp->dentry->d_inode, d);
944 list_del_init(&cfe->node);
945 dput(d);
946
947 break;
948 }
949 }
950
951 /**
952 * cgroup_clear_directory - selective removal of base and subsystem files
953 * @dir: directory containing the files
954 * @base_files: true if the base files should be removed
955 * @subsys_mask: mask of the subsystem ids whose files should be removed
956 */
957 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
958 unsigned long subsys_mask)
959 {
960 struct cgroup *cgrp = __d_cgrp(dir);
961 struct cgroup_subsys *ss;
962
963 for_each_subsys(cgrp->root, ss) {
964 struct cftype_set *set;
965 if (!test_bit(ss->subsys_id, &subsys_mask))
966 continue;
967 list_for_each_entry(set, &ss->cftsets, node)
968 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
969 }
970 if (base_files) {
971 while (!list_empty(&cgrp->files))
972 cgroup_rm_file(cgrp, NULL);
973 }
974 }
975
976 /*
977 * NOTE : the dentry must have been dget()'ed
978 */
979 static void cgroup_d_remove_dir(struct dentry *dentry)
980 {
981 struct dentry *parent;
982 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
983
984 cgroup_clear_directory(dentry, true, root->subsys_mask);
985
986 parent = dentry->d_parent;
987 spin_lock(&parent->d_lock);
988 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
989 list_del_init(&dentry->d_u.d_child);
990 spin_unlock(&dentry->d_lock);
991 spin_unlock(&parent->d_lock);
992 remove_dir(dentry);
993 }
994
995 /*
996 * Call with cgroup_mutex held. Drops reference counts on modules, including
997 * any duplicate ones that parse_cgroupfs_options took. If this function
998 * returns an error, no reference counts are touched.
999 */
1000 static int rebind_subsystems(struct cgroupfs_root *root,
1001 unsigned long final_subsys_mask)
1002 {
1003 unsigned long added_mask, removed_mask;
1004 struct cgroup *cgrp = &root->top_cgroup;
1005 int i;
1006
1007 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1008 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1009
1010 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1011 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1012 /* Check that any added subsystems are currently free */
1013 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1014 unsigned long bit = 1UL << i;
1015 struct cgroup_subsys *ss = subsys[i];
1016 if (!(bit & added_mask))
1017 continue;
1018 /*
1019 * Nobody should tell us to do a subsys that doesn't exist:
1020 * parse_cgroupfs_options should catch that case and refcounts
1021 * ensure that subsystems won't disappear once selected.
1022 */
1023 BUG_ON(ss == NULL);
1024 if (ss->root != &rootnode) {
1025 /* Subsystem isn't free */
1026 return -EBUSY;
1027 }
1028 }
1029
1030 /* Currently we don't handle adding/removing subsystems when
1031 * any child cgroups exist. This is theoretically supportable
1032 * but involves complex error handling, so it's being left until
1033 * later */
1034 if (root->number_of_cgroups > 1)
1035 return -EBUSY;
1036
1037 /* Process each subsystem */
1038 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1039 struct cgroup_subsys *ss = subsys[i];
1040 unsigned long bit = 1UL << i;
1041 if (bit & added_mask) {
1042 /* We're binding this subsystem to this hierarchy */
1043 BUG_ON(ss == NULL);
1044 BUG_ON(cgrp->subsys[i]);
1045 BUG_ON(!dummytop->subsys[i]);
1046 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1047 cgrp->subsys[i] = dummytop->subsys[i];
1048 cgrp->subsys[i]->cgroup = cgrp;
1049 list_move(&ss->sibling, &root->subsys_list);
1050 ss->root = root;
1051 if (ss->bind)
1052 ss->bind(cgrp);
1053 /* refcount was already taken, and we're keeping it */
1054 } else if (bit & removed_mask) {
1055 /* We're removing this subsystem */
1056 BUG_ON(ss == NULL);
1057 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1058 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1059 if (ss->bind)
1060 ss->bind(dummytop);
1061 dummytop->subsys[i]->cgroup = dummytop;
1062 cgrp->subsys[i] = NULL;
1063 subsys[i]->root = &rootnode;
1064 list_move(&ss->sibling, &rootnode.subsys_list);
1065 /* subsystem is now free - drop reference on module */
1066 module_put(ss->module);
1067 } else if (bit & final_subsys_mask) {
1068 /* Subsystem state should already exist */
1069 BUG_ON(ss == NULL);
1070 BUG_ON(!cgrp->subsys[i]);
1071 /*
1072 * a refcount was taken, but we already had one, so
1073 * drop the extra reference.
1074 */
1075 module_put(ss->module);
1076 #ifdef CONFIG_MODULE_UNLOAD
1077 BUG_ON(ss->module && !module_refcount(ss->module));
1078 #endif
1079 } else {
1080 /* Subsystem state shouldn't exist */
1081 BUG_ON(cgrp->subsys[i]);
1082 }
1083 }
1084 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1085
1086 return 0;
1087 }
1088
1089 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1090 {
1091 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1092 struct cgroup_subsys *ss;
1093
1094 mutex_lock(&cgroup_root_mutex);
1095 for_each_subsys(root, ss)
1096 seq_printf(seq, ",%s", ss->name);
1097 if (test_bit(ROOT_NOPREFIX, &root->flags))
1098 seq_puts(seq, ",noprefix");
1099 if (test_bit(ROOT_XATTR, &root->flags))
1100 seq_puts(seq, ",xattr");
1101 if (strlen(root->release_agent_path))
1102 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1103 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1104 seq_puts(seq, ",clone_children");
1105 if (strlen(root->name))
1106 seq_printf(seq, ",name=%s", root->name);
1107 mutex_unlock(&cgroup_root_mutex);
1108 return 0;
1109 }
1110
1111 struct cgroup_sb_opts {
1112 unsigned long subsys_mask;
1113 unsigned long flags;
1114 char *release_agent;
1115 bool cpuset_clone_children;
1116 char *name;
1117 /* User explicitly requested empty subsystem */
1118 bool none;
1119
1120 struct cgroupfs_root *new_root;
1121
1122 };
1123
1124 /*
1125 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1126 * with cgroup_mutex held to protect the subsys[] array. This function takes
1127 * refcounts on subsystems to be used, unless it returns error, in which case
1128 * no refcounts are taken.
1129 */
1130 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1131 {
1132 char *token, *o = data;
1133 bool all_ss = false, one_ss = false;
1134 unsigned long mask = (unsigned long)-1;
1135 int i;
1136 bool module_pin_failed = false;
1137
1138 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1139
1140 #ifdef CONFIG_CPUSETS
1141 mask = ~(1UL << cpuset_subsys_id);
1142 #endif
1143
1144 memset(opts, 0, sizeof(*opts));
1145
1146 while ((token = strsep(&o, ",")) != NULL) {
1147 if (!*token)
1148 return -EINVAL;
1149 if (!strcmp(token, "none")) {
1150 /* Explicitly have no subsystems */
1151 opts->none = true;
1152 continue;
1153 }
1154 if (!strcmp(token, "all")) {
1155 /* Mutually exclusive option 'all' + subsystem name */
1156 if (one_ss)
1157 return -EINVAL;
1158 all_ss = true;
1159 continue;
1160 }
1161 if (!strcmp(token, "noprefix")) {
1162 set_bit(ROOT_NOPREFIX, &opts->flags);
1163 continue;
1164 }
1165 if (!strcmp(token, "clone_children")) {
1166 opts->cpuset_clone_children = true;
1167 continue;
1168 }
1169 if (!strcmp(token, "xattr")) {
1170 set_bit(ROOT_XATTR, &opts->flags);
1171 continue;
1172 }
1173 if (!strncmp(token, "release_agent=", 14)) {
1174 /* Specifying two release agents is forbidden */
1175 if (opts->release_agent)
1176 return -EINVAL;
1177 opts->release_agent =
1178 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1179 if (!opts->release_agent)
1180 return -ENOMEM;
1181 continue;
1182 }
1183 if (!strncmp(token, "name=", 5)) {
1184 const char *name = token + 5;
1185 /* Can't specify an empty name */
1186 if (!strlen(name))
1187 return -EINVAL;
1188 /* Must match [\w.-]+ */
1189 for (i = 0; i < strlen(name); i++) {
1190 char c = name[i];
1191 if (isalnum(c))
1192 continue;
1193 if ((c == '.') || (c == '-') || (c == '_'))
1194 continue;
1195 return -EINVAL;
1196 }
1197 /* Specifying two names is forbidden */
1198 if (opts->name)
1199 return -EINVAL;
1200 opts->name = kstrndup(name,
1201 MAX_CGROUP_ROOT_NAMELEN - 1,
1202 GFP_KERNEL);
1203 if (!opts->name)
1204 return -ENOMEM;
1205
1206 continue;
1207 }
1208
1209 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1210 struct cgroup_subsys *ss = subsys[i];
1211 if (ss == NULL)
1212 continue;
1213 if (strcmp(token, ss->name))
1214 continue;
1215 if (ss->disabled)
1216 continue;
1217
1218 /* Mutually exclusive option 'all' + subsystem name */
1219 if (all_ss)
1220 return -EINVAL;
1221 set_bit(i, &opts->subsys_mask);
1222 one_ss = true;
1223
1224 break;
1225 }
1226 if (i == CGROUP_SUBSYS_COUNT)
1227 return -ENOENT;
1228 }
1229
1230 /*
1231 * If the 'all' option was specified select all the subsystems,
1232 * otherwise if 'none', 'name=' and a subsystem name options
1233 * were not specified, let's default to 'all'
1234 */
1235 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1236 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1237 struct cgroup_subsys *ss = subsys[i];
1238 if (ss == NULL)
1239 continue;
1240 if (ss->disabled)
1241 continue;
1242 set_bit(i, &opts->subsys_mask);
1243 }
1244 }
1245
1246 /* Consistency checks */
1247
1248 /*
1249 * Option noprefix was introduced just for backward compatibility
1250 * with the old cpuset, so we allow noprefix only if mounting just
1251 * the cpuset subsystem.
1252 */
1253 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1254 (opts->subsys_mask & mask))
1255 return -EINVAL;
1256
1257
1258 /* Can't specify "none" and some subsystems */
1259 if (opts->subsys_mask && opts->none)
1260 return -EINVAL;
1261
1262 /*
1263 * We either have to specify by name or by subsystems. (So all
1264 * empty hierarchies must have a name).
1265 */
1266 if (!opts->subsys_mask && !opts->name)
1267 return -EINVAL;
1268
1269 /*
1270 * Grab references on all the modules we'll need, so the subsystems
1271 * don't dance around before rebind_subsystems attaches them. This may
1272 * take duplicate reference counts on a subsystem that's already used,
1273 * but rebind_subsystems handles this case.
1274 */
1275 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1276 unsigned long bit = 1UL << i;
1277
1278 if (!(bit & opts->subsys_mask))
1279 continue;
1280 if (!try_module_get(subsys[i]->module)) {
1281 module_pin_failed = true;
1282 break;
1283 }
1284 }
1285 if (module_pin_failed) {
1286 /*
1287 * oops, one of the modules was going away. this means that we
1288 * raced with a module_delete call, and to the user this is
1289 * essentially a "subsystem doesn't exist" case.
1290 */
1291 for (i--; i >= 0; i--) {
1292 /* drop refcounts only on the ones we took */
1293 unsigned long bit = 1UL << i;
1294
1295 if (!(bit & opts->subsys_mask))
1296 continue;
1297 module_put(subsys[i]->module);
1298 }
1299 return -ENOENT;
1300 }
1301
1302 return 0;
1303 }
1304
1305 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1306 {
1307 int i;
1308 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1309 unsigned long bit = 1UL << i;
1310
1311 if (!(bit & subsys_mask))
1312 continue;
1313 module_put(subsys[i]->module);
1314 }
1315 }
1316
1317 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1318 {
1319 int ret = 0;
1320 struct cgroupfs_root *root = sb->s_fs_info;
1321 struct cgroup *cgrp = &root->top_cgroup;
1322 struct cgroup_sb_opts opts;
1323 unsigned long added_mask, removed_mask;
1324
1325 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1326 mutex_lock(&cgroup_mutex);
1327 mutex_lock(&cgroup_root_mutex);
1328
1329 /* See what subsystems are wanted */
1330 ret = parse_cgroupfs_options(data, &opts);
1331 if (ret)
1332 goto out_unlock;
1333
1334 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1335 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1336 task_tgid_nr(current), current->comm);
1337
1338 added_mask = opts.subsys_mask & ~root->subsys_mask;
1339 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1340
1341 /* Don't allow flags or name to change at remount */
1342 if (opts.flags != root->flags ||
1343 (opts.name && strcmp(opts.name, root->name))) {
1344 ret = -EINVAL;
1345 drop_parsed_module_refcounts(opts.subsys_mask);
1346 goto out_unlock;
1347 }
1348
1349 /*
1350 * Clear out the files of subsystems that should be removed, do
1351 * this before rebind_subsystems, since rebind_subsystems may
1352 * change this hierarchy's subsys_list.
1353 */
1354 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1355
1356 ret = rebind_subsystems(root, opts.subsys_mask);
1357 if (ret) {
1358 /* rebind_subsystems failed, re-populate the removed files */
1359 cgroup_populate_dir(cgrp, false, removed_mask);
1360 drop_parsed_module_refcounts(opts.subsys_mask);
1361 goto out_unlock;
1362 }
1363
1364 /* re-populate subsystem files */
1365 cgroup_populate_dir(cgrp, false, added_mask);
1366
1367 if (opts.release_agent)
1368 strcpy(root->release_agent_path, opts.release_agent);
1369 out_unlock:
1370 kfree(opts.release_agent);
1371 kfree(opts.name);
1372 mutex_unlock(&cgroup_root_mutex);
1373 mutex_unlock(&cgroup_mutex);
1374 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1375 return ret;
1376 }
1377
1378 static const struct super_operations cgroup_ops = {
1379 .statfs = simple_statfs,
1380 .drop_inode = generic_delete_inode,
1381 .show_options = cgroup_show_options,
1382 .remount_fs = cgroup_remount,
1383 };
1384
1385 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1386 {
1387 INIT_LIST_HEAD(&cgrp->sibling);
1388 INIT_LIST_HEAD(&cgrp->children);
1389 INIT_LIST_HEAD(&cgrp->files);
1390 INIT_LIST_HEAD(&cgrp->css_sets);
1391 INIT_LIST_HEAD(&cgrp->allcg_node);
1392 INIT_LIST_HEAD(&cgrp->release_list);
1393 INIT_LIST_HEAD(&cgrp->pidlists);
1394 mutex_init(&cgrp->pidlist_mutex);
1395 INIT_LIST_HEAD(&cgrp->event_list);
1396 spin_lock_init(&cgrp->event_list_lock);
1397 simple_xattrs_init(&cgrp->xattrs);
1398 }
1399
1400 static void init_cgroup_root(struct cgroupfs_root *root)
1401 {
1402 struct cgroup *cgrp = &root->top_cgroup;
1403
1404 INIT_LIST_HEAD(&root->subsys_list);
1405 INIT_LIST_HEAD(&root->root_list);
1406 INIT_LIST_HEAD(&root->allcg_list);
1407 root->number_of_cgroups = 1;
1408 cgrp->root = root;
1409 cgrp->top_cgroup = cgrp;
1410 init_cgroup_housekeeping(cgrp);
1411 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1412 }
1413
1414 static bool init_root_id(struct cgroupfs_root *root)
1415 {
1416 int ret = 0;
1417
1418 do {
1419 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1420 return false;
1421 spin_lock(&hierarchy_id_lock);
1422 /* Try to allocate the next unused ID */
1423 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1424 &root->hierarchy_id);
1425 if (ret == -ENOSPC)
1426 /* Try again starting from 0 */
1427 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1428 if (!ret) {
1429 next_hierarchy_id = root->hierarchy_id + 1;
1430 } else if (ret != -EAGAIN) {
1431 /* Can only get here if the 31-bit IDR is full ... */
1432 BUG_ON(ret);
1433 }
1434 spin_unlock(&hierarchy_id_lock);
1435 } while (ret);
1436 return true;
1437 }
1438
1439 static int cgroup_test_super(struct super_block *sb, void *data)
1440 {
1441 struct cgroup_sb_opts *opts = data;
1442 struct cgroupfs_root *root = sb->s_fs_info;
1443
1444 /* If we asked for a name then it must match */
1445 if (opts->name && strcmp(opts->name, root->name))
1446 return 0;
1447
1448 /*
1449 * If we asked for subsystems (or explicitly for no
1450 * subsystems) then they must match
1451 */
1452 if ((opts->subsys_mask || opts->none)
1453 && (opts->subsys_mask != root->subsys_mask))
1454 return 0;
1455
1456 return 1;
1457 }
1458
1459 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1460 {
1461 struct cgroupfs_root *root;
1462
1463 if (!opts->subsys_mask && !opts->none)
1464 return NULL;
1465
1466 root = kzalloc(sizeof(*root), GFP_KERNEL);
1467 if (!root)
1468 return ERR_PTR(-ENOMEM);
1469
1470 if (!init_root_id(root)) {
1471 kfree(root);
1472 return ERR_PTR(-ENOMEM);
1473 }
1474 init_cgroup_root(root);
1475
1476 root->subsys_mask = opts->subsys_mask;
1477 root->flags = opts->flags;
1478 ida_init(&root->cgroup_ida);
1479 if (opts->release_agent)
1480 strcpy(root->release_agent_path, opts->release_agent);
1481 if (opts->name)
1482 strcpy(root->name, opts->name);
1483 if (opts->cpuset_clone_children)
1484 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1485 return root;
1486 }
1487
1488 static void cgroup_drop_root(struct cgroupfs_root *root)
1489 {
1490 if (!root)
1491 return;
1492
1493 BUG_ON(!root->hierarchy_id);
1494 spin_lock(&hierarchy_id_lock);
1495 ida_remove(&hierarchy_ida, root->hierarchy_id);
1496 spin_unlock(&hierarchy_id_lock);
1497 ida_destroy(&root->cgroup_ida);
1498 kfree(root);
1499 }
1500
1501 static int cgroup_set_super(struct super_block *sb, void *data)
1502 {
1503 int ret;
1504 struct cgroup_sb_opts *opts = data;
1505
1506 /* If we don't have a new root, we can't set up a new sb */
1507 if (!opts->new_root)
1508 return -EINVAL;
1509
1510 BUG_ON(!opts->subsys_mask && !opts->none);
1511
1512 ret = set_anon_super(sb, NULL);
1513 if (ret)
1514 return ret;
1515
1516 sb->s_fs_info = opts->new_root;
1517 opts->new_root->sb = sb;
1518
1519 sb->s_blocksize = PAGE_CACHE_SIZE;
1520 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1521 sb->s_magic = CGROUP_SUPER_MAGIC;
1522 sb->s_op = &cgroup_ops;
1523
1524 return 0;
1525 }
1526
1527 static int cgroup_get_rootdir(struct super_block *sb)
1528 {
1529 static const struct dentry_operations cgroup_dops = {
1530 .d_iput = cgroup_diput,
1531 .d_delete = cgroup_delete,
1532 };
1533
1534 struct inode *inode =
1535 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1536
1537 if (!inode)
1538 return -ENOMEM;
1539
1540 inode->i_fop = &simple_dir_operations;
1541 inode->i_op = &cgroup_dir_inode_operations;
1542 /* directories start off with i_nlink == 2 (for "." entry) */
1543 inc_nlink(inode);
1544 sb->s_root = d_make_root(inode);
1545 if (!sb->s_root)
1546 return -ENOMEM;
1547 /* for everything else we want ->d_op set */
1548 sb->s_d_op = &cgroup_dops;
1549 return 0;
1550 }
1551
1552 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1553 int flags, const char *unused_dev_name,
1554 void *data)
1555 {
1556 struct cgroup_sb_opts opts;
1557 struct cgroupfs_root *root;
1558 int ret = 0;
1559 struct super_block *sb;
1560 struct cgroupfs_root *new_root;
1561 struct inode *inode;
1562
1563 /* First find the desired set of subsystems */
1564 mutex_lock(&cgroup_mutex);
1565 ret = parse_cgroupfs_options(data, &opts);
1566 mutex_unlock(&cgroup_mutex);
1567 if (ret)
1568 goto out_err;
1569
1570 /*
1571 * Allocate a new cgroup root. We may not need it if we're
1572 * reusing an existing hierarchy.
