drm/rockchip: use for_each_endpoint_of_node macro, drop endpoint reference on break
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <asm/io.h>
38
39 #include "power.h"
40
41 static int swsusp_page_is_free(struct page *);
42 static void swsusp_set_page_forbidden(struct page *);
43 static void swsusp_unset_page_forbidden(struct page *);
44
45 /*
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
49 */
50 unsigned long reserved_size;
51
52 void __init hibernate_reserved_size_init(void)
53 {
54 reserved_size = SPARE_PAGES * PAGE_SIZE;
55 }
56
57 /*
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
62 */
63 unsigned long image_size;
64
65 void __init hibernate_image_size_init(void)
66 {
67 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68 }
69
70 /* List of PBEs needed for restoring the pages that were allocated before
71 * the suspend and included in the suspend image, but have also been
72 * allocated by the "resume" kernel, so their contents cannot be written
73 * directly to their "original" page frames.
74 */
75 struct pbe *restore_pblist;
76
77 /* Pointer to an auxiliary buffer (1 page) */
78 static void *buffer;
79
80 /**
81 * @safe_needed - on resume, for storing the PBE list and the image,
82 * we can only use memory pages that do not conflict with the pages
83 * used before suspend. The unsafe pages have PageNosaveFree set
84 * and we count them using unsafe_pages.
85 *
86 * Each allocated image page is marked as PageNosave and PageNosaveFree
87 * so that swsusp_free() can release it.
88 */
89
90 #define PG_ANY 0
91 #define PG_SAFE 1
92 #define PG_UNSAFE_CLEAR 1
93 #define PG_UNSAFE_KEEP 0
94
95 static unsigned int allocated_unsafe_pages;
96
97 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
98 {
99 void *res;
100
101 res = (void *)get_zeroed_page(gfp_mask);
102 if (safe_needed)
103 while (res && swsusp_page_is_free(virt_to_page(res))) {
104 /* The page is unsafe, mark it for swsusp_free() */
105 swsusp_set_page_forbidden(virt_to_page(res));
106 allocated_unsafe_pages++;
107 res = (void *)get_zeroed_page(gfp_mask);
108 }
109 if (res) {
110 swsusp_set_page_forbidden(virt_to_page(res));
111 swsusp_set_page_free(virt_to_page(res));
112 }
113 return res;
114 }
115
116 unsigned long get_safe_page(gfp_t gfp_mask)
117 {
118 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
119 }
120
121 static struct page *alloc_image_page(gfp_t gfp_mask)
122 {
123 struct page *page;
124
125 page = alloc_page(gfp_mask);
126 if (page) {
127 swsusp_set_page_forbidden(page);
128 swsusp_set_page_free(page);
129 }
130 return page;
131 }
132
133 /**
134 * free_image_page - free page represented by @addr, allocated with
135 * get_image_page (page flags set by it must be cleared)
136 */
137
138 static inline void free_image_page(void *addr, int clear_nosave_free)
139 {
140 struct page *page;
141
142 BUG_ON(!virt_addr_valid(addr));
143
144 page = virt_to_page(addr);
145
146 swsusp_unset_page_forbidden(page);
147 if (clear_nosave_free)
148 swsusp_unset_page_free(page);
149
150 __free_page(page);
151 }
152
153 /* struct linked_page is used to build chains of pages */
154
155 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
156
157 struct linked_page {
158 struct linked_page *next;
159 char data[LINKED_PAGE_DATA_SIZE];
160 } __packed;
161
162 static inline void
163 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
164 {
165 while (list) {
166 struct linked_page *lp = list->next;
167
168 free_image_page(list, clear_page_nosave);
169 list = lp;
170 }
171 }
172
173 /**
174 * struct chain_allocator is used for allocating small objects out of
175 * a linked list of pages called 'the chain'.
176 *
177 * The chain grows each time when there is no room for a new object in
178 * the current page. The allocated objects cannot be freed individually.
179 * It is only possible to free them all at once, by freeing the entire
180 * chain.
181 *
182 * NOTE: The chain allocator may be inefficient if the allocated objects
183 * are not much smaller than PAGE_SIZE.
184 */
185
186 struct chain_allocator {
187 struct linked_page *chain; /* the chain */
188 unsigned int used_space; /* total size of objects allocated out
189 * of the current page
190 */
191 gfp_t gfp_mask; /* mask for allocating pages */
192 int safe_needed; /* if set, only "safe" pages are allocated */
193 };
194
195 static void
196 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
197 {
198 ca->chain = NULL;
199 ca->used_space = LINKED_PAGE_DATA_SIZE;
200 ca->gfp_mask = gfp_mask;
201 ca->safe_needed = safe_needed;
202 }
203
204 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
205 {
206 void *ret;
207
208 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
209 struct linked_page *lp;
210
211 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
212 if (!lp)
213 return NULL;
214
215 lp->next = ca->chain;
216 ca->chain = lp;
217 ca->used_space = 0;
218 }
219 ret = ca->chain->data + ca->used_space;
220 ca->used_space += size;
221 return ret;
222 }
223
224 /**
225 * Data types related to memory bitmaps.
226 *
227 * Memory bitmap is a structure consiting of many linked lists of
228 * objects. The main list's elements are of type struct zone_bitmap
229 * and each of them corresonds to one zone. For each zone bitmap
230 * object there is a list of objects of type struct bm_block that
231 * represent each blocks of bitmap in which information is stored.
232 *
233 * struct memory_bitmap contains a pointer to the main list of zone
234 * bitmap objects, a struct bm_position used for browsing the bitmap,
235 * and a pointer to the list of pages used for allocating all of the
236 * zone bitmap objects and bitmap block objects.
237 *
238 * NOTE: It has to be possible to lay out the bitmap in memory
239 * using only allocations of order 0. Additionally, the bitmap is
240 * designed to work with arbitrary number of zones (this is over the
241 * top for now, but let's avoid making unnecessary assumptions ;-).
242 *
243 * struct zone_bitmap contains a pointer to a list of bitmap block
244 * objects and a pointer to the bitmap block object that has been
245 * most recently used for setting bits. Additionally, it contains the
246 * pfns that correspond to the start and end of the represented zone.
247 *
248 * struct bm_block contains a pointer to the memory page in which
249 * information is stored (in the form of a block of bitmap)
250 * It also contains the pfns that correspond to the start and end of
251 * the represented memory area.
252 *
253 * The memory bitmap is organized as a radix tree to guarantee fast random
254 * access to the bits. There is one radix tree for each zone (as returned
255 * from create_mem_extents).
256 *
257 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
258 * two linked lists for the nodes of the tree, one for the inner nodes and
259 * one for the leave nodes. The linked leave nodes are used for fast linear
260 * access of the memory bitmap.
261 *
262 * The struct rtree_node represents one node of the radix tree.
263 */
264
265 #define BM_END_OF_MAP (~0UL)
266
267 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
268 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
269 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
270
271 /*
272 * struct rtree_node is a wrapper struct to link the nodes
273 * of the rtree together for easy linear iteration over
274 * bits and easy freeing
275 */
276 struct rtree_node {
277 struct list_head list;
278 unsigned long *data;
279 };
280
281 /*
282 * struct mem_zone_bm_rtree represents a bitmap used for one
283 * populated memory zone.
284 */
285 struct mem_zone_bm_rtree {
286 struct list_head list; /* Link Zones together */
287 struct list_head nodes; /* Radix Tree inner nodes */
288 struct list_head leaves; /* Radix Tree leaves */
289 unsigned long start_pfn; /* Zone start page frame */
290 unsigned long end_pfn; /* Zone end page frame + 1 */
291 struct rtree_node *rtree; /* Radix Tree Root */
292 int levels; /* Number of Radix Tree Levels */
293 unsigned int blocks; /* Number of Bitmap Blocks */
294 };
295
296 /* strcut bm_position is used for browsing memory bitmaps */
297
298 struct bm_position {
299 struct mem_zone_bm_rtree *zone;
300 struct rtree_node *node;
301 unsigned long node_pfn;
302 int node_bit;
303 };
304
305 struct memory_bitmap {
306 struct list_head zones;
307 struct linked_page *p_list; /* list of pages used to store zone
308 * bitmap objects and bitmap block
309 * objects
310 */
311 struct bm_position cur; /* most recently used bit position */
312 };
313
314 /* Functions that operate on memory bitmaps */
315
316 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
317 #if BITS_PER_LONG == 32
318 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
319 #else
320 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
321 #endif
322 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
323
324 /*
325 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
326 *
327 * This function is used to allocate inner nodes as well as the
328 * leave nodes of the radix tree. It also adds the node to the
329 * corresponding linked list passed in by the *list parameter.
330 */
331 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
332 struct chain_allocator *ca,
333 struct list_head *list)
334 {
335 struct rtree_node *node;
336
337 node = chain_alloc(ca, sizeof(struct rtree_node));
338 if (!node)
339 return NULL;
340
341 node->data = get_image_page(gfp_mask, safe_needed);
342 if (!node->data)
343 return NULL;
344
345 list_add_tail(&node->list, list);
346
347 return node;
348 }
349
350 /*
351 * add_rtree_block - Add a new leave node to the radix tree
352 *
353 * The leave nodes need to be allocated in order to keep the leaves
354 * linked list in order. This is guaranteed by the zone->blocks
355 * counter.
