Merge branch 'misc-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 /*
80 * Protected counters by write_lock_irq(&tasklist_lock)
81 */
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
84
85 int max_threads; /* tunable limit on nr_threads */
86
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98
99 int nr_processes(void)
100 {
101 int cpu;
102 int total = 0;
103
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
106
107 return total;
108 }
109
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
117
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 int node)
121 {
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 gfp_t mask = GFP_KERNEL;
126 #endif
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128
129 return page ? page_address(page) : NULL;
130 }
131
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158 struct zone *zone = page_zone(virt_to_page(ti));
159
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162
163 void free_task(struct task_struct *tsk)
164 {
165 account_kernel_stack(tsk->stack, -1);
166 free_thread_info(tsk->stack);
167 rt_mutex_debug_task_free(tsk);
168 ftrace_graph_exit_task(tsk);
169 free_task_struct(tsk);
170 }
171 EXPORT_SYMBOL(free_task);
172
173 static inline void free_signal_struct(struct signal_struct *sig)
174 {
175 taskstats_tgid_free(sig);
176 sched_autogroup_exit(sig);
177 kmem_cache_free(signal_cachep, sig);
178 }
179
180 static inline void put_signal_struct(struct signal_struct *sig)
181 {
182 if (atomic_dec_and_test(&sig->sigcnt))
183 free_signal_struct(sig);
184 }
185
186 void __put_task_struct(struct task_struct *tsk)
187 {
188 WARN_ON(!tsk->exit_state);
189 WARN_ON(atomic_read(&tsk->usage));
190 WARN_ON(tsk == current);
191
192 exit_creds(tsk);
193 delayacct_tsk_free(tsk);
194 put_signal_struct(tsk->signal);
195
196 if (!profile_handoff_task(tsk))
197 free_task(tsk);
198 }
199 EXPORT_SYMBOL_GPL(__put_task_struct);
200
201 /*
202 * macro override instead of weak attribute alias, to workaround
203 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
204 */
205 #ifndef arch_task_cache_init
206 #define arch_task_cache_init()
207 #endif
208
209 void __init fork_init(unsigned long mempages)
210 {
211 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
212 #ifndef ARCH_MIN_TASKALIGN
213 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
214 #endif
215 /* create a slab on which task_structs can be allocated */
216 task_struct_cachep =
217 kmem_cache_create("task_struct", sizeof(struct task_struct),
218 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
219 #endif
220
221 /* do the arch specific task caches init */
222 arch_task_cache_init();
223
224 /*
225 * The default maximum number of threads is set to a safe
226 * value: the thread structures can take up at most half
227 * of memory.
228 */
229 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
230
231 /*
232 * we need to allow at least 20 threads to boot a system
233 */
234 if (max_threads < 20)
235 max_threads = 20;
236
237 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
239 init_task.signal->rlim[RLIMIT_SIGPENDING] =
240 init_task.signal->rlim[RLIMIT_NPROC];
241 }
242
243 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
244 struct task_struct *src)
245 {
246 *dst = *src;
247 return 0;
248 }
249
250 static struct task_struct *dup_task_struct(struct task_struct *orig)
251 {
252 struct task_struct *tsk;
253 struct thread_info *ti;
254 unsigned long *stackend;
255 int node = tsk_fork_get_node(orig);
256 int err;
257
258 prepare_to_copy(orig);
259
260 tsk = alloc_task_struct_node(node);
261 if (!tsk)
262 return NULL;
263
264 ti = alloc_thread_info_node(tsk, node);
265 if (!ti) {
266 free_task_struct(tsk);
267 return NULL;
268 }
269
270 err = arch_dup_task_struct(tsk, orig);
271 if (err)
272 goto out;
273
274 tsk->stack = ti;
275
276 setup_thread_stack(tsk, orig);
277 clear_user_return_notifier(tsk);
278 clear_tsk_need_resched(tsk);
279 stackend = end_of_stack(tsk);
280 *stackend = STACK_END_MAGIC; /* for overflow detection */
281
282 #ifdef CONFIG_CC_STACKPROTECTOR
283 tsk->stack_canary = get_random_int();
284 #endif
285
286 /*
287 * One for us, one for whoever does the "release_task()" (usually
288 * parent)
289 */
290 atomic_set(&tsk->usage, 2);
291 #ifdef CONFIG_BLK_DEV_IO_TRACE
292 tsk->btrace_seq = 0;
293 #endif
294 tsk->splice_pipe = NULL;
295
296 account_kernel_stack(ti, 1);
297
298 return tsk;
299
300 out:
301 free_thread_info(ti);
302 free_task_struct(tsk);
303 return NULL;
304 }
305
306 #ifdef CONFIG_MMU
307 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
308 {
309 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
310 struct rb_node **rb_link, *rb_parent;
311 int retval;
312 unsigned long charge;
313 struct mempolicy *pol;
314
315 down_write(&oldmm->mmap_sem);
316 flush_cache_dup_mm(oldmm);
317 /*
318 * Not linked in yet - no deadlock potential:
319 */
320 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
321
322 mm->locked_vm = 0;
323 mm->mmap = NULL;
324 mm->mmap_cache = NULL;
325 mm->free_area_cache = oldmm->mmap_base;
326 mm->cached_hole_size = ~0UL;
327 mm->map_count = 0;
328 cpumask_clear(mm_cpumask(mm));
329 mm->mm_rb = RB_ROOT;
330 rb_link = &mm->mm_rb.rb_node;
331 rb_parent = NULL;
332 pprev = &mm->mmap;
333 retval = ksm_fork(mm, oldmm);
334 if (retval)
335 goto out;
336 retval = khugepaged_fork(mm, oldmm);
337 if (retval)
338 goto out;
339
340 prev = NULL;
341 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
342 struct file *file;
343
344 if (mpnt->vm_flags & VM_DONTCOPY) {
345 long pages = vma_pages(mpnt);
346 mm->total_vm -= pages;
347 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
348 -pages);
349 continue;
350 }
351 charge = 0;
352 if (mpnt->vm_flags & VM_ACCOUNT) {
353 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
354 if (security_vm_enough_memory(len))
355 goto fail_nomem;
356 charge = len;
357 }
358 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359 if (!tmp)
360 goto fail_nomem;
361 *tmp = *mpnt;
362 INIT_LIST_HEAD(&tmp->anon_vma_chain);
363 pol = mpol_dup(vma_policy(mpnt));
364 retval = PTR_ERR(pol);
365 if (IS_ERR(pol))
366 goto fail_nomem_policy;
367 vma_set_policy(tmp, pol);
368 tmp->vm_mm = mm;
369 if (anon_vma_fork(tmp, mpnt))
370 goto fail_nomem_anon_vma_fork;
371 tmp->vm_flags &= ~VM_LOCKED;
372 tmp->vm_next = tmp->vm_prev = NULL;
373 file = tmp->vm_file;
374 if (file) {
375 struct inode *inode = file->f_path.dentry->d_inode;
376 struct address_space *mapping = file->f_mapping;
377
378 get_file(file);
379 if (tmp->vm_flags & VM_DENYWRITE)
380 atomic_dec(&inode->i_writecount);
381 mutex_lock(&mapping->i_mmap_mutex);
382 if (tmp->vm_flags & VM_SHARED)
383 mapping->i_mmap_writable++;
384 flush_dcache_mmap_lock(mapping);
385 /* insert tmp into the share list, just after mpnt */
386 vma_prio_tree_add(tmp, mpnt);
387 flush_dcache_mmap_unlock(mapping);
388 mutex_unlock(&mapping->i_mmap_mutex);
389 }
390
391 /*
392 * Clear hugetlb-related page reserves for children. This only
393 * affects MAP_PRIVATE mappings. Faults generated by the child
394 * are not guaranteed to succeed, even if read-only
395 */
396 if (is_vm_hugetlb_page(tmp))
397 reset_vma_resv_huge_pages(tmp);
398
399 /*
400 * Link in the new vma and copy the page table entries.
