Merge branch 'cpus4096-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 }
213
214 static inline int rt_bandwidth_enabled(void)
215 {
216 return sysctl_sched_rt_runtime >= 0;
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 ktime_t now;
222
223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240 }
241
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244 {
245 hrtimer_cancel(&rt_b->rt_period_timer);
246 }
247 #endif
248
249 /*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253 static DEFINE_MUTEX(sched_domains_mutex);
254
255 #ifdef CONFIG_GROUP_SCHED
256
257 #include <linux/cgroup.h>
258
259 struct cfs_rq;
260
261 static LIST_HEAD(task_groups);
262
263 /* task group related information */
264 struct task_group {
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css;
267 #endif
268
269 #ifdef CONFIG_USER_SCHED
270 uid_t uid;
271 #endif
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
279 #endif
280
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
285 struct rt_bandwidth rt_bandwidth;
286 #endif
287
288 struct rcu_head rcu;
289 struct list_head list;
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
294 };
295
296 #ifdef CONFIG_USER_SCHED
297
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct *user)
300 {
301 user->tg->uid = user->uid;
302 }
303
304 /*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309 struct task_group root_task_group;
310
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
317
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
325
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
328 */
329 static DEFINE_SPINLOCK(task_group_lock);
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
337
338 /*
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
346 #define MIN_SHARES 2
347 #define MAX_SHARES (1UL << 18)
348
349 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350 #endif
351
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
354 */
355 struct task_group init_task_group;
356
357 /* return group to which a task belongs */
358 static inline struct task_group *task_group(struct task_struct *p)
359 {
360 struct task_group *tg;
361
362 #ifdef CONFIG_USER_SCHED
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
369 #else
370 tg = &init_task_group;
371 #endif
372 return tg;
373 }
374
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
377 {
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
381 #endif
382
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
386 #endif
387 }
388
389 #else
390
391 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
392 static inline struct task_group *task_group(struct task_struct *p)
393 {
394 return NULL;
395 }
396
397 #endif /* CONFIG_GROUP_SCHED */
398
399 /* CFS-related fields in a runqueue */
400 struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
404 u64 exec_clock;
405 u64 min_vruntime;
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
417 struct sched_entity *curr, *next, *last;
418
419 unsigned int nr_spread_over;
420
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
434
435 #ifdef CONFIG_SMP
436 /*
437 * the part of load.weight contributed by tasks
438 */
439 unsigned long task_weight;
440
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
448
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
458 #endif
459 #endif
460 };
461
462 /* Real-Time classes' related field in a runqueue: */
463 struct rt_rq {
464 struct rt_prio_array active;
465 unsigned long rt_nr_running;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio; /* highest queued rt task prio */
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 int overloaded;
472 #endif
473 int rt_throttled;
474 u64 rt_time;
475 u64 rt_runtime;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock;
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted;
481
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486 #endif
487 };
488
489 #ifdef CONFIG_SMP
490
491 /*
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
498 */
499 struct root_domain {
500 atomic_t refcount;
501 cpumask_var_t span;
502 cpumask_var_t online;
503
504 /*
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
508 cpumask_var_t rto_mask;
509 atomic_t rto_count;
510 #ifdef CONFIG_SMP
511 struct cpupri cpupri;
512 #endif
513 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 /*
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 */
519 unsigned int sched_mc_preferred_wakeup_cpu;
520 #endif
521 };
522
523 /*
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
526 */
527 static struct root_domain def_root_domain;
528
529 #endif
530
531 /*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
538 struct rq {
539 /* runqueue lock: */
540 spinlock_t lock;
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
546 unsigned long nr_running;
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
549 unsigned char idle_at_tick;
550 #ifdef CONFIG_NO_HZ
551 unsigned long last_tick_seen;
552 unsigned char in_nohz_recently;
553 #endif
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load;
556 unsigned long nr_load_updates;
557 u64 nr_switches;
558
559 struct cfs_rq cfs;
560 struct rt_rq rt;
561
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list;
565 #endif
566 #ifdef CONFIG_RT_GROUP_SCHED
567 struct list_head leaf_rt_rq_list;
568 #endif
569
570 /*
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
575 */
576 unsigned long nr_uninterruptible;
577
578 struct task_struct *curr, *idle;
579 unsigned long next_balance;
580 struct mm_struct *prev_mm;
581
582 u64 clock;
583
584 atomic_t nr_iowait;
585
586 #ifdef CONFIG_SMP
587 struct root_domain *rd;
588 struct sched_domain *sd;
589
590 /* For active balancing */
591 int active_balance;
592 int push_cpu;
593 /* cpu of this runqueue: */
594 int cpu;
595 int online;
596
597 unsigned long avg_load_per_task;
598
599 struct task_struct *migration_thread;
600 struct list_head migration_queue;
601 #endif
602
603 #ifdef CONFIG_SCHED_HRTICK
604 #ifdef CONFIG_SMP
605 int hrtick_csd_pending;
606 struct call_single_data hrtick_csd;
607 #endif
608 struct hrtimer hrtick_timer;
609 #endif
610
611 #ifdef CONFIG_SCHEDSTATS
612 /* latency stats */
613 struct sched_info rq_sched_info;
614 unsigned long long rq_cpu_time;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616
617 /* sys_sched_yield() stats */
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
622
623 /* schedule() stats */
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631
632 /* BKL stats */
633 unsigned int bkl_count;
634 #endif
635 };
636
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
638
639 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
640 {
641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
642 }
643
644 static inline int cpu_of(struct rq *rq)
645 {
646 #ifdef CONFIG_SMP
647 return rq->cpu;
648 #else
649 return 0;
650 #endif
651 }
652
653 /*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
662
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
668 static inline void update_rq_clock(struct rq *rq)
669 {
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671 }
672
673 /*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676 #ifdef CONFIG_SCHED_DEBUG
677 # define const_debug __read_mostly
678 #else
679 # define const_debug static const
680 #endif
681
682 /**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689 int runqueue_is_locked(void)
690 {
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698 }
699
700 /*
701 * Debugging: various feature bits
702 */
703
704 #define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
707 enum {
708 #include "sched_features.h"
709 };
710
711 #undef SCHED_FEAT
712
713 #define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
716 const_debug unsigned int sysctl_sched_features =
717 #include "sched_features.h"
718 0;
719
720 #undef SCHED_FEAT
721
722 #ifdef CONFIG_SCHED_DEBUG
723 #define SCHED_FEAT(name, enabled) \
724 #name ,
725
726 static __read_mostly char *sched_feat_names[] = {
727 #include "sched_features.h"
728 NULL
729 };
730
731 #undef SCHED_FEAT
732
733 static int sched_feat_show(struct seq_file *m, void *v)
734 {
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
741 }
742 seq_puts(m, "\n");
743
744 return 0;
745 }
746
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750 {
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787 }
788
789 static int sched_feat_open(struct inode *inode, struct file *filp)
790 {
791 return single_open(filp, sched_feat_show, NULL);
792 }
793
794 static struct file_operations sched_feat_fops = {
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
800 };
801
802 static __init int sched_init_debug(void)
803 {
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808 }
809 late_initcall(sched_init_debug);
810
811 #endif
812
813 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
814
815 /*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819 const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
821 /*
822 * ratelimit for updating the group shares.
823 * default: 0.25ms
824 */
825 unsigned int sysctl_sched_shares_ratelimit = 250000;
826
827 /*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832 unsigned int sysctl_sched_shares_thresh = 4;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921 #else
922 spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130 }
1131
1132 static inline void init_hrtick(void)
1133 {
1134 }
1135 #endif /* CONFIG_SMP */
1136
1137 static void init_rq_hrtick(struct rq *rq)
1138 {
1139 #ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
1141
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145 #endif
1146
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
1149 }
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void init_rq_hrtick(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_hrtick(void)
1160 {
1161 }
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 /*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171 #ifdef CONFIG_SMP
1172
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 #endif
1176
1177 static void resched_task(struct task_struct *p)
1178 {
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1184 return;
1185
1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196 }
1197
1198 static void resched_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207 }
1208
1209 #ifdef CONFIG_NO_HZ
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249 #endif /* CONFIG_NO_HZ */
1250
1251 #else /* !CONFIG_SMP */
1252 static void resched_task(struct task_struct *p)
1253 {
1254 assert_spin_locked(&task_rq(p)->lock);
1255 set_tsk_need_resched(p);
1256 }
1257 #endif /* CONFIG_SMP */
1258
1259 #if BITS_PER_LONG == 32
1260 # define WMULT_CONST (~0UL)
1261 #else
1262 # define WMULT_CONST (1UL << 32)
1263 #endif
1264
1265 #define WMULT_SHIFT 32
1266
1267 /*
1268 * Shift right and round:
1269 */
1270 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1271
1272 /*
1273 * delta *= weight / lw
1274 */
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278 {
1279 u64 tmp;
1280
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
1293 if (unlikely(tmp > WMULT_CONST))
1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1295 WMULT_SHIFT/2);
1296 else
1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298
1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 }
1301
1302 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 {
1304 lw->weight += inc;
1305 lw->inv_weight = 0;
1306 }
1307
1308 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 {
1310 lw->weight -= dec;
1311 lw->inv_weight = 0;
1312 }
1313
1314 /*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
1323 #define WEIGHT_IDLEPRIO 2
1324 #define WMULT_IDLEPRIO (1 << 31)
1325
1326 /*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
1337 */
1338 static const int prio_to_weight[40] = {
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
1347 };
1348
1349 /*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
1356 static const u32 prio_to_wmult[40] = {
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1365 };
1366
1367 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369 /*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374 struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378 };
1379
1380 #ifdef CONFIG_SMP
1381 static unsigned long
1382 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387 static int
1388 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
1391 #endif
1392
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 #else
1396 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397 #endif
1398
1399 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400 {
1401 update_load_add(&rq->load, load);
1402 }
1403
1404 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405 {
1406 update_load_sub(&rq->load, load);
1407 }
1408
1409 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1410 typedef int (*tg_visitor)(struct task_group *, void *);
1411
1412 /*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
1416 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 {
1418 struct task_group *parent, *child;
1419 int ret;
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423 down:
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431 up:
1432 continue;
1433 }
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
1442 out_unlock:
1443 rcu_read_unlock();
1444
1445 return ret;
1446 }
1447
1448 static int tg_nop(struct task_group *tg, void *data)
1449 {
1450 return 0;
1451 }
1452 #endif
1453
1454 #ifdef CONFIG_SMP
1455 static unsigned long source_load(int cpu, int type);
1456 static unsigned long target_load(int cpu, int type);
1457 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459 static unsigned long cpu_avg_load_per_task(int cpu)
1460 {
1461 struct rq *rq = cpu_rq(cpu);
1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1463
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
1466 else
1467 rq->avg_load_per_task = 0;
1468
1469 return rq->avg_load_per_task;
1470 }
1471
1472 #ifdef CONFIG_FAIR_GROUP_SCHED
1473
1474 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476 /*
1477 * Calculate and set the cpu's group shares.
1478 */
1479 static void
1480 update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
1482 {
1483 unsigned long shares;
1484 unsigned long rq_weight;
1485
1486 if (!tg->se[cpu])
1487 return;
1488
1489 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1490
1491 /*
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1494 * \Sum rq_weight
1495 *
1496 */
1497 shares = (sd_shares * rq_weight) / sd_rq_weight;
1498 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1499
1500 if (abs(shares - tg->se[cpu]->load.weight) >
1501 sysctl_sched_shares_thresh) {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(&rq->lock, flags);
1506 tg->cfs_rq[cpu]->shares = shares;
1507
1508 __set_se_shares(tg->se[cpu], shares);
1509 spin_unlock_irqrestore(&rq->lock, flags);
1510 }
1511 }
1512
1513 /*
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
1517 */
1518 static int tg_shares_up(struct task_group *tg, void *data)
1519 {
1520 unsigned long weight, rq_weight = 0;
1521 unsigned long shares = 0;
1522 struct sched_domain *sd = data;
1523 int i;
1524
1525 for_each_cpu(i, sched_domain_span(sd)) {
1526 /*
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1530 */
1531 weight = tg->cfs_rq[i]->load.weight;
1532 if (!weight)
1533 weight = NICE_0_LOAD;
1534
1535 tg->cfs_rq[i]->rq_weight = weight;
1536 rq_weight += weight;
1537 shares += tg->cfs_rq[i]->shares;
1538 }
1539
1540 if ((!shares && rq_weight) || shares > tg->shares)
1541 shares = tg->shares;
1542
1543 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1544 shares = tg->shares;
1545
1546 for_each_cpu(i, sched_domain_span(sd))
1547 update_group_shares_cpu(tg, i, shares, rq_weight);
1548
1549 return 0;
1550 }
1551
1552 /*
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
1556 */
1557 static int tg_load_down(struct task_group *tg, void *data)
1558 {
1559 unsigned long load;
1560 long cpu = (long)data;
1561
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
1566 load *= tg->cfs_rq[cpu]->shares;
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
1569
1570 tg->cfs_rq[cpu]->h_load = load;
1571
1572 return 0;
1573 }
1574
1575 static void update_shares(struct sched_domain *sd)
1576 {
1577 u64 now = cpu_clock(raw_smp_processor_id());
1578 s64 elapsed = now - sd->last_update;
1579
1580 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1581 sd->last_update = now;
1582 walk_tg_tree(tg_nop, tg_shares_up, sd);
1583 }
1584 }
1585
1586 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1587 {
1588 spin_unlock(&rq->lock);
1589 update_shares(sd);
1590 spin_lock(&rq->lock);
1591 }
1592
1593 static void update_h_load(long cpu)
1594 {
1595 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1596 }
1597
1598 #else
1599
1600 static inline void update_shares(struct sched_domain *sd)
1601 {
1602 }
1603
1604 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1605 {
1606 }
1607
1608 #endif
1609
1610 /*
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1612 */
1613 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617 {
1618 int ret = 0;
1619
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq->lock);
1623 BUG_ON(1);
1624 }
1625 if (unlikely(!spin_trylock(&busiest->lock))) {
1626 if (busiest < this_rq) {
1627 spin_unlock(&this_rq->lock);
1628 spin_lock(&busiest->lock);
1629 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1630 ret = 1;
1631 } else
1632 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1633 }
1634 return ret;
1635 }
1636
1637 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639 {
1640 spin_unlock(&busiest->lock);
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642 }
1643 #endif
1644
1645 #ifdef CONFIG_FAIR_GROUP_SCHED
1646 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1647 {
1648 #ifdef CONFIG_SMP
1649 cfs_rq->shares = shares;
1650 #endif
1651 }
1652 #endif
1653
1654 #include "sched_stats.h"
1655 #include "sched_idletask.c"
1656 #include "sched_fair.c"
1657 #include "sched_rt.c"
1658 #ifdef CONFIG_SCHED_DEBUG
1659 # include "sched_debug.c"
1660 #endif
1661
1662 #define sched_class_highest (&rt_sched_class)
1663 #define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
1665
1666 static void inc_nr_running(struct rq *rq)
1667 {
1668 rq->nr_running++;
1669 }
1670
1671 static void dec_nr_running(struct rq *rq)
1672 {
1673 rq->nr_running--;
1674 }
1675
1676 static void set_load_weight(struct task_struct *p)
1677 {
1678 if (task_has_rt_policy(p)) {
1679 p->se.load.weight = prio_to_weight[0] * 2;
1680 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1681 return;
1682 }
1683
1684 /*
1685 * SCHED_IDLE tasks get minimal weight:
1686 */
1687 if (p->policy == SCHED_IDLE) {
1688 p->se.load.weight = WEIGHT_IDLEPRIO;
1689 p->se.load.inv_weight = WMULT_IDLEPRIO;
1690 return;
1691 }
1692
1693 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1694 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1695 }
1696
1697 static void update_avg(u64 *avg, u64 sample)
1698 {
1699 s64 diff = sample - *avg;
1700 *avg += diff >> 3;
1701 }
1702
1703 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1704 {
1705 sched_info_queued(p);
1706 p->sched_class->enqueue_task(rq, p, wakeup);
1707 p->se.on_rq = 1;
1708 }
1709
1710 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1711 {
1712 if (sleep && p->se.last_wakeup) {
1713 update_avg(&p->se.avg_overlap,
1714 p->se.sum_exec_runtime - p->se.last_wakeup);
1715 p->se.last_wakeup = 0;
1716 }
1717
1718 sched_info_dequeued(p);
1719 p->sched_class->dequeue_task(rq, p, sleep);
1720 p->se.on_rq = 0;
1721 }
1722
1723 /*
1724 * __normal_prio - return the priority that is based on the static prio
1725 */
1726 static inline int __normal_prio(struct task_struct *p)
1727 {
1728 return p->static_prio;
1729 }
1730
1731 /*
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1737 */
1738 static inline int normal_prio(struct task_struct *p)
1739 {
1740 int prio;
1741
1742 if (task_has_rt_policy(p))
1743 prio = MAX_RT_PRIO-1 - p->rt_priority;
1744 else
1745 prio = __normal_prio(p);
1746 return prio;
1747 }
1748
1749 /*
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1755 */
1756 static int effective_prio(struct task_struct *p)
1757 {
1758 p->normal_prio = normal_prio(p);
1759 /*
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1763 */
1764 if (!rt_prio(p->prio))
1765 return p->normal_prio;
1766 return p->prio;
1767 }
1768
1769 /*
1770 * activate_task - move a task to the runqueue.
1771 */
1772 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1773 {
1774 if (task_contributes_to_load(p))
1775 rq->nr_uninterruptible--;
1776
1777 enqueue_task(rq, p, wakeup);
1778 inc_nr_running(rq);
1779 }
1780
1781 /*
1782 * deactivate_task - remove a task from the runqueue.
