Merge branches 'pm-core', 'pm-clk', 'pm-domains' and 'pm-pci'
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692
693 /*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718 void post_init_entity_util_avg(struct sched_entity *se)
719 {
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736 }
737
738 #else
739 void init_entity_runnable_average(struct sched_entity *se)
740 {
741 }
742 void post_init_entity_util_avg(struct sched_entity *se)
743 {
744 }
745 #endif
746
747 /*
748 * Update the current task's runtime statistics.
749 */
750 static void update_curr(struct cfs_rq *cfs_rq)
751 {
752 struct sched_entity *curr = cfs_rq->curr;
753 u64 now = rq_clock_task(rq_of(cfs_rq));
754 u64 delta_exec;
755
756 if (unlikely(!curr))
757 return;
758
759 delta_exec = now - curr->exec_start;
760 if (unlikely((s64)delta_exec <= 0))
761 return;
762
763 curr->exec_start = now;
764
765 schedstat_set(curr->statistics.exec_max,
766 max(delta_exec, curr->statistics.exec_max));
767
768 curr->sum_exec_runtime += delta_exec;
769 schedstat_add(cfs_rq, exec_clock, delta_exec);
770
771 curr->vruntime += calc_delta_fair(delta_exec, curr);
772 update_min_vruntime(cfs_rq);
773
774 if (entity_is_task(curr)) {
775 struct task_struct *curtask = task_of(curr);
776
777 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
778 cpuacct_charge(curtask, delta_exec);
779 account_group_exec_runtime(curtask, delta_exec);
780 }
781
782 account_cfs_rq_runtime(cfs_rq, delta_exec);
783 }
784
785 static void update_curr_fair(struct rq *rq)
786 {
787 update_curr(cfs_rq_of(&rq->curr->se));
788 }
789
790 #ifdef CONFIG_SCHEDSTATS
791 static inline void
792 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
793 {
794 u64 wait_start = rq_clock(rq_of(cfs_rq));
795
796 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
797 likely(wait_start > se->statistics.wait_start))
798 wait_start -= se->statistics.wait_start;
799
800 se->statistics.wait_start = wait_start;
801 }
802
803 static void
804 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
805 {
806 struct task_struct *p;
807 u64 delta;
808
809 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
810
811 if (entity_is_task(se)) {
812 p = task_of(se);
813 if (task_on_rq_migrating(p)) {
814 /*
815 * Preserve migrating task's wait time so wait_start
816 * time stamp can be adjusted to accumulate wait time
817 * prior to migration.
818 */
819 se->statistics.wait_start = delta;
820 return;
821 }
822 trace_sched_stat_wait(p, delta);
823 }
824
825 se->statistics.wait_max = max(se->statistics.wait_max, delta);
826 se->statistics.wait_count++;
827 se->statistics.wait_sum += delta;
828 se->statistics.wait_start = 0;
829 }
830
831 /*
832 * Task is being enqueued - update stats:
833 */
834 static inline void
835 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
836 {
837 /*
838 * Are we enqueueing a waiting task? (for current tasks
839 * a dequeue/enqueue event is a NOP)
840 */
841 if (se != cfs_rq->curr)
842 update_stats_wait_start(cfs_rq, se);
843 }
844
845 static inline void
846 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
847 {
848 /*
849 * Mark the end of the wait period if dequeueing a
850 * waiting task:
851 */
852 if (se != cfs_rq->curr)
853 update_stats_wait_end(cfs_rq, se);
854
855 if (flags & DEQUEUE_SLEEP) {
856 if (entity_is_task(se)) {
857 struct task_struct *tsk = task_of(se);
858
859 if (tsk->state & TASK_INTERRUPTIBLE)
860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
861 if (tsk->state & TASK_UNINTERRUPTIBLE)
862 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
863 }
864 }
865
866 }
867 #else
868 static inline void
869 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
870 {
871 }
872
873 static inline void
874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 }
877
878 static inline void
879 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
880 {
881 }
882
883 static inline void
884 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
885 {
886 }
887 #endif
888
889 /*
890 * We are picking a new current task - update its stats:
891 */
892 static inline void
893 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 /*
896 * We are starting a new run period:
897 */
898 se->exec_start = rq_clock_task(rq_of(cfs_rq));
899 }
900
901 /**************************************************
902 * Scheduling class queueing methods:
903 */
904
905 #ifdef CONFIG_NUMA_BALANCING
906 /*
907 * Approximate time to scan a full NUMA task in ms. The task scan period is
908 * calculated based on the tasks virtual memory size and
909 * numa_balancing_scan_size.
910 */
911 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
912 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
913
914 /* Portion of address space to scan in MB */
915 unsigned int sysctl_numa_balancing_scan_size = 256;
916
917 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
918 unsigned int sysctl_numa_balancing_scan_delay = 1000;
919
920 static unsigned int task_nr_scan_windows(struct task_struct *p)
921 {
922 unsigned long rss = 0;
923 unsigned long nr_scan_pages;
924
925 /*
926 * Calculations based on RSS as non-present and empty pages are skipped
927 * by the PTE scanner and NUMA hinting faults should be trapped based
928 * on resident pages
929 */
930 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
931 rss = get_mm_rss(p->mm);
932 if (!rss)
933 rss = nr_scan_pages;
934
935 rss = round_up(rss, nr_scan_pages);
936 return rss / nr_scan_pages;
937 }
938
939 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
940 #define MAX_SCAN_WINDOW 2560
941
942 static unsigned int task_scan_min(struct task_struct *p)
943 {
944 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
945 unsigned int scan, floor;
946 unsigned int windows = 1;
947
948 if (scan_size < MAX_SCAN_WINDOW)
949 windows = MAX_SCAN_WINDOW / scan_size;
950 floor = 1000 / windows;
951
952 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
953 return max_t(unsigned int, floor, scan);
954 }
955
956 static unsigned int task_scan_max(struct task_struct *p)
957 {
958 unsigned int smin = task_scan_min(p);
959 unsigned int smax;
960
961 /* Watch for min being lower than max due to floor calculations */
962 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
963 return max(smin, smax);
964 }
965
966 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
967 {
968 rq->nr_numa_running += (p->numa_preferred_nid != -1);
969 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
970 }
971
972 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
973 {
974 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
975 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
976 }
977
978 struct numa_group {
979 atomic_t refcount;
980
981 spinlock_t lock; /* nr_tasks, tasks */
982 int nr_tasks;
983 pid_t gid;
984 int active_nodes;
985
986 struct rcu_head rcu;
987 unsigned long total_faults;
988 unsigned long max_faults_cpu;
989 /*
990 * Faults_cpu is used to decide whether memory should move
991 * towards the CPU. As a consequence, these stats are weighted
992 * more by CPU use than by memory faults.
993 */
994 unsigned long *faults_cpu;
995 unsigned long faults[0];
996 };
997
998 /* Shared or private faults. */
999 #define NR_NUMA_HINT_FAULT_TYPES 2
1000
1001 /* Memory and CPU locality */
1002 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1003
1004 /* Averaged statistics, and temporary buffers. */
1005 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1006
1007 pid_t task_numa_group_id(struct task_struct *p)
1008 {
1009 return p->numa_group ? p->numa_group->gid : 0;
1010 }
1011
1012 /*
1013 * The averaged statistics, shared & private, memory & cpu,
1014 * occupy the first half of the array. The second half of the
1015 * array is for current counters, which are averaged into the
1016 * first set by task_numa_placement.
1017 */
1018 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1019 {
1020 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1021 }
1022
1023 static inline unsigned long task_faults(struct task_struct *p, int nid)
1024 {
1025 if (!p->numa_faults)
1026 return 0;
1027
1028 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1029 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1030 }
1031
1032 static inline unsigned long group_faults(struct task_struct *p, int nid)
1033 {
1034 if (!p->numa_group)
1035 return 0;
1036
1037 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1038 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1039 }
1040
1041 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1042 {
1043 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1044 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1045 }
1046
1047 /*
1048 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1049 * considered part of a numa group's pseudo-interleaving set. Migrations
1050 * between these nodes are slowed down, to allow things to settle down.
1051 */
1052 #define ACTIVE_NODE_FRACTION 3
1053
1054 static bool numa_is_active_node(int nid, struct numa_group *ng)
1055 {
1056 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1057 }
1058
1059 /* Handle placement on systems where not all nodes are directly connected. */
1060 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1061 int maxdist, bool task)
1062 {
1063 unsigned long score = 0;
1064 int node;
1065
1066 /*
1067 * All nodes are directly connected, and the same distance
1068 * from each other. No need for fancy placement algorithms.
1069 */
1070 if (sched_numa_topology_type == NUMA_DIRECT)
1071 return 0;
1072
1073 /*
1074 * This code is called for each node, introducing N^2 complexity,
1075 * which should be ok given the number of nodes rarely exceeds 8.
1076 */
1077 for_each_online_node(node) {
1078 unsigned long faults;
1079 int dist = node_distance(nid, node);
1080
1081 /*
1082 * The furthest away nodes in the system are not interesting
1083 * for placement; nid was already counted.
1084 */
1085 if (dist == sched_max_numa_distance || node == nid)
1086 continue;
1087
1088 /*
1089 * On systems with a backplane NUMA topology, compare groups
1090 * of nodes, and move tasks towards the group with the most
1091 * memory accesses. When comparing two nodes at distance
1092 * "hoplimit", only nodes closer by than "hoplimit" are part
1093 * of each group. Skip other nodes.
1094 */
1095 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1096 dist > maxdist)
1097 continue;
1098
1099 /* Add up the faults from nearby nodes. */
1100 if (task)
1101 faults = task_faults(p, node);
1102 else
1103 faults = group_faults(p, node);
1104
1105 /*
1106 * On systems with a glueless mesh NUMA topology, there are
1107 * no fixed "groups of nodes". Instead, nodes that are not
1108 * directly connected bounce traffic through intermediate
1109 * nodes; a numa_group can occupy any set of nodes.
1110 * The further away a node is, the less the faults count.
1111 * This seems to result in good task placement.
1112 */
1113 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1114 faults *= (sched_max_numa_distance - dist);
1115 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1116 }
1117
1118 score += faults;
1119 }
1120
1121 return score;
1122 }
1123
1124 /*
1125 * These return the fraction of accesses done by a particular task, or
1126 * task group, on a particular numa node. The group weight is given a
1127 * larger multiplier, in order to group tasks together that are almost
1128 * evenly spread out between numa nodes.
1129 */
1130 static inline unsigned long task_weight(struct task_struct *p, int nid,
1131 int dist)
1132 {
1133 unsigned long faults, total_faults;
1134
1135 if (!p->numa_faults)
1136 return 0;
1137
1138 total_faults = p->total_numa_faults;
1139
1140 if (!total_faults)
1141 return 0;
1142
1143 faults = task_faults(p, nid);
1144 faults += score_nearby_nodes(p, nid, dist, true);
1145
1146 return 1000 * faults / total_faults;
1147 }
1148
1149 static inline unsigned long group_weight(struct task_struct *p, int nid,
1150 int dist)
1151 {
1152 unsigned long faults, total_faults;
1153
1154 if (!p->numa_group)
1155 return 0;
1156
1157 total_faults = p->numa_group->total_faults;
1158
1159 if (!total_faults)
1160 return 0;
1161
1162 faults = group_faults(p, nid);
1163 faults += score_nearby_nodes(p, nid, dist, false);
1164
1165 return 1000 * faults / total_faults;
1166 }
1167
1168 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1169 int src_nid, int dst_cpu)
1170 {
1171 struct numa_group *ng = p->numa_group;
1172 int dst_nid = cpu_to_node(dst_cpu);
1173 int last_cpupid, this_cpupid;
1174
1175 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1176
1177 /*
1178 * Multi-stage node selection is used in conjunction with a periodic
1179 * migration fault to build a temporal task<->page relation. By using
1180 * a two-stage filter we remove short/unlikely relations.
1181 *
1182 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1183 * a task's usage of a particular page (n_p) per total usage of this
1184 * page (n_t) (in a given time-span) to a probability.
1185 *
1186 * Our periodic faults will sample this probability and getting the
1187 * same result twice in a row, given these samples are fully
1188 * independent, is then given by P(n)^2, provided our sample period
1189 * is sufficiently short compared to the usage pattern.
1190 *
1191 * This quadric squishes small probabilities, making it less likely we
1192 * act on an unlikely task<->page relation.
1193 */
1194 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1195 if (!cpupid_pid_unset(last_cpupid) &&
1196 cpupid_to_nid(last_cpupid) != dst_nid)
1197 return false;
1198
1199 /* Always allow migrate on private faults */
1200 if (cpupid_match_pid(p, last_cpupid))
1201 return true;
1202
1203 /* A shared fault, but p->numa_group has not been set up yet. */
1204 if (!ng)
1205 return true;
1206
1207 /*
1208 * Destination node is much more heavily used than the source
1209 * node? Allow migration.
1210 */
1211 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1212 ACTIVE_NODE_FRACTION)
1213 return true;
1214
1215 /*
1216 * Distribute memory according to CPU & memory use on each node,
1217 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1218 *
1219 * faults_cpu(dst) 3 faults_cpu(src)
1220 * --------------- * - > ---------------
1221 * faults_mem(dst) 4 faults_mem(src)
1222 */
1223 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1224 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1225 }
1226
1227 static unsigned long weighted_cpuload(const int cpu);
1228 static unsigned long source_load(int cpu, int type);
1229 static unsigned long target_load(int cpu, int type);
1230 static unsigned long capacity_of(int cpu);
1231 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1232
1233 /* Cached statistics for all CPUs within a node */
1234 struct numa_stats {
1235 unsigned long nr_running;
1236 unsigned long load;
1237
1238 /* Total compute capacity of CPUs on a node */
1239 unsigned long compute_capacity;
1240
1241 /* Approximate capacity in terms of runnable tasks on a node */
1242 unsigned long task_capacity;
1243 int has_free_capacity;
1244 };
1245
1246 /*
1247 * XXX borrowed from update_sg_lb_stats
1248 */
1249 static void update_numa_stats(struct numa_stats *ns, int nid)
1250 {
1251 int smt, cpu, cpus = 0;
1252 unsigned long capacity;
1253
1254 memset(ns, 0, sizeof(*ns));
1255 for_each_cpu(cpu, cpumask_of_node(nid)) {
1256 struct rq *rq = cpu_rq(cpu);
1257
1258 ns->nr_running += rq->nr_running;
1259 ns->load += weighted_cpuload(cpu);
1260 ns->compute_capacity += capacity_of(cpu);
1261
1262 cpus++;
1263 }
1264
1265 /*
1266 * If we raced with hotplug and there are no CPUs left in our mask
1267 * the @ns structure is NULL'ed and task_numa_compare() will
1268 * not find this node attractive.
1269 *
1270 * We'll either bail at !has_free_capacity, or we'll detect a huge
1271 * imbalance and bail there.
1272 */
1273 if (!cpus)
1274 return;
1275
1276 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1277 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1278 capacity = cpus / smt; /* cores */
1279
1280 ns->task_capacity = min_t(unsigned, capacity,
1281 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1282 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1283 }
1284
1285 struct task_numa_env {
1286 struct task_struct *p;
1287
1288 int src_cpu, src_nid;
1289 int dst_cpu, dst_nid;
1290
1291 struct numa_stats src_stats, dst_stats;
1292
1293 int imbalance_pct;
1294 int dist;
1295
1296 struct task_struct *best_task;
1297 long best_imp;
1298 int best_cpu;
1299 };
1300
1301 static void task_numa_assign(struct task_numa_env *env,
1302 struct task_struct *p, long imp)
1303 {
1304 if (env->best_task)
1305 put_task_struct(env->best_task);
1306
1307 env->best_task = p;
1308 env->best_imp = imp;
1309 env->best_cpu = env->dst_cpu;
1310 }
1311
1312 static bool load_too_imbalanced(long src_load, long dst_load,
1313 struct task_numa_env *env)
1314 {
1315 long imb, old_imb;
1316 long orig_src_load, orig_dst_load;
1317 long src_capacity, dst_capacity;
1318
1319 /*
1320 * The load is corrected for the CPU capacity available on each node.
1321 *
1322 * src_load dst_load
1323 * ------------ vs ---------
1324 * src_capacity dst_capacity
1325 */
1326 src_capacity = env->src_stats.compute_capacity;
1327 dst_capacity = env->dst_stats.compute_capacity;
1328
1329 /* We care about the slope of the imbalance, not the direction. */
1330 if (dst_load < src_load)
1331 swap(dst_load, src_load);
1332
1333 /* Is the difference below the threshold? */
1334 imb = dst_load * src_capacity * 100 -
1335 src_load * dst_capacity * env->imbalance_pct;
1336 if (imb <= 0)
1337 return false;
1338
1339 /*
1340 * The imbalance is above the allowed threshold.
1341 * Compare it with the old imbalance.
1342 */
1343 orig_src_load = env->src_stats.load;
1344 orig_dst_load = env->dst_stats.load;
1345
1346 if (orig_dst_load < orig_src_load)
1347 swap(orig_dst_load, orig_src_load);
1348
1349 old_imb = orig_dst_load * src_capacity * 100 -
1350 orig_src_load * dst_capacity * env->imbalance_pct;
1351
1352 /* Would this change make things worse? */
1353 return (imb > old_imb);
1354 }
1355
1356 /*
1357 * This checks if the overall compute and NUMA accesses of the system would
1358 * be improved if the source tasks was migrated to the target dst_cpu taking
1359 * into account that it might be best if task running on the dst_cpu should
1360 * be exchanged with the source task
1361 */
1362 static void task_numa_compare(struct task_numa_env *env,
1363 long taskimp, long groupimp)
1364 {
1365 struct rq *src_rq = cpu_rq(env->src_cpu);
1366 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1367 struct task_struct *cur;
1368 long src_load, dst_load;
1369 long load;
1370 long imp = env->p->numa_group ? groupimp : taskimp;
1371 long moveimp = imp;
1372 int dist = env->dist;
1373 bool assigned = false;
1374
1375 rcu_read_lock();
1376
1377 raw_spin_lock_irq(&dst_rq->lock);
1378 cur = dst_rq->curr;
1379 /*
1380 * No need to move the exiting task or idle task.
1381 */
1382 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1383 cur = NULL;
1384 else {
1385 /*
1386 * The task_struct must be protected here to protect the
1387 * p->numa_faults access in the task_weight since the
1388 * numa_faults could already be freed in the following path:
1389 * finish_task_switch()
1390 * --> put_task_struct()
1391 * --> __put_task_struct()
1392 * --> task_numa_free()
1393 */
1394 get_task_struct(cur);
1395 }
1396
1397 raw_spin_unlock_irq(&dst_rq->lock);
1398
1399 /*
1400 * Because we have preemption enabled we can get migrated around and
1401 * end try selecting ourselves (current == env->p) as a swap candidate.
1402 */
1403 if (cur == env->p)
1404 goto unlock;
1405
1406 /*
1407 * "imp" is the fault differential for the source task between the
1408 * source and destination node. Calculate the total differential for
1409 * the source task and potential destination task. The more negative
1410 * the value is, the more rmeote accesses that would be expected to
1411 * be incurred if the tasks were swapped.
1412 */
1413 if (cur) {
1414 /* Skip this swap candidate if cannot move to the source cpu */
1415 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1416 goto unlock;
1417
1418 /*
1419 * If dst and source tasks are in the same NUMA group, or not
1420 * in any group then look only at task weights.
1421 */
1422 if (cur->numa_group == env->p->numa_group) {
1423 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1424 task_weight(cur, env->dst_nid, dist);
1425 /*
1426 * Add some hysteresis to prevent swapping the
1427 * tasks within a group over tiny differences.
1428 */
1429 if (cur->numa_group)
1430 imp -= imp/16;
1431 } else {
1432 /*
1433 * Compare the group weights. If a task is all by
1434 * itself (not part of a group), use the task weight
1435 * instead.
1436 */
1437 if (cur->numa_group)
1438 imp += group_weight(cur, env->src_nid, dist) -
1439 group_weight(cur, env->dst_nid, dist);
1440 else
1441 imp += task_weight(cur, env->src_nid, dist) -
1442 task_weight(cur, env->dst_nid, dist);
1443 }
1444 }
1445
1446 if (imp <= env->best_imp && moveimp <= env->best_imp)
1447 goto unlock;
1448
1449 if (!cur) {
1450 /* Is there capacity at our destination? */
1451 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1452 !env->dst_stats.has_free_capacity)
1453 goto unlock;
1454
1455 goto balance;
1456 }
1457
1458 /* Balance doesn't matter much if we're running a task per cpu */
1459 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1460 dst_rq->nr_running == 1)
1461 goto assign;
1462
1463 /*
1464 * In the overloaded case, try and keep the load balanced.
1465 */
1466 balance:
1467 load = task_h_load(env->p);
1468 dst_load = env->dst_stats.load + load;
1469 src_load = env->src_stats.load - load;
1470
1471 if (moveimp > imp && moveimp > env->best_imp) {
1472 /*
1473 * If the improvement from just moving env->p direction is
1474 * better than swapping tasks around, check if a move is
1475 * possible. Store a slightly smaller score than moveimp,
1476 * so an actually idle CPU will win.
1477 */
1478 if (!load_too_imbalanced(src_load, dst_load, env)) {
1479 imp = moveimp - 1;
1480 put_task_struct(cur);
1481 cur = NULL;
1482 goto assign;
1483 }
1484 }
1485
1486 if (imp <= env->best_imp)
1487 goto unlock;
1488
1489 if (cur) {
1490 load = task_h_load(cur);
1491 dst_load -= load;
1492 src_load += load;
1493 }
1494
1495 if (load_too_imbalanced(src_load, dst_load, env))
1496 goto unlock;
1497
1498 /*
1499 * One idle CPU per node is evaluated for a task numa move.
1500 * Call select_idle_sibling to maybe find a better one.
1501 */
1502 if (!cur)
1503 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1504
1505 assign:
1506 assigned = true;
1507 task_numa_assign(env, cur, imp);
1508 unlock:
1509 rcu_read_unlock();
1510 /*
1511 * The dst_rq->curr isn't assigned. The protection for task_struct is
1512 * finished.
1513 */
1514 if (cur && !assigned)
1515 put_task_struct(cur);
1516 }
1517
1518 static void task_numa_find_cpu(struct task_numa_env *env,
1519 long taskimp, long groupimp)
1520 {
1521 int cpu;
1522
1523 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1524 /* Skip this CPU if the source task cannot migrate */
1525 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1526 continue;
1527
1528 env->dst_cpu = cpu;
1529 task_numa_compare(env, taskimp, groupimp);
1530 }
1531 }
1532
1533 /* Only move tasks to a NUMA node less busy than the current node. */
1534 static bool numa_has_capacity(struct task_numa_env *env)
1535 {
1536 struct numa_stats *src = &env->src_stats;
1537 struct numa_stats *dst = &env->dst_stats;
1538
1539 if (src->has_free_capacity && !dst->has_free_capacity)
1540 return false;
1541
1542 /*
1543 * Only consider a task move if the source has a higher load
1544 * than the destination, corrected for CPU capacity on each node.
1545 *
1546 * src->load dst->load
1547 * --------------------- vs ---------------------
1548 * src->compute_capacity dst->compute_capacity
1549 */
1550 if (src->load * dst->compute_capacity * env->imbalance_pct >
1551
1552 dst->load * src->compute_capacity * 100)
1553 return true;
1554
1555 return false;
1556 }
1557
1558 static int task_numa_migrate(struct task_struct *p)
1559 {
1560 struct task_numa_env env = {
1561 .p = p,
1562
1563 .src_cpu = task_cpu(p),
1564 .src_nid = task_node(p),
1565
1566 .imbalance_pct = 112,
1567
1568 .best_task = NULL,
1569 .best_imp = 0,
1570 .best_cpu = -1,
1571 };
1572 struct sched_domain *sd;
1573 unsigned long taskweight, groupweight;
1574 int nid, ret, dist;
1575 long taskimp, groupimp;
1576
1577 /*
1578 * Pick the lowest SD_NUMA domain, as that would have the smallest
1579 * imbalance and would be the first to start moving tasks about.
1580 *
1581 * And we want to avoid any moving of tasks about, as that would create
1582 * random movement of tasks -- counter the numa conditions we're trying
1583 * to satisfy here.
1584 */
1585 rcu_read_lock();
1586 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1587 if (sd)
1588 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1589 rcu_read_unlock();
1590
1591 /*
1592 * Cpusets can break the scheduler domain tree into smaller
1593 * balance domains, some of which do not cross NUMA boundaries.
1594 * Tasks that are "trapped" in such domains cannot be migrated
1595 * elsewhere, so there is no point in (re)trying.
1596 */
1597 if (unlikely(!sd)) {
1598 p->numa_preferred_nid = task_node(p);
1599 return -EINVAL;
1600 }
1601
1602 env.dst_nid = p->numa_preferred_nid;
1603 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1604 taskweight = task_weight(p, env.src_nid, dist);
1605 groupweight = group_weight(p, env.src_nid, dist);
1606 update_numa_stats(&env.src_stats, env.src_nid);
1607 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1608 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1609 update_numa_stats(&env.dst_stats, env.dst_nid);
1610
1611 /* Try to find a spot on the preferred nid. */
1612 if (numa_has_capacity(&env))
1613 task_numa_find_cpu(&env, taskimp, groupimp);
1614
1615 /*
1616 * Look at other nodes in these cases:
1617 * - there is no space available on the preferred_nid
1618 * - the task is part of a numa_group that is interleaved across
1619 * multiple NUMA nodes; in order to better consolidate the group,
1620 * we need to check other locations.
1621 */
1622 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1623 for_each_online_node(nid) {
1624 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1625 continue;
1626
1627 dist = node_distance(env.src_nid, env.dst_nid);
1628 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1629 dist != env.dist) {
1630 taskweight = task_weight(p, env.src_nid, dist);
1631 groupweight = group_weight(p, env.src_nid, dist);
1632 }
1633
1634 /* Only consider nodes where both task and groups benefit */
1635 taskimp = task_weight(p, nid, dist) - taskweight;
1636 groupimp = group_weight(p, nid, dist) - groupweight;
1637 if (taskimp < 0 && groupimp < 0)
1638 continue;
1639
1640 env.dist = dist;
1641 env.dst_nid = nid;
1642 update_numa_stats(&env.dst_stats, env.dst_nid);
1643 if (numa_has_capacity(&env))
1644 task_numa_find_cpu(&env, taskimp, groupimp);
1645 }
1646 }
1647
1648 /*
1649 * If the task is part of a workload that spans multiple NUMA nodes,
1650 * and is migrating into one of the workload's active nodes, remember
1651 * this node as the task's preferred numa node, so the workload can
1652 * settle down.
1653 * A task that migrated to a second choice node will be better off
1654 * trying for a better one later. Do not set the preferred node here.
1655 */
1656 if (p->numa_group) {
1657 struct numa_group *ng = p->numa_group;
1658
1659 if (env.best_cpu == -1)
1660 nid = env.src_nid;
1661 else
1662 nid = env.dst_nid;
1663
1664 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1665 sched_setnuma(p, env.dst_nid);
1666 }
1667
1668 /* No better CPU than the current one was found. */
1669 if (env.best_cpu == -1)
1670 return -EAGAIN;
1671
1672 /*
1673 * Reset the scan period if the task is being rescheduled on an
1674 * alternative node to recheck if the tasks is now properly placed.
1675 */
1676 p->numa_scan_period = task_scan_min(p);
1677
1678 if (env.best_task == NULL) {
1679 ret = migrate_task_to(p, env.best_cpu);
1680 if (ret != 0)
1681 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1682 return ret;
1683 }
1684
1685 ret = migrate_swap(p, env.best_task);
1686 if (ret != 0)
1687 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1688 put_task_struct(env.best_task);
1689 return ret;
1690 }
1691
1692 /* Attempt to migrate a task to a CPU on the preferred node. */
1693 static void numa_migrate_preferred(struct task_struct *p)
1694 {
1695 unsigned long interval = HZ;
1696
1697 /* This task has no NUMA fault statistics yet */
1698 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1699 return;
1700
1701 /* Periodically retry migrating the task to the preferred node */
1702 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1703 p->numa_migrate_retry = jiffies + interval;
1704
1705 /* Success if task is already running on preferred CPU */
1706 if (task_node(p) == p->numa_preferred_nid)
1707 return;
1708
1709 /* Otherwise, try migrate to a CPU on the preferred node */
1710 task_numa_migrate(p);
1711 }
1712
1713 /*
1714 * Find out how many nodes on the workload is actively running on. Do this by
1715 * tracking the nodes from which NUMA hinting faults are triggered. This can
1716 * be different from the set of nodes where the workload's memory is currently
1717 * located.
1718 */
1719 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1720 {
1721 unsigned long faults, max_faults = 0;
1722 int nid, active_nodes = 0;
1723
1724 for_each_online_node(nid) {
1725 faults = group_faults_cpu(numa_group, nid);
1726 if (faults > max_faults)
1727 max_faults = faults;
1728 }
1729
1730 for_each_online_node(nid) {
1731 faults = group_faults_cpu(numa_group, nid);
1732 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1733 active_nodes++;
1734 }
1735
1736 numa_group->max_faults_cpu = max_faults;
1737 numa_group->active_nodes = active_nodes;
1738 }
1739
1740 /*
1741 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1742 * increments. The more local the fault statistics are, the higher the scan
1743 * period will be for the next scan window. If local/(local+remote) ratio is
1744 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1745 * the scan period will decrease. Aim for 70% local accesses.
1746 */
1747 #define NUMA_PERIOD_SLOTS 10
1748 #define NUMA_PERIOD_THRESHOLD 7
1749
1750 /*
1751 * Increase the scan period (slow down scanning) if the majority of
1752 * our memory is already on our local node, or if the majority of
1753 * the page accesses are shared with other processes.