1573 */
1574 new_root = cgroup_root_from_opts(&opts);
1575 if (IS_ERR(new_root)) {
1576 ret = PTR_ERR(new_root);
1577 goto drop_modules;
1578 }
1579 opts.new_root = new_root;
1580
1581 /* Locate an existing or new sb for this hierarchy */
1582 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1583 if (IS_ERR(sb)) {
1584 ret = PTR_ERR(sb);
1585 cgroup_drop_root(opts.new_root);
1586 goto drop_modules;
1587 }
1588
1589 root = sb->s_fs_info;
1590 BUG_ON(!root);
1591 if (root == opts.new_root) {
1592 /* We used the new root structure, so this is a new hierarchy */
1593 struct list_head tmp_cg_links;
1594 struct cgroup *root_cgrp = &root->top_cgroup;
1595 struct cgroupfs_root *existing_root;
1596 const struct cred *cred;
1597 int i;
1598 struct hlist_node *node;
1599 struct css_set *cg;
1600
1601 BUG_ON(sb->s_root != NULL);
1602
1603 ret = cgroup_get_rootdir(sb);
1604 if (ret)
1605 goto drop_new_super;
1606 inode = sb->s_root->d_inode;
1607
1608 mutex_lock(&inode->i_mutex);
1609 mutex_lock(&cgroup_mutex);
1610 mutex_lock(&cgroup_root_mutex);
1611
1612 /* Check for name clashes with existing mounts */
1613 ret = -EBUSY;
1614 if (strlen(root->name))
1615 for_each_active_root(existing_root)
1616 if (!strcmp(existing_root->name, root->name))
1617 goto unlock_drop;
1618
1619 /*
1620 * We're accessing css_set_count without locking
1621 * css_set_lock here, but that's OK - it can only be
1622 * increased by someone holding cgroup_lock, and
1623 * that's us. The worst that can happen is that we
1624 * have some link structures left over
1625 */
1626 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1627 if (ret)
1628 goto unlock_drop;
1629
1630 ret = rebind_subsystems(root, root->subsys_mask);
1631 if (ret == -EBUSY) {
1632 free_cg_links(&tmp_cg_links);
1633 goto unlock_drop;
1634 }
1635 /*
1636 * There must be no failure case after here, since rebinding
1637 * takes care of subsystems' refcounts, which are explicitly
1638 * dropped in the failure exit path.
1639 */
1640
1641 /* EBUSY should be the only error here */
1642 BUG_ON(ret);
1643
1644 list_add(&root->root_list, &roots);
1645 root_count++;
1646
1647 sb->s_root->d_fsdata = root_cgrp;
1648 root->top_cgroup.dentry = sb->s_root;
1649
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
1653 hash_for_each(css_set_table, i, node, cg, hlist)
1654 link_css_set(&tmp_cg_links, cg, root_cgrp);
1655 write_unlock(&css_set_lock);
1656
1657 free_cg_links(&tmp_cg_links);
1658
1659 BUG_ON(!list_empty(&root_cgrp->children));
1660 BUG_ON(root->number_of_cgroups != 1);
1661
1662 cred = override_creds(&init_cred);
1663 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1664 revert_creds(cred);
1665 mutex_unlock(&cgroup_root_mutex);
1666 mutex_unlock(&cgroup_mutex);
1667 mutex_unlock(&inode->i_mutex);
1668 } else {
1669 /*
1670 * We re-used an existing hierarchy - the new root (if
1671 * any) is not needed
1672 */
1673 cgroup_drop_root(opts.new_root);
1674 /* no subsys rebinding, so refcounts don't change */
1675 drop_parsed_module_refcounts(opts.subsys_mask);
1676 }
1677
1678 kfree(opts.release_agent);
1679 kfree(opts.name);
1680 return dget(sb->s_root);
1681
1682 unlock_drop:
1683 mutex_unlock(&cgroup_root_mutex);
1684 mutex_unlock(&cgroup_mutex);
1685 mutex_unlock(&inode->i_mutex);
1686 drop_new_super:
1687 deactivate_locked_super(sb);
1688 drop_modules:
1689 drop_parsed_module_refcounts(opts.subsys_mask);
1690 out_err:
1691 kfree(opts.release_agent);
1692 kfree(opts.name);
1693 return ERR_PTR(ret);
1694 }
1695
1696 static void cgroup_kill_sb(struct super_block *sb) {
1697 struct cgroupfs_root *root = sb->s_fs_info;
1698 struct cgroup *cgrp = &root->top_cgroup;
1699 int ret;
1700 struct cg_cgroup_link *link;
1701 struct cg_cgroup_link *saved_link;
1702
1703 BUG_ON(!root);
1704
1705 BUG_ON(root->number_of_cgroups != 1);
1706 BUG_ON(!list_empty(&cgrp->children));
1707
1708 mutex_lock(&cgroup_mutex);
1709 mutex_lock(&cgroup_root_mutex);
1710
1711 /* Rebind all subsystems back to the default hierarchy */
1712 ret = rebind_subsystems(root, 0);
1713 /* Shouldn't be able to fail ... */
1714 BUG_ON(ret);
1715
1716 /*
1717 * Release all the links from css_sets to this hierarchy's
1718 * root cgroup
1719 */
1720 write_lock(&css_set_lock);
1721
1722 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1723 cgrp_link_list) {
1724 list_del(&link->cg_link_list);
1725 list_del(&link->cgrp_link_list);
1726 kfree(link);
1727 }
1728 write_unlock(&css_set_lock);
1729
1730 if (!list_empty(&root->root_list)) {
1731 list_del(&root->root_list);
1732 root_count--;
1733 }
1734
1735 mutex_unlock(&cgroup_root_mutex);
1736 mutex_unlock(&cgroup_mutex);
1737
1738 simple_xattrs_free(&cgrp->xattrs);
1739
1740 kill_litter_super(sb);
1741 cgroup_drop_root(root);
1742 }
1743
1744 static struct file_system_type cgroup_fs_type = {
1745 .name = "cgroup",
1746 .mount = cgroup_mount,
1747 .kill_sb = cgroup_kill_sb,
1748 };
1749
1750 static struct kobject *cgroup_kobj;
1751
1752 /**
1753 * cgroup_path - generate the path of a cgroup
1754 * @cgrp: the cgroup in question
1755 * @buf: the buffer to write the path into
1756 * @buflen: the length of the buffer
1757 *
1758 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1759 * reference. Writes path of cgroup into buf. Returns 0 on success,
1760 * -errno on error.
1761 */
1762 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1763 {
1764 struct dentry *dentry = cgrp->dentry;
1765 char *start;
1766
1767 rcu_lockdep_assert(rcu_read_lock_held() || cgroup_lock_is_held(),
1768 "cgroup_path() called without proper locking");
1769
1770 if (!dentry || cgrp == dummytop) {
1771 /*
1772 * Inactive subsystems have no dentry for their root
1773 * cgroup
1774 */
1775 strcpy(buf, "/");
1776 return 0;
1777 }
1778
1779 start = buf + buflen - 1;
1780
1781 *start = '\0';
1782 for (;;) {
1783 int len = dentry->d_name.len;
1784
1785 if ((start -= len) < buf)
1786 return -ENAMETOOLONG;
1787 memcpy(start, dentry->d_name.name, len);
1788 cgrp = cgrp->parent;
1789 if (!cgrp)
1790 break;
1791
1792 dentry = cgrp->dentry;
1793 if (!cgrp->parent)
1794 continue;
1795 if (--start < buf)
1796 return -ENAMETOOLONG;
1797 *start = '/';
1798 }
1799 memmove(buf, start, buf + buflen - start);
1800 return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(cgroup_path);
1803
1804 /*
1805 * Control Group taskset
1806 */
1807 struct task_and_cgroup {
1808 struct task_struct *task;
1809 struct cgroup *cgrp;
1810 struct css_set *cg;
1811 };
1812
1813 struct cgroup_taskset {
1814 struct task_and_cgroup single;
1815 struct flex_array *tc_array;
1816 int tc_array_len;
1817 int idx;
1818 struct cgroup *cur_cgrp;
1819 };
1820
1821 /**
1822 * cgroup_taskset_first - reset taskset and return the first task
1823 * @tset: taskset of interest
1824 *
1825 * @tset iteration is initialized and the first task is returned.
1826 */
1827 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1828 {
1829 if (tset->tc_array) {
1830 tset->idx = 0;
1831 return cgroup_taskset_next(tset);
1832 } else {
1833 tset->cur_cgrp = tset->single.cgrp;
1834 return tset->single.task;
1835 }
1836 }
1837 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1838
1839 /**
1840 * cgroup_taskset_next - iterate to the next task in taskset
1841 * @tset: taskset of interest
1842 *
1843 * Return the next task in @tset. Iteration must have been initialized
1844 * with cgroup_taskset_first().
1845 */
1846 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1847 {
1848 struct task_and_cgroup *tc;
1849
1850 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1851 return NULL;
1852
1853 tc = flex_array_get(tset->tc_array, tset->idx++);
1854 tset->cur_cgrp = tc->cgrp;
1855 return tc->task;
1856 }
1857 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1858
1859 /**
1860 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1861 * @tset: taskset of interest
1862 *
1863 * Return the cgroup for the current (last returned) task of @tset. This
1864 * function must be preceded by either cgroup_taskset_first() or
1865 * cgroup_taskset_next().
1866 */
1867 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1868 {
1869 return tset->cur_cgrp;
1870 }
1871 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1872
1873 /**
1874 * cgroup_taskset_size - return the number of tasks in taskset
1875 * @tset: taskset of interest
1876 */
1877 int cgroup_taskset_size(struct cgroup_taskset *tset)
1878 {
1879 return tset->tc_array ? tset->tc_array_len : 1;
1880 }
1881 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1882
1883
1884 /*
1885 * cgroup_task_migrate - move a task from one cgroup to another.
1886 *
1887 * Must be called with cgroup_mutex and threadgroup locked.
1888 */
1889 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1890 struct task_struct *tsk, struct css_set *newcg)
1891 {
1892 struct css_set *oldcg;
1893
1894 /*
1895 * We are synchronized through threadgroup_lock() against PF_EXITING
1896 * setting such that we can't race against cgroup_exit() changing the
1897 * css_set to init_css_set and dropping the old one.
1898 */
1899 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1900 oldcg = tsk->cgroups;
1901
1902 task_lock(tsk);
1903 rcu_assign_pointer(tsk->cgroups, newcg);
1904 task_unlock(tsk);
1905
1906 /* Update the css_set linked lists if we're using them */
1907 write_lock(&css_set_lock);
1908 if (!list_empty(&tsk->cg_list))
1909 list_move(&tsk->cg_list, &newcg->tasks);
1910 write_unlock(&css_set_lock);
1911
1912 /*
1913 * We just gained a reference on oldcg by taking it from the task. As
1914 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1915 * it here; it will be freed under RCU.
1916 */
1917 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1918 put_css_set(oldcg);
1919 }
1920
1921 /**
1922 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1923 * @cgrp: the cgroup the task is attaching to
1924 * @tsk: the task to be attached
1925 *
1926 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1927 * @tsk during call.
1928 */
1929 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1930 {
1931 int retval = 0;
1932 struct cgroup_subsys *ss, *failed_ss = NULL;
1933 struct cgroup *oldcgrp;
1934 struct cgroupfs_root *root = cgrp->root;
1935 struct cgroup_taskset tset = { };
1936 struct css_set *newcg;
1937
1938 /* @tsk either already exited or can't exit until the end */
1939 if (tsk->flags & PF_EXITING)
1940 return -ESRCH;
1941
1942 /* Nothing to do if the task is already in that cgroup */
1943 oldcgrp = task_cgroup_from_root(tsk, root);
1944 if (cgrp == oldcgrp)
1945 return 0;
1946
1947 tset.single.task = tsk;
1948 tset.single.cgrp = oldcgrp;
1949
1950 for_each_subsys(root, ss) {
1951 if (ss->can_attach) {
1952 retval = ss->can_attach(cgrp, &tset);
1953 if (retval) {
1954 /*
1955 * Remember on which subsystem the can_attach()
1956 * failed, so that we only call cancel_attach()
1957 * against the subsystems whose can_attach()
1958 * succeeded. (See below)
1959 */
1960 failed_ss = ss;
1961 goto out;
1962 }
1963 }
1964 }
1965
1966 newcg = find_css_set(tsk->cgroups, cgrp);
1967 if (!newcg) {
1968 retval = -ENOMEM;
1969 goto out;
1970 }
1971
1972 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1973
1974 for_each_subsys(root, ss) {
1975 if (ss->attach)
1976 ss->attach(cgrp, &tset);
1977 }
1978
1979 out:
1980 if (retval) {
1981 for_each_subsys(root, ss) {
1982 if (ss == failed_ss)
1983 /*
1984 * This subsystem was the one that failed the
1985 * can_attach() check earlier, so we don't need
1986 * to call cancel_attach() against it or any
1987 * remaining subsystems.
1988 */
1989 break;
1990 if (ss->cancel_attach)
1991 ss->cancel_attach(cgrp, &tset);
1992 }
1993 }
1994 return retval;
1995 }
1996
1997 /**
1998 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1999 * @from: attach to all cgroups of a given task
2000 * @tsk: the task to be attached
2001 */
2002 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2003 {
2004 struct cgroupfs_root *root;
2005 int retval = 0;
2006
2007 cgroup_lock();
2008 for_each_active_root(root) {
2009 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2010
2011 retval = cgroup_attach_task(from_cg, tsk);
2012 if (retval)
2013 break;
2014 }
2015 cgroup_unlock();
2016
2017 return retval;
2018 }
2019 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2020
2021 /**
2022 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2023 * @cgrp: the cgroup to attach to
2024 * @leader: the threadgroup leader task_struct of the group to be attached
2025 *
2026 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2027 * task_lock of each thread in leader's threadgroup individually in turn.
2028 */
2029 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2030 {
2031 int retval, i, group_size;
2032 struct cgroup_subsys *ss, *failed_ss = NULL;
2033 /* guaranteed to be initialized later, but the compiler needs this */
2034 struct cgroupfs_root *root = cgrp->root;
2035 /* threadgroup list cursor and array */
2036 struct task_struct *tsk;
2037 struct task_and_cgroup *tc;
2038 struct flex_array *group;
2039 struct cgroup_taskset tset = { };
2040
2041 /*
2042 * step 0: in order to do expensive, possibly blocking operations for
2043 * every thread, we cannot iterate the thread group list, since it needs
2044 * rcu or tasklist locked. instead, build an array of all threads in the
2045 * group - group_rwsem prevents new threads from appearing, and if
2046 * threads exit, this will just be an over-estimate.
2047 */
2048 group_size = get_nr_threads(leader);
2049 /* flex_array supports very large thread-groups better than kmalloc. */
2050 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2051 if (!group)
2052 return -ENOMEM;
2053 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2054 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2055 if (retval)
2056 goto out_free_group_list;
2057
2058 tsk = leader;
2059 i = 0;
2060 /*
2061 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2062 * already PF_EXITING could be freed from underneath us unless we
2063 * take an rcu_read_lock.
2064 */
2065 rcu_read_lock();
2066 do {
2067 struct task_and_cgroup ent;
2068
2069 /* @tsk either already exited or can't exit until the end */
2070 if (tsk->flags & PF_EXITING)
2071 continue;
2072
2073 /* as per above, nr_threads may decrease, but not increase. */
2074 BUG_ON(i >= group_size);
2075 ent.task = tsk;
2076 ent.cgrp = task_cgroup_from_root(tsk, root);
2077 /* nothing to do if this task is already in the cgroup */
2078 if (ent.cgrp == cgrp)
2079 continue;
2080 /*
2081 * saying GFP_ATOMIC has no effect here because we did prealloc
2082 * earlier, but it's good form to communicate our expectations.