1783 */
1784 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1785 {
1786 if (task_contributes_to_load(p))
1787 rq->nr_uninterruptible++;
1788
1789 dequeue_task(rq, p, sleep);
1790 dec_nr_running(rq);
1791 }
1792
1793 /**
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1796 */
1797 inline int task_curr(const struct task_struct *p)
1798 {
1799 return cpu_curr(task_cpu(p)) == p;
1800 }
1801
1802 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1803 {
1804 set_task_rq(p, cpu);
1805 #ifdef CONFIG_SMP
1806 /*
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1810 */
1811 smp_wmb();
1812 task_thread_info(p)->cpu = cpu;
1813 #endif
1814 }
1815
1816 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1817 const struct sched_class *prev_class,
1818 int oldprio, int running)
1819 {
1820 if (prev_class != p->sched_class) {
1821 if (prev_class->switched_from)
1822 prev_class->switched_from(rq, p, running);
1823 p->sched_class->switched_to(rq, p, running);
1824 } else
1825 p->sched_class->prio_changed(rq, p, oldprio, running);
1826 }
1827
1828 #ifdef CONFIG_SMP
1829
1830 /* Used instead of source_load when we know the type == 0 */
1831 static unsigned long weighted_cpuload(const int cpu)
1832 {
1833 return cpu_rq(cpu)->load.weight;
1834 }
1835
1836 /*
1837 * Is this task likely cache-hot:
1838 */
1839 static int
1840 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1841 {
1842 s64 delta;
1843
1844 /*
1845 * Buddy candidates are cache hot:
1846 */
1847 if (sched_feat(CACHE_HOT_BUDDY) &&
1848 (&p->se == cfs_rq_of(&p->se)->next ||
1849 &p->se == cfs_rq_of(&p->se)->last))
1850 return 1;
1851
1852 if (p->sched_class != &fair_sched_class)
1853 return 0;
1854
1855 if (sysctl_sched_migration_cost == -1)
1856 return 1;
1857 if (sysctl_sched_migration_cost == 0)
1858 return 0;
1859
1860 delta = now - p->se.exec_start;
1861
1862 return delta < (s64)sysctl_sched_migration_cost;
1863 }
1864
1865
1866 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1867 {
1868 int old_cpu = task_cpu(p);
1869 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1870 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1871 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1872 u64 clock_offset;
1873
1874 clock_offset = old_rq->clock - new_rq->clock;
1875
1876 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1877
1878 #ifdef CONFIG_SCHEDSTATS
1879 if (p->se.wait_start)
1880 p->se.wait_start -= clock_offset;
1881 if (p->se.sleep_start)
1882 p->se.sleep_start -= clock_offset;
1883 if (p->se.block_start)
1884 p->se.block_start -= clock_offset;
1885 if (old_cpu != new_cpu) {
1886 schedstat_inc(p, se.nr_migrations);
1887 if (task_hot(p, old_rq->clock, NULL))
1888 schedstat_inc(p, se.nr_forced2_migrations);
1889 }
1890 #endif
1891 p->se.vruntime -= old_cfsrq->min_vruntime -
1892 new_cfsrq->min_vruntime;
1893
1894 __set_task_cpu(p, new_cpu);
1895 }
1896
1897 struct migration_req {
1898 struct list_head list;
1899
1900 struct task_struct *task;
1901 int dest_cpu;
1902
1903 struct completion done;
1904 };
1905
1906 /*
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1909 */
1910 static int
1911 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1912 {
1913 struct rq *rq = task_rq(p);
1914
1915 /*
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1918 */
1919 if (!p->se.on_rq && !task_running(rq, p)) {
1920 set_task_cpu(p, dest_cpu);
1921 return 0;
1922 }
1923
1924 init_completion(&req->done);
1925 req->task = p;
1926 req->dest_cpu = dest_cpu;
1927 list_add(&req->list, &rq->migration_queue);
1928
1929 return 1;
1930 }
1931
1932 /*
1933 * wait_task_inactive - wait for a thread to unschedule.
1934 *
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1941 *
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1947 */
1948 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1949 {
1950 unsigned long flags;
1951 int running, on_rq;
1952 unsigned long ncsw;
1953 struct rq *rq;
1954
1955 for (;;) {
1956 /*
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1960 * work out!
1961 */
1962 rq = task_rq(p);
1963
1964 /*
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1967 * any locks.
1968 *
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1974 */
1975 while (task_running(rq, p)) {
1976 if (match_state && unlikely(p->state != match_state))
1977 return 0;
1978 cpu_relax();
1979 }
1980
1981 /*
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1985 */
1986 rq = task_rq_lock(p, &flags);
1987 trace_sched_wait_task(rq, p);
1988 running = task_running(rq, p);
1989 on_rq = p->se.on_rq;
1990 ncsw = 0;
1991 if (!match_state || p->state == match_state)
1992 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1993 task_rq_unlock(rq, &flags);
1994
1995 /*
1996 * If it changed from the expected state, bail out now.
1997 */
1998 if (unlikely(!ncsw))
1999 break;
2000
2001 /*
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2004 *
2005 * Oops. Go back and try again..
2006 */
2007 if (unlikely(running)) {
2008 cpu_relax();
2009 continue;
2010 }
2011
2012 /*
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2015 * preempted!
2016 *
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2020 */
2021 if (unlikely(on_rq)) {
2022 schedule_timeout_uninterruptible(1);
2023 continue;
2024 }
2025
2026 /*
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2030 */
2031 break;
2032 }
2033
2034 return ncsw;
2035 }
2036
2037 /***
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2040 *
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2043 *
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2048 * achieved as well.
2049 */
2050 void kick_process(struct task_struct *p)
2051 {
2052 int cpu;
2053
2054 preempt_disable();
2055 cpu = task_cpu(p);
2056 if ((cpu != smp_processor_id()) && task_curr(p))
2057 smp_send_reschedule(cpu);
2058 preempt_enable();
2059 }
2060
2061 /*
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
2064 *
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2067 */
2068 static unsigned long source_load(int cpu, int type)
2069 {
2070 struct rq *rq = cpu_rq(cpu);
2071 unsigned long total = weighted_cpuload(cpu);
2072
2073 if (type == 0 || !sched_feat(LB_BIAS))
2074 return total;
2075
2076 return min(rq->cpu_load[type-1], total);
2077 }
2078
2079 /*
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
2082 */
2083 static unsigned long target_load(int cpu, int type)
2084 {
2085 struct rq *rq = cpu_rq(cpu);
2086 unsigned long total = weighted_cpuload(cpu);
2087
2088 if (type == 0 || !sched_feat(LB_BIAS))
2089 return total;
2090
2091 return max(rq->cpu_load[type-1], total);
2092 }
2093
2094 /*
2095 * find_idlest_group finds and returns the least busy CPU group within the
2096 * domain.
2097 */
2098 static struct sched_group *
2099 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2100 {
2101 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2102 unsigned long min_load = ULONG_MAX, this_load = 0;
2103 int load_idx = sd->forkexec_idx;
2104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2105
2106 do {
2107 unsigned long load, avg_load;
2108 int local_group;
2109 int i;
2110
2111 /* Skip over this group if it has no CPUs allowed */
2112 if (!cpumask_intersects(sched_group_cpus(group),
2113 &p->cpus_allowed))
2114 continue;
2115
2116 local_group = cpumask_test_cpu(this_cpu,
2117 sched_group_cpus(group));
2118
2119 /* Tally up the load of all CPUs in the group */
2120 avg_load = 0;
2121
2122 for_each_cpu(i, sched_group_cpus(group)) {
2123 /* Bias balancing toward cpus of our domain */
2124 if (local_group)
2125 load = source_load(i, load_idx);
2126 else
2127 load = target_load(i, load_idx);
2128
2129 avg_load += load;
2130 }
2131
2132 /* Adjust by relative CPU power of the group */
2133 avg_load = sg_div_cpu_power(group,
2134 avg_load * SCHED_LOAD_SCALE);
2135
2136 if (local_group) {
2137 this_load = avg_load;
2138 this = group;
2139 } else if (avg_load < min_load) {
2140 min_load = avg_load;
2141 idlest = group;
2142 }
2143 } while (group = group->next, group != sd->groups);
2144
2145 if (!idlest || 100*this_load < imbalance*min_load)
2146 return NULL;
2147 return idlest;
2148 }
2149
2150 /*
2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2152 */
2153 static int
2154 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2155 {
2156 unsigned long load, min_load = ULONG_MAX;
2157 int idlest = -1;
2158 int i;
2159
2160 /* Traverse only the allowed CPUs */
2161 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2162 load = weighted_cpuload(i);
2163
2164 if (load < min_load || (load == min_load && i == this_cpu)) {
2165 min_load = load;
2166 idlest = i;
2167 }
2168 }
2169
2170 return idlest;
2171 }
2172
2173 /*
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2176 * SD_BALANCE_EXEC.
2177 *
2178 * Balance, ie. select the least loaded group.
2179 *
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2181 *
2182 * preempt must be disabled.
2183 */
2184 static int sched_balance_self(int cpu, int flag)
2185 {
2186 struct task_struct *t = current;
2187 struct sched_domain *tmp, *sd = NULL;
2188
2189 for_each_domain(cpu, tmp) {
2190 /*
2191 * If power savings logic is enabled for a domain, stop there.
2192 */
2193 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2194 break;
2195 if (tmp->flags & flag)
2196 sd = tmp;
2197 }
2198
2199 if (sd)
2200 update_shares(sd);
2201
2202 while (sd) {
2203 struct sched_group *group;
2204 int new_cpu, weight;
2205
2206 if (!(sd->flags & flag)) {
2207 sd = sd->child;
2208 continue;
2209 }
2210
2211 group = find_idlest_group(sd, t, cpu);
2212 if (!group) {
2213 sd = sd->child;
2214 continue;
2215 }
2216
2217 new_cpu = find_idlest_cpu(group, t, cpu);
2218 if (new_cpu == -1 || new_cpu == cpu) {
2219 /* Now try balancing at a lower domain level of cpu */
2220 sd = sd->child;
2221 continue;
2222 }
2223
2224 /* Now try balancing at a lower domain level of new_cpu */
2225 cpu = new_cpu;
2226 weight = cpumask_weight(sched_domain_span(sd));
2227 sd = NULL;
2228 for_each_domain(cpu, tmp) {
2229 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2230 break;
2231 if (tmp->flags & flag)
2232 sd = tmp;
2233 }
2234 /* while loop will break here if sd == NULL */
2235 }
2236
2237 return cpu;
2238 }
2239
2240 #endif /* CONFIG_SMP */
2241
2242 /***
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2247 *
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2253 *
2254 * returns failure only if the task is already active.
2255 */
2256 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2257 {
2258 int cpu, orig_cpu, this_cpu, success = 0;
2259 unsigned long flags;
2260 long old_state;
2261 struct rq *rq;
2262
2263 if (!sched_feat(SYNC_WAKEUPS))
2264 sync = 0;
2265
2266 #ifdef CONFIG_SMP
2267 if (sched_feat(LB_WAKEUP_UPDATE)) {
2268 struct sched_domain *sd;
2269
2270 this_cpu = raw_smp_processor_id();
2271 cpu = task_cpu(p);
2272
2273 for_each_domain(this_cpu, sd) {
2274 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2275 update_shares(sd);
2276 break;
2277 }
2278 }
2279 }
2280 #endif
2281
2282 smp_wmb();
2283 rq = task_rq_lock(p, &flags);
2284 update_rq_clock(rq);
2285 old_state = p->state;
2286 if (!(old_state & state))
2287 goto out;
2288
2289 if (p->se.on_rq)
2290 goto out_running;
2291
2292 cpu = task_cpu(p);
2293 orig_cpu = cpu;
2294 this_cpu = smp_processor_id();
2295
2296 #ifdef CONFIG_SMP
2297 if (unlikely(task_running(rq, p)))
2298 goto out_activate;
2299
2300 cpu = p->sched_class->select_task_rq(p, sync);
2301 if (cpu != orig_cpu) {
2302 set_task_cpu(p, cpu);
2303 task_rq_unlock(rq, &flags);
2304 /* might preempt at this point */
2305 rq = task_rq_lock(p, &flags);
2306 old_state = p->state;
2307 if (!(old_state & state))
2308 goto out;
2309 if (p->se.on_rq)
2310 goto out_running;
2311
2312 this_cpu = smp_processor_id();
2313 cpu = task_cpu(p);
2314 }
2315
2316 #ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq, ttwu_count);
2318 if (cpu == this_cpu)
2319 schedstat_inc(rq, ttwu_local);
2320 else {
2321 struct sched_domain *sd;
2322 for_each_domain(this_cpu, sd) {
2323 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2324 schedstat_inc(sd, ttwu_wake_remote);
2325 break;
2326 }
2327 }
2328 }
2329 #endif /* CONFIG_SCHEDSTATS */
2330
2331 out_activate:
2332 #endif /* CONFIG_SMP */
2333 schedstat_inc(p, se.nr_wakeups);
2334 if (sync)
2335 schedstat_inc(p, se.nr_wakeups_sync);
2336 if (orig_cpu != cpu)
2337 schedstat_inc(p, se.nr_wakeups_migrate);
2338 if (cpu == this_cpu)
2339 schedstat_inc(p, se.nr_wakeups_local);
2340 else
2341 schedstat_inc(p, se.nr_wakeups_remote);
2342 activate_task(rq, p, 1);
2343 success = 1;
2344
2345 out_running:
2346 trace_sched_wakeup(rq, p, success);
2347 check_preempt_curr(rq, p, sync);
2348
2349 p->state = TASK_RUNNING;
2350 #ifdef CONFIG_SMP
2351 if (p->sched_class->task_wake_up)
2352 p->sched_class->task_wake_up(rq, p);
2353 #endif
2354 out:
2355 current->se.last_wakeup = current->se.sum_exec_runtime;
2356
2357 task_rq_unlock(rq, &flags);
2358
2359 return success;
2360 }
2361
2362 int wake_up_process(struct task_struct *p)
2363 {
2364 return try_to_wake_up(p, TASK_ALL, 0);
2365 }
2366 EXPORT_SYMBOL(wake_up_process);
2367
2368 int wake_up_state(struct task_struct *p, unsigned int state)
2369 {
2370 return try_to_wake_up(p, state, 0);
2371 }
2372
2373 /*
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
2376 *
2377 * __sched_fork() is basic setup used by init_idle() too:
2378 */
2379 static void __sched_fork(struct task_struct *p)
2380 {
2381 p->se.exec_start = 0;
2382 p->se.sum_exec_runtime = 0;
2383 p->se.prev_sum_exec_runtime = 0;
2384 p->se.last_wakeup = 0;
2385 p->se.avg_overlap = 0;
2386
2387 #ifdef CONFIG_SCHEDSTATS
2388 p->se.wait_start = 0;
2389 p->se.sum_sleep_runtime = 0;
2390 p->se.sleep_start = 0;
2391 p->se.block_start = 0;
2392 p->se.sleep_max = 0;
2393 p->se.block_max = 0;
2394 p->se.exec_max = 0;
2395 p->se.slice_max = 0;
2396 p->se.wait_max = 0;
2397 #endif
2398
2399 INIT_LIST_HEAD(&p->rt.run_list);
2400 p->se.on_rq = 0;
2401 INIT_LIST_HEAD(&p->se.group_node);
2402
2403 #ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p->preempt_notifiers);
2405 #endif
2406
2407 /*
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2412 */
2413 p->state = TASK_RUNNING;
2414 }
2415
2416 /*
2417 * fork()/clone()-time setup:
2418 */
2419 void sched_fork(struct task_struct *p, int clone_flags)
2420 {
2421 int cpu = get_cpu();
2422
2423 __sched_fork(p);
2424
2425 #ifdef CONFIG_SMP
2426 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2427 #endif
2428 set_task_cpu(p, cpu);
2429
2430 /*
2431 * Make sure we do not leak PI boosting priority to the child:
2432 */
2433 p->prio = current->normal_prio;
2434 if (!rt_prio(p->prio))
2435 p->sched_class = &fair_sched_class;
2436
2437 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2438 if (likely(sched_info_on()))
2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
2440 #endif
2441 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2442 p->oncpu = 0;
2443 #endif
2444 #ifdef CONFIG_PREEMPT
2445 /* Want to start with kernel preemption disabled. */
2446 task_thread_info(p)->preempt_count = 1;
2447 #endif
2448 put_cpu();
2449 }
2450
2451 /*
2452 * wake_up_new_task - wake up a newly created task for the first time.
2453 *
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2457 */
2458 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2459 {
2460 unsigned long flags;
2461 struct rq *rq;
2462
2463 rq = task_rq_lock(p, &flags);
2464 BUG_ON(p->state != TASK_RUNNING);
2465 update_rq_clock(rq);
2466
2467 p->prio = effective_prio(p);
2468
2469 if (!p->sched_class->task_new || !current->se.on_rq) {
2470 activate_task(rq, p, 0);
2471 } else {
2472 /*
2473 * Let the scheduling class do new task startup
2474 * management (if any):
2475 */
2476 p->sched_class->task_new(rq, p);
2477 inc_nr_running(rq);
2478 }
2479 trace_sched_wakeup_new(rq, p, 1);
2480 check_preempt_curr(rq, p, 0);
2481 #ifdef CONFIG_SMP
2482 if (p->sched_class->task_wake_up)
2483 p->sched_class->task_wake_up(rq, p);
2484 #endif
2485 task_rq_unlock(rq, &flags);
2486 }
2487
2488 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489
2490 /**
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
2493 */
2494 void preempt_notifier_register(struct preempt_notifier *notifier)
2495 {
2496 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2497 }
2498 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2499
2500 /**
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
2502 * @notifier: notifier struct to unregister
2503 *
2504 * This is safe to call from within a preemption notifier.
2505 */
2506 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2507 {
2508 hlist_del(&notifier->link);
2509 }
2510 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2511
2512 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 struct preempt_notifier *notifier;
2515 struct hlist_node *node;
2516
2517 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2518 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2519 }
2520
2521 static void
2522 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524 {
2525 struct preempt_notifier *notifier;
2526 struct hlist_node *node;
2527
2528 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_out(notifier, next);
2530 }
2531
2532 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2533
2534 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2535 {
2536 }
2537
2538 static void
2539 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541 {
2542 }
2543
2544 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2545
2546 /**
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
2549 * @prev: the current task that is being switched out
2550 * @next: the task we are going to switch to.
2551 *
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2554 * switch.
2555 *
2556 * prepare_task_switch sets up locking and calls architecture specific
2557 * hooks.
2558 */
2559 static inline void
2560 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2561 struct task_struct *next)
2562 {
2563 fire_sched_out_preempt_notifiers(prev, next);
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566 }
2567
2568 /**
2569 * finish_task_switch - clean up after a task-switch
2570 * @rq: runqueue associated with task-switch
2571 * @prev: the thread we just switched away from.
2572 *
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
2577 *
2578 * Note that we may have delayed dropping an mm in context_switch(). If
2579 * so, we finish that here outside of the runqueue lock. (Doing it
2580 * with the lock held can cause deadlocks; see schedule() for
2581 * details.)
2582 */
2583 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2584 __releases(rq->lock)
2585 {
2586 struct mm_struct *mm = rq->prev_mm;
2587 long prev_state;
2588
2589 rq->prev_mm = NULL;
2590
2591 /*
2592 * A task struct has one reference for the use as "current".
2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
2596 * The test for TASK_DEAD must occur while the runqueue locks are
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2599 * be dropped twice.
2600 * Manfred Spraul <manfred@colorfullife.com>
2601 */
2602 prev_state = prev->state;
2603 finish_arch_switch(prev);
2604 finish_lock_switch(rq, prev);
2605 #ifdef CONFIG_SMP
2606 if (current->sched_class->post_schedule)
2607 current->sched_class->post_schedule(rq);
2608 #endif
2609
2610 fire_sched_in_preempt_notifiers(current);
2611 if (mm)
2612 mmdrop(mm);
2613 if (unlikely(prev_state == TASK_DEAD)) {
2614 /*
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2617 */
2618 kprobe_flush_task(prev);
2619 put_task_struct(prev);
2620 }
2621 }
2622
2623 /**
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2626 */
2627 asmlinkage void schedule_tail(struct task_struct *prev)
2628 __releases(rq->lock)
2629 {
2630 struct rq *rq = this_rq();
2631
2632 finish_task_switch(rq, prev);
2633 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2635 preempt_enable();
2636 #endif
2637 if (current->set_child_tid)
2638 put_user(task_pid_vnr(current), current->set_child_tid);
2639 }
2640
2641 /*
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2644 */
2645 static inline void
2646 context_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
2648 {
2649 struct mm_struct *mm, *oldmm;
2650
2651 prepare_task_switch(rq, prev, next);
2652 trace_sched_switch(rq, prev, next);
2653 mm = next->mm;
2654 oldmm = prev->active_mm;
2655 /*
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2658 * one hypercall.