356 */
357 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
358 int safe_needed, struct chain_allocator *ca)
359 {
360 struct rtree_node *node, *block, **dst;
361 unsigned int levels_needed, block_nr;
362 int i;
363
364 block_nr = zone->blocks;
365 levels_needed = 0;
366
367 /* How many levels do we need for this block nr? */
368 while (block_nr) {
369 levels_needed += 1;
370 block_nr >>= BM_RTREE_LEVEL_SHIFT;
371 }
372
373 /* Make sure the rtree has enough levels */
374 for (i = zone->levels; i < levels_needed; i++) {
375 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
376 &zone->nodes);
377 if (!node)
378 return -ENOMEM;
379
380 node->data[0] = (unsigned long)zone->rtree;
381 zone->rtree = node;
382 zone->levels += 1;
383 }
384
385 /* Allocate new block */
386 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
387 if (!block)
388 return -ENOMEM;
389
390 /* Now walk the rtree to insert the block */
391 node = zone->rtree;
392 dst = &zone->rtree;
393 block_nr = zone->blocks;
394 for (i = zone->levels; i > 0; i--) {
395 int index;
396
397 if (!node) {
398 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
399 &zone->nodes);
400 if (!node)
401 return -ENOMEM;
402 *dst = node;
403 }
404
405 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
406 index &= BM_RTREE_LEVEL_MASK;
407 dst = (struct rtree_node **)&((*dst)->data[index]);
408 node = *dst;
409 }
410
411 zone->blocks += 1;
412 *dst = block;
413
414 return 0;
415 }
416
417 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
418 int clear_nosave_free);
419
420 /*
421 * create_zone_bm_rtree - create a radix tree for one zone
422 *
423 * Allocated the mem_zone_bm_rtree structure and initializes it.
424 * This function also allocated and builds the radix tree for the
425 * zone.
426 */
427 static struct mem_zone_bm_rtree *
428 create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
429 struct chain_allocator *ca,
430 unsigned long start, unsigned long end)
431 {
432 struct mem_zone_bm_rtree *zone;
433 unsigned int i, nr_blocks;
434 unsigned long pages;
435
436 pages = end - start;
437 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
438 if (!zone)
439 return NULL;
440
441 INIT_LIST_HEAD(&zone->nodes);
442 INIT_LIST_HEAD(&zone->leaves);
443 zone->start_pfn = start;
444 zone->end_pfn = end;
445 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
446
447 for (i = 0; i < nr_blocks; i++) {
448 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
449 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
450 return NULL;
451 }
452 }
453
454 return zone;
455 }
456
457 /*
458 * free_zone_bm_rtree - Free the memory of the radix tree
459 *
460 * Free all node pages of the radix tree. The mem_zone_bm_rtree
461 * structure itself is not freed here nor are the rtree_node
462 * structs.
463 */
464 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
465 int clear_nosave_free)
466 {
467 struct rtree_node *node;
468
469 list_for_each_entry(node, &zone->nodes, list)
470 free_image_page(node->data, clear_nosave_free);
471
472 list_for_each_entry(node, &zone->leaves, list)
473 free_image_page(node->data, clear_nosave_free);
474 }
475
476 static void memory_bm_position_reset(struct memory_bitmap *bm)
477 {
478 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
479 list);
480 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
481 struct rtree_node, list);
482 bm->cur.node_pfn = 0;
483 bm->cur.node_bit = 0;
484 }
485
486 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
487
488 struct mem_extent {
489 struct list_head hook;
490 unsigned long start;
491 unsigned long end;
492 };
493
494 /**
495 * free_mem_extents - free a list of memory extents
496 * @list - list of extents to empty
497 */
498 static void free_mem_extents(struct list_head *list)
499 {
500 struct mem_extent *ext, *aux;
501
502 list_for_each_entry_safe(ext, aux, list, hook) {
503 list_del(&ext->hook);
504 kfree(ext);
505 }
506 }
507
508 /**
509 * create_mem_extents - create a list of memory extents representing
510 * contiguous ranges of PFNs
511 * @list - list to put the extents into
512 * @gfp_mask - mask to use for memory allocations
513 */
514 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
515 {
516 struct zone *zone;
517
518 INIT_LIST_HEAD(list);
519
520 for_each_populated_zone(zone) {
521 unsigned long zone_start, zone_end;
522 struct mem_extent *ext, *cur, *aux;
523
524 zone_start = zone->zone_start_pfn;
525 zone_end = zone_end_pfn(zone);
526
527 list_for_each_entry(ext, list, hook)
528 if (zone_start <= ext->end)
529 break;
530
531 if (&ext->hook == list || zone_end < ext->start) {
532 /* New extent is necessary */
533 struct mem_extent *new_ext;
534
535 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
536 if (!new_ext) {
537 free_mem_extents(list);
538 return -ENOMEM;
539 }
540 new_ext->start = zone_start;
541 new_ext->end = zone_end;
542 list_add_tail(&new_ext->hook, &ext->hook);
543 continue;
544 }
545
546 /* Merge this zone's range of PFNs with the existing one */
547 if (zone_start < ext->start)
548 ext->start = zone_start;
549 if (zone_end > ext->end)
550 ext->end = zone_end;
551
552 /* More merging may be possible */
553 cur = ext;
554 list_for_each_entry_safe_continue(cur, aux, list, hook) {
555 if (zone_end < cur->start)
556 break;
557 if (zone_end < cur->end)
558 ext->end = cur->end;
559 list_del(&cur->hook);
560 kfree(cur);
561 }
562 }
563
564 return 0;
565 }
566
567 /**
568 * memory_bm_create - allocate memory for a memory bitmap
569 */
570 static int
571 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
572 {
573 struct chain_allocator ca;
574 struct list_head mem_extents;
575 struct mem_extent *ext;
576 int error;
577
578 chain_init(&ca, gfp_mask, safe_needed);
579 INIT_LIST_HEAD(&bm->zones);
580
581 error = create_mem_extents(&mem_extents, gfp_mask);
582 if (error)
583 return error;
584
585 list_for_each_entry(ext, &mem_extents, hook) {
586 struct mem_zone_bm_rtree *zone;
587
588 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
589 ext->start, ext->end);
590 if (!zone) {
591 error = -ENOMEM;
592 goto Error;
593 }
594 list_add_tail(&zone->list, &bm->zones);
595 }
596
597 bm->p_list = ca.chain;
598 memory_bm_position_reset(bm);
599 Exit:
600 free_mem_extents(&mem_extents);
601 return error;
602
603 Error:
604 bm->p_list = ca.chain;
605 memory_bm_free(bm, PG_UNSAFE_CLEAR);
606 goto Exit;
607 }
608
609 /**
610 * memory_bm_free - free memory occupied by the memory bitmap @bm
611 */
612 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
613 {
614 struct mem_zone_bm_rtree *zone;
615
616 list_for_each_entry(zone, &bm->zones, list)
617 free_zone_bm_rtree(zone, clear_nosave_free);
618
619 free_list_of_pages(bm->p_list, clear_nosave_free);
620
621 INIT_LIST_HEAD(&bm->zones);
622 }
623
624 /**
625 * memory_bm_find_bit - Find the bit for pfn in the memory
626 * bitmap
627 *
628 * Find the bit in the bitmap @bm that corresponds to given pfn.
629 * The cur.zone, cur.block and cur.node_pfn member of @bm are
630 * updated.
631 * It walks the radix tree to find the page which contains the bit for
632 * pfn and returns the bit position in **addr and *bit_nr.
633 */
634 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
635 void **addr, unsigned int *bit_nr)
636 {
637 struct mem_zone_bm_rtree *curr, *zone;
638 struct rtree_node *node;
639 int i, block_nr;
640
641 zone = bm->cur.zone;
642
643 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
644 goto zone_found;
645
646 zone = NULL;
647
648 /* Find the right zone */
649 list_for_each_entry(curr, &bm->zones, list) {
650 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
651 zone = curr;
652 break;
653 }
654 }
655
656 if (!zone)
657 return -EFAULT;
658
659 zone_found:
660 /*
661 * We have a zone. Now walk the radix tree to find the leave
662 * node for our pfn.
663 */
664
665 node = bm->cur.node;
666 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
667 goto node_found;
668
669 node = zone->rtree;
670 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
671
672 for (i = zone->levels; i > 0; i--) {
673 int index;
674
675 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
676 index &= BM_RTREE_LEVEL_MASK;
677 BUG_ON(node->data[index] == 0);
678 node = (struct rtree_node *)node->data[index];
679 }
680
681 node_found:
682 /* Update last position */
683 bm->cur.zone = zone;
684 bm->cur.node = node;
685 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
686
687 /* Set return values */
688 *addr = node->data;
689 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
690
691 return 0;
692 }
693
694 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
695 {
696 void *addr;
697 unsigned int bit;
698 int error;
699
700 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
701 BUG_ON(error);
702 set_bit(bit, addr);
703 }
704
705 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
706 {
707 void *addr;
708 unsigned int bit;
709 int error;
710
711 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
712 if (!error)
713 set_bit(bit, addr);
714
715 return error;
716 }
717
718 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
719 {
720 void *addr;
721 unsigned int bit;
722 int error;
723
724 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
725 BUG_ON(error);
726 clear_bit(bit, addr);
727 }
728
729 static void memory_bm_clear_current(struct memory_bitmap *bm)
730 {
731 int bit;
732
733 bit = max(bm->cur.node_bit - 1, 0);
734 clear_bit(bit, bm->cur.node->data);
735 }
736
737 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
738 {
739 void *addr;
740 unsigned int bit;
741 int error;
742
743 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
744 BUG_ON(error);
745 return test_bit(bit, addr);
746 }
747
748 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
749 {
750 void *addr;
751 unsigned int bit;
752
753 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
754 }
755
756 /*
757 * rtree_next_node - Jumps to the next leave node
758 *
759 * Sets the position to the beginning of the next node in the
760 * memory bitmap. This is either the next node in the current
761 * zone's radix tree or the first node in the radix tree of the
762 * next zone.