401 */
402 *pprev = tmp;
403 pprev = &tmp->vm_next;
404 tmp->vm_prev = prev;
405 prev = tmp;
406
407 __vma_link_rb(mm, tmp, rb_link, rb_parent);
408 rb_link = &tmp->vm_rb.rb_right;
409 rb_parent = &tmp->vm_rb;
410
411 mm->map_count++;
412 retval = copy_page_range(mm, oldmm, mpnt);
413
414 if (tmp->vm_ops && tmp->vm_ops->open)
415 tmp->vm_ops->open(tmp);
416
417 if (retval)
418 goto out;
419 }
420 /* a new mm has just been created */
421 arch_dup_mmap(oldmm, mm);
422 retval = 0;
423 out:
424 up_write(&mm->mmap_sem);
425 flush_tlb_mm(oldmm);
426 up_write(&oldmm->mmap_sem);
427 return retval;
428 fail_nomem_anon_vma_fork:
429 mpol_put(pol);
430 fail_nomem_policy:
431 kmem_cache_free(vm_area_cachep, tmp);
432 fail_nomem:
433 retval = -ENOMEM;
434 vm_unacct_memory(charge);
435 goto out;
436 }
437
438 static inline int mm_alloc_pgd(struct mm_struct *mm)
439 {
440 mm->pgd = pgd_alloc(mm);
441 if (unlikely(!mm->pgd))
442 return -ENOMEM;
443 return 0;
444 }
445
446 static inline void mm_free_pgd(struct mm_struct *mm)
447 {
448 pgd_free(mm, mm->pgd);
449 }
450 #else
451 #define dup_mmap(mm, oldmm) (0)
452 #define mm_alloc_pgd(mm) (0)
453 #define mm_free_pgd(mm)
454 #endif /* CONFIG_MMU */
455
456 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
457
458 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
459 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
460
461 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
462
463 static int __init coredump_filter_setup(char *s)
464 {
465 default_dump_filter =
466 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
467 MMF_DUMP_FILTER_MASK;
468 return 1;
469 }
470
471 __setup("coredump_filter=", coredump_filter_setup);
472
473 #include <linux/init_task.h>
474
475 static void mm_init_aio(struct mm_struct *mm)
476 {
477 #ifdef CONFIG_AIO
478 spin_lock_init(&mm->ioctx_lock);
479 INIT_HLIST_HEAD(&mm->ioctx_list);
480 #endif
481 }
482
483 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
484 {
485 atomic_set(&mm->mm_users, 1);
486 atomic_set(&mm->mm_count, 1);
487 init_rwsem(&mm->mmap_sem);
488 INIT_LIST_HEAD(&mm->mmlist);
489 mm->flags = (current->mm) ?
490 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
491 mm->core_state = NULL;
492 mm->nr_ptes = 0;
493 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
494 spin_lock_init(&mm->page_table_lock);
495 mm->free_area_cache = TASK_UNMAPPED_BASE;
496 mm->cached_hole_size = ~0UL;
497 mm_init_aio(mm);
498 mm_init_owner(mm, p);
499
500 if (likely(!mm_alloc_pgd(mm))) {
501 mm->def_flags = 0;
502 mmu_notifier_mm_init(mm);
503 return mm;
504 }
505
506 free_mm(mm);
507 return NULL;
508 }
509
510 /*
511 * Allocate and initialize an mm_struct.
512 */
513 struct mm_struct *mm_alloc(void)
514 {
515 struct mm_struct *mm;
516
517 mm = allocate_mm();
518 if (!mm)
519 return NULL;
520
521 memset(mm, 0, sizeof(*mm));
522 mm_init_cpumask(mm);
523 return mm_init(mm, current);
524 }
525
526 /*
527 * Called when the last reference to the mm
528 * is dropped: either by a lazy thread or by
529 * mmput. Free the page directory and the mm.
530 */
531 void __mmdrop(struct mm_struct *mm)
532 {
533 BUG_ON(mm == &init_mm);
534 mm_free_pgd(mm);
535 destroy_context(mm);
536 mmu_notifier_mm_destroy(mm);
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 VM_BUG_ON(mm->pmd_huge_pte);
539 #endif
540 free_mm(mm);
541 }
542 EXPORT_SYMBOL_GPL(__mmdrop);
543
544 /*
545 * Decrement the use count and release all resources for an mm.