2659 */
2660 arch_enter_lazy_cpu_mode();
2661
2662 if (unlikely(!mm)) {
2663 next->active_mm = oldmm;
2664 atomic_inc(&oldmm->mm_count);
2665 enter_lazy_tlb(oldmm, next);
2666 } else
2667 switch_mm(oldmm, mm, next);
2668
2669 if (unlikely(!prev->mm)) {
2670 prev->active_mm = NULL;
2671 rq->prev_mm = oldmm;
2672 }
2673 /*
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2678 */
2679 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2681 #endif
2682
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev, next, prev);
2685
2686 barrier();
2687 /*
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2691 */
2692 finish_task_switch(this_rq(), prev);
2693 }
2694
2695 /*
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2697 *
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2701 */
2702 unsigned long nr_running(void)
2703 {
2704 unsigned long i, sum = 0;
2705
2706 for_each_online_cpu(i)
2707 sum += cpu_rq(i)->nr_running;
2708
2709 return sum;
2710 }
2711
2712 unsigned long nr_uninterruptible(void)
2713 {
2714 unsigned long i, sum = 0;
2715
2716 for_each_possible_cpu(i)
2717 sum += cpu_rq(i)->nr_uninterruptible;
2718
2719 /*
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2722 */
2723 if (unlikely((long)sum < 0))
2724 sum = 0;
2725
2726 return sum;
2727 }
2728
2729 unsigned long long nr_context_switches(void)
2730 {
2731 int i;
2732 unsigned long long sum = 0;
2733
2734 for_each_possible_cpu(i)
2735 sum += cpu_rq(i)->nr_switches;
2736
2737 return sum;
2738 }
2739
2740 unsigned long nr_iowait(void)
2741 {
2742 unsigned long i, sum = 0;
2743
2744 for_each_possible_cpu(i)
2745 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2746
2747 return sum;
2748 }
2749
2750 unsigned long nr_active(void)
2751 {
2752 unsigned long i, running = 0, uninterruptible = 0;
2753
2754 for_each_online_cpu(i) {
2755 running += cpu_rq(i)->nr_running;
2756 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2757 }
2758
2759 if (unlikely((long)uninterruptible < 0))
2760 uninterruptible = 0;
2761
2762 return running + uninterruptible;
2763 }
2764
2765 /*
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
2768 */
2769 static void update_cpu_load(struct rq *this_rq)
2770 {
2771 unsigned long this_load = this_rq->load.weight;
2772 int i, scale;
2773
2774 this_rq->nr_load_updates++;
2775
2776 /* Update our load: */
2777 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2778 unsigned long old_load, new_load;
2779
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2781
2782 old_load = this_rq->cpu_load[i];
2783 new_load = this_load;
2784 /*
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2787 * example.
2788 */
2789 if (new_load > old_load)
2790 new_load += scale-1;
2791 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2792 }
2793 }
2794
2795 #ifdef CONFIG_SMP
2796
2797 /*
2798 * double_rq_lock - safely lock two runqueues
2799 *
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2802 */
2803 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2804 __acquires(rq1->lock)
2805 __acquires(rq2->lock)
2806 {
2807 BUG_ON(!irqs_disabled());
2808 if (rq1 == rq2) {
2809 spin_lock(&rq1->lock);
2810 __acquire(rq2->lock); /* Fake it out ;) */
2811 } else {
2812 if (rq1 < rq2) {
2813 spin_lock(&rq1->lock);
2814 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2815 } else {
2816 spin_lock(&rq2->lock);
2817 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2818 }
2819 }
2820 update_rq_clock(rq1);
2821 update_rq_clock(rq2);
2822 }
2823
2824 /*
2825 * double_rq_unlock - safely unlock two runqueues
2826 *
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2829 */
2830 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2831 __releases(rq1->lock)
2832 __releases(rq2->lock)
2833 {
2834 spin_unlock(&rq1->lock);
2835 if (rq1 != rq2)
2836 spin_unlock(&rq2->lock);
2837 else
2838 __release(rq2->lock);
2839 }
2840
2841 /*
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2845 * the cpu_allowed mask is restored.
2846 */
2847 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2848 {
2849 struct migration_req req;
2850 unsigned long flags;
2851 struct rq *rq;
2852
2853 rq = task_rq_lock(p, &flags);
2854 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2855 || unlikely(!cpu_active(dest_cpu)))
2856 goto out;
2857
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p, dest_cpu, &req)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct *mt = rq->migration_thread;
2862
2863 get_task_struct(mt);
2864 task_rq_unlock(rq, &flags);
2865 wake_up_process(mt);
2866 put_task_struct(mt);
2867 wait_for_completion(&req.done);
2868
2869 return;
2870 }
2871 out:
2872 task_rq_unlock(rq, &flags);
2873 }
2874
2875 /*
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
2878 */
2879 void sched_exec(void)
2880 {
2881 int new_cpu, this_cpu = get_cpu();
2882 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2883 put_cpu();
2884 if (new_cpu != this_cpu)
2885 sched_migrate_task(current, new_cpu);
2886 }
2887
2888 /*
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2891 */
2892 static void pull_task(struct rq *src_rq, struct task_struct *p,
2893 struct rq *this_rq, int this_cpu)
2894 {
2895 deactivate_task(src_rq, p, 0);
2896 set_task_cpu(p, this_cpu);
2897 activate_task(this_rq, p, 0);
2898 /*
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2901 */
2902 check_preempt_curr(this_rq, p, 0);
2903 }
2904
2905 /*
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2907 */
2908 static
2909 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2910 struct sched_domain *sd, enum cpu_idle_type idle,
2911 int *all_pinned)
2912 {
2913 /*
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2918 */
2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2920 schedstat_inc(p, se.nr_failed_migrations_affine);
2921 return 0;
2922 }
2923 *all_pinned = 0;
2924
2925 if (task_running(rq, p)) {
2926 schedstat_inc(p, se.nr_failed_migrations_running);
2927 return 0;
2928 }
2929
2930 /*
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2934 */
2935
2936 if (!task_hot(p, rq->clock, sd) ||
2937 sd->nr_balance_failed > sd->cache_nice_tries) {
2938 #ifdef CONFIG_SCHEDSTATS
2939 if (task_hot(p, rq->clock, sd)) {
2940 schedstat_inc(sd, lb_hot_gained[idle]);
2941 schedstat_inc(p, se.nr_forced_migrations);
2942 }
2943 #endif
2944 return 1;
2945 }
2946
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(p, se.nr_failed_migrations_hot);
2949 return 0;
2950 }
2951 return 1;
2952 }
2953
2954 static unsigned long
2955 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2956 unsigned long max_load_move, struct sched_domain *sd,
2957 enum cpu_idle_type idle, int *all_pinned,
2958 int *this_best_prio, struct rq_iterator *iterator)
2959 {
2960 int loops = 0, pulled = 0, pinned = 0;
2961 struct task_struct *p;
2962 long rem_load_move = max_load_move;
2963
2964 if (max_load_move == 0)
2965 goto out;
2966
2967 pinned = 1;
2968
2969 /*
2970 * Start the load-balancing iterator:
2971 */
2972 p = iterator->start(iterator->arg);
2973 next:
2974 if (!p || loops++ > sysctl_sched_nr_migrate)
2975 goto out;
2976
2977 if ((p->se.load.weight >> 1) > rem_load_move ||
2978 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2979 p = iterator->next(iterator->arg);
2980 goto next;
2981 }
2982
2983 pull_task(busiest, p, this_rq, this_cpu);
2984 pulled++;
2985 rem_load_move -= p->se.load.weight;
2986
2987 /*
2988 * We only want to steal up to the prescribed amount of weighted load.
2989 */
2990 if (rem_load_move > 0) {
2991 if (p->prio < *this_best_prio)
2992 *this_best_prio = p->prio;
2993 p = iterator->next(iterator->arg);
2994 goto next;
2995 }
2996 out:
2997 /*
2998 * Right now, this is one of only two places pull_task() is called,
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3001 */
3002 schedstat_add(sd, lb_gained[idle], pulled);
3003
3004 if (all_pinned)
3005 *all_pinned = pinned;
3006
3007 return max_load_move - rem_load_move;
3008 }
3009
3010 /*
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
3014 *
3015 * Called with both runqueues locked.
3016 */
3017 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3018 unsigned long max_load_move,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021 {
3022 const struct sched_class *class = sched_class_highest;
3023 unsigned long total_load_moved = 0;
3024 int this_best_prio = this_rq->curr->prio;
3025
3026 do {
3027 total_load_moved +=
3028 class->load_balance(this_rq, this_cpu, busiest,
3029 max_load_move - total_load_moved,
3030 sd, idle, all_pinned, &this_best_prio);
3031 class = class->next;
3032
3033 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3034 break;
3035
3036 } while (class && max_load_move > total_load_moved);
3037
3038 return total_load_moved > 0;
3039 }
3040
3041 static int
3042 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 struct sched_domain *sd, enum cpu_idle_type idle,
3044 struct rq_iterator *iterator)
3045 {
3046 struct task_struct *p = iterator->start(iterator->arg);
3047 int pinned = 0;
3048
3049 while (p) {
3050 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3051 pull_task(busiest, p, this_rq, this_cpu);
3052 /*
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3056 */
3057 schedstat_inc(sd, lb_gained[idle]);
3058
3059 return 1;
3060 }
3061 p = iterator->next(iterator->arg);
3062 }
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3071 *
3072 * Called with both runqueues locked.
3073 */
3074 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3075 struct sched_domain *sd, enum cpu_idle_type idle)
3076 {
3077 const struct sched_class *class;
3078
3079 for (class = sched_class_highest; class; class = class->next)
3080 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3081 return 1;
3082
3083 return 0;
3084 }
3085
3086 /*
3087 * find_busiest_group finds and returns the busiest CPU group within the
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
3090 */
3091 static struct sched_group *
3092 find_busiest_group(struct sched_domain *sd, int this_cpu,
3093 unsigned long *imbalance, enum cpu_idle_type idle,
3094 int *sd_idle, const struct cpumask *cpus, int *balance)
3095 {
3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3098 unsigned long max_pull;
3099 unsigned long busiest_load_per_task, busiest_nr_running;
3100 unsigned long this_load_per_task, this_nr_running;
3101 int load_idx, group_imb = 0;
3102 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance = 1;
3104 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3105 unsigned long min_nr_running = ULONG_MAX;
3106 struct sched_group *group_min = NULL, *group_leader = NULL;
3107 #endif
3108
3109 max_load = this_load = total_load = total_pwr = 0;
3110 busiest_load_per_task = busiest_nr_running = 0;
3111 this_load_per_task = this_nr_running = 0;
3112
3113 if (idle == CPU_NOT_IDLE)
3114 load_idx = sd->busy_idx;
3115 else if (idle == CPU_NEWLY_IDLE)
3116 load_idx = sd->newidle_idx;
3117 else
3118 load_idx = sd->idle_idx;
3119
3120 do {
3121 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3122 int local_group;
3123 int i;
3124 int __group_imb = 0;
3125 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3126 unsigned long sum_nr_running, sum_weighted_load;
3127 unsigned long sum_avg_load_per_task;
3128 unsigned long avg_load_per_task;
3129
3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
3132
3133 if (local_group)
3134 balance_cpu = cpumask_first(sched_group_cpus(group));
3135
3136 /* Tally up the load of all CPUs in the group */
3137 sum_weighted_load = sum_nr_running = avg_load = 0;
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
3142
3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3144 struct rq *rq = cpu_rq(i);
3145
3146 if (*sd_idle && rq->nr_running)
3147 *sd_idle = 0;
3148
3149 /* Bias balancing toward cpus of our domain */
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
3156 load = target_load(i, load_idx);
3157 } else {
3158 load = source_load(i, load_idx);
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
3164
3165 avg_load += load;
3166 sum_nr_running += rq->nr_running;
3167 sum_weighted_load += weighted_cpuload(i);
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3170 }
3171
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3177 */
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
3180 *balance = 0;
3181 goto ret;
3182 }
3183
3184 total_load += avg_load;
3185 total_pwr += group->__cpu_power;
3186
3187 /* Adjust by relative CPU power of the group */
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
3190
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 __group_imb = 1;
3206
3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
3215 (sum_nr_running > group_capacity || __group_imb)) {
3216 max_load = avg_load;
3217 busiest = group;
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
3220 group_imb = __group_imb;
3221 }
3222
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
3240 /*
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
3245 || !sum_nr_running)
3246 goto group_next;
3247
3248 /*
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
3255 cpumask_first(sched_group_cpus(group)) >
3256 cpumask_first(sched_group_cpus(group_min)))) {
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
3261 }
3262
3263 /*
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
3271 cpumask_first(sched_group_cpus(group)) <
3272 cpumask_first(sched_group_cpus(group_leader)))) {
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
3276 }
3277 group_next:
3278 #endif
3279 group = group->next;
3280 } while (group != sd->groups);
3281
3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
3291 busiest_load_per_task /= busiest_nr_running;
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3305 */
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
3325 / SCHED_LOAD_SCALE;
3326
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
3333 if (*imbalance < busiest_load_per_task) {
3334 unsigned long tmp, pwr_now, pwr_move;
3335 unsigned int imbn;
3336
3337 small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3346
3347 if (max_load - this_load + busiest_load_per_task >=
3348 busiest_load_per_task * imbn) {
3349 *imbalance = busiest_load_per_task;
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
3368 if (max_load > tmp)
3369 pwr_move += busiest->__cpu_power *
3370 min(busiest_load_per_task, max_load - tmp);
3371
3372 /* Amount of load we'd add */
3373 if (max_load * busiest->__cpu_power <
3374 busiest_load_per_task * SCHED_LOAD_SCALE)
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
3377 else
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
3387 }
3388
3389 return busiest;
3390
3391 out_balanced:
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394 goto ret;
3395
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3400 cpumask_first(sched_group_cpus(group_leader));
3401 }
3402 return group_min;
3403 }
3404 #endif
3405 ret:
3406 *imbalance = 0;
3407 return NULL;
3408 }
3409
3410 /*
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3412 */
3413 static struct rq *
3414 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3415 unsigned long imbalance, const struct cpumask *cpus)
3416 {
3417 struct rq *busiest = NULL, *rq;
3418 unsigned long max_load = 0;
3419 int i;
3420
3421 for_each_cpu(i, sched_group_cpus(group)) {
3422 unsigned long wl;
3423
3424 if (!cpumask_test_cpu(i, cpus))
3425 continue;
3426
3427 rq = cpu_rq(i);
3428 wl = weighted_cpuload(i);
3429
3430 if (rq->nr_running == 1 && wl > imbalance)
3431 continue;
3432
3433 if (wl > max_load) {
3434 max_load = wl;
3435 busiest = rq;
3436 }
3437 }
3438
3439 return busiest;
3440 }
3441
3442 /*
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3445 */
3446 #define MAX_PINNED_INTERVAL 512
3447
3448 /*
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
3451 */
3452 static int load_balance(int this_cpu, struct rq *this_rq,
3453 struct sched_domain *sd, enum cpu_idle_type idle,
3454 int *balance, struct cpumask *cpus)
3455 {
3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3457 struct sched_group *group;
3458 unsigned long imbalance;
3459 struct rq *busiest;
3460 unsigned long flags;
3461
3462 cpumask_setall(cpus);
3463
3464 /*
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3468 * portraying it as CPU_NOT_IDLE.
3469 */
3470 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3471 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3472 sd_idle = 1;
3473
3474 schedstat_inc(sd, lb_count[idle]);
3475
3476 redo:
3477 update_shares(sd);
3478 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3479 cpus, balance);
3480
3481 if (*balance == 0)
3482 goto out_balanced;
3483
3484 if (!group) {
3485 schedstat_inc(sd, lb_nobusyg[idle]);
3486 goto out_balanced;
3487 }
3488
3489 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3490 if (!busiest) {
3491 schedstat_inc(sd, lb_nobusyq[idle]);
3492 goto out_balanced;
3493 }
3494
3495 BUG_ON(busiest == this_rq);
3496
3497 schedstat_add(sd, lb_imbalance[idle], imbalance);
3498
3499 ld_moved = 0;
3500 if (busiest->nr_running > 1) {
3501 /*
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
3504 * still unbalanced. ld_moved simply stays zero, so it is
3505 * correctly treated as an imbalance.
3506 */
3507 local_irq_save(flags);
3508 double_rq_lock(this_rq, busiest);
3509 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3510 imbalance, sd, idle, &all_pinned);
3511 double_rq_unlock(this_rq, busiest);
3512 local_irq_restore(flags);
3513
3514 /*
3515 * some other cpu did the load balance for us.
3516 */
3517 if (ld_moved && this_cpu != smp_processor_id())
3518 resched_cpu(this_cpu);
3519
3520 /* All tasks on this runqueue were pinned by CPU affinity */
3521 if (unlikely(all_pinned)) {
3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3523 if (!cpumask_empty(cpus))
3524 goto redo;
3525 goto out_balanced;
3526 }
3527 }
3528
3529 if (!ld_moved) {
3530 schedstat_inc(sd, lb_failed[idle]);
3531 sd->nr_balance_failed++;
3532
3533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3534
3535 spin_lock_irqsave(&busiest->lock, flags);
3536
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3539 */
3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
3542 spin_unlock_irqrestore(&busiest->lock, flags);
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
3550 active_balance = 1;
3551 }
3552 spin_unlock_irqrestore(&busiest->lock, flags);
3553 if (active_balance)
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
3561 }
3562 } else
3563 sd->nr_balance_failed = 0;
3564
3565 if (likely(!active_balance)) {
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
3577 }
3578
3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 ld_moved = -1;
3582
3583 goto out;
3584
3585 out_balanced:
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
3588 sd->nr_balance_failed = 0;
3589
3590 out_one_pinned:
3591 /* tune up the balancing interval */
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
3594 sd->balance_interval *= 2;
3595
3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601 out:
3602 if (ld_moved)
3603 update_shares(sd);
3604 return ld_moved;
3605 }
3606
3607 /*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3612 * this_rq is locked.
3613 */
3614 static int
3615 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 struct cpumask *cpus)
3617 {
3618 struct sched_group *group;
3619 struct rq *busiest = NULL;
3620 unsigned long imbalance;
3621 int ld_moved = 0;
3622 int sd_idle = 0;
3623 int all_pinned = 0;
3624
3625 cpumask_setall(cpus);
3626
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
3631 * portraying it as CPU_NOT_IDLE.
