Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 /*
81 * Protected counters by write_lock_irq(&tasklist_lock)
82 */
83 unsigned long total_forks; /* Handle normal Linux uptimes. */
84 int nr_threads; /* The idle threads do not count.. */
85
86 int max_threads; /* tunable limit on nr_threads */
87
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
91
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
94 {
95 return lockdep_is_held(&tasklist_lock);
96 }
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
99
100 int nr_processes(void)
101 {
102 int cpu;
103 int total = 0;
104
105 for_each_possible_cpu(cpu)
106 total += per_cpu(process_counts, cpu);
107
108 return total;
109 }
110
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct_node(node) \
113 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
114 # define free_task_struct(tsk) \
115 kmem_cache_free(task_struct_cachep, (tsk))
116 static struct kmem_cache *task_struct_cachep;
117 #endif
118
119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
121 int node)
122 {
123 #ifdef CONFIG_DEBUG_STACK_USAGE
124 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 #else
126 gfp_t mask = GFP_KERNEL;
127 #endif
128 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129
130 return page ? page_address(page) : NULL;
131 }
132
133 static inline void free_thread_info(struct thread_info *ti)
134 {
135 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136 }
137 #endif
138
139 /* SLAB cache for signal_struct structures (tsk->signal) */
140 static struct kmem_cache *signal_cachep;
141
142 /* SLAB cache for sighand_struct structures (tsk->sighand) */
143 struct kmem_cache *sighand_cachep;
144
145 /* SLAB cache for files_struct structures (tsk->files) */
146 struct kmem_cache *files_cachep;
147
148 /* SLAB cache for fs_struct structures (tsk->fs) */
149 struct kmem_cache *fs_cachep;
150
151 /* SLAB cache for vm_area_struct structures */
152 struct kmem_cache *vm_area_cachep;
153
154 /* SLAB cache for mm_struct structures (tsk->mm) */
155 static struct kmem_cache *mm_cachep;
156
157 static void account_kernel_stack(struct thread_info *ti, int account)
158 {
159 struct zone *zone = page_zone(virt_to_page(ti));
160
161 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
162 }
163
164 void free_task(struct task_struct *tsk)
165 {
166 prop_local_destroy_single(&tsk->dirties);
167 account_kernel_stack(tsk->stack, -1);
168 free_thread_info(tsk->stack);
169 rt_mutex_debug_task_free(tsk);
170 ftrace_graph_exit_task(tsk);
171 free_task_struct(tsk);
172 }
173 EXPORT_SYMBOL(free_task);
174
175 static inline void free_signal_struct(struct signal_struct *sig)
176 {
177 taskstats_tgid_free(sig);
178 sched_autogroup_exit(sig);
179 kmem_cache_free(signal_cachep, sig);
180 }
181
182 static inline void put_signal_struct(struct signal_struct *sig)
183 {
184 if (atomic_dec_and_test(&sig->sigcnt))
185 free_signal_struct(sig);
186 }
187
188 void __put_task_struct(struct task_struct *tsk)
189 {
190 WARN_ON(!tsk->exit_state);
191 WARN_ON(atomic_read(&tsk->usage));
192 WARN_ON(tsk == current);
193
194 exit_creds(tsk);
195 delayacct_tsk_free(tsk);
196 put_signal_struct(tsk->signal);
197
198 if (!profile_handoff_task(tsk))
199 free_task(tsk);
200 }
201 EXPORT_SYMBOL_GPL(__put_task_struct);
202
203 /*
204 * macro override instead of weak attribute alias, to workaround
205 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206 */
207 #ifndef arch_task_cache_init
208 #define arch_task_cache_init()
209 #endif
210
211 void __init fork_init(unsigned long mempages)
212 {
213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
214 #ifndef ARCH_MIN_TASKALIGN
215 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
216 #endif
217 /* create a slab on which task_structs can be allocated */
218 task_struct_cachep =
219 kmem_cache_create("task_struct", sizeof(struct task_struct),
220 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221 #endif
222
223 /* do the arch specific task caches init */
224 arch_task_cache_init();
225
226 /*
227 * The default maximum number of threads is set to a safe
228 * value: the thread structures can take up at most half
229 * of memory.
230 */
231 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
232
233 /*
234 * we need to allow at least 20 threads to boot a system
235 */
236 if(max_threads < 20)
237 max_threads = 20;
238
239 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
240 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
241 init_task.signal->rlim[RLIMIT_SIGPENDING] =
242 init_task.signal->rlim[RLIMIT_NPROC];
243 }
244
245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
246 struct task_struct *src)
247 {
248 *dst = *src;
249 return 0;
250 }
251
252 static struct task_struct *dup_task_struct(struct task_struct *orig)
253 {
254 struct task_struct *tsk;
255 struct thread_info *ti;
256 unsigned long *stackend;
257 int node = tsk_fork_get_node(orig);
258 int err;
259
260 prepare_to_copy(orig);
261
262 tsk = alloc_task_struct_node(node);
263 if (!tsk)
264 return NULL;
265
266 ti = alloc_thread_info_node(tsk, node);
267 if (!ti) {
268 free_task_struct(tsk);
269 return NULL;
270 }
271
272 err = arch_dup_task_struct(tsk, orig);
273 if (err)
274 goto out;
275
276 tsk->stack = ti;
277
278 err = prop_local_init_single(&tsk->dirties);
279 if (err)
280 goto out;
281
282 setup_thread_stack(tsk, orig);
283 clear_user_return_notifier(tsk);
284 clear_tsk_need_resched(tsk);
285 stackend = end_of_stack(tsk);
286 *stackend = STACK_END_MAGIC; /* for overflow detection */
287
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 tsk->stack_canary = get_random_int();
290 #endif
291
292 /* One for us, one for whoever does the "release_task()" (usually parent) */
293 atomic_set(&tsk->usage,2);
294 atomic_set(&tsk->fs_excl, 0);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296 tsk->btrace_seq = 0;
