net: filter: sk_chk_filter() no longer mangles filter
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
80 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
81
82 /*
83 * This is old Memory Nodes tasks took on.
84 *
85 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
86 * - A new cpuset's old_mems_allowed is initialized when some
87 * task is moved into it.
88 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
89 * cpuset.mems_allowed and have tasks' nodemask updated, and
90 * then old_mems_allowed is updated to mems_allowed.
91 */
92 nodemask_t old_mems_allowed;
93
94 struct fmeter fmeter; /* memory_pressure filter */
95
96 /*
97 * Tasks are being attached to this cpuset. Used to prevent
98 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
99 */
100 int attach_in_progress;
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107 };
108
109 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
110 {
111 return css ? container_of(css, struct cpuset, css) : NULL;
112 }
113
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
116 {
117 return css_cs(task_css(task, cpuset_cgrp_id));
118 }
119
120 static inline struct cpuset *parent_cs(struct cpuset *cs)
121 {
122 return css_cs(cs->css.parent);
123 }
124
125 #ifdef CONFIG_NUMA
126 static inline bool task_has_mempolicy(struct task_struct *task)
127 {
128 return task->mempolicy;
129 }
130 #else
131 static inline bool task_has_mempolicy(struct task_struct *task)
132 {
133 return false;
134 }
135 #endif
136
137
138 /* bits in struct cpuset flags field */
139 typedef enum {
140 CS_ONLINE,
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL,
144 CS_MEMORY_MIGRATE,
145 CS_SCHED_LOAD_BALANCE,
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
148 } cpuset_flagbits_t;
149
150 /* convenient tests for these bits */
151 static inline bool is_cpuset_online(const struct cpuset *cs)
152 {
153 return test_bit(CS_ONLINE, &cs->flags);
154 }
155
156 static inline int is_cpu_exclusive(const struct cpuset *cs)
157 {
158 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
159 }
160
161 static inline int is_mem_exclusive(const struct cpuset *cs)
162 {
163 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
164 }
165
166 static inline int is_mem_hardwall(const struct cpuset *cs)
167 {
168 return test_bit(CS_MEM_HARDWALL, &cs->flags);
169 }
170
171 static inline int is_sched_load_balance(const struct cpuset *cs)
172 {
173 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
174 }
175
176 static inline int is_memory_migrate(const struct cpuset *cs)
177 {
178 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
179 }
180
181 static inline int is_spread_page(const struct cpuset *cs)
182 {
183 return test_bit(CS_SPREAD_PAGE, &cs->flags);
184 }
185
186 static inline int is_spread_slab(const struct cpuset *cs)
187 {
188 return test_bit(CS_SPREAD_SLAB, &cs->flags);
189 }
190
191 static struct cpuset top_cpuset = {
192 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
193 (1 << CS_MEM_EXCLUSIVE)),
194 };
195
196 /**
197 * cpuset_for_each_child - traverse online children of a cpuset
198 * @child_cs: loop cursor pointing to the current child
199 * @pos_css: used for iteration
200 * @parent_cs: target cpuset to walk children of
201 *
202 * Walk @child_cs through the online children of @parent_cs. Must be used
203 * with RCU read locked.
204 */
205 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
206 css_for_each_child((pos_css), &(parent_cs)->css) \
207 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
208
209 /**
210 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
211 * @des_cs: loop cursor pointing to the current descendant
212 * @pos_css: used for iteration
213 * @root_cs: target cpuset to walk ancestor of
214 *
215 * Walk @des_cs through the online descendants of @root_cs. Must be used
216 * with RCU read locked. The caller may modify @pos_css by calling
217 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
218 * iteration and the first node to be visited.
219 */
220 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
221 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
222 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
223
224 /*
225 * There are two global mutexes guarding cpuset structures - cpuset_mutex
226 * and callback_mutex. The latter may nest inside the former. We also
227 * require taking task_lock() when dereferencing a task's cpuset pointer.
228 * See "The task_lock() exception", at the end of this comment.
229 *
230 * A task must hold both mutexes to modify cpusets. If a task holds
231 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
232 * is the only task able to also acquire callback_mutex and be able to
233 * modify cpusets. It can perform various checks on the cpuset structure
234 * first, knowing nothing will change. It can also allocate memory while
235 * just holding cpuset_mutex. While it is performing these checks, various
236 * callback routines can briefly acquire callback_mutex to query cpusets.
237 * Once it is ready to make the changes, it takes callback_mutex, blocking
238 * everyone else.
239 *
240 * Calls to the kernel memory allocator can not be made while holding
241 * callback_mutex, as that would risk double tripping on callback_mutex
242 * from one of the callbacks into the cpuset code from within
243 * __alloc_pages().
244 *
245 * If a task is only holding callback_mutex, then it has read-only
246 * access to cpusets.
247 *
248 * Now, the task_struct fields mems_allowed and mempolicy may be changed
249 * by other task, we use alloc_lock in the task_struct fields to protect
250 * them.
251 *
252 * The cpuset_common_file_read() handlers only hold callback_mutex across
253 * small pieces of code, such as when reading out possibly multi-word
254 * cpumasks and nodemasks.
255 *
256 * Accessing a task's cpuset should be done in accordance with the
257 * guidelines for accessing subsystem state in kernel/cgroup.c
258 */
259
260 static DEFINE_MUTEX(cpuset_mutex);
261 static DEFINE_MUTEX(callback_mutex);
262
263 /*
264 * CPU / memory hotplug is handled asynchronously.
265 */
266 static void cpuset_hotplug_workfn(struct work_struct *work);
267 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
268
269 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
270
271 /*
272 * This is ugly, but preserves the userspace API for existing cpuset
273 * users. If someone tries to mount the "cpuset" filesystem, we
274 * silently switch it to mount "cgroup" instead
275 */
276 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
277 int flags, const char *unused_dev_name, void *data)
278 {
279 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
280 struct dentry *ret = ERR_PTR(-ENODEV);
281 if (cgroup_fs) {
282 char mountopts[] =
283 "cpuset,noprefix,"
284 "release_agent=/sbin/cpuset_release_agent";
285 ret = cgroup_fs->mount(cgroup_fs, flags,
286 unused_dev_name, mountopts);
287 put_filesystem(cgroup_fs);
288 }
289 return ret;
290 }
291
292 static struct file_system_type cpuset_fs_type = {
293 .name = "cpuset",
294 .mount = cpuset_mount,
295 };
296
297 /*
298 * Return in pmask the portion of a cpusets's cpus_allowed that
299 * are online. If none are online, walk up the cpuset hierarchy
300 * until we find one that does have some online cpus. The top
301 * cpuset always has some cpus online.
302 *
303 * One way or another, we guarantee to return some non-empty subset
304 * of cpu_online_mask.
305 *
306 * Call with callback_mutex held.
307 */
308 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
309 {
310 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
311 cs = parent_cs(cs);
312 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
313 }
314
315 /*
316 * Return in *pmask the portion of a cpusets's mems_allowed that
317 * are online, with memory. If none are online with memory, walk
318 * up the cpuset hierarchy until we find one that does have some
319 * online mems. The top cpuset always has some mems online.
320 *
321 * One way or another, we guarantee to return some non-empty subset
322 * of node_states[N_MEMORY].
323 *
324 * Call with callback_mutex held.
325 */
326 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
327 {
328 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
329 cs = parent_cs(cs);
330 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
331 }
332
333 /*
334 * update task's spread flag if cpuset's page/slab spread flag is set
335 *
336 * Called with callback_mutex/cpuset_mutex held
337 */
338 static void cpuset_update_task_spread_flag(struct cpuset *cs,
339 struct task_struct *tsk)
340 {
341 if (is_spread_page(cs))
342 tsk->flags |= PF_SPREAD_PAGE;
343 else
344 tsk->flags &= ~PF_SPREAD_PAGE;
345 if (is_spread_slab(cs))
346 tsk->flags |= PF_SPREAD_SLAB;
347 else
348 tsk->flags &= ~PF_SPREAD_SLAB;
349 }
350
351 /*
352 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
353 *
354 * One cpuset is a subset of another if all its allowed CPUs and
355 * Memory Nodes are a subset of the other, and its exclusive flags
356 * are only set if the other's are set. Call holding cpuset_mutex.
357 */
358
359 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
360 {
361 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
362 nodes_subset(p->mems_allowed, q->mems_allowed) &&
363 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
364 is_mem_exclusive(p) <= is_mem_exclusive(q);
365 }
366
367 /**
368 * alloc_trial_cpuset - allocate a trial cpuset
369 * @cs: the cpuset that the trial cpuset duplicates
370 */
371 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
372 {
373 struct cpuset *trial;
374
375 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
376 if (!trial)
377 return NULL;
378
379 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
380 kfree(trial);
381 return NULL;
382 }
383 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
384
385 return trial;
386 }
387
388 /**
389 * free_trial_cpuset - free the trial cpuset
390 * @trial: the trial cpuset to be freed
391 */
392 static void free_trial_cpuset(struct cpuset *trial)
393 {
394 free_cpumask_var(trial->cpus_allowed);
395 kfree(trial);
396 }
397
398 /*
399 * validate_change() - Used to validate that any proposed cpuset change
400 * follows the structural rules for cpusets.
401 *
402 * If we replaced the flag and mask values of the current cpuset
403 * (cur) with those values in the trial cpuset (trial), would
404 * our various subset and exclusive rules still be valid? Presumes
405 * cpuset_mutex held.