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3635 sd_idle = 1;
3636
3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638 redo:
3639 update_shares_locked(this_rq, sd);
3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641 &sd_idle, cpus, NULL);
3642 if (!group) {
3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644 goto out_balanced;
3645 }
3646
3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3648 if (!busiest) {
3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650 goto out_balanced;
3651 }
3652
3653 BUG_ON(busiest == this_rq);
3654
3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656
3657 ld_moved = 0;
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
3666 double_unlock_balance(this_rq, busiest);
3667
3668 if (unlikely(all_pinned)) {
3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3670 if (!cpumask_empty(cpus))
3671 goto redo;
3672 }
3673 }
3674
3675 if (!ld_moved) {
3676 int active_balance = 0;
3677
3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3681 return -1;
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
3718 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
3731 if (active_balance)
3732 wake_up_process(busiest->migration_thread);
3733
3734 } else
3735 sd->nr_balance_failed = 0;
3736
3737 update_shares_locked(this_rq, sd);
3738 return ld_moved;
3739
3740 out_balanced:
3741 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3742 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3744 return -1;
3745 sd->nr_balance_failed = 0;
3746
3747 return 0;
3748 }
3749
3750 /*
3751 * idle_balance is called by schedule() if this_cpu is about to become
3752 * idle. Attempts to pull tasks from other CPUs.
3753 */
3754 static void idle_balance(int this_cpu, struct rq *this_rq)
3755 {
3756 struct sched_domain *sd;
3757 int pulled_task = 0;
3758 unsigned long next_balance = jiffies + HZ;
3759 cpumask_var_t tmpmask;
3760
3761 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3762 return;
3763
3764 for_each_domain(this_cpu, sd) {
3765 unsigned long interval;
3766
3767 if (!(sd->flags & SD_LOAD_BALANCE))
3768 continue;
3769
3770 if (sd->flags & SD_BALANCE_NEWIDLE)
3771 /* If we've pulled tasks over stop searching: */
3772 pulled_task = load_balance_newidle(this_cpu, this_rq,
3773 sd, tmpmask);
3774
3775 interval = msecs_to_jiffies(sd->balance_interval);
3776 if (time_after(next_balance, sd->last_balance + interval))
3777 next_balance = sd->last_balance + interval;
3778 if (pulled_task)
3779 break;
3780 }
3781 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3782 /*
3783 * We are going idle. next_balance may be set based on
3784 * a busy processor. So reset next_balance.
3785 */
3786 this_rq->next_balance = next_balance;
3787 }
3788 free_cpumask_var(tmpmask);
3789 }
3790
3791 /*
3792 * active_load_balance is run by migration threads. It pushes running tasks
3793 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3794 * running on each physical CPU where possible, and avoids physical /
3795 * logical imbalances.
3796 *
3797 * Called with busiest_rq locked.
3798 */
3799 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3800 {
3801 int target_cpu = busiest_rq->push_cpu;
3802 struct sched_domain *sd;
3803 struct rq *target_rq;
3804
3805 /* Is there any task to move? */
3806 if (busiest_rq->nr_running <= 1)
3807 return;
3808
3809 target_rq = cpu_rq(target_cpu);
3810
3811 /*
3812 * This condition is "impossible", if it occurs
3813 * we need to fix it. Originally reported by
3814 * Bjorn Helgaas on a 128-cpu setup.
3815 */
3816 BUG_ON(busiest_rq == target_rq);
3817
3818 /* move a task from busiest_rq to target_rq */
3819 double_lock_balance(busiest_rq, target_rq);
3820 update_rq_clock(busiest_rq);
3821 update_rq_clock(target_rq);
3822
3823 /* Search for an sd spanning us and the target CPU. */
3824 for_each_domain(target_cpu, sd) {
3825 if ((sd->flags & SD_LOAD_BALANCE) &&
3826 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3827 break;
3828 }
3829
3830 if (likely(sd)) {
3831 schedstat_inc(sd, alb_count);
3832
3833 if (move_one_task(target_rq, target_cpu, busiest_rq,
3834 sd, CPU_IDLE))
3835 schedstat_inc(sd, alb_pushed);
3836 else
3837 schedstat_inc(sd, alb_failed);
3838 }
3839 double_unlock_balance(busiest_rq, target_rq);
3840 }
3841
3842 #ifdef CONFIG_NO_HZ
3843 static struct {
3844 atomic_t load_balancer;
3845 cpumask_var_t cpu_mask;
3846 } nohz ____cacheline_aligned = {
3847 .load_balancer = ATOMIC_INIT(-1),
3848 };
3849
3850 /*
3851 * This routine will try to nominate the ilb (idle load balancing)
3852 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3853 * load balancing on behalf of all those cpus. If all the cpus in the system
3854 * go into this tickless mode, then there will be no ilb owner (as there is
3855 * no need for one) and all the cpus will sleep till the next wakeup event
3856 * arrives...
3857 *
3858 * For the ilb owner, tick is not stopped. And this tick will be used
3859 * for idle load balancing. ilb owner will still be part of
3860 * nohz.cpu_mask..
3861 *
3862 * While stopping the tick, this cpu will become the ilb owner if there
3863 * is no other owner. And will be the owner till that cpu becomes busy
3864 * or if all cpus in the system stop their ticks at which point
3865 * there is no need for ilb owner.
3866 *
3867 * When the ilb owner becomes busy, it nominates another owner, during the
3868 * next busy scheduler_tick()
3869 */
3870 int select_nohz_load_balancer(int stop_tick)
3871 {
3872 int cpu = smp_processor_id();
3873
3874 if (stop_tick) {
3875 cpumask_set_cpu(cpu, nohz.cpu_mask);
3876 cpu_rq(cpu)->in_nohz_recently = 1;
3877
3878 /*
3879 * If we are going offline and still the leader, give up!
3880 */
3881 if (!cpu_active(cpu) &&
3882 atomic_read(&nohz.load_balancer) == cpu) {
3883 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3884 BUG();
3885 return 0;
3886 }
3887
3888 /* time for ilb owner also to sleep */
3889 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3890 if (atomic_read(&nohz.load_balancer) == cpu)
3891 atomic_set(&nohz.load_balancer, -1);
3892 return 0;
3893 }
3894
3895 if (atomic_read(&nohz.load_balancer) == -1) {
3896 /* make me the ilb owner */
3897 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3898 return 1;
3899 } else if (atomic_read(&nohz.load_balancer) == cpu)
3900 return 1;
3901 } else {
3902 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3903 return 0;
3904
3905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3906
3907 if (atomic_read(&nohz.load_balancer) == cpu)
3908 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3909 BUG();
3910 }
3911 return 0;
3912 }
3913 #endif
3914
3915 static DEFINE_SPINLOCK(balancing);
3916
3917 /*
3918 * It checks each scheduling domain to see if it is due to be balanced,
3919 * and initiates a balancing operation if so.
3920 *
3921 * Balancing parameters are set up in arch_init_sched_domains.
3922 */
3923 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3924 {
3925 int balance = 1;
3926 struct rq *rq = cpu_rq(cpu);
3927 unsigned long interval;
3928 struct sched_domain *sd;
3929 /* Earliest time when we have to do rebalance again */
3930 unsigned long next_balance = jiffies + 60*HZ;
3931 int update_next_balance = 0;
3932 int need_serialize;
3933 cpumask_var_t tmp;
3934
3935 /* Fails alloc? Rebalancing probably not a priority right now. */
3936 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3937 return;
3938
3939 for_each_domain(cpu, sd) {
3940 if (!(sd->flags & SD_LOAD_BALANCE))
3941 continue;
3942
3943 interval = sd->balance_interval;
3944 if (idle != CPU_IDLE)
3945 interval *= sd->busy_factor;
3946
3947 /* scale ms to jiffies */
3948 interval = msecs_to_jiffies(interval);
3949 if (unlikely(!interval))
3950 interval = 1;
3951 if (interval > HZ*NR_CPUS/10)
3952 interval = HZ*NR_CPUS/10;
3953
3954 need_serialize = sd->flags & SD_SERIALIZE;
3955
3956 if (need_serialize) {
3957 if (!spin_trylock(&balancing))
3958 goto out;
3959 }
3960
3961 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3962 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3963 /*
3964 * We've pulled tasks over so either we're no
3965 * longer idle, or one of our SMT siblings is
3966 * not idle.
3967 */
3968 idle = CPU_NOT_IDLE;
3969 }
3970 sd->last_balance = jiffies;
3971 }
3972 if (need_serialize)
3973 spin_unlock(&balancing);
3974 out:
3975 if (time_after(next_balance, sd->last_balance + interval)) {
3976 next_balance = sd->last_balance + interval;
3977 update_next_balance = 1;
3978 }
3979
3980 /*
3981 * Stop the load balance at this level. There is another
3982 * CPU in our sched group which is doing load balancing more
3983 * actively.
3984 */
3985 if (!balance)
3986 break;
3987 }
3988
3989 /*
3990 * next_balance will be updated only when there is a need.
3991 * When the cpu is attached to null domain for ex, it will not be
3992 * updated.
3993 */
3994 if (likely(update_next_balance))
3995 rq->next_balance = next_balance;
3996
3997 free_cpumask_var(tmp);
3998 }
3999
4000 /*
4001 * run_rebalance_domains is triggered when needed from the scheduler tick.
4002 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4003 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4004 */
4005 static void run_rebalance_domains(struct softirq_action *h)
4006 {
4007 int this_cpu = smp_processor_id();
4008 struct rq *this_rq = cpu_rq(this_cpu);
4009 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4010 CPU_IDLE : CPU_NOT_IDLE;
4011
4012 rebalance_domains(this_cpu, idle);
4013
4014 #ifdef CONFIG_NO_HZ
4015 /*
4016 * If this cpu is the owner for idle load balancing, then do the
4017 * balancing on behalf of the other idle cpus whose ticks are
4018 * stopped.
4019 */
4020 if (this_rq->idle_at_tick &&
4021 atomic_read(&nohz.load_balancer) == this_cpu) {
4022 struct rq *rq;
4023 int balance_cpu;
4024
4025 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4026 if (balance_cpu == this_cpu)
4027 continue;
4028
4029 /*
4030 * If this cpu gets work to do, stop the load balancing
4031 * work being done for other cpus. Next load
4032 * balancing owner will pick it up.
4033 */
4034 if (need_resched())
4035 break;
4036
4037 rebalance_domains(balance_cpu, CPU_IDLE);
4038
4039 rq = cpu_rq(balance_cpu);
4040 if (time_after(this_rq->next_balance, rq->next_balance))
4041 this_rq->next_balance = rq->next_balance;
4042 }
4043 }
4044 #endif
4045 }
4046
4047 /*
4048 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4049 *
4050 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4051 * idle load balancing owner or decide to stop the periodic load balancing,
4052 * if the whole system is idle.
4053 */
4054 static inline void trigger_load_balance(struct rq *rq, int cpu)
4055 {
4056 #ifdef CONFIG_NO_HZ
4057 /*
4058 * If we were in the nohz mode recently and busy at the current
4059 * scheduler tick, then check if we need to nominate new idle
4060 * load balancer.
4061 */
4062 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4063 rq->in_nohz_recently = 0;
4064
4065 if (atomic_read(&nohz.load_balancer) == cpu) {
4066 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4067 atomic_set(&nohz.load_balancer, -1);
4068 }
4069
4070 if (atomic_read(&nohz.load_balancer) == -1) {
4071 /*
4072 * simple selection for now: Nominate the
4073 * first cpu in the nohz list to be the next
4074 * ilb owner.
4075 *
4076 * TBD: Traverse the sched domains and nominate
4077 * the nearest cpu in the nohz.cpu_mask.
4078 */
4079 int ilb = cpumask_first(nohz.cpu_mask);
4080
4081 if (ilb < nr_cpu_ids)
4082 resched_cpu(ilb);
4083 }
4084 }
4085
4086 /*
4087 * If this cpu is idle and doing idle load balancing for all the
4088 * cpus with ticks stopped, is it time for that to stop?
4089 */
4090 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4091 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4092 resched_cpu(cpu);
4093 return;
4094 }
4095
4096 /*
4097 * If this cpu is idle and the idle load balancing is done by
4098 * someone else, then no need raise the SCHED_SOFTIRQ
4099 */
4100 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4101 cpumask_test_cpu(cpu, nohz.cpu_mask))
4102 return;
4103 #endif
4104 if (time_after_eq(jiffies, rq->next_balance))
4105 raise_softirq(SCHED_SOFTIRQ);
4106 }
4107
4108 #else /* CONFIG_SMP */
4109
4110 /*
4111 * on UP we do not need to balance between CPUs:
4112 */
4113 static inline void idle_balance(int cpu, struct rq *rq)
4114 {
4115 }
4116
4117 #endif
4118
4119 DEFINE_PER_CPU(struct kernel_stat, kstat);
4120
4121 EXPORT_PER_CPU_SYMBOL(kstat);
4122
4123 /*
4124 * Return any ns on the sched_clock that have not yet been banked in
4125 * @p in case that task is currently running.
4126 */
4127 unsigned long long task_delta_exec(struct task_struct *p)
4128 {
4129 unsigned long flags;
4130 struct rq *rq;
4131 u64 ns = 0;
4132
4133 rq = task_rq_lock(p, &flags);
4134
4135 if (task_current(rq, p)) {
4136 u64 delta_exec;
4137
4138 update_rq_clock(rq);
4139 delta_exec = rq->clock - p->se.exec_start;
4140 if ((s64)delta_exec > 0)
4141 ns = delta_exec;
4142 }
4143
4144 task_rq_unlock(rq, &flags);
4145
4146 return ns;
4147 }
4148
4149 /*
4150 * Account user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @cputime: the cpu time spent in user space since the last update
4153 */
4154 void account_user_time(struct task_struct *p, cputime_t cputime)
4155 {
4156 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4157 cputime64_t tmp;
4158
4159 p->utime = cputime_add(p->utime, cputime);
4160 account_group_user_time(p, cputime);
4161
4162 /* Add user time to cpustat. */
4163 tmp = cputime_to_cputime64(cputime);
4164 if (TASK_NICE(p) > 0)
4165 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4166 else
4167 cpustat->user = cputime64_add(cpustat->user, tmp);
4168 /* Account for user time used */
4169 acct_update_integrals(p);
4170 }
4171
4172 /*
4173 * Account guest cpu time to a process.
4174 * @p: the process that the cpu time gets accounted to
4175 * @cputime: the cpu time spent in virtual machine since the last update
4176 */
4177 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4178 {
4179 cputime64_t tmp;
4180 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4181
4182 tmp = cputime_to_cputime64(cputime);
4183
4184 p->utime = cputime_add(p->utime, cputime);
4185 account_group_user_time(p, cputime);
4186 p->gtime = cputime_add(p->gtime, cputime);
4187
4188 cpustat->user = cputime64_add(cpustat->user, tmp);
4189 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4190 }
4191
4192 /*
4193 * Account scaled user cpu time to a process.
4194 * @p: the process that the cpu time gets accounted to
4195 * @cputime: the cpu time spent in user space since the last update
4196 */
4197 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4198 {
4199 p->utimescaled = cputime_add(p->utimescaled, cputime);
4200 }
4201
4202 /*
4203 * Account system cpu time to a process.
4204 * @p: the process that the cpu time gets accounted to
4205 * @hardirq_offset: the offset to subtract from hardirq_count()
4206 * @cputime: the cpu time spent in kernel space since the last update
4207 */
4208 void account_system_time(struct task_struct *p, int hardirq_offset,
4209 cputime_t cputime)
4210 {
4211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4212 struct rq *rq = this_rq();
4213 cputime64_t tmp;
4214
4215 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4216 account_guest_time(p, cputime);
4217 return;
4218 }
4219
4220 p->stime = cputime_add(p->stime, cputime);
4221 account_group_system_time(p, cputime);
4222
4223 /* Add system time to cpustat. */
4224 tmp = cputime_to_cputime64(cputime);
4225 if (hardirq_count() - hardirq_offset)
4226 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4227 else if (softirq_count())
4228 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4229 else if (p != rq->idle)
4230 cpustat->system = cputime64_add(cpustat->system, tmp);
4231 else if (atomic_read(&rq->nr_iowait) > 0)
4232 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4233 else
4234 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4235 /* Account for system time used */
4236 acct_update_integrals(p);
4237 }
4238
4239 /*
4240 * Account scaled system cpu time to a process.
4241 * @p: the process that the cpu time gets accounted to
4242 * @hardirq_offset: the offset to subtract from hardirq_count()
4243 * @cputime: the cpu time spent in kernel space since the last update
4244 */
4245 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4246 {
4247 p->stimescaled = cputime_add(p->stimescaled, cputime);
4248 }
4249
4250 /*
4251 * Account for involuntary wait time.
4252 * @p: the process from which the cpu time has been stolen
4253 * @steal: the cpu time spent in involuntary wait
4254 */
4255 void account_steal_time(struct task_struct *p, cputime_t steal)
4256 {
4257 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4258 cputime64_t tmp = cputime_to_cputime64(steal);
4259 struct rq *rq = this_rq();
4260
4261 if (p == rq->idle) {
4262 p->stime = cputime_add(p->stime, steal);
4263 if (atomic_read(&rq->nr_iowait) > 0)
4264 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4265 else
4266 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4267 } else
4268 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4269 }
4270
4271 /*
4272 * Use precise platform statistics if available:
4273 */
4274 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4275 cputime_t task_utime(struct task_struct *p)
4276 {
4277 return p->utime;
4278 }
4279
4280 cputime_t task_stime(struct task_struct *p)
4281 {
4282 return p->stime;
4283 }
4284 #else
4285 cputime_t task_utime(struct task_struct *p)
4286 {
4287 clock_t utime = cputime_to_clock_t(p->utime),
4288 total = utime + cputime_to_clock_t(p->stime);
4289 u64 temp;
4290
4291 /*
4292 * Use CFS's precise accounting:
4293 */
4294 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4295
4296 if (total) {
4297 temp *= utime;
4298 do_div(temp, total);
4299 }
4300 utime = (clock_t)temp;
4301
4302 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4303 return p->prev_utime;
4304 }
4305
4306 cputime_t task_stime(struct task_struct *p)
4307 {
4308 clock_t stime;
4309
4310 /*
4311 * Use CFS's precise accounting. (we subtract utime from
4312 * the total, to make sure the total observed by userspace
4313 * grows monotonically - apps rely on that):
4314 */
4315 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4316 cputime_to_clock_t(task_utime(p));
4317
4318 if (stime >= 0)
4319 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4320
4321 return p->prev_stime;
4322 }
4323 #endif
4324
4325 inline cputime_t task_gtime(struct task_struct *p)
4326 {
4327 return p->gtime;
4328 }
4329
4330 /*
4331 * This function gets called by the timer code, with HZ frequency.