2083 */
2084 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2085 BUG_ON(retval != 0);
2086 i++;
2087 } while_each_thread(leader, tsk);
2088 rcu_read_unlock();
2089 /* remember the number of threads in the array for later. */
2090 group_size = i;
2091 tset.tc_array = group;
2092 tset.tc_array_len = group_size;
2093
2094 /* methods shouldn't be called if no task is actually migrating */
2095 retval = 0;
2096 if (!group_size)
2097 goto out_free_group_list;
2098
2099 /*
2100 * step 1: check that we can legitimately attach to the cgroup.
2101 */
2102 for_each_subsys(root, ss) {
2103 if (ss->can_attach) {
2104 retval = ss->can_attach(cgrp, &tset);
2105 if (retval) {
2106 failed_ss = ss;
2107 goto out_cancel_attach;
2108 }
2109 }
2110 }
2111
2112 /*
2113 * step 2: make sure css_sets exist for all threads to be migrated.
2114 * we use find_css_set, which allocates a new one if necessary.
2115 */
2116 for (i = 0; i < group_size; i++) {
2117 tc = flex_array_get(group, i);
2118 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2119 if (!tc->cg) {
2120 retval = -ENOMEM;
2121 goto out_put_css_set_refs;
2122 }
2123 }
2124
2125 /*
2126 * step 3: now that we're guaranteed success wrt the css_sets,
2127 * proceed to move all tasks to the new cgroup. There are no
2128 * failure cases after here, so this is the commit point.
2129 */
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
2132 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2133 }
2134 /* nothing is sensitive to fork() after this point. */
2135
2136 /*
2137 * step 4: do subsystem attach callbacks.
2138 */
2139 for_each_subsys(root, ss) {
2140 if (ss->attach)
2141 ss->attach(cgrp, &tset);
2142 }
2143
2144 /*
2145 * step 5: success! and cleanup
2146 */
2147 retval = 0;
2148 out_put_css_set_refs:
2149 if (retval) {
2150 for (i = 0; i < group_size; i++) {
2151 tc = flex_array_get(group, i);
2152 if (!tc->cg)
2153 break;
2154 put_css_set(tc->cg);
2155 }
2156 }
2157 out_cancel_attach:
2158 if (retval) {
2159 for_each_subsys(root, ss) {
2160 if (ss == failed_ss)
2161 break;
2162 if (ss->cancel_attach)
2163 ss->cancel_attach(cgrp, &tset);
2164 }
2165 }
2166 out_free_group_list:
2167 flex_array_free(group);
2168 return retval;
2169 }
2170
2171 /*
2172 * Find the task_struct of the task to attach by vpid and pass it along to the
2173 * function to attach either it or all tasks in its threadgroup. Will lock
2174 * cgroup_mutex and threadgroup; may take task_lock of task.
2175 */
2176 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2177 {
2178 struct task_struct *tsk;
2179 const struct cred *cred = current_cred(), *tcred;
2180 int ret;
2181
2182 if (!cgroup_lock_live_group(cgrp))
2183 return -ENODEV;
2184
2185 retry_find_task:
2186 rcu_read_lock();
2187 if (pid) {
2188 tsk = find_task_by_vpid(pid);
2189 if (!tsk) {
2190 rcu_read_unlock();
2191 ret= -ESRCH;
2192 goto out_unlock_cgroup;
2193 }
2194 /*
2195 * even if we're attaching all tasks in the thread group, we
2196 * only need to check permissions on one of them.
2197 */
2198 tcred = __task_cred(tsk);
2199 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2200 !uid_eq(cred->euid, tcred->uid) &&
2201 !uid_eq(cred->euid, tcred->suid)) {
2202 rcu_read_unlock();
2203 ret = -EACCES;
2204 goto out_unlock_cgroup;
2205 }
2206 } else
2207 tsk = current;
2208
2209 if (threadgroup)
2210 tsk = tsk->group_leader;
2211
2212 /*
2213 * Workqueue threads may acquire PF_THREAD_BOUND and become
2214 * trapped in a cpuset, or RT worker may be born in a cgroup
2215 * with no rt_runtime allocated. Just say no.
2216 */
2217 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2218 ret = -EINVAL;
2219 rcu_read_unlock();
2220 goto out_unlock_cgroup;
2221 }
2222
2223 get_task_struct(tsk);
2224 rcu_read_unlock();
2225
2226 threadgroup_lock(tsk);
2227 if (threadgroup) {
2228 if (!thread_group_leader(tsk)) {
2229 /*
2230 * a race with de_thread from another thread's exec()
2231 * may strip us of our leadership, if this happens,
2232 * there is no choice but to throw this task away and
2233 * try again; this is
2234 * "double-double-toil-and-trouble-check locking".
2235 */
2236 threadgroup_unlock(tsk);
2237 put_task_struct(tsk);
2238 goto retry_find_task;
2239 }
2240 ret = cgroup_attach_proc(cgrp, tsk);
2241 } else
2242 ret = cgroup_attach_task(cgrp, tsk);
2243 threadgroup_unlock(tsk);
2244
2245 put_task_struct(tsk);
2246 out_unlock_cgroup:
2247 cgroup_unlock();
2248 return ret;
2249 }
2250
2251 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2252 {
2253 return attach_task_by_pid(cgrp, pid, false);
2254 }
2255
2256 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2257 {
2258 return attach_task_by_pid(cgrp, tgid, true);
2259 }
2260
2261 /**
2262 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2263 * @cgrp: the cgroup to be checked for liveness
2264 *
2265 * On success, returns true; the lock should be later released with
2266 * cgroup_unlock(). On failure returns false with no lock held.
2267 */
2268 bool cgroup_lock_live_group(struct cgroup *cgrp)
2269 {
2270 mutex_lock(&cgroup_mutex);
2271 if (cgroup_is_removed(cgrp)) {
2272 mutex_unlock(&cgroup_mutex);
2273 return false;
2274 }
2275 return true;
2276 }
2277 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2278
2279 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2280 const char *buffer)
2281 {
2282 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2283 if (strlen(buffer) >= PATH_MAX)
2284 return -EINVAL;
2285 if (!cgroup_lock_live_group(cgrp))
2286 return -ENODEV;
2287 mutex_lock(&cgroup_root_mutex);
2288 strcpy(cgrp->root->release_agent_path, buffer);
2289 mutex_unlock(&cgroup_root_mutex);
2290 cgroup_unlock();
2291 return 0;
2292 }
2293
2294 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2295 struct seq_file *seq)
2296 {
2297 if (!cgroup_lock_live_group(cgrp))
2298 return -ENODEV;
2299 seq_puts(seq, cgrp->root->release_agent_path);
2300 seq_putc(seq, '\n');
2301 cgroup_unlock();
2302 return 0;
2303 }
2304
2305 /* A buffer size big enough for numbers or short strings */
2306 #define CGROUP_LOCAL_BUFFER_SIZE 64
2307
2308 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2309 struct file *file,
2310 const char __user *userbuf,
2311 size_t nbytes, loff_t *unused_ppos)
2312 {
2313 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2314 int retval = 0;
2315 char *end;
2316
2317 if (!nbytes)
2318 return -EINVAL;
2319 if (nbytes >= sizeof(buffer))
2320 return -E2BIG;
2321 if (copy_from_user(buffer, userbuf, nbytes))
2322 return -EFAULT;
2323
2324 buffer[nbytes] = 0; /* nul-terminate */
2325 if (cft->write_u64) {
2326 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2327 if (*end)
2328 return -EINVAL;
2329 retval = cft->write_u64(cgrp, cft, val);
2330 } else {
2331 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2332 if (*end)
2333 return -EINVAL;
2334 retval = cft->write_s64(cgrp, cft, val);
2335 }
2336 if (!retval)
2337 retval = nbytes;
2338 return retval;
2339 }
2340
2341 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2342 struct file *file,
2343 const char __user *userbuf,
2344 size_t nbytes, loff_t *unused_ppos)
2345 {
2346 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2347 int retval = 0;
2348 size_t max_bytes = cft->max_write_len;
2349 char *buffer = local_buffer;
2350
2351 if (!max_bytes)
2352 max_bytes = sizeof(local_buffer) - 1;
2353 if (nbytes >= max_bytes)
2354 return -E2BIG;
2355 /* Allocate a dynamic buffer if we need one */
2356 if (nbytes >= sizeof(local_buffer)) {
2357 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2358 if (buffer == NULL)
2359 return -ENOMEM;
2360 }
2361 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2362 retval = -EFAULT;
2363 goto out;
2364 }
2365
2366 buffer[nbytes] = 0; /* nul-terminate */
2367 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2368 if (!retval)
2369 retval = nbytes;
2370 out:
2371 if (buffer != local_buffer)
2372 kfree(buffer);
2373 return retval;
2374 }
2375
2376 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2377 size_t nbytes, loff_t *ppos)
2378 {
2379 struct cftype *cft = __d_cft(file->f_dentry);
2380 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2381
2382 if (cgroup_is_removed(cgrp))
2383 return -ENODEV;
2384 if (cft->write)
2385 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2386 if (cft->write_u64 || cft->write_s64)
2387 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2388 if (cft->write_string)
2389 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2390 if (cft->trigger) {
2391 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2392 return ret ? ret : nbytes;
2393 }
2394 return -EINVAL;
2395 }
2396
2397 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2398 struct file *file,
2399 char __user *buf, size_t nbytes,
2400 loff_t *ppos)
2401 {
2402 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2403 u64 val = cft->read_u64(cgrp, cft);
2404 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2405
2406 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2407 }
2408
2409 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2410 struct file *file,
2411 char __user *buf, size_t nbytes,
2412 loff_t *ppos)
2413 {
2414 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2415 s64 val = cft->read_s64(cgrp, cft);
2416 int len = sprintf(tmp, "%lld\n", (long long) val);
2417
2418 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2419 }
2420
2421 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2422 size_t nbytes, loff_t *ppos)
2423 {
2424 struct cftype *cft = __d_cft(file->f_dentry);
2425 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2426
2427 if (cgroup_is_removed(cgrp))
2428 return -ENODEV;
2429
2430 if (cft->read)
2431 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2432 if (cft->read_u64)
2433 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2434 if (cft->read_s64)
2435 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2436 return -EINVAL;
2437 }
2438
2439 /*
2440 * seqfile ops/methods for returning structured data. Currently just
2441 * supports string->u64 maps, but can be extended in future.
2442 */
2443
2444 struct cgroup_seqfile_state {
2445 struct cftype *cft;
2446 struct cgroup *cgroup;
2447 };
2448
2449 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2450 {
2451 struct seq_file *sf = cb->state;
2452 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2453 }
2454
2455 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2456 {
2457 struct cgroup_seqfile_state *state = m->private;
2458 struct cftype *cft = state->cft;
2459 if (cft->read_map) {
2460 struct cgroup_map_cb cb = {
2461 .fill = cgroup_map_add,
2462 .state = m,
2463 };
2464 return cft->read_map(state->cgroup, cft, &cb);
2465 }
2466 return cft->read_seq_string(state->cgroup, cft, m);
2467 }
2468
2469 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2470 {
2471 struct seq_file *seq = file->private_data;
2472 kfree(seq->private);
2473 return single_release(inode, file);
2474 }
2475
2476 static const struct file_operations cgroup_seqfile_operations = {
2477 .read = seq_read,
2478 .write = cgroup_file_write,
2479 .llseek = seq_lseek,
2480 .release = cgroup_seqfile_release,
2481 };
2482
2483 static int cgroup_file_open(struct inode *inode, struct file *file)
2484 {
2485 int err;
2486 struct cftype *cft;
2487
2488 err = generic_file_open(inode, file);
2489 if (err)
2490 return err;
2491 cft = __d_cft(file->f_dentry);
2492
2493 if (cft->read_map || cft->read_seq_string) {
2494 struct cgroup_seqfile_state *state =
2495 kzalloc(sizeof(*state), GFP_USER);
2496 if (!state)
2497 return -ENOMEM;
2498 state->cft = cft;
2499 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2500 file->f_op = &cgroup_seqfile_operations;
2501 err = single_open(file, cgroup_seqfile_show, state);
2502 if (err < 0)
2503 kfree(state);
2504 } else if (cft->open)
2505 err = cft->open(inode, file);
2506 else
2507 err = 0;
2508
2509 return err;
2510 }
2511
2512 static int cgroup_file_release(struct inode *inode, struct file *file)
2513 {
2514 struct cftype *cft = __d_cft(file->f_dentry);
2515 if (cft->release)
2516 return cft->release(inode, file);
2517 return 0;
2518 }
2519
2520 /*
2521 * cgroup_rename - Only allow simple rename of directories in place.
2522 */
2523 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2524 struct inode *new_dir, struct dentry *new_dentry)
2525 {
2526 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2527 return -ENOTDIR;
2528 if (new_dentry->d_inode)
2529 return -EEXIST;
2530 if (old_dir != new_dir)
2531 return -EIO;
2532 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2533 }
2534
2535 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2536 {
2537 if (S_ISDIR(dentry->d_inode->i_mode))
2538 return &__d_cgrp(dentry)->xattrs;
2539 else
2540 return &__d_cft(dentry)->xattrs;
2541 }
2542
2543 static inline int xattr_enabled(struct dentry *dentry)
2544 {
2545 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2546 return test_bit(ROOT_XATTR, &root->flags);
2547 }
2548
2549 static bool is_valid_xattr(const char *name)
2550 {
2551 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2552 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2553 return true;
2554 return false;
2555 }
2556
2557 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2558 const void *val, size_t size, int flags)
2559 {
2560 if (!xattr_enabled(dentry))
2561 return -EOPNOTSUPP;
2562 if (!is_valid_xattr(name))
2563 return -EINVAL;
2564 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2565 }
2566
2567 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2568 {
2569 if (!xattr_enabled(dentry))
2570 return -EOPNOTSUPP;
2571 if (!is_valid_xattr(name))
2572 return -EINVAL;
2573 return simple_xattr_remove(__d_xattrs(dentry), name);
2574 }
2575
2576 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2577 void *buf, size_t size)
2578 {
2579 if (!xattr_enabled(dentry))
2580 return -EOPNOTSUPP;
2581 if (!is_valid_xattr(name))
2582 return -EINVAL;
2583 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2584 }
2585
2586 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2587 {
2588 if (!xattr_enabled(dentry))
2589 return -EOPNOTSUPP;
2590 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2591 }
2592
2593 static const struct file_operations cgroup_file_operations = {
2594 .read = cgroup_file_read,
2595 .write = cgroup_file_write,
2596 .llseek = generic_file_llseek,
2597 .open = cgroup_file_open,
2598 .release = cgroup_file_release,
2599 };
2600
2601 static const struct inode_operations cgroup_file_inode_operations = {
2602 .setxattr = cgroup_setxattr,
2603 .getxattr = cgroup_getxattr,
2604 .listxattr = cgroup_listxattr,
2605 .removexattr = cgroup_removexattr,
2606 };
2607
2608 static const struct inode_operations cgroup_dir_inode_operations = {
2609 .lookup = cgroup_lookup,
2610 .mkdir = cgroup_mkdir,
2611 .rmdir = cgroup_rmdir,
2612 .rename = cgroup_rename,
2613 .setxattr = cgroup_setxattr,
2614 .getxattr = cgroup_getxattr,
2615 .listxattr = cgroup_listxattr,
2616 .removexattr = cgroup_removexattr,
2617 };
2618
2619 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2620 {
2621 if (dentry->d_name.len > NAME_MAX)
2622 return ERR_PTR(-ENAMETOOLONG);
2623 d_add(dentry, NULL);
2624 return NULL;
2625 }
2626
2627 /*
2628 * Check if a file is a control file
2629 */
2630 static inline struct cftype *__file_cft(struct file *file)
2631 {
2632 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2633 return ERR_PTR(-EINVAL);
2634 return __d_cft(file->f_dentry);
2635 }
2636
2637 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2638 struct super_block *sb)
2639 {
2640 struct inode *inode;
2641
2642 if (!dentry)
2643 return -ENOENT;
2644 if (dentry->d_inode)
2645 return -EEXIST;
2646
2647 inode = cgroup_new_inode(mode, sb);
2648 if (!inode)
2649 return -ENOMEM;
2650
2651 if (S_ISDIR(mode)) {
2652 inode->i_op = &cgroup_dir_inode_operations;
2653 inode->i_fop = &simple_dir_operations;
2654
2655 /* start off with i_nlink == 2 (for "." entry) */
2656 inc_nlink(inode);
2657 inc_nlink(dentry->d_parent->d_inode);
2658
2659 /*
2660 * Control reaches here with cgroup_mutex held.
2661 * @inode->i_mutex should nest outside cgroup_mutex but we
2662 * want to populate it immediately without releasing
2663 * cgroup_mutex. As @inode isn't visible to anyone else
2664 * yet, trylock will always succeed without affecting
2665 * lockdep checks.