406 *
407 * 'cur' is the address of an actual, in-use cpuset. Operations
408 * such as list traversal that depend on the actual address of the
409 * cpuset in the list must use cur below, not trial.
410 *
411 * 'trial' is the address of bulk structure copy of cur, with
412 * perhaps one or more of the fields cpus_allowed, mems_allowed,
413 * or flags changed to new, trial values.
414 *
415 * Return 0 if valid, -errno if not.
416 */
417
418 static int validate_change(struct cpuset *cur, struct cpuset *trial)
419 {
420 struct cgroup_subsys_state *css;
421 struct cpuset *c, *par;
422 int ret;
423
424 rcu_read_lock();
425
426 /* Each of our child cpusets must be a subset of us */
427 ret = -EBUSY;
428 cpuset_for_each_child(c, css, cur)
429 if (!is_cpuset_subset(c, trial))
430 goto out;
431
432 /* Remaining checks don't apply to root cpuset */
433 ret = 0;
434 if (cur == &top_cpuset)
435 goto out;
436
437 par = parent_cs(cur);
438
439 /* We must be a subset of our parent cpuset */
440 ret = -EACCES;
441 if (!is_cpuset_subset(trial, par))
442 goto out;
443
444 /*
445 * If either I or some sibling (!= me) is exclusive, we can't
446 * overlap
447 */
448 ret = -EINVAL;
449 cpuset_for_each_child(c, css, par) {
450 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
451 c != cur &&
452 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
453 goto out;
454 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
455 c != cur &&
456 nodes_intersects(trial->mems_allowed, c->mems_allowed))
457 goto out;
458 }
459
460 /*
461 * Cpusets with tasks - existing or newly being attached - can't
462 * be changed to have empty cpus_allowed or mems_allowed.
463 */
464 ret = -ENOSPC;
465 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
466 if (!cpumask_empty(cur->cpus_allowed) &&
467 cpumask_empty(trial->cpus_allowed))
468 goto out;
469 if (!nodes_empty(cur->mems_allowed) &&
470 nodes_empty(trial->mems_allowed))
471 goto out;
472 }
473
474 ret = 0;
475 out:
476 rcu_read_unlock();
477 return ret;
478 }
479
480 #ifdef CONFIG_SMP
481 /*
482 * Helper routine for generate_sched_domains().
483 * Do cpusets a, b have overlapping cpus_allowed masks?
484 */
485 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
486 {
487 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
488 }
489
490 static void
491 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
492 {
493 if (dattr->relax_domain_level < c->relax_domain_level)
494 dattr->relax_domain_level = c->relax_domain_level;
495 return;
496 }
497
498 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
499 struct cpuset *root_cs)
500 {
501 struct cpuset *cp;
502 struct cgroup_subsys_state *pos_css;
503
504 rcu_read_lock();
505 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
506 if (cp == root_cs)
507 continue;
508
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp->cpus_allowed)) {
511 pos_css = css_rightmost_descendant(pos_css);
512 continue;
513 }
514
515 if (is_sched_load_balance(cp))
516 update_domain_attr(dattr, cp);
517 }
518 rcu_read_unlock();
519 }
520
521 /*
522 * generate_sched_domains()
523 *
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
527 * The output of this function needs to be passed to kernel/sched/core.c
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
530 * partition.
531 *
532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
533 * for a background explanation of this.
534 *
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
539 *
540 * Must be called with cpuset_mutex held.
541 *
542 * The three key local variables below are:
543 * q - a linked-list queue of cpuset pointers, used to implement a
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
556 * the kernel/sched/core.c routine partition_sched_domains() in a
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
560 *
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
568 * any such pairs.
569 *
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
574 */
575 static int generate_sched_domains(cpumask_var_t **domains,
576 struct sched_domain_attr **attributes)
577 {
578 struct cpuset *cp; /* scans q */
579 struct cpuset **csa; /* array of all cpuset ptrs */
580 int csn; /* how many cpuset ptrs in csa so far */
581 int i, j, k; /* indices for partition finding loops */
582 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
583 struct sched_domain_attr *dattr; /* attributes for custom domains */
584 int ndoms = 0; /* number of sched domains in result */
585 int nslot; /* next empty doms[] struct cpumask slot */
586 struct cgroup_subsys_state *pos_css;
587
588 doms = NULL;
589 dattr = NULL;
590 csa = NULL;
591
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset)) {
594 ndoms = 1;
595 doms = alloc_sched_domains(ndoms);
596 if (!doms)
597 goto done;
598
599 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
600 if (dattr) {
601 *dattr = SD_ATTR_INIT;
602 update_domain_attr_tree(dattr, &top_cpuset);
603 }
604 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
605
606 goto done;
607 }
608
609 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
610 if (!csa)
611 goto done;
612 csn = 0;
613
614 rcu_read_lock();
615 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
616 if (cp == &top_cpuset)
617 continue;
618 /*
619 * Continue traversing beyond @cp iff @cp has some CPUs and
620 * isn't load balancing. The former is obvious. The
621 * latter: All child cpusets contain a subset of the
622 * parent's cpus, so just skip them, and then we call
623 * update_domain_attr_tree() to calc relax_domain_level of
624 * the corresponding sched domain.
625 */
626 if (!cpumask_empty(cp->cpus_allowed) &&
627 !is_sched_load_balance(cp))
628 continue;
629
630 if (is_sched_load_balance(cp))
631 csa[csn++] = cp;
632
633 /* skip @cp's subtree */
634 pos_css = css_rightmost_descendant(pos_css);
635 }
636 rcu_read_unlock();
637
638 for (i = 0; i < csn; i++)
639 csa[i]->pn = i;
640 ndoms = csn;
641
642 restart:
643 /* Find the best partition (set of sched domains) */
644 for (i = 0; i < csn; i++) {
645 struct cpuset *a = csa[i];
646 int apn = a->pn;
647
648 for (j = 0; j < csn; j++) {
649 struct cpuset *b = csa[j];
650 int bpn = b->pn;
651
652 if (apn != bpn && cpusets_overlap(a, b)) {
653 for (k = 0; k < csn; k++) {
654 struct cpuset *c = csa[k];
655
656 if (c->pn == bpn)
657 c->pn = apn;
658 }
659 ndoms--; /* one less element */
660 goto restart;
661 }
662 }
663 }
664
665 /*
666 * Now we know how many domains to create.
667 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
668 */
669 doms = alloc_sched_domains(ndoms);
670 if (!doms)
671 goto done;
672
673 /*
674 * The rest of the code, including the scheduler, can deal with
675 * dattr==NULL case. No need to abort if alloc fails.
676 */
677 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
678
679 for (nslot = 0, i = 0; i < csn; i++) {
680 struct cpuset *a = csa[i];
681 struct cpumask *dp;
682 int apn = a->pn;
683
684 if (apn < 0) {
685 /* Skip completed partitions */
686 continue;
687 }
688
689 dp = doms[nslot];
690
691 if (nslot == ndoms) {
692 static int warnings = 10;
693 if (warnings) {
694 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
695 nslot, ndoms, csn, i, apn);
696 warnings--;
697 }
698 continue;
699 }
700
701 cpumask_clear(dp);
702 if (dattr)
703 *(dattr + nslot) = SD_ATTR_INIT;
704 for (j = i; j < csn; j++) {
705 struct cpuset *b = csa[j];
706
707 if (apn == b->pn) {
708 cpumask_or(dp, dp, b->cpus_allowed);
709 if (dattr)
710 update_domain_attr_tree(dattr + nslot, b);
711
712 /* Done with this partition */
713 b->pn = -1;
714 }
715 }
716 nslot++;
717 }
718 BUG_ON(nslot != ndoms);
719
720 done:
721 kfree(csa);
722
723 /*
724 * Fallback to the default domain if kmalloc() failed.
725 * See comments in partition_sched_domains().
726 */
727 if (doms == NULL)
728 ndoms = 1;
729
730 *domains = doms;
731 *attributes = dattr;
732 return ndoms;
733 }
734
735 /*
736 * Rebuild scheduler domains.
737 *
738 * If the flag 'sched_load_balance' of any cpuset with non-empty
739 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
740 * which has that flag enabled, or if any cpuset with a non-empty
741 * 'cpus' is removed, then call this routine to rebuild the
742 * scheduler's dynamic sched domains.
743 *
744 * Call with cpuset_mutex held. Takes get_online_cpus().
745 */
746 static void rebuild_sched_domains_locked(void)
747 {
748 struct sched_domain_attr *attr;
749 cpumask_var_t *doms;
750 int ndoms;
751
752 lockdep_assert_held(&cpuset_mutex);
753 get_online_cpus();
754
755 /*
756 * We have raced with CPU hotplug. Don't do anything to avoid
757 * passing doms with offlined cpu to partition_sched_domains().
758 * Anyways, hotplug work item will rebuild sched domains.
759 */
760 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
761 goto out;
762
763 /* Generate domain masks and attrs */
764 ndoms = generate_sched_domains(&doms, &attr);
765
766 /* Have scheduler rebuild the domains */
767 partition_sched_domains(ndoms, doms, attr);
768 out:
769 put_online_cpus();
770 }
771 #else /* !CONFIG_SMP */
772 static void rebuild_sched_domains_locked(void)
773 {
774 }
775 #endif /* CONFIG_SMP */
776
777 void rebuild_sched_domains(void)
778 {
779 mutex_lock(&cpuset_mutex);
780 rebuild_sched_domains_locked();
781 mutex_unlock(&cpuset_mutex);
782 }
783
784 /*
785 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
786 * @cs: the cpuset in interest
787 *
788 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
789 * with non-empty cpus. We use effective cpumask whenever:
790 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
791 * if the cpuset they reside in has no cpus)
792 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
793 *
794 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
795 * exception. See comments there.