4332 * We call it with interrupts disabled.
4333 *
4334 * It also gets called by the fork code, when changing the parent's
4335 * timeslices.
4336 */
4337 void scheduler_tick(void)
4338 {
4339 int cpu = smp_processor_id();
4340 struct rq *rq = cpu_rq(cpu);
4341 struct task_struct *curr = rq->curr;
4342
4343 sched_clock_tick();
4344
4345 spin_lock(&rq->lock);
4346 update_rq_clock(rq);
4347 update_cpu_load(rq);
4348 curr->sched_class->task_tick(rq, curr, 0);
4349 spin_unlock(&rq->lock);
4350
4351 #ifdef CONFIG_SMP
4352 rq->idle_at_tick = idle_cpu(cpu);
4353 trigger_load_balance(rq, cpu);
4354 #endif
4355 }
4356
4357 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4358 defined(CONFIG_PREEMPT_TRACER))
4359
4360 static inline unsigned long get_parent_ip(unsigned long addr)
4361 {
4362 if (in_lock_functions(addr)) {
4363 addr = CALLER_ADDR2;
4364 if (in_lock_functions(addr))
4365 addr = CALLER_ADDR3;
4366 }
4367 return addr;
4368 }
4369
4370 void __kprobes add_preempt_count(int val)
4371 {
4372 #ifdef CONFIG_DEBUG_PREEMPT
4373 /*
4374 * Underflow?
4375 */
4376 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4377 return;
4378 #endif
4379 preempt_count() += val;
4380 #ifdef CONFIG_DEBUG_PREEMPT
4381 /*
4382 * Spinlock count overflowing soon?
4383 */
4384 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4385 PREEMPT_MASK - 10);
4386 #endif
4387 if (preempt_count() == val)
4388 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4389 }
4390 EXPORT_SYMBOL(add_preempt_count);
4391
4392 void __kprobes sub_preempt_count(int val)
4393 {
4394 #ifdef CONFIG_DEBUG_PREEMPT
4395 /*
4396 * Underflow?
4397 */
4398 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4399 return;
4400 /*
4401 * Is the spinlock portion underflowing?
4402 */
4403 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4404 !(preempt_count() & PREEMPT_MASK)))
4405 return;
4406 #endif
4407
4408 if (preempt_count() == val)
4409 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4410 preempt_count() -= val;
4411 }
4412 EXPORT_SYMBOL(sub_preempt_count);
4413
4414 #endif
4415
4416 /*
4417 * Print scheduling while atomic bug:
4418 */
4419 static noinline void __schedule_bug(struct task_struct *prev)
4420 {
4421 struct pt_regs *regs = get_irq_regs();
4422
4423 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4424 prev->comm, prev->pid, preempt_count());
4425
4426 debug_show_held_locks(prev);
4427 print_modules();
4428 if (irqs_disabled())
4429 print_irqtrace_events(prev);
4430
4431 if (regs)
4432 show_regs(regs);
4433 else
4434 dump_stack();
4435 }
4436
4437 /*
4438 * Various schedule()-time debugging checks and statistics:
4439 */
4440 static inline void schedule_debug(struct task_struct *prev)
4441 {
4442 /*
4443 * Test if we are atomic. Since do_exit() needs to call into
4444 * schedule() atomically, we ignore that path for now.
4445 * Otherwise, whine if we are scheduling when we should not be.
4446 */
4447 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4448 __schedule_bug(prev);
4449
4450 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4451
4452 schedstat_inc(this_rq(), sched_count);
4453 #ifdef CONFIG_SCHEDSTATS
4454 if (unlikely(prev->lock_depth >= 0)) {
4455 schedstat_inc(this_rq(), bkl_count);
4456 schedstat_inc(prev, sched_info.bkl_count);
4457 }
4458 #endif
4459 }
4460
4461 /*
4462 * Pick up the highest-prio task:
4463 */
4464 static inline struct task_struct *
4465 pick_next_task(struct rq *rq, struct task_struct *prev)
4466 {
4467 const struct sched_class *class;
4468 struct task_struct *p;
4469
4470 /*
4471 * Optimization: we know that if all tasks are in
4472 * the fair class we can call that function directly:
4473 */
4474 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4475 p = fair_sched_class.pick_next_task(rq);
4476 if (likely(p))
4477 return p;
4478 }
4479
4480 class = sched_class_highest;
4481 for ( ; ; ) {
4482 p = class->pick_next_task(rq);
4483 if (p)
4484 return p;
4485 /*
4486 * Will never be NULL as the idle class always
4487 * returns a non-NULL p:
4488 */
4489 class = class->next;
4490 }
4491 }
4492
4493 /*
4494 * schedule() is the main scheduler function.
4495 */
4496 asmlinkage void __sched schedule(void)
4497 {
4498 struct task_struct *prev, *next;
4499 unsigned long *switch_count;
4500 struct rq *rq;
4501 int cpu;
4502
4503 need_resched:
4504 preempt_disable();
4505 cpu = smp_processor_id();
4506 rq = cpu_rq(cpu);
4507 rcu_qsctr_inc(cpu);
4508 prev = rq->curr;
4509 switch_count = &prev->nivcsw;
4510
4511 release_kernel_lock(prev);
4512 need_resched_nonpreemptible:
4513
4514 schedule_debug(prev);
4515
4516 if (sched_feat(HRTICK))
4517 hrtick_clear(rq);
4518
4519 spin_lock_irq(&rq->lock);
4520 update_rq_clock(rq);
4521 clear_tsk_need_resched(prev);
4522
4523 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4524 if (unlikely(signal_pending_state(prev->state, prev)))
4525 prev->state = TASK_RUNNING;
4526 else
4527 deactivate_task(rq, prev, 1);
4528 switch_count = &prev->nvcsw;
4529 }
4530
4531 #ifdef CONFIG_SMP
4532 if (prev->sched_class->pre_schedule)
4533 prev->sched_class->pre_schedule(rq, prev);
4534 #endif
4535
4536 if (unlikely(!rq->nr_running))
4537 idle_balance(cpu, rq);
4538
4539 prev->sched_class->put_prev_task(rq, prev);
4540 next = pick_next_task(rq, prev);
4541
4542 if (likely(prev != next)) {
4543 sched_info_switch(prev, next);
4544
4545 rq->nr_switches++;
4546 rq->curr = next;
4547 ++*switch_count;
4548
4549 context_switch(rq, prev, next); /* unlocks the rq */
4550 /*
4551 * the context switch might have flipped the stack from under
4552 * us, hence refresh the local variables.
4553 */
4554 cpu = smp_processor_id();
4555 rq = cpu_rq(cpu);
4556 } else
4557 spin_unlock_irq(&rq->lock);
4558
4559 if (unlikely(reacquire_kernel_lock(current) < 0))
4560 goto need_resched_nonpreemptible;
4561
4562 preempt_enable_no_resched();
4563 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4564 goto need_resched;
4565 }
4566 EXPORT_SYMBOL(schedule);
4567
4568 #ifdef CONFIG_PREEMPT
4569 /*
4570 * this is the entry point to schedule() from in-kernel preemption
4571 * off of preempt_enable. Kernel preemptions off return from interrupt
4572 * occur there and call schedule directly.
4573 */
4574 asmlinkage void __sched preempt_schedule(void)
4575 {
4576 struct thread_info *ti = current_thread_info();
4577
4578 /*
4579 * If there is a non-zero preempt_count or interrupts are disabled,
4580 * we do not want to preempt the current task. Just return..
4581 */
4582 if (likely(ti->preempt_count || irqs_disabled()))
4583 return;
4584
4585 do {
4586 add_preempt_count(PREEMPT_ACTIVE);
4587 schedule();
4588 sub_preempt_count(PREEMPT_ACTIVE);
4589
4590 /*
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4593 */
4594 barrier();
4595 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4596 }
4597 EXPORT_SYMBOL(preempt_schedule);
4598
4599 /*
4600 * this is the entry point to schedule() from kernel preemption
4601 * off of irq context.
4602 * Note, that this is called and return with irqs disabled. This will
4603 * protect us against recursive calling from irq.
4604 */
4605 asmlinkage void __sched preempt_schedule_irq(void)
4606 {
4607 struct thread_info *ti = current_thread_info();
4608
4609 /* Catch callers which need to be fixed */
4610 BUG_ON(ti->preempt_count || !irqs_disabled());
4611
4612 do {
4613 add_preempt_count(PREEMPT_ACTIVE);
4614 local_irq_enable();
4615 schedule();
4616 local_irq_disable();
4617 sub_preempt_count(PREEMPT_ACTIVE);
4618
4619 /*
4620 * Check again in case we missed a preemption opportunity
4621 * between schedule and now.
4622 */
4623 barrier();
4624 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4625 }
4626
4627 #endif /* CONFIG_PREEMPT */
4628
4629 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4630 void *key)
4631 {
4632 return try_to_wake_up(curr->private, mode, sync);
4633 }
4634 EXPORT_SYMBOL(default_wake_function);
4635
4636 /*
4637 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4638 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4639 * number) then we wake all the non-exclusive tasks and one exclusive task.
4640 *
4641 * There are circumstances in which we can try to wake a task which has already
4642 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4643 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4644 */
4645 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4646 int nr_exclusive, int sync, void *key)
4647 {
4648 wait_queue_t *curr, *next;
4649
4650 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4651 unsigned flags = curr->flags;
4652
4653 if (curr->func(curr, mode, sync, key) &&
4654 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4655 break;
4656 }
4657 }
4658
4659 /**
4660 * __wake_up - wake up threads blocked on a waitqueue.
4661 * @q: the waitqueue
4662 * @mode: which threads
4663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4664 * @key: is directly passed to the wakeup function
4665 */
4666 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4667 int nr_exclusive, void *key)
4668 {
4669 unsigned long flags;
4670
4671 spin_lock_irqsave(&q->lock, flags);
4672 __wake_up_common(q, mode, nr_exclusive, 0, key);
4673 spin_unlock_irqrestore(&q->lock, flags);
4674 }
4675 EXPORT_SYMBOL(__wake_up);
4676
4677 /*
4678 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4679 */
4680 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4681 {
4682 __wake_up_common(q, mode, 1, 0, NULL);
4683 }
4684
4685 /**
4686 * __wake_up_sync - wake up threads blocked on a waitqueue.
4687 * @q: the waitqueue
4688 * @mode: which threads
4689 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4690 *
4691 * The sync wakeup differs that the waker knows that it will schedule
4692 * away soon, so while the target thread will be woken up, it will not
4693 * be migrated to another CPU - ie. the two threads are 'synchronized'
4694 * with each other. This can prevent needless bouncing between CPUs.
4695 *
4696 * On UP it can prevent extra preemption.
4697 */
4698 void
4699 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4700 {
4701 unsigned long flags;
4702 int sync = 1;
4703
4704 if (unlikely(!q))
4705 return;
4706
4707 if (unlikely(!nr_exclusive))
4708 sync = 0;
4709
4710 spin_lock_irqsave(&q->lock, flags);
4711 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4712 spin_unlock_irqrestore(&q->lock, flags);
4713 }
4714 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4715
4716 /**
4717 * complete: - signals a single thread waiting on this completion
4718 * @x: holds the state of this particular completion
4719 *
4720 * This will wake up a single thread waiting on this completion. Threads will be
4721 * awakened in the same order in which they were queued.
4722 *
4723 * See also complete_all(), wait_for_completion() and related routines.
4724 */
4725 void complete(struct completion *x)
4726 {
4727 unsigned long flags;
4728
4729 spin_lock_irqsave(&x->wait.lock, flags);
4730 x->done++;
4731 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4732 spin_unlock_irqrestore(&x->wait.lock, flags);
4733 }
4734 EXPORT_SYMBOL(complete);
4735
4736 /**
4737 * complete_all: - signals all threads waiting on this completion
4738 * @x: holds the state of this particular completion
4739 *
4740 * This will wake up all threads waiting on this particular completion event.
4741 */
4742 void complete_all(struct completion *x)
4743 {
4744 unsigned long flags;
4745
4746 spin_lock_irqsave(&x->wait.lock, flags);
4747 x->done += UINT_MAX/2;
4748 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4749 spin_unlock_irqrestore(&x->wait.lock, flags);
4750 }
4751 EXPORT_SYMBOL(complete_all);
4752
4753 static inline long __sched
4754 do_wait_for_common(struct completion *x, long timeout, int state)
4755 {
4756 if (!x->done) {
4757 DECLARE_WAITQUEUE(wait, current);
4758
4759 wait.flags |= WQ_FLAG_EXCLUSIVE;
4760 __add_wait_queue_tail(&x->wait, &wait);
4761 do {
4762 if (signal_pending_state(state, current)) {
4763 timeout = -ERESTARTSYS;
4764 break;
4765 }
4766 __set_current_state(state);
4767 spin_unlock_irq(&x->wait.lock);
4768 timeout = schedule_timeout(timeout);
4769 spin_lock_irq(&x->wait.lock);
4770 } while (!x->done && timeout);
4771 __remove_wait_queue(&x->wait, &wait);
4772 if (!x->done)
4773 return timeout;
4774 }
4775 x->done--;
4776 return timeout ?: 1;
4777 }
4778
4779 static long __sched
4780 wait_for_common(struct completion *x, long timeout, int state)
4781 {
4782 might_sleep();
4783
4784 spin_lock_irq(&x->wait.lock);
4785 timeout = do_wait_for_common(x, timeout, state);
4786 spin_unlock_irq(&x->wait.lock);
4787 return timeout;
4788 }
4789
4790 /**
4791 * wait_for_completion: - waits for completion of a task
4792 * @x: holds the state of this particular completion
4793 *
4794 * This waits to be signaled for completion of a specific task. It is NOT
4795 * interruptible and there is no timeout.
4796 *
4797 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4798 * and interrupt capability. Also see complete().
4799 */
4800 void __sched wait_for_completion(struct completion *x)
4801 {
4802 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4803 }
4804 EXPORT_SYMBOL(wait_for_completion);
4805
4806 /**
4807 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4808 * @x: holds the state of this particular completion
4809 * @timeout: timeout value in jiffies
4810 *
4811 * This waits for either a completion of a specific task to be signaled or for a
4812 * specified timeout to expire. The timeout is in jiffies. It is not
4813 * interruptible.
4814 */
4815 unsigned long __sched
4816 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4817 {
4818 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4819 }
4820 EXPORT_SYMBOL(wait_for_completion_timeout);
4821
4822 /**
4823 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4824 * @x: holds the state of this particular completion
4825 *
4826 * This waits for completion of a specific task to be signaled. It is
4827 * interruptible.
4828 */
4829 int __sched wait_for_completion_interruptible(struct completion *x)
4830 {
4831 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4832 if (t == -ERESTARTSYS)
4833 return t;
4834 return 0;
4835 }
4836 EXPORT_SYMBOL(wait_for_completion_interruptible);
4837
4838 /**
4839 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4840 * @x: holds the state of this particular completion
4841 * @timeout: timeout value in jiffies
4842 *
4843 * This waits for either a completion of a specific task to be signaled or for a
4844 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4845 */
4846 unsigned long __sched
4847 wait_for_completion_interruptible_timeout(struct completion *x,
4848 unsigned long timeout)
4849 {
4850 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4851 }
4852 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4853
4854 /**
4855 * wait_for_completion_killable: - waits for completion of a task (killable)
4856 * @x: holds the state of this particular completion
4857 *
4858 * This waits to be signaled for completion of a specific task. It can be
4859 * interrupted by a kill signal.
4860 */
4861 int __sched wait_for_completion_killable(struct completion *x)
4862 {
4863 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4864 if (t == -ERESTARTSYS)
4865 return t;
4866 return 0;
4867 }
4868 EXPORT_SYMBOL(wait_for_completion_killable);
4869
4870 /**
4871 * try_wait_for_completion - try to decrement a completion without blocking
4872 * @x: completion structure
4873 *
4874 * Returns: 0 if a decrement cannot be done without blocking
4875 * 1 if a decrement succeeded.
4876 *
4877 * If a completion is being used as a counting completion,
4878 * attempt to decrement the counter without blocking. This
4879 * enables us to avoid waiting if the resource the completion
4880 * is protecting is not available.
4881 */
4882 bool try_wait_for_completion(struct completion *x)
4883 {
4884 int ret = 1;
4885
4886 spin_lock_irq(&x->wait.lock);
4887 if (!x->done)
4888 ret = 0;
4889 else
4890 x->done--;
4891 spin_unlock_irq(&x->wait.lock);
4892 return ret;
4893 }
4894 EXPORT_SYMBOL(try_wait_for_completion);
4895
4896 /**
4897 * completion_done - Test to see if a completion has any waiters
4898 * @x: completion structure
4899 *
4900 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4901 * 1 if there are no waiters.
4902 *
4903 */
4904 bool completion_done(struct completion *x)
4905 {
4906 int ret = 1;
4907
4908 spin_lock_irq(&x->wait.lock);
4909 if (!x->done)
4910 ret = 0;
4911 spin_unlock_irq(&x->wait.lock);
4912 return ret;
4913 }
4914 EXPORT_SYMBOL(completion_done);
4915
4916 static long __sched
4917 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4918 {
4919 unsigned long flags;
4920 wait_queue_t wait;
4921
4922 init_waitqueue_entry(&wait, current);
4923
4924 __set_current_state(state);
4925
4926 spin_lock_irqsave(&q->lock, flags);
4927 __add_wait_queue(q, &wait);
4928 spin_unlock(&q->lock);
4929 timeout = schedule_timeout(timeout);
4930 spin_lock_irq(&q->lock);
4931 __remove_wait_queue(q, &wait);
4932 spin_unlock_irqrestore(&q->lock, flags);
4933
4934 return timeout;
4935 }
4936
4937 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4938 {
4939 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4940 }
4941 EXPORT_SYMBOL(interruptible_sleep_on);
4942
4943 long __sched
4944 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4945 {
4946 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4947 }
4948 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4949
4950 void __sched sleep_on(wait_queue_head_t *q)
4951 {
4952 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4953 }
4954 EXPORT_SYMBOL(sleep_on);
4955
4956 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4957 {
4958 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4959 }
4960 EXPORT_SYMBOL(sleep_on_timeout);
4961
4962 #ifdef CONFIG_RT_MUTEXES
4963
4964 /*
4965 * rt_mutex_setprio - set the current priority of a task
4966 * @p: task
4967 * @prio: prio value (kernel-internal form)
4968 *
4969 * This function changes the 'effective' priority of a task. It does
4970 * not touch ->normal_prio like __setscheduler().
4971 *
4972 * Used by the rt_mutex code to implement priority inheritance logic.