546 */
547 void mmput(struct mm_struct *mm)
548 {
549 might_sleep();
550
551 if (atomic_dec_and_test(&mm->mm_users)) {
552 exit_aio(mm);
553 ksm_exit(mm);
554 khugepaged_exit(mm); /* must run before exit_mmap */
555 exit_mmap(mm);
556 set_mm_exe_file(mm, NULL);
557 if (!list_empty(&mm->mmlist)) {
558 spin_lock(&mmlist_lock);
559 list_del(&mm->mmlist);
560 spin_unlock(&mmlist_lock);
561 }
562 put_swap_token(mm);
563 if (mm->binfmt)
564 module_put(mm->binfmt->module);
565 mmdrop(mm);
566 }
567 }
568 EXPORT_SYMBOL_GPL(mmput);
569
570 /*
571 * We added or removed a vma mapping the executable. The vmas are only mapped
572 * during exec and are not mapped with the mmap system call.
573 * Callers must hold down_write() on the mm's mmap_sem for these
574 */
575 void added_exe_file_vma(struct mm_struct *mm)
576 {
577 mm->num_exe_file_vmas++;
578 }
579
580 void removed_exe_file_vma(struct mm_struct *mm)
581 {
582 mm->num_exe_file_vmas--;
583 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
584 fput(mm->exe_file);
585 mm->exe_file = NULL;
586 }
587
588 }
589
590 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
591 {
592 if (new_exe_file)
593 get_file(new_exe_file);
594 if (mm->exe_file)
595 fput(mm->exe_file);
596 mm->exe_file = new_exe_file;
597 mm->num_exe_file_vmas = 0;
598 }
599
600 struct file *get_mm_exe_file(struct mm_struct *mm)
601 {
602 struct file *exe_file;
603
604 /* We need mmap_sem to protect against races with removal of
605 * VM_EXECUTABLE vmas */
606 down_read(&mm->mmap_sem);
607 exe_file = mm->exe_file;
608 if (exe_file)
609 get_file(exe_file);
610 up_read(&mm->mmap_sem);
611 return exe_file;
612 }
613
614 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
615 {
616 /* It's safe to write the exe_file pointer without exe_file_lock because
617 * this is called during fork when the task is not yet in /proc */
618 newmm->exe_file = get_mm_exe_file(oldmm);
619 }
620
621 /**
622 * get_task_mm - acquire a reference to the task's mm
623 *
624 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
625 * this kernel workthread has transiently adopted a user mm with use_mm,
626 * to do its AIO) is not set and if so returns a reference to it, after
627 * bumping up the use count. User must release the mm via mmput()
628 * after use. Typically used by /proc and ptrace.
629 */
630 struct mm_struct *get_task_mm(struct task_struct *task)
631 {
632 struct mm_struct *mm;
633
634 task_lock(task);
635 mm = task->mm;
636 if (mm) {
637 if (task->flags & PF_KTHREAD)
638 mm = NULL;
639 else
640 atomic_inc(&mm->mm_users);
641 }
642 task_unlock(task);
643 return mm;
644 }
645 EXPORT_SYMBOL_GPL(get_task_mm);
646
647 /* Please note the differences between mmput and mm_release.
648 * mmput is called whenever we stop holding onto a mm_struct,
649 * error success whatever.
650 *
651 * mm_release is called after a mm_struct has been removed
652 * from the current process.
653 *
654 * This difference is important for error handling, when we
655 * only half set up a mm_struct for a new process and need to restore
656 * the old one. Because we mmput the new mm_struct before
657 * restoring the old one. . .
658 * Eric Biederman 10 January 1998
659 */
660 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
661 {
662 struct completion *vfork_done = tsk->vfork_done;
663
664 /* Get rid of any futexes when releasing the mm */
665 #ifdef CONFIG_FUTEX
666 if (unlikely(tsk->robust_list)) {
667 exit_robust_list(tsk);
668 tsk->robust_list = NULL;
669 }
670 #ifdef CONFIG_COMPAT
671 if (unlikely(tsk->compat_robust_list)) {
672 compat_exit_robust_list(tsk);
673 tsk->compat_robust_list = NULL;
674 }
675 #endif
676 if (unlikely(!list_empty(&tsk->pi_state_list)))
677 exit_pi_state_list(tsk);
678 #endif
679
680 /* Get rid of any cached register state */
681 deactivate_mm(tsk, mm);
682
683 /* notify parent sleeping on vfork() */
684 if (vfork_done) {
685 tsk->vfork_done = NULL;
686 complete(vfork_done);
687 }
688
689 /*
690 * If we're exiting normally, clear a user-space tid field if
691 * requested. We leave this alone when dying by signal, to leave
692 * the value intact in a core dump, and to save the unnecessary
693 * trouble otherwise. Userland only wants this done for a sys_exit.
694 */
695 if (tsk->clear_child_tid) {
696 if (!(tsk->flags & PF_SIGNALED) &&
697 atomic_read(&mm->mm_users) > 1) {
698 /*
699 * We don't check the error code - if userspace has
700 * not set up a proper pointer then tough luck.
701 */
702 put_user(0, tsk->clear_child_tid);
703 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
704 1, NULL, NULL, 0);
705 }
706 tsk->clear_child_tid = NULL;
707 }
708 }
709
710 /*
711 * Allocate a new mm structure and copy contents from the
712 * mm structure of the passed in task structure.
713 */
714 struct mm_struct *dup_mm(struct task_struct *tsk)
715 {
716 struct mm_struct *mm, *oldmm = current->mm;
717 int err;
718
719 if (!oldmm)
720 return NULL;
721
722 mm = allocate_mm();
723 if (!mm)
724 goto fail_nomem;
725
726 memcpy(mm, oldmm, sizeof(*mm));
727 mm_init_cpumask(mm);
728
729 /* Initializing for Swap token stuff */
730 mm->token_priority = 0;
731 mm->last_interval = 0;
732
733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
734 mm->pmd_huge_pte = NULL;
735 #endif
736
737 if (!mm_init(mm, tsk))
738 goto fail_nomem;
739
740 if (init_new_context(tsk, mm))
741 goto fail_nocontext;
742
743 dup_mm_exe_file(oldmm, mm);
744
745 err = dup_mmap(mm, oldmm);
746 if (err)
747 goto free_pt;
748
749 mm->hiwater_rss = get_mm_rss(mm);
750 mm->hiwater_vm = mm->total_vm;
751
752 if (mm->binfmt && !try_module_get(mm->binfmt->module))
753 goto free_pt;
754
755 return mm;
756
757 free_pt:
758 /* don't put binfmt in mmput, we haven't got module yet */
759 mm->binfmt = NULL;
760 mmput(mm);
761
762 fail_nomem:
763 return NULL;
764
765 fail_nocontext:
766 /*
767 * If init_new_context() failed, we cannot use mmput() to free the mm
768 * because it calls destroy_context()
769 */
770 mm_free_pgd(mm);
771 free_mm(mm);
772 return NULL;
773 }
774
775 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
776 {
777 struct mm_struct *mm, *oldmm;
778 int retval;
779
780 tsk->min_flt = tsk->maj_flt = 0;
781 tsk->nvcsw = tsk->nivcsw = 0;
782 #ifdef CONFIG_DETECT_HUNG_TASK
783 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
784 #endif
785
786 tsk->mm = NULL;
787 tsk->active_mm = NULL;
788
789 /*
790 * Are we cloning a kernel thread?