297 #endif
298 tsk->splice_pipe = NULL;
299
300 account_kernel_stack(ti, 1);
301
302 return tsk;
303
304 out:
305 free_thread_info(ti);
306 free_task_struct(tsk);
307 return NULL;
308 }
309
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314 struct rb_node **rb_link, *rb_parent;
315 int retval;
316 unsigned long charge;
317 struct mempolicy *pol;
318
319 down_write(&oldmm->mmap_sem);
320 flush_cache_dup_mm(oldmm);
321 /*
322 * Not linked in yet - no deadlock potential:
323 */
324 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325
326 mm->locked_vm = 0;
327 mm->mmap = NULL;
328 mm->mmap_cache = NULL;
329 mm->free_area_cache = oldmm->mmap_base;
330 mm->cached_hole_size = ~0UL;
331 mm->map_count = 0;
332 cpumask_clear(mm_cpumask(mm));
333 mm->mm_rb = RB_ROOT;
334 rb_link = &mm->mm_rb.rb_node;
335 rb_parent = NULL;
336 pprev = &mm->mmap;
337 retval = ksm_fork(mm, oldmm);
338 if (retval)
339 goto out;
340 retval = khugepaged_fork(mm, oldmm);
341 if (retval)
342 goto out;
343
344 prev = NULL;
345 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346 struct file *file;
347
348 if (mpnt->vm_flags & VM_DONTCOPY) {
349 long pages = vma_pages(mpnt);
350 mm->total_vm -= pages;
351 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 -pages);
353 continue;
354 }
355 charge = 0;
356 if (mpnt->vm_flags & VM_ACCOUNT) {
357 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358 if (security_vm_enough_memory(len))
359 goto fail_nomem;
360 charge = len;
361 }
362 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 if (!tmp)
364 goto fail_nomem;
365 *tmp = *mpnt;
366 INIT_LIST_HEAD(&tmp->anon_vma_chain);
367 pol = mpol_dup(vma_policy(mpnt));
368 retval = PTR_ERR(pol);
369 if (IS_ERR(pol))
370 goto fail_nomem_policy;
371 vma_set_policy(tmp, pol);
372 tmp->vm_mm = mm;
373 if (anon_vma_fork(tmp, mpnt))
374 goto fail_nomem_anon_vma_fork;
375 tmp->vm_flags &= ~VM_LOCKED;
376 tmp->vm_next = tmp->vm_prev = NULL;
377 file = tmp->vm_file;
378 if (file) {
379 struct inode *inode = file->f_path.dentry->d_inode;
380 struct address_space *mapping = file->f_mapping;
381
382 get_file(file);
383 if (tmp->vm_flags & VM_DENYWRITE)
384 atomic_dec(&inode->i_writecount);
385 mutex_lock(&mapping->i_mmap_mutex);
386 if (tmp->vm_flags & VM_SHARED)
387 mapping->i_mmap_writable++;
388 flush_dcache_mmap_lock(mapping);
389 /* insert tmp into the share list, just after mpnt */
390 vma_prio_tree_add(tmp, mpnt);
391 flush_dcache_mmap_unlock(mapping);
392 mutex_unlock(&mapping->i_mmap_mutex);
393 }
394
395 /*
396 * Clear hugetlb-related page reserves for children. This only
397 * affects MAP_PRIVATE mappings. Faults generated by the child
398 * are not guaranteed to succeed, even if read-only
399 */
400 if (is_vm_hugetlb_page(tmp))
401 reset_vma_resv_huge_pages(tmp);
402
403 /*
404 * Link in the new vma and copy the page table entries.
405 */
406 *pprev = tmp;
407 pprev = &tmp->vm_next;
408 tmp->vm_prev = prev;
409 prev = tmp;
410
411 __vma_link_rb(mm, tmp, rb_link, rb_parent);
412 rb_link = &tmp->vm_rb.rb_right;
413 rb_parent = &tmp->vm_rb;
414
415 mm->map_count++;
416 retval = copy_page_range(mm, oldmm, mpnt);
417
418 if (tmp->vm_ops && tmp->vm_ops->open)
419 tmp->vm_ops->open(tmp);
420
421 if (retval)
422 goto out;
423 }
424 /* a new mm has just been created */
425 arch_dup_mmap(oldmm, mm);
426 retval = 0;
427 out:
428 up_write(&mm->mmap_sem);
429 flush_tlb_mm(oldmm);
430 up_write(&oldmm->mmap_sem);
431 return retval;
432 fail_nomem_anon_vma_fork:
433 mpol_put(pol);
434 fail_nomem_policy:
435 kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437 retval = -ENOMEM;
438 vm_unacct_memory(charge);
439 goto out;
440 }
441
442 static inline int mm_alloc_pgd(struct mm_struct * mm)
443 {
444 mm->pgd = pgd_alloc(mm);
445 if (unlikely(!mm->pgd))
446 return -ENOMEM;
447 return 0;
448 }
449
450 static inline void mm_free_pgd(struct mm_struct * mm)
451 {
452 pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm) (0)
456 #define mm_alloc_pgd(mm) (0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461
462 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
464
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466
467 static int __init coredump_filter_setup(char *s)
468 {
469 default_dump_filter =
470 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471 MMF_DUMP_FILTER_MASK;
472 return 1;
473 }
474
475 __setup("coredump_filter=", coredump_filter_setup);
476
477 #include <linux/init_task.h>
478
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482 spin_lock_init(&mm->ioctx_lock);
483 INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486
487 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
488 {
489 atomic_set(&mm->mm_users, 1);
490 atomic_set(&mm->mm_count, 1);
491 init_rwsem(&mm->mmap_sem);
492 INIT_LIST_HEAD(&mm->mmlist);
493 mm->flags = (current->mm) ?
494 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495 mm->core_state = NULL;
496 mm->nr_ptes = 0;
497 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498 spin_lock_init(&mm->page_table_lock);
499 mm->free_area_cache = TASK_UNMAPPED_BASE;
500 mm->cached_hole_size = ~0UL;
501 mm_init_aio(mm);
502 mm_init_owner(mm, p);
503 atomic_set(&mm->oom_disable_count, 0);
504
505 if (likely(!mm_alloc_pgd(mm))) {
506 mm->def_flags = 0;
507 mmu_notifier_mm_init(mm);
508 return mm;
509 }
510
511 free_mm(mm);
512 return NULL;
513 }
514
515 /*
516 * Allocate and initialize an mm_struct.
517 */
518 struct mm_struct * mm_alloc(void)
519 {
520 struct mm_struct * mm;
521
522 mm = allocate_mm();
523 if (!mm)
524 return NULL;
525
526 memset(mm, 0, sizeof(*mm));
527 mm_init_cpumask(mm);
528 return mm_init(mm, current);
529 }
530
531 /*
532 * Called when the last reference to the mm
533 * is dropped: either by a lazy thread or by
534 * mmput. Free the page directory and the mm.
