Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[deliverable/linux.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54
55
56 /*
57 * Some oddball architectures like 64bit powerpc have function descriptors
58 * so this must be overridable.
59 */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64
65 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
66 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
67
68 /* NOTE: change this value only with kprobe_mutex held */
69 static bool kprobe_enabled;
70
71 DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
72 DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74
75 /*
76 * Normally, functions that we'd want to prohibit kprobes in, are marked
77 * __kprobes. But, there are cases where such functions already belong to
78 * a different section (__sched for preempt_schedule)
79 *
80 * For such cases, we now have a blacklist
81 */
82 static struct kprobe_blackpoint kprobe_blacklist[] = {
83 {"preempt_schedule",},
84 {NULL} /* Terminator */
85 };
86
87 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
88 /*
89 * kprobe->ainsn.insn points to the copy of the instruction to be
90 * single-stepped. x86_64, POWER4 and above have no-exec support and
91 * stepping on the instruction on a vmalloced/kmalloced/data page
92 * is a recipe for disaster
93 */
94 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
95
96 struct kprobe_insn_page {
97 struct hlist_node hlist;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 char slot_used[INSNS_PER_PAGE];
100 int nused;
101 int ngarbage;
102 };
103
104 enum kprobe_slot_state {
105 SLOT_CLEAN = 0,
106 SLOT_DIRTY = 1,
107 SLOT_USED = 2,
108 };
109
110 static struct hlist_head kprobe_insn_pages;
111 static int kprobe_garbage_slots;
112 static int collect_garbage_slots(void);
113
114 static int __kprobes check_safety(void)
115 {
116 int ret = 0;
117 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
118 ret = freeze_processes();
119 if (ret == 0) {
120 struct task_struct *p, *q;
121 do_each_thread(p, q) {
122 if (p != current && p->state == TASK_RUNNING &&
123 p->pid != 0) {
124 printk("Check failed: %s is running\n",p->comm);
125 ret = -1;
126 goto loop_end;
127 }
128 } while_each_thread(p, q);
129 }
130 loop_end:
131 thaw_processes();
132 #else
133 synchronize_sched();
134 #endif
135 return ret;
136 }
137
138 /**
139 * get_insn_slot() - Find a slot on an executable page for an instruction.
140 * We allocate an executable page if there's no room on existing ones.
141 */
142 kprobe_opcode_t __kprobes *get_insn_slot(void)
143 {
144 struct kprobe_insn_page *kip;
145 struct hlist_node *pos;
146
147 retry:
148 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
149 if (kip->nused < INSNS_PER_PAGE) {
150 int i;
151 for (i = 0; i < INSNS_PER_PAGE; i++) {
152 if (kip->slot_used[i] == SLOT_CLEAN) {
153 kip->slot_used[i] = SLOT_USED;
154 kip->nused++;
155 return kip->insns + (i * MAX_INSN_SIZE);
156 }
157 }
158 /* Surprise! No unused slots. Fix kip->nused. */
159 kip->nused = INSNS_PER_PAGE;
160 }
161 }
162
163 /* If there are any garbage slots, collect it and try again. */
164 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
165 goto retry;
166 }
167 /* All out of space. Need to allocate a new page. Use slot 0. */
168 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
169 if (!kip)
170 return NULL;
171
172 /*
173 * Use module_alloc so this page is within +/- 2GB of where the
174 * kernel image and loaded module images reside. This is required
175 * so x86_64 can correctly handle the %rip-relative fixups.