4973 */
4974 void rt_mutex_setprio(struct task_struct *p, int prio)
4975 {
4976 unsigned long flags;
4977 int oldprio, on_rq, running;
4978 struct rq *rq;
4979 const struct sched_class *prev_class = p->sched_class;
4980
4981 BUG_ON(prio < 0 || prio > MAX_PRIO);
4982
4983 rq = task_rq_lock(p, &flags);
4984 update_rq_clock(rq);
4985
4986 oldprio = p->prio;
4987 on_rq = p->se.on_rq;
4988 running = task_current(rq, p);
4989 if (on_rq)
4990 dequeue_task(rq, p, 0);
4991 if (running)
4992 p->sched_class->put_prev_task(rq, p);
4993
4994 if (rt_prio(prio))
4995 p->sched_class = &rt_sched_class;
4996 else
4997 p->sched_class = &fair_sched_class;
4998
4999 p->prio = prio;
5000
5001 if (running)
5002 p->sched_class->set_curr_task(rq);
5003 if (on_rq) {
5004 enqueue_task(rq, p, 0);
5005
5006 check_class_changed(rq, p, prev_class, oldprio, running);
5007 }
5008 task_rq_unlock(rq, &flags);
5009 }
5010
5011 #endif
5012
5013 void set_user_nice(struct task_struct *p, long nice)
5014 {
5015 int old_prio, delta, on_rq;
5016 unsigned long flags;
5017 struct rq *rq;
5018
5019 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5020 return;
5021 /*
5022 * We have to be careful, if called from sys_setpriority(),
5023 * the task might be in the middle of scheduling on another CPU.
5024 */
5025 rq = task_rq_lock(p, &flags);
5026 update_rq_clock(rq);
5027 /*
5028 * The RT priorities are set via sched_setscheduler(), but we still
5029 * allow the 'normal' nice value to be set - but as expected
5030 * it wont have any effect on scheduling until the task is
5031 * SCHED_FIFO/SCHED_RR:
5032 */
5033 if (task_has_rt_policy(p)) {
5034 p->static_prio = NICE_TO_PRIO(nice);
5035 goto out_unlock;
5036 }
5037 on_rq = p->se.on_rq;
5038 if (on_rq)
5039 dequeue_task(rq, p, 0);
5040
5041 p->static_prio = NICE_TO_PRIO(nice);
5042 set_load_weight(p);
5043 old_prio = p->prio;
5044 p->prio = effective_prio(p);
5045 delta = p->prio - old_prio;
5046
5047 if (on_rq) {
5048 enqueue_task(rq, p, 0);
5049 /*
5050 * If the task increased its priority or is running and
5051 * lowered its priority, then reschedule its CPU:
5052 */
5053 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5054 resched_task(rq->curr);
5055 }
5056 out_unlock:
5057 task_rq_unlock(rq, &flags);
5058 }
5059 EXPORT_SYMBOL(set_user_nice);
5060
5061 /*
5062 * can_nice - check if a task can reduce its nice value
5063 * @p: task
5064 * @nice: nice value
5065 */
5066 int can_nice(const struct task_struct *p, const int nice)
5067 {
5068 /* convert nice value [19,-20] to rlimit style value [1,40] */
5069 int nice_rlim = 20 - nice;
5070
5071 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5072 capable(CAP_SYS_NICE));
5073 }
5074
5075 #ifdef __ARCH_WANT_SYS_NICE
5076
5077 /*
5078 * sys_nice - change the priority of the current process.
5079 * @increment: priority increment
5080 *
5081 * sys_setpriority is a more generic, but much slower function that
5082 * does similar things.
5083 */
5084 asmlinkage long sys_nice(int increment)
5085 {
5086 long nice, retval;
5087
5088 /*
5089 * Setpriority might change our priority at the same moment.
5090 * We don't have to worry. Conceptually one call occurs first
5091 * and we have a single winner.
5092 */
5093 if (increment < -40)
5094 increment = -40;
5095 if (increment > 40)
5096 increment = 40;
5097
5098 nice = PRIO_TO_NICE(current->static_prio) + increment;
5099 if (nice < -20)
5100 nice = -20;
5101 if (nice > 19)
5102 nice = 19;
5103
5104 if (increment < 0 && !can_nice(current, nice))
5105 return -EPERM;
5106
5107 retval = security_task_setnice(current, nice);
5108 if (retval)
5109 return retval;
5110
5111 set_user_nice(current, nice);
5112 return 0;
5113 }
5114
5115 #endif
5116
5117 /**
5118 * task_prio - return the priority value of a given task.
5119 * @p: the task in question.
5120 *
5121 * This is the priority value as seen by users in /proc.
5122 * RT tasks are offset by -200. Normal tasks are centered
5123 * around 0, value goes from -16 to +15.
5124 */
5125 int task_prio(const struct task_struct *p)
5126 {
5127 return p->prio - MAX_RT_PRIO;
5128 }
5129
5130 /**
5131 * task_nice - return the nice value of a given task.
5132 * @p: the task in question.
5133 */
5134 int task_nice(const struct task_struct *p)
5135 {
5136 return TASK_NICE(p);
5137 }
5138 EXPORT_SYMBOL(task_nice);
5139
5140 /**
5141 * idle_cpu - is a given cpu idle currently?
5142 * @cpu: the processor in question.
5143 */
5144 int idle_cpu(int cpu)
5145 {
5146 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5147 }
5148
5149 /**
5150 * idle_task - return the idle task for a given cpu.
5151 * @cpu: the processor in question.
5152 */
5153 struct task_struct *idle_task(int cpu)
5154 {
5155 return cpu_rq(cpu)->idle;
5156 }
5157
5158 /**
5159 * find_process_by_pid - find a process with a matching PID value.
5160 * @pid: the pid in question.
5161 */
5162 static struct task_struct *find_process_by_pid(pid_t pid)
5163 {
5164 return pid ? find_task_by_vpid(pid) : current;
5165 }
5166
5167 /* Actually do priority change: must hold rq lock. */
5168 static void
5169 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5170 {
5171 BUG_ON(p->se.on_rq);
5172
5173 p->policy = policy;
5174 switch (p->policy) {
5175 case SCHED_NORMAL:
5176 case SCHED_BATCH:
5177 case SCHED_IDLE:
5178 p->sched_class = &fair_sched_class;
5179 break;
5180 case SCHED_FIFO:
5181 case SCHED_RR:
5182 p->sched_class = &rt_sched_class;
5183 break;
5184 }
5185
5186 p->rt_priority = prio;
5187 p->normal_prio = normal_prio(p);
5188 /* we are holding p->pi_lock already */
5189 p->prio = rt_mutex_getprio(p);
5190 set_load_weight(p);
5191 }
5192
5193 /*
5194 * check the target process has a UID that matches the current process's
5195 */
5196 static bool check_same_owner(struct task_struct *p)
5197 {
5198 const struct cred *cred = current_cred(), *pcred;
5199 bool match;
5200
5201 rcu_read_lock();
5202 pcred = __task_cred(p);
5203 match = (cred->euid == pcred->euid ||
5204 cred->euid == pcred->uid);
5205 rcu_read_unlock();
5206 return match;
5207 }
5208
5209 static int __sched_setscheduler(struct task_struct *p, int policy,
5210 struct sched_param *param, bool user)
5211 {
5212 int retval, oldprio, oldpolicy = -1, on_rq, running;
5213 unsigned long flags;
5214 const struct sched_class *prev_class = p->sched_class;
5215 struct rq *rq;
5216
5217 /* may grab non-irq protected spin_locks */
5218 BUG_ON(in_interrupt());
5219 recheck:
5220 /* double check policy once rq lock held */
5221 if (policy < 0)
5222 policy = oldpolicy = p->policy;
5223 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5224 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5225 policy != SCHED_IDLE)
5226 return -EINVAL;
5227 /*
5228 * Valid priorities for SCHED_FIFO and SCHED_RR are
5229 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5230 * SCHED_BATCH and SCHED_IDLE is 0.
5231 */
5232 if (param->sched_priority < 0 ||
5233 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5234 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5235 return -EINVAL;
5236 if (rt_policy(policy) != (param->sched_priority != 0))
5237 return -EINVAL;
5238
5239 /*
5240 * Allow unprivileged RT tasks to decrease priority:
5241 */
5242 if (user && !capable(CAP_SYS_NICE)) {
5243 if (rt_policy(policy)) {
5244 unsigned long rlim_rtprio;
5245
5246 if (!lock_task_sighand(p, &flags))
5247 return -ESRCH;
5248 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5249 unlock_task_sighand(p, &flags);
5250
5251 /* can't set/change the rt policy */
5252 if (policy != p->policy && !rlim_rtprio)
5253 return -EPERM;
5254
5255 /* can't increase priority */
5256 if (param->sched_priority > p->rt_priority &&
5257 param->sched_priority > rlim_rtprio)
5258 return -EPERM;
5259 }
5260 /*
5261 * Like positive nice levels, dont allow tasks to
5262 * move out of SCHED_IDLE either:
5263 */
5264 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5265 return -EPERM;
5266
5267 /* can't change other user's priorities */
5268 if (!check_same_owner(p))
5269 return -EPERM;
5270 }
5271
5272 if (user) {
5273 #ifdef CONFIG_RT_GROUP_SCHED
5274 /*
5275 * Do not allow realtime tasks into groups that have no runtime
5276 * assigned.
5277 */
5278 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5279 task_group(p)->rt_bandwidth.rt_runtime == 0)
5280 return -EPERM;
5281 #endif
5282
5283 retval = security_task_setscheduler(p, policy, param);
5284 if (retval)
5285 return retval;
5286 }
5287
5288 /*
5289 * make sure no PI-waiters arrive (or leave) while we are
5290 * changing the priority of the task:
5291 */
5292 spin_lock_irqsave(&p->pi_lock, flags);
5293 /*
5294 * To be able to change p->policy safely, the apropriate
5295 * runqueue lock must be held.
5296 */
5297 rq = __task_rq_lock(p);
5298 /* recheck policy now with rq lock held */
5299 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5300 policy = oldpolicy = -1;
5301 __task_rq_unlock(rq);
5302 spin_unlock_irqrestore(&p->pi_lock, flags);
5303 goto recheck;
5304 }
5305 update_rq_clock(rq);
5306 on_rq = p->se.on_rq;
5307 running = task_current(rq, p);
5308 if (on_rq)
5309 deactivate_task(rq, p, 0);
5310 if (running)
5311 p->sched_class->put_prev_task(rq, p);
5312
5313 oldprio = p->prio;
5314 __setscheduler(rq, p, policy, param->sched_priority);
5315
5316 if (running)
5317 p->sched_class->set_curr_task(rq);
5318 if (on_rq) {
5319 activate_task(rq, p, 0);
5320
5321 check_class_changed(rq, p, prev_class, oldprio, running);
5322 }
5323 __task_rq_unlock(rq);
5324 spin_unlock_irqrestore(&p->pi_lock, flags);
5325
5326 rt_mutex_adjust_pi(p);
5327
5328 return 0;
5329 }
5330
5331 /**
5332 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5333 * @p: the task in question.
5334 * @policy: new policy.
5335 * @param: structure containing the new RT priority.
5336 *
5337 * NOTE that the task may be already dead.
5338 */
5339 int sched_setscheduler(struct task_struct *p, int policy,
5340 struct sched_param *param)
5341 {
5342 return __sched_setscheduler(p, policy, param, true);
5343 }
5344 EXPORT_SYMBOL_GPL(sched_setscheduler);
5345
5346 /**
5347 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5348 * @p: the task in question.
5349 * @policy: new policy.
5350 * @param: structure containing the new RT priority.
5351 *
5352 * Just like sched_setscheduler, only don't bother checking if the
5353 * current context has permission. For example, this is needed in
5354 * stop_machine(): we create temporary high priority worker threads,
5355 * but our caller might not have that capability.
5356 */
5357 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5358 struct sched_param *param)
5359 {
5360 return __sched_setscheduler(p, policy, param, false);
5361 }
5362
5363 static int
5364 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5365 {
5366 struct sched_param lparam;
5367 struct task_struct *p;
5368 int retval;
5369
5370 if (!param || pid < 0)
5371 return -EINVAL;
5372 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5373 return -EFAULT;
5374
5375 rcu_read_lock();
5376 retval = -ESRCH;
5377 p = find_process_by_pid(pid);
5378 if (p != NULL)
5379 retval = sched_setscheduler(p, policy, &lparam);
5380 rcu_read_unlock();
5381
5382 return retval;
5383 }
5384
5385 /**
5386 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5387 * @pid: the pid in question.
5388 * @policy: new policy.
5389 * @param: structure containing the new RT priority.
5390 */
5391 asmlinkage long
5392 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5393 {
5394 /* negative values for policy are not valid */
5395 if (policy < 0)
5396 return -EINVAL;
5397
5398 return do_sched_setscheduler(pid, policy, param);
5399 }
5400
5401 /**
5402 * sys_sched_setparam - set/change the RT priority of a thread
5403 * @pid: the pid in question.
5404 * @param: structure containing the new RT priority.
5405 */
5406 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5407 {
5408 return do_sched_setscheduler(pid, -1, param);
5409 }
5410
5411 /**
5412 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5413 * @pid: the pid in question.
5414 */
5415 asmlinkage long sys_sched_getscheduler(pid_t pid)
5416 {
5417 struct task_struct *p;
5418 int retval;
5419
5420 if (pid < 0)
5421 return -EINVAL;
5422
5423 retval = -ESRCH;
5424 read_lock(&tasklist_lock);
5425 p = find_process_by_pid(pid);
5426 if (p) {
5427 retval = security_task_getscheduler(p);
5428 if (!retval)
5429 retval = p->policy;
5430 }
5431 read_unlock(&tasklist_lock);
5432 return retval;
5433 }
5434
5435 /**
5436 * sys_sched_getscheduler - get the RT priority of a thread
5437 * @pid: the pid in question.
5438 * @param: structure containing the RT priority.
5439 */
5440 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5441 {
5442 struct sched_param lp;
5443 struct task_struct *p;
5444 int retval;
5445
5446 if (!param || pid < 0)
5447 return -EINVAL;
5448
5449 read_lock(&tasklist_lock);
5450 p = find_process_by_pid(pid);
5451 retval = -ESRCH;
5452 if (!p)
5453 goto out_unlock;
5454
5455 retval = security_task_getscheduler(p);
5456 if (retval)
5457 goto out_unlock;
5458
5459 lp.sched_priority = p->rt_priority;
5460 read_unlock(&tasklist_lock);
5461
5462 /*
5463 * This one might sleep, we cannot do it with a spinlock held ...
5464 */
5465 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5466
5467 return retval;
5468
5469 out_unlock:
5470 read_unlock(&tasklist_lock);
5471 return retval;
5472 }
5473
5474 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5475 {
5476 cpumask_var_t cpus_allowed, new_mask;
5477 struct task_struct *p;
5478 int retval;
5479
5480 get_online_cpus();
5481 read_lock(&tasklist_lock);
5482
5483 p = find_process_by_pid(pid);
5484 if (!p) {
5485 read_unlock(&tasklist_lock);
5486 put_online_cpus();
5487 return -ESRCH;
5488 }
5489
5490 /*
5491 * It is not safe to call set_cpus_allowed with the
5492 * tasklist_lock held. We will bump the task_struct's
5493 * usage count and then drop tasklist_lock.
5494 */
5495 get_task_struct(p);
5496 read_unlock(&tasklist_lock);
5497
5498 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5499 retval = -ENOMEM;
5500 goto out_put_task;
5501 }
5502 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5503 retval = -ENOMEM;
5504 goto out_free_cpus_allowed;
5505 }
5506 retval = -EPERM;
5507 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5508 goto out_unlock;
5509
5510 retval = security_task_setscheduler(p, 0, NULL);
5511 if (retval)
5512 goto out_unlock;
5513
5514 cpuset_cpus_allowed(p, cpus_allowed);
5515 cpumask_and(new_mask, in_mask, cpus_allowed);
5516 again:
5517 retval = set_cpus_allowed_ptr(p, new_mask);
5518
5519 if (!retval) {
5520 cpuset_cpus_allowed(p, cpus_allowed);
5521 if (!cpumask_subset(new_mask, cpus_allowed)) {
5522 /*
5523 * We must have raced with a concurrent cpuset
5524 * update. Just reset the cpus_allowed to the
5525 * cpuset's cpus_allowed
5526 */
5527 cpumask_copy(new_mask, cpus_allowed);
5528 goto again;
5529 }
5530 }
5531 out_unlock:
5532 free_cpumask_var(new_mask);
5533 out_free_cpus_allowed:
5534 free_cpumask_var(cpus_allowed);
5535 out_put_task:
5536 put_task_struct(p);
5537 put_online_cpus();
5538 return retval;
5539 }
5540
5541 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5542 struct cpumask *new_mask)
5543 {
5544 if (len < cpumask_size())
5545 cpumask_clear(new_mask);
5546 else if (len > cpumask_size())
5547 len = cpumask_size();
5548
5549 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5550 }
5551
5552 /**
5553 * sys_sched_setaffinity - set the cpu affinity of a process
5554 * @pid: pid of the process
5555 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5556 * @user_mask_ptr: user-space pointer to the new cpu mask
5557 */
5558 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5559 unsigned long __user *user_mask_ptr)
5560 {
5561 cpumask_var_t new_mask;
5562 int retval;
5563
5564 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5565 return -ENOMEM;
5566
5567 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5568 if (retval == 0)
5569 retval = sched_setaffinity(pid, new_mask);
5570 free_cpumask_var(new_mask);
5571 return retval;
5572 }
5573
5574 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5575 {
5576 struct task_struct *p;
5577 int retval;
5578
5579 get_online_cpus();
5580 read_lock(&tasklist_lock);
5581
5582 retval = -ESRCH;
5583 p = find_process_by_pid(pid);
5584 if (!p)
5585 goto out_unlock;
5586
5587 retval = security_task_getscheduler(p);
5588 if (retval)
5589 goto out_unlock;
5590
5591 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5592
5593 out_unlock:
5594 read_unlock(&tasklist_lock);
5595 put_online_cpus();
5596
5597 return retval;
5598 }
5599
5600 /**
5601 * sys_sched_getaffinity - get the cpu affinity of a process
5602 * @pid: pid of the process
5603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5605 */
5606 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5607 unsigned long __user *user_mask_ptr)
5608 {
5609 int ret;
5610 cpumask_var_t mask;
5611
5612 if (len < cpumask_size())
5613 return -EINVAL;
5614
5615 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5616 return -ENOMEM;
5617
5618 ret = sched_getaffinity(pid, mask);
5619 if (ret == 0) {
5620 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5621 ret = -EFAULT;
5622 else
5623 ret = cpumask_size();
5624 }
5625 free_cpumask_var(mask);
5626
5627 return ret;
5628 }
5629
5630 /**
5631 * sys_sched_yield - yield the current processor to other threads.
5632 *
5633 * This function yields the current CPU to other tasks. If there are no
5634 * other threads running on this CPU then this function will return.