535 */
536 void __mmdrop(struct mm_struct *mm)
537 {
538 BUG_ON(mm == &init_mm);
539 mm_free_pgd(mm);
540 destroy_context(mm);
541 mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545 free_mm(mm);
546 }
547 EXPORT_SYMBOL_GPL(__mmdrop);
548
549 /*
550 * Decrement the use count and release all resources for an mm.
551 */
552 void mmput(struct mm_struct *mm)
553 {
554 might_sleep();
555
556 if (atomic_dec_and_test(&mm->mm_users)) {
557 exit_aio(mm);
558 ksm_exit(mm);
559 khugepaged_exit(mm); /* must run before exit_mmap */
560 exit_mmap(mm);
561 set_mm_exe_file(mm, NULL);
562 if (!list_empty(&mm->mmlist)) {
563 spin_lock(&mmlist_lock);
564 list_del(&mm->mmlist);
565 spin_unlock(&mmlist_lock);
566 }
567 put_swap_token(mm);
568 if (mm->binfmt)
569 module_put(mm->binfmt->module);
570 mmdrop(mm);
571 }
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574
575 /*
576 * We added or removed a vma mapping the executable. The vmas are only mapped
577 * during exec and are not mapped with the mmap system call.
578 * Callers must hold down_write() on the mm's mmap_sem for these
579 */
580 void added_exe_file_vma(struct mm_struct *mm)
581 {
582 mm->num_exe_file_vmas++;
583 }
584
585 void removed_exe_file_vma(struct mm_struct *mm)
586 {
587 mm->num_exe_file_vmas--;
588 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
589 fput(mm->exe_file);
590 mm->exe_file = NULL;
591 }
592
593 }
594
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 {
597 if (new_exe_file)
598 get_file(new_exe_file);
599 if (mm->exe_file)
600 fput(mm->exe_file);
601 mm->exe_file = new_exe_file;
602 mm->num_exe_file_vmas = 0;
603 }
604
605 struct file *get_mm_exe_file(struct mm_struct *mm)
606 {
607 struct file *exe_file;
608
609 /* We need mmap_sem to protect against races with removal of
610 * VM_EXECUTABLE vmas */
611 down_read(&mm->mmap_sem);
612 exe_file = mm->exe_file;
613 if (exe_file)
614 get_file(exe_file);
615 up_read(&mm->mmap_sem);
616 return exe_file;
617 }
618
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 {
621 /* It's safe to write the exe_file pointer without exe_file_lock because
622 * this is called during fork when the task is not yet in /proc */
623 newmm->exe_file = get_mm_exe_file(oldmm);
624 }
625
626 /**
627 * get_task_mm - acquire a reference to the task's mm
628 *
629 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
630 * this kernel workthread has transiently adopted a user mm with use_mm,
631 * to do its AIO) is not set and if so returns a reference to it, after
632 * bumping up the use count. User must release the mm via mmput()
633 * after use. Typically used by /proc and ptrace.
634 */
635 struct mm_struct *get_task_mm(struct task_struct *task)
636 {
637 struct mm_struct *mm;
638
639 task_lock(task);
640 mm = task->mm;
641 if (mm) {
642 if (task->flags & PF_KTHREAD)
643 mm = NULL;
644 else
645 atomic_inc(&mm->mm_users);
646 }
647 task_unlock(task);
648 return mm;
649 }
650 EXPORT_SYMBOL_GPL(get_task_mm);
651
652 /* Please note the differences between mmput and mm_release.
653 * mmput is called whenever we stop holding onto a mm_struct,
654 * error success whatever.
655 *
656 * mm_release is called after a mm_struct has been removed
657 * from the current process.
658 *
659 * This difference is important for error handling, when we
660 * only half set up a mm_struct for a new process and need to restore
661 * the old one. Because we mmput the new mm_struct before
662 * restoring the old one. . .
663 * Eric Biederman 10 January 1998
664 */
665 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
666 {
667 struct completion *vfork_done = tsk->vfork_done;
668
669 /* Get rid of any futexes when releasing the mm */
670 #ifdef CONFIG_FUTEX
671 if (unlikely(tsk->robust_list)) {
672 exit_robust_list(tsk);
673 tsk->robust_list = NULL;
674 }
675 #ifdef CONFIG_COMPAT
676 if (unlikely(tsk->compat_robust_list)) {
677 compat_exit_robust_list(tsk);
678 tsk->compat_robust_list = NULL;
679 }
680 #endif
681 if (unlikely(!list_empty(&tsk->pi_state_list)))
682 exit_pi_state_list(tsk);
683 #endif
684
685 /* Get rid of any cached register state */
686 deactivate_mm(tsk, mm);
687
688 /* notify parent sleeping on vfork() */
689 if (vfork_done) {
690 tsk->vfork_done = NULL;
691 complete(vfork_done);
692 }
693
694 /*
695 * If we're exiting normally, clear a user-space tid field if
696 * requested. We leave this alone when dying by signal, to leave
697 * the value intact in a core dump, and to save the unnecessary
698 * trouble otherwise. Userland only wants this done for a sys_exit.
699 */
700 if (tsk->clear_child_tid) {
701 if (!(tsk->flags & PF_SIGNALED) &&
702 atomic_read(&mm->mm_users) > 1) {
703 /*
704 * We don't check the error code - if userspace has
705 * not set up a proper pointer then tough luck.
706 */
707 put_user(0, tsk->clear_child_tid);
708 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
709 1, NULL, NULL, 0);
710 }
711 tsk->clear_child_tid = NULL;
712 }
713 }
714
715 /*
716 * Allocate a new mm structure and copy contents from the
717 * mm structure of the passed in task structure.