2666 */
2667 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2668 } else if (S_ISREG(mode)) {
2669 inode->i_size = 0;
2670 inode->i_fop = &cgroup_file_operations;
2671 inode->i_op = &cgroup_file_inode_operations;
2672 }
2673 d_instantiate(dentry, inode);
2674 dget(dentry); /* Extra count - pin the dentry in core */
2675 return 0;
2676 }
2677
2678 /**
2679 * cgroup_file_mode - deduce file mode of a control file
2680 * @cft: the control file in question
2681 *
2682 * returns cft->mode if ->mode is not 0
2683 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2684 * returns S_IRUGO if it has only a read handler
2685 * returns S_IWUSR if it has only a write hander
2686 */
2687 static umode_t cgroup_file_mode(const struct cftype *cft)
2688 {
2689 umode_t mode = 0;
2690
2691 if (cft->mode)
2692 return cft->mode;
2693
2694 if (cft->read || cft->read_u64 || cft->read_s64 ||
2695 cft->read_map || cft->read_seq_string)
2696 mode |= S_IRUGO;
2697
2698 if (cft->write || cft->write_u64 || cft->write_s64 ||
2699 cft->write_string || cft->trigger)
2700 mode |= S_IWUSR;
2701
2702 return mode;
2703 }
2704
2705 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2706 struct cftype *cft)
2707 {
2708 struct dentry *dir = cgrp->dentry;
2709 struct cgroup *parent = __d_cgrp(dir);
2710 struct dentry *dentry;
2711 struct cfent *cfe;
2712 int error;
2713 umode_t mode;
2714 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2715
2716 simple_xattrs_init(&cft->xattrs);
2717
2718 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2719 strcpy(name, subsys->name);
2720 strcat(name, ".");
2721 }
2722 strcat(name, cft->name);
2723
2724 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2725
2726 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2727 if (!cfe)
2728 return -ENOMEM;
2729
2730 dentry = lookup_one_len(name, dir, strlen(name));
2731 if (IS_ERR(dentry)) {
2732 error = PTR_ERR(dentry);
2733 goto out;
2734 }
2735
2736 mode = cgroup_file_mode(cft);
2737 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2738 if (!error) {
2739 cfe->type = (void *)cft;
2740 cfe->dentry = dentry;
2741 dentry->d_fsdata = cfe;
2742 list_add_tail(&cfe->node, &parent->files);
2743 cfe = NULL;
2744 }
2745 dput(dentry);
2746 out:
2747 kfree(cfe);
2748 return error;
2749 }
2750
2751 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2752 struct cftype cfts[], bool is_add)
2753 {
2754 struct cftype *cft;
2755 int err, ret = 0;
2756
2757 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2758 /* does cft->flags tell us to skip this file on @cgrp? */
2759 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2760 continue;
2761 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2762 continue;
2763
2764 if (is_add) {
2765 err = cgroup_add_file(cgrp, subsys, cft);
2766 if (err)
2767 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2768 cft->name, err);
2769 ret = err;
2770 } else {
2771 cgroup_rm_file(cgrp, cft);
2772 }
2773 }
2774 return ret;
2775 }
2776
2777 static DEFINE_MUTEX(cgroup_cft_mutex);
2778
2779 static void cgroup_cfts_prepare(void)
2780 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2781 {
2782 /*
2783 * Thanks to the entanglement with vfs inode locking, we can't walk
2784 * the existing cgroups under cgroup_mutex and create files.
2785 * Instead, we increment reference on all cgroups and build list of
2786 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2787 * exclusive access to the field.
2788 */
2789 mutex_lock(&cgroup_cft_mutex);
2790 mutex_lock(&cgroup_mutex);
2791 }
2792
2793 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2794 struct cftype *cfts, bool is_add)
2795 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2796 {
2797 LIST_HEAD(pending);
2798 struct cgroup *cgrp, *n;
2799
2800 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2801 if (cfts && ss->root != &rootnode) {
2802 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2803 dget(cgrp->dentry);
2804 list_add_tail(&cgrp->cft_q_node, &pending);
2805 }
2806 }
2807
2808 mutex_unlock(&cgroup_mutex);
2809
2810 /*
2811 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2812 * files for all cgroups which were created before.
2813 */
2814 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2815 struct inode *inode = cgrp->dentry->d_inode;
2816
2817 mutex_lock(&inode->i_mutex);
2818 mutex_lock(&cgroup_mutex);
2819 if (!cgroup_is_removed(cgrp))
2820 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2821 mutex_unlock(&cgroup_mutex);
2822 mutex_unlock(&inode->i_mutex);
2823
2824 list_del_init(&cgrp->cft_q_node);
2825 dput(cgrp->dentry);
2826 }
2827
2828 mutex_unlock(&cgroup_cft_mutex);
2829 }
2830
2831 /**
2832 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2833 * @ss: target cgroup subsystem
2834 * @cfts: zero-length name terminated array of cftypes
2835 *
2836 * Register @cfts to @ss. Files described by @cfts are created for all
2837 * existing cgroups to which @ss is attached and all future cgroups will
2838 * have them too. This function can be called anytime whether @ss is
2839 * attached or not.
2840 *
2841 * Returns 0 on successful registration, -errno on failure. Note that this
2842 * function currently returns 0 as long as @cfts registration is successful
2843 * even if some file creation attempts on existing cgroups fail.
2844 */
2845 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2846 {
2847 struct cftype_set *set;
2848
2849 set = kzalloc(sizeof(*set), GFP_KERNEL);
2850 if (!set)
2851 return -ENOMEM;
2852
2853 cgroup_cfts_prepare();
2854 set->cfts = cfts;
2855 list_add_tail(&set->node, &ss->cftsets);
2856 cgroup_cfts_commit(ss, cfts, true);
2857
2858 return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2861
2862 /**
2863 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2864 * @ss: target cgroup subsystem
2865 * @cfts: zero-length name terminated array of cftypes
2866 *
2867 * Unregister @cfts from @ss. Files described by @cfts are removed from
2868 * all existing cgroups to which @ss is attached and all future cgroups
2869 * won't have them either. This function can be called anytime whether @ss
2870 * is attached or not.
2871 *
2872 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2873 * registered with @ss.
2874 */
2875 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2876 {
2877 struct cftype_set *set;
2878
2879 cgroup_cfts_prepare();
2880
2881 list_for_each_entry(set, &ss->cftsets, node) {
2882 if (set->cfts == cfts) {
2883 list_del_init(&set->node);
2884 cgroup_cfts_commit(ss, cfts, false);
2885 return 0;
2886 }
2887 }
2888
2889 cgroup_cfts_commit(ss, NULL, false);
2890 return -ENOENT;
2891 }
2892
2893 /**
2894 * cgroup_task_count - count the number of tasks in a cgroup.
2895 * @cgrp: the cgroup in question
2896 *
2897 * Return the number of tasks in the cgroup.
2898 */
2899 int cgroup_task_count(const struct cgroup *cgrp)
2900 {
2901 int count = 0;
2902 struct cg_cgroup_link *link;
2903
2904 read_lock(&css_set_lock);
2905 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2906 count += atomic_read(&link->cg->refcount);
2907 }
2908 read_unlock(&css_set_lock);
2909 return count;
2910 }
2911
2912 /*
2913 * Advance a list_head iterator. The iterator should be positioned at
2914 * the start of a css_set
2915 */
2916 static void cgroup_advance_iter(struct cgroup *cgrp,
2917 struct cgroup_iter *it)
2918 {
2919 struct list_head *l = it->cg_link;
2920 struct cg_cgroup_link *link;
2921 struct css_set *cg;
2922
2923 /* Advance to the next non-empty css_set */
2924 do {
2925 l = l->next;
2926 if (l == &cgrp->css_sets) {
2927 it->cg_link = NULL;
2928 return;
2929 }
2930 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2931 cg = link->cg;
2932 } while (list_empty(&cg->tasks));
2933 it->cg_link = l;
2934 it->task = cg->tasks.next;
2935 }
2936
2937 /*
2938 * To reduce the fork() overhead for systems that are not actually
2939 * using their cgroups capability, we don't maintain the lists running
2940 * through each css_set to its tasks until we see the list actually
2941 * used - in other words after the first call to cgroup_iter_start().
2942 */
2943 static void cgroup_enable_task_cg_lists(void)
2944 {
2945 struct task_struct *p, *g;
2946 write_lock(&css_set_lock);
2947 use_task_css_set_links = 1;
2948 /*
2949 * We need tasklist_lock because RCU is not safe against
2950 * while_each_thread(). Besides, a forking task that has passed
2951 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2952 * is not guaranteed to have its child immediately visible in the
2953 * tasklist if we walk through it with RCU.
2954 */
2955 read_lock(&tasklist_lock);
2956 do_each_thread(g, p) {
2957 task_lock(p);
2958 /*
2959 * We should check if the process is exiting, otherwise
2960 * it will race with cgroup_exit() in that the list
2961 * entry won't be deleted though the process has exited.
2962 */
2963 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2964 list_add(&p->cg_list, &p->cgroups->tasks);
2965 task_unlock(p);
2966 } while_each_thread(g, p);
2967 read_unlock(&tasklist_lock);
2968 write_unlock(&css_set_lock);
2969 }
2970
2971 /**
2972 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2973 * @pos: the current position (%NULL to initiate traversal)
2974 * @cgroup: cgroup whose descendants to walk
2975 *
2976 * To be used by cgroup_for_each_descendant_pre(). Find the next
2977 * descendant to visit for pre-order traversal of @cgroup's descendants.
2978 */
2979 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2980 struct cgroup *cgroup)
2981 {
2982 struct cgroup *next;
2983
2984 WARN_ON_ONCE(!rcu_read_lock_held());
2985
2986 /* if first iteration, pretend we just visited @cgroup */
2987 if (!pos) {
2988 if (list_empty(&cgroup->children))
2989 return NULL;
2990 pos = cgroup;
2991 }
2992
2993 /* visit the first child if exists */
2994 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2995 if (next)
2996 return next;
2997
2998 /* no child, visit my or the closest ancestor's next sibling */
2999 do {
3000 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3001 sibling);
3002 if (&next->sibling != &pos->parent->children)
3003 return next;
3004
3005 pos = pos->parent;
3006 } while (pos != cgroup);
3007
3008 return NULL;
3009 }
3010 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3011
3012 /**
3013 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3014 * @pos: cgroup of interest
3015 *
3016 * Return the rightmost descendant of @pos. If there's no descendant,
3017 * @pos is returned. This can be used during pre-order traversal to skip
3018 * subtree of @pos.
3019 */
3020 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3021 {
3022 struct cgroup *last, *tmp;
3023
3024 WARN_ON_ONCE(!rcu_read_lock_held());
3025
3026 do {
3027 last = pos;
3028 /* ->prev isn't RCU safe, walk ->next till the end */
3029 pos = NULL;
3030 list_for_each_entry_rcu(tmp, &last->children, sibling)
3031 pos = tmp;
3032 } while (pos);
3033
3034 return last;
3035 }
3036 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3037
3038 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3039 {
3040 struct cgroup *last;
3041
3042 do {
3043 last = pos;
3044 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3045 sibling);
3046 } while (pos);
3047
3048 return last;
3049 }
3050
3051 /**
3052 * cgroup_next_descendant_post - find the next descendant for post-order walk
3053 * @pos: the current position (%NULL to initiate traversal)
3054 * @cgroup: cgroup whose descendants to walk
3055 *
3056 * To be used by cgroup_for_each_descendant_post(). Find the next
3057 * descendant to visit for post-order traversal of @cgroup's descendants.
3058 */
3059 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3060 struct cgroup *cgroup)
3061 {
3062 struct cgroup *next;
3063
3064 WARN_ON_ONCE(!rcu_read_lock_held());
3065
3066 /* if first iteration, visit the leftmost descendant */
3067 if (!pos) {
3068 next = cgroup_leftmost_descendant(cgroup);
3069 return next != cgroup ? next : NULL;
3070 }
3071
3072 /* if there's an unvisited sibling, visit its leftmost descendant */
3073 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3074 if (&next->sibling != &pos->parent->children)
3075 return cgroup_leftmost_descendant(next);
3076
3077 /* no sibling left, visit parent */
3078 next = pos->parent;
3079 return next != cgroup ? next : NULL;
3080 }
3081 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3082
3083 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3084 __acquires(css_set_lock)
3085 {
3086 /*
3087 * The first time anyone tries to iterate across a cgroup,
3088 * we need to enable the list linking each css_set to its
3089 * tasks, and fix up all existing tasks.
3090 */
3091 if (!use_task_css_set_links)
3092 cgroup_enable_task_cg_lists();
3093
3094 read_lock(&css_set_lock);
3095 it->cg_link = &cgrp->css_sets;
3096 cgroup_advance_iter(cgrp, it);
3097 }
3098
3099 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3100 struct cgroup_iter *it)
3101 {
3102 struct task_struct *res;
3103 struct list_head *l = it->task;
3104 struct cg_cgroup_link *link;
3105
3106 /* If the iterator cg is NULL, we have no tasks */
3107 if (!it->cg_link)
3108 return NULL;
3109 res = list_entry(l, struct task_struct, cg_list);
3110 /* Advance iterator to find next entry */
3111 l = l->next;
3112 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3113 if (l == &link->cg->tasks) {
3114 /* We reached the end of this task list - move on to
3115 * the next cg_cgroup_link */
3116 cgroup_advance_iter(cgrp, it);
3117 } else {
3118 it->task = l;
3119 }
3120 return res;
3121 }
3122
3123 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3124 __releases(css_set_lock)
3125 {
3126 read_unlock(&css_set_lock);
3127 }
3128
3129 static inline int started_after_time(struct task_struct *t1,
3130 struct timespec *time,
3131 struct task_struct *t2)
3132 {
3133 int start_diff = timespec_compare(&t1->start_time, time);
3134 if (start_diff > 0) {
3135 return 1;
3136 } else if (start_diff < 0) {
3137 return 0;
3138 } else {
3139 /*
3140 * Arbitrarily, if two processes started at the same
3141 * time, we'll say that the lower pointer value
3142 * started first. Note that t2 may have exited by now
3143 * so this may not be a valid pointer any longer, but
3144 * that's fine - it still serves to distinguish
3145 * between two tasks started (effectively) simultaneously.
3146 */
3147 return t1 > t2;
3148 }
3149 }
3150
3151 /*
3152 * This function is a callback from heap_insert() and is used to order
3153 * the heap.
3154 * In this case we order the heap in descending task start time.
3155 */
3156 static inline int started_after(void *p1, void *p2)
3157 {
3158 struct task_struct *t1 = p1;
3159 struct task_struct *t2 = p2;
3160 return started_after_time(t1, &t2->start_time, t2);
3161 }
3162
3163 /**
3164 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3165 * @scan: struct cgroup_scanner containing arguments for the scan
3166 *
3167 * Arguments include pointers to callback functions test_task() and
3168 * process_task().
3169 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3170 * and if it returns true, call process_task() for it also.
3171 * The test_task pointer may be NULL, meaning always true (select all tasks).
3172 * Effectively duplicates cgroup_iter_{start,next,end}()
3173 * but does not lock css_set_lock for the call to process_task().
3174 * The struct cgroup_scanner may be embedded in any structure of the caller's
3175 * creation.
3176 * It is guaranteed that process_task() will act on every task that
3177 * is a member of the cgroup for the duration of this call. This
3178 * function may or may not call process_task() for tasks that exit
3179 * or move to a different cgroup during the call, or are forked or
3180 * move into the cgroup during the call.
3181 *
3182 * Note that test_task() may be called with locks held, and may in some
3183 * situations be called multiple times for the same task, so it should
3184 * be cheap.
3185 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3186 * pre-allocated and will be used for heap operations (and its "gt" member will
3187 * be overwritten), else a temporary heap will be used (allocation of which
3188 * may cause this function to fail).
3189 */
3190 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3191 {
3192 int retval, i;
3193 struct cgroup_iter it;
3194 struct task_struct *p, *dropped;
3195 /* Never dereference latest_task, since it's not refcounted */
3196 struct task_struct *latest_task = NULL;
3197 struct ptr_heap tmp_heap;
3198 struct ptr_heap *heap;
3199 struct timespec latest_time = { 0, 0 };
3200
3201 if (scan->heap) {
3202 /* The caller supplied our heap and pre-allocated its memory */
3203 heap = scan->heap;
3204 heap->gt = &started_after;
3205 } else {
3206 /* We need to allocate our own heap memory */
3207 heap = &tmp_heap;
3208 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3209 if (retval)
3210 /* cannot allocate the heap */
3211 return retval;
3212 }
3213
3214 again:
3215 /*
3216 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3217 * to determine which are of interest, and using the scanner's
3218 * "process_task" callback to process any of them that need an update.
3219 * Since we don't want to hold any locks during the task updates,
3220 * gather tasks to be processed in a heap structure.
3221 * The heap is sorted by descending task start time.
3222 * If the statically-sized heap fills up, we overflow tasks that
3223 * started later, and in future iterations only consider tasks that
3224 * started after the latest task in the previous pass. This
3225 * guarantees forward progress and that we don't miss any tasks.
3226 */
3227 heap->size = 0;
3228 cgroup_iter_start(scan->cg, &it);
3229 while ((p = cgroup_iter_next(scan->cg, &it))) {
3230 /*
3231 * Only affect tasks that qualify per the caller's callback,
3232 * if he provided one
3233 */
3234 if (scan->test_task && !scan->test_task(p, scan))
3235 continue;
3236 /*
3237 * Only process tasks that started after the last task
3238 * we processed
3239 */
3240 if (!started_after_time(p, &latest_time, latest_task))
3241 continue;
3242 dropped = heap_insert(heap, p);
3243 if (dropped == NULL) {
3244 /*
3245 * The new task was inserted; the heap wasn't
3246 * previously full
3247 */
3248 get_task_struct(p);
3249 } else if (dropped != p) {
3250 /*
3251 * The new task was inserted, and pushed out a
3252 * different task
3253 */
3254 get_task_struct(p);
3255 put_task_struct(dropped);
3256 }
3257 /*
3258 * Else the new task was newer than anything already in
3259 * the heap and wasn't inserted
3260 */
3261 }
3262 cgroup_iter_end(scan->cg, &it);
3263
3264 if (heap->size) {
3265 for (i = 0; i < heap->size; i++) {
3266 struct task_struct *q = heap->ptrs[i];
3267 if (i == 0) {
3268 latest_time = q->start_time;
3269 latest_task = q;
3270 }
3271 /* Process the task per the caller's callback */
3272 scan->process_task(q, scan);
3273 put_task_struct(q);
3274 }
3275 /*
3276 * If we had to process any tasks at all, scan again
3277 * in case some of them were in the middle of forking
3278 * children that didn't get processed.
3279 * Not the most efficient way to do it, but it avoids
3280 * having to take callback_mutex in the fork path
3281 */
3282 goto again;
3283 }
3284 if (heap == &tmp_heap)
3285 heap_free(&tmp_heap);
3286 return 0;
3287 }
3288
3289 /*
3290 * Stuff for reading the 'tasks'/'procs' files.