791 *
792 * We need to steal a active VM for that..
793 */
794 oldmm = current->mm;
795 if (!oldmm)
796 return 0;
797
798 if (clone_flags & CLONE_VM) {
799 atomic_inc(&oldmm->mm_users);
800 mm = oldmm;
801 goto good_mm;
802 }
803
804 retval = -ENOMEM;
805 mm = dup_mm(tsk);
806 if (!mm)
807 goto fail_nomem;
808
809 good_mm:
810 /* Initializing for Swap token stuff */
811 mm->token_priority = 0;
812 mm->last_interval = 0;
813
814 tsk->mm = mm;
815 tsk->active_mm = mm;
816 return 0;
817
818 fail_nomem:
819 return retval;
820 }
821
822 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
823 {
824 struct fs_struct *fs = current->fs;
825 if (clone_flags & CLONE_FS) {
826 /* tsk->fs is already what we want */
827 spin_lock(&fs->lock);
828 if (fs->in_exec) {
829 spin_unlock(&fs->lock);
830 return -EAGAIN;
831 }
832 fs->users++;
833 spin_unlock(&fs->lock);
834 return 0;
835 }
836 tsk->fs = copy_fs_struct(fs);
837 if (!tsk->fs)
838 return -ENOMEM;
839 return 0;
840 }
841
842 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
843 {
844 struct files_struct *oldf, *newf;
845 int error = 0;
846
847 /*
848 * A background process may not have any files ...
849 */
850 oldf = current->files;
851 if (!oldf)
852 goto out;
853
854 if (clone_flags & CLONE_FILES) {
855 atomic_inc(&oldf->count);
856 goto out;
857 }
858
859 newf = dup_fd(oldf, &error);
860 if (!newf)
861 goto out;
862
863 tsk->files = newf;
864 error = 0;
865 out:
866 return error;
867 }
868
869 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
870 {
871 #ifdef CONFIG_BLOCK
872 struct io_context *ioc = current->io_context;
873
874 if (!ioc)
875 return 0;
876 /*
877 * Share io context with parent, if CLONE_IO is set
878 */
879 if (clone_flags & CLONE_IO) {
880 tsk->io_context = ioc_task_link(ioc);
881 if (unlikely(!tsk->io_context))
882 return -ENOMEM;
883 } else if (ioprio_valid(ioc->ioprio)) {
884 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
885 if (unlikely(!tsk->io_context))
886 return -ENOMEM;
887
888 tsk->io_context->ioprio = ioc->ioprio;
889 }
890 #endif
891 return 0;
892 }
893
894 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
895 {
896 struct sighand_struct *sig;
897
898 if (clone_flags & CLONE_SIGHAND) {
899 atomic_inc(&current->sighand->count);
900 return 0;
901 }
902 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
903 rcu_assign_pointer(tsk->sighand, sig);
904 if (!sig)
905 return -ENOMEM;
906 atomic_set(&sig->count, 1);
907 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
908 return 0;
909 }
910
911 void __cleanup_sighand(struct sighand_struct *sighand)
912 {
913 if (atomic_dec_and_test(&sighand->count))
914 kmem_cache_free(sighand_cachep, sighand);
915 }
916
917
918 /*
919 * Initialize POSIX timer handling for a thread group.
920 */
921 static void posix_cpu_timers_init_group(struct signal_struct *sig)
922 {
923 unsigned long cpu_limit;
924
925 /* Thread group counters. */
926 thread_group_cputime_init(sig);
927
928 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
929 if (cpu_limit != RLIM_INFINITY) {
930 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
931 sig->cputimer.running = 1;
932 }
933
934 /* The timer lists. */
935 INIT_LIST_HEAD(&sig->cpu_timers[0]);
936 INIT_LIST_HEAD(&sig->cpu_timers[1]);
937 INIT_LIST_HEAD(&sig->cpu_timers[2]);
938 }
939
940 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
941 {
942 struct signal_struct *sig;
943
944 if (clone_flags & CLONE_THREAD)
945 return 0;
946
947 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
948 tsk->signal = sig;
949 if (!sig)
950 return -ENOMEM;
951
952 sig->nr_threads = 1;
953 atomic_set(&sig->live, 1);
954 atomic_set(&sig->sigcnt, 1);
955 init_waitqueue_head(&sig->wait_chldexit);
956 if (clone_flags & CLONE_NEWPID)
957 sig->flags |= SIGNAL_UNKILLABLE;
958 sig->curr_target = tsk;
959 init_sigpending(&sig->shared_pending);
960 INIT_LIST_HEAD(&sig->posix_timers);
961
962 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
963 sig->real_timer.function = it_real_fn;
964
965 task_lock(current->group_leader);
966 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
967 task_unlock(current->group_leader);
968
969 posix_cpu_timers_init_group(sig);
970
971 tty_audit_fork(sig);
972 sched_autogroup_fork(sig);
973
974 #ifdef CONFIG_CGROUPS
975 init_rwsem(&sig->threadgroup_fork_lock);
976 #endif
977
978 sig->oom_adj = current->signal->oom_adj;
979 sig->oom_score_adj = current->signal->oom_score_adj;
980 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
981
982 mutex_init(&sig->cred_guard_mutex);
983
984 return 0;
985 }
986
987 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
988 {
989 unsigned long new_flags = p->flags;
990
991 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
992 new_flags |= PF_FORKNOEXEC;
993 new_flags |= PF_STARTING;
994 p->flags = new_flags;
995 clear_freeze_flag(p);
996 }
997
998 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
999 {
1000 current->clear_child_tid = tidptr;
1001
1002 return task_pid_vnr(current);
1003 }
1004
1005 static void rt_mutex_init_task(struct task_struct *p)
1006 {
1007 raw_spin_lock_init(&p->pi_lock);
1008 #ifdef CONFIG_RT_MUTEXES
1009 plist_head_init(&p->pi_waiters);
1010 p->pi_blocked_on = NULL;
1011 #endif
1012 }
1013
1014 #ifdef CONFIG_MM_OWNER
1015 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1016 {
1017 mm->owner = p;
1018 }
1019 #endif /* CONFIG_MM_OWNER */
1020
1021 /*
1022 * Initialize POSIX timer handling for a single task.