718 */
719 struct mm_struct *dup_mm(struct task_struct *tsk)
720 {
721 struct mm_struct *mm, *oldmm = current->mm;
722 int err;
723
724 if (!oldmm)
725 return NULL;
726
727 mm = allocate_mm();
728 if (!mm)
729 goto fail_nomem;
730
731 memcpy(mm, oldmm, sizeof(*mm));
732 mm_init_cpumask(mm);
733
734 /* Initializing for Swap token stuff */
735 mm->token_priority = 0;
736 mm->last_interval = 0;
737
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 mm->pmd_huge_pte = NULL;
740 #endif
741
742 if (!mm_init(mm, tsk))
743 goto fail_nomem;
744
745 if (init_new_context(tsk, mm))
746 goto fail_nocontext;
747
748 dup_mm_exe_file(oldmm, mm);
749
750 err = dup_mmap(mm, oldmm);
751 if (err)
752 goto free_pt;
753
754 mm->hiwater_rss = get_mm_rss(mm);
755 mm->hiwater_vm = mm->total_vm;
756
757 if (mm->binfmt && !try_module_get(mm->binfmt->module))
758 goto free_pt;
759
760 return mm;
761
762 free_pt:
763 /* don't put binfmt in mmput, we haven't got module yet */
764 mm->binfmt = NULL;
765 mmput(mm);
766
767 fail_nomem:
768 return NULL;
769
770 fail_nocontext:
771 /*
772 * If init_new_context() failed, we cannot use mmput() to free the mm
773 * because it calls destroy_context()
774 */
775 mm_free_pgd(mm);
776 free_mm(mm);
777 return NULL;
778 }
779
780 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
781 {
782 struct mm_struct * mm, *oldmm;
783 int retval;
784
785 tsk->min_flt = tsk->maj_flt = 0;
786 tsk->nvcsw = tsk->nivcsw = 0;
787 #ifdef CONFIG_DETECT_HUNG_TASK
788 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
789 #endif
790
791 tsk->mm = NULL;
792 tsk->active_mm = NULL;
793
794 /*
795 * Are we cloning a kernel thread?
796 *
797 * We need to steal a active VM for that..
798 */
799 oldmm = current->mm;
800 if (!oldmm)
801 return 0;
802
803 if (clone_flags & CLONE_VM) {
804 atomic_inc(&oldmm->mm_users);
805 mm = oldmm;
806 goto good_mm;
807 }
808
809 retval = -ENOMEM;
810 mm = dup_mm(tsk);
811 if (!mm)
812 goto fail_nomem;
813
814 good_mm:
815 /* Initializing for Swap token stuff */
816 mm->token_priority = 0;
817 mm->last_interval = 0;
818 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
819 atomic_inc(&mm->oom_disable_count);
820
821 tsk->mm = mm;
822 tsk->active_mm = mm;
823 return 0;
824
825 fail_nomem:
826 return retval;
827 }
828
829 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
830 {
831 struct fs_struct *fs = current->fs;
832 if (clone_flags & CLONE_FS) {
833 /* tsk->fs is already what we want */
834 spin_lock(&fs->lock);
835 if (fs->in_exec) {
836 spin_unlock(&fs->lock);
837 return -EAGAIN;
838 }
839 fs->users++;
840 spin_unlock(&fs->lock);
841 return 0;
842 }
843 tsk->fs = copy_fs_struct(fs);
844 if (!tsk->fs)
845 return -ENOMEM;
846 return 0;
847 }
848
849 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
850 {
851 struct files_struct *oldf, *newf;
852 int error = 0;
853
854 /*
855 * A background process may not have any files ...
856 */
857 oldf = current->files;
858 if (!oldf)
859 goto out;
860
861 if (clone_flags & CLONE_FILES) {
862 atomic_inc(&oldf->count);
863 goto out;
864 }
865
866 newf = dup_fd(oldf, &error);
867 if (!newf)
868 goto out;
869
870 tsk->files = newf;
871 error = 0;
872 out:
873 return error;
874 }
875
876 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
877 {
878 #ifdef CONFIG_BLOCK
879 struct io_context *ioc = current->io_context;
880
881 if (!ioc)
882 return 0;
883 /*
884 * Share io context with parent, if CLONE_IO is set
885 */
886 if (clone_flags & CLONE_IO) {
887 tsk->io_context = ioc_task_link(ioc);
888 if (unlikely(!tsk->io_context))
889 return -ENOMEM;
890 } else if (ioprio_valid(ioc->ioprio)) {
891 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
892 if (unlikely(!tsk->io_context))
893 return -ENOMEM;
894
895 tsk->io_context->ioprio = ioc->ioprio;
896 }
897 #endif
898 return 0;
899 }
900
901 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
902 {
903 struct sighand_struct *sig;
904
905 if (clone_flags & CLONE_SIGHAND) {
906 atomic_inc(&current->sighand->count);
907 return 0;
908 }
909 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
910 rcu_assign_pointer(tsk->sighand, sig);
911 if (!sig)
912 return -ENOMEM;
913 atomic_set(&sig->count, 1);
914 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
915 return 0;
916 }
917
918 void __cleanup_sighand(struct sighand_struct *sighand)
919 {
920 if (atomic_dec_and_test(&sighand->count))
921 kmem_cache_free(sighand_cachep, sighand);
922 }
923
924
925 /*
926 * Initialize POSIX timer handling for a thread group.
927 */
928 static void posix_cpu_timers_init_group(struct signal_struct *sig)
929 {
930 unsigned long cpu_limit;
931
932 /* Thread group counters. */
933 thread_group_cputime_init(sig);
934
935 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
936 if (cpu_limit != RLIM_INFINITY) {
937 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
938 sig->cputimer.running = 1;
939 }
940
941 /* The timer lists. */
942 INIT_LIST_HEAD(&sig->cpu_timers[0]);
943 INIT_LIST_HEAD(&sig->cpu_timers[1]);
944 INIT_LIST_HEAD(&sig->cpu_timers[2]);
945 }
946
947 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
948 {
949 struct signal_struct *sig;
950
951 if (clone_flags & CLONE_THREAD)
952 return 0;
953
954 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
955 tsk->signal = sig;
956 if (!sig)
957 return -ENOMEM;
958
959 sig->nr_threads = 1;
960 atomic_set(&sig->live, 1);
961 atomic_set(&sig->sigcnt, 1);
962 init_waitqueue_head(&sig->wait_chldexit);
963 if (clone_flags & CLONE_NEWPID)
964 sig->flags |= SIGNAL_UNKILLABLE;
965 sig->curr_target = tsk;
966 init_sigpending(&sig->shared_pending);
967 INIT_LIST_HEAD(&sig->posix_timers);
968
969 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
970 sig->real_timer.function = it_real_fn;
971
972 task_lock(current->group_leader);
973 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
974 task_unlock(current->group_leader);
975
976 posix_cpu_timers_init_group(sig);
977
978 tty_audit_fork(sig);
979 sched_autogroup_fork(sig);
980
981 #ifdef CONFIG_CGROUPS
982 init_rwsem(&sig->threadgroup_fork_lock);
983 #endif
984
985 sig->oom_adj = current->signal->oom_adj;
986 sig->oom_score_adj = current->signal->oom_score_adj;
987 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
988
989 mutex_init(&sig->cred_guard_mutex);
990
991 return 0;
992 }
993
994 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
995 {
996 unsigned long new_flags = p->flags;
997
998 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
999 new_flags |= PF_FORKNOEXEC;
1000 new_flags |= PF_STARTING;
1001 p->flags = new_flags;
1002 clear_freeze_flag(p);
1003 }
1004
1005 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1006 {
1007 current->clear_child_tid = tidptr;
1008
1009 return task_pid_vnr(current);
1010 }
1011
1012 static void rt_mutex_init_task(struct task_struct *p)
1013 {
1014 raw_spin_lock_init(&p->pi_lock);
1015 #ifdef CONFIG_RT_MUTEXES
1016 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
1017 p->pi_blocked_on = NULL;
1018 #endif
1019 }
1020
1021 #ifdef CONFIG_MM_OWNER
1022 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1023 {
1024 mm->owner = p;
1025 }
1026 #endif /* CONFIG_MM_OWNER */
1027
1028 /*
1029 * Initialize POSIX timer handling for a single task.