3291 *
3292 * Reading this file can return large amounts of data if a cgroup has
3293 * *lots* of attached tasks. So it may need several calls to read(),
3294 * but we cannot guarantee that the information we produce is correct
3295 * unless we produce it entirely atomically.
3296 *
3297 */
3298
3299 /* which pidlist file are we talking about? */
3300 enum cgroup_filetype {
3301 CGROUP_FILE_PROCS,
3302 CGROUP_FILE_TASKS,
3303 };
3304
3305 /*
3306 * A pidlist is a list of pids that virtually represents the contents of one
3307 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3308 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3309 * to the cgroup.
3310 */
3311 struct cgroup_pidlist {
3312 /*
3313 * used to find which pidlist is wanted. doesn't change as long as
3314 * this particular list stays in the list.
3315 */
3316 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3317 /* array of xids */
3318 pid_t *list;
3319 /* how many elements the above list has */
3320 int length;
3321 /* how many files are using the current array */
3322 int use_count;
3323 /* each of these stored in a list by its cgroup */
3324 struct list_head links;
3325 /* pointer to the cgroup we belong to, for list removal purposes */
3326 struct cgroup *owner;
3327 /* protects the other fields */
3328 struct rw_semaphore mutex;
3329 };
3330
3331 /*
3332 * The following two functions "fix" the issue where there are more pids
3333 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3334 * TODO: replace with a kernel-wide solution to this problem
3335 */
3336 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3337 static void *pidlist_allocate(int count)
3338 {
3339 if (PIDLIST_TOO_LARGE(count))
3340 return vmalloc(count * sizeof(pid_t));
3341 else
3342 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3343 }
3344 static void pidlist_free(void *p)
3345 {
3346 if (is_vmalloc_addr(p))
3347 vfree(p);
3348 else
3349 kfree(p);
3350 }
3351 static void *pidlist_resize(void *p, int newcount)
3352 {
3353 void *newlist;
3354 /* note: if new alloc fails, old p will still be valid either way */
3355 if (is_vmalloc_addr(p)) {
3356 newlist = vmalloc(newcount * sizeof(pid_t));
3357 if (!newlist)
3358 return NULL;
3359 memcpy(newlist, p, newcount * sizeof(pid_t));
3360 vfree(p);
3361 } else {
3362 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3363 }
3364 return newlist;
3365 }
3366
3367 /*
3368 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3369 * If the new stripped list is sufficiently smaller and there's enough memory
3370 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3371 * number of unique elements.
3372 */
3373 /* is the size difference enough that we should re-allocate the array? */
3374 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3375 static int pidlist_uniq(pid_t **p, int length)
3376 {
3377 int src, dest = 1;
3378 pid_t *list = *p;
3379 pid_t *newlist;
3380
3381 /*
3382 * we presume the 0th element is unique, so i starts at 1. trivial
3383 * edge cases first; no work needs to be done for either
3384 */
3385 if (length == 0 || length == 1)
3386 return length;
3387 /* src and dest walk down the list; dest counts unique elements */
3388 for (src = 1; src < length; src++) {
3389 /* find next unique element */
3390 while (list[src] == list[src-1]) {
3391 src++;
3392 if (src == length)
3393 goto after;
3394 }
3395 /* dest always points to where the next unique element goes */
3396 list[dest] = list[src];
3397 dest++;
3398 }
3399 after:
3400 /*
3401 * if the length difference is large enough, we want to allocate a
3402 * smaller buffer to save memory. if this fails due to out of memory,
3403 * we'll just stay with what we've got.
3404 */
3405 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3406 newlist = pidlist_resize(list, dest);
3407 if (newlist)
3408 *p = newlist;
3409 }
3410 return dest;
3411 }
3412
3413 static int cmppid(const void *a, const void *b)
3414 {
3415 return *(pid_t *)a - *(pid_t *)b;
3416 }
3417
3418 /*
3419 * find the appropriate pidlist for our purpose (given procs vs tasks)
3420 * returns with the lock on that pidlist already held, and takes care
3421 * of the use count, or returns NULL with no locks held if we're out of
3422 * memory.
3423 */
3424 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3425 enum cgroup_filetype type)
3426 {
3427 struct cgroup_pidlist *l;
3428 /* don't need task_nsproxy() if we're looking at ourself */
3429 struct pid_namespace *ns = task_active_pid_ns(current);
3430
3431 /*
3432 * We can't drop the pidlist_mutex before taking the l->mutex in case
3433 * the last ref-holder is trying to remove l from the list at the same
3434 * time. Holding the pidlist_mutex precludes somebody taking whichever
3435 * list we find out from under us - compare release_pid_array().
3436 */
3437 mutex_lock(&cgrp->pidlist_mutex);
3438 list_for_each_entry(l, &cgrp->pidlists, links) {
3439 if (l->key.type == type && l->key.ns == ns) {
3440 /* make sure l doesn't vanish out from under us */
3441 down_write(&l->mutex);
3442 mutex_unlock(&cgrp->pidlist_mutex);
3443 return l;
3444 }
3445 }
3446 /* entry not found; create a new one */
3447 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3448 if (!l) {
3449 mutex_unlock(&cgrp->pidlist_mutex);
3450 return l;
3451 }
3452 init_rwsem(&l->mutex);
3453 down_write(&l->mutex);
3454 l->key.type = type;
3455 l->key.ns = get_pid_ns(ns);
3456 l->use_count = 0; /* don't increment here */
3457 l->list = NULL;
3458 l->owner = cgrp;
3459 list_add(&l->links, &cgrp->pidlists);
3460 mutex_unlock(&cgrp->pidlist_mutex);
3461 return l;
3462 }
3463
3464 /*
3465 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3466 */
3467 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3468 struct cgroup_pidlist **lp)
3469 {
3470 pid_t *array;
3471 int length;
3472 int pid, n = 0; /* used for populating the array */
3473 struct cgroup_iter it;
3474 struct task_struct *tsk;
3475 struct cgroup_pidlist *l;
3476
3477 /*
3478 * If cgroup gets more users after we read count, we won't have
3479 * enough space - tough. This race is indistinguishable to the
3480 * caller from the case that the additional cgroup users didn't
3481 * show up until sometime later on.
3482 */
3483 length = cgroup_task_count(cgrp);
3484 array = pidlist_allocate(length);
3485 if (!array)
3486 return -ENOMEM;
3487 /* now, populate the array */
3488 cgroup_iter_start(cgrp, &it);
3489 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3490 if (unlikely(n == length))
3491 break;
3492 /* get tgid or pid for procs or tasks file respectively */
3493 if (type == CGROUP_FILE_PROCS)
3494 pid = task_tgid_vnr(tsk);
3495 else
3496 pid = task_pid_vnr(tsk);
3497 if (pid > 0) /* make sure to only use valid results */
3498 array[n++] = pid;
3499 }
3500 cgroup_iter_end(cgrp, &it);
3501 length = n;
3502 /* now sort & (if procs) strip out duplicates */
3503 sort(array, length, sizeof(pid_t), cmppid, NULL);
3504 if (type == CGROUP_FILE_PROCS)
3505 length = pidlist_uniq(&array, length);
3506 l = cgroup_pidlist_find(cgrp, type);
3507 if (!l) {
3508 pidlist_free(array);
3509 return -ENOMEM;
3510 }
3511 /* store array, freeing old if necessary - lock already held */
3512 pidlist_free(l->list);
3513 l->list = array;
3514 l->length = length;
3515 l->use_count++;
3516 up_write(&l->mutex);
3517 *lp = l;
3518 return 0;
3519 }
3520
3521 /**
3522 * cgroupstats_build - build and fill cgroupstats
3523 * @stats: cgroupstats to fill information into
3524 * @dentry: A dentry entry belonging to the cgroup for which stats have
3525 * been requested.
3526 *
3527 * Build and fill cgroupstats so that taskstats can export it to user
3528 * space.
3529 */
3530 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3531 {
3532 int ret = -EINVAL;
3533 struct cgroup *cgrp;
3534 struct cgroup_iter it;
3535 struct task_struct *tsk;
3536
3537 /*
3538 * Validate dentry by checking the superblock operations,
3539 * and make sure it's a directory.
3540 */
3541 if (dentry->d_sb->s_op != &cgroup_ops ||
3542 !S_ISDIR(dentry->d_inode->i_mode))
3543 goto err;
3544
3545 ret = 0;
3546 cgrp = dentry->d_fsdata;
3547
3548 cgroup_iter_start(cgrp, &it);
3549 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3550 switch (tsk->state) {
3551 case TASK_RUNNING:
3552 stats->nr_running++;
3553 break;
3554 case TASK_INTERRUPTIBLE:
3555 stats->nr_sleeping++;
3556 break;
3557 case TASK_UNINTERRUPTIBLE:
3558 stats->nr_uninterruptible++;
3559 break;
3560 case TASK_STOPPED:
3561 stats->nr_stopped++;
3562 break;
3563 default:
3564 if (delayacct_is_task_waiting_on_io(tsk))
3565 stats->nr_io_wait++;
3566 break;
3567 }
3568 }
3569 cgroup_iter_end(cgrp, &it);
3570
3571 err:
3572 return ret;
3573 }
3574
3575
3576 /*
3577 * seq_file methods for the tasks/procs files. The seq_file position is the
3578 * next pid to display; the seq_file iterator is a pointer to the pid
3579 * in the cgroup->l->list array.
3580 */
3581
3582 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3583 {
3584 /*
3585 * Initially we receive a position value that corresponds to
3586 * one more than the last pid shown (or 0 on the first call or
3587 * after a seek to the start). Use a binary-search to find the
3588 * next pid to display, if any
3589 */
3590 struct cgroup_pidlist *l = s->private;
3591 int index = 0, pid = *pos;
3592 int *iter;
3593
3594 down_read(&l->mutex);
3595 if (pid) {
3596 int end = l->length;
3597
3598 while (index < end) {
3599 int mid = (index + end) / 2;
3600 if (l->list[mid] == pid) {
3601 index = mid;
3602 break;
3603 } else if (l->list[mid] <= pid)
3604 index = mid + 1;
3605 else
3606 end = mid;
3607 }
3608 }
3609 /* If we're off the end of the array, we're done */
3610 if (index >= l->length)
3611 return NULL;
3612 /* Update the abstract position to be the actual pid that we found */
3613 iter = l->list + index;
3614 *pos = *iter;
3615 return iter;
3616 }
3617
3618 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3619 {
3620 struct cgroup_pidlist *l = s->private;
3621 up_read(&l->mutex);
3622 }
3623
3624 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3625 {
3626 struct cgroup_pidlist *l = s->private;
3627 pid_t *p = v;
3628 pid_t *end = l->list + l->length;
3629 /*
3630 * Advance to the next pid in the array. If this goes off the
3631 * end, we're done
3632 */
3633 p++;
3634 if (p >= end) {
3635 return NULL;
3636 } else {
3637 *pos = *p;
3638 return p;
3639 }
3640 }
3641
3642 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3643 {
3644 return seq_printf(s, "%d\n", *(int *)v);
3645 }
3646
3647 /*
3648 * seq_operations functions for iterating on pidlists through seq_file -
3649 * independent of whether it's tasks or procs
3650 */
3651 static const struct seq_operations cgroup_pidlist_seq_operations = {
3652 .start = cgroup_pidlist_start,
3653 .stop = cgroup_pidlist_stop,
3654 .next = cgroup_pidlist_next,
3655 .show = cgroup_pidlist_show,
3656 };
3657
3658 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3659 {
3660 /*
3661 * the case where we're the last user of this particular pidlist will
3662 * have us remove it from the cgroup's list, which entails taking the
3663 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3664 * pidlist_mutex, we have to take pidlist_mutex first.
3665 */
3666 mutex_lock(&l->owner->pidlist_mutex);
3667 down_write(&l->mutex);
3668 BUG_ON(!l->use_count);
3669 if (!--l->use_count) {
3670 /* we're the last user if refcount is 0; remove and free */
3671 list_del(&l->links);
3672 mutex_unlock(&l->owner->pidlist_mutex);
3673 pidlist_free(l->list);
3674 put_pid_ns(l->key.ns);
3675 up_write(&l->mutex);
3676 kfree(l);
3677 return;
3678 }
3679 mutex_unlock(&l->owner->pidlist_mutex);
3680 up_write(&l->mutex);
3681 }
3682
3683 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3684 {
3685 struct cgroup_pidlist *l;
3686 if (!(file->f_mode & FMODE_READ))
3687 return 0;
3688 /*
3689 * the seq_file will only be initialized if the file was opened for
3690 * reading; hence we check if it's not null only in that case.
3691 */
3692 l = ((struct seq_file *)file->private_data)->private;
3693 cgroup_release_pid_array(l);
3694 return seq_release(inode, file);
3695 }
3696
3697 static const struct file_operations cgroup_pidlist_operations = {
3698 .read = seq_read,
3699 .llseek = seq_lseek,
3700 .write = cgroup_file_write,
3701 .release = cgroup_pidlist_release,
3702 };
3703
3704 /*
3705 * The following functions handle opens on a file that displays a pidlist
3706 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3707 * in the cgroup.
3708 */
3709 /* helper function for the two below it */
3710 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3711 {
3712 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3713 struct cgroup_pidlist *l;
3714 int retval;
3715
3716 /* Nothing to do for write-only files */
3717 if (!(file->f_mode & FMODE_READ))
3718 return 0;
3719
3720 /* have the array populated */
3721 retval = pidlist_array_load(cgrp, type, &l);
3722 if (retval)
3723 return retval;
3724 /* configure file information */
3725 file->f_op = &cgroup_pidlist_operations;
3726
3727 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3728 if (retval) {
3729 cgroup_release_pid_array(l);
3730 return retval;
3731 }
3732 ((struct seq_file *)file->private_data)->private = l;
3733 return 0;
3734 }
3735 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3736 {
3737 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3738 }
3739 static int cgroup_procs_open(struct inode *unused, struct file *file)
3740 {
3741 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3742 }
3743
3744 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3745 struct cftype *cft)
3746 {
3747 return notify_on_release(cgrp);
3748 }
3749
3750 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3751 struct cftype *cft,
3752 u64 val)
3753 {
3754 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3755 if (val)
3756 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3757 else
3758 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3759 return 0;
3760 }
3761
3762 /*
3763 * Unregister event and free resources.
3764 *
3765 * Gets called from workqueue.
3766 */
3767 static void cgroup_event_remove(struct work_struct *work)
3768 {
3769 struct cgroup_event *event = container_of(work, struct cgroup_event,
3770 remove);
3771 struct cgroup *cgrp = event->cgrp;
3772
3773 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3774
3775 eventfd_ctx_put(event->eventfd);
3776 kfree(event);
3777 dput(cgrp->dentry);
3778 }
3779
3780 /*
3781 * Gets called on POLLHUP on eventfd when user closes it.
3782 *
3783 * Called with wqh->lock held and interrupts disabled.
3784 */
3785 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3786 int sync, void *key)
3787 {
3788 struct cgroup_event *event = container_of(wait,
3789 struct cgroup_event, wait);
3790 struct cgroup *cgrp = event->cgrp;
3791 unsigned long flags = (unsigned long)key;
3792
3793 if (flags & POLLHUP) {
3794 __remove_wait_queue(event->wqh, &event->wait);
3795 spin_lock(&cgrp->event_list_lock);
3796 list_del_init(&event->list);
3797 spin_unlock(&cgrp->event_list_lock);
3798 /*
3799 * We are in atomic context, but cgroup_event_remove() may
3800 * sleep, so we have to call it in workqueue.
3801 */
3802 schedule_work(&event->remove);
3803 }
3804
3805 return 0;
3806 }
3807
3808 static void cgroup_event_ptable_queue_proc(struct file *file,
3809 wait_queue_head_t *wqh, poll_table *pt)
3810 {
3811 struct cgroup_event *event = container_of(pt,
3812 struct cgroup_event, pt);
3813
3814 event->wqh = wqh;
3815 add_wait_queue(wqh, &event->wait);
3816 }
3817
3818 /*
3819 * Parse input and register new cgroup event handler.
3820 *
3821 * Input must be in format '<event_fd> <control_fd> <args>'.
3822 * Interpretation of args is defined by control file implementation.
3823 */
3824 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3825 const char *buffer)
3826 {
3827 struct cgroup_event *event = NULL;
3828 unsigned int efd, cfd;
3829 struct file *efile = NULL;
3830 struct file *cfile = NULL;
3831 char *endp;
3832 int ret;
3833
3834 efd = simple_strtoul(buffer, &endp, 10);
3835 if (*endp != ' ')
3836 return -EINVAL;
3837 buffer = endp + 1;
3838
3839 cfd = simple_strtoul(buffer, &endp, 10);
3840 if ((*endp != ' ') && (*endp != '\0'))
3841 return -EINVAL;
3842 buffer = endp + 1;
3843
3844 event = kzalloc(sizeof(*event), GFP_KERNEL);
3845 if (!event)
3846 return -ENOMEM;
3847 event->cgrp = cgrp;
3848 INIT_LIST_HEAD(&event->list);
3849 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3850 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3851 INIT_WORK(&event->remove, cgroup_event_remove);
3852
3853 efile = eventfd_fget(efd);
3854 if (IS_ERR(efile)) {
3855 ret = PTR_ERR(efile);
3856 goto fail;
3857 }
3858
3859 event->eventfd = eventfd_ctx_fileget(efile);
3860 if (IS_ERR(event->eventfd)) {
3861 ret = PTR_ERR(event->eventfd);
3862 goto fail;
3863 }
3864
3865 cfile = fget(cfd);
3866 if (!cfile) {
3867 ret = -EBADF;
3868 goto fail;
3869 }
3870
3871 /* the process need read permission on control file */
3872 /* AV: shouldn't we check that it's been opened for read instead? */
3873 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3874 if (ret < 0)
3875 goto fail;
3876
3877 event->cft = __file_cft(cfile);
3878 if (IS_ERR(event->cft)) {
3879 ret = PTR_ERR(event->cft);
3880 goto fail;
3881 }
3882
3883 if (!event->cft->register_event || !event->cft->unregister_event) {
3884 ret = -EINVAL;
3885 goto fail;
3886 }
3887
3888 ret = event->cft->register_event(cgrp, event->cft,
3889 event->eventfd, buffer);
3890 if (ret)
3891 goto fail;
3892
3893 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3894 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3895 ret = 0;
3896 goto fail;
3897 }
3898
3899 /*
3900 * Events should be removed after rmdir of cgroup directory, but before
3901 * destroying subsystem state objects. Let's take reference to cgroup
3902 * directory dentry to do that.