796 */
797 static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
798 {
799 while (cpumask_empty(cs->cpus_allowed))
800 cs = parent_cs(cs);
801 return cs;
802 }
803
804 /*
805 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
806 * @cs: the cpuset in interest
807 *
808 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
809 * with non-empty memss. We use effective nodemask whenever:
810 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
811 * if the cpuset they reside in has no mems)
812 * - we want to retrieve task_cs(tsk)'s mems_allowed.
813 *
814 * Called with cpuset_mutex held.
815 */
816 static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
817 {
818 while (nodes_empty(cs->mems_allowed))
819 cs = parent_cs(cs);
820 return cs;
821 }
822
823 /**
824 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
825 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
826 *
827 * Iterate through each task of @cs updating its cpus_allowed to the
828 * effective cpuset's. As this function is called with cpuset_mutex held,
829 * cpuset membership stays stable.
830 */
831 static void update_tasks_cpumask(struct cpuset *cs)
832 {
833 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
834 struct css_task_iter it;
835 struct task_struct *task;
836
837 css_task_iter_start(&cs->css, &it);
838 while ((task = css_task_iter_next(&it)))
839 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
840 css_task_iter_end(&it);
841 }
842
843 /*
844 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
845 * @root_cs: the root cpuset of the hierarchy
846 * @update_root: update root cpuset or not?
847 *
848 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
849 * which take on cpumask of @root_cs.
850 *
851 * Called with cpuset_mutex held
852 */
853 static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
854 {
855 struct cpuset *cp;
856 struct cgroup_subsys_state *pos_css;
857
858 rcu_read_lock();
859 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
860 if (cp == root_cs) {
861 if (!update_root)
862 continue;
863 } else {
864 /* skip the whole subtree if @cp have some CPU */
865 if (!cpumask_empty(cp->cpus_allowed)) {
866 pos_css = css_rightmost_descendant(pos_css);
867 continue;
868 }
869 }
870 if (!css_tryget_online(&cp->css))
871 continue;
872 rcu_read_unlock();
873
874 update_tasks_cpumask(cp);
875
876 rcu_read_lock();
877 css_put(&cp->css);
878 }
879 rcu_read_unlock();
880 }
881
882 /**
883 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
884 * @cs: the cpuset to consider
885 * @trialcs: trial cpuset
886 * @buf: buffer of cpu numbers written to this cpuset
887 */
888 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
889 const char *buf)
890 {
891 int retval;
892 int is_load_balanced;
893
894 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
895 if (cs == &top_cpuset)
896 return -EACCES;
897
898 /*
899 * An empty cpus_allowed is ok only if the cpuset has no tasks.
900 * Since cpulist_parse() fails on an empty mask, we special case
901 * that parsing. The validate_change() call ensures that cpusets
902 * with tasks have cpus.
903 */
904 if (!*buf) {
905 cpumask_clear(trialcs->cpus_allowed);
906 } else {
907 retval = cpulist_parse(buf, trialcs->cpus_allowed);
908 if (retval < 0)
909 return retval;
910
911 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
912 return -EINVAL;
913 }
914
915 /* Nothing to do if the cpus didn't change */
916 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
917 return 0;
918
919 retval = validate_change(cs, trialcs);
920 if (retval < 0)
921 return retval;
922
923 is_load_balanced = is_sched_load_balance(trialcs);
924
925 mutex_lock(&callback_mutex);
926 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
927 mutex_unlock(&callback_mutex);
928
929 update_tasks_cpumask_hier(cs, true);
930
931 if (is_load_balanced)
932 rebuild_sched_domains_locked();
933 return 0;
934 }
935
936 /*
937 * cpuset_migrate_mm
938 *
939 * Migrate memory region from one set of nodes to another.
940 *
941 * Temporarilly set tasks mems_allowed to target nodes of migration,
942 * so that the migration code can allocate pages on these nodes.
943 *
944 * While the mm_struct we are migrating is typically from some
945 * other task, the task_struct mems_allowed that we are hacking
946 * is for our current task, which must allocate new pages for that
947 * migrating memory region.
948 */
949
950 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
951 const nodemask_t *to)
952 {
953 struct task_struct *tsk = current;
954 struct cpuset *mems_cs;
955
956 tsk->mems_allowed = *to;
957
958 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
959
960 rcu_read_lock();
961 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
962 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
963 rcu_read_unlock();
964 }
965
966 /*
967 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
968 * @tsk: the task to change
969 * @newmems: new nodes that the task will be set
970 *
971 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
972 * we structure updates as setting all new allowed nodes, then clearing newly
973 * disallowed ones.
974 */
975 static void cpuset_change_task_nodemask(struct task_struct *tsk,
976 nodemask_t *newmems)
977 {
978 bool need_loop;
979
980 /*
981 * Allow tasks that have access to memory reserves because they have
982 * been OOM killed to get memory anywhere.
983 */
984 if (unlikely(test_thread_flag(TIF_MEMDIE)))
985 return;
986 if (current->flags & PF_EXITING) /* Let dying task have memory */
987 return;
988
989 task_lock(tsk);
990 /*
991 * Determine if a loop is necessary if another thread is doing
992 * read_mems_allowed_begin(). If at least one node remains unchanged and
993 * tsk does not have a mempolicy, then an empty nodemask will not be
994 * possible when mems_allowed is larger than a word.
995 */
996 need_loop = task_has_mempolicy(tsk) ||
997 !nodes_intersects(*newmems, tsk->mems_allowed);
998
999 if (need_loop) {
1000 local_irq_disable();
1001 write_seqcount_begin(&tsk->mems_allowed_seq);
1002 }
1003
1004 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1005 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1006
1007 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1008 tsk->mems_allowed = *newmems;
1009
1010 if (need_loop) {
1011 write_seqcount_end(&tsk->mems_allowed_seq);
1012 local_irq_enable();
1013 }
1014
1015 task_unlock(tsk);
1016 }
1017
1018 static void *cpuset_being_rebound;
1019
1020 /**
1021 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1022 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1023 *
1024 * Iterate through each task of @cs updating its mems_allowed to the
1025 * effective cpuset's. As this function is called with cpuset_mutex held,
1026 * cpuset membership stays stable.
1027 */
1028 static void update_tasks_nodemask(struct cpuset *cs)
1029 {
1030 static nodemask_t newmems; /* protected by cpuset_mutex */
1031 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1032 struct css_task_iter it;
1033 struct task_struct *task;
1034
1035 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1036
1037 guarantee_online_mems(mems_cs, &newmems);
1038
1039 /*
1040 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1041 * take while holding tasklist_lock. Forks can happen - the
1042 * mpol_dup() cpuset_being_rebound check will catch such forks,
1043 * and rebind their vma mempolicies too. Because we still hold
1044 * the global cpuset_mutex, we know that no other rebind effort
1045 * will be contending for the global variable cpuset_being_rebound.
1046 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1047 * is idempotent. Also migrate pages in each mm to new nodes.
1048 */
1049 css_task_iter_start(&cs->css, &it);
1050 while ((task = css_task_iter_next(&it))) {
1051 struct mm_struct *mm;
1052 bool migrate;
1053
1054 cpuset_change_task_nodemask(task, &newmems);
1055
1056 mm = get_task_mm(task);
1057 if (!mm)
1058 continue;
1059
1060 migrate = is_memory_migrate(cs);
1061
1062 mpol_rebind_mm(mm, &cs->mems_allowed);
1063 if (migrate)
1064 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1065 mmput(mm);
1066 }
1067 css_task_iter_end(&it);
1068
1069 /*
1070 * All the tasks' nodemasks have been updated, update
1071 * cs->old_mems_allowed.
1072 */
1073 cs->old_mems_allowed = newmems;
1074
1075 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1076 cpuset_being_rebound = NULL;
1077 }
1078
1079 /*
1080 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1081 * @cs: the root cpuset of the hierarchy
1082 * @update_root: update the root cpuset or not?
1083 *
1084 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1085 * which take on nodemask of @root_cs.
1086 *
1087 * Called with cpuset_mutex held
1088 */
1089 static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
1090 {
1091 struct cpuset *cp;
1092 struct cgroup_subsys_state *pos_css;
1093
1094 rcu_read_lock();
1095 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1096 if (cp == root_cs) {
1097 if (!update_root)
1098 continue;
1099 } else {
1100 /* skip the whole subtree if @cp have some CPU */
1101 if (!nodes_empty(cp->mems_allowed)) {
1102 pos_css = css_rightmost_descendant(pos_css);
1103 continue;
1104 }
1105 }
1106 if (!css_tryget_online(&cp->css))
1107 continue;
1108 rcu_read_unlock();
1109
1110 update_tasks_nodemask(cp);
1111
1112 rcu_read_lock();
1113 css_put(&cp->css);
1114 }
1115 rcu_read_unlock();
1116 }
1117
1118 /*
1119 * Handle user request to change the 'mems' memory placement
1120 * of a cpuset. Needs to validate the request, update the
1121 * cpusets mems_allowed, and for each task in the cpuset,
1122 * update mems_allowed and rebind task's mempolicy and any vma
1123 * mempolicies and if the cpuset is marked 'memory_migrate',
1124 * migrate the tasks pages to the new memory.
1125 *
1126 * Call with cpuset_mutex held. May take callback_mutex during call.