5635 */
5636 asmlinkage long sys_sched_yield(void)
5637 {
5638 struct rq *rq = this_rq_lock();
5639
5640 schedstat_inc(rq, yld_count);
5641 current->sched_class->yield_task(rq);
5642
5643 /*
5644 * Since we are going to call schedule() anyway, there's
5645 * no need to preempt or enable interrupts:
5646 */
5647 __release(rq->lock);
5648 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5649 _raw_spin_unlock(&rq->lock);
5650 preempt_enable_no_resched();
5651
5652 schedule();
5653
5654 return 0;
5655 }
5656
5657 static void __cond_resched(void)
5658 {
5659 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5660 __might_sleep(__FILE__, __LINE__);
5661 #endif
5662 /*
5663 * The BKS might be reacquired before we have dropped
5664 * PREEMPT_ACTIVE, which could trigger a second
5665 * cond_resched() call.
5666 */
5667 do {
5668 add_preempt_count(PREEMPT_ACTIVE);
5669 schedule();
5670 sub_preempt_count(PREEMPT_ACTIVE);
5671 } while (need_resched());
5672 }
5673
5674 int __sched _cond_resched(void)
5675 {
5676 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5677 system_state == SYSTEM_RUNNING) {
5678 __cond_resched();
5679 return 1;
5680 }
5681 return 0;
5682 }
5683 EXPORT_SYMBOL(_cond_resched);
5684
5685 /*
5686 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5687 * call schedule, and on return reacquire the lock.
5688 *
5689 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5690 * operations here to prevent schedule() from being called twice (once via
5691 * spin_unlock(), once by hand).
5692 */
5693 int cond_resched_lock(spinlock_t *lock)
5694 {
5695 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5696 int ret = 0;
5697
5698 if (spin_needbreak(lock) || resched) {
5699 spin_unlock(lock);
5700 if (resched && need_resched())
5701 __cond_resched();
5702 else
5703 cpu_relax();
5704 ret = 1;
5705 spin_lock(lock);
5706 }
5707 return ret;
5708 }
5709 EXPORT_SYMBOL(cond_resched_lock);
5710
5711 int __sched cond_resched_softirq(void)
5712 {
5713 BUG_ON(!in_softirq());
5714
5715 if (need_resched() && system_state == SYSTEM_RUNNING) {
5716 local_bh_enable();
5717 __cond_resched();
5718 local_bh_disable();
5719 return 1;
5720 }
5721 return 0;
5722 }
5723 EXPORT_SYMBOL(cond_resched_softirq);
5724
5725 /**
5726 * yield - yield the current processor to other threads.
5727 *
5728 * This is a shortcut for kernel-space yielding - it marks the
5729 * thread runnable and calls sys_sched_yield().
5730 */
5731 void __sched yield(void)
5732 {
5733 set_current_state(TASK_RUNNING);
5734 sys_sched_yield();
5735 }
5736 EXPORT_SYMBOL(yield);
5737
5738 /*
5739 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5740 * that process accounting knows that this is a task in IO wait state.
5741 *
5742 * But don't do that if it is a deliberate, throttling IO wait (this task
5743 * has set its backing_dev_info: the queue against which it should throttle)
5744 */
5745 void __sched io_schedule(void)
5746 {
5747 struct rq *rq = &__raw_get_cpu_var(runqueues);
5748
5749 delayacct_blkio_start();
5750 atomic_inc(&rq->nr_iowait);
5751 schedule();
5752 atomic_dec(&rq->nr_iowait);
5753 delayacct_blkio_end();
5754 }
5755 EXPORT_SYMBOL(io_schedule);
5756
5757 long __sched io_schedule_timeout(long timeout)
5758 {
5759 struct rq *rq = &__raw_get_cpu_var(runqueues);
5760 long ret;
5761
5762 delayacct_blkio_start();
5763 atomic_inc(&rq->nr_iowait);
5764 ret = schedule_timeout(timeout);
5765 atomic_dec(&rq->nr_iowait);
5766 delayacct_blkio_end();
5767 return ret;
5768 }
5769
5770 /**
5771 * sys_sched_get_priority_max - return maximum RT priority.
5772 * @policy: scheduling class.
5773 *
5774 * this syscall returns the maximum rt_priority that can be used
5775 * by a given scheduling class.
5776 */
5777 asmlinkage long sys_sched_get_priority_max(int policy)
5778 {
5779 int ret = -EINVAL;
5780
5781 switch (policy) {
5782 case SCHED_FIFO:
5783 case SCHED_RR:
5784 ret = MAX_USER_RT_PRIO-1;
5785 break;
5786 case SCHED_NORMAL:
5787 case SCHED_BATCH:
5788 case SCHED_IDLE:
5789 ret = 0;
5790 break;
5791 }
5792 return ret;
5793 }
5794
5795 /**
5796 * sys_sched_get_priority_min - return minimum RT priority.
5797 * @policy: scheduling class.
5798 *
5799 * this syscall returns the minimum rt_priority that can be used
5800 * by a given scheduling class.
5801 */
5802 asmlinkage long sys_sched_get_priority_min(int policy)
5803 {
5804 int ret = -EINVAL;
5805
5806 switch (policy) {
5807 case SCHED_FIFO:
5808 case SCHED_RR:
5809 ret = 1;
5810 break;
5811 case SCHED_NORMAL:
5812 case SCHED_BATCH:
5813 case SCHED_IDLE:
5814 ret = 0;
5815 }
5816 return ret;
5817 }
5818
5819 /**
5820 * sys_sched_rr_get_interval - return the default timeslice of a process.
5821 * @pid: pid of the process.
5822 * @interval: userspace pointer to the timeslice value.
5823 *
5824 * this syscall writes the default timeslice value of a given process
5825 * into the user-space timespec buffer. A value of '0' means infinity.
5826 */
5827 asmlinkage
5828 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5829 {
5830 struct task_struct *p;
5831 unsigned int time_slice;
5832 int retval;
5833 struct timespec t;
5834
5835 if (pid < 0)
5836 return -EINVAL;
5837
5838 retval = -ESRCH;
5839 read_lock(&tasklist_lock);
5840 p = find_process_by_pid(pid);
5841 if (!p)
5842 goto out_unlock;
5843
5844 retval = security_task_getscheduler(p);
5845 if (retval)
5846 goto out_unlock;
5847
5848 /*
5849 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5850 * tasks that are on an otherwise idle runqueue:
5851 */
5852 time_slice = 0;
5853 if (p->policy == SCHED_RR) {
5854 time_slice = DEF_TIMESLICE;
5855 } else if (p->policy != SCHED_FIFO) {
5856 struct sched_entity *se = &p->se;
5857 unsigned long flags;
5858 struct rq *rq;
5859
5860 rq = task_rq_lock(p, &flags);
5861 if (rq->cfs.load.weight)
5862 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5863 task_rq_unlock(rq, &flags);
5864 }
5865 read_unlock(&tasklist_lock);
5866 jiffies_to_timespec(time_slice, &t);
5867 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5868 return retval;
5869
5870 out_unlock:
5871 read_unlock(&tasklist_lock);
5872 return retval;
5873 }
5874
5875 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5876
5877 void sched_show_task(struct task_struct *p)
5878 {
5879 unsigned long free = 0;
5880 unsigned state;
5881
5882 state = p->state ? __ffs(p->state) + 1 : 0;
5883 printk(KERN_INFO "%-13.13s %c", p->comm,
5884 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5885 #if BITS_PER_LONG == 32
5886 if (state == TASK_RUNNING)
5887 printk(KERN_CONT " running ");
5888 else
5889 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5890 #else
5891 if (state == TASK_RUNNING)
5892 printk(KERN_CONT " running task ");
5893 else
5894 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5895 #endif
5896 #ifdef CONFIG_DEBUG_STACK_USAGE
5897 {
5898 unsigned long *n = end_of_stack(p);
5899 while (!*n)
5900 n++;
5901 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5902 }
5903 #endif
5904 printk(KERN_CONT "%5lu %5d %6d\n", free,
5905 task_pid_nr(p), task_pid_nr(p->real_parent));
5906
5907 show_stack(p, NULL);
5908 }
5909
5910 void show_state_filter(unsigned long state_filter)
5911 {
5912 struct task_struct *g, *p;
5913
5914 #if BITS_PER_LONG == 32
5915 printk(KERN_INFO
5916 " task PC stack pid father\n");
5917 #else
5918 printk(KERN_INFO
5919 " task PC stack pid father\n");
5920 #endif
5921 read_lock(&tasklist_lock);
5922 do_each_thread(g, p) {
5923 /*
5924 * reset the NMI-timeout, listing all files on a slow
5925 * console might take alot of time:
5926 */
5927 touch_nmi_watchdog();
5928 if (!state_filter || (p->state & state_filter))
5929 sched_show_task(p);
5930 } while_each_thread(g, p);
5931
5932 touch_all_softlockup_watchdogs();
5933
5934 #ifdef CONFIG_SCHED_DEBUG
5935 sysrq_sched_debug_show();
5936 #endif
5937 read_unlock(&tasklist_lock);
5938 /*
5939 * Only show locks if all tasks are dumped:
5940 */
5941 if (state_filter == -1)
5942 debug_show_all_locks();
5943 }
5944
5945 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5946 {
5947 idle->sched_class = &idle_sched_class;
5948 }
5949
5950 /**
5951 * init_idle - set up an idle thread for a given CPU
5952 * @idle: task in question
5953 * @cpu: cpu the idle task belongs to
5954 *
5955 * NOTE: this function does not set the idle thread's NEED_RESCHED
5956 * flag, to make booting more robust.
5957 */
5958 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5959 {
5960 struct rq *rq = cpu_rq(cpu);
5961 unsigned long flags;
5962
5963 spin_lock_irqsave(&rq->lock, flags);
5964
5965 __sched_fork(idle);
5966 idle->se.exec_start = sched_clock();
5967
5968 idle->prio = idle->normal_prio = MAX_PRIO;
5969 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5970 __set_task_cpu(idle, cpu);
5971
5972 rq->curr = rq->idle = idle;
5973 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5974 idle->oncpu = 1;
5975 #endif
5976 spin_unlock_irqrestore(&rq->lock, flags);
5977
5978 /* Set the preempt count _outside_ the spinlocks! */
5979 #if defined(CONFIG_PREEMPT)
5980 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5981 #else
5982 task_thread_info(idle)->preempt_count = 0;
5983 #endif
5984 /*
5985 * The idle tasks have their own, simple scheduling class:
5986 */
5987 idle->sched_class = &idle_sched_class;
5988 ftrace_graph_init_task(idle);
5989 }
5990
5991 /*
5992 * In a system that switches off the HZ timer nohz_cpu_mask
5993 * indicates which cpus entered this state. This is used
5994 * in the rcu update to wait only for active cpus. For system
5995 * which do not switch off the HZ timer nohz_cpu_mask should
5996 * always be CPU_BITS_NONE.
5997 */
5998 cpumask_var_t nohz_cpu_mask;
5999
6000 /*
6001 * Increase the granularity value when there are more CPUs,
6002 * because with more CPUs the 'effective latency' as visible
6003 * to users decreases. But the relationship is not linear,
6004 * so pick a second-best guess by going with the log2 of the
6005 * number of CPUs.
6006 *
6007 * This idea comes from the SD scheduler of Con Kolivas:
6008 */
6009 static inline void sched_init_granularity(void)
6010 {
6011 unsigned int factor = 1 + ilog2(num_online_cpus());
6012 const unsigned long limit = 200000000;
6013
6014 sysctl_sched_min_granularity *= factor;
6015 if (sysctl_sched_min_granularity > limit)
6016 sysctl_sched_min_granularity = limit;
6017
6018 sysctl_sched_latency *= factor;
6019 if (sysctl_sched_latency > limit)
6020 sysctl_sched_latency = limit;
6021
6022 sysctl_sched_wakeup_granularity *= factor;
6023
6024 sysctl_sched_shares_ratelimit *= factor;
6025 }
6026
6027 #ifdef CONFIG_SMP
6028 /*
6029 * This is how migration works:
6030 *
6031 * 1) we queue a struct migration_req structure in the source CPU's
6032 * runqueue and wake up that CPU's migration thread.
6033 * 2) we down() the locked semaphore => thread blocks.
6034 * 3) migration thread wakes up (implicitly it forces the migrated
6035 * thread off the CPU)
6036 * 4) it gets the migration request and checks whether the migrated
6037 * task is still in the wrong runqueue.
6038 * 5) if it's in the wrong runqueue then the migration thread removes
6039 * it and puts it into the right queue.
6040 * 6) migration thread up()s the semaphore.
6041 * 7) we wake up and the migration is done.
6042 */
6043
6044 /*
6045 * Change a given task's CPU affinity. Migrate the thread to a
6046 * proper CPU and schedule it away if the CPU it's executing on
6047 * is removed from the allowed bitmask.
6048 *
6049 * NOTE: the caller must have a valid reference to the task, the
6050 * task must not exit() & deallocate itself prematurely. The
6051 * call is not atomic; no spinlocks may be held.
6052 */
6053 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6054 {
6055 struct migration_req req;
6056 unsigned long flags;
6057 struct rq *rq;
6058 int ret = 0;
6059
6060 rq = task_rq_lock(p, &flags);
6061 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6062 ret = -EINVAL;
6063 goto out;
6064 }
6065
6066 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6067 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6068 ret = -EINVAL;
6069 goto out;
6070 }
6071
6072 if (p->sched_class->set_cpus_allowed)
6073 p->sched_class->set_cpus_allowed(p, new_mask);
6074 else {
6075 cpumask_copy(&p->cpus_allowed, new_mask);
6076 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6077 }
6078
6079 /* Can the task run on the task's current CPU? If so, we're done */
6080 if (cpumask_test_cpu(task_cpu(p), new_mask))
6081 goto out;
6082
6083 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6084 /* Need help from migration thread: drop lock and wait. */
6085 task_rq_unlock(rq, &flags);
6086 wake_up_process(rq->migration_thread);
6087 wait_for_completion(&req.done);
6088 tlb_migrate_finish(p->mm);
6089 return 0;
6090 }
6091 out:
6092 task_rq_unlock(rq, &flags);
6093
6094 return ret;
6095 }
6096 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6097
6098 /*
6099 * Move (not current) task off this cpu, onto dest cpu. We're doing
6100 * this because either it can't run here any more (set_cpus_allowed()
6101 * away from this CPU, or CPU going down), or because we're
6102 * attempting to rebalance this task on exec (sched_exec).
6103 *
6104 * So we race with normal scheduler movements, but that's OK, as long
6105 * as the task is no longer on this CPU.
6106 *
6107 * Returns non-zero if task was successfully migrated.
6108 */
6109 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6110 {
6111 struct rq *rq_dest, *rq_src;
6112 int ret = 0, on_rq;
6113
6114 if (unlikely(!cpu_active(dest_cpu)))
6115 return ret;
6116
6117 rq_src = cpu_rq(src_cpu);
6118 rq_dest = cpu_rq(dest_cpu);
6119
6120 double_rq_lock(rq_src, rq_dest);
6121 /* Already moved. */
6122 if (task_cpu(p) != src_cpu)
6123 goto done;
6124 /* Affinity changed (again). */
6125 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6126 goto fail;
6127
6128 on_rq = p->se.on_rq;
6129 if (on_rq)
6130 deactivate_task(rq_src, p, 0);
6131
6132 set_task_cpu(p, dest_cpu);
6133 if (on_rq) {
6134 activate_task(rq_dest, p, 0);
6135 check_preempt_curr(rq_dest, p, 0);
6136 }
6137 done:
6138 ret = 1;
6139 fail:
6140 double_rq_unlock(rq_src, rq_dest);
6141 return ret;
6142 }
6143
6144 /*
6145 * migration_thread - this is a highprio system thread that performs
6146 * thread migration by bumping thread off CPU then 'pushing' onto
6147 * another runqueue.
6148 */
6149 static int migration_thread(void *data)
6150 {
6151 int cpu = (long)data;
6152 struct rq *rq;
6153
6154 rq = cpu_rq(cpu);
6155 BUG_ON(rq->migration_thread != current);
6156
6157 set_current_state(TASK_INTERRUPTIBLE);
6158 while (!kthread_should_stop()) {
6159 struct migration_req *req;
6160 struct list_head *head;
6161
6162 spin_lock_irq(&rq->lock);
6163
6164 if (cpu_is_offline(cpu)) {
6165 spin_unlock_irq(&rq->lock);
6166 goto wait_to_die;
6167 }
6168
6169 if (rq->active_balance) {
6170 active_load_balance(rq, cpu);
6171 rq->active_balance = 0;
6172 }
6173
6174 head = &rq->migration_queue;
6175
6176 if (list_empty(head)) {
6177 spin_unlock_irq(&rq->lock);
6178 schedule();
6179 set_current_state(TASK_INTERRUPTIBLE);
6180 continue;
6181 }
6182 req = list_entry(head->next, struct migration_req, list);
6183 list_del_init(head->next);
6184
6185 spin_unlock(&rq->lock);
6186 __migrate_task(req->task, cpu, req->dest_cpu);
6187 local_irq_enable();
6188
6189 complete(&req->done);
6190 }
6191 __set_current_state(TASK_RUNNING);
6192 return 0;
6193
6194 wait_to_die:
6195 /* Wait for kthread_stop */
6196 set_current_state(TASK_INTERRUPTIBLE);
6197 while (!kthread_should_stop()) {
6198 schedule();
6199 set_current_state(TASK_INTERRUPTIBLE);
6200 }
6201 __set_current_state(TASK_RUNNING);
6202 return 0;
6203 }
6204
6205 #ifdef CONFIG_HOTPLUG_CPU
6206
6207 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6208 {
6209 int ret;
6210
6211 local_irq_disable();
6212 ret = __migrate_task(p, src_cpu, dest_cpu);
6213 local_irq_enable();
6214 return ret;
6215 }
6216
6217 /*
6218 * Figure out where task on dead CPU should go, use force if necessary.
6219 */
6220 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6221 {
6222 int dest_cpu;
6223 /* FIXME: Use cpumask_of_node here. */
6224 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6225 const struct cpumask *nodemask = &_nodemask;
6226
6227 again:
6228 /* Look for allowed, online CPU in same node. */
6229 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6230 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6231 goto move;
6232
6233 /* Any allowed, online CPU? */
6234 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6235 if (dest_cpu < nr_cpu_ids)
6236 goto move;
6237
6238 /* No more Mr. Nice Guy. */
6239 if (dest_cpu >= nr_cpu_ids) {
6240 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6241 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6242
6243 /*
6244 * Don't tell them about moving exiting tasks or
6245 * kernel threads (both mm NULL), since they never
6246 * leave kernel.