176 */
177 kip->insns = module_alloc(PAGE_SIZE);
178 if (!kip->insns) {
179 kfree(kip);
180 return NULL;
181 }
182 INIT_HLIST_NODE(&kip->hlist);
183 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
184 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
185 kip->slot_used[0] = SLOT_USED;
186 kip->nused = 1;
187 kip->ngarbage = 0;
188 return kip->insns;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
197 /*
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
202 */
203 hlist_del(&kip->hlist);
204 if (hlist_empty(&kprobe_insn_pages)) {
205 INIT_HLIST_NODE(&kip->hlist);
206 hlist_add_head(&kip->hlist,
207 &kprobe_insn_pages);
208 } else {
209 module_free(NULL, kip->insns);
210 kfree(kip);
211 }
212 return 1;
213 }
214 return 0;
215 }
216
217 static int __kprobes collect_garbage_slots(void)
218 {
219 struct kprobe_insn_page *kip;
220 struct hlist_node *pos, *next;
221
222 /* Ensure no-one is preepmted on the garbages */
223 if (check_safety() != 0)
224 return -EAGAIN;
225
226 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
227 int i;
228 if (kip->ngarbage == 0)
229 continue;
230 kip->ngarbage = 0; /* we will collect all garbages */
231 for (i = 0; i < INSNS_PER_PAGE; i++) {
232 if (kip->slot_used[i] == SLOT_DIRTY &&
233 collect_one_slot(kip, i))
234 break;
235 }
236 }
237 kprobe_garbage_slots = 0;
238 return 0;
239 }
240
241 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
242 {
243 struct kprobe_insn_page *kip;
244 struct hlist_node *pos;
245
246 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
247 if (kip->insns <= slot &&
248 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
249 int i = (slot - kip->insns) / MAX_INSN_SIZE;
250 if (dirty) {
251 kip->slot_used[i] = SLOT_DIRTY;
252 kip->ngarbage++;
253 } else {
254 collect_one_slot(kip, i);
255 }
256 break;
257 }
258 }
259
260 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
261 collect_garbage_slots();
262 }
263 #endif
264
265 /* We have preemption disabled.. so it is safe to use __ versions */
266 static inline void set_kprobe_instance(struct kprobe *kp)
267 {
268 __get_cpu_var(kprobe_instance) = kp;
269 }
270
271 static inline void reset_kprobe_instance(void)
272 {
273 __get_cpu_var(kprobe_instance) = NULL;
274 }
275
276 /*
277 * This routine is called either:
278 * - under the kprobe_mutex - during kprobe_[un]register()
279 * OR
280 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
281 */
282 struct kprobe __kprobes *get_kprobe(void *addr)
283 {
284 struct hlist_head *head;
285 struct hlist_node *node;
286 struct kprobe *p;
287
288 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
289 hlist_for_each_entry_rcu(p, node, head, hlist) {
290 if (p->addr == addr)
291 return p;
292 }
293 return NULL;
294 }
295
296 /*
297 * Aggregate handlers for multiple kprobes support - these handlers
298 * take care of invoking the individual kprobe handlers on p->list
299 */
300 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
301 {
302 struct kprobe *kp;
303
304 list_for_each_entry_rcu(kp, &p->list, list) {
305 if (kp->pre_handler) {
306 set_kprobe_instance(kp);
307 if (kp->pre_handler(kp, regs))
308 return 1;
309 }
310 reset_kprobe_instance();
311 }
312 return 0;
313 }
314
315 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
316 unsigned long flags)
317 {
318 struct kprobe *kp;
319
320 list_for_each_entry_rcu(kp, &p->list, list) {
321 if (kp->post_handler) {
322 set_kprobe_instance(kp);
323 kp->post_handler(kp, regs, flags);
324 reset_kprobe_instance();
325 }
326 }
327 }
328
329 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
330 int trapnr)
331 {
332 struct kprobe *cur = __get_cpu_var(kprobe_instance);
333
334 /*
335 * if we faulted "during" the execution of a user specified
336 * probe handler, invoke just that probe's fault handler
337 */
338 if (cur && cur->fault_handler) {
339 if (cur->fault_handler(cur, regs, trapnr))
340 return 1;
341 }
342 return 0;
343 }
344
345 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
346 {
347 struct kprobe *cur = __get_cpu_var(kprobe_instance);
348 int ret = 0;
349
350 if (cur && cur->break_handler) {
351 if (cur->break_handler(cur, regs))
352 ret = 1;
353 }
354 reset_kprobe_instance();
355 return ret;
356 }
357
358 /* Walks the list and increments nmissed count for multiprobe case */
359 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
360 {
361 struct kprobe *kp;
362 if (p->pre_handler != aggr_pre_handler) {
363 p->nmissed++;
364 } else {
365 list_for_each_entry_rcu(kp, &p->list, list)
366 kp->nmissed++;
367 }
368 return;
369 }
370
371 /* Called with kretprobe_lock held */
372 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
373 struct hlist_head *head)
374 {
375 /* remove rp inst off the rprobe_inst_table */
376 hlist_del(&ri->hlist);
377 if (ri->rp) {
378 /* remove rp inst off the used list */
379 hlist_del(&ri->uflist);
380 /* put rp inst back onto the free list */
381 INIT_HLIST_NODE(&ri->uflist);
382 hlist_add_head(&ri->uflist, &ri->rp->free_instances);
383 } else
384 /* Unregistering */
385 hlist_add_head(&ri->hlist, head);
386 }
387
388 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
389 {
390 return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
391 }
392
393 /*
394 * This function is called from finish_task_switch when task tk becomes dead,
395 * so that we can recycle any function-return probe instances associated
396 * with this task. These left over instances represent probed functions
397 * that have been called but will never return.