1127 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1128 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1129 * their mempolicies to the cpusets new mems_allowed.
1130 */
1131 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1132 const char *buf)
1133 {
1134 int retval;
1135
1136 /*
1137 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1138 * it's read-only
1139 */
1140 if (cs == &top_cpuset) {
1141 retval = -EACCES;
1142 goto done;
1143 }
1144
1145 /*
1146 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1147 * Since nodelist_parse() fails on an empty mask, we special case
1148 * that parsing. The validate_change() call ensures that cpusets
1149 * with tasks have memory.
1150 */
1151 if (!*buf) {
1152 nodes_clear(trialcs->mems_allowed);
1153 } else {
1154 retval = nodelist_parse(buf, trialcs->mems_allowed);
1155 if (retval < 0)
1156 goto done;
1157
1158 if (!nodes_subset(trialcs->mems_allowed,
1159 node_states[N_MEMORY])) {
1160 retval = -EINVAL;
1161 goto done;
1162 }
1163 }
1164
1165 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1166 retval = 0; /* Too easy - nothing to do */
1167 goto done;
1168 }
1169 retval = validate_change(cs, trialcs);
1170 if (retval < 0)
1171 goto done;
1172
1173 mutex_lock(&callback_mutex);
1174 cs->mems_allowed = trialcs->mems_allowed;
1175 mutex_unlock(&callback_mutex);
1176
1177 update_tasks_nodemask_hier(cs, true);
1178 done:
1179 return retval;
1180 }
1181
1182 int current_cpuset_is_being_rebound(void)
1183 {
1184 return task_cs(current) == cpuset_being_rebound;
1185 }
1186
1187 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1188 {
1189 #ifdef CONFIG_SMP
1190 if (val < -1 || val >= sched_domain_level_max)
1191 return -EINVAL;
1192 #endif
1193
1194 if (val != cs->relax_domain_level) {
1195 cs->relax_domain_level = val;
1196 if (!cpumask_empty(cs->cpus_allowed) &&
1197 is_sched_load_balance(cs))
1198 rebuild_sched_domains_locked();
1199 }
1200
1201 return 0;
1202 }
1203
1204 /**
1205 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1206 * @cs: the cpuset in which each task's spread flags needs to be changed
1207 *
1208 * Iterate through each task of @cs updating its spread flags. As this
1209 * function is called with cpuset_mutex held, cpuset membership stays
1210 * stable.
1211 */
1212 static void update_tasks_flags(struct cpuset *cs)
1213 {
1214 struct css_task_iter it;
1215 struct task_struct *task;
1216
1217 css_task_iter_start(&cs->css, &it);
1218 while ((task = css_task_iter_next(&it)))
1219 cpuset_update_task_spread_flag(cs, task);
1220 css_task_iter_end(&it);
1221 }
1222
1223 /*
1224 * update_flag - read a 0 or a 1 in a file and update associated flag
1225 * bit: the bit to update (see cpuset_flagbits_t)
1226 * cs: the cpuset to update
1227 * turning_on: whether the flag is being set or cleared
1228 *
1229 * Call with cpuset_mutex held.
1230 */
1231
1232 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1233 int turning_on)
1234 {
1235 struct cpuset *trialcs;
1236 int balance_flag_changed;
1237 int spread_flag_changed;
1238 int err;
1239
1240 trialcs = alloc_trial_cpuset(cs);
1241 if (!trialcs)
1242 return -ENOMEM;
1243
1244 if (turning_on)
1245 set_bit(bit, &trialcs->flags);
1246 else
1247 clear_bit(bit, &trialcs->flags);
1248
1249 err = validate_change(cs, trialcs);
1250 if (err < 0)
1251 goto out;
1252
1253 balance_flag_changed = (is_sched_load_balance(cs) !=
1254 is_sched_load_balance(trialcs));
1255
1256 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1257 || (is_spread_page(cs) != is_spread_page(trialcs)));
1258
1259 mutex_lock(&callback_mutex);
1260 cs->flags = trialcs->flags;
1261 mutex_unlock(&callback_mutex);
1262
1263 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1264 rebuild_sched_domains_locked();
1265
1266 if (spread_flag_changed)
1267 update_tasks_flags(cs);
1268 out:
1269 free_trial_cpuset(trialcs);
1270 return err;
1271 }
1272
1273 /*
1274 * Frequency meter - How fast is some event occurring?
1275 *
1276 * These routines manage a digitally filtered, constant time based,
1277 * event frequency meter. There are four routines:
1278 * fmeter_init() - initialize a frequency meter.
1279 * fmeter_markevent() - called each time the event happens.
1280 * fmeter_getrate() - returns the recent rate of such events.
1281 * fmeter_update() - internal routine used to update fmeter.
1282 *
1283 * A common data structure is passed to each of these routines,
1284 * which is used to keep track of the state required to manage the
1285 * frequency meter and its digital filter.
1286 *
1287 * The filter works on the number of events marked per unit time.
1288 * The filter is single-pole low-pass recursive (IIR). The time unit
1289 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1290 * simulate 3 decimal digits of precision (multiplied by 1000).
1291 *
1292 * With an FM_COEF of 933, and a time base of 1 second, the filter
1293 * has a half-life of 10 seconds, meaning that if the events quit
1294 * happening, then the rate returned from the fmeter_getrate()
1295 * will be cut in half each 10 seconds, until it converges to zero.
1296 *
1297 * It is not worth doing a real infinitely recursive filter. If more
1298 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1299 * just compute FM_MAXTICKS ticks worth, by which point the level
1300 * will be stable.
1301 *
1302 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1303 * arithmetic overflow in the fmeter_update() routine.
1304 *
1305 * Given the simple 32 bit integer arithmetic used, this meter works
1306 * best for reporting rates between one per millisecond (msec) and
1307 * one per 32 (approx) seconds. At constant rates faster than one
1308 * per msec it maxes out at values just under 1,000,000. At constant
1309 * rates between one per msec, and one per second it will stabilize
1310 * to a value N*1000, where N is the rate of events per second.
1311 * At constant rates between one per second and one per 32 seconds,
1312 * it will be choppy, moving up on the seconds that have an event,
1313 * and then decaying until the next event. At rates slower than
1314 * about one in 32 seconds, it decays all the way back to zero between
1315 * each event.
1316 */
1317
1318 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1319 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1320 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1321 #define FM_SCALE 1000 /* faux fixed point scale */
1322
1323 /* Initialize a frequency meter */
1324 static void fmeter_init(struct fmeter *fmp)
1325 {
1326 fmp->cnt = 0;
1327 fmp->val = 0;
1328 fmp->time = 0;
1329 spin_lock_init(&fmp->lock);
1330 }
1331
1332 /* Internal meter update - process cnt events and update value */
1333 static void fmeter_update(struct fmeter *fmp)
1334 {
1335 time_t now = get_seconds();
1336 time_t ticks = now - fmp->time;
1337
1338 if (ticks == 0)
1339 return;
1340
1341 ticks = min(FM_MAXTICKS, ticks);
1342 while (ticks-- > 0)
1343 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1344 fmp->time = now;
1345
1346 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1347 fmp->cnt = 0;
1348 }
1349
1350 /* Process any previous ticks, then bump cnt by one (times scale). */
1351 static void fmeter_markevent(struct fmeter *fmp)
1352 {
1353 spin_lock(&fmp->lock);
1354 fmeter_update(fmp);
1355 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1356 spin_unlock(&fmp->lock);
1357 }
1358
1359 /* Process any previous ticks, then return current value. */
1360 static int fmeter_getrate(struct fmeter *fmp)
1361 {
1362 int val;
1363
1364 spin_lock(&fmp->lock);
1365 fmeter_update(fmp);
1366 val = fmp->val;
1367 spin_unlock(&fmp->lock);
1368 return val;
1369 }
1370
1371 static struct cpuset *cpuset_attach_old_cs;
1372
1373 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1374 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1375 struct cgroup_taskset *tset)
1376 {
1377 struct cpuset *cs = css_cs(css);
1378 struct task_struct *task;
1379 int ret;
1380
1381 /* used later by cpuset_attach() */
1382 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1383
1384 mutex_lock(&cpuset_mutex);
1385
1386 /*
1387 * We allow to move tasks into an empty cpuset if sane_behavior
1388 * flag is set.
1389 */
1390 ret = -ENOSPC;
1391 if (!cgroup_sane_behavior(css->cgroup) &&
1392 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1393 goto out_unlock;
1394
1395 cgroup_taskset_for_each(task, tset) {
1396 /*
1397 * Kthreads which disallow setaffinity shouldn't be moved
1398 * to a new cpuset; we don't want to change their cpu
1399 * affinity and isolating such threads by their set of
1400 * allowed nodes is unnecessary. Thus, cpusets are not
1401 * applicable for such threads. This prevents checking for
1402 * success of set_cpus_allowed_ptr() on all attached tasks
1403 * before cpus_allowed may be changed.
1404 */
1405 ret = -EINVAL;
1406 if (task->flags & PF_NO_SETAFFINITY)
1407 goto out_unlock;
1408 ret = security_task_setscheduler(task);
1409 if (ret)
1410 goto out_unlock;
1411 }
1412
1413 /*
1414 * Mark attach is in progress. This makes validate_change() fail
1415 * changes which zero cpus/mems_allowed.