763 *
764 * Returns true if there is a next node, false otherwise.
765 */
766 static bool rtree_next_node(struct memory_bitmap *bm)
767 {
768 bm->cur.node = list_entry(bm->cur.node->list.next,
769 struct rtree_node, list);
770 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
771 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
772 bm->cur.node_bit = 0;
773 touch_softlockup_watchdog();
774 return true;
775 }
776
777 /* No more nodes, goto next zone */
778 bm->cur.zone = list_entry(bm->cur.zone->list.next,
779 struct mem_zone_bm_rtree, list);
780 if (&bm->cur.zone->list != &bm->zones) {
781 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
782 struct rtree_node, list);
783 bm->cur.node_pfn = 0;
784 bm->cur.node_bit = 0;
785 return true;
786 }
787
788 /* No more zones */
789 return false;
790 }
791
792 /**
793 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
794 *
795 * Starting from the last returned position this function searches
796 * for the next set bit in the memory bitmap and returns its
797 * number. If no more bit is set BM_END_OF_MAP is returned.
798 *
799 * It is required to run memory_bm_position_reset() before the
800 * first call to this function.
801 */
802 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
803 {
804 unsigned long bits, pfn, pages;
805 int bit;
806
807 do {
808 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
809 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
810 bit = find_next_bit(bm->cur.node->data, bits,
811 bm->cur.node_bit);
812 if (bit < bits) {
813 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
814 bm->cur.node_bit = bit + 1;
815 return pfn;
816 }
817 } while (rtree_next_node(bm));
818
819 return BM_END_OF_MAP;
820 }
821
822 /**
823 * This structure represents a range of page frames the contents of which
824 * should not be saved during the suspend.
825 */
826
827 struct nosave_region {
828 struct list_head list;
829 unsigned long start_pfn;
830 unsigned long end_pfn;
831 };
832
833 static LIST_HEAD(nosave_regions);
834
835 /**
836 * register_nosave_region - register a range of page frames the contents
837 * of which should not be saved during the suspend (to be used in the early
838 * initialization code)
839 */
840
841 void __init
842 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
843 int use_kmalloc)
844 {
845 struct nosave_region *region;
846
847 if (start_pfn >= end_pfn)
848 return;
849
850 if (!list_empty(&nosave_regions)) {
851 /* Try to extend the previous region (they should be sorted) */
852 region = list_entry(nosave_regions.prev,
853 struct nosave_region, list);
854 if (region->end_pfn == start_pfn) {
855 region->end_pfn = end_pfn;
856 goto Report;
857 }
858 }
859 if (use_kmalloc) {
860 /* during init, this shouldn't fail */
861 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
862 BUG_ON(!region);
863 } else
864 /* This allocation cannot fail */
865 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
866 region->start_pfn = start_pfn;
867 region->end_pfn = end_pfn;
868 list_add_tail(&region->list, &nosave_regions);
869 Report:
870 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
871 (unsigned long long) start_pfn << PAGE_SHIFT,
872 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
873 }
874
875 /*
876 * Set bits in this map correspond to the page frames the contents of which
877 * should not be saved during the suspend.
878 */
879 static struct memory_bitmap *forbidden_pages_map;
880
881 /* Set bits in this map correspond to free page frames. */
882 static struct memory_bitmap *free_pages_map;
883
884 /*
885 * Each page frame allocated for creating the image is marked by setting the
886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
887 */
888
889 void swsusp_set_page_free(struct page *page)
890 {
891 if (free_pages_map)
892 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
893 }
894
895 static int swsusp_page_is_free(struct page *page)
896 {
897 return free_pages_map ?
898 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
899 }
900
901 void swsusp_unset_page_free(struct page *page)
902 {
903 if (free_pages_map)
904 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
905 }
906
907 static void swsusp_set_page_forbidden(struct page *page)
908 {
909 if (forbidden_pages_map)
910 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
911 }
912
913 int swsusp_page_is_forbidden(struct page *page)
914 {
915 return forbidden_pages_map ?
916 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
917 }
918
919 static void swsusp_unset_page_forbidden(struct page *page)
920 {
921 if (forbidden_pages_map)
922 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
923 }
924
925 /**
926 * mark_nosave_pages - set bits corresponding to the page frames the
927 * contents of which should not be saved in a given bitmap.
928 */
929
930 static void mark_nosave_pages(struct memory_bitmap *bm)
931 {
932 struct nosave_region *region;
933
934 if (list_empty(&nosave_regions))
935 return;
936
937 list_for_each_entry(region, &nosave_regions, list) {
938 unsigned long pfn;
939
940 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
941 (unsigned long long) region->start_pfn << PAGE_SHIFT,
942 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
943 - 1);
944
945 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
946 if (pfn_valid(pfn)) {
947 /*
948 * It is safe to ignore the result of
949 * mem_bm_set_bit_check() here, since we won't
950 * touch the PFNs for which the error is
951 * returned anyway.
952 */
953 mem_bm_set_bit_check(bm, pfn);
954 }
955 }
956 }
957
958 static bool is_nosave_page(unsigned long pfn)
959 {
960 struct nosave_region *region;
961
962 list_for_each_entry(region, &nosave_regions, list) {
963 if (pfn >= region->start_pfn && pfn < region->end_pfn) {
964 pr_err("PM: %#010llx in e820 nosave region: "
965 "[mem %#010llx-%#010llx]\n",
966 (unsigned long long) pfn << PAGE_SHIFT,
967 (unsigned long long) region->start_pfn << PAGE_SHIFT,
968 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
969 - 1);
970 return true;
971 }
972 }
973
974 return false;
975 }
976
977 /**
978 * create_basic_memory_bitmaps - create bitmaps needed for marking page
979 * frames that should not be saved and free page frames. The pointers
980 * forbidden_pages_map and free_pages_map are only modified if everything
981 * goes well, because we don't want the bits to be used before both bitmaps
982 * are set up.
983 */
984
985 int create_basic_memory_bitmaps(void)
986 {
987 struct memory_bitmap *bm1, *bm2;
988 int error = 0;
989
990 if (forbidden_pages_map && free_pages_map)
991 return 0;
992 else
993 BUG_ON(forbidden_pages_map || free_pages_map);
994
995 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
996 if (!bm1)
997 return -ENOMEM;
998
999 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1000 if (error)
1001 goto Free_first_object;
1002
1003 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1004 if (!bm2)
1005 goto Free_first_bitmap;
1006
1007 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1008 if (error)
1009 goto Free_second_object;
1010
1011 forbidden_pages_map = bm1;
1012 free_pages_map = bm2;
1013 mark_nosave_pages(forbidden_pages_map);
1014
1015 pr_debug("PM: Basic memory bitmaps created\n");
1016
1017 return 0;
1018
1019 Free_second_object:
1020 kfree(bm2);
1021 Free_first_bitmap:
1022 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1023 Free_first_object:
1024 kfree(bm1);
1025 return -ENOMEM;
1026 }
1027
1028 /**
1029 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1030 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1031 * so that the bitmaps themselves are not referred to while they are being
1032 * freed.
1033 */
1034
1035 void free_basic_memory_bitmaps(void)
1036 {
1037 struct memory_bitmap *bm1, *bm2;
1038
1039 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1040 return;
1041
1042 bm1 = forbidden_pages_map;
1043 bm2 = free_pages_map;
1044 forbidden_pages_map = NULL;
1045 free_pages_map = NULL;
1046 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1047 kfree(bm1);
1048 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1049 kfree(bm2);
1050
1051 pr_debug("PM: Basic memory bitmaps freed\n");
1052 }
1053
1054 /**
1055 * snapshot_additional_pages - estimate the number of additional pages
1056 * be needed for setting up the suspend image data structures for given
1057 * zone (usually the returned value is greater than the exact number)
1058 */
1059
1060 unsigned int snapshot_additional_pages(struct zone *zone)
1061 {
1062 unsigned int rtree, nodes;
1063
1064 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1065 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1066 LINKED_PAGE_DATA_SIZE);
1067 while (nodes > 1) {
1068 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1069 rtree += nodes;
1070 }
1071
1072 return 2 * rtree;
1073 }
1074
1075 #ifdef CONFIG_HIGHMEM
1076 /**
1077 * count_free_highmem_pages - compute the total number of free highmem
1078 * pages, system-wide.
1079 */
1080
1081 static unsigned int count_free_highmem_pages(void)
1082 {
1083 struct zone *zone;
1084 unsigned int cnt = 0;
1085
1086 for_each_populated_zone(zone)
1087 if (is_highmem(zone))
1088 cnt += zone_page_state(zone, NR_FREE_PAGES);
1089
1090 return cnt;
1091 }
1092
1093 /**
1094 * saveable_highmem_page - Determine whether a highmem page should be
1095 * included in the suspend image.