3903 */
3904 dget(cgrp->dentry);
3905
3906 spin_lock(&cgrp->event_list_lock);
3907 list_add(&event->list, &cgrp->event_list);
3908 spin_unlock(&cgrp->event_list_lock);
3909
3910 fput(cfile);
3911 fput(efile);
3912
3913 return 0;
3914
3915 fail:
3916 if (cfile)
3917 fput(cfile);
3918
3919 if (event && event->eventfd && !IS_ERR(event->eventfd))
3920 eventfd_ctx_put(event->eventfd);
3921
3922 if (!IS_ERR_OR_NULL(efile))
3923 fput(efile);
3924
3925 kfree(event);
3926
3927 return ret;
3928 }
3929
3930 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3931 struct cftype *cft)
3932 {
3933 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3934 }
3935
3936 static int cgroup_clone_children_write(struct cgroup *cgrp,
3937 struct cftype *cft,
3938 u64 val)
3939 {
3940 if (val)
3941 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3942 else
3943 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3944 return 0;
3945 }
3946
3947 /*
3948 * for the common functions, 'private' gives the type of file
3949 */
3950 /* for hysterical raisins, we can't put this on the older files */
3951 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3952 static struct cftype files[] = {
3953 {
3954 .name = "tasks",
3955 .open = cgroup_tasks_open,
3956 .write_u64 = cgroup_tasks_write,
3957 .release = cgroup_pidlist_release,
3958 .mode = S_IRUGO | S_IWUSR,
3959 },
3960 {
3961 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3962 .open = cgroup_procs_open,
3963 .write_u64 = cgroup_procs_write,
3964 .release = cgroup_pidlist_release,
3965 .mode = S_IRUGO | S_IWUSR,
3966 },
3967 {
3968 .name = "notify_on_release",
3969 .read_u64 = cgroup_read_notify_on_release,
3970 .write_u64 = cgroup_write_notify_on_release,
3971 },
3972 {
3973 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3974 .write_string = cgroup_write_event_control,
3975 .mode = S_IWUGO,
3976 },
3977 {
3978 .name = "cgroup.clone_children",
3979 .read_u64 = cgroup_clone_children_read,
3980 .write_u64 = cgroup_clone_children_write,
3981 },
3982 {
3983 .name = "release_agent",
3984 .flags = CFTYPE_ONLY_ON_ROOT,
3985 .read_seq_string = cgroup_release_agent_show,
3986 .write_string = cgroup_release_agent_write,
3987 .max_write_len = PATH_MAX,
3988 },
3989 { } /* terminate */
3990 };
3991
3992 /**
3993 * cgroup_populate_dir - selectively creation of files in a directory
3994 * @cgrp: target cgroup
3995 * @base_files: true if the base files should be added
3996 * @subsys_mask: mask of the subsystem ids whose files should be added
3997 */
3998 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3999 unsigned long subsys_mask)
4000 {
4001 int err;
4002 struct cgroup_subsys *ss;
4003
4004 if (base_files) {
4005 err = cgroup_addrm_files(cgrp, NULL, files, true);
4006 if (err < 0)
4007 return err;
4008 }
4009
4010 /* process cftsets of each subsystem */
4011 for_each_subsys(cgrp->root, ss) {
4012 struct cftype_set *set;
4013 if (!test_bit(ss->subsys_id, &subsys_mask))
4014 continue;
4015
4016 list_for_each_entry(set, &ss->cftsets, node)
4017 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4018 }
4019
4020 /* This cgroup is ready now */
4021 for_each_subsys(cgrp->root, ss) {
4022 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4023 /*
4024 * Update id->css pointer and make this css visible from
4025 * CSS ID functions. This pointer will be dereferened
4026 * from RCU-read-side without locks.
4027 */
4028 if (css->id)
4029 rcu_assign_pointer(css->id->css, css);
4030 }
4031
4032 return 0;
4033 }
4034
4035 static void css_dput_fn(struct work_struct *work)
4036 {
4037 struct cgroup_subsys_state *css =
4038 container_of(work, struct cgroup_subsys_state, dput_work);
4039 struct dentry *dentry = css->cgroup->dentry;
4040 struct super_block *sb = dentry->d_sb;
4041
4042 atomic_inc(&sb->s_active);
4043 dput(dentry);
4044 deactivate_super(sb);
4045 }
4046
4047 static void init_cgroup_css(struct cgroup_subsys_state *css,
4048 struct cgroup_subsys *ss,
4049 struct cgroup *cgrp)
4050 {
4051 css->cgroup = cgrp;
4052 atomic_set(&css->refcnt, 1);
4053 css->flags = 0;
4054 css->id = NULL;
4055 if (cgrp == dummytop)
4056 css->flags |= CSS_ROOT;
4057 BUG_ON(cgrp->subsys[ss->subsys_id]);
4058 cgrp->subsys[ss->subsys_id] = css;
4059
4060 /*
4061 * css holds an extra ref to @cgrp->dentry which is put on the last
4062 * css_put(). dput() requires process context, which css_put() may
4063 * be called without. @css->dput_work will be used to invoke
4064 * dput() asynchronously from css_put().
4065 */
4066 INIT_WORK(&css->dput_work, css_dput_fn);
4067 }
4068
4069 /* invoke ->post_create() on a new CSS and mark it online if successful */
4070 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4071 {
4072 int ret = 0;
4073
4074 lockdep_assert_held(&cgroup_mutex);
4075
4076 if (ss->css_online)
4077 ret = ss->css_online(cgrp);
4078 if (!ret)
4079 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4080 return ret;
4081 }
4082
4083 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4084 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4085 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4086 {
4087 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4088
4089 lockdep_assert_held(&cgroup_mutex);
4090
4091 if (!(css->flags & CSS_ONLINE))
4092 return;
4093
4094 /*
4095 * css_offline() should be called with cgroup_mutex unlocked. See
4096 * 3fa59dfbc3 ("cgroup: fix potential deadlock in pre_destroy") for
4097 * details. This temporary unlocking should go away once
4098 * cgroup_mutex is unexported from controllers.
4099 */
4100 if (ss->css_offline) {
4101 mutex_unlock(&cgroup_mutex);
4102 ss->css_offline(cgrp);
4103 mutex_lock(&cgroup_mutex);
4104 }
4105
4106 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4107 }
4108
4109 /*
4110 * cgroup_create - create a cgroup
4111 * @parent: cgroup that will be parent of the new cgroup
4112 * @dentry: dentry of the new cgroup
4113 * @mode: mode to set on new inode
4114 *
4115 * Must be called with the mutex on the parent inode held
4116 */
4117 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4118 umode_t mode)
4119 {
4120 struct cgroup *cgrp;
4121 struct cgroupfs_root *root = parent->root;
4122 int err = 0;
4123 struct cgroup_subsys *ss;
4124 struct super_block *sb = root->sb;
4125
4126 /* allocate the cgroup and its ID, 0 is reserved for the root */
4127 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4128 if (!cgrp)
4129 return -ENOMEM;
4130
4131 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4132 if (cgrp->id < 0)
4133 goto err_free_cgrp;
4134
4135 /*
4136 * Only live parents can have children. Note that the liveliness
4137 * check isn't strictly necessary because cgroup_mkdir() and
4138 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4139 * anyway so that locking is contained inside cgroup proper and we
4140 * don't get nasty surprises if we ever grow another caller.
4141 */
4142 if (!cgroup_lock_live_group(parent)) {
4143 err = -ENODEV;
4144 goto err_free_id;
4145 }
4146
4147 /* Grab a reference on the superblock so the hierarchy doesn't
4148 * get deleted on unmount if there are child cgroups. This
4149 * can be done outside cgroup_mutex, since the sb can't
4150 * disappear while someone has an open control file on the
4151 * fs */
4152 atomic_inc(&sb->s_active);
4153
4154 init_cgroup_housekeeping(cgrp);
4155
4156 cgrp->parent = parent;
4157 cgrp->root = parent->root;
4158 cgrp->top_cgroup = parent->top_cgroup;
4159
4160 if (notify_on_release(parent))
4161 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4162
4163 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4164 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4165
4166 for_each_subsys(root, ss) {
4167 struct cgroup_subsys_state *css;
4168
4169 css = ss->css_alloc(cgrp);
4170 if (IS_ERR(css)) {
4171 err = PTR_ERR(css);
4172 goto err_free_all;
4173 }
4174 init_cgroup_css(css, ss, cgrp);
4175 if (ss->use_id) {
4176 err = alloc_css_id(ss, parent, cgrp);
4177 if (err)
4178 goto err_free_all;
4179 }
4180 }
4181
4182 /*
4183 * Create directory. cgroup_create_file() returns with the new
4184 * directory locked on success so that it can be populated without
4185 * dropping cgroup_mutex.
4186 */
4187 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4188 if (err < 0)
4189 goto err_free_all;
4190 lockdep_assert_held(&dentry->d_inode->i_mutex);
4191
4192 /* allocation complete, commit to creation */
4193 dentry->d_fsdata = cgrp;
4194 cgrp->dentry = dentry;
4195 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4196 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4197 root->number_of_cgroups++;
4198
4199 /* each css holds a ref to the cgroup's dentry */
4200 for_each_subsys(root, ss)
4201 dget(dentry);
4202
4203 /* creation succeeded, notify subsystems */
4204 for_each_subsys(root, ss) {
4205 err = online_css(ss, cgrp);
4206 if (err)
4207 goto err_destroy;
4208
4209 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4210 parent->parent) {
4211 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4212 current->comm, current->pid, ss->name);
4213 if (!strcmp(ss->name, "memory"))
4214 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4215 ss->warned_broken_hierarchy = true;
4216 }
4217 }
4218
4219 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4220 if (err)
4221 goto err_destroy;
4222
4223 mutex_unlock(&cgroup_mutex);
4224 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4225
4226 return 0;
4227
4228 err_free_all:
4229 for_each_subsys(root, ss) {
4230 if (cgrp->subsys[ss->subsys_id])
4231 ss->css_free(cgrp);
4232 }
4233 mutex_unlock(&cgroup_mutex);
4234 /* Release the reference count that we took on the superblock */
4235 deactivate_super(sb);
4236 err_free_id:
4237 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4238 err_free_cgrp:
4239 kfree(cgrp);
4240 return err;
4241
4242 err_destroy:
4243 cgroup_destroy_locked(cgrp);
4244 mutex_unlock(&cgroup_mutex);
4245 mutex_unlock(&dentry->d_inode->i_mutex);
4246 return err;
4247 }
4248
4249 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4250 {
4251 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4252
4253 /* the vfs holds inode->i_mutex already */
4254 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4255 }
4256
4257 /*
4258 * Check the reference count on each subsystem. Since we already
4259 * established that there are no tasks in the cgroup, if the css refcount
4260 * is also 1, then there should be no outstanding references, so the
4261 * subsystem is safe to destroy. We scan across all subsystems rather than
4262 * using the per-hierarchy linked list of mounted subsystems since we can
4263 * be called via check_for_release() with no synchronization other than
4264 * RCU, and the subsystem linked list isn't RCU-safe.
4265 */
4266 static int cgroup_has_css_refs(struct cgroup *cgrp)
4267 {
4268 int i;
4269
4270 /*
4271 * We won't need to lock the subsys array, because the subsystems
4272 * we're concerned about aren't going anywhere since our cgroup root
4273 * has a reference on them.
4274 */
4275 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4276 struct cgroup_subsys *ss = subsys[i];
4277 struct cgroup_subsys_state *css;
4278
4279 /* Skip subsystems not present or not in this hierarchy */
4280 if (ss == NULL || ss->root != cgrp->root)
4281 continue;
4282
4283 css = cgrp->subsys[ss->subsys_id];
4284 /*
4285 * When called from check_for_release() it's possible
4286 * that by this point the cgroup has been removed
4287 * and the css deleted. But a false-positive doesn't
4288 * matter, since it can only happen if the cgroup
4289 * has been deleted and hence no longer needs the
4290 * release agent to be called anyway.
4291 */
4292 if (css && css_refcnt(css) > 1)
4293 return 1;
4294 }
4295 return 0;
4296 }
4297
4298 static int cgroup_destroy_locked(struct cgroup *cgrp)
4299 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4300 {
4301 struct dentry *d = cgrp->dentry;
4302 struct cgroup *parent = cgrp->parent;
4303 DEFINE_WAIT(wait);
4304 struct cgroup_event *event, *tmp;
4305 struct cgroup_subsys *ss;
4306 LIST_HEAD(tmp_list);
4307
4308 lockdep_assert_held(&d->d_inode->i_mutex);
4309 lockdep_assert_held(&cgroup_mutex);
4310
4311 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4312 return -EBUSY;
4313
4314 /*
4315 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4316 * removed. This makes future css_tryget() and child creation
4317 * attempts fail thus maintaining the removal conditions verified
4318 * above.
4319 */
4320 for_each_subsys(cgrp->root, ss) {
4321 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4322
4323 WARN_ON(atomic_read(&css->refcnt) < 0);
4324 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4325 }
4326 set_bit(CGRP_REMOVED, &cgrp->flags);
4327
4328 /* tell subsystems to initate destruction */
4329 for_each_subsys(cgrp->root, ss)
4330 offline_css(ss, cgrp);
4331
4332 /*
4333 * Put all the base refs. Each css holds an extra reference to the
4334 * cgroup's dentry and cgroup removal proceeds regardless of css
4335 * refs. On the last put of each css, whenever that may be, the
4336 * extra dentry ref is put so that dentry destruction happens only
4337 * after all css's are released.
4338 */
4339 for_each_subsys(cgrp->root, ss)
4340 css_put(cgrp->subsys[ss->subsys_id]);
4341
4342 raw_spin_lock(&release_list_lock);
4343 if (!list_empty(&cgrp->release_list))
4344 list_del_init(&cgrp->release_list);
4345 raw_spin_unlock(&release_list_lock);
4346
4347 /* delete this cgroup from parent->children */
4348 list_del_rcu(&cgrp->sibling);
4349 list_del_init(&cgrp->allcg_node);
4350
4351 dget(d);
4352 cgroup_d_remove_dir(d);
4353 dput(d);
4354
4355 set_bit(CGRP_RELEASABLE, &parent->flags);
4356 check_for_release(parent);
4357
4358 /*
4359 * Unregister events and notify userspace.
4360 * Notify userspace about cgroup removing only after rmdir of cgroup
4361 * directory to avoid race between userspace and kernelspace. Use
4362 * a temporary list to avoid a deadlock with cgroup_event_wake(). Since
4363 * cgroup_event_wake() is called with the wait queue head locked,
4364 * remove_wait_queue() cannot be called while holding event_list_lock.
4365 */
4366 spin_lock(&cgrp->event_list_lock);
4367 list_splice_init(&cgrp->event_list, &tmp_list);
4368 spin_unlock(&cgrp->event_list_lock);
4369 list_for_each_entry_safe(event, tmp, &tmp_list, list) {
4370 list_del_init(&event->list);
4371 remove_wait_queue(event->wqh, &event->wait);
4372 eventfd_signal(event->eventfd, 1);
4373 schedule_work(&event->remove);
4374 }
4375
4376 return 0;
4377 }
4378
4379 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4380 {
4381 int ret;
4382
4383 mutex_lock(&cgroup_mutex);
4384 ret = cgroup_destroy_locked(dentry->d_fsdata);
4385 mutex_unlock(&cgroup_mutex);
4386
4387 return ret;
4388 }
4389
4390 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4391 {
4392 INIT_LIST_HEAD(&ss->cftsets);
4393
4394 /*
4395 * base_cftset is embedded in subsys itself, no need to worry about
4396 * deregistration.
4397 */
4398 if (ss->base_cftypes) {
4399 ss->base_cftset.cfts = ss->base_cftypes;
4400 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4401 }
4402 }
4403
4404 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4405 {
4406 struct cgroup_subsys_state *css;
4407
4408 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4409
4410 mutex_lock(&cgroup_mutex);
4411
4412 /* init base cftset */
4413 cgroup_init_cftsets(ss);
4414
4415 /* Create the top cgroup state for this subsystem */
4416 list_add(&ss->sibling, &rootnode.subsys_list);
4417 ss->root = &rootnode;
4418 css = ss->css_alloc(dummytop);
4419 /* We don't handle early failures gracefully */
4420 BUG_ON(IS_ERR(css));
4421 init_cgroup_css(css, ss, dummytop);
4422
4423 /* Update the init_css_set to contain a subsys
4424 * pointer to this state - since the subsystem is
4425 * newly registered, all tasks and hence the
4426 * init_css_set is in the subsystem's top cgroup. */
4427 init_css_set.subsys[ss->subsys_id] = css;
4428
4429 need_forkexit_callback |= ss->fork || ss->exit;
4430
4431 /* At system boot, before all subsystems have been
4432 * registered, no tasks have been forked, so we don't
4433 * need to invoke fork callbacks here. */
4434 BUG_ON(!list_empty(&init_task.tasks));
4435
4436 ss->active = 1;
4437 BUG_ON(online_css(ss, dummytop));
4438
4439 mutex_unlock(&cgroup_mutex);
4440
4441 /* this function shouldn't be used with modular subsystems, since they
4442 * need to register a subsys_id, among other things */
4443 BUG_ON(ss->module);
4444 }
4445
4446 /**
4447 * cgroup_load_subsys: load and register a modular subsystem at runtime
4448 * @ss: the subsystem to load
4449 *
4450 * This function should be called in a modular subsystem's initcall. If the
4451 * subsystem is built as a module, it will be assigned a new subsys_id and set
4452 * up for use. If the subsystem is built-in anyway, work is delegated to the
4453 * simpler cgroup_init_subsys.