1023 */
1024 static void posix_cpu_timers_init(struct task_struct *tsk)
1025 {
1026 tsk->cputime_expires.prof_exp = 0;
1027 tsk->cputime_expires.virt_exp = 0;
1028 tsk->cputime_expires.sched_exp = 0;
1029 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1030 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1031 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1032 }
1033
1034 /*
1035 * This creates a new process as a copy of the old one,
1036 * but does not actually start it yet.
1037 *
1038 * It copies the registers, and all the appropriate
1039 * parts of the process environment (as per the clone
1040 * flags). The actual kick-off is left to the caller.
1041 */
1042 static struct task_struct *copy_process(unsigned long clone_flags,
1043 unsigned long stack_start,
1044 struct pt_regs *regs,
1045 unsigned long stack_size,
1046 int __user *child_tidptr,
1047 struct pid *pid,
1048 int trace)
1049 {
1050 int retval;
1051 struct task_struct *p;
1052 int cgroup_callbacks_done = 0;
1053
1054 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1055 return ERR_PTR(-EINVAL);
1056
1057 /*
1058 * Thread groups must share signals as well, and detached threads
1059 * can only be started up within the thread group.
1060 */
1061 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1062 return ERR_PTR(-EINVAL);
1063
1064 /*
1065 * Shared signal handlers imply shared VM. By way of the above,
1066 * thread groups also imply shared VM. Blocking this case allows
1067 * for various simplifications in other code.
1068 */
1069 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1070 return ERR_PTR(-EINVAL);
1071
1072 /*
1073 * Siblings of global init remain as zombies on exit since they are
1074 * not reaped by their parent (swapper). To solve this and to avoid
1075 * multi-rooted process trees, prevent global and container-inits
1076 * from creating siblings.
1077 */
1078 if ((clone_flags & CLONE_PARENT) &&
1079 current->signal->flags & SIGNAL_UNKILLABLE)
1080 return ERR_PTR(-EINVAL);
1081
1082 retval = security_task_create(clone_flags);
1083 if (retval)
1084 goto fork_out;
1085
1086 retval = -ENOMEM;
1087 p = dup_task_struct(current);
1088 if (!p)
1089 goto fork_out;
1090
1091 ftrace_graph_init_task(p);
1092
1093 rt_mutex_init_task(p);
1094
1095 #ifdef CONFIG_PROVE_LOCKING
1096 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1097 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1098 #endif
1099 retval = -EAGAIN;
1100 if (atomic_read(&p->real_cred->user->processes) >=
1101 task_rlimit(p, RLIMIT_NPROC)) {
1102 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1103 p->real_cred->user != INIT_USER)
1104 goto bad_fork_free;
1105 }
1106 current->flags &= ~PF_NPROC_EXCEEDED;
1107
1108 retval = copy_creds(p, clone_flags);
1109 if (retval < 0)
1110 goto bad_fork_free;
1111
1112 /*
1113 * If multiple threads are within copy_process(), then this check
1114 * triggers too late. This doesn't hurt, the check is only there
1115 * to stop root fork bombs.
1116 */
1117 retval = -EAGAIN;
1118 if (nr_threads >= max_threads)
1119 goto bad_fork_cleanup_count;
1120
1121 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1122 goto bad_fork_cleanup_count;
1123
1124 p->did_exec = 0;
1125 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1126 copy_flags(clone_flags, p);
1127 INIT_LIST_HEAD(&p->children);
1128 INIT_LIST_HEAD(&p->sibling);
1129 rcu_copy_process(p);
1130 p->vfork_done = NULL;
1131 spin_lock_init(&p->alloc_lock);
1132
1133 init_sigpending(&p->pending);
1134
1135 p->utime = p->stime = p->gtime = 0;
1136 p->utimescaled = p->stimescaled = 0;
1137 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1138 p->prev_utime = p->prev_stime = 0;
1139 #endif
1140 #if defined(SPLIT_RSS_COUNTING)
1141 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1142 #endif
1143
1144 p->default_timer_slack_ns = current->timer_slack_ns;
1145
1146 task_io_accounting_init(&p->ioac);
1147 acct_clear_integrals(p);
1148
1149 posix_cpu_timers_init(p);
1150
1151 do_posix_clock_monotonic_gettime(&p->start_time);
1152 p->real_start_time = p->start_time;
1153 monotonic_to_bootbased(&p->real_start_time);
1154 p->io_context = NULL;
1155 p->audit_context = NULL;
1156 if (clone_flags & CLONE_THREAD)
1157 threadgroup_fork_read_lock(current);
1158 cgroup_fork(p);
1159 #ifdef CONFIG_NUMA
1160 p->mempolicy = mpol_dup(p->mempolicy);
1161 if (IS_ERR(p->mempolicy)) {
1162 retval = PTR_ERR(p->mempolicy);
1163 p->mempolicy = NULL;
1164 goto bad_fork_cleanup_cgroup;
1165 }
1166 mpol_fix_fork_child_flag(p);
1167 #endif
1168 #ifdef CONFIG_CPUSETS
1169 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1170 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1171 #endif
1172 #ifdef CONFIG_TRACE_IRQFLAGS
1173 p->irq_events = 0;