1416 */
1417 cs->attach_in_progress++;
1418 ret = 0;
1419 out_unlock:
1420 mutex_unlock(&cpuset_mutex);
1421 return ret;
1422 }
1423
1424 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1425 struct cgroup_taskset *tset)
1426 {
1427 mutex_lock(&cpuset_mutex);
1428 css_cs(css)->attach_in_progress--;
1429 mutex_unlock(&cpuset_mutex);
1430 }
1431
1432 /*
1433 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1434 * but we can't allocate it dynamically there. Define it global and
1435 * allocate from cpuset_init().
1436 */
1437 static cpumask_var_t cpus_attach;
1438
1439 static void cpuset_attach(struct cgroup_subsys_state *css,
1440 struct cgroup_taskset *tset)
1441 {
1442 /* static buf protected by cpuset_mutex */
1443 static nodemask_t cpuset_attach_nodemask_to;
1444 struct mm_struct *mm;
1445 struct task_struct *task;
1446 struct task_struct *leader = cgroup_taskset_first(tset);
1447 struct cpuset *cs = css_cs(css);
1448 struct cpuset *oldcs = cpuset_attach_old_cs;
1449 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1450 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1451
1452 mutex_lock(&cpuset_mutex);
1453
1454 /* prepare for attach */
1455 if (cs == &top_cpuset)
1456 cpumask_copy(cpus_attach, cpu_possible_mask);
1457 else
1458 guarantee_online_cpus(cpus_cs, cpus_attach);
1459
1460 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1461
1462 cgroup_taskset_for_each(task, tset) {
1463 /*
1464 * can_attach beforehand should guarantee that this doesn't
1465 * fail. TODO: have a better way to handle failure here
1466 */
1467 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1468
1469 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1470 cpuset_update_task_spread_flag(cs, task);
1471 }
1472
1473 /*
1474 * Change mm, possibly for multiple threads in a threadgroup. This is
1475 * expensive and may sleep.
1476 */
1477 cpuset_attach_nodemask_to = cs->mems_allowed;
1478 mm = get_task_mm(leader);
1479 if (mm) {
1480 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1481
1482 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1483
1484 /*
1485 * old_mems_allowed is the same with mems_allowed here, except
1486 * if this task is being moved automatically due to hotplug.
1487 * In that case @mems_allowed has been updated and is empty,
1488 * so @old_mems_allowed is the right nodesets that we migrate
1489 * mm from.
1490 */
1491 if (is_memory_migrate(cs)) {
1492 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1493 &cpuset_attach_nodemask_to);
1494 }
1495 mmput(mm);
1496 }
1497
1498 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1499
1500 cs->attach_in_progress--;
1501 if (!cs->attach_in_progress)
1502 wake_up(&cpuset_attach_wq);
1503
1504 mutex_unlock(&cpuset_mutex);
1505 }
1506
1507 /* The various types of files and directories in a cpuset file system */
1508
1509 typedef enum {
1510 FILE_MEMORY_MIGRATE,
1511 FILE_CPULIST,
1512 FILE_MEMLIST,
1513 FILE_CPU_EXCLUSIVE,
1514 FILE_MEM_EXCLUSIVE,
1515 FILE_MEM_HARDWALL,
1516 FILE_SCHED_LOAD_BALANCE,
1517 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1518 FILE_MEMORY_PRESSURE_ENABLED,
1519 FILE_MEMORY_PRESSURE,
1520 FILE_SPREAD_PAGE,
1521 FILE_SPREAD_SLAB,
1522 } cpuset_filetype_t;
1523
1524 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1525 u64 val)
1526 {
1527 struct cpuset *cs = css_cs(css);
1528 cpuset_filetype_t type = cft->private;
1529 int retval = 0;
1530
1531 mutex_lock(&cpuset_mutex);
1532 if (!is_cpuset_online(cs)) {
1533 retval = -ENODEV;
1534 goto out_unlock;
1535 }
1536
1537 switch (type) {
1538 case FILE_CPU_EXCLUSIVE:
1539 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1540 break;
1541 case FILE_MEM_EXCLUSIVE:
1542 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1543 break;
1544 case FILE_MEM_HARDWALL:
1545 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1546 break;
1547 case FILE_SCHED_LOAD_BALANCE:
1548 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1549 break;
1550 case FILE_MEMORY_MIGRATE:
1551 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1552 break;
1553 case FILE_MEMORY_PRESSURE_ENABLED:
1554 cpuset_memory_pressure_enabled = !!val;
1555 break;
1556 case FILE_MEMORY_PRESSURE:
1557 retval = -EACCES;
1558 break;
1559 case FILE_SPREAD_PAGE:
1560 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1561 break;
1562 case FILE_SPREAD_SLAB:
1563 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1564 break;
1565 default:
1566 retval = -EINVAL;
1567 break;
1568 }
1569 out_unlock:
1570 mutex_unlock(&cpuset_mutex);
1571 return retval;
1572 }
1573
1574 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1575 s64 val)
1576 {
1577 struct cpuset *cs = css_cs(css);
1578 cpuset_filetype_t type = cft->private;
1579 int retval = -ENODEV;
1580
1581 mutex_lock(&cpuset_mutex);
1582 if (!is_cpuset_online(cs))
1583 goto out_unlock;
1584
1585 switch (type) {
1586 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1587 retval = update_relax_domain_level(cs, val);
1588 break;
1589 default:
1590 retval = -EINVAL;
1591 break;
1592 }
1593 out_unlock:
1594 mutex_unlock(&cpuset_mutex);
1595 return retval;
1596 }
1597
1598 /*
1599 * Common handling for a write to a "cpus" or "mems" file.
1600 */
1601 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1602 char *buf, size_t nbytes, loff_t off)
1603 {
1604 struct cpuset *cs = css_cs(of_css(of));
1605 struct cpuset *trialcs;
1606 int retval = -ENODEV;
1607
1608 buf = strstrip(buf);
1609
1610 /*
1611 * CPU or memory hotunplug may leave @cs w/o any execution
1612 * resources, in which case the hotplug code asynchronously updates
1613 * configuration and transfers all tasks to the nearest ancestor
1614 * which can execute.
1615 *
1616 * As writes to "cpus" or "mems" may restore @cs's execution
1617 * resources, wait for the previously scheduled operations before
1618 * proceeding, so that we don't end up keep removing tasks added
1619 * after execution capability is restored.
1620 */
1621 flush_work(&cpuset_hotplug_work);
1622
1623 mutex_lock(&cpuset_mutex);
1624 if (!is_cpuset_online(cs))
1625 goto out_unlock;
1626
1627 trialcs = alloc_trial_cpuset(cs);
1628 if (!trialcs) {
1629 retval = -ENOMEM;
1630 goto out_unlock;
1631 }
1632
1633 switch (of_cft(of)->private) {
1634 case FILE_CPULIST:
1635 retval = update_cpumask(cs, trialcs, buf);
1636 break;
1637 case FILE_MEMLIST:
1638 retval = update_nodemask(cs, trialcs, buf);
1639 break;
1640 default:
1641 retval = -EINVAL;
1642 break;
1643 }
1644
1645 free_trial_cpuset(trialcs);
1646 out_unlock:
1647 mutex_unlock(&cpuset_mutex);
1648 return retval ?: nbytes;
1649 }
1650
1651 /*
1652 * These ascii lists should be read in a single call, by using a user
1653 * buffer large enough to hold the entire map. If read in smaller
1654 * chunks, there is no guarantee of atomicity. Since the display format
1655 * used, list of ranges of sequential numbers, is variable length,
1656 * and since these maps can change value dynamically, one could read
1657 * gibberish by doing partial reads while a list was changing.