398 */
399 void __kprobes kprobe_flush_task(struct task_struct *tk)
400 {
401 struct kretprobe_instance *ri;
402 struct hlist_head *head, empty_rp;
403 struct hlist_node *node, *tmp;
404 unsigned long flags = 0;
405
406 INIT_HLIST_HEAD(&empty_rp);
407 spin_lock_irqsave(&kretprobe_lock, flags);
408 head = kretprobe_inst_table_head(tk);
409 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
410 if (ri->task == tk)
411 recycle_rp_inst(ri, &empty_rp);
412 }
413 spin_unlock_irqrestore(&kretprobe_lock, flags);
414
415 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
416 hlist_del(&ri->hlist);
417 kfree(ri);
418 }
419 }
420
421 static inline void free_rp_inst(struct kretprobe *rp)
422 {
423 struct kretprobe_instance *ri;
424 struct hlist_node *pos, *next;
425
426 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, uflist) {
427 hlist_del(&ri->uflist);
428 kfree(ri);
429 }
430 }
431
432 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
433 {
434 unsigned long flags;
435 struct kretprobe_instance *ri;
436 struct hlist_node *pos, *next;
437 /* No race here */
438 spin_lock_irqsave(&kretprobe_lock, flags);
439 hlist_for_each_entry_safe(ri, pos, next, &rp->used_instances, uflist) {
440 ri->rp = NULL;
441 hlist_del(&ri->uflist);
442 }
443 spin_unlock_irqrestore(&kretprobe_lock, flags);
444 free_rp_inst(rp);
445 }
446
447 /*
448 * Keep all fields in the kprobe consistent
449 */
450 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
451 {
452 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
453 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
454 }
455
456 /*
457 * Add the new probe to old_p->list. Fail if this is the
458 * second jprobe at the address - two jprobes can't coexist
459 */
460 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
461 {
462 if (p->break_handler) {
463 if (old_p->break_handler)
464 return -EEXIST;
465 list_add_tail_rcu(&p->list, &old_p->list);
466 old_p->break_handler = aggr_break_handler;
467 } else
468 list_add_rcu(&p->list, &old_p->list);
469 if (p->post_handler && !old_p->post_handler)
470 old_p->post_handler = aggr_post_handler;
471 return 0;
472 }
473
474 /*
475 * Fill in the required fields of the "manager kprobe". Replace the
476 * earlier kprobe in the hlist with the manager kprobe
477 */
478 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
479 {
480 copy_kprobe(p, ap);
481 flush_insn_slot(ap);
482 ap->addr = p->addr;
483 ap->pre_handler = aggr_pre_handler;
484 ap->fault_handler = aggr_fault_handler;
485 if (p->post_handler)
486 ap->post_handler = aggr_post_handler;
487 if (p->break_handler)
488 ap->break_handler = aggr_break_handler;
489
490 INIT_LIST_HEAD(&ap->list);
491 list_add_rcu(&p->list, &ap->list);
492
493 hlist_replace_rcu(&p->hlist, &ap->hlist);
494 }
495
496 /*
497 * This is the second or subsequent kprobe at the address - handle
498 * the intricacies
499 */
500 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
501 struct kprobe *p)
502 {
503 int ret = 0;
504 struct kprobe *ap;
505
506 if (old_p->pre_handler == aggr_pre_handler) {
507 copy_kprobe(old_p, p);
508 ret = add_new_kprobe(old_p, p);
509 } else {
510 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
511 if (!ap)
512 return -ENOMEM;
513 add_aggr_kprobe(ap, old_p);
514 copy_kprobe(ap, p);
515 ret = add_new_kprobe(ap, p);
516 }
517 return ret;
518 }
519
520 static int __kprobes in_kprobes_functions(unsigned long addr)
521 {
522 struct kprobe_blackpoint *kb;
523
524 if (addr >= (unsigned long)__kprobes_text_start &&
525 addr < (unsigned long)__kprobes_text_end)
526 return -EINVAL;
527 /*
528 * If there exists a kprobe_blacklist, verify and
529 * fail any probe registration in the prohibited area
530 */
531 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
532 if (kb->start_addr) {
533 if (addr >= kb->start_addr &&
534 addr < (kb->start_addr + kb->range))
535 return -EINVAL;
536 }
537 }
538 return 0;
539 }
540
541 /*
542 * If we have a symbol_name argument, look it up and add the offset field
543 * to it. This way, we can specify a relative address to a symbol.