1174 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1175 p->hardirqs_enabled = 1;
1176 #else
1177 p->hardirqs_enabled = 0;
1178 #endif
1179 p->hardirq_enable_ip = 0;
1180 p->hardirq_enable_event = 0;
1181 p->hardirq_disable_ip = _THIS_IP_;
1182 p->hardirq_disable_event = 0;
1183 p->softirqs_enabled = 1;
1184 p->softirq_enable_ip = _THIS_IP_;
1185 p->softirq_enable_event = 0;
1186 p->softirq_disable_ip = 0;
1187 p->softirq_disable_event = 0;
1188 p->hardirq_context = 0;
1189 p->softirq_context = 0;
1190 #endif
1191 #ifdef CONFIG_LOCKDEP
1192 p->lockdep_depth = 0; /* no locks held yet */
1193 p->curr_chain_key = 0;
1194 p->lockdep_recursion = 0;
1195 #endif
1196
1197 #ifdef CONFIG_DEBUG_MUTEXES
1198 p->blocked_on = NULL; /* not blocked yet */
1199 #endif
1200 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1201 p->memcg_batch.do_batch = 0;
1202 p->memcg_batch.memcg = NULL;
1203 #endif
1204
1205 /* Perform scheduler related setup. Assign this task to a CPU. */
1206 sched_fork(p);
1207
1208 retval = perf_event_init_task(p);
1209 if (retval)
1210 goto bad_fork_cleanup_policy;
1211 retval = audit_alloc(p);
1212 if (retval)
1213 goto bad_fork_cleanup_policy;
1214 /* copy all the process information */
1215 retval = copy_semundo(clone_flags, p);
1216 if (retval)
1217 goto bad_fork_cleanup_audit;
1218 retval = copy_files(clone_flags, p);
1219 if (retval)
1220 goto bad_fork_cleanup_semundo;
1221 retval = copy_fs(clone_flags, p);
1222 if (retval)
1223 goto bad_fork_cleanup_files;
1224 retval = copy_sighand(clone_flags, p);
1225 if (retval)
1226 goto bad_fork_cleanup_fs;
1227 retval = copy_signal(clone_flags, p);
1228 if (retval)
1229 goto bad_fork_cleanup_sighand;
1230 retval = copy_mm(clone_flags, p);
1231 if (retval)
1232 goto bad_fork_cleanup_signal;
1233 retval = copy_namespaces(clone_flags, p);
1234 if (retval)
1235 goto bad_fork_cleanup_mm;
1236 retval = copy_io(clone_flags, p);
1237 if (retval)
1238 goto bad_fork_cleanup_namespaces;
1239 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1240 if (retval)
1241 goto bad_fork_cleanup_io;
1242
1243 if (pid != &init_struct_pid) {
1244 retval = -ENOMEM;
1245 pid = alloc_pid(p->nsproxy->pid_ns);
1246 if (!pid)
1247 goto bad_fork_cleanup_io;
1248 }
1249
1250 p->pid = pid_nr(pid);
1251 p->tgid = p->pid;
1252 if (clone_flags & CLONE_THREAD)
1253 p->tgid = current->tgid;
1254
1255 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1256 /*
1257 * Clear TID on mm_release()?
1258 */
1259 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1260 #ifdef CONFIG_BLOCK
1261 p->plug = NULL;
1262 #endif
1263 #ifdef CONFIG_FUTEX
1264 p->robust_list = NULL;
1265 #ifdef CONFIG_COMPAT
1266 p->compat_robust_list = NULL;
1267 #endif
1268 INIT_LIST_HEAD(&p->pi_state_list);
1269 p->pi_state_cache = NULL;
1270 #endif
1271 /*
1272 * sigaltstack should be cleared when sharing the same VM
1273 */
1274 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1275 p->sas_ss_sp = p->sas_ss_size = 0;
1276
1277 /*
1278 * Syscall tracing and stepping should be turned off in the
1279 * child regardless of CLONE_PTRACE.
1280 */
1281 user_disable_single_step(p);
1282 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1283 #ifdef TIF_SYSCALL_EMU
1284 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1285 #endif
1286 clear_all_latency_tracing(p);
1287
1288 /* ok, now we should be set up.. */
1289 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1290 p->pdeath_signal = 0;
1291 p->exit_state = 0;
1292
1293 p->nr_dirtied = 0;
1294 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1295
1296 /*
1297 * Ok, make it visible to the rest of the system.
1298 * We dont wake it up yet.
1299 */
1300 p->group_leader = p;
1301 INIT_LIST_HEAD(&p->thread_group);
1302
1303 /* Now that the task is set up, run cgroup callbacks if
1304 * necessary. We need to run them before the task is visible
1305 * on the tasklist. */
1306 cgroup_fork_callbacks(p);
1307 cgroup_callbacks_done = 1;
1308
1309 /* Need tasklist lock for parent etc handling! */
1310 write_lock_irq(&tasklist_lock);
1311
1312 /* CLONE_PARENT re-uses the old parent */
1313 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1314 p->real_parent = current->real_parent;
1315 p->parent_exec_id = current->parent_exec_id;
1316 } else {
1317 p->real_parent = current;
1318 p->parent_exec_id = current->self_exec_id;
1319 }
1320
1321 spin_lock(&current->sighand->siglock);
1322
1323 /*
1324 * Process group and session signals need to be delivered to just the
1325 * parent before the fork or both the parent and the child after the
1326 * fork. Restart if a signal comes in before we add the new process to
1327 * it's process group.
1328 * A fatal signal pending means that current will exit, so the new
1329 * thread can't slip out of an OOM kill (or normal SIGKILL).