1658 */
1659 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1660 {
1661 struct cpuset *cs = css_cs(seq_css(sf));
1662 cpuset_filetype_t type = seq_cft(sf)->private;
1663 ssize_t count;
1664 char *buf, *s;
1665 int ret = 0;
1666
1667 count = seq_get_buf(sf, &buf);
1668 s = buf;
1669
1670 mutex_lock(&callback_mutex);
1671
1672 switch (type) {
1673 case FILE_CPULIST:
1674 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1675 break;
1676 case FILE_MEMLIST:
1677 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1678 break;
1679 default:
1680 ret = -EINVAL;
1681 goto out_unlock;
1682 }
1683
1684 if (s < buf + count - 1) {
1685 *s++ = '\n';
1686 seq_commit(sf, s - buf);
1687 } else {
1688 seq_commit(sf, -1);
1689 }
1690 out_unlock:
1691 mutex_unlock(&callback_mutex);
1692 return ret;
1693 }
1694
1695 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1696 {
1697 struct cpuset *cs = css_cs(css);
1698 cpuset_filetype_t type = cft->private;
1699 switch (type) {
1700 case FILE_CPU_EXCLUSIVE:
1701 return is_cpu_exclusive(cs);
1702 case FILE_MEM_EXCLUSIVE:
1703 return is_mem_exclusive(cs);
1704 case FILE_MEM_HARDWALL:
1705 return is_mem_hardwall(cs);
1706 case FILE_SCHED_LOAD_BALANCE:
1707 return is_sched_load_balance(cs);
1708 case FILE_MEMORY_MIGRATE:
1709 return is_memory_migrate(cs);
1710 case FILE_MEMORY_PRESSURE_ENABLED:
1711 return cpuset_memory_pressure_enabled;
1712 case FILE_MEMORY_PRESSURE:
1713 return fmeter_getrate(&cs->fmeter);
1714 case FILE_SPREAD_PAGE:
1715 return is_spread_page(cs);
1716 case FILE_SPREAD_SLAB:
1717 return is_spread_slab(cs);
1718 default:
1719 BUG();
1720 }
1721
1722 /* Unreachable but makes gcc happy */
1723 return 0;
1724 }
1725
1726 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1727 {
1728 struct cpuset *cs = css_cs(css);
1729 cpuset_filetype_t type = cft->private;
1730 switch (type) {
1731 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1732 return cs->relax_domain_level;
1733 default:
1734 BUG();
1735 }
1736
1737 /* Unrechable but makes gcc happy */
1738 return 0;
1739 }
1740
1741
1742 /*
1743 * for the common functions, 'private' gives the type of file
1744 */
1745
1746 static struct cftype files[] = {
1747 {
1748 .name = "cpus",
1749 .seq_show = cpuset_common_seq_show,
1750 .write = cpuset_write_resmask,
1751 .max_write_len = (100U + 6 * NR_CPUS),
1752 .private = FILE_CPULIST,
1753 },
1754
1755 {
1756 .name = "mems",
1757 .seq_show = cpuset_common_seq_show,
1758 .write = cpuset_write_resmask,
1759 .max_write_len = (100U + 6 * MAX_NUMNODES),
1760 .private = FILE_MEMLIST,
1761 },
1762
1763 {
1764 .name = "cpu_exclusive",
1765 .read_u64 = cpuset_read_u64,
1766 .write_u64 = cpuset_write_u64,
1767 .private = FILE_CPU_EXCLUSIVE,
1768 },
1769
1770 {
1771 .name = "mem_exclusive",
1772 .read_u64 = cpuset_read_u64,
1773 .write_u64 = cpuset_write_u64,
1774 .private = FILE_MEM_EXCLUSIVE,
1775 },
1776
1777 {
1778 .name = "mem_hardwall",
1779 .read_u64 = cpuset_read_u64,
1780 .write_u64 = cpuset_write_u64,
1781 .private = FILE_MEM_HARDWALL,
1782 },
1783
1784 {
1785 .name = "sched_load_balance",
1786 .read_u64 = cpuset_read_u64,
1787 .write_u64 = cpuset_write_u64,
1788 .private = FILE_SCHED_LOAD_BALANCE,
1789 },
1790
1791 {
1792 .name = "sched_relax_domain_level",
1793 .read_s64 = cpuset_read_s64,
1794 .write_s64 = cpuset_write_s64,
1795 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1796 },
1797
1798 {
1799 .name = "memory_migrate",
1800 .read_u64 = cpuset_read_u64,
1801 .write_u64 = cpuset_write_u64,
1802 .private = FILE_MEMORY_MIGRATE,
1803 },
1804
1805 {
1806 .name = "memory_pressure",
1807 .read_u64 = cpuset_read_u64,
1808 .write_u64 = cpuset_write_u64,
1809 .private = FILE_MEMORY_PRESSURE,
1810 .mode = S_IRUGO,
1811 },
1812
1813 {
1814 .name = "memory_spread_page",
1815 .read_u64 = cpuset_read_u64,
1816 .write_u64 = cpuset_write_u64,
1817 .private = FILE_SPREAD_PAGE,
1818 },
1819
1820 {
1821 .name = "memory_spread_slab",
1822 .read_u64 = cpuset_read_u64,
1823 .write_u64 = cpuset_write_u64,
1824 .private = FILE_SPREAD_SLAB,
1825 },
1826
1827 {
1828 .name = "memory_pressure_enabled",
1829 .flags = CFTYPE_ONLY_ON_ROOT,
1830 .read_u64 = cpuset_read_u64,
1831 .write_u64 = cpuset_write_u64,
1832 .private = FILE_MEMORY_PRESSURE_ENABLED,
1833 },
1834
1835 { } /* terminate */
1836 };
1837
1838 /*
1839 * cpuset_css_alloc - allocate a cpuset css
1840 * cgrp: control group that the new cpuset will be part of
1841 */
1842
1843 static struct cgroup_subsys_state *
1844 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1845 {
1846 struct cpuset *cs;
1847
1848 if (!parent_css)
1849 return &top_cpuset.css;
1850
1851 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1852 if (!cs)
1853 return ERR_PTR(-ENOMEM);
1854 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1855 kfree(cs);
1856 return ERR_PTR(-ENOMEM);
1857 }
1858
1859 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1860 cpumask_clear(cs->cpus_allowed);
1861 nodes_clear(cs->mems_allowed);
1862 fmeter_init(&cs->fmeter);
1863 cs->relax_domain_level = -1;
1864
1865 return &cs->css;
1866 }
1867
1868 static int cpuset_css_online(struct cgroup_subsys_state *css)
1869 {
1870 struct cpuset *cs = css_cs(css);
1871 struct cpuset *parent = parent_cs(cs);
1872 struct cpuset *tmp_cs;
1873 struct cgroup_subsys_state *pos_css;
1874
1875 if (!parent)
1876 return 0;
1877
1878 mutex_lock(&cpuset_mutex);
1879
1880 set_bit(CS_ONLINE, &cs->flags);
1881 if (is_spread_page(parent))
1882 set_bit(CS_SPREAD_PAGE, &cs->flags);
1883 if (is_spread_slab(parent))
1884 set_bit(CS_SPREAD_SLAB, &cs->flags);
1885
1886 cpuset_inc();
1887
1888 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1889 goto out_unlock;
1890
1891 /*
1892 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1893 * set. This flag handling is implemented in cgroup core for
1894 * histrical reasons - the flag may be specified during mount.
1895 *
1896 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1897 * refuse to clone the configuration - thereby refusing the task to
1898 * be entered, and as a result refusing the sys_unshare() or
1899 * clone() which initiated it. If this becomes a problem for some
1900 * users who wish to allow that scenario, then this could be
1901 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1902 * (and likewise for mems) to the new cgroup.
1903 */
1904 rcu_read_lock();
1905 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1906 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1907 rcu_read_unlock();
1908 goto out_unlock;
1909 }
1910 }
1911 rcu_read_unlock();
1912
1913 mutex_lock(&callback_mutex);
1914 cs->mems_allowed = parent->mems_allowed;
1915 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1916 mutex_unlock(&callback_mutex);
1917 out_unlock:
1918 mutex_unlock(&cpuset_mutex);
1919 return 0;
1920 }
1921
1922 /*
1923 * If the cpuset being removed has its flag 'sched_load_balance'
1924 * enabled, then simulate turning sched_load_balance off, which
1925 * will call rebuild_sched_domains_locked().
1926 */
1927
1928 static void cpuset_css_offline(struct cgroup_subsys_state *css)
1929 {
1930 struct cpuset *cs = css_cs(css);
1931
1932 mutex_lock(&cpuset_mutex);
1933
1934 if (is_sched_load_balance(cs))
1935 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1936
1937 cpuset_dec();
1938 clear_bit(CS_ONLINE, &cs->flags);
1939
1940 mutex_unlock(&cpuset_mutex);
1941 }
1942
1943 static void cpuset_css_free(struct cgroup_subsys_state *css)
1944 {
1945 struct cpuset *cs = css_cs(css);
1946
1947 free_cpumask_var(cs->cpus_allowed);
1948 kfree(cs);
1949 }
1950
1951 struct cgroup_subsys cpuset_cgrp_subsys = {
1952 .css_alloc = cpuset_css_alloc,
1953 .css_online = cpuset_css_online,
1954 .css_offline = cpuset_css_offline,
1955 .css_free = cpuset_css_free,
1956 .can_attach = cpuset_can_attach,
1957 .cancel_attach = cpuset_cancel_attach,
1958 .attach = cpuset_attach,
1959 .base_cftypes = files,
1960 .early_init = 1,
1961 };
1962
1963 /**
1964 * cpuset_init - initialize cpusets at system boot
1965 *
1966 * Description: Initialize top_cpuset and the cpuset internal file system,
1967 **/
1968
1969 int __init cpuset_init(void)
1970 {
1971 int err = 0;
1972
1973 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1974 BUG();
1975
1976 cpumask_setall(top_cpuset.cpus_allowed);
1977 nodes_setall(top_cpuset.mems_allowed);
1978
1979 fmeter_init(&top_cpuset.fmeter);
1980 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1981 top_cpuset.relax_domain_level = -1;
1982
1983 err = register_filesystem(&cpuset_fs_type);
1984 if (err < 0)
1985 return err;
1986
1987 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1988 BUG();
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1995 * or memory nodes, we need to walk over the cpuset hierarchy,
1996 * removing that CPU or node from all cpusets. If this removes the
1997 * last CPU or node from a cpuset, then move the tasks in the empty
1998 * cpuset to its next-highest non-empty parent.
1999 */
2000 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2001 {
2002 struct cpuset *parent;
2003
2004 /*
2005 * Find its next-highest non-empty parent, (top cpuset
2006 * has online cpus, so can't be empty).
2007 */
2008 parent = parent_cs(cs);
2009 while (cpumask_empty(parent->cpus_allowed) ||
2010 nodes_empty(parent->mems_allowed))
2011 parent = parent_cs(parent);
2012
2013 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2014 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2015 pr_cont_cgroup_name(cs->css.cgroup);
2016 pr_cont("\n");
2017 }
2018 }
2019
2020 /**
2021 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2022 * @cs: cpuset in interest
2023 *
2024 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2025 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2026 * all its tasks are moved to the nearest ancestor with both resources.