544 */
545 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
546 {
547 kprobe_opcode_t *addr = p->addr;
548 if (p->symbol_name) {
549 if (addr)
550 return NULL;
551 kprobe_lookup_name(p->symbol_name, addr);
552 }
553
554 if (!addr)
555 return NULL;
556 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
557 }
558
559 static int __kprobes __register_kprobe(struct kprobe *p,
560 unsigned long called_from)
561 {
562 int ret = 0;
563 struct kprobe *old_p;
564 struct module *probed_mod;
565 kprobe_opcode_t *addr;
566
567 addr = kprobe_addr(p);
568 if (!addr)
569 return -EINVAL;
570 p->addr = addr;
571
572 if (!kernel_text_address((unsigned long) p->addr) ||
573 in_kprobes_functions((unsigned long) p->addr))
574 return -EINVAL;
575
576 p->mod_refcounted = 0;
577
578 /*
579 * Check if are we probing a module.
580 */
581 probed_mod = module_text_address((unsigned long) p->addr);
582 if (probed_mod) {
583 struct module *calling_mod = module_text_address(called_from);
584 /*
585 * We must allow modules to probe themself and in this case
586 * avoid incrementing the module refcount, so as to allow
587 * unloading of self probing modules.
588 */
589 if (calling_mod && calling_mod != probed_mod) {
590 if (unlikely(!try_module_get(probed_mod)))
591 return -EINVAL;
592 p->mod_refcounted = 1;
593 } else
594 probed_mod = NULL;
595 }
596
597 p->nmissed = 0;
598 INIT_LIST_HEAD(&p->list);
599 mutex_lock(&kprobe_mutex);
600 old_p = get_kprobe(p->addr);
601 if (old_p) {
602 ret = register_aggr_kprobe(old_p, p);
603 goto out;
604 }
605
606 ret = arch_prepare_kprobe(p);
607 if (ret)
608 goto out;
609
610 INIT_HLIST_NODE(&p->hlist);
611 hlist_add_head_rcu(&p->hlist,
612 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
613
614 if (kprobe_enabled)
615 arch_arm_kprobe(p);
616
617 out:
618 mutex_unlock(&kprobe_mutex);
619
620 if (ret && probed_mod)
621 module_put(probed_mod);
622 return ret;
623 }
624
625 /*
626 * Unregister a kprobe without a scheduler synchronization.
627 */
628 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
629 {
630 struct kprobe *old_p, *list_p;
631
632 old_p = get_kprobe(p->addr);
633 if (unlikely(!old_p))
634 return -EINVAL;
635
636 if (p != old_p) {
637 list_for_each_entry_rcu(list_p, &old_p->list, list)
638 if (list_p == p)
639 /* kprobe p is a valid probe */
640 goto valid_p;
641 return -EINVAL;
642 }
643 valid_p:
644 if (old_p == p ||
645 (old_p->pre_handler == aggr_pre_handler &&
646 list_is_singular(&old_p->list))) {
647 /*
648 * Only probe on the hash list. Disarm only if kprobes are
649 * enabled - otherwise, the breakpoint would already have
650 * been removed. We save on flushing icache.
651 */
652 if (kprobe_enabled)
653 arch_disarm_kprobe(p);
654 hlist_del_rcu(&old_p->hlist);
655 } else {
656 if (p->break_handler)
657 old_p->break_handler = NULL;
658 if (p->post_handler) {
659 list_for_each_entry_rcu(list_p, &old_p->list, list) {
660 if ((list_p != p) && (list_p->post_handler))
661 goto noclean;
662 }
663 old_p->post_handler = NULL;
664 }
665 noclean:
666 list_del_rcu(&p->list);
667 }
668 return 0;
669 }
670
671 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
672 {
673 struct module *mod;
674 struct kprobe *old_p;
675
676 if (p->mod_refcounted) {
677 mod = module_text_address((unsigned long)p->addr);
678 if (mod)
679 module_put(mod);
680 }
681
682 if (list_empty(&p->list) || list_is_singular(&p->list)) {
683 if (!list_empty(&p->list)) {
684 /* "p" is the last child of an aggr_kprobe */
685 old_p = list_entry(p->list.next, struct kprobe, list);
686 list_del(&p->list);
687 kfree(old_p);
688 }
689 arch_remove_kprobe(p);
690 }
691 }
692
693 static int __register_kprobes(struct kprobe **kps, int num,
694 unsigned long called_from)
695 {
696 int i, ret = 0;
697
698 if (num <= 0)
699 return -EINVAL;
700 for (i = 0; i < num; i++) {
701 ret = __register_kprobe(kps[i], called_from);
702 if (ret < 0) {
703 if (i > 0)
704 unregister_kprobes(kps, i);
705 break;
706 }
707 }
708 return ret;
709 }
710
711 /*
712 * Registration and unregistration functions for kprobe.