1030 */
1031 static void posix_cpu_timers_init(struct task_struct *tsk)
1032 {
1033 tsk->cputime_expires.prof_exp = cputime_zero;
1034 tsk->cputime_expires.virt_exp = cputime_zero;
1035 tsk->cputime_expires.sched_exp = 0;
1036 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1037 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1038 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1039 }
1040
1041 /*
1042 * This creates a new process as a copy of the old one,
1043 * but does not actually start it yet.
1044 *
1045 * It copies the registers, and all the appropriate
1046 * parts of the process environment (as per the clone
1047 * flags). The actual kick-off is left to the caller.
1048 */
1049 static struct task_struct *copy_process(unsigned long clone_flags,
1050 unsigned long stack_start,
1051 struct pt_regs *regs,
1052 unsigned long stack_size,
1053 int __user *child_tidptr,
1054 struct pid *pid,
1055 int trace)
1056 {
1057 int retval;
1058 struct task_struct *p;
1059 int cgroup_callbacks_done = 0;
1060
1061 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1062 return ERR_PTR(-EINVAL);
1063
1064 /*
1065 * Thread groups must share signals as well, and detached threads
1066 * can only be started up within the thread group.
1067 */
1068 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1069 return ERR_PTR(-EINVAL);
1070
1071 /*
1072 * Shared signal handlers imply shared VM. By way of the above,
1073 * thread groups also imply shared VM. Blocking this case allows
1074 * for various simplifications in other code.
1075 */
1076 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1077 return ERR_PTR(-EINVAL);
1078
1079 /*
1080 * Siblings of global init remain as zombies on exit since they are
1081 * not reaped by their parent (swapper). To solve this and to avoid
1082 * multi-rooted process trees, prevent global and container-inits
1083 * from creating siblings.
1084 */
1085 if ((clone_flags & CLONE_PARENT) &&
1086 current->signal->flags & SIGNAL_UNKILLABLE)
1087 return ERR_PTR(-EINVAL);
1088
1089 retval = security_task_create(clone_flags);
1090 if (retval)
1091 goto fork_out;
1092
1093 retval = -ENOMEM;
1094 p = dup_task_struct(current);
1095 if (!p)
1096 goto fork_out;
1097
1098 ftrace_graph_init_task(p);
1099
1100 rt_mutex_init_task(p);
1101
1102 #ifdef CONFIG_PROVE_LOCKING
1103 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1104 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1105 #endif
1106 retval = -EAGAIN;
1107 if (atomic_read(&p->real_cred->user->processes) >=
1108 task_rlimit(p, RLIMIT_NPROC)) {
1109 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1110 p->real_cred->user != INIT_USER)
1111 goto bad_fork_free;
1112 }
1113
1114 retval = copy_creds(p, clone_flags);
1115 if (retval < 0)
1116 goto bad_fork_free;
1117
1118 /*
1119 * If multiple threads are within copy_process(), then this check
1120 * triggers too late. This doesn't hurt, the check is only there
1121 * to stop root fork bombs.
1122 */
1123 retval = -EAGAIN;
1124 if (nr_threads >= max_threads)
1125 goto bad_fork_cleanup_count;
1126
1127 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1128 goto bad_fork_cleanup_count;
1129
1130 p->did_exec = 0;
1131 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1132 copy_flags(clone_flags, p);
1133 INIT_LIST_HEAD(&p->children);
1134 INIT_LIST_HEAD(&p->sibling);
1135 rcu_copy_process(p);
1136 p->vfork_done = NULL;
1137 spin_lock_init(&p->alloc_lock);
1138
1139 init_sigpending(&p->pending);
1140
1141 p->utime = cputime_zero;
1142 p->stime = cputime_zero;
1143 p->gtime = cputime_zero;
1144 p->utimescaled = cputime_zero;
1145 p->stimescaled = cputime_zero;
1146 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1147 p->prev_utime = cputime_zero;
1148 p->prev_stime = cputime_zero;
1149 #endif
1150 #if defined(SPLIT_RSS_COUNTING)
1151 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1152 #endif
1153
1154 p->default_timer_slack_ns = current->timer_slack_ns;
1155
1156 task_io_accounting_init(&p->ioac);
1157 acct_clear_integrals(p);
1158
1159 posix_cpu_timers_init(p);
1160
1161 do_posix_clock_monotonic_gettime(&p->start_time);
1162 p->real_start_time = p->start_time;
1163 monotonic_to_bootbased(&p->real_start_time);
1164 p->io_context = NULL;
1165 p->audit_context = NULL;
1166 if (clone_flags & CLONE_THREAD)
1167 threadgroup_fork_read_lock(current);
1168 cgroup_fork(p);
1169 #ifdef CONFIG_NUMA
1170 p->mempolicy = mpol_dup(p->mempolicy);
1171 if (IS_ERR(p->mempolicy)) {
1172 retval = PTR_ERR(p->mempolicy);
1173 p->mempolicy = NULL;
1174 goto bad_fork_cleanup_cgroup;
1175 }
1176 mpol_fix_fork_child_flag(p);
1177 #endif
1178 #ifdef CONFIG_TRACE_IRQFLAGS