2027 */
2028 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2029 {
2030 static cpumask_t off_cpus;
2031 static nodemask_t off_mems;
2032 bool is_empty;
2033 bool sane = cgroup_sane_behavior(cs->css.cgroup);
2034
2035 retry:
2036 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2037
2038 mutex_lock(&cpuset_mutex);
2039
2040 /*
2041 * We have raced with task attaching. We wait until attaching
2042 * is finished, so we won't attach a task to an empty cpuset.
2043 */
2044 if (cs->attach_in_progress) {
2045 mutex_unlock(&cpuset_mutex);
2046 goto retry;
2047 }
2048
2049 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2050 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2051
2052 mutex_lock(&callback_mutex);
2053 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2054 mutex_unlock(&callback_mutex);
2055
2056 /*
2057 * If sane_behavior flag is set, we need to update tasks' cpumask
2058 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2059 * call update_tasks_cpumask() if the cpuset becomes empty, as
2060 * the tasks in it will be migrated to an ancestor.
2061 */
2062 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2063 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2064 update_tasks_cpumask(cs);
2065
2066 mutex_lock(&callback_mutex);
2067 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2068 mutex_unlock(&callback_mutex);
2069
2070 /*
2071 * If sane_behavior flag is set, we need to update tasks' nodemask
2072 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2073 * call update_tasks_nodemask() if the cpuset becomes empty, as
2074 * the tasks in it will be migratd to an ancestor.
2075 */
2076 if ((sane && nodes_empty(cs->mems_allowed)) ||
2077 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2078 update_tasks_nodemask(cs);
2079
2080 is_empty = cpumask_empty(cs->cpus_allowed) ||
2081 nodes_empty(cs->mems_allowed);
2082
2083 mutex_unlock(&cpuset_mutex);
2084
2085 /*
2086 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2087 *
2088 * Otherwise move tasks to the nearest ancestor with execution
2089 * resources. This is full cgroup operation which will
2090 * also call back into cpuset. Should be done outside any lock.
2091 */
2092 if (!sane && is_empty)
2093 remove_tasks_in_empty_cpuset(cs);
2094 }
2095
2096 /**
2097 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2098 *
2099 * This function is called after either CPU or memory configuration has
2100 * changed and updates cpuset accordingly. The top_cpuset is always
2101 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2102 * order to make cpusets transparent (of no affect) on systems that are
2103 * actively using CPU hotplug but making no active use of cpusets.
2104 *
2105 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2106 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2107 * all descendants.
2108 *
2109 * Note that CPU offlining during suspend is ignored. We don't modify
2110 * cpusets across suspend/resume cycles at all.
2111 */
2112 static void cpuset_hotplug_workfn(struct work_struct *work)
2113 {
2114 static cpumask_t new_cpus;
2115 static nodemask_t new_mems;
2116 bool cpus_updated, mems_updated;
2117
2118 mutex_lock(&cpuset_mutex);
2119
2120 /* fetch the available cpus/mems and find out which changed how */
2121 cpumask_copy(&new_cpus, cpu_active_mask);
2122 new_mems = node_states[N_MEMORY];
2123
2124 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2125 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2126
2127 /* synchronize cpus_allowed to cpu_active_mask */
2128 if (cpus_updated) {
2129 mutex_lock(&callback_mutex);
2130 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2131 mutex_unlock(&callback_mutex);
2132 /* we don't mess with cpumasks of tasks in top_cpuset */
2133 }
2134
2135 /* synchronize mems_allowed to N_MEMORY */
2136 if (mems_updated) {
2137 mutex_lock(&callback_mutex);
2138 top_cpuset.mems_allowed = new_mems;
2139 mutex_unlock(&callback_mutex);
2140 update_tasks_nodemask(&top_cpuset);
2141 }
2142
2143 mutex_unlock(&cpuset_mutex);
2144
2145 /* if cpus or mems changed, we need to propagate to descendants */
2146 if (cpus_updated || mems_updated) {
2147 struct cpuset *cs;
2148 struct cgroup_subsys_state *pos_css;
2149
2150 rcu_read_lock();
2151 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2152 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2153 continue;
2154 rcu_read_unlock();
2155
2156 cpuset_hotplug_update_tasks(cs);
2157
2158 rcu_read_lock();
2159 css_put(&cs->css);
2160 }
2161 rcu_read_unlock();
2162 }
2163
2164 /* rebuild sched domains if cpus_allowed has changed */
2165 if (cpus_updated)
2166 rebuild_sched_domains();
2167 }
2168
2169 void cpuset_update_active_cpus(bool cpu_online)
2170 {
2171 /*
2172 * We're inside cpu hotplug critical region which usually nests
2173 * inside cgroup synchronization. Bounce actual hotplug processing
2174 * to a work item to avoid reverse locking order.
2175 *
2176 * We still need to do partition_sched_domains() synchronously;
2177 * otherwise, the scheduler will get confused and put tasks to the
2178 * dead CPU. Fall back to the default single domain.
2179 * cpuset_hotplug_workfn() will rebuild it as necessary.
2180 */
2181 partition_sched_domains(1, NULL, NULL);
2182 schedule_work(&cpuset_hotplug_work);
2183 }
2184
2185 /*
2186 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2187 * Call this routine anytime after node_states[N_MEMORY] changes.
2188 * See cpuset_update_active_cpus() for CPU hotplug handling.
2189 */
2190 static int cpuset_track_online_nodes(struct notifier_block *self,
2191 unsigned long action, void *arg)
2192 {
2193 schedule_work(&cpuset_hotplug_work);
2194 return NOTIFY_OK;
2195 }
2196
2197 static struct notifier_block cpuset_track_online_nodes_nb = {
2198 .notifier_call = cpuset_track_online_nodes,
2199 .priority = 10, /* ??! */
2200 };
2201
2202 /**
2203 * cpuset_init_smp - initialize cpus_allowed
2204 *
2205 * Description: Finish top cpuset after cpu, node maps are initialized
2206 */
2207 void __init cpuset_init_smp(void)
2208 {
2209 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2210 top_cpuset.mems_allowed = node_states[N_MEMORY];
2211 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2212
2213 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2214 }
2215
2216 /**
2217 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2218 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2219 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2220 *
2221 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2222 * attached to the specified @tsk. Guaranteed to return some non-empty
2223 * subset of cpu_online_mask, even if this means going outside the
2224 * tasks cpuset.
2225 **/
2226
2227 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2228 {
2229 struct cpuset *cpus_cs;
2230
2231 mutex_lock(&callback_mutex);
2232 rcu_read_lock();
2233 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2234 guarantee_online_cpus(cpus_cs, pmask);
2235 rcu_read_unlock();
2236 mutex_unlock(&callback_mutex);
2237 }
2238
2239 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2240 {
2241 struct cpuset *cpus_cs;
2242
2243 rcu_read_lock();
2244 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2245 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2246 rcu_read_unlock();
2247
2248 /*
2249 * We own tsk->cpus_allowed, nobody can change it under us.
2250 *
2251 * But we used cs && cs->cpus_allowed lockless and thus can
2252 * race with cgroup_attach_task() or update_cpumask() and get
2253 * the wrong tsk->cpus_allowed. However, both cases imply the
2254 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2255 * which takes task_rq_lock().
2256 *
2257 * If we are called after it dropped the lock we must see all
2258 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2259 * set any mask even if it is not right from task_cs() pov,
2260 * the pending set_cpus_allowed_ptr() will fix things.
2261 *
2262 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2263 * if required.
2264 */
2265 }
2266
2267 void cpuset_init_current_mems_allowed(void)
2268 {
2269 nodes_setall(current->mems_allowed);
2270 }
2271
2272 /**
2273 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2274 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2275 *
2276 * Description: Returns the nodemask_t mems_allowed of the cpuset
2277 * attached to the specified @tsk. Guaranteed to return some non-empty
2278 * subset of node_states[N_MEMORY], even if this means going outside the
2279 * tasks cpuset.
2280 **/
2281
2282 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2283 {
2284 struct cpuset *mems_cs;
2285 nodemask_t mask;
2286
2287 mutex_lock(&callback_mutex);
2288 rcu_read_lock();
2289 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2290 guarantee_online_mems(mems_cs, &mask);
2291 rcu_read_unlock();
2292 mutex_unlock(&callback_mutex);
2293
2294 return mask;
2295 }
2296
2297 /**
2298 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2299 * @nodemask: the nodemask to be checked
2300 *
2301 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2302 */
2303 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2304 {
2305 return nodes_intersects(*nodemask, current->mems_allowed);
2306 }
2307
2308 /*
2309 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2310 * mem_hardwall ancestor to the specified cpuset. Call holding
2311 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2312 * (an unusual configuration), then returns the root cpuset.
2313 */
2314 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2315 {
2316 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2317 cs = parent_cs(cs);
2318 return cs;
2319 }
2320
2321 /**
2322 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2323 * @node: is this an allowed node?
2324 * @gfp_mask: memory allocation flags
2325 *
2326 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2327 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2328 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2329 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2330 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2331 * flag, yes.
2332 * Otherwise, no.
2333 *
2334 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2335 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2336 * might sleep, and might allow a node from an enclosing cpuset.
2337 *
2338 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2339 * cpusets, and never sleeps.
2340 *
2341 * The __GFP_THISNODE placement logic is really handled elsewhere,
2342 * by forcibly using a zonelist starting at a specified node, and by
2343 * (in get_page_from_freelist()) refusing to consider the zones for
2344 * any node on the zonelist except the first. By the time any such
2345 * calls get to this routine, we should just shut up and say 'yes'.
2346 *
2347 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2348 * and do not allow allocations outside the current tasks cpuset
2349 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2350 * GFP_KERNEL allocations are not so marked, so can escape to the
2351 * nearest enclosing hardwalled ancestor cpuset.