713 */
714 int __kprobes register_kprobe(struct kprobe *p)
715 {
716 return __register_kprobes(&p, 1,
717 (unsigned long)__builtin_return_address(0));
718 }
719
720 void __kprobes unregister_kprobe(struct kprobe *p)
721 {
722 unregister_kprobes(&p, 1);
723 }
724
725 int __kprobes register_kprobes(struct kprobe **kps, int num)
726 {
727 return __register_kprobes(kps, num,
728 (unsigned long)__builtin_return_address(0));
729 }
730
731 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
732 {
733 int i;
734
735 if (num <= 0)
736 return;
737 mutex_lock(&kprobe_mutex);
738 for (i = 0; i < num; i++)
739 if (__unregister_kprobe_top(kps[i]) < 0)
740 kps[i]->addr = NULL;
741 mutex_unlock(&kprobe_mutex);
742
743 synchronize_sched();
744 for (i = 0; i < num; i++)
745 if (kps[i]->addr)
746 __unregister_kprobe_bottom(kps[i]);
747 }
748
749 static struct notifier_block kprobe_exceptions_nb = {
750 .notifier_call = kprobe_exceptions_notify,
751 .priority = 0x7fffffff /* we need to be notified first */
752 };
753
754 unsigned long __weak arch_deref_entry_point(void *entry)
755 {
756 return (unsigned long)entry;
757 }
758
759 static int __register_jprobes(struct jprobe **jps, int num,
760 unsigned long called_from)
761 {
762 struct jprobe *jp;
763 int ret = 0, i;
764
765 if (num <= 0)
766 return -EINVAL;
767 for (i = 0; i < num; i++) {
768 unsigned long addr;
769 jp = jps[i];
770 addr = arch_deref_entry_point(jp->entry);
771
772 if (!kernel_text_address(addr))
773 ret = -EINVAL;
774 else {
775 /* Todo: Verify probepoint is a function entry point */
776 jp->kp.pre_handler = setjmp_pre_handler;
777 jp->kp.break_handler = longjmp_break_handler;
778 ret = __register_kprobe(&jp->kp, called_from);
779 }
780 if (ret < 0) {
781 if (i > 0)
782 unregister_jprobes(jps, i);
783 break;
784 }
785 }
786 return ret;
787 }
788
789 int __kprobes register_jprobe(struct jprobe *jp)
790 {
791 return __register_jprobes(&jp, 1,
792 (unsigned long)__builtin_return_address(0));
793 }
794
795 void __kprobes unregister_jprobe(struct jprobe *jp)
796 {
797 unregister_jprobes(&jp, 1);
798 }
799
800 int __kprobes register_jprobes(struct jprobe **jps, int num)
801 {
802 return __register_jprobes(jps, num,
803 (unsigned long)__builtin_return_address(0));
804 }
805
806 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
807 {
808 int i;
809
810 if (num <= 0)
811 return;
812 mutex_lock(&kprobe_mutex);
813 for (i = 0; i < num; i++)
814 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
815 jps[i]->kp.addr = NULL;
816 mutex_unlock(&kprobe_mutex);
817
818 synchronize_sched();
819 for (i = 0; i < num; i++) {
820 if (jps[i]->kp.addr)
821 __unregister_kprobe_bottom(&jps[i]->kp);
822 }
823 }
824
825 #ifdef CONFIG_KRETPROBES
826 /*
827 * This kprobe pre_handler is registered with every kretprobe. When probe
828 * hits it will set up the return probe.