1179 p->irq_events = 0;
1180 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1181 p->hardirqs_enabled = 1;
1182 #else
1183 p->hardirqs_enabled = 0;
1184 #endif
1185 p->hardirq_enable_ip = 0;
1186 p->hardirq_enable_event = 0;
1187 p->hardirq_disable_ip = _THIS_IP_;
1188 p->hardirq_disable_event = 0;
1189 p->softirqs_enabled = 1;
1190 p->softirq_enable_ip = _THIS_IP_;
1191 p->softirq_enable_event = 0;
1192 p->softirq_disable_ip = 0;
1193 p->softirq_disable_event = 0;
1194 p->hardirq_context = 0;
1195 p->softirq_context = 0;
1196 #endif
1197 #ifdef CONFIG_LOCKDEP
1198 p->lockdep_depth = 0; /* no locks held yet */
1199 p->curr_chain_key = 0;
1200 p->lockdep_recursion = 0;
1201 #endif
1202
1203 #ifdef CONFIG_DEBUG_MUTEXES
1204 p->blocked_on = NULL; /* not blocked yet */
1205 #endif
1206 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1207 p->memcg_batch.do_batch = 0;
1208 p->memcg_batch.memcg = NULL;
1209 #endif
1210
1211 /* Perform scheduler related setup. Assign this task to a CPU. */
1212 sched_fork(p);
1213
1214 retval = perf_event_init_task(p);
1215 if (retval)
1216 goto bad_fork_cleanup_policy;
1217
1218 if ((retval = audit_alloc(p)))
1219 goto bad_fork_cleanup_policy;
1220 /* copy all the process information */
1221 if ((retval = copy_semundo(clone_flags, p)))
1222 goto bad_fork_cleanup_audit;
1223 if ((retval = copy_files(clone_flags, p)))
1224 goto bad_fork_cleanup_semundo;
1225 if ((retval = copy_fs(clone_flags, p)))
1226 goto bad_fork_cleanup_files;
1227 if ((retval = copy_sighand(clone_flags, p)))
1228 goto bad_fork_cleanup_fs;
1229 if ((retval = copy_signal(clone_flags, p)))
1230 goto bad_fork_cleanup_sighand;
1231 if ((retval = copy_mm(clone_flags, p)))
1232 goto bad_fork_cleanup_signal;
1233 if ((retval = copy_namespaces(clone_flags, p)))
1234 goto bad_fork_cleanup_mm;
1235 if ((retval = copy_io(clone_flags, p)))
1236 goto bad_fork_cleanup_namespaces;
1237 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1238 if (retval)
1239 goto bad_fork_cleanup_io;
1240
1241 if (pid != &init_struct_pid) {
1242 retval = -ENOMEM;
1243 pid = alloc_pid(p->nsproxy->pid_ns);
1244 if (!pid)
1245 goto bad_fork_cleanup_io;
1246 }
1247
1248 p->pid = pid_nr(pid);
1249 p->tgid = p->pid;
1250 if (clone_flags & CLONE_THREAD)
1251 p->tgid = current->tgid;
1252
1253 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1254 /*
1255 * Clear TID on mm_release()?
1256 */
1257 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1258 #ifdef CONFIG_BLOCK
1259 p->plug = NULL;
1260 #endif
1261 #ifdef CONFIG_FUTEX
1262 p->robust_list = NULL;
1263 #ifdef CONFIG_COMPAT
1264 p->compat_robust_list = NULL;
1265 #endif
1266 INIT_LIST_HEAD(&p->pi_state_list);
1267 p->pi_state_cache = NULL;
1268 #endif
1269 /*
1270 * sigaltstack should be cleared when sharing the same VM
1271 */
1272 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1273 p->sas_ss_sp = p->sas_ss_size = 0;
1274
1275 /*
1276 * Syscall tracing and stepping should be turned off in the
1277 * child regardless of CLONE_PTRACE.
1278 */
1279 user_disable_single_step(p);
1280 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1281 #ifdef TIF_SYSCALL_EMU
1282 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1283 #endif
1284 clear_all_latency_tracing(p);
1285
1286 /* ok, now we should be set up.. */
1287 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1288 p->pdeath_signal = 0;
1289 p->exit_state = 0;
1290
1291 /*
1292 * Ok, make it visible to the rest of the system.
1293 * We dont wake it up yet.
1294 */
1295 p->group_leader = p;
1296 INIT_LIST_HEAD(&p->thread_group);
1297
1298 /* Now that the task is set up, run cgroup callbacks if
1299 * necessary. We need to run them before the task is visible
1300 * on the tasklist. */
1301 cgroup_fork_callbacks(p);
1302 cgroup_callbacks_done = 1;
1303
1304 /* Need tasklist lock for parent etc handling! */
1305 write_lock_irq(&tasklist_lock);
1306
1307 /* CLONE_PARENT re-uses the old parent */
1308 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1309 p->real_parent = current->real_parent;
1310 p->parent_exec_id = current->parent_exec_id;
1311 } else {
1312 p->real_parent = current;
1313 p->parent_exec_id = current->self_exec_id;
1314 }
1315
1316 spin_lock(&current->sighand->siglock);
1317
1318 /*
1319 * Process group and session signals need to be delivered to just the
1320 * parent before the fork or both the parent and the child after the
1321 * fork. Restart if a signal comes in before we add the new process to
1322 * it's process group.
1323 * A fatal signal pending means that current will exit, so the new
1324 * thread can't slip out of an OOM kill (or normal SIGKILL).