1754 * Otherwise, decrease the scan period.
1755 */
1756 static void update_task_scan_period(struct task_struct *p,
1757 unsigned long shared, unsigned long private)
1758 {
1759 unsigned int period_slot;
1760 int ratio;
1761 int diff;
1762
1763 unsigned long remote = p->numa_faults_locality[0];
1764 unsigned long local = p->numa_faults_locality[1];
1765
1766 /*
1767 * If there were no record hinting faults then either the task is
1768 * completely idle or all activity is areas that are not of interest
1769 * to automatic numa balancing. Related to that, if there were failed
1770 * migration then it implies we are migrating too quickly or the local
1771 * node is overloaded. In either case, scan slower
1772 */
1773 if (local + shared == 0 || p->numa_faults_locality[2]) {
1774 p->numa_scan_period = min(p->numa_scan_period_max,
1775 p->numa_scan_period << 1);
1776
1777 p->mm->numa_next_scan = jiffies +
1778 msecs_to_jiffies(p->numa_scan_period);
1779
1780 return;
1781 }
1782
1783 /*
1784 * Prepare to scale scan period relative to the current period.
1785 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1786 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1787 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1788 */
1789 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1790 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1791 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1792 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1793 if (!slot)
1794 slot = 1;
1795 diff = slot * period_slot;
1796 } else {
1797 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1798
1799 /*
1800 * Scale scan rate increases based on sharing. There is an
1801 * inverse relationship between the degree of sharing and
1802 * the adjustment made to the scanning period. Broadly
1803 * speaking the intent is that there is little point
1804 * scanning faster if shared accesses dominate as it may
1805 * simply bounce migrations uselessly
1806 */
1807 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1808 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1809 }
1810
1811 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1812 task_scan_min(p), task_scan_max(p));
1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1814 }
1815
1816 /*
1817 * Get the fraction of time the task has been running since the last
1818 * NUMA placement cycle. The scheduler keeps similar statistics, but
1819 * decays those on a 32ms period, which is orders of magnitude off
1820 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1821 * stats only if the task is so new there are no NUMA statistics yet.
1822 */
1823 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1824 {
1825 u64 runtime, delta, now;
1826 /* Use the start of this time slice to avoid calculations. */
1827 now = p->se.exec_start;
1828 runtime = p->se.sum_exec_runtime;
1829
1830 if (p->last_task_numa_placement) {
1831 delta = runtime - p->last_sum_exec_runtime;
1832 *period = now - p->last_task_numa_placement;
1833 } else {
1834 delta = p->se.avg.load_sum / p->se.load.weight;
1835 *period = LOAD_AVG_MAX;
1836 }
1837
1838 p->last_sum_exec_runtime = runtime;
1839 p->last_task_numa_placement = now;
1840
1841 return delta;
1842 }
1843
1844 /*
1845 * Determine the preferred nid for a task in a numa_group. This needs to
1846 * be done in a way that produces consistent results with group_weight,
1847 * otherwise workloads might not converge.
1848 */
1849 static int preferred_group_nid(struct task_struct *p, int nid)
1850 {
1851 nodemask_t nodes;
1852 int dist;
1853
1854 /* Direct connections between all NUMA nodes. */
1855 if (sched_numa_topology_type == NUMA_DIRECT)
1856 return nid;
1857
1858 /*
1859 * On a system with glueless mesh NUMA topology, group_weight
1860 * scores nodes according to the number of NUMA hinting faults on
1861 * both the node itself, and on nearby nodes.
1862 */
1863 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1864 unsigned long score, max_score = 0;
1865 int node, max_node = nid;
1866
1867 dist = sched_max_numa_distance;
1868
1869 for_each_online_node(node) {
1870 score = group_weight(p, node, dist);
1871 if (score > max_score) {
1872 max_score = score;
1873 max_node = node;
1874 }
1875 }
1876 return max_node;
1877 }
1878
1879 /*
1880 * Finding the preferred nid in a system with NUMA backplane
1881 * interconnect topology is more involved. The goal is to locate
1882 * tasks from numa_groups near each other in the system, and
1883 * untangle workloads from different sides of the system. This requires
1884 * searching down the hierarchy of node groups, recursively searching
1885 * inside the highest scoring group of nodes. The nodemask tricks
1886 * keep the complexity of the search down.
1887 */
1888 nodes = node_online_map;
1889 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1890 unsigned long max_faults = 0;
1891 nodemask_t max_group = NODE_MASK_NONE;
1892 int a, b;
1893
1894 /* Are there nodes at this distance from each other? */
1895 if (!find_numa_distance(dist))
1896 continue;
1897
1898 for_each_node_mask(a, nodes) {
1899 unsigned long faults = 0;
1900 nodemask_t this_group;
1901 nodes_clear(this_group);
1902
1903 /* Sum group's NUMA faults; includes a==b case. */
1904 for_each_node_mask(b, nodes) {
1905 if (node_distance(a, b) < dist) {
1906 faults += group_faults(p, b);
1907 node_set(b, this_group);
1908 node_clear(b, nodes);
1909 }
1910 }
1911
1912 /* Remember the top group. */
1913 if (faults > max_faults) {
1914 max_faults = faults;
1915 max_group = this_group;
1916 /*
1917 * subtle: at the smallest distance there is
1918 * just one node left in each "group", the
1919 * winner is the preferred nid.
1920 */
1921 nid = a;
1922 }
1923 }
1924 /* Next round, evaluate the nodes within max_group. */
1925 if (!max_faults)
1926 break;
1927 nodes = max_group;
1928 }
1929 return nid;
1930 }
1931
1932 static void task_numa_placement(struct task_struct *p)
1933 {
1934 int seq, nid, max_nid = -1, max_group_nid = -1;
1935 unsigned long max_faults = 0, max_group_faults = 0;
1936 unsigned long fault_types[2] = { 0, 0 };
1937 unsigned long total_faults;
1938 u64 runtime, period;
1939 spinlock_t *group_lock = NULL;
1940
1941 /*
1942 * The p->mm->numa_scan_seq field gets updated without
1943 * exclusive access. Use READ_ONCE() here to ensure
1944 * that the field is read in a single access:
1945 */
1946 seq = READ_ONCE(p->mm->numa_scan_seq);
1947 if (p->numa_scan_seq == seq)
1948 return;
1949 p->numa_scan_seq = seq;
1950 p->numa_scan_period_max = task_scan_max(p);
1951
1952 total_faults = p->numa_faults_locality[0] +
1953 p->numa_faults_locality[1];
1954 runtime = numa_get_avg_runtime(p, &period);
1955
1956 /* If the task is part of a group prevent parallel updates to group stats */
1957 if (p->numa_group) {
1958 group_lock = &p->numa_group->lock;
1959 spin_lock_irq(group_lock);
1960 }
1961
1962 /* Find the node with the highest number of faults */
1963 for_each_online_node(nid) {
1964 /* Keep track of the offsets in numa_faults array */
1965 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1966 unsigned long faults = 0, group_faults = 0;
1967 int priv;
1968
1969 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1970 long diff, f_diff, f_weight;
1971
1972 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1973 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1974 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1975 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1976
1977 /* Decay existing window, copy faults since last scan */
1978 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1979 fault_types[priv] += p->numa_faults[membuf_idx];
1980 p->numa_faults[membuf_idx] = 0;
1981
1982 /*
1983 * Normalize the faults_from, so all tasks in a group
1984 * count according to CPU use, instead of by the raw
1985 * number of faults. Tasks with little runtime have
1986 * little over-all impact on throughput, and thus their
1987 * faults are less important.
1988 */
1989 f_weight = div64_u64(runtime << 16, period + 1);
1990 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1991 (total_faults + 1);
1992 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1993 p->numa_faults[cpubuf_idx] = 0;
1994
1995 p->numa_faults[mem_idx] += diff;
1996 p->numa_faults[cpu_idx] += f_diff;
1997 faults += p->numa_faults[mem_idx];
1998 p->total_numa_faults += diff;
1999 if (p->numa_group) {
2000 /*
2001 * safe because we can only change our own group
2002 *
2003 * mem_idx represents the offset for a given
2004 * nid and priv in a specific region because it
2005 * is at the beginning of the numa_faults array.
2006 */
2007 p->numa_group->faults[mem_idx] += diff;
2008 p->numa_group->faults_cpu[mem_idx] += f_diff;
2009 p->numa_group->total_faults += diff;
2010 group_faults += p->numa_group->faults[mem_idx];
2011 }
2012 }
2013
2014 if (faults > max_faults) {
2015 max_faults = faults;
2016 max_nid = nid;
2017 }
2018
2019 if (group_faults > max_group_faults) {
2020 max_group_faults = group_faults;
2021 max_group_nid = nid;
2022 }
2023 }
2024
2025 update_task_scan_period(p, fault_types[0], fault_types[1]);
2026
2027 if (p->numa_group) {
2028 numa_group_count_active_nodes(p->numa_group);
2029 spin_unlock_irq(group_lock);
2030 max_nid = preferred_group_nid(p, max_group_nid);
2031 }
2032
2033 if (max_faults) {
2034 /* Set the new preferred node */
2035 if (max_nid != p->numa_preferred_nid)
2036 sched_setnuma(p, max_nid);
2037
2038 if (task_node(p) != p->numa_preferred_nid)
2039 numa_migrate_preferred(p);
2040 }
2041 }
2042
2043 static inline int get_numa_group(struct numa_group *grp)
2044 {
2045 return atomic_inc_not_zero(&grp->refcount);
2046 }
2047
2048 static inline void put_numa_group(struct numa_group *grp)
2049 {
2050 if (atomic_dec_and_test(&grp->refcount))
2051 kfree_rcu(grp, rcu);
2052 }
2053
2054 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2055 int *priv)
2056 {
2057 struct numa_group *grp, *my_grp;
2058 struct task_struct *tsk;
2059 bool join = false;
2060 int cpu = cpupid_to_cpu(cpupid);
2061 int i;
2062
2063 if (unlikely(!p->numa_group)) {
2064 unsigned int size = sizeof(struct numa_group) +
2065 4*nr_node_ids*sizeof(unsigned long);
2066
2067 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2068 if (!grp)
2069 return;
2070
2071 atomic_set(&grp->refcount, 1);
2072 grp->active_nodes = 1;
2073 grp->max_faults_cpu = 0;
2074 spin_lock_init(&grp->lock);
2075 grp->gid = p->pid;
2076 /* Second half of the array tracks nids where faults happen */
2077 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2078 nr_node_ids;
2079
2080 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2081 grp->faults[i] = p->numa_faults[i];
2082
2083 grp->total_faults = p->total_numa_faults;
2084
2085 grp->nr_tasks++;
2086 rcu_assign_pointer(p->numa_group, grp);
2087 }
2088
2089 rcu_read_lock();
2090 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2091
2092 if (!cpupid_match_pid(tsk, cpupid))
2093 goto no_join;
2094
2095 grp = rcu_dereference(tsk->numa_group);
2096 if (!grp)
2097 goto no_join;
2098
2099 my_grp = p->numa_group;
2100 if (grp == my_grp)
2101 goto no_join;
2102
2103 /*
2104 * Only join the other group if its bigger; if we're the bigger group,
2105 * the other task will join us.
2106 */
2107 if (my_grp->nr_tasks > grp->nr_tasks)
2108 goto no_join;
2109
2110 /*
2111 * Tie-break on the grp address.
2112 */
2113 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2114 goto no_join;
2115
2116 /* Always join threads in the same process. */
2117 if (tsk->mm == current->mm)
2118 join = true;
2119
2120 /* Simple filter to avoid false positives due to PID collisions */
2121 if (flags & TNF_SHARED)
2122 join = true;
2123
2124 /* Update priv based on whether false sharing was detected */
2125 *priv = !join;
2126
2127 if (join && !get_numa_group(grp))
2128 goto no_join;
2129
2130 rcu_read_unlock();
2131
2132 if (!join)
2133 return;
2134
2135 BUG_ON(irqs_disabled());
2136 double_lock_irq(&my_grp->lock, &grp->lock);
2137
2138 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2139 my_grp->faults[i] -= p->numa_faults[i];
2140 grp->faults[i] += p->numa_faults[i];
2141 }
2142 my_grp->total_faults -= p->total_numa_faults;
2143 grp->total_faults += p->total_numa_faults;
2144
2145 my_grp->nr_tasks--;
2146 grp->nr_tasks++;
2147
2148 spin_unlock(&my_grp->lock);
2149 spin_unlock_irq(&grp->lock);
2150
2151 rcu_assign_pointer(p->numa_group, grp);
2152
2153 put_numa_group(my_grp);
2154 return;
2155
2156 no_join:
2157 rcu_read_unlock();
2158 return;
2159 }
2160
2161 void task_numa_free(struct task_struct *p)
2162 {
2163 struct numa_group *grp = p->numa_group;
2164 void *numa_faults = p->numa_faults;
2165 unsigned long flags;
2166 int i;
2167
2168 if (grp) {
2169 spin_lock_irqsave(&grp->lock, flags);
2170 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2171 grp->faults[i] -= p->numa_faults[i];
2172 grp->total_faults -= p->total_numa_faults;
2173
2174 grp->nr_tasks--;
2175 spin_unlock_irqrestore(&grp->lock, flags);
2176 RCU_INIT_POINTER(p->numa_group, NULL);
2177 put_numa_group(grp);
2178 }
2179
2180 p->numa_faults = NULL;
2181 kfree(numa_faults);
2182 }
2183
2184 /*
2185 * Got a PROT_NONE fault for a page on @node.
2186 */
2187 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2188 {
2189 struct task_struct *p = current;
2190 bool migrated = flags & TNF_MIGRATED;
2191 int cpu_node = task_node(current);
2192 int local = !!(flags & TNF_FAULT_LOCAL);
2193 struct numa_group *ng;
2194 int priv;
2195
2196 if (!static_branch_likely(&sched_numa_balancing))
2197 return;
2198
2199 /* for example, ksmd faulting in a user's mm */
2200 if (!p->mm)
2201 return;
2202
2203 /* Allocate buffer to track faults on a per-node basis */
2204 if (unlikely(!p->numa_faults)) {
2205 int size = sizeof(*p->numa_faults) *
2206 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2207
2208 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2209 if (!p->numa_faults)
2210 return;
2211
2212 p->total_numa_faults = 0;
2213 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2214 }
2215
2216 /*
2217 * First accesses are treated as private, otherwise consider accesses
2218 * to be private if the accessing pid has not changed
2219 */
2220 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2221 priv = 1;
2222 } else {
2223 priv = cpupid_match_pid(p, last_cpupid);
2224 if (!priv && !(flags & TNF_NO_GROUP))
2225 task_numa_group(p, last_cpupid, flags, &priv);
2226 }
2227
2228 /*
2229 * If a workload spans multiple NUMA nodes, a shared fault that
2230 * occurs wholly within the set of nodes that the workload is
2231 * actively using should be counted as local. This allows the
2232 * scan rate to slow down when a workload has settled down.
2233 */
2234 ng = p->numa_group;
2235 if (!priv && !local && ng && ng->active_nodes > 1 &&
2236 numa_is_active_node(cpu_node, ng) &&
2237 numa_is_active_node(mem_node, ng))
2238 local = 1;
2239
2240 task_numa_placement(p);
2241
2242 /*
2243 * Retry task to preferred node migration periodically, in case it
2244 * case it previously failed, or the scheduler moved us.
2245 */
2246 if (time_after(jiffies, p->numa_migrate_retry))
2247 numa_migrate_preferred(p);
2248
2249 if (migrated)
2250 p->numa_pages_migrated += pages;
2251 if (flags & TNF_MIGRATE_FAIL)
2252 p->numa_faults_locality[2] += pages;
2253
2254 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2255 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2256 p->numa_faults_locality[local] += pages;
2257 }
2258
2259 static void reset_ptenuma_scan(struct task_struct *p)
2260 {
2261 /*
2262 * We only did a read acquisition of the mmap sem, so
2263 * p->mm->numa_scan_seq is written to without exclusive access
2264 * and the update is not guaranteed to be atomic. That's not
2265 * much of an issue though, since this is just used for
2266 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2267 * expensive, to avoid any form of compiler optimizations:
2268 */
2269 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2270 p->mm->numa_scan_offset = 0;
2271 }
2272
2273 /*
2274 * The expensive part of numa migration is done from task_work context.
2275 * Triggered from task_tick_numa().
2276 */
2277 void task_numa_work(struct callback_head *work)
2278 {
2279 unsigned long migrate, next_scan, now = jiffies;
2280 struct task_struct *p = current;
2281 struct mm_struct *mm = p->mm;
2282 u64 runtime = p->se.sum_exec_runtime;
2283 struct vm_area_struct *vma;
2284 unsigned long start, end;
2285 unsigned long nr_pte_updates = 0;
2286 long pages, virtpages;
2287
2288 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2289
2290 work->next = work; /* protect against double add */
2291 /*
2292 * Who cares about NUMA placement when they're dying.
2293 *
2294 * NOTE: make sure not to dereference p->mm before this check,
2295 * exit_task_work() happens _after_ exit_mm() so we could be called
2296 * without p->mm even though we still had it when we enqueued this
2297 * work.
2298 */
2299 if (p->flags & PF_EXITING)
2300 return;
2301
2302 if (!mm->numa_next_scan) {
2303 mm->numa_next_scan = now +
2304 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2305 }
2306
2307 /*
2308 * Enforce maximal scan/migration frequency..
2309 */
2310 migrate = mm->numa_next_scan;
2311 if (time_before(now, migrate))
2312 return;
2313
2314 if (p->numa_scan_period == 0) {
2315 p->numa_scan_period_max = task_scan_max(p);
2316 p->numa_scan_period = task_scan_min(p);
2317 }
2318
2319 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2320 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2321 return;
2322
2323 /*
2324 * Delay this task enough that another task of this mm will likely win
2325 * the next time around.
2326 */
2327 p->node_stamp += 2 * TICK_NSEC;
2328
2329 start = mm->numa_scan_offset;
2330 pages = sysctl_numa_balancing_scan_size;
2331 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2332 virtpages = pages * 8; /* Scan up to this much virtual space */
2333 if (!pages)
2334 return;
2335
2336
2337 down_read(&mm->mmap_sem);
2338 vma = find_vma(mm, start);
2339 if (!vma) {
2340 reset_ptenuma_scan(p);
2341 start = 0;
2342 vma = mm->mmap;
2343 }
2344 for (; vma; vma = vma->vm_next) {
2345 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2346 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2347 continue;
2348 }
2349
2350 /*
2351 * Shared library pages mapped by multiple processes are not
2352 * migrated as it is expected they are cache replicated. Avoid
2353 * hinting faults in read-only file-backed mappings or the vdso
2354 * as migrating the pages will be of marginal benefit.
2355 */
2356 if (!vma->vm_mm ||
2357 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2358 continue;
2359
2360 /*
2361 * Skip inaccessible VMAs to avoid any confusion between
2362 * PROT_NONE and NUMA hinting ptes
2363 */
2364 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2365 continue;
2366
2367 do {
2368 start = max(start, vma->vm_start);
2369 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2370 end = min(end, vma->vm_end);
2371 nr_pte_updates = change_prot_numa(vma, start, end);
2372
2373 /*
2374 * Try to scan sysctl_numa_balancing_size worth of
2375 * hpages that have at least one present PTE that
2376 * is not already pte-numa. If the VMA contains
2377 * areas that are unused or already full of prot_numa
2378 * PTEs, scan up to virtpages, to skip through those
2379 * areas faster.
2380 */
2381 if (nr_pte_updates)
2382 pages -= (end - start) >> PAGE_SHIFT;
2383 virtpages -= (end - start) >> PAGE_SHIFT;
2384
2385 start = end;
2386 if (pages <= 0 || virtpages <= 0)
2387 goto out;
2388
2389 cond_resched();
2390 } while (end != vma->vm_end);
2391 }
2392
2393 out:
2394 /*
2395 * It is possible to reach the end of the VMA list but the last few
2396 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2397 * would find the !migratable VMA on the next scan but not reset the
2398 * scanner to the start so check it now.
2399 */
2400 if (vma)
2401 mm->numa_scan_offset = start;
2402 else
2403 reset_ptenuma_scan(p);
2404 up_read(&mm->mmap_sem);
2405
2406 /*
2407 * Make sure tasks use at least 32x as much time to run other code
2408 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2409 * Usually update_task_scan_period slows down scanning enough; on an
2410 * overloaded system we need to limit overhead on a per task basis.
2411 */
2412 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2413 u64 diff = p->se.sum_exec_runtime - runtime;
2414 p->node_stamp += 32 * diff;
2415 }
2416 }
2417
2418 /*
2419 * Drive the periodic memory faults..
2420 */
2421 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2422 {
2423 struct callback_head *work = &curr->numa_work;
2424 u64 period, now;
2425
2426 /*
2427 * We don't care about NUMA placement if we don't have memory.
2428 */
2429 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2430 return;
2431
2432 /*
2433 * Using runtime rather than walltime has the dual advantage that
2434 * we (mostly) drive the selection from busy threads and that the
2435 * task needs to have done some actual work before we bother with
2436 * NUMA placement.
2437 */
2438 now = curr->se.sum_exec_runtime;
2439 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2440
2441 if (now > curr->node_stamp + period) {
2442 if (!curr->node_stamp)
2443 curr->numa_scan_period = task_scan_min(curr);
2444 curr->node_stamp += period;
2445
2446 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2447 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2448 task_work_add(curr, work, true);
2449 }
2450 }
2451 }
2452 #else
2453 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2454 {
2455 }
2456
2457 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2458 {
2459 }
2460
2461 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2462 {
2463 }
2464 #endif /* CONFIG_NUMA_BALANCING */
2465
2466 static void
2467 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2468 {
2469 update_load_add(&cfs_rq->load, se->load.weight);
2470 if (!parent_entity(se))
2471 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2472 #ifdef CONFIG_SMP
2473 if (entity_is_task(se)) {
2474 struct rq *rq = rq_of(cfs_rq);
2475
2476 account_numa_enqueue(rq, task_of(se));
2477 list_add(&se->group_node, &rq->cfs_tasks);
2478 }
2479 #endif
2480 cfs_rq->nr_running++;
2481 }
2482
2483 static void
2484 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2485 {
2486 update_load_sub(&cfs_rq->load, se->load.weight);
2487 if (!parent_entity(se))
2488 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2489 #ifdef CONFIG_SMP
2490 if (entity_is_task(se)) {
2491 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2492 list_del_init(&se->group_node);
2493 }
2494 #endif
2495 cfs_rq->nr_running--;
2496 }
2497
2498 #ifdef CONFIG_FAIR_GROUP_SCHED
2499 # ifdef CONFIG_SMP
2500 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2501 {
2502 long tg_weight, load, shares;
2503
2504 /*
2505 * This really should be: cfs_rq->avg.load_avg, but instead we use
2506 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2507 * the shares for small weight interactive tasks.
2508 */
2509 load = scale_load_down(cfs_rq->load.weight);
2510
2511 tg_weight = atomic_long_read(&tg->load_avg);
2512
2513 /* Ensure tg_weight >= load */
2514 tg_weight -= cfs_rq->tg_load_avg_contrib;
2515 tg_weight += load;
2516
2517 shares = (tg->shares * load);
2518 if (tg_weight)
2519 shares /= tg_weight;
2520
2521 if (shares < MIN_SHARES)
2522 shares = MIN_SHARES;
2523 if (shares > tg->shares)
2524 shares = tg->shares;
2525
2526 return shares;
2527 }
2528 # else /* CONFIG_SMP */
2529 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2530 {
2531 return tg->shares;
2532 }
2533 # endif /* CONFIG_SMP */
2534
2535 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2536 unsigned long weight)
2537 {
2538 if (se->on_rq) {
2539 /* commit outstanding execution time */
2540 if (cfs_rq->curr == se)
2541 update_curr(cfs_rq);
2542 account_entity_dequeue(cfs_rq, se);
2543 }
2544
2545 update_load_set(&se->load, weight);
2546
2547 if (se->on_rq)
2548 account_entity_enqueue(cfs_rq, se);
2549 }
2550
2551 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2552
2553 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2554 {
2555 struct task_group *tg;
2556 struct sched_entity *se;
2557 long shares;
2558
2559 tg = cfs_rq->tg;
2560 se = tg->se[cpu_of(rq_of(cfs_rq))];
2561 if (!se || throttled_hierarchy(cfs_rq))
2562 return;
2563 #ifndef CONFIG_SMP
2564 if (likely(se->load.weight == tg->shares))
2565 return;
2566 #endif
2567 shares = calc_cfs_shares(cfs_rq, tg);
2568
2569 reweight_entity(cfs_rq_of(se), se, shares);
2570 }
2571 #else /* CONFIG_FAIR_GROUP_SCHED */
2572 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2573 {
2574 }
2575 #endif /* CONFIG_FAIR_GROUP_SCHED */
2576
2577 #ifdef CONFIG_SMP
2578 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2579 static const u32 runnable_avg_yN_inv[] = {
2580 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2581 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2582 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2583 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2584 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2585 0x85aac367, 0x82cd8698,
2586 };
2587
2588 /*
2589 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2590 * over-estimates when re-combining.
2591 */
2592 static const u32 runnable_avg_yN_sum[] = {
2593 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2594 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2595 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2596 };
2597
2598 /*
2599 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2600 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2601 * were generated:
2602 */
2603 static const u32 __accumulated_sum_N32[] = {
2604 0, 23371, 35056, 40899, 43820, 45281,
2605 46011, 46376, 46559, 46650, 46696, 46719,
2606 };
2607
2608 /*
2609 * Approximate:
2610 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2611 */
2612 static __always_inline u64 decay_load(u64 val, u64 n)
2613 {
2614 unsigned int local_n;
2615
2616 if (!n)
2617 return val;
2618 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2619 return 0;
2620
2621 /* after bounds checking we can collapse to 32-bit */
2622 local_n = n;
2623
2624 /*
2625 * As y^PERIOD = 1/2, we can combine
2626 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2627 * With a look-up table which covers y^n (n<PERIOD)
2628 *
2629 * To achieve constant time decay_load.
2630 */
2631 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2632 val >>= local_n / LOAD_AVG_PERIOD;
2633 local_n %= LOAD_AVG_PERIOD;
2634 }
2635
2636 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2637 return val;
2638 }
2639
2640 /*
2641 * For updates fully spanning n periods, the contribution to runnable
2642 * average will be: \Sum 1024*y^n
2643 *
2644 * We can compute this reasonably efficiently by combining:
2645 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2646 */
2647 static u32 __compute_runnable_contrib(u64 n)
2648 {
2649 u32 contrib = 0;
2650
2651 if (likely(n <= LOAD_AVG_PERIOD))
2652 return runnable_avg_yN_sum[n];
2653 else if (unlikely(n >= LOAD_AVG_MAX_N))
2654 return LOAD_AVG_MAX;
2655
2656 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2657 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2658 n %= LOAD_AVG_PERIOD;
2659 contrib = decay_load(contrib, n);
2660 return contrib + runnable_avg_yN_sum[n];
2661 }
2662
2663 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2664
2665 /*
2666 * We can represent the historical contribution to runnable average as the
2667 * coefficients of a geometric series. To do this we sub-divide our runnable
2668 * history into segments of approximately 1ms (1024us); label the segment that
2669 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2670 *
2671 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2672 * p0 p1 p2
2673 * (now) (~1ms ago) (~2ms ago)
2674 *
2675 * Let u_i denote the fraction of p_i that the entity was runnable.
2676 *
2677 * We then designate the fractions u_i as our co-efficients, yielding the
2678 * following representation of historical load:
2679 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2680 *
2681 * We choose y based on the with of a reasonably scheduling period, fixing:
2682 * y^32 = 0.5
2683 *
2684 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2685 * approximately half as much as the contribution to load within the last ms
2686 * (u_0).
2687 *
2688 * When a period "rolls over" and we have new u_0`, multiplying the previous
2689 * sum again by y is sufficient to update:
2690 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2691 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2692 */
2693 static __always_inline int
2694 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2695 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2696 {
2697 u64 delta, scaled_delta, periods;
2698 u32 contrib;
2699 unsigned int delta_w, scaled_delta_w, decayed = 0;
2700 unsigned long scale_freq, scale_cpu;
2701
2702 delta = now - sa->last_update_time;
2703 /*
2704 * This should only happen when time goes backwards, which it
2705 * unfortunately does during sched clock init when we swap over to TSC.
2706 */
2707 if ((s64)delta < 0) {
2708 sa->last_update_time = now;
2709 return 0;
2710 }
2711
2712 /*
2713 * Use 1024ns as the unit of measurement since it's a reasonable
2714 * approximation of 1us and fast to compute.
2715 */
2716 delta >>= 10;
2717 if (!delta)
2718 return 0;
2719 sa->last_update_time = now;
2720
2721 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2722 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2723
2724 /* delta_w is the amount already accumulated against our next period */
2725 delta_w = sa->period_contrib;
2726 if (delta + delta_w >= 1024) {
2727 decayed = 1;
2728
2729 /* how much left for next period will start over, we don't know yet */
2730 sa->period_contrib = 0;
2731
2732 /*
2733 * Now that we know we're crossing a period boundary, figure
2734 * out how much from delta we need to complete the current
2735 * period and accrue it.