1096 *
1097 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1098 * and it isn't a part of a free chunk of pages.
1099 */
1100 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1101 {
1102 struct page *page;
1103
1104 if (!pfn_valid(pfn))
1105 return NULL;
1106
1107 page = pfn_to_page(pfn);
1108 if (page_zone(page) != zone)
1109 return NULL;
1110
1111 BUG_ON(!PageHighMem(page));
1112
1113 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1114 PageReserved(page))
1115 return NULL;
1116
1117 if (page_is_guard(page))
1118 return NULL;
1119
1120 return page;
1121 }
1122
1123 /**
1124 * count_highmem_pages - compute the total number of saveable highmem
1125 * pages.
1126 */
1127
1128 static unsigned int count_highmem_pages(void)
1129 {
1130 struct zone *zone;
1131 unsigned int n = 0;
1132
1133 for_each_populated_zone(zone) {
1134 unsigned long pfn, max_zone_pfn;
1135
1136 if (!is_highmem(zone))
1137 continue;
1138
1139 mark_free_pages(zone);
1140 max_zone_pfn = zone_end_pfn(zone);
1141 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1142 if (saveable_highmem_page(zone, pfn))
1143 n++;
1144 }
1145 return n;
1146 }
1147 #else
1148 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1149 {
1150 return NULL;
1151 }
1152 #endif /* CONFIG_HIGHMEM */
1153
1154 /**
1155 * saveable_page - Determine whether a non-highmem page should be included
1156 * in the suspend image.
1157 *
1158 * We should save the page if it isn't Nosave, and is not in the range
1159 * of pages statically defined as 'unsaveable', and it isn't a part of
1160 * a free chunk of pages.
1161 */
1162 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1163 {
1164 struct page *page;
1165
1166 if (!pfn_valid(pfn))
1167 return NULL;
1168
1169 page = pfn_to_page(pfn);
1170 if (page_zone(page) != zone)
1171 return NULL;
1172
1173 BUG_ON(PageHighMem(page));
1174
1175 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1176 return NULL;
1177
1178 if (PageReserved(page)
1179 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1180 return NULL;
1181
1182 if (page_is_guard(page))
1183 return NULL;
1184
1185 return page;
1186 }
1187
1188 /**
1189 * count_data_pages - compute the total number of saveable non-highmem
1190 * pages.
1191 */
1192
1193 static unsigned int count_data_pages(void)
1194 {
1195 struct zone *zone;
1196 unsigned long pfn, max_zone_pfn;
1197 unsigned int n = 0;
1198
1199 for_each_populated_zone(zone) {
1200 if (is_highmem(zone))
1201 continue;
1202
1203 mark_free_pages(zone);
1204 max_zone_pfn = zone_end_pfn(zone);
1205 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1206 if (saveable_page(zone, pfn))
1207 n++;
1208 }
1209 return n;
1210 }
1211
1212 /* This is needed, because copy_page and memcpy are not usable for copying
1213 * task structs.
1214 */
1215 static inline void do_copy_page(long *dst, long *src)
1216 {
1217 int n;
1218
1219 for (n = PAGE_SIZE / sizeof(long); n; n--)
1220 *dst++ = *src++;
1221 }
1222
1223
1224 /**
1225 * safe_copy_page - check if the page we are going to copy is marked as
1226 * present in the kernel page tables (this always is the case if
1227 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1228 * kernel_page_present() always returns 'true').
1229 */
1230 static void safe_copy_page(void *dst, struct page *s_page)
1231 {
1232 if (kernel_page_present(s_page)) {
1233 do_copy_page(dst, page_address(s_page));
1234 } else {
1235 kernel_map_pages(s_page, 1, 1);
1236 do_copy_page(dst, page_address(s_page));
1237 kernel_map_pages(s_page, 1, 0);
1238 }
1239 }
1240
1241
1242 #ifdef CONFIG_HIGHMEM
1243 static inline struct page *
1244 page_is_saveable(struct zone *zone, unsigned long pfn)
1245 {
1246 return is_highmem(zone) ?
1247 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1248 }
1249
1250 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1251 {
1252 struct page *s_page, *d_page;
1253 void *src, *dst;
1254
1255 s_page = pfn_to_page(src_pfn);
1256 d_page = pfn_to_page(dst_pfn);
1257 if (PageHighMem(s_page)) {
1258 src = kmap_atomic(s_page);
1259 dst = kmap_atomic(d_page);
1260 do_copy_page(dst, src);
1261 kunmap_atomic(dst);
1262 kunmap_atomic(src);
1263 } else {
1264 if (PageHighMem(d_page)) {
1265 /* Page pointed to by src may contain some kernel
1266 * data modified by kmap_atomic()
1267 */
1268 safe_copy_page(buffer, s_page);
1269 dst = kmap_atomic(d_page);
1270 copy_page(dst, buffer);
1271 kunmap_atomic(dst);
1272 } else {
1273 safe_copy_page(page_address(d_page), s_page);
1274 }
1275 }
1276 }
1277 #else
1278 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1279
1280 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1281 {
1282 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1283 pfn_to_page(src_pfn));
1284 }
1285 #endif /* CONFIG_HIGHMEM */
1286
1287 static void
1288 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1289 {
1290 struct zone *zone;
1291 unsigned long pfn;
1292
1293 for_each_populated_zone(zone) {
1294 unsigned long max_zone_pfn;
1295
1296 mark_free_pages(zone);
1297 max_zone_pfn = zone_end_pfn(zone);
1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299 if (page_is_saveable(zone, pfn))
1300 memory_bm_set_bit(orig_bm, pfn);
1301 }
1302 memory_bm_position_reset(orig_bm);
1303 memory_bm_position_reset(copy_bm);
1304 for(;;) {
1305 pfn = memory_bm_next_pfn(orig_bm);
1306 if (unlikely(pfn == BM_END_OF_MAP))
1307 break;
1308 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1309 }
1310 }
1311
1312 /* Total number of image pages */
1313 static unsigned int nr_copy_pages;
1314 /* Number of pages needed for saving the original pfns of the image pages */
1315 static unsigned int nr_meta_pages;
1316 /*
1317 * Numbers of normal and highmem page frames allocated for hibernation image
1318 * before suspending devices.
1319 */
1320 unsigned int alloc_normal, alloc_highmem;
1321 /*
1322 * Memory bitmap used for marking saveable pages (during hibernation) or
1323 * hibernation image pages (during restore)
1324 */
1325 static struct memory_bitmap orig_bm;
1326 /*
1327 * Memory bitmap used during hibernation for marking allocated page frames that
1328 * will contain copies of saveable pages. During restore it is initially used
1329 * for marking hibernation image pages, but then the set bits from it are
1330 * duplicated in @orig_bm and it is released. On highmem systems it is next
1331 * used for marking "safe" highmem pages, but it has to be reinitialized for
1332 * this purpose.
1333 */
1334 static struct memory_bitmap copy_bm;
1335
1336 /**
1337 * swsusp_free - free pages allocated for the suspend.
1338 *
1339 * Suspend pages are alocated before the atomic copy is made, so we
1340 * need to release them after the resume.
1341 */
1342
1343 void swsusp_free(void)
1344 {
1345 unsigned long fb_pfn, fr_pfn;
1346
1347 if (!forbidden_pages_map || !free_pages_map)
1348 goto out;
1349
1350 memory_bm_position_reset(forbidden_pages_map);
1351 memory_bm_position_reset(free_pages_map);
1352
1353 loop:
1354 fr_pfn = memory_bm_next_pfn(free_pages_map);
1355 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1356
1357 /*
1358 * Find the next bit set in both bitmaps. This is guaranteed to
1359 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1360 */
1361 do {
1362 if (fb_pfn < fr_pfn)
1363 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1364 if (fr_pfn < fb_pfn)
1365 fr_pfn = memory_bm_next_pfn(free_pages_map);
1366 } while (fb_pfn != fr_pfn);
1367
1368 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1369 struct page *page = pfn_to_page(fr_pfn);
1370
1371 memory_bm_clear_current(forbidden_pages_map);
1372 memory_bm_clear_current(free_pages_map);
1373 __free_page(page);
1374 goto loop;
1375 }
1376
1377 out:
1378 nr_copy_pages = 0;
1379 nr_meta_pages = 0;
1380 restore_pblist = NULL;
1381 buffer = NULL;
1382 alloc_normal = 0;
1383 alloc_highmem = 0;
1384 }
1385
1386 /* Helper functions used for the shrinking of memory. */
1387
1388 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1389
1390 /**
1391 * preallocate_image_pages - Allocate a number of pages for hibernation image
1392 * @nr_pages: Number of page frames to allocate.
1393 * @mask: GFP flags to use for the allocation.