1330 */
1331 recalc_sigpending();
1332 if (signal_pending(current)) {
1333 spin_unlock(&current->sighand->siglock);
1334 write_unlock_irq(&tasklist_lock);
1335 retval = -ERESTARTNOINTR;
1336 goto bad_fork_free_pid;
1337 }
1338
1339 if (clone_flags & CLONE_THREAD) {
1340 current->signal->nr_threads++;
1341 atomic_inc(&current->signal->live);
1342 atomic_inc(&current->signal->sigcnt);
1343 p->group_leader = current->group_leader;
1344 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1345 }
1346
1347 if (likely(p->pid)) {
1348 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1349
1350 if (thread_group_leader(p)) {
1351 if (is_child_reaper(pid))
1352 p->nsproxy->pid_ns->child_reaper = p;
1353
1354 p->signal->leader_pid = pid;
1355 p->signal->tty = tty_kref_get(current->signal->tty);
1356 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1357 attach_pid(p, PIDTYPE_SID, task_session(current));
1358 list_add_tail(&p->sibling, &p->real_parent->children);
1359 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1360 __this_cpu_inc(process_counts);
1361 }
1362 attach_pid(p, PIDTYPE_PID, pid);
1363 nr_threads++;
1364 }
1365
1366 total_forks++;
1367 spin_unlock(&current->sighand->siglock);
1368 write_unlock_irq(&tasklist_lock);
1369 proc_fork_connector(p);
1370 cgroup_post_fork(p);
1371 if (clone_flags & CLONE_THREAD)
1372 threadgroup_fork_read_unlock(current);
1373 perf_event_fork(p);
1374 return p;
1375
1376 bad_fork_free_pid:
1377 if (pid != &init_struct_pid)
1378 free_pid(pid);
1379 bad_fork_cleanup_io:
1380 if (p->io_context)
1381 exit_io_context(p);
1382 bad_fork_cleanup_namespaces:
1383 exit_task_namespaces(p);
1384 bad_fork_cleanup_mm:
1385 if (p->mm)
1386 mmput(p->mm);
1387 bad_fork_cleanup_signal:
1388 if (!(clone_flags & CLONE_THREAD))
1389 free_signal_struct(p->signal);
1390 bad_fork_cleanup_sighand:
1391 __cleanup_sighand(p->sighand);
1392 bad_fork_cleanup_fs:
1393 exit_fs(p); /* blocking */
1394 bad_fork_cleanup_files:
1395 exit_files(p); /* blocking */
1396 bad_fork_cleanup_semundo:
1397 exit_sem(p);
1398 bad_fork_cleanup_audit:
1399 audit_free(p);
1400 bad_fork_cleanup_policy:
1401 perf_event_free_task(p);
1402 #ifdef CONFIG_NUMA
1403 mpol_put(p->mempolicy);
1404 bad_fork_cleanup_cgroup:
1405 #endif
1406 if (clone_flags & CLONE_THREAD)
1407 threadgroup_fork_read_unlock(current);
1408 cgroup_exit(p, cgroup_callbacks_done);
1409 delayacct_tsk_free(p);
1410 module_put(task_thread_info(p)->exec_domain->module);
1411 bad_fork_cleanup_count:
1412 atomic_dec(&p->cred->user->processes);
1413 exit_creds(p);
1414 bad_fork_free:
1415 free_task(p);
1416 fork_out:
1417 return ERR_PTR(retval);
1418 }
1419
1420 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1421 {
1422 memset(regs, 0, sizeof(struct pt_regs));
1423 return regs;
1424 }
1425
1426 static inline void init_idle_pids(struct pid_link *links)
1427 {
1428 enum pid_type type;
1429
1430 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1431 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1432 links[type].pid = &init_struct_pid;
1433 }
1434 }
1435
1436 struct task_struct * __cpuinit fork_idle(int cpu)
1437 {
1438 struct task_struct *task;
1439 struct pt_regs regs;
1440
1441 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1442 &init_struct_pid, 0);
1443 if (!IS_ERR(task)) {
1444 init_idle_pids(task->pids);
1445 init_idle(task, cpu);
1446 }
1447
1448 return task;
1449 }
1450
1451 /*
1452 * Ok, this is the main fork-routine.
1453 *
1454 * It copies the process, and if successful kick-starts
1455 * it and waits for it to finish using the VM if required.
1456 */
1457 long do_fork(unsigned long clone_flags,
1458 unsigned long stack_start,
1459 struct pt_regs *regs,
1460 unsigned long stack_size,
1461 int __user *parent_tidptr,
1462 int __user *child_tidptr)
1463 {
1464 struct task_struct *p;
1465 int trace = 0;
1466 long nr;
1467
1468 /*
1469 * Do some preliminary argument and permissions checking before we
1470 * actually start allocating stuff
1471 */
1472 if (clone_flags & CLONE_NEWUSER) {
1473 if (clone_flags & CLONE_THREAD)
1474 return -EINVAL;
1475 /* hopefully this check will go away when userns support is
1476 * complete
1477 */
1478 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1479 !capable(CAP_SETGID))
1480 return -EPERM;
1481 }
1482
1483 /*
1484 * Determine whether and which event to report to ptracer. When
1485 * called from kernel_thread or CLONE_UNTRACED is explicitly
1486 * requested, no event is reported; otherwise, report if the event
1487 * for the type of forking is enabled.
1488 */
1489 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1490 if (clone_flags & CLONE_VFORK)
1491 trace = PTRACE_EVENT_VFORK;
1492 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1493 trace = PTRACE_EVENT_CLONE;
1494 else
1495 trace = PTRACE_EVENT_FORK;
1496
1497 if (likely(!ptrace_event_enabled(current, trace)))
1498 trace = 0;
1499 }
1500
1501 p = copy_process(clone_flags, stack_start, regs, stack_size,
1502 child_tidptr, NULL, trace);
1503 /*
1504 * Do this prior waking up the new thread - the thread pointer
1505 * might get invalid after that point, if the thread exits quickly.
1506 */
1507 if (!IS_ERR(p)) {
1508 struct completion vfork;
1509
1510 trace_sched_process_fork(current, p);
1511
1512 nr = task_pid_vnr(p);
1513
1514 if (clone_flags & CLONE_PARENT_SETTID)
1515 put_user(nr, parent_tidptr);
1516
1517 if (clone_flags & CLONE_VFORK) {
1518 p->vfork_done = &vfork;
1519 init_completion(&vfork);
1520 }
1521
1522 audit_finish_fork(p);
1523
1524 /*
1525 * We set PF_STARTING at creation in case tracing wants to
1526 * use this to distinguish a fully live task from one that
1527 * hasn't finished SIGSTOP raising yet. Now we clear it
1528 * and set the child going.