2736 */
2737 delta_w = 1024 - delta_w;
2738 scaled_delta_w = cap_scale(delta_w, scale_freq);
2739 if (weight) {
2740 sa->load_sum += weight * scaled_delta_w;
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_sum +=
2743 weight * scaled_delta_w;
2744 }
2745 }
2746 if (running)
2747 sa->util_sum += scaled_delta_w * scale_cpu;
2748
2749 delta -= delta_w;
2750
2751 /* Figure out how many additional periods this update spans */
2752 periods = delta / 1024;
2753 delta %= 1024;
2754
2755 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2756 if (cfs_rq) {
2757 cfs_rq->runnable_load_sum =
2758 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2759 }
2760 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2761
2762 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2763 contrib = __compute_runnable_contrib(periods);
2764 contrib = cap_scale(contrib, scale_freq);
2765 if (weight) {
2766 sa->load_sum += weight * contrib;
2767 if (cfs_rq)
2768 cfs_rq->runnable_load_sum += weight * contrib;
2769 }
2770 if (running)
2771 sa->util_sum += contrib * scale_cpu;
2772 }
2773
2774 /* Remainder of delta accrued against u_0` */
2775 scaled_delta = cap_scale(delta, scale_freq);
2776 if (weight) {
2777 sa->load_sum += weight * scaled_delta;
2778 if (cfs_rq)
2779 cfs_rq->runnable_load_sum += weight * scaled_delta;
2780 }
2781 if (running)
2782 sa->util_sum += scaled_delta * scale_cpu;
2783
2784 sa->period_contrib += delta;
2785
2786 if (decayed) {
2787 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2788 if (cfs_rq) {
2789 cfs_rq->runnable_load_avg =
2790 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2791 }
2792 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2793 }
2794
2795 return decayed;
2796 }
2797
2798 #ifdef CONFIG_FAIR_GROUP_SCHED
2799 /*
2800 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2801 * and effective_load (which is not done because it is too costly).
2802 */
2803 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2804 {
2805 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2806
2807 /*
2808 * No need to update load_avg for root_task_group as it is not used.
2809 */
2810 if (cfs_rq->tg == &root_task_group)
2811 return;
2812
2813 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2814 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2815 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2816 }
2817 }
2818
2819 /*
2820 * Called within set_task_rq() right before setting a task's cpu. The
2821 * caller only guarantees p->pi_lock is held; no other assumptions,
2822 * including the state of rq->lock, should be made.
2823 */
2824 void set_task_rq_fair(struct sched_entity *se,
2825 struct cfs_rq *prev, struct cfs_rq *next)
2826 {
2827 if (!sched_feat(ATTACH_AGE_LOAD))
2828 return;
2829
2830 /*
2831 * We are supposed to update the task to "current" time, then its up to
2832 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2833 * getting what current time is, so simply throw away the out-of-date
2834 * time. This will result in the wakee task is less decayed, but giving
2835 * the wakee more load sounds not bad.
2836 */
2837 if (se->avg.last_update_time && prev) {
2838 u64 p_last_update_time;
2839 u64 n_last_update_time;
2840
2841 #ifndef CONFIG_64BIT
2842 u64 p_last_update_time_copy;
2843 u64 n_last_update_time_copy;
2844
2845 do {
2846 p_last_update_time_copy = prev->load_last_update_time_copy;
2847 n_last_update_time_copy = next->load_last_update_time_copy;
2848
2849 smp_rmb();
2850
2851 p_last_update_time = prev->avg.last_update_time;
2852 n_last_update_time = next->avg.last_update_time;
2853
2854 } while (p_last_update_time != p_last_update_time_copy ||
2855 n_last_update_time != n_last_update_time_copy);
2856 #else
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859 #endif
2860 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2861 &se->avg, 0, 0, NULL);
2862 se->avg.last_update_time = n_last_update_time;
2863 }
2864 }
2865 #else /* CONFIG_FAIR_GROUP_SCHED */
2866 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2867 #endif /* CONFIG_FAIR_GROUP_SCHED */
2868
2869 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2870
2871 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2872 {
2873 struct rq *rq = rq_of(cfs_rq);
2874 int cpu = cpu_of(rq);
2875
2876 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2877 unsigned long max = rq->cpu_capacity_orig;
2878
2879 /*
2880 * There are a few boundary cases this might miss but it should
2881 * get called often enough that that should (hopefully) not be
2882 * a real problem -- added to that it only calls on the local
2883 * CPU, so if we enqueue remotely we'll miss an update, but
2884 * the next tick/schedule should update.
2885 *
2886 * It will not get called when we go idle, because the idle
2887 * thread is a different class (!fair), nor will the utilization
2888 * number include things like RT tasks.
2889 *
2890 * As is, the util number is not freq-invariant (we'd have to
2891 * implement arch_scale_freq_capacity() for that).
2892 *
2893 * See cpu_util().
2894 */
2895 cpufreq_update_util(rq_clock(rq),
2896 min(cfs_rq->avg.util_avg, max), max);
2897 }
2898 }
2899
2900 /*
2901 * Unsigned subtract and clamp on underflow.
2902 *
2903 * Explicitly do a load-store to ensure the intermediate value never hits
2904 * memory. This allows lockless observations without ever seeing the negative
2905 * values.
2906 */
2907 #define sub_positive(_ptr, _val) do { \
2908 typeof(_ptr) ptr = (_ptr); \
2909 typeof(*ptr) val = (_val); \
2910 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2911 res = var - val; \
2912 if (res > var) \
2913 res = 0; \
2914 WRITE_ONCE(*ptr, res); \
2915 } while (0)
2916
2917 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2918 static inline int
2919 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2920 {
2921 struct sched_avg *sa = &cfs_rq->avg;
2922 int decayed, removed_load = 0, removed_util = 0;
2923
2924 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2925 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2926 sub_positive(&sa->load_avg, r);
2927 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2928 removed_load = 1;
2929 }
2930
2931 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2932 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2933 sub_positive(&sa->util_avg, r);
2934 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2935 removed_util = 1;
2936 }
2937
2938 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2939 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2940
2941 #ifndef CONFIG_64BIT
2942 smp_wmb();
2943 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2944 #endif
2945
2946 if (update_freq && (decayed || removed_util))
2947 cfs_rq_util_change(cfs_rq);
2948
2949 return decayed || removed_load;
2950 }
2951
2952 /* Update task and its cfs_rq load average */
2953 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2954 {
2955 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2956 u64 now = cfs_rq_clock_task(cfs_rq);
2957 struct rq *rq = rq_of(cfs_rq);
2958 int cpu = cpu_of(rq);
2959
2960 /*
2961 * Track task load average for carrying it to new CPU after migrated, and
2962 * track group sched_entity load average for task_h_load calc in migration
2963 */
2964 __update_load_avg(now, cpu, &se->avg,
2965 se->on_rq * scale_load_down(se->load.weight),
2966 cfs_rq->curr == se, NULL);
2967
2968 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2969 update_tg_load_avg(cfs_rq, 0);
2970 }
2971
2972 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2973 {
2974 if (!sched_feat(ATTACH_AGE_LOAD))
2975 goto skip_aging;
2976
2977 /*
2978 * If we got migrated (either between CPUs or between cgroups) we'll
2979 * have aged the average right before clearing @last_update_time.
2980 */
2981 if (se->avg.last_update_time) {
2982 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2983 &se->avg, 0, 0, NULL);
2984
2985 /*
2986 * XXX: we could have just aged the entire load away if we've been
2987 * absent from the fair class for too long.
2988 */
2989 }
2990
2991 skip_aging:
2992 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2993 cfs_rq->avg.load_avg += se->avg.load_avg;
2994 cfs_rq->avg.load_sum += se->avg.load_sum;
2995 cfs_rq->avg.util_avg += se->avg.util_avg;
2996 cfs_rq->avg.util_sum += se->avg.util_sum;
2997
2998 cfs_rq_util_change(cfs_rq);
2999 }
3000
3001 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3004 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3005 cfs_rq->curr == se, NULL);
3006
3007 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3008 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3009 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3010 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3011
3012 cfs_rq_util_change(cfs_rq);
3013 }
3014
3015 /* Add the load generated by se into cfs_rq's load average */
3016 static inline void
3017 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018 {
3019 struct sched_avg *sa = &se->avg;
3020 u64 now = cfs_rq_clock_task(cfs_rq);
3021 int migrated, decayed;
3022
3023 migrated = !sa->last_update_time;
3024 if (!migrated) {
3025 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3026 se->on_rq * scale_load_down(se->load.weight),
3027 cfs_rq->curr == se, NULL);
3028 }
3029
3030 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3031
3032 cfs_rq->runnable_load_avg += sa->load_avg;
3033 cfs_rq->runnable_load_sum += sa->load_sum;
3034
3035 if (migrated)
3036 attach_entity_load_avg(cfs_rq, se);
3037
3038 if (decayed || migrated)
3039 update_tg_load_avg(cfs_rq, 0);
3040 }
3041
3042 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3043 static inline void
3044 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3045 {
3046 update_load_avg(se, 1);
3047
3048 cfs_rq->runnable_load_avg =
3049 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3050 cfs_rq->runnable_load_sum =
3051 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3052 }
3053
3054 #ifndef CONFIG_64BIT
3055 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3056 {
3057 u64 last_update_time_copy;
3058 u64 last_update_time;
3059
3060 do {
3061 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3062 smp_rmb();
3063 last_update_time = cfs_rq->avg.last_update_time;
3064 } while (last_update_time != last_update_time_copy);
3065
3066 return last_update_time;
3067 }
3068 #else
3069 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3070 {
3071 return cfs_rq->avg.last_update_time;
3072 }
3073 #endif
3074
3075 /*
3076 * Task first catches up with cfs_rq, and then subtract
3077 * itself from the cfs_rq (task must be off the queue now).
3078 */
3079 void remove_entity_load_avg(struct sched_entity *se)
3080 {
3081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3082 u64 last_update_time;
3083
3084 /*
3085 * Newly created task or never used group entity should not be removed
3086 * from its (source) cfs_rq
3087 */
3088 if (se->avg.last_update_time == 0)
3089 return;
3090
3091 last_update_time = cfs_rq_last_update_time(cfs_rq);
3092
3093 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3094 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3095 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3096 }
3097
3098 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3099 {
3100 return cfs_rq->runnable_load_avg;
3101 }
3102
3103 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3104 {
3105 return cfs_rq->avg.load_avg;
3106 }
3107
3108 static int idle_balance(struct rq *this_rq);
3109
3110 #else /* CONFIG_SMP */
3111
3112 static inline void update_load_avg(struct sched_entity *se, int not_used)
3113 {
3114 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3115 struct rq *rq = rq_of(cfs_rq);
3116
3117 cpufreq_trigger_update(rq_clock(rq));
3118 }
3119
3120 static inline void
3121 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3122 static inline void
3123 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3124 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3125
3126 static inline void
3127 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3128 static inline void
3129 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3130
3131 static inline int idle_balance(struct rq *rq)
3132 {
3133 return 0;
3134 }
3135
3136 #endif /* CONFIG_SMP */
3137
3138 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3139 {
3140 #ifdef CONFIG_SCHEDSTATS
3141 struct task_struct *tsk = NULL;
3142
3143 if (entity_is_task(se))
3144 tsk = task_of(se);
3145
3146 if (se->statistics.sleep_start) {
3147 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3148
3149 if ((s64)delta < 0)
3150 delta = 0;
3151
3152 if (unlikely(delta > se->statistics.sleep_max))
3153 se->statistics.sleep_max = delta;
3154
3155 se->statistics.sleep_start = 0;
3156 se->statistics.sum_sleep_runtime += delta;
3157
3158 if (tsk) {
3159 account_scheduler_latency(tsk, delta >> 10, 1);
3160 trace_sched_stat_sleep(tsk, delta);
3161 }
3162 }
3163 if (se->statistics.block_start) {
3164 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3165
3166 if ((s64)delta < 0)
3167 delta = 0;
3168
3169 if (unlikely(delta > se->statistics.block_max))
3170 se->statistics.block_max = delta;
3171
3172 se->statistics.block_start = 0;
3173 se->statistics.sum_sleep_runtime += delta;
3174
3175 if (tsk) {
3176 if (tsk->in_iowait) {
3177 se->statistics.iowait_sum += delta;
3178 se->statistics.iowait_count++;
3179 trace_sched_stat_iowait(tsk, delta);
3180 }
3181
3182 trace_sched_stat_blocked(tsk, delta);
3183
3184 /*
3185 * Blocking time is in units of nanosecs, so shift by
3186 * 20 to get a milliseconds-range estimation of the
3187 * amount of time that the task spent sleeping:
3188 */
3189 if (unlikely(prof_on == SLEEP_PROFILING)) {
3190 profile_hits(SLEEP_PROFILING,
3191 (void *)get_wchan(tsk),
3192 delta >> 20);
3193 }
3194 account_scheduler_latency(tsk, delta >> 10, 0);
3195 }
3196 }
3197 #endif
3198 }
3199
3200 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3201 {
3202 #ifdef CONFIG_SCHED_DEBUG
3203 s64 d = se->vruntime - cfs_rq->min_vruntime;
3204
3205 if (d < 0)
3206 d = -d;
3207
3208 if (d > 3*sysctl_sched_latency)
3209 schedstat_inc(cfs_rq, nr_spread_over);
3210 #endif
3211 }
3212
3213 static void
3214 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3215 {
3216 u64 vruntime = cfs_rq->min_vruntime;
3217
3218 /*
3219 * The 'current' period is already promised to the current tasks,
3220 * however the extra weight of the new task will slow them down a
3221 * little, place the new task so that it fits in the slot that
3222 * stays open at the end.
3223 */
3224 if (initial && sched_feat(START_DEBIT))
3225 vruntime += sched_vslice(cfs_rq, se);
3226
3227 /* sleeps up to a single latency don't count. */
3228 if (!initial) {
3229 unsigned long thresh = sysctl_sched_latency;
3230
3231 /*
3232 * Halve their sleep time's effect, to allow
3233 * for a gentler effect of sleepers:
3234 */
3235 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3236 thresh >>= 1;
3237
3238 vruntime -= thresh;
3239 }
3240
3241 /* ensure we never gain time by being placed backwards. */
3242 se->vruntime = max_vruntime(se->vruntime, vruntime);
3243 }
3244
3245 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3246
3247 static inline void check_schedstat_required(void)
3248 {
3249 #ifdef CONFIG_SCHEDSTATS
3250 if (schedstat_enabled())
3251 return;
3252
3253 /* Force schedstat enabled if a dependent tracepoint is active */
3254 if (trace_sched_stat_wait_enabled() ||
3255 trace_sched_stat_sleep_enabled() ||
3256 trace_sched_stat_iowait_enabled() ||
3257 trace_sched_stat_blocked_enabled() ||
3258 trace_sched_stat_runtime_enabled()) {
3259 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3260 "stat_blocked and stat_runtime require the "
3261 "kernel parameter schedstats=enabled or "
3262 "kernel.sched_schedstats=1\n");
3263 }
3264 #endif
3265 }
3266
3267
3268 /*
3269 * MIGRATION
3270 *
3271 * dequeue
3272 * update_curr()
3273 * update_min_vruntime()
3274 * vruntime -= min_vruntime
3275 *
3276 * enqueue
3277 * update_curr()
3278 * update_min_vruntime()
3279 * vruntime += min_vruntime
3280 *
3281 * this way the vruntime transition between RQs is done when both
3282 * min_vruntime are up-to-date.
3283 *
3284 * WAKEUP (remote)
3285 *
3286 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3287 * vruntime -= min_vruntime
3288 *
3289 * enqueue
3290 * update_curr()
3291 * update_min_vruntime()
3292 * vruntime += min_vruntime
3293 *
3294 * this way we don't have the most up-to-date min_vruntime on the originating
3295 * CPU and an up-to-date min_vruntime on the destination CPU.
3296 */
3297
3298 static void
3299 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3300 {
3301 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3302 bool curr = cfs_rq->curr == se;
3303
3304 /*
3305 * If we're the current task, we must renormalise before calling
3306 * update_curr().
3307 */
3308 if (renorm && curr)
3309 se->vruntime += cfs_rq->min_vruntime;
3310
3311 update_curr(cfs_rq);
3312
3313 /*
3314 * Otherwise, renormalise after, such that we're placed at the current
3315 * moment in time, instead of some random moment in the past. Being
3316 * placed in the past could significantly boost this task to the
3317 * fairness detriment of existing tasks.
3318 */
3319 if (renorm && !curr)
3320 se->vruntime += cfs_rq->min_vruntime;
3321
3322 enqueue_entity_load_avg(cfs_rq, se);
3323 account_entity_enqueue(cfs_rq, se);
3324 update_cfs_shares(cfs_rq);
3325
3326 if (flags & ENQUEUE_WAKEUP) {
3327 place_entity(cfs_rq, se, 0);
3328 if (schedstat_enabled())
3329 enqueue_sleeper(cfs_rq, se);
3330 }
3331
3332 check_schedstat_required();
3333 if (schedstat_enabled()) {
3334 update_stats_enqueue(cfs_rq, se);
3335 check_spread(cfs_rq, se);
3336 }
3337 if (!curr)
3338 __enqueue_entity(cfs_rq, se);
3339 se->on_rq = 1;
3340
3341 if (cfs_rq->nr_running == 1) {
3342 list_add_leaf_cfs_rq(cfs_rq);
3343 check_enqueue_throttle(cfs_rq);
3344 }
3345 }
3346
3347 static void __clear_buddies_last(struct sched_entity *se)
3348 {
3349 for_each_sched_entity(se) {
3350 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3351 if (cfs_rq->last != se)
3352 break;
3353
3354 cfs_rq->last = NULL;
3355 }
3356 }
3357
3358 static void __clear_buddies_next(struct sched_entity *se)
3359 {
3360 for_each_sched_entity(se) {
3361 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3362 if (cfs_rq->next != se)
3363 break;
3364
3365 cfs_rq->next = NULL;
3366 }
3367 }
3368
3369 static void __clear_buddies_skip(struct sched_entity *se)
3370 {
3371 for_each_sched_entity(se) {
3372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3373 if (cfs_rq->skip != se)
3374 break;
3375
3376 cfs_rq->skip = NULL;
3377 }
3378 }
3379
3380 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3381 {
3382 if (cfs_rq->last == se)
3383 __clear_buddies_last(se);
3384
3385 if (cfs_rq->next == se)
3386 __clear_buddies_next(se);
3387
3388 if (cfs_rq->skip == se)
3389 __clear_buddies_skip(se);
3390 }
3391
3392 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3393
3394 static void
3395 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3396 {
3397 /*
3398 * Update run-time statistics of the 'current'.
3399 */
3400 update_curr(cfs_rq);
3401 dequeue_entity_load_avg(cfs_rq, se);
3402
3403 if (schedstat_enabled())
3404 update_stats_dequeue(cfs_rq, se, flags);
3405
3406 clear_buddies(cfs_rq, se);
3407
3408 if (se != cfs_rq->curr)
3409 __dequeue_entity(cfs_rq, se);
3410 se->on_rq = 0;
3411 account_entity_dequeue(cfs_rq, se);
3412
3413 /*
3414 * Normalize the entity after updating the min_vruntime because the
3415 * update can refer to the ->curr item and we need to reflect this
3416 * movement in our normalized position.
3417 */
3418 if (!(flags & DEQUEUE_SLEEP))
3419 se->vruntime -= cfs_rq->min_vruntime;
3420
3421 /* return excess runtime on last dequeue */
3422 return_cfs_rq_runtime(cfs_rq);
3423
3424 update_min_vruntime(cfs_rq);
3425 update_cfs_shares(cfs_rq);
3426 }
3427
3428 /*
3429 * Preempt the current task with a newly woken task if needed:
3430 */
3431 static void
3432 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3433 {
3434 unsigned long ideal_runtime, delta_exec;
3435 struct sched_entity *se;
3436 s64 delta;
3437
3438 ideal_runtime = sched_slice(cfs_rq, curr);
3439 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3440 if (delta_exec > ideal_runtime) {
3441 resched_curr(rq_of(cfs_rq));
3442 /*
3443 * The current task ran long enough, ensure it doesn't get
3444 * re-elected due to buddy favours.
3445 */
3446 clear_buddies(cfs_rq, curr);
3447 return;
3448 }
3449
3450 /*
3451 * Ensure that a task that missed wakeup preemption by a
3452 * narrow margin doesn't have to wait for a full slice.
3453 * This also mitigates buddy induced latencies under load.
3454 */
3455 if (delta_exec < sysctl_sched_min_granularity)
3456 return;
3457
3458 se = __pick_first_entity(cfs_rq);
3459 delta = curr->vruntime - se->vruntime;
3460
3461 if (delta < 0)
3462 return;
3463
3464 if (delta > ideal_runtime)
3465 resched_curr(rq_of(cfs_rq));
3466 }
3467
3468 static void
3469 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3470 {
3471 /* 'current' is not kept within the tree. */
3472 if (se->on_rq) {
3473 /*
3474 * Any task has to be enqueued before it get to execute on
3475 * a CPU. So account for the time it spent waiting on the
3476 * runqueue.
3477 */
3478 if (schedstat_enabled())
3479 update_stats_wait_end(cfs_rq, se);
3480 __dequeue_entity(cfs_rq, se);
3481 update_load_avg(se, 1);
3482 }
3483
3484 update_stats_curr_start(cfs_rq, se);
3485 cfs_rq->curr = se;
3486 #ifdef CONFIG_SCHEDSTATS
3487 /*
3488 * Track our maximum slice length, if the CPU's load is at
3489 * least twice that of our own weight (i.e. dont track it
3490 * when there are only lesser-weight tasks around):
3491 */
3492 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3493 se->statistics.slice_max = max(se->statistics.slice_max,
3494 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3495 }
3496 #endif
3497 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3498 }
3499
3500 static int
3501 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3502
3503 /*
3504 * Pick the next process, keeping these things in mind, in this order:
3505 * 1) keep things fair between processes/task groups
3506 * 2) pick the "next" process, since someone really wants that to run
3507 * 3) pick the "last" process, for cache locality
3508 * 4) do not run the "skip" process, if something else is available
3509 */
3510 static struct sched_entity *
3511 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3512 {
3513 struct sched_entity *left = __pick_first_entity(cfs_rq);
3514 struct sched_entity *se;
3515
3516 /*
3517 * If curr is set we have to see if its left of the leftmost entity
3518 * still in the tree, provided there was anything in the tree at all.
3519 */
3520 if (!left || (curr && entity_before(curr, left)))
3521 left = curr;
3522
3523 se = left; /* ideally we run the leftmost entity */
3524
3525 /*
3526 * Avoid running the skip buddy, if running something else can
3527 * be done without getting too unfair.
3528 */
3529 if (cfs_rq->skip == se) {
3530 struct sched_entity *second;
3531
3532 if (se == curr) {
3533 second = __pick_first_entity(cfs_rq);
3534 } else {
3535 second = __pick_next_entity(se);
3536 if (!second || (curr && entity_before(curr, second)))
3537 second = curr;
3538 }
3539
3540 if (second && wakeup_preempt_entity(second, left) < 1)
3541 se = second;
3542 }
3543
3544 /*
3545 * Prefer last buddy, try to return the CPU to a preempted task.
3546 */
3547 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3548 se = cfs_rq->last;
3549
3550 /*
3551 * Someone really wants this to run. If it's not unfair, run it.
3552 */
3553 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3554 se = cfs_rq->next;
3555
3556 clear_buddies(cfs_rq, se);
3557
3558 return se;
3559 }
3560
3561 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3562
3563 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3564 {
3565 /*
3566 * If still on the runqueue then deactivate_task()
3567 * was not called and update_curr() has to be done:
3568 */
3569 if (prev->on_rq)
3570 update_curr(cfs_rq);
3571
3572 /* throttle cfs_rqs exceeding runtime */
3573 check_cfs_rq_runtime(cfs_rq);
3574
3575 if (schedstat_enabled()) {
3576 check_spread(cfs_rq, prev);
3577 if (prev->on_rq)
3578 update_stats_wait_start(cfs_rq, prev);
3579 }
3580
3581 if (prev->on_rq) {
3582 /* Put 'current' back into the tree. */
3583 __enqueue_entity(cfs_rq, prev);
3584 /* in !on_rq case, update occurred at dequeue */
3585 update_load_avg(prev, 0);
3586 }
3587 cfs_rq->curr = NULL;
3588 }
3589
3590 static void
3591 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3592 {
3593 /*
3594 * Update run-time statistics of the 'current'.
3595 */
3596 update_curr(cfs_rq);
3597
3598 /*
3599 * Ensure that runnable average is periodically updated.
3600 */
3601 update_load_avg(curr, 1);
3602 update_cfs_shares(cfs_rq);
3603
3604 #ifdef CONFIG_SCHED_HRTICK
3605 /*
3606 * queued ticks are scheduled to match the slice, so don't bother
3607 * validating it and just reschedule.
3608 */
3609 if (queued) {
3610 resched_curr(rq_of(cfs_rq));
3611 return;
3612 }
3613 /*
3614 * don't let the period tick interfere with the hrtick preemption
3615 */
3616 if (!sched_feat(DOUBLE_TICK) &&
3617 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3618 return;
3619 #endif
3620
3621 if (cfs_rq->nr_running > 1)
3622 check_preempt_tick(cfs_rq, curr);
3623 }
3624
3625
3626 /**************************************************
3627 * CFS bandwidth control machinery
3628 */
3629
3630 #ifdef CONFIG_CFS_BANDWIDTH
3631
3632 #ifdef HAVE_JUMP_LABEL
3633 static struct static_key __cfs_bandwidth_used;
3634
3635 static inline bool cfs_bandwidth_used(void)
3636 {
3637 return static_key_false(&__cfs_bandwidth_used);
3638 }
3639
3640 void cfs_bandwidth_usage_inc(void)
3641 {
3642 static_key_slow_inc(&__cfs_bandwidth_used);
3643 }
3644
3645 void cfs_bandwidth_usage_dec(void)
3646 {
3647 static_key_slow_dec(&__cfs_bandwidth_used);
3648 }
3649 #else /* HAVE_JUMP_LABEL */
3650 static bool cfs_bandwidth_used(void)
3651 {
3652 return true;
3653 }
3654
3655 void cfs_bandwidth_usage_inc(void) {}
3656 void cfs_bandwidth_usage_dec(void) {}
3657 #endif /* HAVE_JUMP_LABEL */
3658
3659 /*
3660 * default period for cfs group bandwidth.
3661 * default: 0.1s, units: nanoseconds
3662 */
3663 static inline u64 default_cfs_period(void)
3664 {
3665 return 100000000ULL;
3666 }
3667
3668 static inline u64 sched_cfs_bandwidth_slice(void)
3669 {
3670 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3671 }
3672
3673 /*
3674 * Replenish runtime according to assigned quota and update expiration time.
3675 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3676 * additional synchronization around rq->lock.
3677 *
3678 * requires cfs_b->lock
3679 */
3680 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3681 {
3682 u64 now;
3683
3684 if (cfs_b->quota == RUNTIME_INF)
3685 return;
3686
3687 now = sched_clock_cpu(smp_processor_id());
3688 cfs_b->runtime = cfs_b->quota;
3689 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3690 }
3691
3692 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3693 {
3694 return &tg->cfs_bandwidth;
3695 }
3696
3697 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3698 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3699 {
3700 if (unlikely(cfs_rq->throttle_count))
3701 return cfs_rq->throttled_clock_task;
3702
3703 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3704 }
3705
3706 /* returns 0 on failure to allocate runtime */
3707 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3708 {
3709 struct task_group *tg = cfs_rq->tg;
3710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3711 u64 amount = 0, min_amount, expires;
3712
3713 /* note: this is a positive sum as runtime_remaining <= 0 */
3714 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3715
3716 raw_spin_lock(&cfs_b->lock);
3717 if (cfs_b->quota == RUNTIME_INF)
3718 amount = min_amount;
3719 else {
3720 start_cfs_bandwidth(cfs_b);
3721
3722 if (cfs_b->runtime > 0) {
3723 amount = min(cfs_b->runtime, min_amount);
3724 cfs_b->runtime -= amount;
3725 cfs_b->idle = 0;
3726 }
3727 }
3728 expires = cfs_b->runtime_expires;
3729 raw_spin_unlock(&cfs_b->lock);
3730
3731 cfs_rq->runtime_remaining += amount;
3732 /*
3733 * we may have advanced our local expiration to account for allowed
3734 * spread between our sched_clock and the one on which runtime was
3735 * issued.
3736 */
3737 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3738 cfs_rq->runtime_expires = expires;
3739
3740 return cfs_rq->runtime_remaining > 0;
3741 }
3742
3743 /*
3744 * Note: This depends on the synchronization provided by sched_clock and the
3745 * fact that rq->clock snapshots this value.
3746 */
3747 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3748 {
3749 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3750
3751 /* if the deadline is ahead of our clock, nothing to do */
3752 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3753 return;
3754
3755 if (cfs_rq->runtime_remaining < 0)
3756 return;
3757
3758 /*
3759 * If the local deadline has passed we have to consider the
3760 * possibility that our sched_clock is 'fast' and the global deadline
3761 * has not truly expired.
3762 *
3763 * Fortunately we can check determine whether this the case by checking
3764 * whether the global deadline has advanced. It is valid to compare
3765 * cfs_b->runtime_expires without any locks since we only care about
3766 * exact equality, so a partial write will still work.