1394 *
1395 * Return value: Number of page frames actually allocated
1396 */
1397 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1398 {
1399 unsigned long nr_alloc = 0;
1400
1401 while (nr_pages > 0) {
1402 struct page *page;
1403
1404 page = alloc_image_page(mask);
1405 if (!page)
1406 break;
1407 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1408 if (PageHighMem(page))
1409 alloc_highmem++;
1410 else
1411 alloc_normal++;
1412 nr_pages--;
1413 nr_alloc++;
1414 }
1415
1416 return nr_alloc;
1417 }
1418
1419 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1420 unsigned long avail_normal)
1421 {
1422 unsigned long alloc;
1423
1424 if (avail_normal <= alloc_normal)
1425 return 0;
1426
1427 alloc = avail_normal - alloc_normal;
1428 if (nr_pages < alloc)
1429 alloc = nr_pages;
1430
1431 return preallocate_image_pages(alloc, GFP_IMAGE);
1432 }
1433
1434 #ifdef CONFIG_HIGHMEM
1435 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1436 {
1437 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1438 }
1439
1440 /**
1441 * __fraction - Compute (an approximation of) x * (multiplier / base)
1442 */
1443 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1444 {
1445 x *= multiplier;
1446 do_div(x, base);
1447 return (unsigned long)x;
1448 }
1449
1450 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1451 unsigned long highmem,
1452 unsigned long total)
1453 {
1454 unsigned long alloc = __fraction(nr_pages, highmem, total);
1455
1456 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1457 }
1458 #else /* CONFIG_HIGHMEM */
1459 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1460 {
1461 return 0;
1462 }
1463
1464 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1465 unsigned long highmem,
1466 unsigned long total)
1467 {
1468 return 0;
1469 }
1470 #endif /* CONFIG_HIGHMEM */
1471
1472 /**
1473 * free_unnecessary_pages - Release preallocated pages not needed for the image
1474 */
1475 static unsigned long free_unnecessary_pages(void)
1476 {
1477 unsigned long save, to_free_normal, to_free_highmem, free;
1478
1479 save = count_data_pages();
1480 if (alloc_normal >= save) {
1481 to_free_normal = alloc_normal - save;
1482 save = 0;
1483 } else {
1484 to_free_normal = 0;
1485 save -= alloc_normal;
1486 }
1487 save += count_highmem_pages();
1488 if (alloc_highmem >= save) {
1489 to_free_highmem = alloc_highmem - save;
1490 } else {
1491 to_free_highmem = 0;
1492 save -= alloc_highmem;
1493 if (to_free_normal > save)
1494 to_free_normal -= save;
1495 else
1496 to_free_normal = 0;
1497 }
1498 free = to_free_normal + to_free_highmem;
1499
1500 memory_bm_position_reset(&copy_bm);
1501
1502 while (to_free_normal > 0 || to_free_highmem > 0) {
1503 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1504 struct page *page = pfn_to_page(pfn);
1505
1506 if (PageHighMem(page)) {
1507 if (!to_free_highmem)
1508 continue;
1509 to_free_highmem--;
1510 alloc_highmem--;
1511 } else {
1512 if (!to_free_normal)
1513 continue;
1514 to_free_normal--;
1515 alloc_normal--;
1516 }
1517 memory_bm_clear_bit(&copy_bm, pfn);
1518 swsusp_unset_page_forbidden(page);
1519 swsusp_unset_page_free(page);
1520 __free_page(page);
1521 }
1522
1523 return free;
1524 }
1525
1526 /**
1527 * minimum_image_size - Estimate the minimum acceptable size of an image
1528 * @saveable: Number of saveable pages in the system.
1529 *
1530 * We want to avoid attempting to free too much memory too hard, so estimate the
1531 * minimum acceptable size of a hibernation image to use as the lower limit for
1532 * preallocating memory.
1533 *
1534 * We assume that the minimum image size should be proportional to
1535 *
1536 * [number of saveable pages] - [number of pages that can be freed in theory]
1537 *
1538 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1539 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1540 * minus mapped file pages.
1541 */
1542 static unsigned long minimum_image_size(unsigned long saveable)
1543 {
1544 unsigned long size;
1545
1546 size = global_page_state(NR_SLAB_RECLAIMABLE)
1547 + global_page_state(NR_ACTIVE_ANON)
1548 + global_page_state(NR_INACTIVE_ANON)
1549 + global_page_state(NR_ACTIVE_FILE)
1550 + global_page_state(NR_INACTIVE_FILE)
1551 - global_page_state(NR_FILE_MAPPED);
1552
1553 return saveable <= size ? 0 : saveable - size;
1554 }
1555
1556 /**
1557 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1558 *
1559 * To create a hibernation image it is necessary to make a copy of every page
1560 * frame in use. We also need a number of page frames to be free during
1561 * hibernation for allocations made while saving the image and for device
1562 * drivers, in case they need to allocate memory from their hibernation
1563 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1564 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1565 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1566 * total number of available page frames and allocate at least
1567 *
1568 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1569 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1570 *
1571 * of them, which corresponds to the maximum size of a hibernation image.
1572 *
1573 * If image_size is set below the number following from the above formula,
1574 * the preallocation of memory is continued until the total number of saveable
1575 * pages in the system is below the requested image size or the minimum
1576 * acceptable image size returned by minimum_image_size(), whichever is greater.
1577 */
1578 int hibernate_preallocate_memory(void)
1579 {
1580 struct zone *zone;
1581 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1582 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1583 ktime_t start, stop;
1584 int error;
1585
1586 printk(KERN_INFO "PM: Preallocating image memory... ");
1587 start = ktime_get();
1588
1589 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1590 if (error)
1591 goto err_out;
1592
1593 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1594 if (error)
1595 goto err_out;
1596
1597 alloc_normal = 0;
1598 alloc_highmem = 0;
1599
1600 /* Count the number of saveable data pages. */
1601 save_highmem = count_highmem_pages();
1602 saveable = count_data_pages();
1603
1604 /*
1605 * Compute the total number of page frames we can use (count) and the
1606 * number of pages needed for image metadata (size).
1607 */
1608 count = saveable;
1609 saveable += save_highmem;
1610 highmem = save_highmem;
1611 size = 0;
1612 for_each_populated_zone(zone) {
1613 size += snapshot_additional_pages(zone);
1614 if (is_highmem(zone))
1615 highmem += zone_page_state(zone, NR_FREE_PAGES);
1616 else
1617 count += zone_page_state(zone, NR_FREE_PAGES);
1618 }
1619 avail_normal = count;
1620 count += highmem;
1621 count -= totalreserve_pages;
1622
1623 /* Add number of pages required for page keys (s390 only). */
1624 size += page_key_additional_pages(saveable);
1625
1626 /* Compute the maximum number of saveable pages to leave in memory. */
1627 max_size = (count - (size + PAGES_FOR_IO)) / 2
1628 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1629 /* Compute the desired number of image pages specified by image_size. */
1630 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1631 if (size > max_size)
1632 size = max_size;
1633 /*
1634 * If the desired number of image pages is at least as large as the
1635 * current number of saveable pages in memory, allocate page frames for
1636 * the image and we're done.
1637 */
1638 if (size >= saveable) {
1639 pages = preallocate_image_highmem(save_highmem);
1640 pages += preallocate_image_memory(saveable - pages, avail_normal);
1641 goto out;
1642 }
1643
1644 /* Estimate the minimum size of the image. */
1645 pages = minimum_image_size(saveable);
1646 /*
1647 * To avoid excessive pressure on the normal zone, leave room in it to
1648 * accommodate an image of the minimum size (unless it's already too
1649 * small, in which case don't preallocate pages from it at all).
1650 */
1651 if (avail_normal > pages)
1652 avail_normal -= pages;
1653 else
1654 avail_normal = 0;
1655 if (size < pages)
1656 size = min_t(unsigned long, pages, max_size);
1657
1658 /*
1659 * Let the memory management subsystem know that we're going to need a
1660 * large number of page frames to allocate and make it free some memory.
1661 * NOTE: If this is not done, performance will be hurt badly in some
1662 * test cases.
1663 */
1664 shrink_all_memory(saveable - size);
1665
1666 /*
1667 * The number of saveable pages in memory was too high, so apply some
1668 * pressure to decrease it. First, make room for the largest possible
1669 * image and fail if that doesn't work. Next, try to decrease the size
1670 * of the image as much as indicated by 'size' using allocations from
1671 * highmem and non-highmem zones separately.
1672 */
1673 pages_highmem = preallocate_image_highmem(highmem / 2);
1674 alloc = count - max_size;
1675 if (alloc > pages_highmem)
1676 alloc -= pages_highmem;
1677 else
1678 alloc = 0;
1679 pages = preallocate_image_memory(alloc, avail_normal);
1680 if (pages < alloc) {
1681 /* We have exhausted non-highmem pages, try highmem. */
1682 alloc -= pages;
1683 pages += pages_highmem;
1684 pages_highmem = preallocate_image_highmem(alloc);
1685 if (pages_highmem < alloc)
1686 goto err_out;
1687 pages += pages_highmem;
1688 /*
1689 * size is the desired number of saveable pages to leave in
1690 * memory, so try to preallocate (all memory - size) pages.
1691 */
1692 alloc = (count - pages) - size;
1693 pages += preallocate_image_highmem(alloc);
1694 } else {
1695 /*
1696 * There are approximately max_size saveable pages at this point
1697 * and we want to reduce this number down to size.
1698 */
1699 alloc = max_size - size;
1700 size = preallocate_highmem_fraction(alloc, highmem, count);
1701 pages_highmem += size;
1702 alloc -= size;
1703 size = preallocate_image_memory(alloc, avail_normal);
1704 pages_highmem += preallocate_image_highmem(alloc - size);
1705 pages += pages_highmem + size;
1706 }
1707
1708 /*
1709 * We only need as many page frames for the image as there are saveable
1710 * pages in memory, but we have allocated more. Release the excessive
1711 * ones now.