1325 */
1326 recalc_sigpending();
1327 if (signal_pending(current)) {
1328 spin_unlock(&current->sighand->siglock);
1329 write_unlock_irq(&tasklist_lock);
1330 retval = -ERESTARTNOINTR;
1331 goto bad_fork_free_pid;
1332 }
1333
1334 if (clone_flags & CLONE_THREAD) {
1335 current->signal->nr_threads++;
1336 atomic_inc(&current->signal->live);
1337 atomic_inc(&current->signal->sigcnt);
1338 p->group_leader = current->group_leader;
1339 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1340 }
1341
1342 if (likely(p->pid)) {
1343 tracehook_finish_clone(p, clone_flags, trace);
1344
1345 if (thread_group_leader(p)) {
1346 if (is_child_reaper(pid))
1347 p->nsproxy->pid_ns->child_reaper = p;
1348
1349 p->signal->leader_pid = pid;
1350 p->signal->tty = tty_kref_get(current->signal->tty);
1351 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1352 attach_pid(p, PIDTYPE_SID, task_session(current));
1353 list_add_tail(&p->sibling, &p->real_parent->children);
1354 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1355 __this_cpu_inc(process_counts);
1356 }
1357 attach_pid(p, PIDTYPE_PID, pid);
1358 nr_threads++;
1359 }
1360
1361 total_forks++;
1362 spin_unlock(&current->sighand->siglock);
1363 write_unlock_irq(&tasklist_lock);
1364 proc_fork_connector(p);
1365 cgroup_post_fork(p);
1366 if (clone_flags & CLONE_THREAD)
1367 threadgroup_fork_read_unlock(current);
1368 perf_event_fork(p);
1369 return p;
1370
1371 bad_fork_free_pid:
1372 if (pid != &init_struct_pid)
1373 free_pid(pid);
1374 bad_fork_cleanup_io:
1375 if (p->io_context)
1376 exit_io_context(p);
1377 bad_fork_cleanup_namespaces:
1378 exit_task_namespaces(p);
1379 bad_fork_cleanup_mm:
1380 if (p->mm) {
1381 task_lock(p);
1382 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1383 atomic_dec(&p->mm->oom_disable_count);
1384 task_unlock(p);
1385 mmput(p->mm);
1386 }
1387 bad_fork_cleanup_signal:
1388 if (!(clone_flags & CLONE_THREAD))
1389 free_signal_struct(p->signal);
1390 bad_fork_cleanup_sighand:
1391 __cleanup_sighand(p->sighand);
1392 bad_fork_cleanup_fs:
1393 exit_fs(p); /* blocking */
1394 bad_fork_cleanup_files:
1395 exit_files(p); /* blocking */
1396 bad_fork_cleanup_semundo:
1397 exit_sem(p);
1398 bad_fork_cleanup_audit:
1399 audit_free(p);
1400 bad_fork_cleanup_policy:
1401 perf_event_free_task(p);
1402 #ifdef CONFIG_NUMA
1403 mpol_put(p->mempolicy);
1404 bad_fork_cleanup_cgroup:
1405 #endif
1406 if (clone_flags & CLONE_THREAD)
1407 threadgroup_fork_read_unlock(current);
1408 cgroup_exit(p, cgroup_callbacks_done);
1409 delayacct_tsk_free(p);
1410 module_put(task_thread_info(p)->exec_domain->module);
1411 bad_fork_cleanup_count:
1412 atomic_dec(&p->cred->user->processes);
1413 exit_creds(p);
1414 bad_fork_free:
1415 free_task(p);
1416 fork_out:
1417 return ERR_PTR(retval);
1418 }
1419
1420 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1421 {
1422 memset(regs, 0, sizeof(struct pt_regs));
1423 return regs;
1424 }
1425
1426 static inline void init_idle_pids(struct pid_link *links)
1427 {
1428 enum pid_type type;
1429
1430 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1431 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1432 links[type].pid = &init_struct_pid;
1433 }
1434 }
1435
1436 struct task_struct * __cpuinit fork_idle(int cpu)
1437 {
1438 struct task_struct *task;
1439 struct pt_regs regs;
1440
1441 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1442 &init_struct_pid, 0);
1443 if (!IS_ERR(task)) {
1444 init_idle_pids(task->pids);
1445 init_idle(task, cpu);
1446 }
1447
1448 return task;
1449 }
1450
1451 /*
1452 * Ok, this is the main fork-routine.
1453 *
1454 * It copies the process, and if successful kick-starts
1455 * it and waits for it to finish using the VM if required.
1456 */
1457 long do_fork(unsigned long clone_flags,
1458 unsigned long stack_start,
1459 struct pt_regs *regs,
1460 unsigned long stack_size,
1461 int __user *parent_tidptr,
1462 int __user *child_tidptr)
1463 {
1464 struct task_struct *p;
1465 int trace = 0;
1466 long nr;
1467
1468 /*
1469 * Do some preliminary argument and permissions checking before we
1470 * actually start allocating stuff
1471 */
1472 if (clone_flags & CLONE_NEWUSER) {
1473 if (clone_flags & CLONE_THREAD)
1474 return -EINVAL;
1475 /* hopefully this check will go away when userns support is
1476 * complete
1477 */
1478 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1479 !capable(CAP_SETGID))
1480 return -EPERM;
1481 }
1482
1483 /*
1484 * When called from kernel_thread, don't do user tracing stuff.
1485 */
1486 if (likely(user_mode(regs)))
1487 trace = tracehook_prepare_clone(clone_flags);
1488
1489 p = copy_process(clone_flags, stack_start, regs, stack_size,
1490 child_tidptr, NULL, trace);
1491 /*
1492 * Do this prior waking up the new thread - the thread pointer
1493 * might get invalid after that point, if the thread exits quickly.
1494 */
1495 if (!IS_ERR(p)) {
1496 struct completion vfork;
1497
1498 trace_sched_process_fork(current, p);
1499
1500 nr = task_pid_vnr(p);
1501
1502 if (clone_flags & CLONE_PARENT_SETTID)
1503 put_user(nr, parent_tidptr);
1504
1505 if (clone_flags & CLONE_VFORK) {
1506 p->vfork_done = &vfork;
1507 init_completion(&vfork);
1508 }
1509
1510 audit_finish_fork(p);
1511 tracehook_report_clone(regs, clone_flags, nr, p);
1512
1513 /*
1514 * We set PF_STARTING at creation in case tracing wants to
1515 * use this to distinguish a fully live task from one that
1516 * hasn't gotten to tracehook_report_clone() yet. Now we
1517 * clear it and set the child going.