3767 */
3768
3769 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3770 /* extend local deadline, drift is bounded above by 2 ticks */
3771 cfs_rq->runtime_expires += TICK_NSEC;
3772 } else {
3773 /* global deadline is ahead, expiration has passed */
3774 cfs_rq->runtime_remaining = 0;
3775 }
3776 }
3777
3778 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3779 {
3780 /* dock delta_exec before expiring quota (as it could span periods) */
3781 cfs_rq->runtime_remaining -= delta_exec;
3782 expire_cfs_rq_runtime(cfs_rq);
3783
3784 if (likely(cfs_rq->runtime_remaining > 0))
3785 return;
3786
3787 /*
3788 * if we're unable to extend our runtime we resched so that the active
3789 * hierarchy can be throttled
3790 */
3791 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3792 resched_curr(rq_of(cfs_rq));
3793 }
3794
3795 static __always_inline
3796 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3797 {
3798 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3799 return;
3800
3801 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3802 }
3803
3804 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3805 {
3806 return cfs_bandwidth_used() && cfs_rq->throttled;
3807 }
3808
3809 /* check whether cfs_rq, or any parent, is throttled */
3810 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3811 {
3812 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3813 }
3814
3815 /*
3816 * Ensure that neither of the group entities corresponding to src_cpu or
3817 * dest_cpu are members of a throttled hierarchy when performing group
3818 * load-balance operations.
3819 */
3820 static inline int throttled_lb_pair(struct task_group *tg,
3821 int src_cpu, int dest_cpu)
3822 {
3823 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3824
3825 src_cfs_rq = tg->cfs_rq[src_cpu];
3826 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3827
3828 return throttled_hierarchy(src_cfs_rq) ||
3829 throttled_hierarchy(dest_cfs_rq);
3830 }
3831
3832 /* updated child weight may affect parent so we have to do this bottom up */
3833 static int tg_unthrottle_up(struct task_group *tg, void *data)
3834 {
3835 struct rq *rq = data;
3836 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3837
3838 cfs_rq->throttle_count--;
3839 #ifdef CONFIG_SMP
3840 if (!cfs_rq->throttle_count) {
3841 /* adjust cfs_rq_clock_task() */
3842 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3843 cfs_rq->throttled_clock_task;
3844 }
3845 #endif
3846
3847 return 0;
3848 }
3849
3850 static int tg_throttle_down(struct task_group *tg, void *data)
3851 {
3852 struct rq *rq = data;
3853 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3854
3855 /* group is entering throttled state, stop time */
3856 if (!cfs_rq->throttle_count)
3857 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3858 cfs_rq->throttle_count++;
3859
3860 return 0;
3861 }
3862
3863 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3864 {
3865 struct rq *rq = rq_of(cfs_rq);
3866 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3867 struct sched_entity *se;
3868 long task_delta, dequeue = 1;
3869 bool empty;
3870
3871 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3872
3873 /* freeze hierarchy runnable averages while throttled */
3874 rcu_read_lock();
3875 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3876 rcu_read_unlock();
3877
3878 task_delta = cfs_rq->h_nr_running;
3879 for_each_sched_entity(se) {
3880 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3881 /* throttled entity or throttle-on-deactivate */
3882 if (!se->on_rq)
3883 break;
3884
3885 if (dequeue)
3886 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3887 qcfs_rq->h_nr_running -= task_delta;
3888
3889 if (qcfs_rq->load.weight)
3890 dequeue = 0;
3891 }
3892
3893 if (!se)
3894 sub_nr_running(rq, task_delta);
3895
3896 cfs_rq->throttled = 1;
3897 cfs_rq->throttled_clock = rq_clock(rq);
3898 raw_spin_lock(&cfs_b->lock);
3899 empty = list_empty(&cfs_b->throttled_cfs_rq);
3900
3901 /*
3902 * Add to the _head_ of the list, so that an already-started
3903 * distribute_cfs_runtime will not see us
3904 */
3905 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3906
3907 /*
3908 * If we're the first throttled task, make sure the bandwidth
3909 * timer is running.
3910 */
3911 if (empty)
3912 start_cfs_bandwidth(cfs_b);
3913
3914 raw_spin_unlock(&cfs_b->lock);
3915 }
3916
3917 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3918 {
3919 struct rq *rq = rq_of(cfs_rq);
3920 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3921 struct sched_entity *se;
3922 int enqueue = 1;
3923 long task_delta;
3924
3925 se = cfs_rq->tg->se[cpu_of(rq)];
3926
3927 cfs_rq->throttled = 0;
3928
3929 update_rq_clock(rq);
3930
3931 raw_spin_lock(&cfs_b->lock);
3932 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3933 list_del_rcu(&cfs_rq->throttled_list);
3934 raw_spin_unlock(&cfs_b->lock);
3935
3936 /* update hierarchical throttle state */
3937 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3938
3939 if (!cfs_rq->load.weight)
3940 return;
3941
3942 task_delta = cfs_rq->h_nr_running;
3943 for_each_sched_entity(se) {
3944 if (se->on_rq)
3945 enqueue = 0;
3946
3947 cfs_rq = cfs_rq_of(se);
3948 if (enqueue)
3949 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3950 cfs_rq->h_nr_running += task_delta;
3951
3952 if (cfs_rq_throttled(cfs_rq))
3953 break;
3954 }
3955
3956 if (!se)
3957 add_nr_running(rq, task_delta);
3958
3959 /* determine whether we need to wake up potentially idle cpu */
3960 if (rq->curr == rq->idle && rq->cfs.nr_running)
3961 resched_curr(rq);
3962 }
3963
3964 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3965 u64 remaining, u64 expires)
3966 {
3967 struct cfs_rq *cfs_rq;
3968 u64 runtime;
3969 u64 starting_runtime = remaining;
3970
3971 rcu_read_lock();
3972 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3973 throttled_list) {
3974 struct rq *rq = rq_of(cfs_rq);
3975
3976 raw_spin_lock(&rq->lock);
3977 if (!cfs_rq_throttled(cfs_rq))
3978 goto next;
3979
3980 runtime = -cfs_rq->runtime_remaining + 1;
3981 if (runtime > remaining)
3982 runtime = remaining;
3983 remaining -= runtime;
3984
3985 cfs_rq->runtime_remaining += runtime;
3986 cfs_rq->runtime_expires = expires;
3987
3988 /* we check whether we're throttled above */
3989 if (cfs_rq->runtime_remaining > 0)
3990 unthrottle_cfs_rq(cfs_rq);
3991
3992 next:
3993 raw_spin_unlock(&rq->lock);
3994
3995 if (!remaining)
3996 break;
3997 }
3998 rcu_read_unlock();
3999
4000 return starting_runtime - remaining;
4001 }
4002
4003 /*
4004 * Responsible for refilling a task_group's bandwidth and unthrottling its
4005 * cfs_rqs as appropriate. If there has been no activity within the last
4006 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4007 * used to track this state.
4008 */
4009 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4010 {
4011 u64 runtime, runtime_expires;
4012 int throttled;
4013
4014 /* no need to continue the timer with no bandwidth constraint */
4015 if (cfs_b->quota == RUNTIME_INF)
4016 goto out_deactivate;
4017
4018 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4019 cfs_b->nr_periods += overrun;
4020
4021 /*
4022 * idle depends on !throttled (for the case of a large deficit), and if
4023 * we're going inactive then everything else can be deferred
4024 */
4025 if (cfs_b->idle && !throttled)
4026 goto out_deactivate;
4027
4028 __refill_cfs_bandwidth_runtime(cfs_b);
4029
4030 if (!throttled) {
4031 /* mark as potentially idle for the upcoming period */
4032 cfs_b->idle = 1;
4033 return 0;
4034 }
4035
4036 /* account preceding periods in which throttling occurred */
4037 cfs_b->nr_throttled += overrun;
4038
4039 runtime_expires = cfs_b->runtime_expires;
4040
4041 /*
4042 * This check is repeated as we are holding onto the new bandwidth while
4043 * we unthrottle. This can potentially race with an unthrottled group
4044 * trying to acquire new bandwidth from the global pool. This can result
4045 * in us over-using our runtime if it is all used during this loop, but
4046 * only by limited amounts in that extreme case.
4047 */
4048 while (throttled && cfs_b->runtime > 0) {
4049 runtime = cfs_b->runtime;
4050 raw_spin_unlock(&cfs_b->lock);
4051 /* we can't nest cfs_b->lock while distributing bandwidth */
4052 runtime = distribute_cfs_runtime(cfs_b, runtime,
4053 runtime_expires);
4054 raw_spin_lock(&cfs_b->lock);
4055
4056 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4057
4058 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4059 }
4060
4061 /*
4062 * While we are ensured activity in the period following an
4063 * unthrottle, this also covers the case in which the new bandwidth is
4064 * insufficient to cover the existing bandwidth deficit. (Forcing the
4065 * timer to remain active while there are any throttled entities.)
4066 */
4067 cfs_b->idle = 0;
4068
4069 return 0;
4070
4071 out_deactivate:
4072 return 1;
4073 }
4074
4075 /* a cfs_rq won't donate quota below this amount */
4076 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4077 /* minimum remaining period time to redistribute slack quota */
4078 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4079 /* how long we wait to gather additional slack before distributing */
4080 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4081
4082 /*
4083 * Are we near the end of the current quota period?
4084 *
4085 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4086 * hrtimer base being cleared by hrtimer_start. In the case of
4087 * migrate_hrtimers, base is never cleared, so we are fine.
4088 */
4089 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4090 {
4091 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4092 u64 remaining;
4093
4094 /* if the call-back is running a quota refresh is already occurring */
4095 if (hrtimer_callback_running(refresh_timer))
4096 return 1;
4097
4098 /* is a quota refresh about to occur? */
4099 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4100 if (remaining < min_expire)
4101 return 1;
4102
4103 return 0;
4104 }
4105
4106 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4107 {
4108 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4109
4110 /* if there's a quota refresh soon don't bother with slack */
4111 if (runtime_refresh_within(cfs_b, min_left))
4112 return;
4113
4114 hrtimer_start(&cfs_b->slack_timer,
4115 ns_to_ktime(cfs_bandwidth_slack_period),
4116 HRTIMER_MODE_REL);
4117 }
4118
4119 /* we know any runtime found here is valid as update_curr() precedes return */
4120 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4121 {
4122 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4123 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4124
4125 if (slack_runtime <= 0)
4126 return;
4127
4128 raw_spin_lock(&cfs_b->lock);
4129 if (cfs_b->quota != RUNTIME_INF &&
4130 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4131 cfs_b->runtime += slack_runtime;
4132
4133 /* we are under rq->lock, defer unthrottling using a timer */
4134 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4135 !list_empty(&cfs_b->throttled_cfs_rq))
4136 start_cfs_slack_bandwidth(cfs_b);
4137 }
4138 raw_spin_unlock(&cfs_b->lock);
4139
4140 /* even if it's not valid for return we don't want to try again */
4141 cfs_rq->runtime_remaining -= slack_runtime;
4142 }
4143
4144 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4145 {
4146 if (!cfs_bandwidth_used())
4147 return;
4148
4149 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4150 return;
4151
4152 __return_cfs_rq_runtime(cfs_rq);
4153 }
4154
4155 /*
4156 * This is done with a timer (instead of inline with bandwidth return) since
4157 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4158 */
4159 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4160 {
4161 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4162 u64 expires;
4163
4164 /* confirm we're still not at a refresh boundary */
4165 raw_spin_lock(&cfs_b->lock);
4166 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4167 raw_spin_unlock(&cfs_b->lock);
4168 return;
4169 }
4170
4171 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4172 runtime = cfs_b->runtime;
4173
4174 expires = cfs_b->runtime_expires;
4175 raw_spin_unlock(&cfs_b->lock);
4176
4177 if (!runtime)
4178 return;
4179
4180 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4181
4182 raw_spin_lock(&cfs_b->lock);
4183 if (expires == cfs_b->runtime_expires)
4184 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4185 raw_spin_unlock(&cfs_b->lock);
4186 }
4187
4188 /*
4189 * When a group wakes up we want to make sure that its quota is not already
4190 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4191 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4192 */
4193 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4194 {
4195 if (!cfs_bandwidth_used())
4196 return;
4197
4198 /* Synchronize hierarchical throttle counter: */
4199 if (unlikely(!cfs_rq->throttle_uptodate)) {
4200 struct rq *rq = rq_of(cfs_rq);
4201 struct cfs_rq *pcfs_rq;
4202 struct task_group *tg;
4203
4204 cfs_rq->throttle_uptodate = 1;
4205
4206 /* Get closest up-to-date node, because leaves go first: */
4207 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4208 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4209 if (pcfs_rq->throttle_uptodate)
4210 break;
4211 }
4212 if (tg) {
4213 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4214 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4215 }
4216 }
4217
4218 /* an active group must be handled by the update_curr()->put() path */
4219 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4220 return;
4221
4222 /* ensure the group is not already throttled */
4223 if (cfs_rq_throttled(cfs_rq))
4224 return;
4225
4226 /* update runtime allocation */
4227 account_cfs_rq_runtime(cfs_rq, 0);
4228 if (cfs_rq->runtime_remaining <= 0)
4229 throttle_cfs_rq(cfs_rq);
4230 }
4231
4232 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4233 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4234 {
4235 if (!cfs_bandwidth_used())
4236 return false;
4237
4238 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4239 return false;
4240
4241 /*
4242 * it's possible for a throttled entity to be forced into a running
4243 * state (e.g. set_curr_task), in this case we're finished.
4244 */
4245 if (cfs_rq_throttled(cfs_rq))
4246 return true;
4247
4248 throttle_cfs_rq(cfs_rq);
4249 return true;
4250 }
4251
4252 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4253 {
4254 struct cfs_bandwidth *cfs_b =
4255 container_of(timer, struct cfs_bandwidth, slack_timer);
4256
4257 do_sched_cfs_slack_timer(cfs_b);
4258
4259 return HRTIMER_NORESTART;
4260 }
4261
4262 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4263 {
4264 struct cfs_bandwidth *cfs_b =
4265 container_of(timer, struct cfs_bandwidth, period_timer);
4266 int overrun;
4267 int idle = 0;
4268
4269 raw_spin_lock(&cfs_b->lock);
4270 for (;;) {
4271 overrun = hrtimer_forward_now(timer, cfs_b->period);
4272 if (!overrun)
4273 break;
4274
4275 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4276 }
4277 if (idle)
4278 cfs_b->period_active = 0;
4279 raw_spin_unlock(&cfs_b->lock);
4280
4281 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4282 }
4283
4284 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4285 {
4286 raw_spin_lock_init(&cfs_b->lock);
4287 cfs_b->runtime = 0;
4288 cfs_b->quota = RUNTIME_INF;
4289 cfs_b->period = ns_to_ktime(default_cfs_period());
4290
4291 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4292 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4293 cfs_b->period_timer.function = sched_cfs_period_timer;
4294 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4295 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4296 }
4297
4298 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4299 {
4300 cfs_rq->runtime_enabled = 0;
4301 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4302 }
4303
4304 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4305 {
4306 lockdep_assert_held(&cfs_b->lock);
4307
4308 if (!cfs_b->period_active) {
4309 cfs_b->period_active = 1;
4310 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4311 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4312 }
4313 }
4314
4315 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4316 {
4317 /* init_cfs_bandwidth() was not called */
4318 if (!cfs_b->throttled_cfs_rq.next)
4319 return;
4320
4321 hrtimer_cancel(&cfs_b->period_timer);
4322 hrtimer_cancel(&cfs_b->slack_timer);
4323 }
4324
4325 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4326 {
4327 struct cfs_rq *cfs_rq;
4328
4329 for_each_leaf_cfs_rq(rq, cfs_rq) {
4330 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4331
4332 raw_spin_lock(&cfs_b->lock);
4333 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4334 raw_spin_unlock(&cfs_b->lock);
4335 }
4336 }
4337
4338 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4339 {
4340 struct cfs_rq *cfs_rq;
4341
4342 for_each_leaf_cfs_rq(rq, cfs_rq) {
4343 if (!cfs_rq->runtime_enabled)
4344 continue;
4345
4346 /*
4347 * clock_task is not advancing so we just need to make sure
4348 * there's some valid quota amount
4349 */
4350 cfs_rq->runtime_remaining = 1;
4351 /*
4352 * Offline rq is schedulable till cpu is completely disabled
4353 * in take_cpu_down(), so we prevent new cfs throttling here.
4354 */
4355 cfs_rq->runtime_enabled = 0;
4356
4357 if (cfs_rq_throttled(cfs_rq))
4358 unthrottle_cfs_rq(cfs_rq);
4359 }
4360 }
4361
4362 #else /* CONFIG_CFS_BANDWIDTH */
4363 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4364 {
4365 return rq_clock_task(rq_of(cfs_rq));
4366 }
4367
4368 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4369 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4370 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4371 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4372
4373 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4374 {
4375 return 0;
4376 }
4377
4378 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4379 {
4380 return 0;
4381 }
4382
4383 static inline int throttled_lb_pair(struct task_group *tg,
4384 int src_cpu, int dest_cpu)
4385 {
4386 return 0;
4387 }
4388
4389 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4390
4391 #ifdef CONFIG_FAIR_GROUP_SCHED
4392 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4393 #endif
4394
4395 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4396 {
4397 return NULL;
4398 }
4399 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4400 static inline void update_runtime_enabled(struct rq *rq) {}
4401 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4402
4403 #endif /* CONFIG_CFS_BANDWIDTH */
4404
4405 /**************************************************
4406 * CFS operations on tasks:
4407 */
4408
4409 #ifdef CONFIG_SCHED_HRTICK
4410 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4411 {
4412 struct sched_entity *se = &p->se;
4413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4414
4415 WARN_ON(task_rq(p) != rq);
4416
4417 if (cfs_rq->nr_running > 1) {
4418 u64 slice = sched_slice(cfs_rq, se);
4419 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4420 s64 delta = slice - ran;
4421
4422 if (delta < 0) {
4423 if (rq->curr == p)
4424 resched_curr(rq);
4425 return;
4426 }
4427 hrtick_start(rq, delta);
4428 }
4429 }
4430
4431 /*
4432 * called from enqueue/dequeue and updates the hrtick when the
4433 * current task is from our class and nr_running is low enough
4434 * to matter.
4435 */
4436 static void hrtick_update(struct rq *rq)
4437 {
4438 struct task_struct *curr = rq->curr;
4439
4440 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4441 return;
4442
4443 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4444 hrtick_start_fair(rq, curr);
4445 }
4446 #else /* !CONFIG_SCHED_HRTICK */
4447 static inline void
4448 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4449 {
4450 }
4451
4452 static inline void hrtick_update(struct rq *rq)
4453 {
4454 }
4455 #endif
4456
4457 /*
4458 * The enqueue_task method is called before nr_running is
4459 * increased. Here we update the fair scheduling stats and
4460 * then put the task into the rbtree:
4461 */
4462 static void
4463 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4464 {
4465 struct cfs_rq *cfs_rq;
4466 struct sched_entity *se = &p->se;
4467
4468 for_each_sched_entity(se) {
4469 if (se->on_rq)
4470 break;
4471 cfs_rq = cfs_rq_of(se);
4472 enqueue_entity(cfs_rq, se, flags);
4473
4474 /*
4475 * end evaluation on encountering a throttled cfs_rq
4476 *
4477 * note: in the case of encountering a throttled cfs_rq we will
4478 * post the final h_nr_running increment below.
4479 */
4480 if (cfs_rq_throttled(cfs_rq))
4481 break;
4482 cfs_rq->h_nr_running++;
4483
4484 flags = ENQUEUE_WAKEUP;
4485 }
4486
4487 for_each_sched_entity(se) {
4488 cfs_rq = cfs_rq_of(se);
4489 cfs_rq->h_nr_running++;
4490
4491 if (cfs_rq_throttled(cfs_rq))
4492 break;
4493
4494 update_load_avg(se, 1);
4495 update_cfs_shares(cfs_rq);
4496 }
4497
4498 if (!se)
4499 add_nr_running(rq, 1);
4500
4501 hrtick_update(rq);
4502 }
4503
4504 static void set_next_buddy(struct sched_entity *se);
4505
4506 /*
4507 * The dequeue_task method is called before nr_running is
4508 * decreased. We remove the task from the rbtree and
4509 * update the fair scheduling stats:
4510 */
4511 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4512 {
4513 struct cfs_rq *cfs_rq;
4514 struct sched_entity *se = &p->se;
4515 int task_sleep = flags & DEQUEUE_SLEEP;
4516
4517 for_each_sched_entity(se) {
4518 cfs_rq = cfs_rq_of(se);
4519 dequeue_entity(cfs_rq, se, flags);
4520
4521 /*
4522 * end evaluation on encountering a throttled cfs_rq
4523 *
4524 * note: in the case of encountering a throttled cfs_rq we will
4525 * post the final h_nr_running decrement below.
4526 */
4527 if (cfs_rq_throttled(cfs_rq))
4528 break;
4529 cfs_rq->h_nr_running--;
4530
4531 /* Don't dequeue parent if it has other entities besides us */
4532 if (cfs_rq->load.weight) {
4533 /* Avoid re-evaluating load for this entity: */
4534 se = parent_entity(se);
4535 /*
4536 * Bias pick_next to pick a task from this cfs_rq, as
4537 * p is sleeping when it is within its sched_slice.
4538 */
4539 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4540 set_next_buddy(se);
4541 break;
4542 }
4543 flags |= DEQUEUE_SLEEP;
4544 }
4545
4546 for_each_sched_entity(se) {
4547 cfs_rq = cfs_rq_of(se);
4548 cfs_rq->h_nr_running--;
4549
4550 if (cfs_rq_throttled(cfs_rq))
4551 break;
4552
4553 update_load_avg(se, 1);
4554 update_cfs_shares(cfs_rq);
4555 }
4556
4557 if (!se)
4558 sub_nr_running(rq, 1);
4559
4560 hrtick_update(rq);
4561 }
4562
4563 #ifdef CONFIG_SMP
4564 #ifdef CONFIG_NO_HZ_COMMON
4565 /*
4566 * per rq 'load' arrray crap; XXX kill this.
4567 */
4568
4569 /*
4570 * The exact cpuload calculated at every tick would be:
4571 *
4572 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4573 *
4574 * If a cpu misses updates for n ticks (as it was idle) and update gets
4575 * called on the n+1-th tick when cpu may be busy, then we have:
4576 *
4577 * load_n = (1 - 1/2^i)^n * load_0
4578 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4579 *
4580 * decay_load_missed() below does efficient calculation of
4581 *
4582 * load' = (1 - 1/2^i)^n * load
4583 *
4584 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4585 * This allows us to precompute the above in said factors, thereby allowing the
4586 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4587 * fixed_power_int())
4588 *
4589 * The calculation is approximated on a 128 point scale.
4590 */
4591 #define DEGRADE_SHIFT 7
4592
4593 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4594 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4595 { 0, 0, 0, 0, 0, 0, 0, 0 },
4596 { 64, 32, 8, 0, 0, 0, 0, 0 },
4597 { 96, 72, 40, 12, 1, 0, 0, 0 },
4598 { 112, 98, 75, 43, 15, 1, 0, 0 },
4599 { 120, 112, 98, 76, 45, 16, 2, 0 }
4600 };
4601
4602 /*
4603 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4604 * would be when CPU is idle and so we just decay the old load without
4605 * adding any new load.
4606 */
4607 static unsigned long
4608 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4609 {
4610 int j = 0;
4611
4612 if (!missed_updates)
4613 return load;
4614
4615 if (missed_updates >= degrade_zero_ticks[idx])
4616 return 0;
4617
4618 if (idx == 1)
4619 return load >> missed_updates;
4620
4621 while (missed_updates) {
4622 if (missed_updates % 2)
4623 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4624
4625 missed_updates >>= 1;
4626 j++;
4627 }
4628 return load;
4629 }
4630 #endif /* CONFIG_NO_HZ_COMMON */
4631
4632 /**
4633 * __cpu_load_update - update the rq->cpu_load[] statistics
4634 * @this_rq: The rq to update statistics for
4635 * @this_load: The current load
4636 * @pending_updates: The number of missed updates
4637 *
4638 * Update rq->cpu_load[] statistics. This function is usually called every
4639 * scheduler tick (TICK_NSEC).
4640 *
4641 * This function computes a decaying average:
4642 *
4643 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4644 *
4645 * Because of NOHZ it might not get called on every tick which gives need for
4646 * the @pending_updates argument.
4647 *
4648 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4649 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4650 * = A * (A * load[i]_n-2 + B) + B
4651 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4652 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4653 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4654 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4655 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4656 *
4657 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4658 * any change in load would have resulted in the tick being turned back on.
4659 *
4660 * For regular NOHZ, this reduces to:
4661 *
4662 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4663 *
4664 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4665 * term.
4666 */
4667 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4668 unsigned long pending_updates)
4669 {
4670 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4671 int i, scale;
4672
4673 this_rq->nr_load_updates++;
4674
4675 /* Update our load: */
4676 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4677 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4678 unsigned long old_load, new_load;
4679
4680 /* scale is effectively 1 << i now, and >> i divides by scale */
4681
4682 old_load = this_rq->cpu_load[i];
4683 #ifdef CONFIG_NO_HZ_COMMON
4684 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4685 if (tickless_load) {
4686 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4687 /*
4688 * old_load can never be a negative value because a
4689 * decayed tickless_load cannot be greater than the
4690 * original tickless_load.
4691 */
4692 old_load += tickless_load;
4693 }
4694 #endif
4695 new_load = this_load;
4696 /*
4697 * Round up the averaging division if load is increasing. This
4698 * prevents us from getting stuck on 9 if the load is 10, for
4699 * example.
4700 */
4701 if (new_load > old_load)
4702 new_load += scale - 1;
4703
4704 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4705 }
4706
4707 sched_avg_update(this_rq);
4708 }
4709
4710 /* Used instead of source_load when we know the type == 0 */
4711 static unsigned long weighted_cpuload(const int cpu)
4712 {
4713 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4714 }
4715
4716 #ifdef CONFIG_NO_HZ_COMMON
4717 /*
4718 * There is no sane way to deal with nohz on smp when using jiffies because the
4719 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4720 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4721 *
4722 * Therefore we need to avoid the delta approach from the regular tick when
4723 * possible since that would seriously skew the load calculation. This is why we
4724 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4725 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4726 * loop exit, nohz_idle_balance, nohz full exit...)
4727 *
4728 * This means we might still be one tick off for nohz periods.
4729 */
4730
4731 static void cpu_load_update_nohz(struct rq *this_rq,
4732 unsigned long curr_jiffies,
4733 unsigned long load)
4734 {
4735 unsigned long pending_updates;
4736
4737 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4738 if (pending_updates) {
4739 this_rq->last_load_update_tick = curr_jiffies;
4740 /*
4741 * In the regular NOHZ case, we were idle, this means load 0.
4742 * In the NOHZ_FULL case, we were non-idle, we should consider
4743 * its weighted load.
4744 */
4745 cpu_load_update(this_rq, load, pending_updates);
4746 }
4747 }
4748
4749 /*
4750 * Called from nohz_idle_balance() to update the load ratings before doing the
4751 * idle balance.
4752 */
4753 static void cpu_load_update_idle(struct rq *this_rq)
4754 {
4755 /*
4756 * bail if there's load or we're actually up-to-date.
4757 */
4758 if (weighted_cpuload(cpu_of(this_rq)))
4759 return;
4760
4761 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4762 }
4763
4764 /*
4765 * Record CPU load on nohz entry so we know the tickless load to account
4766 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4767 * than other cpu_load[idx] but it should be fine as cpu_load readers
4768 * shouldn't rely into synchronized cpu_load[*] updates.
4769 */
4770 void cpu_load_update_nohz_start(void)
4771 {
4772 struct rq *this_rq = this_rq();
4773
4774 /*
4775 * This is all lockless but should be fine. If weighted_cpuload changes
4776 * concurrently we'll exit nohz. And cpu_load write can race with
4777 * cpu_load_update_idle() but both updater would be writing the same.
4778 */
4779 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4780 }
4781
4782 /*
4783 * Account the tickless load in the end of a nohz frame.
4784 */
4785 void cpu_load_update_nohz_stop(void)
4786 {
4787 unsigned long curr_jiffies = READ_ONCE(jiffies);
4788 struct rq *this_rq = this_rq();
4789 unsigned long load;
4790
4791 if (curr_jiffies == this_rq->last_load_update_tick)
4792 return;
4793
4794 load = weighted_cpuload(cpu_of(this_rq));
4795 raw_spin_lock(&this_rq->lock);
4796 update_rq_clock(this_rq);
4797 cpu_load_update_nohz(this_rq, curr_jiffies, load);
4798 raw_spin_unlock(&this_rq->lock);
4799 }
4800 #else /* !CONFIG_NO_HZ_COMMON */
4801 static inline void cpu_load_update_nohz(struct rq *this_rq,
4802 unsigned long curr_jiffies,
4803 unsigned long load) { }
4804 #endif /* CONFIG_NO_HZ_COMMON */
4805
4806 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4807 {
4808 #ifdef CONFIG_NO_HZ_COMMON
4809 /* See the mess around cpu_load_update_nohz(). */
4810 this_rq->last_load_update_tick = READ_ONCE(jiffies);
4811 #endif
4812 cpu_load_update(this_rq, load, 1);
4813 }
4814
4815 /*
4816 * Called from scheduler_tick()
4817 */
4818 void cpu_load_update_active(struct rq *this_rq)
4819 {
4820 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4821
4822 if (tick_nohz_tick_stopped())
4823 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4824 else
4825 cpu_load_update_periodic(this_rq, load);
4826 }
4827
4828 /*
4829 * Return a low guess at the load of a migration-source cpu weighted
4830 * according to the scheduling class and "nice" value.
4831 *
4832 * We want to under-estimate the load of migration sources, to
4833 * balance conservatively.
4834 */
4835 static unsigned long source_load(int cpu, int type)
4836 {
4837 struct rq *rq = cpu_rq(cpu);
4838 unsigned long total = weighted_cpuload(cpu);
4839
4840 if (type == 0 || !sched_feat(LB_BIAS))
4841 return total;
4842
4843 return min(rq->cpu_load[type-1], total);
4844 }
4845
4846 /*
4847 * Return a high guess at the load of a migration-target cpu weighted
4848 * according to the scheduling class and "nice" value.