1712 */
1713 pages -= free_unnecessary_pages();
1714
1715 out:
1716 stop = ktime_get();
1717 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1718 swsusp_show_speed(start, stop, pages, "Allocated");
1719
1720 return 0;
1721
1722 err_out:
1723 printk(KERN_CONT "\n");
1724 swsusp_free();
1725 return -ENOMEM;
1726 }
1727
1728 #ifdef CONFIG_HIGHMEM
1729 /**
1730 * count_pages_for_highmem - compute the number of non-highmem pages
1731 * that will be necessary for creating copies of highmem pages.
1732 */
1733
1734 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1735 {
1736 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1737
1738 if (free_highmem >= nr_highmem)
1739 nr_highmem = 0;
1740 else
1741 nr_highmem -= free_highmem;
1742
1743 return nr_highmem;
1744 }
1745 #else
1746 static unsigned int
1747 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1748 #endif /* CONFIG_HIGHMEM */
1749
1750 /**
1751 * enough_free_mem - Make sure we have enough free memory for the
1752 * snapshot image.
1753 */
1754
1755 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1756 {
1757 struct zone *zone;
1758 unsigned int free = alloc_normal;
1759
1760 for_each_populated_zone(zone)
1761 if (!is_highmem(zone))
1762 free += zone_page_state(zone, NR_FREE_PAGES);
1763
1764 nr_pages += count_pages_for_highmem(nr_highmem);
1765 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1766 nr_pages, PAGES_FOR_IO, free);
1767
1768 return free > nr_pages + PAGES_FOR_IO;
1769 }
1770
1771 #ifdef CONFIG_HIGHMEM
1772 /**
1773 * get_highmem_buffer - if there are some highmem pages in the suspend
1774 * image, we may need the buffer to copy them and/or load their data.
1775 */
1776
1777 static inline int get_highmem_buffer(int safe_needed)
1778 {
1779 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1780 return buffer ? 0 : -ENOMEM;
1781 }
1782
1783 /**
1784 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1785 * Try to allocate as many pages as needed, but if the number of free
1786 * highmem pages is lesser than that, allocate them all.
1787 */
1788
1789 static inline unsigned int
1790 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1791 {
1792 unsigned int to_alloc = count_free_highmem_pages();
1793
1794 if (to_alloc > nr_highmem)
1795 to_alloc = nr_highmem;
1796
1797 nr_highmem -= to_alloc;
1798 while (to_alloc-- > 0) {
1799 struct page *page;
1800
1801 page = alloc_image_page(__GFP_HIGHMEM);
1802 memory_bm_set_bit(bm, page_to_pfn(page));
1803 }
1804 return nr_highmem;
1805 }
1806 #else
1807 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1808
1809 static inline unsigned int
1810 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1811 #endif /* CONFIG_HIGHMEM */
1812
1813 /**
1814 * swsusp_alloc - allocate memory for the suspend image
1815 *
1816 * We first try to allocate as many highmem pages as there are
1817 * saveable highmem pages in the system. If that fails, we allocate
1818 * non-highmem pages for the copies of the remaining highmem ones.
1819 *
1820 * In this approach it is likely that the copies of highmem pages will
1821 * also be located in the high memory, because of the way in which
1822 * copy_data_pages() works.
1823 */
1824
1825 static int
1826 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1827 unsigned int nr_pages, unsigned int nr_highmem)
1828 {
1829 if (nr_highmem > 0) {
1830 if (get_highmem_buffer(PG_ANY))
1831 goto err_out;
1832 if (nr_highmem > alloc_highmem) {
1833 nr_highmem -= alloc_highmem;
1834 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1835 }
1836 }
1837 if (nr_pages > alloc_normal) {
1838 nr_pages -= alloc_normal;
1839 while (nr_pages-- > 0) {
1840 struct page *page;
1841
1842 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1843 if (!page)
1844 goto err_out;
1845 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1846 }
1847 }
1848
1849 return 0;
1850
1851 err_out:
1852 swsusp_free();
1853 return -ENOMEM;
1854 }
1855
1856 asmlinkage __visible int swsusp_save(void)
1857 {
1858 unsigned int nr_pages, nr_highmem;
1859
1860 printk(KERN_INFO "PM: Creating hibernation image:\n");
1861
1862 drain_local_pages(NULL);
1863 nr_pages = count_data_pages();
1864 nr_highmem = count_highmem_pages();
1865 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1866
1867 if (!enough_free_mem(nr_pages, nr_highmem)) {
1868 printk(KERN_ERR "PM: Not enough free memory\n");
1869 return -ENOMEM;
1870 }
1871
1872 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1873 printk(KERN_ERR "PM: Memory allocation failed\n");
1874 return -ENOMEM;
1875 }
1876
1877 /* During allocating of suspend pagedir, new cold pages may appear.
1878 * Kill them.
1879 */
1880 drain_local_pages(NULL);
1881 copy_data_pages(&copy_bm, &orig_bm);
1882
1883 /*
1884 * End of critical section. From now on, we can write to memory,
1885 * but we should not touch disk. This specially means we must _not_
1886 * touch swap space! Except we must write out our image of course.
1887 */
1888
1889 nr_pages += nr_highmem;
1890 nr_copy_pages = nr_pages;
1891 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1892
1893 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1894 nr_pages);
1895
1896 return 0;
1897 }
1898
1899 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1900 static int init_header_complete(struct swsusp_info *info)
1901 {
1902 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1903 info->version_code = LINUX_VERSION_CODE;
1904 return 0;
1905 }
1906
1907 static char *check_image_kernel(struct swsusp_info *info)
1908 {
1909 if (info->version_code != LINUX_VERSION_CODE)
1910 return "kernel version";
1911 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1912 return "system type";
1913 if (strcmp(info->uts.release,init_utsname()->release))
1914 return "kernel release";
1915 if (strcmp(info->uts.version,init_utsname()->version))
1916 return "version";
1917 if (strcmp(info->uts.machine,init_utsname()->machine))
1918 return "machine";
1919 return NULL;
1920 }
1921 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1922
1923 unsigned long snapshot_get_image_size(void)
1924 {
1925 return nr_copy_pages + nr_meta_pages + 1;
1926 }
1927
1928 static int init_header(struct swsusp_info *info)
1929 {
1930 memset(info, 0, sizeof(struct swsusp_info));
1931 info->num_physpages = get_num_physpages();
1932 info->image_pages = nr_copy_pages;
1933 info->pages = snapshot_get_image_size();
1934 info->size = info->pages;
1935 info->size <<= PAGE_SHIFT;
1936 return init_header_complete(info);
1937 }
1938
1939 /**
1940 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1941 * are stored in the array @buf[] (1 page at a time)
1942 */
1943
1944 static inline void
1945 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1946 {
1947 int j;
1948
1949 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1950 buf[j] = memory_bm_next_pfn(bm);
1951 if (unlikely(buf[j] == BM_END_OF_MAP))
1952 break;
1953 /* Save page key for data page (s390 only). */
1954 page_key_read(buf + j);
1955 }
1956 }
1957
1958 /**
1959 * snapshot_read_next - used for reading the system memory snapshot.
1960 *
1961 * On the first call to it @handle should point to a zeroed
1962 * snapshot_handle structure. The structure gets updated and a pointer
1963 * to it should be passed to this function every next time.
1964 *
1965 * On success the function returns a positive number. Then, the caller
1966 * is allowed to read up to the returned number of bytes from the memory
1967 * location computed by the data_of() macro.
1968 *
1969 * The function returns 0 to indicate the end of data stream condition,
1970 * and a negative number is returned on error. In such cases the
1971 * structure pointed to by @handle is not updated and should not be used
1972 * any more.
1973 */
1974
1975 int snapshot_read_next(struct snapshot_handle *handle)
1976 {
1977 if (handle->cur > nr_meta_pages + nr_copy_pages)
1978 return 0;
1979
1980 if (!buffer) {
1981 /* This makes the buffer be freed by swsusp_free() */
1982 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1983 if (!buffer)
1984 return -ENOMEM;
1985 }
1986 if (!handle->cur) {
1987 int error;
1988
1989 error = init_header((struct swsusp_info *)buffer);
1990 if (error)
1991 return error;
1992 handle->buffer = buffer;
1993 memory_bm_position_reset(&orig_bm);
1994 memory_bm_position_reset(&copy_bm);
1995 } else if (handle->cur <= nr_meta_pages) {
1996 clear_page(buffer);
1997 pack_pfns(buffer, &orig_bm);
1998 } else {
1999 struct page *page;
2000
2001 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2002 if (PageHighMem(page)) {
2003 /* Highmem pages are copied to the buffer,
2004 * because we can't return with a kmapped
2005 * highmem page (we may not be called again).