829 */
830 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
831 struct pt_regs *regs)
832 {
833 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
834 unsigned long flags = 0;
835
836 /*TODO: consider to only swap the RA after the last pre_handler fired */
837 spin_lock_irqsave(&kretprobe_lock, flags);
838 if (!hlist_empty(&rp->free_instances)) {
839 struct kretprobe_instance *ri;
840
841 ri = hlist_entry(rp->free_instances.first,
842 struct kretprobe_instance, uflist);
843 ri->rp = rp;
844 ri->task = current;
845
846 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
847 spin_unlock_irqrestore(&kretprobe_lock, flags);
848 return 0;
849 }
850
851 arch_prepare_kretprobe(ri, regs);
852
853 /* XXX(hch): why is there no hlist_move_head? */
854 hlist_del(&ri->uflist);
855 hlist_add_head(&ri->uflist, &ri->rp->used_instances);
856 hlist_add_head(&ri->hlist, kretprobe_inst_table_head(ri->task));
857 } else
858 rp->nmissed++;
859 spin_unlock_irqrestore(&kretprobe_lock, flags);
860 return 0;
861 }
862
863 static int __kprobes __register_kretprobe(struct kretprobe *rp,
864 unsigned long called_from)
865 {
866 int ret = 0;
867 struct kretprobe_instance *inst;
868 int i;
869 void *addr;
870
871 if (kretprobe_blacklist_size) {
872 addr = kprobe_addr(&rp->kp);
873 if (!addr)
874 return -EINVAL;
875
876 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
877 if (kretprobe_blacklist[i].addr == addr)
878 return -EINVAL;
879 }
880 }
881
882 rp->kp.pre_handler = pre_handler_kretprobe;
883 rp->kp.post_handler = NULL;
884 rp->kp.fault_handler = NULL;
885 rp->kp.break_handler = NULL;
886
887 /* Pre-allocate memory for max kretprobe instances */
888 if (rp->maxactive <= 0) {
889 #ifdef CONFIG_PREEMPT
890 rp->maxactive = max(10, 2 * NR_CPUS);
891 #else
892 rp->maxactive = NR_CPUS;
893 #endif
894 }
895 INIT_HLIST_HEAD(&rp->used_instances);
896 INIT_HLIST_HEAD(&rp->free_instances);
897 for (i = 0; i < rp->maxactive; i++) {
898 inst = kmalloc(sizeof(struct kretprobe_instance) +
899 rp->data_size, GFP_KERNEL);
900 if (inst == NULL) {
901 free_rp_inst(rp);
902 return -ENOMEM;
903 }
904 INIT_HLIST_NODE(&inst->uflist);
905 hlist_add_head(&inst->uflist, &rp->free_instances);
906 }
907
908 rp->nmissed = 0;
909 /* Establish function entry probe point */
910 ret = __register_kprobe(&rp->kp, called_from);
911 if (ret != 0)
912 free_rp_inst(rp);
913 return ret;
914 }
915
916 static int __register_kretprobes(struct kretprobe **rps, int num,
917 unsigned long called_from)
918 {
919 int ret = 0, i;
920
921 if (num <= 0)
922 return -EINVAL;
923 for (i = 0; i < num; i++) {
924 ret = __register_kretprobe(rps[i], called_from);
925 if (ret < 0) {
926 if (i > 0)
927 unregister_kretprobes(rps, i);
928 break;
929 }
930 }
931 return ret;
932 }
933
934 int __kprobes register_kretprobe(struct kretprobe *rp)
935 {
936 return __register_kretprobes(&rp, 1,
937 (unsigned long)__builtin_return_address(0));
938 }
939
940 void __kprobes unregister_kretprobe(struct kretprobe *rp)
941 {
942 unregister_kretprobes(&rp, 1);
943 }
944
945 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
946 {
947 return __register_kretprobes(rps, num,
948 (unsigned long)__builtin_return_address(0));
949 }
950
951 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
952 {
953 int i;
954
955 if (num <= 0)
956 return;
957 mutex_lock(&kprobe_mutex);
958 for (i = 0; i < num; i++)
959 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
960 rps[i]->kp.addr = NULL;
961 mutex_unlock(&kprobe_mutex);
962
963 synchronize_sched();
964 for (i = 0; i < num; i++) {
965 if (rps[i]->kp.addr) {
966 __unregister_kprobe_bottom(&rps[i]->kp);
967 cleanup_rp_inst(rps[i]);
968 }
969 }
970 }
971
972 #else /* CONFIG_KRETPROBES */
973 int __kprobes register_kretprobe(struct kretprobe *rp)
974 {
975 return -ENOSYS;
976 }
977
978 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
979 {
980 return -ENOSYS;
981 }
982 void __kprobes unregister_kretprobe(struct kretprobe *rp)
983 {
984 }
985
986 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
987 {
988 }
989
990 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
991 struct pt_regs *regs)
992 {
993 return 0;
994 }
995
996 #endif /* CONFIG_KRETPROBES */
997
998 static int __init init_kprobes(void)
999 {
1000 int i, err = 0;
1001 unsigned long offset = 0, size = 0;
1002 char *modname, namebuf[128];
1003 const char *symbol_name;
1004 void *addr;
1005 struct kprobe_blackpoint *kb;
1006
1007 /* FIXME allocate the probe table, currently defined statically */
1008 /* initialize all list heads */
1009 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1010 INIT_HLIST_HEAD(&kprobe_table[i]);
1011 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1012 }
1013
1014 /*
1015 * Lookup and populate the kprobe_blacklist.