4849 */
4850 static unsigned long target_load(int cpu, int type)
4851 {
4852 struct rq *rq = cpu_rq(cpu);
4853 unsigned long total = weighted_cpuload(cpu);
4854
4855 if (type == 0 || !sched_feat(LB_BIAS))
4856 return total;
4857
4858 return max(rq->cpu_load[type-1], total);
4859 }
4860
4861 static unsigned long capacity_of(int cpu)
4862 {
4863 return cpu_rq(cpu)->cpu_capacity;
4864 }
4865
4866 static unsigned long capacity_orig_of(int cpu)
4867 {
4868 return cpu_rq(cpu)->cpu_capacity_orig;
4869 }
4870
4871 static unsigned long cpu_avg_load_per_task(int cpu)
4872 {
4873 struct rq *rq = cpu_rq(cpu);
4874 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4875 unsigned long load_avg = weighted_cpuload(cpu);
4876
4877 if (nr_running)
4878 return load_avg / nr_running;
4879
4880 return 0;
4881 }
4882
4883 #ifdef CONFIG_FAIR_GROUP_SCHED
4884 /*
4885 * effective_load() calculates the load change as seen from the root_task_group
4886 *
4887 * Adding load to a group doesn't make a group heavier, but can cause movement
4888 * of group shares between cpus. Assuming the shares were perfectly aligned one
4889 * can calculate the shift in shares.
4890 *
4891 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4892 * on this @cpu and results in a total addition (subtraction) of @wg to the
4893 * total group weight.
4894 *
4895 * Given a runqueue weight distribution (rw_i) we can compute a shares
4896 * distribution (s_i) using:
4897 *
4898 * s_i = rw_i / \Sum rw_j (1)
4899 *
4900 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4901 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4902 * shares distribution (s_i):
4903 *
4904 * rw_i = { 2, 4, 1, 0 }
4905 * s_i = { 2/7, 4/7, 1/7, 0 }
4906 *
4907 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4908 * task used to run on and the CPU the waker is running on), we need to
4909 * compute the effect of waking a task on either CPU and, in case of a sync
4910 * wakeup, compute the effect of the current task going to sleep.
4911 *
4912 * So for a change of @wl to the local @cpu with an overall group weight change
4913 * of @wl we can compute the new shares distribution (s'_i) using:
4914 *
4915 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4916 *
4917 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4918 * differences in waking a task to CPU 0. The additional task changes the
4919 * weight and shares distributions like:
4920 *
4921 * rw'_i = { 3, 4, 1, 0 }
4922 * s'_i = { 3/8, 4/8, 1/8, 0 }
4923 *
4924 * We can then compute the difference in effective weight by using:
4925 *
4926 * dw_i = S * (s'_i - s_i) (3)
4927 *
4928 * Where 'S' is the group weight as seen by its parent.
4929 *
4930 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4931 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4932 * 4/7) times the weight of the group.
4933 */
4934 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4935 {
4936 struct sched_entity *se = tg->se[cpu];
4937
4938 if (!tg->parent) /* the trivial, non-cgroup case */
4939 return wl;
4940
4941 for_each_sched_entity(se) {
4942 struct cfs_rq *cfs_rq = se->my_q;
4943 long W, w = cfs_rq_load_avg(cfs_rq);
4944
4945 tg = cfs_rq->tg;
4946
4947 /*
4948 * W = @wg + \Sum rw_j
4949 */
4950 W = wg + atomic_long_read(&tg->load_avg);
4951
4952 /* Ensure \Sum rw_j >= rw_i */
4953 W -= cfs_rq->tg_load_avg_contrib;
4954 W += w;
4955
4956 /*
4957 * w = rw_i + @wl
4958 */
4959 w += wl;
4960
4961 /*
4962 * wl = S * s'_i; see (2)
4963 */
4964 if (W > 0 && w < W)
4965 wl = (w * (long)tg->shares) / W;
4966 else
4967 wl = tg->shares;
4968
4969 /*
4970 * Per the above, wl is the new se->load.weight value; since
4971 * those are clipped to [MIN_SHARES, ...) do so now. See
4972 * calc_cfs_shares().
4973 */
4974 if (wl < MIN_SHARES)
4975 wl = MIN_SHARES;
4976
4977 /*
4978 * wl = dw_i = S * (s'_i - s_i); see (3)
4979 */
4980 wl -= se->avg.load_avg;
4981
4982 /*
4983 * Recursively apply this logic to all parent groups to compute
4984 * the final effective load change on the root group. Since
4985 * only the @tg group gets extra weight, all parent groups can
4986 * only redistribute existing shares. @wl is the shift in shares
4987 * resulting from this level per the above.
4988 */
4989 wg = 0;
4990 }
4991
4992 return wl;
4993 }
4994 #else
4995
4996 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4997 {
4998 return wl;
4999 }
5000
5001 #endif
5002
5003 static void record_wakee(struct task_struct *p)
5004 {
5005 /*
5006 * Only decay a single time; tasks that have less then 1 wakeup per
5007 * jiffy will not have built up many flips.
5008 */
5009 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5010 current->wakee_flips >>= 1;
5011 current->wakee_flip_decay_ts = jiffies;
5012 }
5013
5014 if (current->last_wakee != p) {
5015 current->last_wakee = p;
5016 current->wakee_flips++;
5017 }
5018 }
5019
5020 /*
5021 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5022 *
5023 * A waker of many should wake a different task than the one last awakened
5024 * at a frequency roughly N times higher than one of its wakees.
5025 *
5026 * In order to determine whether we should let the load spread vs consolidating
5027 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5028 * partner, and a factor of lls_size higher frequency in the other.
5029 *
5030 * With both conditions met, we can be relatively sure that the relationship is
5031 * non-monogamous, with partner count exceeding socket size.
5032 *
5033 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5034 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5035 * socket size.
5036 */
5037 static int wake_wide(struct task_struct *p)
5038 {
5039 unsigned int master = current->wakee_flips;
5040 unsigned int slave = p->wakee_flips;
5041 int factor = this_cpu_read(sd_llc_size);
5042
5043 if (master < slave)
5044 swap(master, slave);
5045 if (slave < factor || master < slave * factor)
5046 return 0;
5047 return 1;
5048 }
5049
5050 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5051 {
5052 s64 this_load, load;
5053 s64 this_eff_load, prev_eff_load;
5054 int idx, this_cpu, prev_cpu;
5055 struct task_group *tg;
5056 unsigned long weight;
5057 int balanced;
5058
5059 idx = sd->wake_idx;
5060 this_cpu = smp_processor_id();
5061 prev_cpu = task_cpu(p);
5062 load = source_load(prev_cpu, idx);
5063 this_load = target_load(this_cpu, idx);
5064
5065 /*
5066 * If sync wakeup then subtract the (maximum possible)
5067 * effect of the currently running task from the load
5068 * of the current CPU:
5069 */
5070 if (sync) {
5071 tg = task_group(current);
5072 weight = current->se.avg.load_avg;
5073
5074 this_load += effective_load(tg, this_cpu, -weight, -weight);
5075 load += effective_load(tg, prev_cpu, 0, -weight);
5076 }
5077
5078 tg = task_group(p);
5079 weight = p->se.avg.load_avg;
5080
5081 /*
5082 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5083 * due to the sync cause above having dropped this_load to 0, we'll
5084 * always have an imbalance, but there's really nothing you can do
5085 * about that, so that's good too.
5086 *
5087 * Otherwise check if either cpus are near enough in load to allow this
5088 * task to be woken on this_cpu.
5089 */
5090 this_eff_load = 100;
5091 this_eff_load *= capacity_of(prev_cpu);
5092
5093 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5094 prev_eff_load *= capacity_of(this_cpu);
5095
5096 if (this_load > 0) {
5097 this_eff_load *= this_load +
5098 effective_load(tg, this_cpu, weight, weight);
5099
5100 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5101 }
5102
5103 balanced = this_eff_load <= prev_eff_load;
5104
5105 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5106
5107 if (!balanced)
5108 return 0;
5109
5110 schedstat_inc(sd, ttwu_move_affine);
5111 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5112
5113 return 1;
5114 }
5115
5116 /*
5117 * find_idlest_group finds and returns the least busy CPU group within the
5118 * domain.
5119 */
5120 static struct sched_group *
5121 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5122 int this_cpu, int sd_flag)
5123 {
5124 struct sched_group *idlest = NULL, *group = sd->groups;
5125 unsigned long min_load = ULONG_MAX, this_load = 0;
5126 int load_idx = sd->forkexec_idx;
5127 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5128
5129 if (sd_flag & SD_BALANCE_WAKE)
5130 load_idx = sd->wake_idx;
5131
5132 do {
5133 unsigned long load, avg_load;
5134 int local_group;
5135 int i;
5136
5137 /* Skip over this group if it has no CPUs allowed */
5138 if (!cpumask_intersects(sched_group_cpus(group),
5139 tsk_cpus_allowed(p)))
5140 continue;
5141
5142 local_group = cpumask_test_cpu(this_cpu,
5143 sched_group_cpus(group));
5144
5145 /* Tally up the load of all CPUs in the group */
5146 avg_load = 0;
5147
5148 for_each_cpu(i, sched_group_cpus(group)) {
5149 /* Bias balancing toward cpus of our domain */
5150 if (local_group)
5151 load = source_load(i, load_idx);
5152 else
5153 load = target_load(i, load_idx);
5154
5155 avg_load += load;
5156 }
5157
5158 /* Adjust by relative CPU capacity of the group */
5159 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5160
5161 if (local_group) {
5162 this_load = avg_load;
5163 } else if (avg_load < min_load) {
5164 min_load = avg_load;
5165 idlest = group;
5166 }
5167 } while (group = group->next, group != sd->groups);
5168
5169 if (!idlest || 100*this_load < imbalance*min_load)
5170 return NULL;
5171 return idlest;
5172 }
5173
5174 /*
5175 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5176 */
5177 static int
5178 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5179 {
5180 unsigned long load, min_load = ULONG_MAX;
5181 unsigned int min_exit_latency = UINT_MAX;
5182 u64 latest_idle_timestamp = 0;
5183 int least_loaded_cpu = this_cpu;
5184 int shallowest_idle_cpu = -1;
5185 int i;
5186
5187 /* Traverse only the allowed CPUs */
5188 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5189 if (idle_cpu(i)) {
5190 struct rq *rq = cpu_rq(i);
5191 struct cpuidle_state *idle = idle_get_state(rq);
5192 if (idle && idle->exit_latency < min_exit_latency) {
5193 /*
5194 * We give priority to a CPU whose idle state
5195 * has the smallest exit latency irrespective
5196 * of any idle timestamp.
5197 */
5198 min_exit_latency = idle->exit_latency;
5199 latest_idle_timestamp = rq->idle_stamp;
5200 shallowest_idle_cpu = i;
5201 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5202 rq->idle_stamp > latest_idle_timestamp) {
5203 /*
5204 * If equal or no active idle state, then
5205 * the most recently idled CPU might have
5206 * a warmer cache.
5207 */
5208 latest_idle_timestamp = rq->idle_stamp;
5209 shallowest_idle_cpu = i;
5210 }
5211 } else if (shallowest_idle_cpu == -1) {
5212 load = weighted_cpuload(i);
5213 if (load < min_load || (load == min_load && i == this_cpu)) {
5214 min_load = load;
5215 least_loaded_cpu = i;
5216 }
5217 }
5218 }
5219
5220 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5221 }
5222
5223 /*
5224 * Try and locate an idle CPU in the sched_domain.
5225 */
5226 static int select_idle_sibling(struct task_struct *p, int target)
5227 {
5228 struct sched_domain *sd;
5229 struct sched_group *sg;
5230 int i = task_cpu(p);
5231
5232 if (idle_cpu(target))
5233 return target;
5234
5235 /*
5236 * If the prevous cpu is cache affine and idle, don't be stupid.
5237 */
5238 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5239 return i;
5240
5241 /*
5242 * Otherwise, iterate the domains and find an eligible idle cpu.
5243 *
5244 * A completely idle sched group at higher domains is more
5245 * desirable than an idle group at a lower level, because lower
5246 * domains have smaller groups and usually share hardware
5247 * resources which causes tasks to contend on them, e.g. x86
5248 * hyperthread siblings in the lowest domain (SMT) can contend
5249 * on the shared cpu pipeline.
5250 *
5251 * However, while we prefer idle groups at higher domains
5252 * finding an idle cpu at the lowest domain is still better than
5253 * returning 'target', which we've already established, isn't
5254 * idle.
5255 */
5256 sd = rcu_dereference(per_cpu(sd_llc, target));
5257 for_each_lower_domain(sd) {
5258 sg = sd->groups;
5259 do {
5260 if (!cpumask_intersects(sched_group_cpus(sg),
5261 tsk_cpus_allowed(p)))
5262 goto next;
5263
5264 /* Ensure the entire group is idle */
5265 for_each_cpu(i, sched_group_cpus(sg)) {
5266 if (i == target || !idle_cpu(i))
5267 goto next;
5268 }
5269
5270 /*
5271 * It doesn't matter which cpu we pick, the
5272 * whole group is idle.
5273 */
5274 target = cpumask_first_and(sched_group_cpus(sg),
5275 tsk_cpus_allowed(p));
5276 goto done;
5277 next:
5278 sg = sg->next;
5279 } while (sg != sd->groups);
5280 }
5281 done:
5282 return target;
5283 }
5284
5285 /*
5286 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5287 * tasks. The unit of the return value must be the one of capacity so we can
5288 * compare the utilization with the capacity of the CPU that is available for
5289 * CFS task (ie cpu_capacity).
5290 *
5291 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5292 * recent utilization of currently non-runnable tasks on a CPU. It represents
5293 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5294 * capacity_orig is the cpu_capacity available at the highest frequency
5295 * (arch_scale_freq_capacity()).
5296 * The utilization of a CPU converges towards a sum equal to or less than the
5297 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5298 * the running time on this CPU scaled by capacity_curr.
5299 *
5300 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5301 * higher than capacity_orig because of unfortunate rounding in
5302 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5303 * the average stabilizes with the new running time. We need to check that the
5304 * utilization stays within the range of [0..capacity_orig] and cap it if
5305 * necessary. Without utilization capping, a group could be seen as overloaded
5306 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5307 * available capacity. We allow utilization to overshoot capacity_curr (but not
5308 * capacity_orig) as it useful for predicting the capacity required after task
5309 * migrations (scheduler-driven DVFS).
5310 */
5311 static int cpu_util(int cpu)
5312 {
5313 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5314 unsigned long capacity = capacity_orig_of(cpu);
5315
5316 return (util >= capacity) ? capacity : util;
5317 }
5318
5319 /*
5320 * select_task_rq_fair: Select target runqueue for the waking task in domains
5321 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5322 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5323 *
5324 * Balances load by selecting the idlest cpu in the idlest group, or under
5325 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5326 *
5327 * Returns the target cpu number.
5328 *
5329 * preempt must be disabled.
5330 */
5331 static int
5332 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5333 {
5334 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5335 int cpu = smp_processor_id();
5336 int new_cpu = prev_cpu;
5337 int want_affine = 0;
5338 int sync = wake_flags & WF_SYNC;
5339
5340 if (sd_flag & SD_BALANCE_WAKE) {
5341 record_wakee(p);
5342 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5343 }
5344
5345 rcu_read_lock();
5346 for_each_domain(cpu, tmp) {
5347 if (!(tmp->flags & SD_LOAD_BALANCE))
5348 break;
5349
5350 /*
5351 * If both cpu and prev_cpu are part of this domain,
5352 * cpu is a valid SD_WAKE_AFFINE target.
5353 */
5354 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5355 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5356 affine_sd = tmp;
5357 break;
5358 }
5359
5360 if (tmp->flags & sd_flag)
5361 sd = tmp;
5362 else if (!want_affine)
5363 break;
5364 }
5365
5366 if (affine_sd) {
5367 sd = NULL; /* Prefer wake_affine over balance flags */
5368 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5369 new_cpu = cpu;
5370 }
5371
5372 if (!sd) {
5373 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5374 new_cpu = select_idle_sibling(p, new_cpu);
5375
5376 } else while (sd) {
5377 struct sched_group *group;
5378 int weight;
5379
5380 if (!(sd->flags & sd_flag)) {
5381 sd = sd->child;
5382 continue;
5383 }
5384
5385 group = find_idlest_group(sd, p, cpu, sd_flag);
5386 if (!group) {
5387 sd = sd->child;
5388 continue;
5389 }
5390
5391 new_cpu = find_idlest_cpu(group, p, cpu);
5392 if (new_cpu == -1 || new_cpu == cpu) {
5393 /* Now try balancing at a lower domain level of cpu */
5394 sd = sd->child;
5395 continue;
5396 }
5397
5398 /* Now try balancing at a lower domain level of new_cpu */
5399 cpu = new_cpu;
5400 weight = sd->span_weight;
5401 sd = NULL;
5402 for_each_domain(cpu, tmp) {
5403 if (weight <= tmp->span_weight)
5404 break;
5405 if (tmp->flags & sd_flag)
5406 sd = tmp;
5407 }
5408 /* while loop will break here if sd == NULL */
5409 }
5410 rcu_read_unlock();
5411
5412 return new_cpu;
5413 }
5414
5415 /*
5416 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5417 * cfs_rq_of(p) references at time of call are still valid and identify the
5418 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5419 */
5420 static void migrate_task_rq_fair(struct task_struct *p)
5421 {
5422 /*
5423 * As blocked tasks retain absolute vruntime the migration needs to
5424 * deal with this by subtracting the old and adding the new
5425 * min_vruntime -- the latter is done by enqueue_entity() when placing
5426 * the task on the new runqueue.
5427 */
5428 if (p->state == TASK_WAKING) {
5429 struct sched_entity *se = &p->se;
5430 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5431 u64 min_vruntime;
5432
5433 #ifndef CONFIG_64BIT
5434 u64 min_vruntime_copy;
5435
5436 do {
5437 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5438 smp_rmb();
5439 min_vruntime = cfs_rq->min_vruntime;
5440 } while (min_vruntime != min_vruntime_copy);
5441 #else
5442 min_vruntime = cfs_rq->min_vruntime;
5443 #endif
5444
5445 se->vruntime -= min_vruntime;
5446 }
5447
5448 /*
5449 * We are supposed to update the task to "current" time, then its up to date
5450 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5451 * what current time is, so simply throw away the out-of-date time. This
5452 * will result in the wakee task is less decayed, but giving the wakee more
5453 * load sounds not bad.
5454 */
5455 remove_entity_load_avg(&p->se);
5456
5457 /* Tell new CPU we are migrated */
5458 p->se.avg.last_update_time = 0;
5459
5460 /* We have migrated, no longer consider this task hot */
5461 p->se.exec_start = 0;
5462 }
5463
5464 static void task_dead_fair(struct task_struct *p)
5465 {
5466 remove_entity_load_avg(&p->se);
5467 }
5468 #endif /* CONFIG_SMP */
5469
5470 static unsigned long
5471 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5472 {
5473 unsigned long gran = sysctl_sched_wakeup_granularity;
5474
5475 /*
5476 * Since its curr running now, convert the gran from real-time
5477 * to virtual-time in his units.
5478 *
5479 * By using 'se' instead of 'curr' we penalize light tasks, so
5480 * they get preempted easier. That is, if 'se' < 'curr' then
5481 * the resulting gran will be larger, therefore penalizing the
5482 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5483 * be smaller, again penalizing the lighter task.
5484 *
5485 * This is especially important for buddies when the leftmost
5486 * task is higher priority than the buddy.
5487 */
5488 return calc_delta_fair(gran, se);
5489 }
5490
5491 /*
5492 * Should 'se' preempt 'curr'.
5493 *
5494 * |s1
5495 * |s2
5496 * |s3
5497 * g
5498 * |<--->|c
5499 *
5500 * w(c, s1) = -1
5501 * w(c, s2) = 0
5502 * w(c, s3) = 1
5503 *
5504 */
5505 static int
5506 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5507 {
5508 s64 gran, vdiff = curr->vruntime - se->vruntime;
5509
5510 if (vdiff <= 0)
5511 return -1;
5512
5513 gran = wakeup_gran(curr, se);
5514 if (vdiff > gran)
5515 return 1;
5516
5517 return 0;
5518 }
5519
5520 static void set_last_buddy(struct sched_entity *se)
5521 {
5522 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5523 return;
5524
5525 for_each_sched_entity(se)
5526 cfs_rq_of(se)->last = se;
5527 }
5528
5529 static void set_next_buddy(struct sched_entity *se)
5530 {
5531 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5532 return;
5533
5534 for_each_sched_entity(se)
5535 cfs_rq_of(se)->next = se;
5536 }
5537
5538 static void set_skip_buddy(struct sched_entity *se)
5539 {
5540 for_each_sched_entity(se)
5541 cfs_rq_of(se)->skip = se;
5542 }
5543
5544 /*
5545 * Preempt the current task with a newly woken task if needed:
5546 */
5547 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5548 {
5549 struct task_struct *curr = rq->curr;
5550 struct sched_entity *se = &curr->se, *pse = &p->se;
5551 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5552 int scale = cfs_rq->nr_running >= sched_nr_latency;
5553 int next_buddy_marked = 0;
5554
5555 if (unlikely(se == pse))
5556 return;
5557
5558 /*
5559 * This is possible from callers such as attach_tasks(), in which we
5560 * unconditionally check_prempt_curr() after an enqueue (which may have
5561 * lead to a throttle). This both saves work and prevents false
5562 * next-buddy nomination below.
5563 */
5564 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5565 return;
5566
5567 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5568 set_next_buddy(pse);
5569 next_buddy_marked = 1;
5570 }
5571
5572 /*
5573 * We can come here with TIF_NEED_RESCHED already set from new task
5574 * wake up path.
5575 *
5576 * Note: this also catches the edge-case of curr being in a throttled
5577 * group (e.g. via set_curr_task), since update_curr() (in the
5578 * enqueue of curr) will have resulted in resched being set. This
5579 * prevents us from potentially nominating it as a false LAST_BUDDY
5580 * below.
5581 */
5582 if (test_tsk_need_resched(curr))
5583 return;
5584
5585 /* Idle tasks are by definition preempted by non-idle tasks. */
5586 if (unlikely(curr->policy == SCHED_IDLE) &&
5587 likely(p->policy != SCHED_IDLE))
5588 goto preempt;
5589
5590 /*
5591 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5592 * is driven by the tick):
5593 */
5594 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5595 return;
5596
5597 find_matching_se(&se, &pse);
5598 update_curr(cfs_rq_of(se));
5599 BUG_ON(!pse);
5600 if (wakeup_preempt_entity(se, pse) == 1) {
5601 /*
5602 * Bias pick_next to pick the sched entity that is
5603 * triggering this preemption.
5604 */
5605 if (!next_buddy_marked)
5606 set_next_buddy(pse);
5607 goto preempt;
5608 }
5609
5610 return;
5611
5612 preempt:
5613 resched_curr(rq);
5614 /*
5615 * Only set the backward buddy when the current task is still
5616 * on the rq. This can happen when a wakeup gets interleaved
5617 * with schedule on the ->pre_schedule() or idle_balance()
5618 * point, either of which can * drop the rq lock.
5619 *
5620 * Also, during early boot the idle thread is in the fair class,
5621 * for obvious reasons its a bad idea to schedule back to it.
5622 */
5623 if (unlikely(!se->on_rq || curr == rq->idle))
5624 return;
5625
5626 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5627 set_last_buddy(se);
5628 }
5629
5630 static struct task_struct *
5631 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5632 {
5633 struct cfs_rq *cfs_rq = &rq->cfs;
5634 struct sched_entity *se;
5635 struct task_struct *p;
5636 int new_tasks;
5637
5638 again:
5639 #ifdef CONFIG_FAIR_GROUP_SCHED
5640 if (!cfs_rq->nr_running)
5641 goto idle;
5642
5643 if (prev->sched_class != &fair_sched_class)
5644 goto simple;
5645
5646 /*
5647 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5648 * likely that a next task is from the same cgroup as the current.
5649 *
5650 * Therefore attempt to avoid putting and setting the entire cgroup
5651 * hierarchy, only change the part that actually changes.
5652 */
5653
5654 do {
5655 struct sched_entity *curr = cfs_rq->curr;
5656
5657 /*
5658 * Since we got here without doing put_prev_entity() we also
5659 * have to consider cfs_rq->curr. If it is still a runnable
5660 * entity, update_curr() will update its vruntime, otherwise
5661 * forget we've ever seen it.
5662 */
5663 if (curr) {
5664 if (curr->on_rq)
5665 update_curr(cfs_rq);
5666 else
5667 curr = NULL;
5668
5669 /*
5670 * This call to check_cfs_rq_runtime() will do the
5671 * throttle and dequeue its entity in the parent(s).
5672 * Therefore the 'simple' nr_running test will indeed
5673 * be correct.
5674 */
5675 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5676 goto simple;
5677 }
5678
5679 se = pick_next_entity(cfs_rq, curr);
5680 cfs_rq = group_cfs_rq(se);
5681 } while (cfs_rq);
5682
5683 p = task_of(se);
5684
5685 /*
5686 * Since we haven't yet done put_prev_entity and if the selected task
5687 * is a different task than we started out with, try and touch the
5688 * least amount of cfs_rqs.
5689 */
5690 if (prev != p) {
5691 struct sched_entity *pse = &prev->se;
5692
5693 while (!(cfs_rq = is_same_group(se, pse))) {
5694 int se_depth = se->depth;
5695 int pse_depth = pse->depth;
5696
5697 if (se_depth <= pse_depth) {
5698 put_prev_entity(cfs_rq_of(pse), pse);
5699 pse = parent_entity(pse);
5700 }
5701 if (se_depth >= pse_depth) {
5702 set_next_entity(cfs_rq_of(se), se);
5703 se = parent_entity(se);
5704 }
5705 }
5706
5707 put_prev_entity(cfs_rq, pse);
5708 set_next_entity(cfs_rq, se);
5709 }
5710
5711 if (hrtick_enabled(rq))
5712 hrtick_start_fair(rq, p);
5713
5714 return p;
5715 simple:
5716 cfs_rq = &rq->cfs;
5717 #endif
5718
5719 if (!cfs_rq->nr_running)
5720 goto idle;
5721
5722 put_prev_task(rq, prev);
5723
5724 do {
5725 se = pick_next_entity(cfs_rq, NULL);
5726 set_next_entity(cfs_rq, se);
5727 cfs_rq = group_cfs_rq(se);
5728 } while (cfs_rq);
5729
5730 p = task_of(se);
5731
5732 if (hrtick_enabled(rq))
5733 hrtick_start_fair(rq, p);
5734
5735 return p;
5736
5737 idle:
5738 /*
5739 * This is OK, because current is on_cpu, which avoids it being picked
5740 * for load-balance and preemption/IRQs are still disabled avoiding
5741 * further scheduler activity on it and we're being very careful to
5742 * re-start the picking loop.
5743 */
5744 lockdep_unpin_lock(&rq->lock, cookie);
5745 new_tasks = idle_balance(rq);
5746 lockdep_repin_lock(&rq->lock, cookie);
5747 /*
5748 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5749 * possible for any higher priority task to appear. In that case we
5750 * must re-start the pick_next_entity() loop.
5751 */
5752 if (new_tasks < 0)
5753 return RETRY_TASK;
5754
5755 if (new_tasks > 0)
5756 goto again;
5757
5758 return NULL;
5759 }
5760
5761 /*
5762 * Account for a descheduled task:
5763 */
5764 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5765 {
5766 struct sched_entity *se = &prev->se;
5767 struct cfs_rq *cfs_rq;
5768
5769 for_each_sched_entity(se) {
5770 cfs_rq = cfs_rq_of(se);
5771 put_prev_entity(cfs_rq, se);
5772 }
5773 }
5774
5775 /*
5776 * sched_yield() is very simple
5777 *
5778 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5779 */
5780 static void yield_task_fair(struct rq *rq)
5781 {
5782 struct task_struct *curr = rq->curr;
5783 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5784 struct sched_entity *se = &curr->se;
5785
5786 /*
5787 * Are we the only task in the tree?
5788 */
5789 if (unlikely(rq->nr_running == 1))
5790 return;
5791
5792 clear_buddies(cfs_rq, se);
5793
5794 if (curr->policy != SCHED_BATCH) {
5795 update_rq_clock(rq);
5796 /*
5797 * Update run-time statistics of the 'current'.
5798 */
5799 update_curr(cfs_rq);
5800 /*
5801 * Tell update_rq_clock() that we've just updated,
5802 * so we don't do microscopic update in schedule()
5803 * and double the fastpath cost.
5804 */
5805 rq_clock_skip_update(rq, true);
5806 }
5807
5808 set_skip_buddy(se);
5809 }
5810
5811 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5812 {
5813 struct sched_entity *se = &p->se;
5814
5815 /* throttled hierarchies are not runnable */
5816 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5817 return false;
5818
5819 /* Tell the scheduler that we'd really like pse to run next. */
5820 set_next_buddy(se);
5821
5822 yield_task_fair(rq);
5823
5824 return true;
5825 }
5826
5827 #ifdef CONFIG_SMP
5828 /**************************************************
5829 * Fair scheduling class load-balancing methods.
5830 *
5831 * BASICS
5832 *
5833 * The purpose of load-balancing is to achieve the same basic fairness the
5834 * per-cpu scheduler provides, namely provide a proportional amount of compute
5835 * time to each task. This is expressed in the following equation:
5836 *
5837 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5838 *
5839 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5840 * W_i,0 is defined as:
5841 *
5842 * W_i,0 = \Sum_j w_i,j (2)
5843 *
5844 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5845 * is derived from the nice value as per sched_prio_to_weight[].