2352 *
2353 * Scanning up parent cpusets requires callback_mutex. The
2354 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2355 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2356 * current tasks mems_allowed came up empty on the first pass over
2357 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2358 * cpuset are short of memory, might require taking the callback_mutex
2359 * mutex.
2360 *
2361 * The first call here from mm/page_alloc:get_page_from_freelist()
2362 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2363 * so no allocation on a node outside the cpuset is allowed (unless
2364 * in interrupt, of course).
2365 *
2366 * The second pass through get_page_from_freelist() doesn't even call
2367 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2368 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2369 * in alloc_flags. That logic and the checks below have the combined
2370 * affect that:
2371 * in_interrupt - any node ok (current task context irrelevant)
2372 * GFP_ATOMIC - any node ok
2373 * TIF_MEMDIE - any node ok
2374 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2375 * GFP_USER - only nodes in current tasks mems allowed ok.
2376 *
2377 * Rule:
2378 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2379 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2380 * the code that might scan up ancestor cpusets and sleep.
2381 */
2382 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2383 {
2384 struct cpuset *cs; /* current cpuset ancestors */
2385 int allowed; /* is allocation in zone z allowed? */
2386
2387 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2388 return 1;
2389 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2390 if (node_isset(node, current->mems_allowed))
2391 return 1;
2392 /*
2393 * Allow tasks that have access to memory reserves because they have
2394 * been OOM killed to get memory anywhere.
2395 */
2396 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2397 return 1;
2398 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2399 return 0;
2400
2401 if (current->flags & PF_EXITING) /* Let dying task have memory */
2402 return 1;
2403
2404 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2405 mutex_lock(&callback_mutex);
2406
2407 rcu_read_lock();
2408 cs = nearest_hardwall_ancestor(task_cs(current));
2409 allowed = node_isset(node, cs->mems_allowed);
2410 rcu_read_unlock();
2411
2412 mutex_unlock(&callback_mutex);
2413 return allowed;
2414 }
2415
2416 /*
2417 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2418 * @node: is this an allowed node?
2419 * @gfp_mask: memory allocation flags
2420 *
2421 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2422 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2423 * yes. If the task has been OOM killed and has access to memory reserves as
2424 * specified by the TIF_MEMDIE flag, yes.
2425 * Otherwise, no.
2426 *
2427 * The __GFP_THISNODE placement logic is really handled elsewhere,
2428 * by forcibly using a zonelist starting at a specified node, and by
2429 * (in get_page_from_freelist()) refusing to consider the zones for
2430 * any node on the zonelist except the first. By the time any such
2431 * calls get to this routine, we should just shut up and say 'yes'.
2432 *
2433 * Unlike the cpuset_node_allowed_softwall() variant, above,
2434 * this variant requires that the node be in the current task's
2435 * mems_allowed or that we're in interrupt. It does not scan up the
2436 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2437 * It never sleeps.
2438 */
2439 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2440 {
2441 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2442 return 1;
2443 if (node_isset(node, current->mems_allowed))
2444 return 1;
2445 /*
2446 * Allow tasks that have access to memory reserves because they have
2447 * been OOM killed to get memory anywhere.
2448 */
2449 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2450 return 1;
2451 return 0;
2452 }
2453
2454 /**
2455 * cpuset_mem_spread_node() - On which node to begin search for a file page
2456 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2457 *
2458 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2459 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2460 * and if the memory allocation used cpuset_mem_spread_node()
2461 * to determine on which node to start looking, as it will for
2462 * certain page cache or slab cache pages such as used for file
2463 * system buffers and inode caches, then instead of starting on the
2464 * local node to look for a free page, rather spread the starting
2465 * node around the tasks mems_allowed nodes.
2466 *
2467 * We don't have to worry about the returned node being offline
2468 * because "it can't happen", and even if it did, it would be ok.
2469 *
2470 * The routines calling guarantee_online_mems() are careful to
2471 * only set nodes in task->mems_allowed that are online. So it
2472 * should not be possible for the following code to return an
2473 * offline node. But if it did, that would be ok, as this routine
2474 * is not returning the node where the allocation must be, only
2475 * the node where the search should start. The zonelist passed to
2476 * __alloc_pages() will include all nodes. If the slab allocator
2477 * is passed an offline node, it will fall back to the local node.
2478 * See kmem_cache_alloc_node().
2479 */
2480
2481 static int cpuset_spread_node(int *rotor)
2482 {
2483 int node;
2484
2485 node = next_node(*rotor, current->mems_allowed);
2486 if (node == MAX_NUMNODES)
2487 node = first_node(current->mems_allowed);
2488 *rotor = node;
2489 return node;
2490 }
2491
2492 int cpuset_mem_spread_node(void)
2493 {
2494 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2495 current->cpuset_mem_spread_rotor =
2496 node_random(&current->mems_allowed);
2497
2498 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2499 }
2500
2501 int cpuset_slab_spread_node(void)
2502 {
2503 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2504 current->cpuset_slab_spread_rotor =
2505 node_random(&current->mems_allowed);
2506
2507 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2508 }
2509
2510 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2511
2512 /**
2513 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2514 * @tsk1: pointer to task_struct of some task.
2515 * @tsk2: pointer to task_struct of some other task.
2516 *
2517 * Description: Return true if @tsk1's mems_allowed intersects the
2518 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2519 * one of the task's memory usage might impact the memory available
2520 * to the other.
2521 **/
2522
2523 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2524 const struct task_struct *tsk2)
2525 {
2526 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2527 }
2528
2529 #define CPUSET_NODELIST_LEN (256)
2530
2531 /**
2532 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2533 * @tsk: pointer to task_struct of some task.
2534 *
2535 * Description: Prints @task's name, cpuset name, and cached copy of its
2536 * mems_allowed to the kernel log.
2537 */
2538 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2539 {
2540 /* Statically allocated to prevent using excess stack. */
2541 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2542 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2543 struct cgroup *cgrp;
2544
2545 spin_lock(&cpuset_buffer_lock);
2546 rcu_read_lock();
2547
2548 cgrp = task_cs(tsk)->css.cgroup;
2549 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2550 tsk->mems_allowed);
2551 pr_info("%s cpuset=", tsk->comm);
2552 pr_cont_cgroup_name(cgrp);
2553 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2554
2555 rcu_read_unlock();
2556 spin_unlock(&cpuset_buffer_lock);
2557 }
2558
2559 /*
2560 * Collection of memory_pressure is suppressed unless
2561 * this flag is enabled by writing "1" to the special
2562 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2563 */
2564
2565 int cpuset_memory_pressure_enabled __read_mostly;
2566
2567 /**
2568 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2569 *
2570 * Keep a running average of the rate of synchronous (direct)
2571 * page reclaim efforts initiated by tasks in each cpuset.
2572 *
2573 * This represents the rate at which some task in the cpuset
2574 * ran low on memory on all nodes it was allowed to use, and
2575 * had to enter the kernels page reclaim code in an effort to
2576 * create more free memory by tossing clean pages or swapping
2577 * or writing dirty pages.
2578 *
2579 * Display to user space in the per-cpuset read-only file
2580 * "memory_pressure". Value displayed is an integer
2581 * representing the recent rate of entry into the synchronous
2582 * (direct) page reclaim by any task attached to the cpuset.
2583 **/
2584
2585 void __cpuset_memory_pressure_bump(void)
2586 {
2587 rcu_read_lock();
2588 fmeter_markevent(&task_cs(current)->fmeter);
2589 rcu_read_unlock();
2590 }
2591
2592 #ifdef CONFIG_PROC_PID_CPUSET
2593 /*
2594 * proc_cpuset_show()
2595 * - Print tasks cpuset path into seq_file.
2596 * - Used for /proc/<pid>/cpuset.
2597 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2598 * doesn't really matter if tsk->cpuset changes after we read it,
2599 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2600 * anyway.
2601 */
2602 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2603 {
2604 struct pid *pid;
2605 struct task_struct *tsk;
2606 char *buf, *p;
2607 struct cgroup_subsys_state *css;
2608 int retval;
2609
2610 retval = -ENOMEM;
2611 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2612 if (!buf)
2613 goto out;
2614
2615 retval = -ESRCH;
2616 pid = m->private;
2617 tsk = get_pid_task(pid, PIDTYPE_PID);
2618 if (!tsk)
2619 goto out_free;
2620
2621 retval = -ENAMETOOLONG;
2622 rcu_read_lock();
2623 css = task_css(tsk, cpuset_cgrp_id);
2624 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2625 rcu_read_unlock();
2626 if (!p)
2627 goto out_put_task;
2628 seq_puts(m, p);
2629 seq_putc(m, '\n');
2630 retval = 0;
2631 out_put_task:
2632 put_task_struct(tsk);
2633 out_free:
2634 kfree(buf);
2635 out:
2636 return retval;
2637 }
2638 #endif /* CONFIG_PROC_PID_CPUSET */
2639
2640 /* Display task mems_allowed in /proc/<pid>/status file. */
2641 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2642 {
2643 seq_puts(m, "Mems_allowed:\t");
2644 seq_nodemask(m, &task->mems_allowed);
2645 seq_puts(m, "\n");
2646 seq_puts(m, "Mems_allowed_list:\t");
2647 seq_nodemask_list(m, &task->mems_allowed);
2648 seq_puts(m, "\n");
2649 }
This page took 0.085656 seconds and 5 git commands to generate.