4454 */
4455 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4456 {
4457 struct cgroup_subsys_state *css;
4458 int i, ret;
4459 struct hlist_node *node, *tmp;
4460 struct css_set *cg;
4461 unsigned long key;
4462
4463 /* check name and function validity */
4464 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4465 ss->css_alloc == NULL || ss->css_free == NULL)
4466 return -EINVAL;
4467
4468 /*
4469 * we don't support callbacks in modular subsystems. this check is
4470 * before the ss->module check for consistency; a subsystem that could
4471 * be a module should still have no callbacks even if the user isn't
4472 * compiling it as one.
4473 */
4474 if (ss->fork || ss->exit)
4475 return -EINVAL;
4476
4477 /*
4478 * an optionally modular subsystem is built-in: we want to do nothing,
4479 * since cgroup_init_subsys will have already taken care of it.
4480 */
4481 if (ss->module == NULL) {
4482 /* a sanity check */
4483 BUG_ON(subsys[ss->subsys_id] != ss);
4484 return 0;
4485 }
4486
4487 /* init base cftset */
4488 cgroup_init_cftsets(ss);
4489
4490 mutex_lock(&cgroup_mutex);
4491 subsys[ss->subsys_id] = ss;
4492
4493 /*
4494 * no ss->css_alloc seems to need anything important in the ss
4495 * struct, so this can happen first (i.e. before the rootnode
4496 * attachment).
4497 */
4498 css = ss->css_alloc(dummytop);
4499 if (IS_ERR(css)) {
4500 /* failure case - need to deassign the subsys[] slot. */
4501 subsys[ss->subsys_id] = NULL;
4502 mutex_unlock(&cgroup_mutex);
4503 return PTR_ERR(css);
4504 }
4505
4506 list_add(&ss->sibling, &rootnode.subsys_list);
4507 ss->root = &rootnode;
4508
4509 /* our new subsystem will be attached to the dummy hierarchy. */
4510 init_cgroup_css(css, ss, dummytop);
4511 /* init_idr must be after init_cgroup_css because it sets css->id. */
4512 if (ss->use_id) {
4513 ret = cgroup_init_idr(ss, css);
4514 if (ret)
4515 goto err_unload;
4516 }
4517
4518 /*
4519 * Now we need to entangle the css into the existing css_sets. unlike
4520 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4521 * will need a new pointer to it; done by iterating the css_set_table.
4522 * furthermore, modifying the existing css_sets will corrupt the hash
4523 * table state, so each changed css_set will need its hash recomputed.
4524 * this is all done under the css_set_lock.
4525 */
4526 write_lock(&css_set_lock);
4527 hash_for_each_safe(css_set_table, i, node, tmp, cg, hlist) {
4528 /* skip entries that we already rehashed */
4529 if (cg->subsys[ss->subsys_id])
4530 continue;
4531 /* remove existing entry */
4532 hash_del(&cg->hlist);
4533 /* set new value */
4534 cg->subsys[ss->subsys_id] = css;
4535 /* recompute hash and restore entry */
4536 key = css_set_hash(cg->subsys);
4537 hash_add(css_set_table, node, key);
4538 }
4539 write_unlock(&css_set_lock);
4540
4541 ss->active = 1;
4542 ret = online_css(ss, dummytop);
4543 if (ret)
4544 goto err_unload;
4545
4546 /* success! */
4547 mutex_unlock(&cgroup_mutex);
4548 return 0;
4549
4550 err_unload:
4551 mutex_unlock(&cgroup_mutex);
4552 /* @ss can't be mounted here as try_module_get() would fail */
4553 cgroup_unload_subsys(ss);
4554 return ret;
4555 }
4556 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4557
4558 /**
4559 * cgroup_unload_subsys: unload a modular subsystem
4560 * @ss: the subsystem to unload
4561 *
4562 * This function should be called in a modular subsystem's exitcall. When this
4563 * function is invoked, the refcount on the subsystem's module will be 0, so
4564 * the subsystem will not be attached to any hierarchy.
4565 */
4566 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4567 {
4568 struct cg_cgroup_link *link;
4569
4570 BUG_ON(ss->module == NULL);
4571
4572 /*
4573 * we shouldn't be called if the subsystem is in use, and the use of
4574 * try_module_get in parse_cgroupfs_options should ensure that it
4575 * doesn't start being used while we're killing it off.
4576 */
4577 BUG_ON(ss->root != &rootnode);
4578
4579 mutex_lock(&cgroup_mutex);
4580
4581 offline_css(ss, dummytop);
4582 ss->active = 0;
4583
4584 if (ss->use_id) {
4585 idr_remove_all(&ss->idr);
4586 idr_destroy(&ss->idr);
4587 }
4588
4589 /* deassign the subsys_id */
4590 subsys[ss->subsys_id] = NULL;
4591
4592 /* remove subsystem from rootnode's list of subsystems */
4593 list_del_init(&ss->sibling);
4594
4595 /*
4596 * disentangle the css from all css_sets attached to the dummytop. as
4597 * in loading, we need to pay our respects to the hashtable gods.
4598 */
4599 write_lock(&css_set_lock);
4600 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4601 struct css_set *cg = link->cg;
4602 unsigned long key;
4603
4604 hash_del(&cg->hlist);
4605 cg->subsys[ss->subsys_id] = NULL;
4606 key = css_set_hash(cg->subsys);
4607 hash_add(css_set_table, &cg->hlist, key);
4608 }
4609 write_unlock(&css_set_lock);
4610
4611 /*
4612 * remove subsystem's css from the dummytop and free it - need to
4613 * free before marking as null because ss->css_free needs the
4614 * cgrp->subsys pointer to find their state. note that this also
4615 * takes care of freeing the css_id.
4616 */
4617 ss->css_free(dummytop);
4618 dummytop->subsys[ss->subsys_id] = NULL;
4619
4620 mutex_unlock(&cgroup_mutex);
4621 }
4622 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4623
4624 /**
4625 * cgroup_init_early - cgroup initialization at system boot
4626 *
4627 * Initialize cgroups at system boot, and initialize any
4628 * subsystems that request early init.
4629 */
4630 int __init cgroup_init_early(void)
4631 {
4632 int i;
4633 atomic_set(&init_css_set.refcount, 1);
4634 INIT_LIST_HEAD(&init_css_set.cg_links);
4635 INIT_LIST_HEAD(&init_css_set.tasks);
4636 INIT_HLIST_NODE(&init_css_set.hlist);
4637 css_set_count = 1;
4638 init_cgroup_root(&rootnode);
4639 root_count = 1;
4640 init_task.cgroups = &init_css_set;
4641
4642 init_css_set_link.cg = &init_css_set;
4643 init_css_set_link.cgrp = dummytop;
4644 list_add(&init_css_set_link.cgrp_link_list,
4645 &rootnode.top_cgroup.css_sets);
4646 list_add(&init_css_set_link.cg_link_list,
4647 &init_css_set.cg_links);
4648
4649 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4650 struct cgroup_subsys *ss = subsys[i];
4651
4652 /* at bootup time, we don't worry about modular subsystems */
4653 if (!ss || ss->module)
4654 continue;
4655
4656 BUG_ON(!ss->name);
4657 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4658 BUG_ON(!ss->css_alloc);
4659 BUG_ON(!ss->css_free);
4660 if (ss->subsys_id != i) {
4661 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4662 ss->name, ss->subsys_id);
4663 BUG();
4664 }
4665
4666 if (ss->early_init)
4667 cgroup_init_subsys(ss);
4668 }
4669 return 0;
4670 }
4671
4672 /**
4673 * cgroup_init - cgroup initialization
4674 *
4675 * Register cgroup filesystem and /proc file, and initialize
4676 * any subsystems that didn't request early init.
4677 */
4678 int __init cgroup_init(void)
4679 {
4680 int err;
4681 int i;
4682 unsigned long key;
4683
4684 err = bdi_init(&cgroup_backing_dev_info);
4685 if (err)
4686 return err;
4687
4688 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4689 struct cgroup_subsys *ss = subsys[i];
4690
4691 /* at bootup time, we don't worry about modular subsystems */
4692 if (!ss || ss->module)
4693 continue;
4694 if (!ss->early_init)
4695 cgroup_init_subsys(ss);
4696 if (ss->use_id)
4697 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4698 }
4699
4700 /* Add init_css_set to the hash table */
4701 key = css_set_hash(init_css_set.subsys);
4702 hash_add(css_set_table, &init_css_set.hlist, key);
4703 BUG_ON(!init_root_id(&rootnode));
4704
4705 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4706 if (!cgroup_kobj) {
4707 err = -ENOMEM;
4708 goto out;
4709 }
4710
4711 err = register_filesystem(&cgroup_fs_type);
4712 if (err < 0) {
4713 kobject_put(cgroup_kobj);
4714 goto out;
4715 }
4716
4717 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4718
4719 out:
4720 if (err)
4721 bdi_destroy(&cgroup_backing_dev_info);
4722
4723 return err;
4724 }
4725
4726 /*
4727 * proc_cgroup_show()
4728 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4729 * - Used for /proc/<pid>/cgroup.
4730 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4731 * doesn't really matter if tsk->cgroup changes after we read it,
4732 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4733 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4734 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4735 * cgroup to top_cgroup.
4736 */
4737
4738 /* TODO: Use a proper seq_file iterator */
4739 static int proc_cgroup_show(struct seq_file *m, void *v)
4740 {
4741 struct pid *pid;
4742 struct task_struct *tsk;
4743 char *buf;
4744 int retval;
4745 struct cgroupfs_root *root;
4746
4747 retval = -ENOMEM;
4748 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4749 if (!buf)
4750 goto out;
4751
4752 retval = -ESRCH;
4753 pid = m->private;
4754 tsk = get_pid_task(pid, PIDTYPE_PID);
4755 if (!tsk)
4756 goto out_free;
4757
4758 retval = 0;
4759
4760 mutex_lock(&cgroup_mutex);
4761
4762 for_each_active_root(root) {
4763 struct cgroup_subsys *ss;
4764 struct cgroup *cgrp;
4765 int count = 0;
4766
4767 seq_printf(m, "%d:", root->hierarchy_id);
4768 for_each_subsys(root, ss)
4769 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4770 if (strlen(root->name))
4771 seq_printf(m, "%sname=%s", count ? "," : "",
4772 root->name);
4773 seq_putc(m, ':');
4774 cgrp = task_cgroup_from_root(tsk, root);
4775 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4776 if (retval < 0)
4777 goto out_unlock;
4778 seq_puts(m, buf);
4779 seq_putc(m, '\n');
4780 }
4781
4782 out_unlock:
4783 mutex_unlock(&cgroup_mutex);
4784 put_task_struct(tsk);
4785 out_free:
4786 kfree(buf);
4787 out:
4788 return retval;
4789 }
4790
4791 static int cgroup_open(struct inode *inode, struct file *file)
4792 {
4793 struct pid *pid = PROC_I(inode)->pid;
4794 return single_open(file, proc_cgroup_show, pid);
4795 }
4796
4797 const struct file_operations proc_cgroup_operations = {
4798 .open = cgroup_open,
4799 .read = seq_read,
4800 .llseek = seq_lseek,
4801 .release = single_release,
4802 };
4803
4804 /* Display information about each subsystem and each hierarchy */
4805 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4806 {
4807 int i;
4808
4809 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4810 /*
4811 * ideally we don't want subsystems moving around while we do this.
4812 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4813 * subsys/hierarchy state.
4814 */
4815 mutex_lock(&cgroup_mutex);
4816 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4817 struct cgroup_subsys *ss = subsys[i];
4818 if (ss == NULL)
4819 continue;
4820 seq_printf(m, "%s\t%d\t%d\t%d\n",
4821 ss->name, ss->root->hierarchy_id,
4822 ss->root->number_of_cgroups, !ss->disabled);
4823 }
4824 mutex_unlock(&cgroup_mutex);
4825 return 0;
4826 }
4827
4828 static int cgroupstats_open(struct inode *inode, struct file *file)
4829 {
4830 return single_open(file, proc_cgroupstats_show, NULL);
4831 }
4832
4833 static const struct file_operations proc_cgroupstats_operations = {
4834 .open = cgroupstats_open,
4835 .read = seq_read,
4836 .llseek = seq_lseek,
4837 .release = single_release,
4838 };
4839
4840 /**
4841 * cgroup_fork - attach newly forked task to its parents cgroup.
4842 * @child: pointer to task_struct of forking parent process.
4843 *
4844 * Description: A task inherits its parent's cgroup at fork().
4845 *
4846 * A pointer to the shared css_set was automatically copied in
4847 * fork.c by dup_task_struct(). However, we ignore that copy, since
4848 * it was not made under the protection of RCU or cgroup_mutex, so
4849 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4850 * have already changed current->cgroups, allowing the previously
4851 * referenced cgroup group to be removed and freed.
4852 *
4853 * At the point that cgroup_fork() is called, 'current' is the parent
4854 * task, and the passed argument 'child' points to the child task.
4855 */
4856 void cgroup_fork(struct task_struct *child)
4857 {
4858 task_lock(current);
4859 child->cgroups = current->cgroups;
4860 get_css_set(child->cgroups);
4861 task_unlock(current);
4862 INIT_LIST_HEAD(&child->cg_list);
4863 }
4864
4865 /**
4866 * cgroup_post_fork - called on a new task after adding it to the task list
4867 * @child: the task in question
4868 *
4869 * Adds the task to the list running through its css_set if necessary and
4870 * call the subsystem fork() callbacks. Has to be after the task is
4871 * visible on the task list in case we race with the first call to
4872 * cgroup_iter_start() - to guarantee that the new task ends up on its
4873 * list.
4874 */
4875 void cgroup_post_fork(struct task_struct *child)
4876 {
4877 int i;
4878
4879 /*
4880 * use_task_css_set_links is set to 1 before we walk the tasklist
4881 * under the tasklist_lock and we read it here after we added the child
4882 * to the tasklist under the tasklist_lock as well. If the child wasn't
4883 * yet in the tasklist when we walked through it from
4884 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4885 * should be visible now due to the paired locking and barriers implied
4886 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4887 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4888 * lock on fork.
4889 */
4890 if (use_task_css_set_links) {
4891 write_lock(&css_set_lock);
4892 task_lock(child);
4893 if (list_empty(&child->cg_list))
4894 list_add(&child->cg_list, &child->cgroups->tasks);
4895 task_unlock(child);
4896 write_unlock(&css_set_lock);
4897 }
4898
4899 /*
4900 * Call ss->fork(). This must happen after @child is linked on
4901 * css_set; otherwise, @child might change state between ->fork()
4902 * and addition to css_set.
4903 */
4904 if (need_forkexit_callback) {
4905 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4906 struct cgroup_subsys *ss = subsys[i];
4907
4908 /*
4909 * fork/exit callbacks are supported only for
4910 * builtin subsystems and we don't need further
4911 * synchronization as they never go away.
4912 */
4913 if (!ss || ss->module)
4914 continue;
4915
4916 if (ss->fork)
4917 ss->fork(child);
4918 }
4919 }
4920 }
4921
4922 /**
4923 * cgroup_exit - detach cgroup from exiting task
4924 * @tsk: pointer to task_struct of exiting process
4925 * @run_callback: run exit callbacks?
4926 *
4927 * Description: Detach cgroup from @tsk and release it.
4928 *
4929 * Note that cgroups marked notify_on_release force every task in
4930 * them to take the global cgroup_mutex mutex when exiting.
4931 * This could impact scaling on very large systems. Be reluctant to
4932 * use notify_on_release cgroups where very high task exit scaling
4933 * is required on large systems.
4934 *
4935 * the_top_cgroup_hack:
4936 *
4937 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4938 *
4939 * We call cgroup_exit() while the task is still competent to
4940 * handle notify_on_release(), then leave the task attached to the
4941 * root cgroup in each hierarchy for the remainder of its exit.
4942 *
4943 * To do this properly, we would increment the reference count on
4944 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4945 * code we would add a second cgroup function call, to drop that
4946 * reference. This would just create an unnecessary hot spot on
4947 * the top_cgroup reference count, to no avail.
4948 *
4949 * Normally, holding a reference to a cgroup without bumping its
4950 * count is unsafe. The cgroup could go away, or someone could
4951 * attach us to a different cgroup, decrementing the count on
4952 * the first cgroup that we never incremented. But in this case,
4953 * top_cgroup isn't going away, and either task has PF_EXITING set,
4954 * which wards off any cgroup_attach_task() attempts, or task is a failed
4955 * fork, never visible to cgroup_attach_task.
4956 */
4957 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4958 {
4959 struct css_set *cg;
4960 int i;
4961
4962 /*
4963 * Unlink from the css_set task list if necessary.
4964 * Optimistically check cg_list before taking
4965 * css_set_lock
4966 */
4967 if (!list_empty(&tsk->cg_list)) {
4968 write_lock(&css_set_lock);
4969 if (!list_empty(&tsk->cg_list))
4970 list_del_init(&tsk->cg_list);
4971 write_unlock(&css_set_lock);
4972 }
4973
4974 /* Reassign the task to the init_css_set. */
4975 task_lock(tsk);
4976 cg = tsk->cgroups;
4977 tsk->cgroups = &init_css_set;
4978
4979 if (run_callbacks && need_forkexit_callback) {
4980 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4981 struct cgroup_subsys *ss = subsys[i];
4982
4983 /* modular subsystems can't use callbacks */
4984 if (!ss || ss->module)
4985 continue;
4986
4987 if (ss->exit) {
4988 struct cgroup *old_cgrp =
4989 rcu_dereference_raw(cg->subsys[i])->cgroup;
4990 struct cgroup *cgrp = task_cgroup(tsk, i);
4991 ss->exit(cgrp, old_cgrp, tsk);
4992 }
4993 }
4994 }
4995 task_unlock(tsk);
4996
4997 put_css_set_taskexit(cg);
4998 }
4999
5000 /**
5001 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
5002 * @cgrp: the cgroup in question
5003 * @task: the task in question
5004 *
5005 * See if @cgrp is a descendant of @task's cgroup in the appropriate
5006 * hierarchy.