5846 *
5847 * The weight average is an exponential decay average of the instantaneous
5848 * weight:
5849 *
5850 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5851 *
5852 * C_i is the compute capacity of cpu i, typically it is the
5853 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5854 * can also include other factors [XXX].
5855 *
5856 * To achieve this balance we define a measure of imbalance which follows
5857 * directly from (1):
5858 *
5859 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5860 *
5861 * We them move tasks around to minimize the imbalance. In the continuous
5862 * function space it is obvious this converges, in the discrete case we get
5863 * a few fun cases generally called infeasible weight scenarios.
5864 *
5865 * [XXX expand on:
5866 * - infeasible weights;
5867 * - local vs global optima in the discrete case. ]
5868 *
5869 *
5870 * SCHED DOMAINS
5871 *
5872 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5873 * for all i,j solution, we create a tree of cpus that follows the hardware
5874 * topology where each level pairs two lower groups (or better). This results
5875 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5876 * tree to only the first of the previous level and we decrease the frequency
5877 * of load-balance at each level inv. proportional to the number of cpus in
5878 * the groups.
5879 *
5880 * This yields:
5881 *
5882 * log_2 n 1 n
5883 * \Sum { --- * --- * 2^i } = O(n) (5)
5884 * i = 0 2^i 2^i
5885 * `- size of each group
5886 * | | `- number of cpus doing load-balance
5887 * | `- freq
5888 * `- sum over all levels
5889 *
5890 * Coupled with a limit on how many tasks we can migrate every balance pass,
5891 * this makes (5) the runtime complexity of the balancer.
5892 *
5893 * An important property here is that each CPU is still (indirectly) connected
5894 * to every other cpu in at most O(log n) steps:
5895 *
5896 * The adjacency matrix of the resulting graph is given by:
5897 *
5898 * log_2 n
5899 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5900 * k = 0
5901 *
5902 * And you'll find that:
5903 *
5904 * A^(log_2 n)_i,j != 0 for all i,j (7)
5905 *
5906 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5907 * The task movement gives a factor of O(m), giving a convergence complexity
5908 * of:
5909 *
5910 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5911 *
5912 *
5913 * WORK CONSERVING
5914 *
5915 * In order to avoid CPUs going idle while there's still work to do, new idle
5916 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5917 * tree itself instead of relying on other CPUs to bring it work.
5918 *
5919 * This adds some complexity to both (5) and (8) but it reduces the total idle
5920 * time.
5921 *
5922 * [XXX more?]
5923 *
5924 *
5925 * CGROUPS
5926 *
5927 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5928 *
5929 * s_k,i
5930 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5931 * S_k
5932 *
5933 * Where
5934 *
5935 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5936 *
5937 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5938 *
5939 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5940 * property.
5941 *
5942 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5943 * rewrite all of this once again.]
5944 */
5945
5946 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5947
5948 enum fbq_type { regular, remote, all };
5949
5950 #define LBF_ALL_PINNED 0x01
5951 #define LBF_NEED_BREAK 0x02
5952 #define LBF_DST_PINNED 0x04
5953 #define LBF_SOME_PINNED 0x08
5954
5955 struct lb_env {
5956 struct sched_domain *sd;
5957
5958 struct rq *src_rq;
5959 int src_cpu;
5960
5961 int dst_cpu;
5962 struct rq *dst_rq;
5963
5964 struct cpumask *dst_grpmask;
5965 int new_dst_cpu;
5966 enum cpu_idle_type idle;
5967 long imbalance;
5968 /* The set of CPUs under consideration for load-balancing */
5969 struct cpumask *cpus;
5970
5971 unsigned int flags;
5972
5973 unsigned int loop;
5974 unsigned int loop_break;
5975 unsigned int loop_max;
5976
5977 enum fbq_type fbq_type;
5978 struct list_head tasks;
5979 };
5980
5981 /*
5982 * Is this task likely cache-hot:
5983 */
5984 static int task_hot(struct task_struct *p, struct lb_env *env)
5985 {
5986 s64 delta;
5987
5988 lockdep_assert_held(&env->src_rq->lock);
5989
5990 if (p->sched_class != &fair_sched_class)
5991 return 0;
5992
5993 if (unlikely(p->policy == SCHED_IDLE))
5994 return 0;
5995
5996 /*
5997 * Buddy candidates are cache hot:
5998 */
5999 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6000 (&p->se == cfs_rq_of(&p->se)->next ||
6001 &p->se == cfs_rq_of(&p->se)->last))
6002 return 1;
6003
6004 if (sysctl_sched_migration_cost == -1)
6005 return 1;
6006 if (sysctl_sched_migration_cost == 0)
6007 return 0;
6008
6009 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6010
6011 return delta < (s64)sysctl_sched_migration_cost;
6012 }
6013
6014 #ifdef CONFIG_NUMA_BALANCING
6015 /*
6016 * Returns 1, if task migration degrades locality
6017 * Returns 0, if task migration improves locality i.e migration preferred.
6018 * Returns -1, if task migration is not affected by locality.
6019 */
6020 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6021 {
6022 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6023 unsigned long src_faults, dst_faults;
6024 int src_nid, dst_nid;
6025
6026 if (!static_branch_likely(&sched_numa_balancing))
6027 return -1;
6028
6029 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6030 return -1;
6031
6032 src_nid = cpu_to_node(env->src_cpu);
6033 dst_nid = cpu_to_node(env->dst_cpu);
6034
6035 if (src_nid == dst_nid)
6036 return -1;
6037
6038 /* Migrating away from the preferred node is always bad. */
6039 if (src_nid == p->numa_preferred_nid) {
6040 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6041 return 1;
6042 else
6043 return -1;
6044 }
6045
6046 /* Encourage migration to the preferred node. */
6047 if (dst_nid == p->numa_preferred_nid)
6048 return 0;
6049
6050 if (numa_group) {
6051 src_faults = group_faults(p, src_nid);
6052 dst_faults = group_faults(p, dst_nid);
6053 } else {
6054 src_faults = task_faults(p, src_nid);
6055 dst_faults = task_faults(p, dst_nid);
6056 }
6057
6058 return dst_faults < src_faults;
6059 }
6060
6061 #else
6062 static inline int migrate_degrades_locality(struct task_struct *p,
6063 struct lb_env *env)
6064 {
6065 return -1;
6066 }
6067 #endif
6068
6069 /*
6070 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6071 */
6072 static
6073 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6074 {
6075 int tsk_cache_hot;
6076
6077 lockdep_assert_held(&env->src_rq->lock);
6078
6079 /*
6080 * We do not migrate tasks that are:
6081 * 1) throttled_lb_pair, or
6082 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6083 * 3) running (obviously), or
6084 * 4) are cache-hot on their current CPU.
6085 */
6086 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6087 return 0;
6088
6089 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6090 int cpu;
6091
6092 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6093
6094 env->flags |= LBF_SOME_PINNED;
6095
6096 /*
6097 * Remember if this task can be migrated to any other cpu in
6098 * our sched_group. We may want to revisit it if we couldn't
6099 * meet load balance goals by pulling other tasks on src_cpu.
6100 *
6101 * Also avoid computing new_dst_cpu if we have already computed
6102 * one in current iteration.
6103 */
6104 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6105 return 0;
6106
6107 /* Prevent to re-select dst_cpu via env's cpus */
6108 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6109 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6110 env->flags |= LBF_DST_PINNED;
6111 env->new_dst_cpu = cpu;
6112 break;
6113 }
6114 }
6115
6116 return 0;
6117 }
6118
6119 /* Record that we found atleast one task that could run on dst_cpu */
6120 env->flags &= ~LBF_ALL_PINNED;
6121
6122 if (task_running(env->src_rq, p)) {
6123 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6124 return 0;
6125 }
6126
6127 /*
6128 * Aggressive migration if:
6129 * 1) destination numa is preferred
6130 * 2) task is cache cold, or
6131 * 3) too many balance attempts have failed.
6132 */
6133 tsk_cache_hot = migrate_degrades_locality(p, env);
6134 if (tsk_cache_hot == -1)
6135 tsk_cache_hot = task_hot(p, env);
6136
6137 if (tsk_cache_hot <= 0 ||
6138 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6139 if (tsk_cache_hot == 1) {
6140 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6141 schedstat_inc(p, se.statistics.nr_forced_migrations);
6142 }
6143 return 1;
6144 }
6145
6146 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6147 return 0;
6148 }
6149
6150 /*
6151 * detach_task() -- detach the task for the migration specified in env
6152 */
6153 static void detach_task(struct task_struct *p, struct lb_env *env)
6154 {
6155 lockdep_assert_held(&env->src_rq->lock);
6156
6157 p->on_rq = TASK_ON_RQ_MIGRATING;
6158 deactivate_task(env->src_rq, p, 0);
6159 set_task_cpu(p, env->dst_cpu);
6160 }
6161
6162 /*
6163 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6164 * part of active balancing operations within "domain".
6165 *
6166 * Returns a task if successful and NULL otherwise.
6167 */
6168 static struct task_struct *detach_one_task(struct lb_env *env)
6169 {
6170 struct task_struct *p, *n;
6171
6172 lockdep_assert_held(&env->src_rq->lock);
6173
6174 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6175 if (!can_migrate_task(p, env))
6176 continue;
6177
6178 detach_task(p, env);
6179
6180 /*
6181 * Right now, this is only the second place where
6182 * lb_gained[env->idle] is updated (other is detach_tasks)
6183 * so we can safely collect stats here rather than
6184 * inside detach_tasks().
6185 */
6186 schedstat_inc(env->sd, lb_gained[env->idle]);
6187 return p;
6188 }
6189 return NULL;
6190 }
6191
6192 static const unsigned int sched_nr_migrate_break = 32;
6193
6194 /*
6195 * detach_tasks() -- tries to detach up to imbalance weighted load from
6196 * busiest_rq, as part of a balancing operation within domain "sd".
6197 *
6198 * Returns number of detached tasks if successful and 0 otherwise.
6199 */
6200 static int detach_tasks(struct lb_env *env)
6201 {
6202 struct list_head *tasks = &env->src_rq->cfs_tasks;
6203 struct task_struct *p;
6204 unsigned long load;
6205 int detached = 0;
6206
6207 lockdep_assert_held(&env->src_rq->lock);
6208
6209 if (env->imbalance <= 0)
6210 return 0;
6211
6212 while (!list_empty(tasks)) {
6213 /*
6214 * We don't want to steal all, otherwise we may be treated likewise,
6215 * which could at worst lead to a livelock crash.
6216 */
6217 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6218 break;
6219
6220 p = list_first_entry(tasks, struct task_struct, se.group_node);
6221
6222 env->loop++;
6223 /* We've more or less seen every task there is, call it quits */
6224 if (env->loop > env->loop_max)
6225 break;
6226
6227 /* take a breather every nr_migrate tasks */
6228 if (env->loop > env->loop_break) {
6229 env->loop_break += sched_nr_migrate_break;
6230 env->flags |= LBF_NEED_BREAK;
6231 break;
6232 }
6233
6234 if (!can_migrate_task(p, env))
6235 goto next;
6236
6237 load = task_h_load(p);
6238
6239 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6240 goto next;
6241
6242 if ((load / 2) > env->imbalance)
6243 goto next;
6244
6245 detach_task(p, env);
6246 list_add(&p->se.group_node, &env->tasks);
6247
6248 detached++;
6249 env->imbalance -= load;
6250
6251 #ifdef CONFIG_PREEMPT
6252 /*
6253 * NEWIDLE balancing is a source of latency, so preemptible
6254 * kernels will stop after the first task is detached to minimize
6255 * the critical section.
6256 */
6257 if (env->idle == CPU_NEWLY_IDLE)
6258 break;
6259 #endif
6260
6261 /*
6262 * We only want to steal up to the prescribed amount of
6263 * weighted load.
6264 */
6265 if (env->imbalance <= 0)
6266 break;
6267
6268 continue;
6269 next:
6270 list_move_tail(&p->se.group_node, tasks);
6271 }
6272
6273 /*
6274 * Right now, this is one of only two places we collect this stat
6275 * so we can safely collect detach_one_task() stats here rather
6276 * than inside detach_one_task().
6277 */
6278 schedstat_add(env->sd, lb_gained[env->idle], detached);
6279
6280 return detached;
6281 }
6282
6283 /*
6284 * attach_task() -- attach the task detached by detach_task() to its new rq.
6285 */
6286 static void attach_task(struct rq *rq, struct task_struct *p)
6287 {
6288 lockdep_assert_held(&rq->lock);
6289
6290 BUG_ON(task_rq(p) != rq);
6291 activate_task(rq, p, 0);
6292 p->on_rq = TASK_ON_RQ_QUEUED;
6293 check_preempt_curr(rq, p, 0);
6294 }
6295
6296 /*
6297 * attach_one_task() -- attaches the task returned from detach_one_task() to
6298 * its new rq.
6299 */
6300 static void attach_one_task(struct rq *rq, struct task_struct *p)
6301 {
6302 raw_spin_lock(&rq->lock);
6303 attach_task(rq, p);
6304 raw_spin_unlock(&rq->lock);
6305 }
6306
6307 /*
6308 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6309 * new rq.
6310 */
6311 static void attach_tasks(struct lb_env *env)
6312 {
6313 struct list_head *tasks = &env->tasks;
6314 struct task_struct *p;
6315
6316 raw_spin_lock(&env->dst_rq->lock);
6317
6318 while (!list_empty(tasks)) {
6319 p = list_first_entry(tasks, struct task_struct, se.group_node);
6320 list_del_init(&p->se.group_node);
6321
6322 attach_task(env->dst_rq, p);
6323 }
6324
6325 raw_spin_unlock(&env->dst_rq->lock);
6326 }
6327
6328 #ifdef CONFIG_FAIR_GROUP_SCHED
6329 static void update_blocked_averages(int cpu)
6330 {
6331 struct rq *rq = cpu_rq(cpu);
6332 struct cfs_rq *cfs_rq;
6333 unsigned long flags;
6334
6335 raw_spin_lock_irqsave(&rq->lock, flags);
6336 update_rq_clock(rq);
6337
6338 /*
6339 * Iterates the task_group tree in a bottom up fashion, see
6340 * list_add_leaf_cfs_rq() for details.
6341 */
6342 for_each_leaf_cfs_rq(rq, cfs_rq) {
6343 /* throttled entities do not contribute to load */
6344 if (throttled_hierarchy(cfs_rq))
6345 continue;
6346
6347 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6348 update_tg_load_avg(cfs_rq, 0);
6349 }
6350 raw_spin_unlock_irqrestore(&rq->lock, flags);
6351 }
6352
6353 /*
6354 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6355 * This needs to be done in a top-down fashion because the load of a child
6356 * group is a fraction of its parents load.
6357 */
6358 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6359 {
6360 struct rq *rq = rq_of(cfs_rq);
6361 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6362 unsigned long now = jiffies;
6363 unsigned long load;
6364
6365 if (cfs_rq->last_h_load_update == now)
6366 return;
6367
6368 cfs_rq->h_load_next = NULL;
6369 for_each_sched_entity(se) {
6370 cfs_rq = cfs_rq_of(se);
6371 cfs_rq->h_load_next = se;
6372 if (cfs_rq->last_h_load_update == now)
6373 break;
6374 }
6375
6376 if (!se) {
6377 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6378 cfs_rq->last_h_load_update = now;
6379 }
6380
6381 while ((se = cfs_rq->h_load_next) != NULL) {
6382 load = cfs_rq->h_load;
6383 load = div64_ul(load * se->avg.load_avg,
6384 cfs_rq_load_avg(cfs_rq) + 1);
6385 cfs_rq = group_cfs_rq(se);
6386 cfs_rq->h_load = load;
6387 cfs_rq->last_h_load_update = now;
6388 }
6389 }
6390
6391 static unsigned long task_h_load(struct task_struct *p)
6392 {
6393 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6394
6395 update_cfs_rq_h_load(cfs_rq);
6396 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6397 cfs_rq_load_avg(cfs_rq) + 1);
6398 }
6399 #else
6400 static inline void update_blocked_averages(int cpu)
6401 {
6402 struct rq *rq = cpu_rq(cpu);
6403 struct cfs_rq *cfs_rq = &rq->cfs;
6404 unsigned long flags;
6405
6406 raw_spin_lock_irqsave(&rq->lock, flags);
6407 update_rq_clock(rq);
6408 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6409 raw_spin_unlock_irqrestore(&rq->lock, flags);
6410 }
6411
6412 static unsigned long task_h_load(struct task_struct *p)
6413 {
6414 return p->se.avg.load_avg;
6415 }
6416 #endif
6417
6418 /********** Helpers for find_busiest_group ************************/
6419
6420 enum group_type {
6421 group_other = 0,
6422 group_imbalanced,
6423 group_overloaded,
6424 };
6425
6426 /*
6427 * sg_lb_stats - stats of a sched_group required for load_balancing
6428 */
6429 struct sg_lb_stats {
6430 unsigned long avg_load; /*Avg load across the CPUs of the group */
6431 unsigned long group_load; /* Total load over the CPUs of the group */
6432 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6433 unsigned long load_per_task;
6434 unsigned long group_capacity;
6435 unsigned long group_util; /* Total utilization of the group */
6436 unsigned int sum_nr_running; /* Nr tasks running in the group */
6437 unsigned int idle_cpus;
6438 unsigned int group_weight;
6439 enum group_type group_type;
6440 int group_no_capacity;
6441 #ifdef CONFIG_NUMA_BALANCING
6442 unsigned int nr_numa_running;
6443 unsigned int nr_preferred_running;
6444 #endif
6445 };
6446
6447 /*
6448 * sd_lb_stats - Structure to store the statistics of a sched_domain
6449 * during load balancing.
6450 */
6451 struct sd_lb_stats {
6452 struct sched_group *busiest; /* Busiest group in this sd */
6453 struct sched_group *local; /* Local group in this sd */
6454 unsigned long total_load; /* Total load of all groups in sd */
6455 unsigned long total_capacity; /* Total capacity of all groups in sd */
6456 unsigned long avg_load; /* Average load across all groups in sd */
6457
6458 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6459 struct sg_lb_stats local_stat; /* Statistics of the local group */
6460 };
6461
6462 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6463 {
6464 /*
6465 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6466 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6467 * We must however clear busiest_stat::avg_load because
6468 * update_sd_pick_busiest() reads this before assignment.
6469 */
6470 *sds = (struct sd_lb_stats){
6471 .busiest = NULL,
6472 .local = NULL,
6473 .total_load = 0UL,
6474 .total_capacity = 0UL,
6475 .busiest_stat = {
6476 .avg_load = 0UL,
6477 .sum_nr_running = 0,
6478 .group_type = group_other,
6479 },
6480 };
6481 }
6482
6483 /**
6484 * get_sd_load_idx - Obtain the load index for a given sched domain.
6485 * @sd: The sched_domain whose load_idx is to be obtained.
6486 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6487 *
6488 * Return: The load index.
6489 */
6490 static inline int get_sd_load_idx(struct sched_domain *sd,
6491 enum cpu_idle_type idle)
6492 {
6493 int load_idx;
6494
6495 switch (idle) {
6496 case CPU_NOT_IDLE:
6497 load_idx = sd->busy_idx;
6498 break;
6499
6500 case CPU_NEWLY_IDLE:
6501 load_idx = sd->newidle_idx;
6502 break;
6503 default:
6504 load_idx = sd->idle_idx;
6505 break;
6506 }
6507
6508 return load_idx;
6509 }
6510
6511 static unsigned long scale_rt_capacity(int cpu)
6512 {
6513 struct rq *rq = cpu_rq(cpu);
6514 u64 total, used, age_stamp, avg;
6515 s64 delta;
6516
6517 /*
6518 * Since we're reading these variables without serialization make sure
6519 * we read them once before doing sanity checks on them.
6520 */
6521 age_stamp = READ_ONCE(rq->age_stamp);
6522 avg = READ_ONCE(rq->rt_avg);
6523 delta = __rq_clock_broken(rq) - age_stamp;
6524
6525 if (unlikely(delta < 0))
6526 delta = 0;
6527
6528 total = sched_avg_period() + delta;
6529
6530 used = div_u64(avg, total);
6531
6532 if (likely(used < SCHED_CAPACITY_SCALE))
6533 return SCHED_CAPACITY_SCALE - used;
6534
6535 return 1;
6536 }
6537
6538 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6539 {
6540 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6541 struct sched_group *sdg = sd->groups;
6542
6543 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6544
6545 capacity *= scale_rt_capacity(cpu);
6546 capacity >>= SCHED_CAPACITY_SHIFT;
6547
6548 if (!capacity)
6549 capacity = 1;
6550
6551 cpu_rq(cpu)->cpu_capacity = capacity;
6552 sdg->sgc->capacity = capacity;
6553 }
6554
6555 void update_group_capacity(struct sched_domain *sd, int cpu)
6556 {
6557 struct sched_domain *child = sd->child;
6558 struct sched_group *group, *sdg = sd->groups;
6559 unsigned long capacity;
6560 unsigned long interval;
6561
6562 interval = msecs_to_jiffies(sd->balance_interval);
6563 interval = clamp(interval, 1UL, max_load_balance_interval);
6564 sdg->sgc->next_update = jiffies + interval;
6565
6566 if (!child) {
6567 update_cpu_capacity(sd, cpu);
6568 return;
6569 }
6570
6571 capacity = 0;
6572
6573 if (child->flags & SD_OVERLAP) {
6574 /*
6575 * SD_OVERLAP domains cannot assume that child groups
6576 * span the current group.
6577 */
6578
6579 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6580 struct sched_group_capacity *sgc;
6581 struct rq *rq = cpu_rq(cpu);
6582
6583 /*
6584 * build_sched_domains() -> init_sched_groups_capacity()
6585 * gets here before we've attached the domains to the
6586 * runqueues.
6587 *
6588 * Use capacity_of(), which is set irrespective of domains
6589 * in update_cpu_capacity().
6590 *
6591 * This avoids capacity from being 0 and
6592 * causing divide-by-zero issues on boot.
6593 */
6594 if (unlikely(!rq->sd)) {
6595 capacity += capacity_of(cpu);
6596 continue;
6597 }
6598
6599 sgc = rq->sd->groups->sgc;
6600 capacity += sgc->capacity;
6601 }
6602 } else {
6603 /*
6604 * !SD_OVERLAP domains can assume that child groups
6605 * span the current group.
6606 */
6607
6608 group = child->groups;
6609 do {
6610 capacity += group->sgc->capacity;
6611 group = group->next;
6612 } while (group != child->groups);
6613 }
6614
6615 sdg->sgc->capacity = capacity;
6616 }
6617
6618 /*
6619 * Check whether the capacity of the rq has been noticeably reduced by side
6620 * activity. The imbalance_pct is used for the threshold.
6621 * Return true is the capacity is reduced
6622 */
6623 static inline int
6624 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6625 {
6626 return ((rq->cpu_capacity * sd->imbalance_pct) <
6627 (rq->cpu_capacity_orig * 100));
6628 }
6629
6630 /*
6631 * Group imbalance indicates (and tries to solve) the problem where balancing
6632 * groups is inadequate due to tsk_cpus_allowed() constraints.
6633 *
6634 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6635 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6636 * Something like:
6637 *
6638 * { 0 1 2 3 } { 4 5 6 7 }
6639 * * * * *
6640 *
6641 * If we were to balance group-wise we'd place two tasks in the first group and
6642 * two tasks in the second group. Clearly this is undesired as it will overload
6643 * cpu 3 and leave one of the cpus in the second group unused.
6644 *
6645 * The current solution to this issue is detecting the skew in the first group
6646 * by noticing the lower domain failed to reach balance and had difficulty
6647 * moving tasks due to affinity constraints.
6648 *
6649 * When this is so detected; this group becomes a candidate for busiest; see
6650 * update_sd_pick_busiest(). And calculate_imbalance() and
6651 * find_busiest_group() avoid some of the usual balance conditions to allow it
6652 * to create an effective group imbalance.
6653 *
6654 * This is a somewhat tricky proposition since the next run might not find the
6655 * group imbalance and decide the groups need to be balanced again. A most
6656 * subtle and fragile situation.
6657 */
6658
6659 static inline int sg_imbalanced(struct sched_group *group)
6660 {
6661 return group->sgc->imbalance;
6662 }
6663
6664 /*
6665 * group_has_capacity returns true if the group has spare capacity that could
6666 * be used by some tasks.
6667 * We consider that a group has spare capacity if the * number of task is
6668 * smaller than the number of CPUs or if the utilization is lower than the
6669 * available capacity for CFS tasks.
6670 * For the latter, we use a threshold to stabilize the state, to take into
6671 * account the variance of the tasks' load and to return true if the available
6672 * capacity in meaningful for the load balancer.
6673 * As an example, an available capacity of 1% can appear but it doesn't make
6674 * any benefit for the load balance.
6675 */
6676 static inline bool
6677 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6678 {
6679 if (sgs->sum_nr_running < sgs->group_weight)
6680 return true;
6681
6682 if ((sgs->group_capacity * 100) >
6683 (sgs->group_util * env->sd->imbalance_pct))
6684 return true;
6685
6686 return false;
6687 }
6688
6689 /*
6690 * group_is_overloaded returns true if the group has more tasks than it can
6691 * handle.
6692 * group_is_overloaded is not equals to !group_has_capacity because a group
6693 * with the exact right number of tasks, has no more spare capacity but is not
6694 * overloaded so both group_has_capacity and group_is_overloaded return
6695 * false.
6696 */
6697 static inline bool
6698 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6699 {
6700 if (sgs->sum_nr_running <= sgs->group_weight)
6701 return false;
6702
6703 if ((sgs->group_capacity * 100) <
6704 (sgs->group_util * env->sd->imbalance_pct))
6705 return true;
6706
6707 return false;
6708 }
6709
6710 static inline enum
6711 group_type group_classify(struct sched_group *group,
6712 struct sg_lb_stats *sgs)
6713 {
6714 if (sgs->group_no_capacity)
6715 return group_overloaded;
6716
6717 if (sg_imbalanced(group))
6718 return group_imbalanced;
6719
6720 return group_other;
6721 }
6722
6723 /**
6724 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6725 * @env: The load balancing environment.
6726 * @group: sched_group whose statistics are to be updated.
6727 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6728 * @local_group: Does group contain this_cpu.
6729 * @sgs: variable to hold the statistics for this group.
6730 * @overload: Indicate more than one runnable task for any CPU.
6731 */
6732 static inline void update_sg_lb_stats(struct lb_env *env,
6733 struct sched_group *group, int load_idx,
6734 int local_group, struct sg_lb_stats *sgs,
6735 bool *overload)
6736 {
6737 unsigned long load;
6738 int i, nr_running;
6739
6740 memset(sgs, 0, sizeof(*sgs));
6741
6742 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6743 struct rq *rq = cpu_rq(i);
6744
6745 /* Bias balancing toward cpus of our domain */
6746 if (local_group)
6747 load = target_load(i, load_idx);
6748 else
6749 load = source_load(i, load_idx);
6750
6751 sgs->group_load += load;
6752 sgs->group_util += cpu_util(i);
6753 sgs->sum_nr_running += rq->cfs.h_nr_running;
6754
6755 nr_running = rq->nr_running;
6756 if (nr_running > 1)
6757 *overload = true;
6758
6759 #ifdef CONFIG_NUMA_BALANCING
6760 sgs->nr_numa_running += rq->nr_numa_running;
6761 sgs->nr_preferred_running += rq->nr_preferred_running;
6762 #endif
6763 sgs->sum_weighted_load += weighted_cpuload(i);
6764 /*
6765 * No need to call idle_cpu() if nr_running is not 0
6766 */
6767 if (!nr_running && idle_cpu(i))
6768 sgs->idle_cpus++;
6769 }
6770
6771 /* Adjust by relative CPU capacity of the group */
6772 sgs->group_capacity = group->sgc->capacity;
6773 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6774
6775 if (sgs->sum_nr_running)
6776 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6777
6778 sgs->group_weight = group->group_weight;
6779
6780 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6781 sgs->group_type = group_classify(group, sgs);
6782 }
6783
6784 /**
6785 * update_sd_pick_busiest - return 1 on busiest group
6786 * @env: The load balancing environment.
6787 * @sds: sched_domain statistics
6788 * @sg: sched_group candidate to be checked for being the busiest
6789 * @sgs: sched_group statistics
6790 *
6791 * Determine if @sg is a busier group than the previously selected
6792 * busiest group.
6793 *
6794 * Return: %true if @sg is a busier group than the previously selected
6795 * busiest group. %false otherwise.
6796 */
6797 static bool update_sd_pick_busiest(struct lb_env *env,
6798 struct sd_lb_stats *sds,
6799 struct sched_group *sg,
6800 struct sg_lb_stats *sgs)
6801 {
6802 struct sg_lb_stats *busiest = &sds->busiest_stat;
6803
6804 if (sgs->group_type > busiest->group_type)
6805 return true;
6806
6807 if (sgs->group_type < busiest->group_type)
6808 return false;
6809
6810 if (sgs->avg_load <= busiest->avg_load)
6811 return false;
6812
6813 /* This is the busiest node in its class. */
6814 if (!(env->sd->flags & SD_ASYM_PACKING))
6815 return true;
6816
6817 /* No ASYM_PACKING if target cpu is already busy */
6818 if (env->idle == CPU_NOT_IDLE)
6819 return true;
6820 /*
6821 * ASYM_PACKING needs to move all the work to the lowest
6822 * numbered CPUs in the group, therefore mark all groups
6823 * higher than ourself as busy.