2006 */
2007 void *kaddr;
2008
2009 kaddr = kmap_atomic(page);
2010 copy_page(buffer, kaddr);
2011 kunmap_atomic(kaddr);
2012 handle->buffer = buffer;
2013 } else {
2014 handle->buffer = page_address(page);
2015 }
2016 }
2017 handle->cur++;
2018 return PAGE_SIZE;
2019 }
2020
2021 /**
2022 * mark_unsafe_pages - mark the pages that cannot be used for storing
2023 * the image during resume, because they conflict with the pages that
2024 * had been used before suspend
2025 */
2026
2027 static int mark_unsafe_pages(struct memory_bitmap *bm)
2028 {
2029 struct zone *zone;
2030 unsigned long pfn, max_zone_pfn;
2031
2032 /* Clear page flags */
2033 for_each_populated_zone(zone) {
2034 max_zone_pfn = zone_end_pfn(zone);
2035 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2036 if (pfn_valid(pfn))
2037 swsusp_unset_page_free(pfn_to_page(pfn));
2038 }
2039
2040 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2041 memory_bm_position_reset(bm);
2042 do {
2043 pfn = memory_bm_next_pfn(bm);
2044 if (likely(pfn != BM_END_OF_MAP)) {
2045 if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
2046 swsusp_set_page_free(pfn_to_page(pfn));
2047 else
2048 return -EFAULT;
2049 }
2050 } while (pfn != BM_END_OF_MAP);
2051
2052 allocated_unsafe_pages = 0;
2053
2054 return 0;
2055 }
2056
2057 static void
2058 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2059 {
2060 unsigned long pfn;
2061
2062 memory_bm_position_reset(src);
2063 pfn = memory_bm_next_pfn(src);
2064 while (pfn != BM_END_OF_MAP) {
2065 memory_bm_set_bit(dst, pfn);
2066 pfn = memory_bm_next_pfn(src);
2067 }
2068 }
2069
2070 static int check_header(struct swsusp_info *info)
2071 {
2072 char *reason;
2073
2074 reason = check_image_kernel(info);
2075 if (!reason && info->num_physpages != get_num_physpages())
2076 reason = "memory size";
2077 if (reason) {
2078 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2079 return -EPERM;
2080 }
2081 return 0;
2082 }
2083
2084 /**
2085 * load header - check the image header and copy data from it
2086 */
2087
2088 static int
2089 load_header(struct swsusp_info *info)
2090 {
2091 int error;
2092
2093 restore_pblist = NULL;
2094 error = check_header(info);
2095 if (!error) {
2096 nr_copy_pages = info->image_pages;
2097 nr_meta_pages = info->pages - info->image_pages - 1;
2098 }
2099 return error;
2100 }
2101
2102 /**
2103 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2104 * the corresponding bit in the memory bitmap @bm
2105 */
2106 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2107 {
2108 int j;
2109
2110 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2111 if (unlikely(buf[j] == BM_END_OF_MAP))
2112 break;
2113
2114 /* Extract and buffer page key for data page (s390 only). */
2115 page_key_memorize(buf + j);
2116
2117 if (memory_bm_pfn_present(bm, buf[j]))
2118 memory_bm_set_bit(bm, buf[j]);
2119 else
2120 return -EFAULT;
2121 }
2122
2123 return 0;
2124 }
2125
2126 /* List of "safe" pages that may be used to store data loaded from the suspend
2127 * image
2128 */
2129 static struct linked_page *safe_pages_list;
2130
2131 #ifdef CONFIG_HIGHMEM
2132 /* struct highmem_pbe is used for creating the list of highmem pages that
2133 * should be restored atomically during the resume from disk, because the page
2134 * frames they have occupied before the suspend are in use.
2135 */
2136 struct highmem_pbe {
2137 struct page *copy_page; /* data is here now */
2138 struct page *orig_page; /* data was here before the suspend */
2139 struct highmem_pbe *next;
2140 };
2141
2142 /* List of highmem PBEs needed for restoring the highmem pages that were
2143 * allocated before the suspend and included in the suspend image, but have
2144 * also been allocated by the "resume" kernel, so their contents cannot be
2145 * written directly to their "original" page frames.
2146 */
2147 static struct highmem_pbe *highmem_pblist;
2148
2149 /**
2150 * count_highmem_image_pages - compute the number of highmem pages in the
2151 * suspend image. The bits in the memory bitmap @bm that correspond to the
2152 * image pages are assumed to be set.
2153 */
2154
2155 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2156 {
2157 unsigned long pfn;
2158 unsigned int cnt = 0;
2159
2160 memory_bm_position_reset(bm);
2161 pfn = memory_bm_next_pfn(bm);
2162 while (pfn != BM_END_OF_MAP) {
2163 if (PageHighMem(pfn_to_page(pfn)))
2164 cnt++;
2165
2166 pfn = memory_bm_next_pfn(bm);
2167 }
2168 return cnt;
2169 }
2170
2171 /**
2172 * prepare_highmem_image - try to allocate as many highmem pages as
2173 * there are highmem image pages (@nr_highmem_p points to the variable
2174 * containing the number of highmem image pages). The pages that are
2175 * "safe" (ie. will not be overwritten when the suspend image is
2176 * restored) have the corresponding bits set in @bm (it must be
2177 * unitialized).
2178 *
2179 * NOTE: This function should not be called if there are no highmem
2180 * image pages.
2181 */
2182
2183 static unsigned int safe_highmem_pages;
2184
2185 static struct memory_bitmap *safe_highmem_bm;
2186
2187 static int
2188 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2189 {
2190 unsigned int to_alloc;
2191
2192 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2193 return -ENOMEM;
2194
2195 if (get_highmem_buffer(PG_SAFE))
2196 return -ENOMEM;
2197
2198 to_alloc = count_free_highmem_pages();
2199 if (to_alloc > *nr_highmem_p)
2200 to_alloc = *nr_highmem_p;
2201 else
2202 *nr_highmem_p = to_alloc;
2203
2204 safe_highmem_pages = 0;
2205 while (to_alloc-- > 0) {
2206 struct page *page;
2207
2208 page = alloc_page(__GFP_HIGHMEM);
2209 if (!swsusp_page_is_free(page)) {
2210 /* The page is "safe", set its bit the bitmap */
2211 memory_bm_set_bit(bm, page_to_pfn(page));
2212 safe_highmem_pages++;
2213 }
2214 /* Mark the page as allocated */
2215 swsusp_set_page_forbidden(page);
2216 swsusp_set_page_free(page);
2217 }
2218 memory_bm_position_reset(bm);
2219 safe_highmem_bm = bm;
2220 return 0;
2221 }
2222
2223 /**
2224 * get_highmem_page_buffer - for given highmem image page find the buffer
2225 * that suspend_write_next() should set for its caller to write to.
2226 *
2227 * If the page is to be saved to its "original" page frame or a copy of
2228 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2229 * the copy of the page is to be made in normal memory, so the address of
2230 * the copy is returned.
2231 *
2232 * If @buffer is returned, the caller of suspend_write_next() will write
2233 * the page's contents to @buffer, so they will have to be copied to the
2234 * right location on the next call to suspend_write_next() and it is done
2235 * with the help of copy_last_highmem_page(). For this purpose, if
2236 * @buffer is returned, @last_highmem page is set to the page to which
2237 * the data will have to be copied from @buffer.
2238 */
2239
2240 static struct page *last_highmem_page;
2241
2242 static void *
2243 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2244 {
2245 struct highmem_pbe *pbe;
2246 void *kaddr;
2247
2248 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2249 /* We have allocated the "original" page frame and we can
2250 * use it directly to store the loaded page.
2251 */
2252 last_highmem_page = page;
2253 return buffer;
2254 }
2255 /* The "original" page frame has not been allocated and we have to
2256 * use a "safe" page frame to store the loaded page.
2257 */
2258 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2259 if (!pbe) {
2260 swsusp_free();
2261 return ERR_PTR(-ENOMEM);
2262 }
2263 pbe->orig_page = page;
2264 if (safe_highmem_pages > 0) {
2265 struct page *tmp;
2266
2267 /* Copy of the page will be stored in high memory */
2268 kaddr = buffer;
2269 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2270 safe_highmem_pages--;
2271 last_highmem_page = tmp;
2272 pbe->copy_page = tmp;
2273 } else {
2274 /* Copy of the page will be stored in normal memory */
2275 kaddr = safe_pages_list;
2276 safe_pages_list = safe_pages_list->next;
2277 pbe->copy_page = virt_to_page(kaddr);
2278 }
2279 pbe->next = highmem_pblist;
2280 highmem_pblist = pbe;
2281 return kaddr;
2282 }
2283
2284 /**
2285 * copy_last_highmem_page - copy the contents of a highmem image from
2286 * @buffer, where the caller of snapshot_write_next() has place them,
2287 * to the right location represented by @last_highmem_page .
2288 */
2289
2290 static void copy_last_highmem_page(void)
2291 {
2292 if (last_highmem_page) {
2293 void *dst;
2294
2295 dst = kmap_atomic(last_highmem_page);
2296 copy_page(dst, buffer);
2297 kunmap_atomic(dst);
2298 last_highmem_page = NULL;
2299 }
2300 }
2301
2302 static inline int last_highmem_page_copied(void)
2303 {
2304 return !last_highmem_page;
2305 }
2306
2307 static inline void free_highmem_data(void)
2308 {
2309 if (safe_highmem_bm)
2310 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2311
2312 if (buffer)
2313 free_image_page(buffer, PG_UNSAFE_CLEAR);
2314 }
2315 #else
2316 static unsigned int
2317 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2318
2319 static inline int
2320 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2321 {
2322 return 0;
2323 }
2324
2325 static inline void *
2326 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2327 {
2328 return ERR_PTR(-EINVAL);
2329 }
2330
2331 static inline void copy_last_highmem_page(void) {}
2332 static inline int last_highmem_page_copied(void) { return 1; }
2333 static inline void free_highmem_data(void) {}
2334 #endif /* CONFIG_HIGHMEM */
2335
2336 /**
2337 * prepare_image - use the memory bitmap @bm to mark the pages that will
2338 * be overwritten in the process of restoring the system memory state
2339 * from the suspend image ("unsafe" pages) and allocate memory for the
2340 * image.