1518 */
1519 p->flags &= ~PF_STARTING;
1520
1521 wake_up_new_task(p);
1522
1523 tracehook_report_clone_complete(trace, regs,
1524 clone_flags, nr, p);
1525
1526 if (clone_flags & CLONE_VFORK) {
1527 freezer_do_not_count();
1528 wait_for_completion(&vfork);
1529 freezer_count();
1530 tracehook_report_vfork_done(p, nr);
1531 }
1532 } else {
1533 nr = PTR_ERR(p);
1534 }
1535 return nr;
1536 }
1537
1538 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1539 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1540 #endif
1541
1542 static void sighand_ctor(void *data)
1543 {
1544 struct sighand_struct *sighand = data;
1545
1546 spin_lock_init(&sighand->siglock);
1547 init_waitqueue_head(&sighand->signalfd_wqh);
1548 }
1549
1550 void __init proc_caches_init(void)
1551 {
1552 sighand_cachep = kmem_cache_create("sighand_cache",
1553 sizeof(struct sighand_struct), 0,
1554 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1555 SLAB_NOTRACK, sighand_ctor);
1556 signal_cachep = kmem_cache_create("signal_cache",
1557 sizeof(struct signal_struct), 0,
1558 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1559 files_cachep = kmem_cache_create("files_cache",
1560 sizeof(struct files_struct), 0,
1561 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1562 fs_cachep = kmem_cache_create("fs_cache",
1563 sizeof(struct fs_struct), 0,
1564 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1565 /*
1566 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1567 * whole struct cpumask for the OFFSTACK case. We could change
1568 * this to *only* allocate as much of it as required by the
1569 * maximum number of CPU's we can ever have. The cpumask_allocation
1570 * is at the end of the structure, exactly for that reason.
1571 */
1572 mm_cachep = kmem_cache_create("mm_struct",
1573 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1574 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1575 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1576 mmap_init();
1577 }
1578
1579 /*
1580 * Check constraints on flags passed to the unshare system call.
1581 */
1582 static int check_unshare_flags(unsigned long unshare_flags)
1583 {
1584 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1585 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1586 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1587 return -EINVAL;
1588 /*
1589 * Not implemented, but pretend it works if there is nothing to
1590 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1591 * needs to unshare vm.
1592 */
1593 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1594 /* FIXME: get_task_mm() increments ->mm_users */
1595 if (atomic_read(&current->mm->mm_users) > 1)
1596 return -EINVAL;
1597 }
1598
1599 return 0;
1600 }
1601
1602 /*
1603 * Unshare the filesystem structure if it is being shared
1604 */
1605 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1606 {
1607 struct fs_struct *fs = current->fs;
1608
1609 if (!(unshare_flags & CLONE_FS) || !fs)
1610 return 0;
1611
1612 /* don't need lock here; in the worst case we'll do useless copy */
1613 if (fs->users == 1)
1614 return 0;
1615
1616 *new_fsp = copy_fs_struct(fs);
1617 if (!*new_fsp)
1618 return -ENOMEM;
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * Unshare file descriptor table if it is being shared
1625 */
1626 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1627 {
1628 struct files_struct *fd = current->files;
1629 int error = 0;
1630
1631 if ((unshare_flags & CLONE_FILES) &&
1632 (fd && atomic_read(&fd->count) > 1)) {
1633 *new_fdp = dup_fd(fd, &error);
1634 if (!*new_fdp)
1635 return error;
1636 }
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * unshare allows a process to 'unshare' part of the process
1643 * context which was originally shared using clone. copy_*
1644 * functions used by do_fork() cannot be used here directly
1645 * because they modify an inactive task_struct that is being
1646 * constructed. Here we are modifying the current, active,
1647 * task_struct.
1648 */
1649 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1650 {
1651 struct fs_struct *fs, *new_fs = NULL;
1652 struct files_struct *fd, *new_fd = NULL;
1653 struct nsproxy *new_nsproxy = NULL;
1654 int do_sysvsem = 0;
1655 int err;
1656
1657 err = check_unshare_flags(unshare_flags);
1658 if (err)
1659 goto bad_unshare_out;
1660
1661 /*
1662 * If unsharing namespace, must also unshare filesystem information.
1663 */
1664 if (unshare_flags & CLONE_NEWNS)
1665 unshare_flags |= CLONE_FS;
1666 /*
1667 * CLONE_NEWIPC must also detach from the undolist: after switching
1668 * to a new ipc namespace, the semaphore arrays from the old
1669 * namespace are unreachable.
1670 */
1671 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1672 do_sysvsem = 1;
1673 if ((err = unshare_fs(unshare_flags, &new_fs)))
1674 goto bad_unshare_out;
1675 if ((err = unshare_fd(unshare_flags, &new_fd)))
1676 goto bad_unshare_cleanup_fs;
1677 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1678 new_fs)))
1679 goto bad_unshare_cleanup_fd;
1680
1681 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1682 if (do_sysvsem) {
1683 /*
1684 * CLONE_SYSVSEM is equivalent to sys_exit().
1685 */
1686 exit_sem(current);
1687 }
1688
1689 if (new_nsproxy) {
1690 switch_task_namespaces(current, new_nsproxy);
1691 new_nsproxy = NULL;
1692 }
1693
1694 task_lock(current);
1695
1696 if (new_fs) {
1697 fs = current->fs;
1698 spin_lock(&fs->lock);
1699 current->fs = new_fs;
1700 if (--fs->users)
1701 new_fs = NULL;
1702 else
1703 new_fs = fs;
1704 spin_unlock(&fs->lock);
1705 }
1706
1707 if (new_fd) {
1708 fd = current->files;
1709 current->files = new_fd;
1710 new_fd = fd;
1711 }
1712
1713 task_unlock(current);
1714 }
1715
1716 if (new_nsproxy)
1717 put_nsproxy(new_nsproxy);
1718
1719 bad_unshare_cleanup_fd:
1720 if (new_fd)
1721 put_files_struct(new_fd);
1722
1723 bad_unshare_cleanup_fs:
1724 if (new_fs)
1725 free_fs_struct(new_fs);
1726
1727 bad_unshare_out:
1728 return err;
1729 }
1730
1731 /*
1732 * Helper to unshare the files of the current task.
1733 * We don't want to expose copy_files internals to
1734 * the exec layer of the kernel.
1735 */
1736
1737 int unshare_files(struct files_struct **displaced)
1738 {
1739 struct task_struct *task = current;
1740 struct files_struct *copy = NULL;
1741 int error;
1742
1743 error = unshare_fd(CLONE_FILES, &copy);
1744 if (error || !copy) {
1745 *displaced = NULL;
1746 return error;
1747 }
1748 *displaced = task->files;
1749 task_lock(task);
1750 task->files = copy;
1751 task_unlock(task);
1752 return 0;
1753 }
This page took 0.132829 seconds and 6 git commands to generate.