6824 */
6825 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6826 if (!sds->busiest)
6827 return true;
6828
6829 /* Prefer to move from highest possible cpu's work */
6830 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6831 return true;
6832 }
6833
6834 return false;
6835 }
6836
6837 #ifdef CONFIG_NUMA_BALANCING
6838 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6839 {
6840 if (sgs->sum_nr_running > sgs->nr_numa_running)
6841 return regular;
6842 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6843 return remote;
6844 return all;
6845 }
6846
6847 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6848 {
6849 if (rq->nr_running > rq->nr_numa_running)
6850 return regular;
6851 if (rq->nr_running > rq->nr_preferred_running)
6852 return remote;
6853 return all;
6854 }
6855 #else
6856 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6857 {
6858 return all;
6859 }
6860
6861 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6862 {
6863 return regular;
6864 }
6865 #endif /* CONFIG_NUMA_BALANCING */
6866
6867 /**
6868 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6869 * @env: The load balancing environment.
6870 * @sds: variable to hold the statistics for this sched_domain.
6871 */
6872 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6873 {
6874 struct sched_domain *child = env->sd->child;
6875 struct sched_group *sg = env->sd->groups;
6876 struct sg_lb_stats tmp_sgs;
6877 int load_idx, prefer_sibling = 0;
6878 bool overload = false;
6879
6880 if (child && child->flags & SD_PREFER_SIBLING)
6881 prefer_sibling = 1;
6882
6883 load_idx = get_sd_load_idx(env->sd, env->idle);
6884
6885 do {
6886 struct sg_lb_stats *sgs = &tmp_sgs;
6887 int local_group;
6888
6889 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6890 if (local_group) {
6891 sds->local = sg;
6892 sgs = &sds->local_stat;
6893
6894 if (env->idle != CPU_NEWLY_IDLE ||
6895 time_after_eq(jiffies, sg->sgc->next_update))
6896 update_group_capacity(env->sd, env->dst_cpu);
6897 }
6898
6899 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6900 &overload);
6901
6902 if (local_group)
6903 goto next_group;
6904
6905 /*
6906 * In case the child domain prefers tasks go to siblings
6907 * first, lower the sg capacity so that we'll try
6908 * and move all the excess tasks away. We lower the capacity
6909 * of a group only if the local group has the capacity to fit
6910 * these excess tasks. The extra check prevents the case where
6911 * you always pull from the heaviest group when it is already
6912 * under-utilized (possible with a large weight task outweighs
6913 * the tasks on the system).
6914 */
6915 if (prefer_sibling && sds->local &&
6916 group_has_capacity(env, &sds->local_stat) &&
6917 (sgs->sum_nr_running > 1)) {
6918 sgs->group_no_capacity = 1;
6919 sgs->group_type = group_classify(sg, sgs);
6920 }
6921
6922 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6923 sds->busiest = sg;
6924 sds->busiest_stat = *sgs;
6925 }
6926
6927 next_group:
6928 /* Now, start updating sd_lb_stats */
6929 sds->total_load += sgs->group_load;
6930 sds->total_capacity += sgs->group_capacity;
6931
6932 sg = sg->next;
6933 } while (sg != env->sd->groups);
6934
6935 if (env->sd->flags & SD_NUMA)
6936 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6937
6938 if (!env->sd->parent) {
6939 /* update overload indicator if we are at root domain */
6940 if (env->dst_rq->rd->overload != overload)
6941 env->dst_rq->rd->overload = overload;
6942 }
6943
6944 }
6945
6946 /**
6947 * check_asym_packing - Check to see if the group is packed into the
6948 * sched doman.
6949 *
6950 * This is primarily intended to used at the sibling level. Some
6951 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6952 * case of POWER7, it can move to lower SMT modes only when higher
6953 * threads are idle. When in lower SMT modes, the threads will
6954 * perform better since they share less core resources. Hence when we
6955 * have idle threads, we want them to be the higher ones.
6956 *
6957 * This packing function is run on idle threads. It checks to see if
6958 * the busiest CPU in this domain (core in the P7 case) has a higher
6959 * CPU number than the packing function is being run on. Here we are
6960 * assuming lower CPU number will be equivalent to lower a SMT thread
6961 * number.
6962 *
6963 * Return: 1 when packing is required and a task should be moved to
6964 * this CPU. The amount of the imbalance is returned in *imbalance.
6965 *
6966 * @env: The load balancing environment.
6967 * @sds: Statistics of the sched_domain which is to be packed
6968 */
6969 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6970 {
6971 int busiest_cpu;
6972
6973 if (!(env->sd->flags & SD_ASYM_PACKING))
6974 return 0;
6975
6976 if (env->idle == CPU_NOT_IDLE)
6977 return 0;
6978
6979 if (!sds->busiest)
6980 return 0;
6981
6982 busiest_cpu = group_first_cpu(sds->busiest);
6983 if (env->dst_cpu > busiest_cpu)
6984 return 0;
6985
6986 env->imbalance = DIV_ROUND_CLOSEST(
6987 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6988 SCHED_CAPACITY_SCALE);
6989
6990 return 1;
6991 }
6992
6993 /**
6994 * fix_small_imbalance - Calculate the minor imbalance that exists
6995 * amongst the groups of a sched_domain, during
6996 * load balancing.
6997 * @env: The load balancing environment.
6998 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6999 */
7000 static inline
7001 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7002 {
7003 unsigned long tmp, capa_now = 0, capa_move = 0;
7004 unsigned int imbn = 2;
7005 unsigned long scaled_busy_load_per_task;
7006 struct sg_lb_stats *local, *busiest;
7007
7008 local = &sds->local_stat;
7009 busiest = &sds->busiest_stat;
7010
7011 if (!local->sum_nr_running)
7012 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7013 else if (busiest->load_per_task > local->load_per_task)
7014 imbn = 1;
7015
7016 scaled_busy_load_per_task =
7017 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7018 busiest->group_capacity;
7019
7020 if (busiest->avg_load + scaled_busy_load_per_task >=
7021 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7022 env->imbalance = busiest->load_per_task;
7023 return;
7024 }
7025
7026 /*
7027 * OK, we don't have enough imbalance to justify moving tasks,
7028 * however we may be able to increase total CPU capacity used by
7029 * moving them.
7030 */
7031
7032 capa_now += busiest->group_capacity *
7033 min(busiest->load_per_task, busiest->avg_load);
7034 capa_now += local->group_capacity *
7035 min(local->load_per_task, local->avg_load);
7036 capa_now /= SCHED_CAPACITY_SCALE;
7037
7038 /* Amount of load we'd subtract */
7039 if (busiest->avg_load > scaled_busy_load_per_task) {
7040 capa_move += busiest->group_capacity *
7041 min(busiest->load_per_task,
7042 busiest->avg_load - scaled_busy_load_per_task);
7043 }
7044
7045 /* Amount of load we'd add */
7046 if (busiest->avg_load * busiest->group_capacity <
7047 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7048 tmp = (busiest->avg_load * busiest->group_capacity) /
7049 local->group_capacity;
7050 } else {
7051 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7052 local->group_capacity;
7053 }
7054 capa_move += local->group_capacity *
7055 min(local->load_per_task, local->avg_load + tmp);
7056 capa_move /= SCHED_CAPACITY_SCALE;
7057
7058 /* Move if we gain throughput */
7059 if (capa_move > capa_now)
7060 env->imbalance = busiest->load_per_task;
7061 }
7062
7063 /**
7064 * calculate_imbalance - Calculate the amount of imbalance present within the
7065 * groups of a given sched_domain during load balance.
7066 * @env: load balance environment
7067 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7068 */
7069 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7070 {
7071 unsigned long max_pull, load_above_capacity = ~0UL;
7072 struct sg_lb_stats *local, *busiest;
7073
7074 local = &sds->local_stat;
7075 busiest = &sds->busiest_stat;
7076
7077 if (busiest->group_type == group_imbalanced) {
7078 /*
7079 * In the group_imb case we cannot rely on group-wide averages
7080 * to ensure cpu-load equilibrium, look at wider averages. XXX
7081 */
7082 busiest->load_per_task =
7083 min(busiest->load_per_task, sds->avg_load);
7084 }
7085
7086 /*
7087 * Avg load of busiest sg can be less and avg load of local sg can
7088 * be greater than avg load across all sgs of sd because avg load
7089 * factors in sg capacity and sgs with smaller group_type are
7090 * skipped when updating the busiest sg:
7091 */
7092 if (busiest->avg_load <= sds->avg_load ||
7093 local->avg_load >= sds->avg_load) {
7094 env->imbalance = 0;
7095 return fix_small_imbalance(env, sds);
7096 }
7097
7098 /*
7099 * If there aren't any idle cpus, avoid creating some.
7100 */
7101 if (busiest->group_type == group_overloaded &&
7102 local->group_type == group_overloaded) {
7103 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7104 if (load_above_capacity > busiest->group_capacity) {
7105 load_above_capacity -= busiest->group_capacity;
7106 load_above_capacity *= NICE_0_LOAD;
7107 load_above_capacity /= busiest->group_capacity;
7108 } else
7109 load_above_capacity = ~0UL;
7110 }
7111
7112 /*
7113 * We're trying to get all the cpus to the average_load, so we don't
7114 * want to push ourselves above the average load, nor do we wish to
7115 * reduce the max loaded cpu below the average load. At the same time,
7116 * we also don't want to reduce the group load below the group
7117 * capacity. Thus we look for the minimum possible imbalance.
7118 */
7119 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7120
7121 /* How much load to actually move to equalise the imbalance */
7122 env->imbalance = min(
7123 max_pull * busiest->group_capacity,
7124 (sds->avg_load - local->avg_load) * local->group_capacity
7125 ) / SCHED_CAPACITY_SCALE;
7126
7127 /*
7128 * if *imbalance is less than the average load per runnable task
7129 * there is no guarantee that any tasks will be moved so we'll have
7130 * a think about bumping its value to force at least one task to be
7131 * moved
7132 */
7133 if (env->imbalance < busiest->load_per_task)
7134 return fix_small_imbalance(env, sds);
7135 }
7136
7137 /******* find_busiest_group() helpers end here *********************/
7138
7139 /**
7140 * find_busiest_group - Returns the busiest group within the sched_domain
7141 * if there is an imbalance.
7142 *
7143 * Also calculates the amount of weighted load which should be moved
7144 * to restore balance.
7145 *
7146 * @env: The load balancing environment.
7147 *
7148 * Return: - The busiest group if imbalance exists.
7149 */
7150 static struct sched_group *find_busiest_group(struct lb_env *env)
7151 {
7152 struct sg_lb_stats *local, *busiest;
7153 struct sd_lb_stats sds;
7154
7155 init_sd_lb_stats(&sds);
7156
7157 /*
7158 * Compute the various statistics relavent for load balancing at
7159 * this level.
7160 */
7161 update_sd_lb_stats(env, &sds);
7162 local = &sds.local_stat;
7163 busiest = &sds.busiest_stat;
7164
7165 /* ASYM feature bypasses nice load balance check */
7166 if (check_asym_packing(env, &sds))
7167 return sds.busiest;
7168
7169 /* There is no busy sibling group to pull tasks from */
7170 if (!sds.busiest || busiest->sum_nr_running == 0)
7171 goto out_balanced;
7172
7173 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7174 / sds.total_capacity;
7175
7176 /*
7177 * If the busiest group is imbalanced the below checks don't
7178 * work because they assume all things are equal, which typically
7179 * isn't true due to cpus_allowed constraints and the like.
7180 */
7181 if (busiest->group_type == group_imbalanced)
7182 goto force_balance;
7183
7184 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7185 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7186 busiest->group_no_capacity)
7187 goto force_balance;
7188
7189 /*
7190 * If the local group is busier than the selected busiest group
7191 * don't try and pull any tasks.
7192 */
7193 if (local->avg_load >= busiest->avg_load)
7194 goto out_balanced;
7195
7196 /*
7197 * Don't pull any tasks if this group is already above the domain
7198 * average load.
7199 */
7200 if (local->avg_load >= sds.avg_load)
7201 goto out_balanced;
7202
7203 if (env->idle == CPU_IDLE) {
7204 /*
7205 * This cpu is idle. If the busiest group is not overloaded
7206 * and there is no imbalance between this and busiest group
7207 * wrt idle cpus, it is balanced. The imbalance becomes
7208 * significant if the diff is greater than 1 otherwise we
7209 * might end up to just move the imbalance on another group
7210 */
7211 if ((busiest->group_type != group_overloaded) &&
7212 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7213 goto out_balanced;
7214 } else {
7215 /*
7216 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7217 * imbalance_pct to be conservative.
7218 */
7219 if (100 * busiest->avg_load <=
7220 env->sd->imbalance_pct * local->avg_load)
7221 goto out_balanced;
7222 }
7223
7224 force_balance:
7225 /* Looks like there is an imbalance. Compute it */
7226 calculate_imbalance(env, &sds);
7227 return sds.busiest;
7228
7229 out_balanced:
7230 env->imbalance = 0;
7231 return NULL;
7232 }
7233
7234 /*
7235 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7236 */
7237 static struct rq *find_busiest_queue(struct lb_env *env,
7238 struct sched_group *group)
7239 {
7240 struct rq *busiest = NULL, *rq;
7241 unsigned long busiest_load = 0, busiest_capacity = 1;
7242 int i;
7243
7244 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7245 unsigned long capacity, wl;
7246 enum fbq_type rt;
7247
7248 rq = cpu_rq(i);
7249 rt = fbq_classify_rq(rq);
7250
7251 /*
7252 * We classify groups/runqueues into three groups:
7253 * - regular: there are !numa tasks
7254 * - remote: there are numa tasks that run on the 'wrong' node
7255 * - all: there is no distinction
7256 *
7257 * In order to avoid migrating ideally placed numa tasks,
7258 * ignore those when there's better options.
7259 *
7260 * If we ignore the actual busiest queue to migrate another
7261 * task, the next balance pass can still reduce the busiest
7262 * queue by moving tasks around inside the node.
7263 *
7264 * If we cannot move enough load due to this classification
7265 * the next pass will adjust the group classification and
7266 * allow migration of more tasks.
7267 *
7268 * Both cases only affect the total convergence complexity.
7269 */
7270 if (rt > env->fbq_type)
7271 continue;
7272
7273 capacity = capacity_of(i);
7274
7275 wl = weighted_cpuload(i);
7276
7277 /*
7278 * When comparing with imbalance, use weighted_cpuload()
7279 * which is not scaled with the cpu capacity.
7280 */
7281
7282 if (rq->nr_running == 1 && wl > env->imbalance &&
7283 !check_cpu_capacity(rq, env->sd))
7284 continue;
7285
7286 /*
7287 * For the load comparisons with the other cpu's, consider
7288 * the weighted_cpuload() scaled with the cpu capacity, so
7289 * that the load can be moved away from the cpu that is
7290 * potentially running at a lower capacity.
7291 *
7292 * Thus we're looking for max(wl_i / capacity_i), crosswise
7293 * multiplication to rid ourselves of the division works out
7294 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7295 * our previous maximum.
7296 */
7297 if (wl * busiest_capacity > busiest_load * capacity) {
7298 busiest_load = wl;
7299 busiest_capacity = capacity;
7300 busiest = rq;
7301 }
7302 }
7303
7304 return busiest;
7305 }
7306
7307 /*
7308 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7309 * so long as it is large enough.
7310 */
7311 #define MAX_PINNED_INTERVAL 512
7312
7313 /* Working cpumask for load_balance and load_balance_newidle. */
7314 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7315
7316 static int need_active_balance(struct lb_env *env)
7317 {
7318 struct sched_domain *sd = env->sd;
7319
7320 if (env->idle == CPU_NEWLY_IDLE) {
7321
7322 /*
7323 * ASYM_PACKING needs to force migrate tasks from busy but
7324 * higher numbered CPUs in order to pack all tasks in the
7325 * lowest numbered CPUs.
7326 */
7327 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7328 return 1;
7329 }
7330
7331 /*
7332 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7333 * It's worth migrating the task if the src_cpu's capacity is reduced
7334 * because of other sched_class or IRQs if more capacity stays
7335 * available on dst_cpu.
7336 */
7337 if ((env->idle != CPU_NOT_IDLE) &&
7338 (env->src_rq->cfs.h_nr_running == 1)) {
7339 if ((check_cpu_capacity(env->src_rq, sd)) &&
7340 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7341 return 1;
7342 }
7343
7344 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7345 }
7346
7347 static int active_load_balance_cpu_stop(void *data);
7348
7349 static int should_we_balance(struct lb_env *env)
7350 {
7351 struct sched_group *sg = env->sd->groups;
7352 struct cpumask *sg_cpus, *sg_mask;
7353 int cpu, balance_cpu = -1;
7354
7355 /*
7356 * In the newly idle case, we will allow all the cpu's
7357 * to do the newly idle load balance.
7358 */
7359 if (env->idle == CPU_NEWLY_IDLE)
7360 return 1;
7361
7362 sg_cpus = sched_group_cpus(sg);
7363 sg_mask = sched_group_mask(sg);
7364 /* Try to find first idle cpu */
7365 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7366 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7367 continue;
7368
7369 balance_cpu = cpu;
7370 break;
7371 }
7372
7373 if (balance_cpu == -1)
7374 balance_cpu = group_balance_cpu(sg);
7375
7376 /*
7377 * First idle cpu or the first cpu(busiest) in this sched group
7378 * is eligible for doing load balancing at this and above domains.
7379 */
7380 return balance_cpu == env->dst_cpu;
7381 }
7382
7383 /*
7384 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7385 * tasks if there is an imbalance.
7386 */
7387 static int load_balance(int this_cpu, struct rq *this_rq,
7388 struct sched_domain *sd, enum cpu_idle_type idle,
7389 int *continue_balancing)
7390 {
7391 int ld_moved, cur_ld_moved, active_balance = 0;
7392 struct sched_domain *sd_parent = sd->parent;
7393 struct sched_group *group;
7394 struct rq *busiest;
7395 unsigned long flags;
7396 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7397
7398 struct lb_env env = {
7399 .sd = sd,
7400 .dst_cpu = this_cpu,
7401 .dst_rq = this_rq,
7402 .dst_grpmask = sched_group_cpus(sd->groups),
7403 .idle = idle,
7404 .loop_break = sched_nr_migrate_break,
7405 .cpus = cpus,
7406 .fbq_type = all,
7407 .tasks = LIST_HEAD_INIT(env.tasks),
7408 };
7409
7410 /*
7411 * For NEWLY_IDLE load_balancing, we don't need to consider
7412 * other cpus in our group
7413 */
7414 if (idle == CPU_NEWLY_IDLE)
7415 env.dst_grpmask = NULL;
7416
7417 cpumask_copy(cpus, cpu_active_mask);
7418
7419 schedstat_inc(sd, lb_count[idle]);
7420
7421 redo:
7422 if (!should_we_balance(&env)) {
7423 *continue_balancing = 0;
7424 goto out_balanced;
7425 }
7426
7427 group = find_busiest_group(&env);
7428 if (!group) {
7429 schedstat_inc(sd, lb_nobusyg[idle]);
7430 goto out_balanced;
7431 }
7432
7433 busiest = find_busiest_queue(&env, group);
7434 if (!busiest) {
7435 schedstat_inc(sd, lb_nobusyq[idle]);
7436 goto out_balanced;
7437 }
7438
7439 BUG_ON(busiest == env.dst_rq);
7440
7441 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7442
7443 env.src_cpu = busiest->cpu;
7444 env.src_rq = busiest;
7445
7446 ld_moved = 0;
7447 if (busiest->nr_running > 1) {
7448 /*
7449 * Attempt to move tasks. If find_busiest_group has found
7450 * an imbalance but busiest->nr_running <= 1, the group is
7451 * still unbalanced. ld_moved simply stays zero, so it is
7452 * correctly treated as an imbalance.
7453 */
7454 env.flags |= LBF_ALL_PINNED;
7455 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7456
7457 more_balance:
7458 raw_spin_lock_irqsave(&busiest->lock, flags);
7459
7460 /*
7461 * cur_ld_moved - load moved in current iteration
7462 * ld_moved - cumulative load moved across iterations
7463 */
7464 cur_ld_moved = detach_tasks(&env);
7465
7466 /*
7467 * We've detached some tasks from busiest_rq. Every
7468 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7469 * unlock busiest->lock, and we are able to be sure
7470 * that nobody can manipulate the tasks in parallel.
7471 * See task_rq_lock() family for the details.
7472 */
7473
7474 raw_spin_unlock(&busiest->lock);
7475
7476 if (cur_ld_moved) {
7477 attach_tasks(&env);
7478 ld_moved += cur_ld_moved;
7479 }
7480
7481 local_irq_restore(flags);
7482
7483 if (env.flags & LBF_NEED_BREAK) {
7484 env.flags &= ~LBF_NEED_BREAK;
7485 goto more_balance;
7486 }
7487
7488 /*
7489 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7490 * us and move them to an alternate dst_cpu in our sched_group
7491 * where they can run. The upper limit on how many times we
7492 * iterate on same src_cpu is dependent on number of cpus in our
7493 * sched_group.
7494 *
7495 * This changes load balance semantics a bit on who can move
7496 * load to a given_cpu. In addition to the given_cpu itself
7497 * (or a ilb_cpu acting on its behalf where given_cpu is
7498 * nohz-idle), we now have balance_cpu in a position to move
7499 * load to given_cpu. In rare situations, this may cause
7500 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7501 * _independently_ and at _same_ time to move some load to
7502 * given_cpu) causing exceess load to be moved to given_cpu.
7503 * This however should not happen so much in practice and
7504 * moreover subsequent load balance cycles should correct the
7505 * excess load moved.
7506 */
7507 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7508
7509 /* Prevent to re-select dst_cpu via env's cpus */
7510 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7511
7512 env.dst_rq = cpu_rq(env.new_dst_cpu);
7513 env.dst_cpu = env.new_dst_cpu;
7514 env.flags &= ~LBF_DST_PINNED;
7515 env.loop = 0;
7516 env.loop_break = sched_nr_migrate_break;
7517
7518 /*
7519 * Go back to "more_balance" rather than "redo" since we
7520 * need to continue with same src_cpu.
7521 */
7522 goto more_balance;
7523 }
7524
7525 /*
7526 * We failed to reach balance because of affinity.
7527 */
7528 if (sd_parent) {
7529 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7530
7531 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7532 *group_imbalance = 1;
7533 }
7534
7535 /* All tasks on this runqueue were pinned by CPU affinity */
7536 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7537 cpumask_clear_cpu(cpu_of(busiest), cpus);
7538 if (!cpumask_empty(cpus)) {
7539 env.loop = 0;
7540 env.loop_break = sched_nr_migrate_break;
7541 goto redo;
7542 }
7543 goto out_all_pinned;
7544 }
7545 }
7546
7547 if (!ld_moved) {
7548 schedstat_inc(sd, lb_failed[idle]);
7549 /*
7550 * Increment the failure counter only on periodic balance.
7551 * We do not want newidle balance, which can be very
7552 * frequent, pollute the failure counter causing
7553 * excessive cache_hot migrations and active balances.
7554 */
7555 if (idle != CPU_NEWLY_IDLE)
7556 sd->nr_balance_failed++;
7557
7558 if (need_active_balance(&env)) {
7559 raw_spin_lock_irqsave(&busiest->lock, flags);
7560
7561 /* don't kick the active_load_balance_cpu_stop,
7562 * if the curr task on busiest cpu can't be
7563 * moved to this_cpu
7564 */
7565 if (!cpumask_test_cpu(this_cpu,
7566 tsk_cpus_allowed(busiest->curr))) {
7567 raw_spin_unlock_irqrestore(&busiest->lock,
7568 flags);
7569 env.flags |= LBF_ALL_PINNED;
7570 goto out_one_pinned;
7571 }
7572
7573 /*
7574 * ->active_balance synchronizes accesses to
7575 * ->active_balance_work. Once set, it's cleared
7576 * only after active load balance is finished.
7577 */
7578 if (!busiest->active_balance) {
7579 busiest->active_balance = 1;
7580 busiest->push_cpu = this_cpu;
7581 active_balance = 1;
7582 }
7583 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7584
7585 if (active_balance) {
7586 stop_one_cpu_nowait(cpu_of(busiest),
7587 active_load_balance_cpu_stop, busiest,
7588 &busiest->active_balance_work);
7589 }
7590
7591 /* We've kicked active balancing, force task migration. */
7592 sd->nr_balance_failed = sd->cache_nice_tries+1;
7593 }
7594 } else
7595 sd->nr_balance_failed = 0;
7596
7597 if (likely(!active_balance)) {
7598 /* We were unbalanced, so reset the balancing interval */
7599 sd->balance_interval = sd->min_interval;
7600 } else {
7601 /*
7602 * If we've begun active balancing, start to back off. This
7603 * case may not be covered by the all_pinned logic if there
7604 * is only 1 task on the busy runqueue (because we don't call
7605 * detach_tasks).
7606 */
7607 if (sd->balance_interval < sd->max_interval)
7608 sd->balance_interval *= 2;
7609 }
7610
7611 goto out;
7612
7613 out_balanced:
7614 /*
7615 * We reach balance although we may have faced some affinity
7616 * constraints. Clear the imbalance flag if it was set.
7617 */
7618 if (sd_parent) {
7619 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7620
7621 if (*group_imbalance)
7622 *group_imbalance = 0;
7623 }
7624
7625 out_all_pinned:
7626 /*
7627 * We reach balance because all tasks are pinned at this level so
7628 * we can't migrate them. Let the imbalance flag set so parent level
7629 * can try to migrate them.
7630 */
7631 schedstat_inc(sd, lb_balanced[idle]);
7632
7633 sd->nr_balance_failed = 0;
7634
7635 out_one_pinned:
7636 /* tune up the balancing interval */
7637 if (((env.flags & LBF_ALL_PINNED) &&
7638 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7639 (sd->balance_interval < sd->max_interval))
7640 sd->balance_interval *= 2;
7641
7642 ld_moved = 0;
7643 out:
7644 return ld_moved;
7645 }
7646
7647 static inline unsigned long
7648 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7649 {
7650 unsigned long interval = sd->balance_interval;
7651
7652 if (cpu_busy)
7653 interval *= sd->busy_factor;
7654
7655 /* scale ms to jiffies */
7656 interval = msecs_to_jiffies(interval);
7657 interval = clamp(interval, 1UL, max_load_balance_interval);
7658
7659 return interval;
7660 }
7661
7662 static inline void
7663 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7664 {
7665 unsigned long interval, next;
7666
7667 interval = get_sd_balance_interval(sd, cpu_busy);
7668 next = sd->last_balance + interval;
7669
7670 if (time_after(*next_balance, next))
7671 *next_balance = next;
7672 }
7673
7674 /*
7675 * idle_balance is called by schedule() if this_cpu is about to become
7676 * idle. Attempts to pull tasks from other CPUs.
7677 */
7678 static int idle_balance(struct rq *this_rq)
7679 {
7680 unsigned long next_balance = jiffies + HZ;
7681 int this_cpu = this_rq->cpu;
7682 struct sched_domain *sd;
7683 int pulled_task = 0;
7684 u64 curr_cost = 0;
7685
7686 /*
7687 * We must set idle_stamp _before_ calling idle_balance(), such that we
7688 * measure the duration of idle_balance() as idle time.
7689 */
7690 this_rq->idle_stamp = rq_clock(this_rq);
7691
7692 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7693 !this_rq->rd->overload) {
7694 rcu_read_lock();
7695 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7696 if (sd)
7697 update_next_balance(sd, 0, &next_balance);
7698 rcu_read_unlock();
7699
7700 goto out;
7701 }
7702
7703 raw_spin_unlock(&this_rq->lock);
7704
7705 update_blocked_averages(this_cpu);
7706 rcu_read_lock();
7707 for_each_domain(this_cpu, sd) {
7708 int continue_balancing = 1;
7709 u64 t0, domain_cost;
7710
7711 if (!(sd->flags & SD_LOAD_BALANCE))
7712 continue;
7713
7714 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7715 update_next_balance(sd, 0, &next_balance);
7716 break;
7717 }
7718
7719 if (sd->flags & SD_BALANCE_NEWIDLE) {
7720 t0 = sched_clock_cpu(this_cpu);
7721
7722 pulled_task = load_balance(this_cpu, this_rq,
7723 sd, CPU_NEWLY_IDLE,
7724 &continue_balancing);
7725
7726 domain_cost = sched_clock_cpu(this_cpu) - t0;
7727 if (domain_cost > sd->max_newidle_lb_cost)
7728 sd->max_newidle_lb_cost = domain_cost;
7729
7730 curr_cost += domain_cost;
7731 }
7732
7733 update_next_balance(sd, 0, &next_balance);
7734
7735 /*
7736 * Stop searching for tasks to pull if there are
7737 * now runnable tasks on this rq.
7738 */
7739 if (pulled_task || this_rq->nr_running > 0)
7740 break;
7741 }
7742 rcu_read_unlock();
7743
7744 raw_spin_lock(&this_rq->lock);
7745
7746 if (curr_cost > this_rq->max_idle_balance_cost)
7747 this_rq->max_idle_balance_cost = curr_cost;
7748
7749 /*
7750 * While browsing the domains, we released the rq lock, a task could
7751 * have been enqueued in the meantime. Since we're not going idle,
7752 * pretend we pulled a task.
7753 */
7754 if (this_rq->cfs.h_nr_running && !pulled_task)
7755 pulled_task = 1;
7756
7757 out:
7758 /* Move the next balance forward */
7759 if (time_after(this_rq->next_balance, next_balance))
7760 this_rq->next_balance = next_balance;
7761
7762 /* Is there a task of a high priority class? */
7763 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7764 pulled_task = -1;
7765
7766 if (pulled_task)
7767 this_rq->idle_stamp = 0;
7768
7769 return pulled_task;
7770 }
7771
7772 /*
7773 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7774 * running tasks off the busiest CPU onto idle CPUs. It requires at
7775 * least 1 task to be running on each physical CPU where possible, and
7776 * avoids physical / logical imbalances.