1016 *
1017 * Unlike the kretprobe blacklist, we'll need to determine
1018 * the range of addresses that belong to the said functions,
1019 * since a kprobe need not necessarily be at the beginning
1020 * of a function.
1021 */
1022 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1023 kprobe_lookup_name(kb->name, addr);
1024 if (!addr)
1025 continue;
1026
1027 kb->start_addr = (unsigned long)addr;
1028 symbol_name = kallsyms_lookup(kb->start_addr,
1029 &size, &offset, &modname, namebuf);
1030 if (!symbol_name)
1031 kb->range = 0;
1032 else
1033 kb->range = size;
1034 }
1035
1036 if (kretprobe_blacklist_size) {
1037 /* lookup the function address from its name */
1038 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1039 kprobe_lookup_name(kretprobe_blacklist[i].name,
1040 kretprobe_blacklist[i].addr);
1041 if (!kretprobe_blacklist[i].addr)
1042 printk("kretprobe: lookup failed: %s\n",
1043 kretprobe_blacklist[i].name);
1044 }
1045 }
1046
1047 /* By default, kprobes are enabled */
1048 kprobe_enabled = true;
1049
1050 err = arch_init_kprobes();
1051 if (!err)
1052 err = register_die_notifier(&kprobe_exceptions_nb);
1053
1054 if (!err)
1055 init_test_probes();
1056 return err;
1057 }
1058
1059 #ifdef CONFIG_DEBUG_FS
1060 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1061 const char *sym, int offset,char *modname)
1062 {
1063 char *kprobe_type;
1064
1065 if (p->pre_handler == pre_handler_kretprobe)
1066 kprobe_type = "r";
1067 else if (p->pre_handler == setjmp_pre_handler)
1068 kprobe_type = "j";
1069 else
1070 kprobe_type = "k";
1071 if (sym)
1072 seq_printf(pi, "%p %s %s+0x%x %s\n", p->addr, kprobe_type,
1073 sym, offset, (modname ? modname : " "));
1074 else
1075 seq_printf(pi, "%p %s %p\n", p->addr, kprobe_type, p->addr);
1076 }
1077
1078 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1079 {
1080 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1081 }
1082
1083 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1084 {
1085 (*pos)++;
1086 if (*pos >= KPROBE_TABLE_SIZE)
1087 return NULL;
1088 return pos;
1089 }
1090
1091 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1092 {
1093 /* Nothing to do */
1094 }
1095
1096 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1097 {
1098 struct hlist_head *head;
1099 struct hlist_node *node;
1100 struct kprobe *p, *kp;
1101 const char *sym = NULL;
1102 unsigned int i = *(loff_t *) v;
1103 unsigned long offset = 0;
1104 char *modname, namebuf[128];
1105
1106 head = &kprobe_table[i];
1107 preempt_disable();
1108 hlist_for_each_entry_rcu(p, node, head, hlist) {
1109 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1110 &offset, &modname, namebuf);
1111 if (p->pre_handler == aggr_pre_handler) {
1112 list_for_each_entry_rcu(kp, &p->list, list)
1113 report_probe(pi, kp, sym, offset, modname);
1114 } else
1115 report_probe(pi, p, sym, offset, modname);
1116 }
1117 preempt_enable();
1118 return 0;
1119 }
1120
1121 static struct seq_operations kprobes_seq_ops = {
1122 .start = kprobe_seq_start,
1123 .next = kprobe_seq_next,
1124 .stop = kprobe_seq_stop,
1125 .show = show_kprobe_addr
1126 };
1127
1128 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1129 {
1130 return seq_open(filp, &kprobes_seq_ops);
1131 }
1132
1133 static struct file_operations debugfs_kprobes_operations = {
1134 .open = kprobes_open,
1135 .read = seq_read,
1136 .llseek = seq_lseek,
1137 .release = seq_release,
1138 };
1139
1140 static void __kprobes enable_all_kprobes(void)
1141 {
1142 struct hlist_head *head;
1143 struct hlist_node *node;
1144 struct kprobe *p;
1145 unsigned int i;
1146
1147 mutex_lock(&kprobe_mutex);
1148
1149 /* If kprobes are already enabled, just return */
1150 if (kprobe_enabled)
1151 goto already_enabled;
1152