1529 */
1530 p->flags &= ~PF_STARTING;
1531
1532 wake_up_new_task(p);
1533
1534 /* forking complete and child started to run, tell ptracer */
1535 if (unlikely(trace))
1536 ptrace_event(trace, nr);
1537
1538 if (clone_flags & CLONE_VFORK) {
1539 freezer_do_not_count();
1540 wait_for_completion(&vfork);
1541 freezer_count();
1542 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1543 }
1544 } else {
1545 nr = PTR_ERR(p);
1546 }
1547 return nr;
1548 }
1549
1550 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1551 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1552 #endif
1553
1554 static void sighand_ctor(void *data)
1555 {
1556 struct sighand_struct *sighand = data;
1557
1558 spin_lock_init(&sighand->siglock);
1559 init_waitqueue_head(&sighand->signalfd_wqh);
1560 }
1561
1562 void __init proc_caches_init(void)
1563 {
1564 sighand_cachep = kmem_cache_create("sighand_cache",
1565 sizeof(struct sighand_struct), 0,
1566 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1567 SLAB_NOTRACK, sighand_ctor);
1568 signal_cachep = kmem_cache_create("signal_cache",
1569 sizeof(struct signal_struct), 0,
1570 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1571 files_cachep = kmem_cache_create("files_cache",
1572 sizeof(struct files_struct), 0,
1573 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1574 fs_cachep = kmem_cache_create("fs_cache",
1575 sizeof(struct fs_struct), 0,
1576 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1577 /*
1578 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1579 * whole struct cpumask for the OFFSTACK case. We could change
1580 * this to *only* allocate as much of it as required by the
1581 * maximum number of CPU's we can ever have. The cpumask_allocation
1582 * is at the end of the structure, exactly for that reason.
1583 */
1584 mm_cachep = kmem_cache_create("mm_struct",
1585 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1586 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1587 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1588 mmap_init();
1589 nsproxy_cache_init();
1590 }
1591
1592 /*
1593 * Check constraints on flags passed to the unshare system call.
1594 */
1595 static int check_unshare_flags(unsigned long unshare_flags)
1596 {
1597 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1598 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1599 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1600 return -EINVAL;
1601 /*
1602 * Not implemented, but pretend it works if there is nothing to
1603 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1604 * needs to unshare vm.
1605 */
1606 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1607 /* FIXME: get_task_mm() increments ->mm_users */
1608 if (atomic_read(&current->mm->mm_users) > 1)
1609 return -EINVAL;
1610 }
1611
1612 return 0;
1613 }
1614
1615 /*
1616 * Unshare the filesystem structure if it is being shared
1617 */
1618 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1619 {
1620 struct fs_struct *fs = current->fs;
1621
1622 if (!(unshare_flags & CLONE_FS) || !fs)
1623 return 0;
1624
1625 /* don't need lock here; in the worst case we'll do useless copy */
1626 if (fs->users == 1)
1627 return 0;
1628
1629 *new_fsp = copy_fs_struct(fs);
1630 if (!*new_fsp)
1631 return -ENOMEM;
1632
1633 return 0;
1634 }
1635
1636 /*
1637 * Unshare file descriptor table if it is being shared
1638 */
1639 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1640 {
1641 struct files_struct *fd = current->files;
1642 int error = 0;
1643
1644 if ((unshare_flags & CLONE_FILES) &&
1645 (fd && atomic_read(&fd->count) > 1)) {
1646 *new_fdp = dup_fd(fd, &error);
1647 if (!*new_fdp)
1648 return error;
1649 }
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * unshare allows a process to 'unshare' part of the process
1656 * context which was originally shared using clone. copy_*
1657 * functions used by do_fork() cannot be used here directly
1658 * because they modify an inactive task_struct that is being
1659 * constructed. Here we are modifying the current, active,
1660 * task_struct.
1661 */
1662 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1663 {
1664 struct fs_struct *fs, *new_fs = NULL;
1665 struct files_struct *fd, *new_fd = NULL;
1666 struct nsproxy *new_nsproxy = NULL;
1667 int do_sysvsem = 0;
1668 int err;
1669
1670 err = check_unshare_flags(unshare_flags);
1671 if (err)
1672 goto bad_unshare_out;
1673
1674 /*
1675 * If unsharing namespace, must also unshare filesystem information.
1676 */
1677 if (unshare_flags & CLONE_NEWNS)
1678 unshare_flags |= CLONE_FS;
1679 /*
1680 * CLONE_NEWIPC must also detach from the undolist: after switching
1681 * to a new ipc namespace, the semaphore arrays from the old
1682 * namespace are unreachable.
1683 */
1684 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1685 do_sysvsem = 1;
1686 err = unshare_fs(unshare_flags, &new_fs);
1687 if (err)
1688 goto bad_unshare_out;
1689 err = unshare_fd(unshare_flags, &new_fd);
1690 if (err)
1691 goto bad_unshare_cleanup_fs;
1692 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1693 if (err)
1694 goto bad_unshare_cleanup_fd;
1695
1696 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1697 if (do_sysvsem) {
1698 /*
1699 * CLONE_SYSVSEM is equivalent to sys_exit().
1700 */
1701 exit_sem(current);
1702 }
1703
1704 if (new_nsproxy) {
1705 switch_task_namespaces(current, new_nsproxy);
1706 new_nsproxy = NULL;
1707 }
1708
1709 task_lock(current);
1710
1711 if (new_fs) {
1712 fs = current->fs;
1713 spin_lock(&fs->lock);
1714 current->fs = new_fs;
1715 if (--fs->users)
1716 new_fs = NULL;
1717 else
1718 new_fs = fs;
1719 spin_unlock(&fs->lock);
1720 }
1721
1722 if (new_fd) {
1723 fd = current->files;
1724 current->files = new_fd;
1725 new_fd = fd;
1726 }
1727
1728 task_unlock(current);
1729 }
1730
1731 if (new_nsproxy)
1732 put_nsproxy(new_nsproxy);
1733
1734 bad_unshare_cleanup_fd:
1735 if (new_fd)
1736 put_files_struct(new_fd);
1737
1738 bad_unshare_cleanup_fs:
1739 if (new_fs)
1740 free_fs_struct(new_fs);
1741
1742 bad_unshare_out:
1743 return err;
1744 }
1745
1746 /*
1747 * Helper to unshare the files of the current task.
1748 * We don't want to expose copy_files internals to
1749 * the exec layer of the kernel.
1750 */
1751
1752 int unshare_files(struct files_struct **displaced)
1753 {
1754 struct task_struct *task = current;
1755 struct files_struct *copy = NULL;
1756 int error;
1757
1758 error = unshare_fd(CLONE_FILES, &copy);
1759 if (error || !copy) {
1760 *displaced = NULL;
1761 return error;
1762 }
1763 *displaced = task->files;
1764 task_lock(task);
1765 task->files = copy;
1766 task_unlock(task);
1767 return 0;
1768 }
This page took 0.065992 seconds and 6 git commands to generate.