2341 *
2342 * The idea is to allocate a new memory bitmap first and then allocate
2343 * as many pages as needed for the image data, but not to assign these
2344 * pages to specific tasks initially. Instead, we just mark them as
2345 * allocated and create a lists of "safe" pages that will be used
2346 * later. On systems with high memory a list of "safe" highmem pages is
2347 * also created.
2348 */
2349
2350 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2351
2352 static int
2353 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2354 {
2355 unsigned int nr_pages, nr_highmem;
2356 struct linked_page *sp_list, *lp;
2357 int error;
2358
2359 /* If there is no highmem, the buffer will not be necessary */
2360 free_image_page(buffer, PG_UNSAFE_CLEAR);
2361 buffer = NULL;
2362
2363 nr_highmem = count_highmem_image_pages(bm);
2364 error = mark_unsafe_pages(bm);
2365 if (error)
2366 goto Free;
2367
2368 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2369 if (error)
2370 goto Free;
2371
2372 duplicate_memory_bitmap(new_bm, bm);
2373 memory_bm_free(bm, PG_UNSAFE_KEEP);
2374 if (nr_highmem > 0) {
2375 error = prepare_highmem_image(bm, &nr_highmem);
2376 if (error)
2377 goto Free;
2378 }
2379 /* Reserve some safe pages for potential later use.
2380 *
2381 * NOTE: This way we make sure there will be enough safe pages for the
2382 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2383 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2384 */
2385 sp_list = NULL;
2386 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2387 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2388 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2389 while (nr_pages > 0) {
2390 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2391 if (!lp) {
2392 error = -ENOMEM;
2393 goto Free;
2394 }
2395 lp->next = sp_list;
2396 sp_list = lp;
2397 nr_pages--;
2398 }
2399 /* Preallocate memory for the image */
2400 safe_pages_list = NULL;
2401 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2402 while (nr_pages > 0) {
2403 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2404 if (!lp) {
2405 error = -ENOMEM;
2406 goto Free;
2407 }
2408 if (!swsusp_page_is_free(virt_to_page(lp))) {
2409 /* The page is "safe", add it to the list */
2410 lp->next = safe_pages_list;
2411 safe_pages_list = lp;
2412 }
2413 /* Mark the page as allocated */
2414 swsusp_set_page_forbidden(virt_to_page(lp));
2415 swsusp_set_page_free(virt_to_page(lp));
2416 nr_pages--;
2417 }
2418 /* Free the reserved safe pages so that chain_alloc() can use them */
2419 while (sp_list) {
2420 lp = sp_list->next;
2421 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2422 sp_list = lp;
2423 }
2424 return 0;
2425
2426 Free:
2427 swsusp_free();
2428 return error;
2429 }
2430
2431 /**
2432 * get_buffer - compute the address that snapshot_write_next() should
2433 * set for its caller to write to.
2434 */
2435
2436 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2437 {
2438 struct pbe *pbe;
2439 struct page *page;
2440 unsigned long pfn = memory_bm_next_pfn(bm);
2441
2442 if (pfn == BM_END_OF_MAP)
2443 return ERR_PTR(-EFAULT);
2444
2445 page = pfn_to_page(pfn);
2446 if (PageHighMem(page))
2447 return get_highmem_page_buffer(page, ca);
2448
2449 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2450 /* We have allocated the "original" page frame and we can
2451 * use it directly to store the loaded page.
2452 */
2453 return page_address(page);
2454
2455 /* The "original" page frame has not been allocated and we have to
2456 * use a "safe" page frame to store the loaded page.
2457 */
2458 pbe = chain_alloc(ca, sizeof(struct pbe));
2459 if (!pbe) {
2460 swsusp_free();
2461 return ERR_PTR(-ENOMEM);
2462 }
2463 pbe->orig_address = page_address(page);
2464 pbe->address = safe_pages_list;
2465 safe_pages_list = safe_pages_list->next;
2466 pbe->next = restore_pblist;
2467 restore_pblist = pbe;
2468 return pbe->address;
2469 }
2470
2471 /**
2472 * snapshot_write_next - used for writing the system memory snapshot.
2473 *
2474 * On the first call to it @handle should point to a zeroed
2475 * snapshot_handle structure. The structure gets updated and a pointer
2476 * to it should be passed to this function every next time.
2477 *
2478 * On success the function returns a positive number. Then, the caller
2479 * is allowed to write up to the returned number of bytes to the memory
2480 * location computed by the data_of() macro.
2481 *
2482 * The function returns 0 to indicate the "end of file" condition,
2483 * and a negative number is returned on error. In such cases the
2484 * structure pointed to by @handle is not updated and should not be used
2485 * any more.
2486 */
2487
2488 int snapshot_write_next(struct snapshot_handle *handle)
2489 {
2490 static struct chain_allocator ca;
2491 int error = 0;
2492
2493 /* Check if we have already loaded the entire image */
2494 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2495 return 0;
2496
2497 handle->sync_read = 1;
2498
2499 if (!handle->cur) {
2500 if (!buffer)
2501 /* This makes the buffer be freed by swsusp_free() */
2502 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2503
2504 if (!buffer)
2505 return -ENOMEM;
2506
2507 handle->buffer = buffer;
2508 } else if (handle->cur == 1) {
2509 error = load_header(buffer);
2510 if (error)
2511 return error;
2512
2513 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2514 if (error)
2515 return error;
2516
2517 /* Allocate buffer for page keys. */
2518 error = page_key_alloc(nr_copy_pages);
2519 if (error)
2520 return error;
2521
2522 } else if (handle->cur <= nr_meta_pages + 1) {
2523 error = unpack_orig_pfns(buffer, &copy_bm);
2524 if (error)
2525 return error;
2526
2527 if (handle->cur == nr_meta_pages + 1) {
2528 error = prepare_image(&orig_bm, &copy_bm);
2529 if (error)
2530 return error;
2531
2532 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2533 memory_bm_position_reset(&orig_bm);
2534 restore_pblist = NULL;
2535 handle->buffer = get_buffer(&orig_bm, &ca);
2536 handle->sync_read = 0;
2537 if (IS_ERR(handle->buffer))
2538 return PTR_ERR(handle->buffer);
2539 }
2540 } else {
2541 copy_last_highmem_page();
2542 /* Restore page key for data page (s390 only). */
2543 page_key_write(handle->buffer);
2544 handle->buffer = get_buffer(&orig_bm, &ca);
2545 if (IS_ERR(handle->buffer))
2546 return PTR_ERR(handle->buffer);
2547 if (handle->buffer != buffer)
2548 handle->sync_read = 0;
2549 }
2550 handle->cur++;
2551 return PAGE_SIZE;
2552 }
2553
2554 /**
2555 * snapshot_write_finalize - must be called after the last call to
2556 * snapshot_write_next() in case the last page in the image happens
2557 * to be a highmem page and its contents should be stored in the
2558 * highmem. Additionally, it releases the memory that will not be
2559 * used any more.
2560 */
2561
2562 void snapshot_write_finalize(struct snapshot_handle *handle)
2563 {
2564 copy_last_highmem_page();
2565 /* Restore page key for data page (s390 only). */
2566 page_key_write(handle->buffer);
2567 page_key_free();
2568 /* Free only if we have loaded the image entirely */
2569 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2570 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2571 free_highmem_data();
2572 }
2573 }
2574
2575 int snapshot_image_loaded(struct snapshot_handle *handle)
2576 {
2577 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2578 handle->cur <= nr_meta_pages + nr_copy_pages);
2579 }
2580
2581 #ifdef CONFIG_HIGHMEM
2582 /* Assumes that @buf is ready and points to a "safe" page */
2583 static inline void
2584 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2585 {
2586 void *kaddr1, *kaddr2;
2587
2588 kaddr1 = kmap_atomic(p1);
2589 kaddr2 = kmap_atomic(p2);
2590 copy_page(buf, kaddr1);
2591 copy_page(kaddr1, kaddr2);
2592 copy_page(kaddr2, buf);
2593 kunmap_atomic(kaddr2);
2594 kunmap_atomic(kaddr1);
2595 }
2596
2597 /**
2598 * restore_highmem - for each highmem page that was allocated before
2599 * the suspend and included in the suspend image, and also has been
2600 * allocated by the "resume" kernel swap its current (ie. "before
2601 * resume") contents with the previous (ie. "before suspend") one.
2602 *
2603 * If the resume eventually fails, we can call this function once
2604 * again and restore the "before resume" highmem state.
2605 */
2606
2607 int restore_highmem(void)
2608 {
2609 struct highmem_pbe *pbe = highmem_pblist;
2610 void *buf;
2611
2612 if (!pbe)
2613 return 0;
2614
2615 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2616 if (!buf)
2617 return -ENOMEM;
2618
2619 while (pbe) {
2620 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2621 pbe = pbe->next;
2622 }
2623 free_image_page(buf, PG_UNSAFE_CLEAR);
2624 return 0;
2625 }
2626 #endif /* CONFIG_HIGHMEM */
This page took 0.083235 seconds and 5 git commands to generate.