1153 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1154 head = &kprobe_table[i];
1155 hlist_for_each_entry_rcu(p, node, head, hlist)
1156 arch_arm_kprobe(p);
1157 }
1158
1159 kprobe_enabled = true;
1160 printk(KERN_INFO "Kprobes globally enabled\n");
1161
1162 already_enabled:
1163 mutex_unlock(&kprobe_mutex);
1164 return;
1165 }
1166
1167 static void __kprobes disable_all_kprobes(void)
1168 {
1169 struct hlist_head *head;
1170 struct hlist_node *node;
1171 struct kprobe *p;
1172 unsigned int i;
1173
1174 mutex_lock(&kprobe_mutex);
1175
1176 /* If kprobes are already disabled, just return */
1177 if (!kprobe_enabled)
1178 goto already_disabled;
1179
1180 kprobe_enabled = false;
1181 printk(KERN_INFO "Kprobes globally disabled\n");
1182 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1183 head = &kprobe_table[i];
1184 hlist_for_each_entry_rcu(p, node, head, hlist) {
1185 if (!arch_trampoline_kprobe(p))
1186 arch_disarm_kprobe(p);
1187 }
1188 }
1189
1190 mutex_unlock(&kprobe_mutex);
1191 /* Allow all currently running kprobes to complete */
1192 synchronize_sched();
1193 return;
1194
1195 already_disabled:
1196 mutex_unlock(&kprobe_mutex);
1197 return;
1198 }
1199
1200 /*
1201 * XXX: The debugfs bool file interface doesn't allow for callbacks
1202 * when the bool state is switched. We can reuse that facility when
1203 * available
1204 */
1205 static ssize_t read_enabled_file_bool(struct file *file,
1206 char __user *user_buf, size_t count, loff_t *ppos)
1207 {
1208 char buf[3];
1209
1210 if (kprobe_enabled)
1211 buf[0] = '1';
1212 else
1213 buf[0] = '0';
1214 buf[1] = '\n';
1215 buf[2] = 0x00;
1216 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1217 }
1218
1219 static ssize_t write_enabled_file_bool(struct file *file,
1220 const char __user *user_buf, size_t count, loff_t *ppos)
1221 {
1222 char buf[32];
1223 int buf_size;
1224
1225 buf_size = min(count, (sizeof(buf)-1));
1226 if (copy_from_user(buf, user_buf, buf_size))
1227 return -EFAULT;
1228
1229 switch (buf[0]) {
1230 case 'y':
1231 case 'Y':
1232 case '1':
1233 enable_all_kprobes();
1234 break;
1235 case 'n':
1236 case 'N':
1237 case '0':
1238 disable_all_kprobes();
1239 break;
1240 }
1241
1242 return count;
1243 }
1244
1245 static struct file_operations fops_kp = {
1246 .read = read_enabled_file_bool,
1247 .write = write_enabled_file_bool,
1248 };
1249
1250 static int __kprobes debugfs_kprobe_init(void)
1251 {
1252 struct dentry *dir, *file;
1253 unsigned int value = 1;
1254
1255 dir = debugfs_create_dir("kprobes", NULL);
1256 if (!dir)
1257 return -ENOMEM;
1258
1259 file = debugfs_create_file("list", 0444, dir, NULL,
1260 &debugfs_kprobes_operations);
1261 if (!file) {
1262 debugfs_remove(dir);
1263 return -ENOMEM;
1264 }
1265
1266 file = debugfs_create_file("enabled", 0600, dir,
1267 &value, &fops_kp);
1268 if (!file) {
1269 debugfs_remove(dir);
1270 return -ENOMEM;
1271 }
1272
1273 return 0;
1274 }
1275
1276 late_initcall(debugfs_kprobe_init);
1277 #endif /* CONFIG_DEBUG_FS */
1278
1279 module_init(init_kprobes);
1280
1281 EXPORT_SYMBOL_GPL(register_kprobe);
1282 EXPORT_SYMBOL_GPL(unregister_kprobe);
1283 EXPORT_SYMBOL_GPL(register_kprobes);
1284 EXPORT_SYMBOL_GPL(unregister_kprobes);
1285 EXPORT_SYMBOL_GPL(register_jprobe);
1286 EXPORT_SYMBOL_GPL(unregister_jprobe);
1287 EXPORT_SYMBOL_GPL(register_jprobes);
1288 EXPORT_SYMBOL_GPL(unregister_jprobes);
1289 #ifdef CONFIG_KPROBES
1290 EXPORT_SYMBOL_GPL(jprobe_return);
1291 #endif
1292
1293 #ifdef CONFIG_KPROBES
1294 EXPORT_SYMBOL_GPL(register_kretprobe);
1295 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1296 EXPORT_SYMBOL_GPL(register_kretprobes);
1297 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1298 #endif
This page took 0.055965 seconds and 6 git commands to generate.