5007 *
5008 * If we are sending in dummytop, then presumably we are creating
5009 * the top cgroup in the subsystem.
5010 *
5011 * Called only by the ns (nsproxy) cgroup.
5012 */
5013 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
5014 {
5015 int ret;
5016 struct cgroup *target;
5017
5018 if (cgrp == dummytop)
5019 return 1;
5020
5021 target = task_cgroup_from_root(task, cgrp->root);
5022 while (cgrp != target && cgrp!= cgrp->top_cgroup)
5023 cgrp = cgrp->parent;
5024 ret = (cgrp == target);
5025 return ret;
5026 }
5027
5028 static void check_for_release(struct cgroup *cgrp)
5029 {
5030 /* All of these checks rely on RCU to keep the cgroup
5031 * structure alive */
5032 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
5033 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
5034 /* Control Group is currently removeable. If it's not
5035 * already queued for a userspace notification, queue
5036 * it now */
5037 int need_schedule_work = 0;
5038 raw_spin_lock(&release_list_lock);
5039 if (!cgroup_is_removed(cgrp) &&
5040 list_empty(&cgrp->release_list)) {
5041 list_add(&cgrp->release_list, &release_list);
5042 need_schedule_work = 1;
5043 }
5044 raw_spin_unlock(&release_list_lock);
5045 if (need_schedule_work)
5046 schedule_work(&release_agent_work);
5047 }
5048 }
5049
5050 /* Caller must verify that the css is not for root cgroup */
5051 bool __css_tryget(struct cgroup_subsys_state *css)
5052 {
5053 while (true) {
5054 int t, v;
5055
5056 v = css_refcnt(css);
5057 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5058 if (likely(t == v))
5059 return true;
5060 else if (t < 0)
5061 return false;
5062 cpu_relax();
5063 }
5064 }
5065 EXPORT_SYMBOL_GPL(__css_tryget);
5066
5067 /* Caller must verify that the css is not for root cgroup */
5068 void __css_put(struct cgroup_subsys_state *css)
5069 {
5070 struct cgroup *cgrp = css->cgroup;
5071 int v;
5072
5073 rcu_read_lock();
5074 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5075
5076 switch (v) {
5077 case 1:
5078 if (notify_on_release(cgrp)) {
5079 set_bit(CGRP_RELEASABLE, &cgrp->flags);
5080 check_for_release(cgrp);
5081 }
5082 break;
5083 case 0:
5084 schedule_work(&css->dput_work);
5085 break;
5086 }
5087 rcu_read_unlock();
5088 }
5089 EXPORT_SYMBOL_GPL(__css_put);
5090
5091 /*
5092 * Notify userspace when a cgroup is released, by running the
5093 * configured release agent with the name of the cgroup (path
5094 * relative to the root of cgroup file system) as the argument.
5095 *
5096 * Most likely, this user command will try to rmdir this cgroup.
5097 *
5098 * This races with the possibility that some other task will be
5099 * attached to this cgroup before it is removed, or that some other
5100 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5101 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5102 * unused, and this cgroup will be reprieved from its death sentence,
5103 * to continue to serve a useful existence. Next time it's released,
5104 * we will get notified again, if it still has 'notify_on_release' set.
5105 *
5106 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5107 * means only wait until the task is successfully execve()'d. The
5108 * separate release agent task is forked by call_usermodehelper(),
5109 * then control in this thread returns here, without waiting for the
5110 * release agent task. We don't bother to wait because the caller of
5111 * this routine has no use for the exit status of the release agent
5112 * task, so no sense holding our caller up for that.
5113 */
5114 static void cgroup_release_agent(struct work_struct *work)
5115 {
5116 BUG_ON(work != &release_agent_work);
5117 mutex_lock(&cgroup_mutex);
5118 raw_spin_lock(&release_list_lock);
5119 while (!list_empty(&release_list)) {
5120 char *argv[3], *envp[3];
5121 int i;
5122 char *pathbuf = NULL, *agentbuf = NULL;
5123 struct cgroup *cgrp = list_entry(release_list.next,
5124 struct cgroup,
5125 release_list);
5126 list_del_init(&cgrp->release_list);
5127 raw_spin_unlock(&release_list_lock);
5128 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5129 if (!pathbuf)
5130 goto continue_free;
5131 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5132 goto continue_free;
5133 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5134 if (!agentbuf)
5135 goto continue_free;
5136
5137 i = 0;
5138 argv[i++] = agentbuf;
5139 argv[i++] = pathbuf;
5140 argv[i] = NULL;
5141
5142 i = 0;
5143 /* minimal command environment */
5144 envp[i++] = "HOME=/";
5145 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5146 envp[i] = NULL;
5147
5148 /* Drop the lock while we invoke the usermode helper,
5149 * since the exec could involve hitting disk and hence
5150 * be a slow process */
5151 mutex_unlock(&cgroup_mutex);
5152 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5153 mutex_lock(&cgroup_mutex);
5154 continue_free:
5155 kfree(pathbuf);
5156 kfree(agentbuf);
5157 raw_spin_lock(&release_list_lock);
5158 }
5159 raw_spin_unlock(&release_list_lock);
5160 mutex_unlock(&cgroup_mutex);
5161 }
5162
5163 static int __init cgroup_disable(char *str)
5164 {
5165 int i;
5166 char *token;
5167
5168 while ((token = strsep(&str, ",")) != NULL) {
5169 if (!*token)
5170 continue;
5171 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5172 struct cgroup_subsys *ss = subsys[i];
5173
5174 /*
5175 * cgroup_disable, being at boot time, can't
5176 * know about module subsystems, so we don't
5177 * worry about them.
5178 */
5179 if (!ss || ss->module)
5180 continue;
5181
5182 if (!strcmp(token, ss->name)) {
5183 ss->disabled = 1;
5184 printk(KERN_INFO "Disabling %s control group"
5185 " subsystem\n", ss->name);
5186 break;
5187 }
5188 }
5189 }
5190 return 1;
5191 }
5192 __setup("cgroup_disable=", cgroup_disable);
5193
5194 /*
5195 * Functons for CSS ID.
5196 */
5197
5198 /*
5199 *To get ID other than 0, this should be called when !cgroup_is_removed().
5200 */
5201 unsigned short css_id(struct cgroup_subsys_state *css)
5202 {
5203 struct css_id *cssid;
5204
5205 /*
5206 * This css_id() can return correct value when somone has refcnt
5207 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5208 * it's unchanged until freed.
5209 */
5210 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5211
5212 if (cssid)
5213 return cssid->id;
5214 return 0;
5215 }
5216 EXPORT_SYMBOL_GPL(css_id);
5217
5218 unsigned short css_depth(struct cgroup_subsys_state *css)
5219 {
5220 struct css_id *cssid;
5221
5222 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5223
5224 if (cssid)
5225 return cssid->depth;
5226 return 0;
5227 }
5228 EXPORT_SYMBOL_GPL(css_depth);
5229
5230 /**
5231 * css_is_ancestor - test "root" css is an ancestor of "child"
5232 * @child: the css to be tested.
5233 * @root: the css supporsed to be an ancestor of the child.
5234 *
5235 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5236 * this function reads css->id, the caller must hold rcu_read_lock().
5237 * But, considering usual usage, the csses should be valid objects after test.
5238 * Assuming that the caller will do some action to the child if this returns
5239 * returns true, the caller must take "child";s reference count.
5240 * If "child" is valid object and this returns true, "root" is valid, too.
5241 */
5242
5243 bool css_is_ancestor(struct cgroup_subsys_state *child,
5244 const struct cgroup_subsys_state *root)
5245 {
5246 struct css_id *child_id;
5247 struct css_id *root_id;
5248
5249 child_id = rcu_dereference(child->id);
5250 if (!child_id)
5251 return false;
5252 root_id = rcu_dereference(root->id);
5253 if (!root_id)
5254 return false;
5255 if (child_id->depth < root_id->depth)
5256 return false;
5257 if (child_id->stack[root_id->depth] != root_id->id)
5258 return false;
5259 return true;
5260 }
5261
5262 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5263 {
5264 struct css_id *id = css->id;
5265 /* When this is called before css_id initialization, id can be NULL */
5266 if (!id)
5267 return;
5268
5269 BUG_ON(!ss->use_id);
5270
5271 rcu_assign_pointer(id->css, NULL);
5272 rcu_assign_pointer(css->id, NULL);
5273 spin_lock(&ss->id_lock);
5274 idr_remove(&ss->idr, id->id);
5275 spin_unlock(&ss->id_lock);
5276 kfree_rcu(id, rcu_head);
5277 }
5278 EXPORT_SYMBOL_GPL(free_css_id);
5279
5280 /*
5281 * This is called by init or create(). Then, calls to this function are
5282 * always serialized (By cgroup_mutex() at create()).
5283 */
5284
5285 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5286 {
5287 struct css_id *newid;
5288 int myid, error, size;
5289
5290 BUG_ON(!ss->use_id);
5291
5292 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5293 newid = kzalloc(size, GFP_KERNEL);
5294 if (!newid)
5295 return ERR_PTR(-ENOMEM);
5296 /* get id */
5297 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5298 error = -ENOMEM;
5299 goto err_out;
5300 }
5301 spin_lock(&ss->id_lock);
5302 /* Don't use 0. allocates an ID of 1-65535 */
5303 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5304 spin_unlock(&ss->id_lock);
5305
5306 /* Returns error when there are no free spaces for new ID.*/
5307 if (error) {
5308 error = -ENOSPC;
5309 goto err_out;
5310 }
5311 if (myid > CSS_ID_MAX)
5312 goto remove_idr;
5313
5314 newid->id = myid;
5315 newid->depth = depth;
5316 return newid;
5317 remove_idr:
5318 error = -ENOSPC;
5319 spin_lock(&ss->id_lock);
5320 idr_remove(&ss->idr, myid);
5321 spin_unlock(&ss->id_lock);
5322 err_out:
5323 kfree(newid);
5324 return ERR_PTR(error);
5325
5326 }
5327
5328 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5329 struct cgroup_subsys_state *rootcss)
5330 {
5331 struct css_id *newid;
5332
5333 spin_lock_init(&ss->id_lock);
5334 idr_init(&ss->idr);
5335
5336 newid = get_new_cssid(ss, 0);
5337 if (IS_ERR(newid))
5338 return PTR_ERR(newid);
5339
5340 newid->stack[0] = newid->id;
5341 newid->css = rootcss;
5342 rootcss->id = newid;
5343 return 0;
5344 }
5345
5346 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5347 struct cgroup *child)
5348 {
5349 int subsys_id, i, depth = 0;
5350 struct cgroup_subsys_state *parent_css, *child_css;
5351 struct css_id *child_id, *parent_id;
5352
5353 subsys_id = ss->subsys_id;
5354 parent_css = parent->subsys[subsys_id];
5355 child_css = child->subsys[subsys_id];
5356 parent_id = parent_css->id;
5357 depth = parent_id->depth + 1;
5358
5359 child_id = get_new_cssid(ss, depth);
5360 if (IS_ERR(child_id))
5361 return PTR_ERR(child_id);
5362
5363 for (i = 0; i < depth; i++)
5364 child_id->stack[i] = parent_id->stack[i];
5365 child_id->stack[depth] = child_id->id;
5366 /*
5367 * child_id->css pointer will be set after this cgroup is available
5368 * see cgroup_populate_dir()
5369 */
5370 rcu_assign_pointer(child_css->id, child_id);
5371
5372 return 0;
5373 }
5374
5375 /**
5376 * css_lookup - lookup css by id
5377 * @ss: cgroup subsys to be looked into.
5378 * @id: the id
5379 *
5380 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5381 * NULL if not. Should be called under rcu_read_lock()
5382 */
5383 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5384 {
5385 struct css_id *cssid = NULL;
5386
5387 BUG_ON(!ss->use_id);
5388 cssid = idr_find(&ss->idr, id);
5389
5390 if (unlikely(!cssid))
5391 return NULL;
5392
5393 return rcu_dereference(cssid->css);
5394 }
5395 EXPORT_SYMBOL_GPL(css_lookup);
5396
5397 /**
5398 * css_get_next - lookup next cgroup under specified hierarchy.
5399 * @ss: pointer to subsystem
5400 * @id: current position of iteration.
5401 * @root: pointer to css. search tree under this.
5402 * @foundid: position of found object.
5403 *
5404 * Search next css under the specified hierarchy of rootid. Calling under
5405 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5406 */
5407 struct cgroup_subsys_state *
5408 css_get_next(struct cgroup_subsys *ss, int id,
5409 struct cgroup_subsys_state *root, int *foundid)
5410 {
5411 struct cgroup_subsys_state *ret = NULL;
5412 struct css_id *tmp;
5413 int tmpid;
5414 int rootid = css_id(root);
5415 int depth = css_depth(root);
5416
5417 if (!rootid)
5418 return NULL;
5419
5420 BUG_ON(!ss->use_id);
5421 WARN_ON_ONCE(!rcu_read_lock_held());
5422
5423 /* fill start point for scan */
5424 tmpid = id;
5425 while (1) {
5426 /*
5427 * scan next entry from bitmap(tree), tmpid is updated after
5428 * idr_get_next().
5429 */
5430 tmp = idr_get_next(&ss->idr, &tmpid);
5431 if (!tmp)
5432 break;
5433 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5434 ret = rcu_dereference(tmp->css);
5435 if (ret) {
5436 *foundid = tmpid;
5437 break;
5438 }
5439 }
5440 /* continue to scan from next id */
5441 tmpid = tmpid + 1;
5442 }
5443 return ret;
5444 }
5445
5446 /*
5447 * get corresponding css from file open on cgroupfs directory
5448 */
5449 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5450 {
5451 struct cgroup *cgrp;
5452 struct inode *inode;
5453 struct cgroup_subsys_state *css;
5454
5455 inode = f->f_dentry->d_inode;
5456 /* check in cgroup filesystem dir */
5457 if (inode->i_op != &cgroup_dir_inode_operations)
5458 return ERR_PTR(-EBADF);
5459
5460 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5461 return ERR_PTR(-EINVAL);
5462
5463 /* get cgroup */
5464 cgrp = __d_cgrp(f->f_dentry);
5465 css = cgrp->subsys[id];
5466 return css ? css : ERR_PTR(-ENOENT);
5467 }
5468
5469 #ifdef CONFIG_CGROUP_DEBUG
5470 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5471 {
5472 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5473
5474 if (!css)
5475 return ERR_PTR(-ENOMEM);
5476
5477 return css;
5478 }
5479
5480 static void debug_css_free(struct cgroup *cont)
5481 {
5482 kfree(cont->subsys[debug_subsys_id]);
5483 }
5484
5485 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5486 {
5487 return atomic_read(&cont->count);
5488 }
5489
5490 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5491 {
5492 return cgroup_task_count(cont);
5493 }
5494
5495 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5496 {
5497 return (u64)(unsigned long)current->cgroups;
5498 }
5499
5500 static u64 current_css_set_refcount_read(struct cgroup *cont,
5501 struct cftype *cft)
5502 {
5503 u64 count;
5504
5505 rcu_read_lock();
5506 count = atomic_read(&current->cgroups->refcount);
5507 rcu_read_unlock();
5508 return count;
5509 }
5510
5511 static int current_css_set_cg_links_read(struct cgroup *cont,
5512 struct cftype *cft,
5513 struct seq_file *seq)
5514 {
5515 struct cg_cgroup_link *link;
5516 struct css_set *cg;
5517
5518 read_lock(&css_set_lock);
5519 rcu_read_lock();
5520 cg = rcu_dereference(current->cgroups);
5521 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5522 struct cgroup *c = link->cgrp;
5523 const char *name;
5524
5525 if (c->dentry)
5526 name = c->dentry->d_name.name;
5527 else
5528 name = "?";
5529 seq_printf(seq, "Root %d group %s\n",
5530 c->root->hierarchy_id, name);
5531 }
5532 rcu_read_unlock();
5533 read_unlock(&css_set_lock);
5534 return 0;
5535 }
5536
5537 #define MAX_TASKS_SHOWN_PER_CSS 25
5538 static int cgroup_css_links_read(struct cgroup *cont,
5539 struct cftype *cft,
5540 struct seq_file *seq)
5541 {
5542 struct cg_cgroup_link *link;
5543
5544 read_lock(&css_set_lock);
5545 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5546 struct css_set *cg = link->cg;
5547 struct task_struct *task;
5548 int count = 0;
5549 seq_printf(seq, "css_set %p\n", cg);
5550 list_for_each_entry(task, &cg->tasks, cg_list) {
5551 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5552 seq_puts(seq, " ...\n");
5553 break;
5554 } else {
5555 seq_printf(seq, " task %d\n",
5556 task_pid_vnr(task));
5557 }
5558 }
5559 }
5560 read_unlock(&css_set_lock);
5561 return 0;
5562 }
5563
5564 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5565 {
5566 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5567 }
5568
5569 static struct cftype debug_files[] = {
5570 {
5571 .name = "cgroup_refcount",
5572 .read_u64 = cgroup_refcount_read,
5573 },
5574 {
5575 .name = "taskcount",
5576 .read_u64 = debug_taskcount_read,
5577 },
5578
5579 {
5580 .name = "current_css_set",
5581 .read_u64 = current_css_set_read,
5582 },
5583
5584 {
5585 .name = "current_css_set_refcount",
5586 .read_u64 = current_css_set_refcount_read,
5587 },
5588
5589 {
5590 .name = "current_css_set_cg_links",
5591 .read_seq_string = current_css_set_cg_links_read,
5592 },
5593
5594 {
5595 .name = "cgroup_css_links",
5596 .read_seq_string = cgroup_css_links_read,
5597 },
5598
5599 {
5600 .name = "releasable",
5601 .read_u64 = releasable_read,
5602 },
5603
5604 { } /* terminate */
5605 };
5606
5607 struct cgroup_subsys debug_subsys = {
5608 .name = "debug",
5609 .css_alloc = debug_css_alloc,
5610 .css_free = debug_css_free,
5611 .subsys_id = debug_subsys_id,
5612 .base_cftypes = debug_files,
5613 };
5614 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.200367 seconds and 5 git commands to generate.