7777 */
7778 static int active_load_balance_cpu_stop(void *data)
7779 {
7780 struct rq *busiest_rq = data;
7781 int busiest_cpu = cpu_of(busiest_rq);
7782 int target_cpu = busiest_rq->push_cpu;
7783 struct rq *target_rq = cpu_rq(target_cpu);
7784 struct sched_domain *sd;
7785 struct task_struct *p = NULL;
7786
7787 raw_spin_lock_irq(&busiest_rq->lock);
7788
7789 /* make sure the requested cpu hasn't gone down in the meantime */
7790 if (unlikely(busiest_cpu != smp_processor_id() ||
7791 !busiest_rq->active_balance))
7792 goto out_unlock;
7793
7794 /* Is there any task to move? */
7795 if (busiest_rq->nr_running <= 1)
7796 goto out_unlock;
7797
7798 /*
7799 * This condition is "impossible", if it occurs
7800 * we need to fix it. Originally reported by
7801 * Bjorn Helgaas on a 128-cpu setup.
7802 */
7803 BUG_ON(busiest_rq == target_rq);
7804
7805 /* Search for an sd spanning us and the target CPU. */
7806 rcu_read_lock();
7807 for_each_domain(target_cpu, sd) {
7808 if ((sd->flags & SD_LOAD_BALANCE) &&
7809 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7810 break;
7811 }
7812
7813 if (likely(sd)) {
7814 struct lb_env env = {
7815 .sd = sd,
7816 .dst_cpu = target_cpu,
7817 .dst_rq = target_rq,
7818 .src_cpu = busiest_rq->cpu,
7819 .src_rq = busiest_rq,
7820 .idle = CPU_IDLE,
7821 };
7822
7823 schedstat_inc(sd, alb_count);
7824
7825 p = detach_one_task(&env);
7826 if (p) {
7827 schedstat_inc(sd, alb_pushed);
7828 /* Active balancing done, reset the failure counter. */
7829 sd->nr_balance_failed = 0;
7830 } else {
7831 schedstat_inc(sd, alb_failed);
7832 }
7833 }
7834 rcu_read_unlock();
7835 out_unlock:
7836 busiest_rq->active_balance = 0;
7837 raw_spin_unlock(&busiest_rq->lock);
7838
7839 if (p)
7840 attach_one_task(target_rq, p);
7841
7842 local_irq_enable();
7843
7844 return 0;
7845 }
7846
7847 static inline int on_null_domain(struct rq *rq)
7848 {
7849 return unlikely(!rcu_dereference_sched(rq->sd));
7850 }
7851
7852 #ifdef CONFIG_NO_HZ_COMMON
7853 /*
7854 * idle load balancing details
7855 * - When one of the busy CPUs notice that there may be an idle rebalancing
7856 * needed, they will kick the idle load balancer, which then does idle
7857 * load balancing for all the idle CPUs.
7858 */
7859 static struct {
7860 cpumask_var_t idle_cpus_mask;
7861 atomic_t nr_cpus;
7862 unsigned long next_balance; /* in jiffy units */
7863 } nohz ____cacheline_aligned;
7864
7865 static inline int find_new_ilb(void)
7866 {
7867 int ilb = cpumask_first(nohz.idle_cpus_mask);
7868
7869 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7870 return ilb;
7871
7872 return nr_cpu_ids;
7873 }
7874
7875 /*
7876 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7877 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7878 * CPU (if there is one).
7879 */
7880 static void nohz_balancer_kick(void)
7881 {
7882 int ilb_cpu;
7883
7884 nohz.next_balance++;
7885
7886 ilb_cpu = find_new_ilb();
7887
7888 if (ilb_cpu >= nr_cpu_ids)
7889 return;
7890
7891 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7892 return;
7893 /*
7894 * Use smp_send_reschedule() instead of resched_cpu().
7895 * This way we generate a sched IPI on the target cpu which
7896 * is idle. And the softirq performing nohz idle load balance
7897 * will be run before returning from the IPI.
7898 */
7899 smp_send_reschedule(ilb_cpu);
7900 return;
7901 }
7902
7903 void nohz_balance_exit_idle(unsigned int cpu)
7904 {
7905 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7906 /*
7907 * Completely isolated CPUs don't ever set, so we must test.
7908 */
7909 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7910 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7911 atomic_dec(&nohz.nr_cpus);
7912 }
7913 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7914 }
7915 }
7916
7917 static inline void set_cpu_sd_state_busy(void)
7918 {
7919 struct sched_domain *sd;
7920 int cpu = smp_processor_id();
7921
7922 rcu_read_lock();
7923 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7924
7925 if (!sd || !sd->nohz_idle)
7926 goto unlock;
7927 sd->nohz_idle = 0;
7928
7929 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7930 unlock:
7931 rcu_read_unlock();
7932 }
7933
7934 void set_cpu_sd_state_idle(void)
7935 {
7936 struct sched_domain *sd;
7937 int cpu = smp_processor_id();
7938
7939 rcu_read_lock();
7940 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7941
7942 if (!sd || sd->nohz_idle)
7943 goto unlock;
7944 sd->nohz_idle = 1;
7945
7946 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7947 unlock:
7948 rcu_read_unlock();
7949 }
7950
7951 /*
7952 * This routine will record that the cpu is going idle with tick stopped.
7953 * This info will be used in performing idle load balancing in the future.
7954 */
7955 void nohz_balance_enter_idle(int cpu)
7956 {
7957 /*
7958 * If this cpu is going down, then nothing needs to be done.
7959 */
7960 if (!cpu_active(cpu))
7961 return;
7962
7963 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7964 return;
7965
7966 /*
7967 * If we're a completely isolated CPU, we don't play.
7968 */
7969 if (on_null_domain(cpu_rq(cpu)))
7970 return;
7971
7972 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7973 atomic_inc(&nohz.nr_cpus);
7974 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7975 }
7976 #endif
7977
7978 static DEFINE_SPINLOCK(balancing);
7979
7980 /*
7981 * Scale the max load_balance interval with the number of CPUs in the system.
7982 * This trades load-balance latency on larger machines for less cross talk.
7983 */
7984 void update_max_interval(void)
7985 {
7986 max_load_balance_interval = HZ*num_online_cpus()/10;
7987 }
7988
7989 /*
7990 * It checks each scheduling domain to see if it is due to be balanced,
7991 * and initiates a balancing operation if so.
7992 *
7993 * Balancing parameters are set up in init_sched_domains.
7994 */
7995 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7996 {
7997 int continue_balancing = 1;
7998 int cpu = rq->cpu;
7999 unsigned long interval;
8000 struct sched_domain *sd;
8001 /* Earliest time when we have to do rebalance again */
8002 unsigned long next_balance = jiffies + 60*HZ;
8003 int update_next_balance = 0;
8004 int need_serialize, need_decay = 0;
8005 u64 max_cost = 0;
8006
8007 update_blocked_averages(cpu);
8008
8009 rcu_read_lock();
8010 for_each_domain(cpu, sd) {
8011 /*
8012 * Decay the newidle max times here because this is a regular
8013 * visit to all the domains. Decay ~1% per second.
8014 */
8015 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8016 sd->max_newidle_lb_cost =
8017 (sd->max_newidle_lb_cost * 253) / 256;
8018 sd->next_decay_max_lb_cost = jiffies + HZ;
8019 need_decay = 1;
8020 }
8021 max_cost += sd->max_newidle_lb_cost;
8022
8023 if (!(sd->flags & SD_LOAD_BALANCE))
8024 continue;
8025
8026 /*
8027 * Stop the load balance at this level. There is another
8028 * CPU in our sched group which is doing load balancing more
8029 * actively.
8030 */
8031 if (!continue_balancing) {
8032 if (need_decay)
8033 continue;
8034 break;
8035 }
8036
8037 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8038
8039 need_serialize = sd->flags & SD_SERIALIZE;
8040 if (need_serialize) {
8041 if (!spin_trylock(&balancing))
8042 goto out;
8043 }
8044
8045 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8046 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8047 /*
8048 * The LBF_DST_PINNED logic could have changed
8049 * env->dst_cpu, so we can't know our idle
8050 * state even if we migrated tasks. Update it.
8051 */
8052 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8053 }
8054 sd->last_balance = jiffies;
8055 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8056 }
8057 if (need_serialize)
8058 spin_unlock(&balancing);
8059 out:
8060 if (time_after(next_balance, sd->last_balance + interval)) {
8061 next_balance = sd->last_balance + interval;
8062 update_next_balance = 1;
8063 }
8064 }
8065 if (need_decay) {
8066 /*
8067 * Ensure the rq-wide value also decays but keep it at a
8068 * reasonable floor to avoid funnies with rq->avg_idle.
8069 */
8070 rq->max_idle_balance_cost =
8071 max((u64)sysctl_sched_migration_cost, max_cost);
8072 }
8073 rcu_read_unlock();
8074
8075 /*
8076 * next_balance will be updated only when there is a need.
8077 * When the cpu is attached to null domain for ex, it will not be
8078 * updated.
8079 */
8080 if (likely(update_next_balance)) {
8081 rq->next_balance = next_balance;
8082
8083 #ifdef CONFIG_NO_HZ_COMMON
8084 /*
8085 * If this CPU has been elected to perform the nohz idle
8086 * balance. Other idle CPUs have already rebalanced with
8087 * nohz_idle_balance() and nohz.next_balance has been
8088 * updated accordingly. This CPU is now running the idle load
8089 * balance for itself and we need to update the
8090 * nohz.next_balance accordingly.
8091 */
8092 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8093 nohz.next_balance = rq->next_balance;
8094 #endif
8095 }
8096 }
8097
8098 #ifdef CONFIG_NO_HZ_COMMON
8099 /*
8100 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8101 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8102 */
8103 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8104 {
8105 int this_cpu = this_rq->cpu;
8106 struct rq *rq;
8107 int balance_cpu;
8108 /* Earliest time when we have to do rebalance again */
8109 unsigned long next_balance = jiffies + 60*HZ;
8110 int update_next_balance = 0;
8111
8112 if (idle != CPU_IDLE ||
8113 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8114 goto end;
8115
8116 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8117 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8118 continue;
8119
8120 /*
8121 * If this cpu gets work to do, stop the load balancing
8122 * work being done for other cpus. Next load
8123 * balancing owner will pick it up.
8124 */
8125 if (need_resched())
8126 break;
8127
8128 rq = cpu_rq(balance_cpu);
8129
8130 /*
8131 * If time for next balance is due,
8132 * do the balance.
8133 */
8134 if (time_after_eq(jiffies, rq->next_balance)) {
8135 raw_spin_lock_irq(&rq->lock);
8136 update_rq_clock(rq);
8137 cpu_load_update_idle(rq);
8138 raw_spin_unlock_irq(&rq->lock);
8139 rebalance_domains(rq, CPU_IDLE);
8140 }
8141
8142 if (time_after(next_balance, rq->next_balance)) {
8143 next_balance = rq->next_balance;
8144 update_next_balance = 1;
8145 }
8146 }
8147
8148 /*
8149 * next_balance will be updated only when there is a need.
8150 * When the CPU is attached to null domain for ex, it will not be
8151 * updated.
8152 */
8153 if (likely(update_next_balance))
8154 nohz.next_balance = next_balance;
8155 end:
8156 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8157 }
8158
8159 /*
8160 * Current heuristic for kicking the idle load balancer in the presence
8161 * of an idle cpu in the system.
8162 * - This rq has more than one task.
8163 * - This rq has at least one CFS task and the capacity of the CPU is
8164 * significantly reduced because of RT tasks or IRQs.
8165 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8166 * multiple busy cpu.
8167 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8168 * domain span are idle.
8169 */
8170 static inline bool nohz_kick_needed(struct rq *rq)
8171 {
8172 unsigned long now = jiffies;
8173 struct sched_domain *sd;
8174 struct sched_group_capacity *sgc;
8175 int nr_busy, cpu = rq->cpu;
8176 bool kick = false;
8177
8178 if (unlikely(rq->idle_balance))
8179 return false;
8180
8181 /*
8182 * We may be recently in ticked or tickless idle mode. At the first
8183 * busy tick after returning from idle, we will update the busy stats.
8184 */
8185 set_cpu_sd_state_busy();
8186 nohz_balance_exit_idle(cpu);
8187
8188 /*
8189 * None are in tickless mode and hence no need for NOHZ idle load
8190 * balancing.
8191 */
8192 if (likely(!atomic_read(&nohz.nr_cpus)))
8193 return false;
8194
8195 if (time_before(now, nohz.next_balance))
8196 return false;
8197
8198 if (rq->nr_running >= 2)
8199 return true;
8200
8201 rcu_read_lock();
8202 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8203 if (sd) {
8204 sgc = sd->groups->sgc;
8205 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8206
8207 if (nr_busy > 1) {
8208 kick = true;
8209 goto unlock;
8210 }
8211
8212 }
8213
8214 sd = rcu_dereference(rq->sd);
8215 if (sd) {
8216 if ((rq->cfs.h_nr_running >= 1) &&
8217 check_cpu_capacity(rq, sd)) {
8218 kick = true;
8219 goto unlock;
8220 }
8221 }
8222
8223 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8224 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8225 sched_domain_span(sd)) < cpu)) {
8226 kick = true;
8227 goto unlock;
8228 }
8229
8230 unlock:
8231 rcu_read_unlock();
8232 return kick;
8233 }
8234 #else
8235 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8236 #endif
8237
8238 /*
8239 * run_rebalance_domains is triggered when needed from the scheduler tick.
8240 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8241 */
8242 static void run_rebalance_domains(struct softirq_action *h)
8243 {
8244 struct rq *this_rq = this_rq();
8245 enum cpu_idle_type idle = this_rq->idle_balance ?
8246 CPU_IDLE : CPU_NOT_IDLE;
8247
8248 /*
8249 * If this cpu has a pending nohz_balance_kick, then do the
8250 * balancing on behalf of the other idle cpus whose ticks are
8251 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8252 * give the idle cpus a chance to load balance. Else we may
8253 * load balance only within the local sched_domain hierarchy
8254 * and abort nohz_idle_balance altogether if we pull some load.
8255 */
8256 nohz_idle_balance(this_rq, idle);
8257 rebalance_domains(this_rq, idle);
8258 }
8259
8260 /*
8261 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8262 */
8263 void trigger_load_balance(struct rq *rq)
8264 {
8265 /* Don't need to rebalance while attached to NULL domain */
8266 if (unlikely(on_null_domain(rq)))
8267 return;
8268
8269 if (time_after_eq(jiffies, rq->next_balance))
8270 raise_softirq(SCHED_SOFTIRQ);
8271 #ifdef CONFIG_NO_HZ_COMMON
8272 if (nohz_kick_needed(rq))
8273 nohz_balancer_kick();
8274 #endif
8275 }
8276
8277 static void rq_online_fair(struct rq *rq)
8278 {
8279 update_sysctl();
8280
8281 update_runtime_enabled(rq);
8282 }
8283
8284 static void rq_offline_fair(struct rq *rq)
8285 {
8286 update_sysctl();
8287
8288 /* Ensure any throttled groups are reachable by pick_next_task */
8289 unthrottle_offline_cfs_rqs(rq);
8290 }
8291
8292 #endif /* CONFIG_SMP */
8293
8294 /*
8295 * scheduler tick hitting a task of our scheduling class:
8296 */
8297 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8298 {
8299 struct cfs_rq *cfs_rq;
8300 struct sched_entity *se = &curr->se;
8301
8302 for_each_sched_entity(se) {
8303 cfs_rq = cfs_rq_of(se);
8304 entity_tick(cfs_rq, se, queued);
8305 }
8306
8307 if (static_branch_unlikely(&sched_numa_balancing))
8308 task_tick_numa(rq, curr);
8309 }
8310
8311 /*
8312 * called on fork with the child task as argument from the parent's context
8313 * - child not yet on the tasklist
8314 * - preemption disabled
8315 */
8316 static void task_fork_fair(struct task_struct *p)
8317 {
8318 struct cfs_rq *cfs_rq;
8319 struct sched_entity *se = &p->se, *curr;
8320 int this_cpu = smp_processor_id();
8321 struct rq *rq = this_rq();
8322 unsigned long flags;
8323
8324 raw_spin_lock_irqsave(&rq->lock, flags);
8325
8326 update_rq_clock(rq);
8327
8328 cfs_rq = task_cfs_rq(current);
8329 curr = cfs_rq->curr;
8330
8331 /*
8332 * Not only the cpu but also the task_group of the parent might have
8333 * been changed after parent->se.parent,cfs_rq were copied to
8334 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8335 * of child point to valid ones.
8336 */
8337 rcu_read_lock();
8338 __set_task_cpu(p, this_cpu);
8339 rcu_read_unlock();
8340
8341 update_curr(cfs_rq);
8342
8343 if (curr)
8344 se->vruntime = curr->vruntime;
8345 place_entity(cfs_rq, se, 1);
8346
8347 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8348 /*
8349 * Upon rescheduling, sched_class::put_prev_task() will place
8350 * 'current' within the tree based on its new key value.
8351 */
8352 swap(curr->vruntime, se->vruntime);
8353 resched_curr(rq);
8354 }
8355
8356 se->vruntime -= cfs_rq->min_vruntime;
8357
8358 raw_spin_unlock_irqrestore(&rq->lock, flags);
8359 }
8360
8361 /*
8362 * Priority of the task has changed. Check to see if we preempt
8363 * the current task.
8364 */
8365 static void
8366 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8367 {
8368 if (!task_on_rq_queued(p))
8369 return;
8370
8371 /*
8372 * Reschedule if we are currently running on this runqueue and
8373 * our priority decreased, or if we are not currently running on
8374 * this runqueue and our priority is higher than the current's
8375 */
8376 if (rq->curr == p) {
8377 if (p->prio > oldprio)
8378 resched_curr(rq);
8379 } else
8380 check_preempt_curr(rq, p, 0);
8381 }
8382
8383 static inline bool vruntime_normalized(struct task_struct *p)
8384 {
8385 struct sched_entity *se = &p->se;
8386
8387 /*
8388 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8389 * the dequeue_entity(.flags=0) will already have normalized the
8390 * vruntime.
8391 */
8392 if (p->on_rq)
8393 return true;
8394
8395 /*
8396 * When !on_rq, vruntime of the task has usually NOT been normalized.
8397 * But there are some cases where it has already been normalized:
8398 *
8399 * - A forked child which is waiting for being woken up by
8400 * wake_up_new_task().
8401 * - A task which has been woken up by try_to_wake_up() and
8402 * waiting for actually being woken up by sched_ttwu_pending().
8403 */
8404 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8405 return true;
8406
8407 return false;
8408 }
8409
8410 static void detach_task_cfs_rq(struct task_struct *p)
8411 {
8412 struct sched_entity *se = &p->se;
8413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8414
8415 if (!vruntime_normalized(p)) {
8416 /*
8417 * Fix up our vruntime so that the current sleep doesn't
8418 * cause 'unlimited' sleep bonus.
8419 */
8420 place_entity(cfs_rq, se, 0);
8421 se->vruntime -= cfs_rq->min_vruntime;
8422 }
8423
8424 /* Catch up with the cfs_rq and remove our load when we leave */
8425 detach_entity_load_avg(cfs_rq, se);
8426 }
8427
8428 static void attach_task_cfs_rq(struct task_struct *p)
8429 {
8430 struct sched_entity *se = &p->se;
8431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8432
8433 #ifdef CONFIG_FAIR_GROUP_SCHED
8434 /*
8435 * Since the real-depth could have been changed (only FAIR
8436 * class maintain depth value), reset depth properly.
8437 */
8438 se->depth = se->parent ? se->parent->depth + 1 : 0;
8439 #endif
8440
8441 /* Synchronize task with its cfs_rq */
8442 attach_entity_load_avg(cfs_rq, se);
8443
8444 if (!vruntime_normalized(p))
8445 se->vruntime += cfs_rq->min_vruntime;
8446 }
8447
8448 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8449 {
8450 detach_task_cfs_rq(p);
8451 }
8452
8453 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8454 {
8455 attach_task_cfs_rq(p);
8456
8457 if (task_on_rq_queued(p)) {
8458 /*
8459 * We were most likely switched from sched_rt, so
8460 * kick off the schedule if running, otherwise just see
8461 * if we can still preempt the current task.
8462 */
8463 if (rq->curr == p)
8464 resched_curr(rq);
8465 else
8466 check_preempt_curr(rq, p, 0);
8467 }
8468 }
8469
8470 /* Account for a task changing its policy or group.
8471 *
8472 * This routine is mostly called to set cfs_rq->curr field when a task
8473 * migrates between groups/classes.
8474 */
8475 static void set_curr_task_fair(struct rq *rq)
8476 {
8477 struct sched_entity *se = &rq->curr->se;
8478
8479 for_each_sched_entity(se) {
8480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8481
8482 set_next_entity(cfs_rq, se);
8483 /* ensure bandwidth has been allocated on our new cfs_rq */
8484 account_cfs_rq_runtime(cfs_rq, 0);
8485 }
8486 }
8487
8488 void init_cfs_rq(struct cfs_rq *cfs_rq)
8489 {
8490 cfs_rq->tasks_timeline = RB_ROOT;
8491 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8492 #ifndef CONFIG_64BIT
8493 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8494 #endif
8495 #ifdef CONFIG_SMP
8496 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8497 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8498 #endif
8499 }
8500
8501 #ifdef CONFIG_FAIR_GROUP_SCHED
8502 static void task_move_group_fair(struct task_struct *p)
8503 {
8504 detach_task_cfs_rq(p);
8505 set_task_rq(p, task_cpu(p));
8506
8507 #ifdef CONFIG_SMP
8508 /* Tell se's cfs_rq has been changed -- migrated */
8509 p->se.avg.last_update_time = 0;
8510 #endif
8511 attach_task_cfs_rq(p);
8512 }
8513
8514 void free_fair_sched_group(struct task_group *tg)
8515 {
8516 int i;
8517
8518 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8519
8520 for_each_possible_cpu(i) {
8521 if (tg->cfs_rq)
8522 kfree(tg->cfs_rq[i]);
8523 if (tg->se)
8524 kfree(tg->se[i]);
8525 }
8526
8527 kfree(tg->cfs_rq);
8528 kfree(tg->se);
8529 }
8530
8531 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8532 {
8533 struct sched_entity *se;
8534 struct cfs_rq *cfs_rq;
8535 struct rq *rq;
8536 int i;
8537
8538 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8539 if (!tg->cfs_rq)
8540 goto err;
8541 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8542 if (!tg->se)
8543 goto err;
8544
8545 tg->shares = NICE_0_LOAD;
8546
8547 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8548
8549 for_each_possible_cpu(i) {
8550 rq = cpu_rq(i);
8551
8552 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8553 GFP_KERNEL, cpu_to_node(i));
8554 if (!cfs_rq)
8555 goto err;
8556
8557 se = kzalloc_node(sizeof(struct sched_entity),
8558 GFP_KERNEL, cpu_to_node(i));
8559 if (!se)
8560 goto err_free_rq;
8561
8562 init_cfs_rq(cfs_rq);
8563 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8564 init_entity_runnable_average(se);
8565
8566 raw_spin_lock_irq(&rq->lock);
8567 post_init_entity_util_avg(se);
8568 raw_spin_unlock_irq(&rq->lock);
8569 }
8570
8571 return 1;
8572
8573 err_free_rq:
8574 kfree(cfs_rq);
8575 err:
8576 return 0;
8577 }
8578
8579 void unregister_fair_sched_group(struct task_group *tg)
8580 {
8581 unsigned long flags;
8582 struct rq *rq;
8583 int cpu;
8584
8585 for_each_possible_cpu(cpu) {
8586 if (tg->se[cpu])
8587 remove_entity_load_avg(tg->se[cpu]);
8588
8589 /*
8590 * Only empty task groups can be destroyed; so we can speculatively
8591 * check on_list without danger of it being re-added.
8592 */
8593 if (!tg->cfs_rq[cpu]->on_list)
8594 continue;
8595
8596 rq = cpu_rq(cpu);
8597
8598 raw_spin_lock_irqsave(&rq->lock, flags);
8599 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8600 raw_spin_unlock_irqrestore(&rq->lock, flags);
8601 }
8602 }
8603
8604 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8605 struct sched_entity *se, int cpu,
8606 struct sched_entity *parent)
8607 {
8608 struct rq *rq = cpu_rq(cpu);
8609
8610 cfs_rq->tg = tg;
8611 cfs_rq->rq = rq;
8612 init_cfs_rq_runtime(cfs_rq);
8613
8614 tg->cfs_rq[cpu] = cfs_rq;
8615 tg->se[cpu] = se;
8616
8617 /* se could be NULL for root_task_group */
8618 if (!se)
8619 return;
8620
8621 if (!parent) {
8622 se->cfs_rq = &rq->cfs;
8623 se->depth = 0;
8624 } else {
8625 se->cfs_rq = parent->my_q;
8626 se->depth = parent->depth + 1;
8627 }
8628
8629 se->my_q = cfs_rq;
8630 /* guarantee group entities always have weight */
8631 update_load_set(&se->load, NICE_0_LOAD);
8632 se->parent = parent;
8633 }
8634
8635 static DEFINE_MUTEX(shares_mutex);
8636
8637 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8638 {
8639 int i;
8640 unsigned long flags;
8641
8642 /*
8643 * We can't change the weight of the root cgroup.
8644 */
8645 if (!tg->se[0])
8646 return -EINVAL;
8647
8648 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8649
8650 mutex_lock(&shares_mutex);
8651 if (tg->shares == shares)
8652 goto done;
8653
8654 tg->shares = shares;
8655 for_each_possible_cpu(i) {
8656 struct rq *rq = cpu_rq(i);
8657 struct sched_entity *se;
8658
8659 se = tg->se[i];
8660 /* Propagate contribution to hierarchy */
8661 raw_spin_lock_irqsave(&rq->lock, flags);
8662
8663 /* Possible calls to update_curr() need rq clock */
8664 update_rq_clock(rq);
8665 for_each_sched_entity(se)
8666 update_cfs_shares(group_cfs_rq(se));
8667 raw_spin_unlock_irqrestore(&rq->lock, flags);
8668 }
8669
8670 done:
8671 mutex_unlock(&shares_mutex);
8672 return 0;
8673 }
8674 #else /* CONFIG_FAIR_GROUP_SCHED */
8675
8676 void free_fair_sched_group(struct task_group *tg) { }
8677
8678 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8679 {
8680 return 1;
8681 }
8682
8683 void unregister_fair_sched_group(struct task_group *tg) { }
8684
8685 #endif /* CONFIG_FAIR_GROUP_SCHED */
8686
8687
8688 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8689 {
8690 struct sched_entity *se = &task->se;
8691 unsigned int rr_interval = 0;
8692
8693 /*
8694 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8695 * idle runqueue:
8696 */
8697 if (rq->cfs.load.weight)
8698 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8699
8700 return rr_interval;
8701 }
8702
8703 /*
8704 * All the scheduling class methods:
8705 */
8706 const struct sched_class fair_sched_class = {
8707 .next = &idle_sched_class,
8708 .enqueue_task = enqueue_task_fair,
8709 .dequeue_task = dequeue_task_fair,
8710 .yield_task = yield_task_fair,
8711 .yield_to_task = yield_to_task_fair,
8712
8713 .check_preempt_curr = check_preempt_wakeup,
8714
8715 .pick_next_task = pick_next_task_fair,
8716 .put_prev_task = put_prev_task_fair,
8717
8718 #ifdef CONFIG_SMP
8719 .select_task_rq = select_task_rq_fair,
8720 .migrate_task_rq = migrate_task_rq_fair,
8721
8722 .rq_online = rq_online_fair,
8723 .rq_offline = rq_offline_fair,
8724
8725 .task_dead = task_dead_fair,
8726 .set_cpus_allowed = set_cpus_allowed_common,
8727 #endif
8728
8729 .set_curr_task = set_curr_task_fair,
8730 .task_tick = task_tick_fair,
8731 .task_fork = task_fork_fair,
8732
8733 .prio_changed = prio_changed_fair,
8734 .switched_from = switched_from_fair,
8735 .switched_to = switched_to_fair,
8736
8737 .get_rr_interval = get_rr_interval_fair,
8738
8739 .update_curr = update_curr_fair,
8740
8741 #ifdef CONFIG_FAIR_GROUP_SCHED
8742 .task_move_group = task_move_group_fair,
8743 #endif
8744 };
8745
8746 #ifdef CONFIG_SCHED_DEBUG
8747 void print_cfs_stats(struct seq_file *m, int cpu)
8748 {
8749 struct cfs_rq *cfs_rq;
8750
8751 rcu_read_lock();
8752 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8753 print_cfs_rq(m, cpu, cfs_rq);
8754 rcu_read_unlock();
8755 }
8756
8757 #ifdef CONFIG_NUMA_BALANCING
8758 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8759 {
8760 int node;
8761 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8762
8763 for_each_online_node(node) {
8764 if (p->numa_faults) {
8765 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8766 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8767 }
8768 if (p->numa_group) {
8769 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8770 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8771 }
8772 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8773 }
8774 }
8775 #endif /* CONFIG_NUMA_BALANCING */
8776 #endif /* CONFIG_SCHED_DEBUG */
8777
8778 __init void init_sched_fair_class(void)
8779 {
8780 #ifdef CONFIG_SMP
8781 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8782
8783 #ifdef CONFIG_NO_HZ_COMMON
8784 nohz.next_balance = jiffies;
8785 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8786 #endif
8787 #endif /* SMP */
8788
8789 }
This page took 0.250681 seconds and 5 git commands to generate.