6247 */
6248 if (p->mm && printk_ratelimit()) {
6249 printk(KERN_INFO "process %d (%s) no "
6250 "longer affine to cpu%d\n",
6251 task_pid_nr(p), p->comm, dead_cpu);
6252 }
6253 }
6254
6255 move:
6256 /* It can have affinity changed while we were choosing. */
6257 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6258 goto again;
6259 }
6260
6261 /*
6262 * While a dead CPU has no uninterruptible tasks queued at this point,
6263 * it might still have a nonzero ->nr_uninterruptible counter, because
6264 * for performance reasons the counter is not stricly tracking tasks to
6265 * their home CPUs. So we just add the counter to another CPU's counter,
6266 * to keep the global sum constant after CPU-down:
6267 */
6268 static void migrate_nr_uninterruptible(struct rq *rq_src)
6269 {
6270 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6271 unsigned long flags;
6272
6273 local_irq_save(flags);
6274 double_rq_lock(rq_src, rq_dest);
6275 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6276 rq_src->nr_uninterruptible = 0;
6277 double_rq_unlock(rq_src, rq_dest);
6278 local_irq_restore(flags);
6279 }
6280
6281 /* Run through task list and migrate tasks from the dead cpu. */
6282 static void migrate_live_tasks(int src_cpu)
6283 {
6284 struct task_struct *p, *t;
6285
6286 read_lock(&tasklist_lock);
6287
6288 do_each_thread(t, p) {
6289 if (p == current)
6290 continue;
6291
6292 if (task_cpu(p) == src_cpu)
6293 move_task_off_dead_cpu(src_cpu, p);
6294 } while_each_thread(t, p);
6295
6296 read_unlock(&tasklist_lock);
6297 }
6298
6299 /*
6300 * Schedules idle task to be the next runnable task on current CPU.
6301 * It does so by boosting its priority to highest possible.
6302 * Used by CPU offline code.
6303 */
6304 void sched_idle_next(void)
6305 {
6306 int this_cpu = smp_processor_id();
6307 struct rq *rq = cpu_rq(this_cpu);
6308 struct task_struct *p = rq->idle;
6309 unsigned long flags;
6310
6311 /* cpu has to be offline */
6312 BUG_ON(cpu_online(this_cpu));
6313
6314 /*
6315 * Strictly not necessary since rest of the CPUs are stopped by now
6316 * and interrupts disabled on the current cpu.
6317 */
6318 spin_lock_irqsave(&rq->lock, flags);
6319
6320 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6321
6322 update_rq_clock(rq);
6323 activate_task(rq, p, 0);
6324
6325 spin_unlock_irqrestore(&rq->lock, flags);
6326 }
6327
6328 /*
6329 * Ensures that the idle task is using init_mm right before its cpu goes
6330 * offline.
6331 */
6332 void idle_task_exit(void)
6333 {
6334 struct mm_struct *mm = current->active_mm;
6335
6336 BUG_ON(cpu_online(smp_processor_id()));
6337
6338 if (mm != &init_mm)
6339 switch_mm(mm, &init_mm, current);
6340 mmdrop(mm);
6341 }
6342
6343 /* called under rq->lock with disabled interrupts */
6344 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6345 {
6346 struct rq *rq = cpu_rq(dead_cpu);
6347
6348 /* Must be exiting, otherwise would be on tasklist. */
6349 BUG_ON(!p->exit_state);
6350
6351 /* Cannot have done final schedule yet: would have vanished. */
6352 BUG_ON(p->state == TASK_DEAD);
6353
6354 get_task_struct(p);
6355
6356 /*
6357 * Drop lock around migration; if someone else moves it,
6358 * that's OK. No task can be added to this CPU, so iteration is
6359 * fine.
6360 */
6361 spin_unlock_irq(&rq->lock);
6362 move_task_off_dead_cpu(dead_cpu, p);
6363 spin_lock_irq(&rq->lock);
6364
6365 put_task_struct(p);
6366 }
6367
6368 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6369 static void migrate_dead_tasks(unsigned int dead_cpu)
6370 {
6371 struct rq *rq = cpu_rq(dead_cpu);
6372 struct task_struct *next;
6373
6374 for ( ; ; ) {
6375 if (!rq->nr_running)
6376 break;
6377 update_rq_clock(rq);
6378 next = pick_next_task(rq, rq->curr);
6379 if (!next)
6380 break;
6381 next->sched_class->put_prev_task(rq, next);
6382 migrate_dead(dead_cpu, next);
6383
6384 }
6385 }
6386 #endif /* CONFIG_HOTPLUG_CPU */
6387
6388 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6389
6390 static struct ctl_table sd_ctl_dir[] = {
6391 {
6392 .procname = "sched_domain",
6393 .mode = 0555,
6394 },
6395 {0, },
6396 };
6397
6398 static struct ctl_table sd_ctl_root[] = {
6399 {
6400 .ctl_name = CTL_KERN,
6401 .procname = "kernel",
6402 .mode = 0555,
6403 .child = sd_ctl_dir,
6404 },
6405 {0, },
6406 };
6407
6408 static struct ctl_table *sd_alloc_ctl_entry(int n)
6409 {
6410 struct ctl_table *entry =
6411 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6412
6413 return entry;
6414 }
6415
6416 static void sd_free_ctl_entry(struct ctl_table **tablep)
6417 {
6418 struct ctl_table *entry;
6419
6420 /*
6421 * In the intermediate directories, both the child directory and
6422 * procname are dynamically allocated and could fail but the mode
6423 * will always be set. In the lowest directory the names are
6424 * static strings and all have proc handlers.
6425 */
6426 for (entry = *tablep; entry->mode; entry++) {
6427 if (entry->child)
6428 sd_free_ctl_entry(&entry->child);
6429 if (entry->proc_handler == NULL)
6430 kfree(entry->procname);
6431 }
6432
6433 kfree(*tablep);
6434 *tablep = NULL;
6435 }
6436
6437 static void
6438 set_table_entry(struct ctl_table *entry,
6439 const char *procname, void *data, int maxlen,
6440 mode_t mode, proc_handler *proc_handler)
6441 {
6442 entry->procname = procname;
6443 entry->data = data;
6444 entry->maxlen = maxlen;
6445 entry->mode = mode;
6446 entry->proc_handler = proc_handler;
6447 }
6448
6449 static struct ctl_table *
6450 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6451 {
6452 struct ctl_table *table = sd_alloc_ctl_entry(13);
6453
6454 if (table == NULL)
6455 return NULL;
6456
6457 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6458 sizeof(long), 0644, proc_doulongvec_minmax);
6459 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6460 sizeof(long), 0644, proc_doulongvec_minmax);
6461 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6462 sizeof(int), 0644, proc_dointvec_minmax);
6463 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6464 sizeof(int), 0644, proc_dointvec_minmax);
6465 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6466 sizeof(int), 0644, proc_dointvec_minmax);
6467 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6468 sizeof(int), 0644, proc_dointvec_minmax);
6469 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6470 sizeof(int), 0644, proc_dointvec_minmax);
6471 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6472 sizeof(int), 0644, proc_dointvec_minmax);
6473 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6474 sizeof(int), 0644, proc_dointvec_minmax);
6475 set_table_entry(&table[9], "cache_nice_tries",
6476 &sd->cache_nice_tries,
6477 sizeof(int), 0644, proc_dointvec_minmax);
6478 set_table_entry(&table[10], "flags", &sd->flags,
6479 sizeof(int), 0644, proc_dointvec_minmax);
6480 set_table_entry(&table[11], "name", sd->name,
6481 CORENAME_MAX_SIZE, 0444, proc_dostring);
6482 /* &table[12] is terminator */
6483
6484 return table;
6485 }
6486
6487 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6488 {
6489 struct ctl_table *entry, *table;
6490 struct sched_domain *sd;
6491 int domain_num = 0, i;
6492 char buf[32];
6493
6494 for_each_domain(cpu, sd)
6495 domain_num++;
6496 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6497 if (table == NULL)
6498 return NULL;
6499
6500 i = 0;
6501 for_each_domain(cpu, sd) {
6502 snprintf(buf, 32, "domain%d", i);
6503 entry->procname = kstrdup(buf, GFP_KERNEL);
6504 entry->mode = 0555;
6505 entry->child = sd_alloc_ctl_domain_table(sd);
6506 entry++;
6507 i++;
6508 }
6509 return table;
6510 }
6511
6512 static struct ctl_table_header *sd_sysctl_header;
6513 static void register_sched_domain_sysctl(void)
6514 {
6515 int i, cpu_num = num_online_cpus();
6516 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6517 char buf[32];
6518
6519 WARN_ON(sd_ctl_dir[0].child);
6520 sd_ctl_dir[0].child = entry;
6521
6522 if (entry == NULL)
6523 return;
6524
6525 for_each_online_cpu(i) {
6526 snprintf(buf, 32, "cpu%d", i);
6527 entry->procname = kstrdup(buf, GFP_KERNEL);
6528 entry->mode = 0555;
6529 entry->child = sd_alloc_ctl_cpu_table(i);
6530 entry++;
6531 }
6532
6533 WARN_ON(sd_sysctl_header);
6534 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6535 }
6536
6537 /* may be called multiple times per register */
6538 static void unregister_sched_domain_sysctl(void)
6539 {
6540 if (sd_sysctl_header)
6541 unregister_sysctl_table(sd_sysctl_header);
6542 sd_sysctl_header = NULL;
6543 if (sd_ctl_dir[0].child)
6544 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6545 }
6546 #else
6547 static void register_sched_domain_sysctl(void)
6548 {
6549 }
6550 static void unregister_sched_domain_sysctl(void)
6551 {
6552 }
6553 #endif
6554
6555 static void set_rq_online(struct rq *rq)
6556 {
6557 if (!rq->online) {
6558 const struct sched_class *class;
6559
6560 cpumask_set_cpu(rq->cpu, rq->rd->online);
6561 rq->online = 1;
6562
6563 for_each_class(class) {
6564 if (class->rq_online)
6565 class->rq_online(rq);
6566 }
6567 }
6568 }
6569
6570 static void set_rq_offline(struct rq *rq)
6571 {
6572 if (rq->online) {
6573 const struct sched_class *class;
6574
6575 for_each_class(class) {
6576 if (class->rq_offline)
6577 class->rq_offline(rq);
6578 }
6579
6580 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6581 rq->online = 0;
6582 }
6583 }
6584
6585 /*
6586 * migration_call - callback that gets triggered when a CPU is added.
6587 * Here we can start up the necessary migration thread for the new CPU.
6588 */
6589 static int __cpuinit
6590 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6591 {
6592 struct task_struct *p;
6593 int cpu = (long)hcpu;
6594 unsigned long flags;
6595 struct rq *rq;
6596
6597 switch (action) {
6598
6599 case CPU_UP_PREPARE:
6600 case CPU_UP_PREPARE_FROZEN:
6601 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6602 if (IS_ERR(p))
6603 return NOTIFY_BAD;
6604 kthread_bind(p, cpu);
6605 /* Must be high prio: stop_machine expects to yield to it. */
6606 rq = task_rq_lock(p, &flags);
6607 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6608 task_rq_unlock(rq, &flags);
6609 cpu_rq(cpu)->migration_thread = p;
6610 break;
6611
6612 case CPU_ONLINE:
6613 case CPU_ONLINE_FROZEN:
6614 /* Strictly unnecessary, as first user will wake it. */
6615 wake_up_process(cpu_rq(cpu)->migration_thread);
6616
6617 /* Update our root-domain */
6618 rq = cpu_rq(cpu);
6619 spin_lock_irqsave(&rq->lock, flags);
6620 if (rq->rd) {
6621 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6622
6623 set_rq_online(rq);
6624 }
6625 spin_unlock_irqrestore(&rq->lock, flags);
6626 break;
6627
6628 #ifdef CONFIG_HOTPLUG_CPU
6629 case CPU_UP_CANCELED:
6630 case CPU_UP_CANCELED_FROZEN:
6631 if (!cpu_rq(cpu)->migration_thread)
6632 break;
6633 /* Unbind it from offline cpu so it can run. Fall thru. */
6634 kthread_bind(cpu_rq(cpu)->migration_thread,
6635 cpumask_any(cpu_online_mask));
6636 kthread_stop(cpu_rq(cpu)->migration_thread);
6637 cpu_rq(cpu)->migration_thread = NULL;
6638 break;
6639
6640 case CPU_DEAD:
6641 case CPU_DEAD_FROZEN:
6642 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6643 migrate_live_tasks(cpu);
6644 rq = cpu_rq(cpu);
6645 kthread_stop(rq->migration_thread);
6646 rq->migration_thread = NULL;
6647 /* Idle task back to normal (off runqueue, low prio) */
6648 spin_lock_irq(&rq->lock);
6649 update_rq_clock(rq);
6650 deactivate_task(rq, rq->idle, 0);
6651 rq->idle->static_prio = MAX_PRIO;
6652 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6653 rq->idle->sched_class = &idle_sched_class;
6654 migrate_dead_tasks(cpu);
6655 spin_unlock_irq(&rq->lock);
6656 cpuset_unlock();
6657 migrate_nr_uninterruptible(rq);
6658 BUG_ON(rq->nr_running != 0);
6659
6660 /*
6661 * No need to migrate the tasks: it was best-effort if
6662 * they didn't take sched_hotcpu_mutex. Just wake up
6663 * the requestors.
6664 */
6665 spin_lock_irq(&rq->lock);
6666 while (!list_empty(&rq->migration_queue)) {
6667 struct migration_req *req;
6668
6669 req = list_entry(rq->migration_queue.next,
6670 struct migration_req, list);
6671 list_del_init(&req->list);
6672 spin_unlock_irq(&rq->lock);
6673 complete(&req->done);
6674 spin_lock_irq(&rq->lock);
6675 }
6676 spin_unlock_irq(&rq->lock);
6677 break;
6678
6679 case CPU_DYING:
6680 case CPU_DYING_FROZEN:
6681 /* Update our root-domain */
6682 rq = cpu_rq(cpu);
6683 spin_lock_irqsave(&rq->lock, flags);
6684 if (rq->rd) {
6685 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6686 set_rq_offline(rq);
6687 }
6688 spin_unlock_irqrestore(&rq->lock, flags);
6689 break;
6690 #endif
6691 }
6692 return NOTIFY_OK;
6693 }
6694
6695 /* Register at highest priority so that task migration (migrate_all_tasks)
6696 * happens before everything else.
6697 */
6698 static struct notifier_block __cpuinitdata migration_notifier = {
6699 .notifier_call = migration_call,
6700 .priority = 10
6701 };
6702
6703 static int __init migration_init(void)
6704 {
6705 void *cpu = (void *)(long)smp_processor_id();
6706 int err;
6707
6708 /* Start one for the boot CPU: */
6709 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6710 BUG_ON(err == NOTIFY_BAD);
6711 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6712 register_cpu_notifier(&migration_notifier);
6713
6714 return err;
6715 }
6716 early_initcall(migration_init);
6717 #endif
6718
6719 #ifdef CONFIG_SMP
6720
6721 #ifdef CONFIG_SCHED_DEBUG
6722
6723 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6724 struct cpumask *groupmask)
6725 {
6726 struct sched_group *group = sd->groups;
6727 char str[256];
6728
6729 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6730 cpumask_clear(groupmask);
6731
6732 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6733
6734 if (!(sd->flags & SD_LOAD_BALANCE)) {
6735 printk("does not load-balance\n");
6736 if (sd->parent)
6737 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6738 " has parent");
6739 return -1;
6740 }
6741
6742 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6743
6744 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6745 printk(KERN_ERR "ERROR: domain->span does not contain "
6746 "CPU%d\n", cpu);
6747 }
6748 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6749 printk(KERN_ERR "ERROR: domain->groups does not contain"
6750 " CPU%d\n", cpu);
6751 }
6752
6753 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6754 do {
6755 if (!group) {
6756 printk("\n");
6757 printk(KERN_ERR "ERROR: group is NULL\n");
6758 break;
6759 }
6760
6761 if (!group->__cpu_power) {
6762 printk(KERN_CONT "\n");
6763 printk(KERN_ERR "ERROR: domain->cpu_power not "
6764 "set\n");
6765 break;
6766 }
6767
6768 if (!cpumask_weight(sched_group_cpus(group))) {
6769 printk(KERN_CONT "\n");
6770 printk(KERN_ERR "ERROR: empty group\n");
6771 break;
6772 }
6773
6774 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6775 printk(KERN_CONT "\n");
6776 printk(KERN_ERR "ERROR: repeated CPUs\n");
6777 break;
6778 }
6779
6780 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6781
6782 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6783 printk(KERN_CONT " %s", str);
6784
6785 group = group->next;
6786 } while (group != sd->groups);
6787 printk(KERN_CONT "\n");
6788
6789 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6790 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6791
6792 if (sd->parent &&
6793 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6794 printk(KERN_ERR "ERROR: parent span is not a superset "
6795 "of domain->span\n");
6796 return 0;
6797 }
6798
6799 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6800 {
6801 cpumask_var_t groupmask;
6802 int level = 0;
6803
6804 if (!sd) {
6805 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6806 return;
6807 }
6808
6809 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6810
6811 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6812 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6813 return;
6814 }
6815
6816 for (;;) {
6817 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6818 break;
6819 level++;
6820 sd = sd->parent;
6821 if (!sd)
6822 break;
6823 }
6824 free_cpumask_var(groupmask);
6825 }
6826 #else /* !CONFIG_SCHED_DEBUG */
6827 # define sched_domain_debug(sd, cpu) do { } while (0)
6828 #endif /* CONFIG_SCHED_DEBUG */
6829
6830 static int sd_degenerate(struct sched_domain *sd)
6831 {
6832 if (cpumask_weight(sched_domain_span(sd)) == 1)
6833 return 1;
6834
6835 /* Following flags need at least 2 groups */
6836 if (sd->flags & (SD_LOAD_BALANCE |
6837 SD_BALANCE_NEWIDLE |
6838 SD_BALANCE_FORK |
6839 SD_BALANCE_EXEC |
6840 SD_SHARE_CPUPOWER |
6841 SD_SHARE_PKG_RESOURCES)) {
6842 if (sd->groups != sd->groups->next)
6843 return 0;
6844 }
6845
6846 /* Following flags don't use groups */
6847 if (sd->flags & (SD_WAKE_IDLE |
6848 SD_WAKE_AFFINE |
6849 SD_WAKE_BALANCE))
6850 return 0;
6851
6852 return 1;
6853 }
6854
6855 static int
6856 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6857 {
6858 unsigned long cflags = sd->flags, pflags = parent->flags;
6859
6860 if (sd_degenerate(parent))
6861 return 1;
6862
6863 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6864 return 0;
6865
6866 /* Does parent contain flags not in child? */
6867 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6868 if (cflags & SD_WAKE_AFFINE)
6869 pflags &= ~SD_WAKE_BALANCE;
6870 /* Flags needing groups don't count if only 1 group in parent */
6871 if (parent->groups == parent->groups->next) {
6872 pflags &= ~(SD_LOAD_BALANCE |
6873 SD_BALANCE_NEWIDLE |
6874 SD_BALANCE_FORK |
6875 SD_BALANCE_EXEC |
6876 SD_SHARE_CPUPOWER |
6877 SD_SHARE_PKG_RESOURCES);
6878 if (nr_node_ids == 1)
6879 pflags &= ~SD_SERIALIZE;
6880 }
6881 if (~cflags & pflags)
6882 return 0;
6883
6884 return 1;
6885 }
6886
6887 static void free_rootdomain(struct root_domain *rd)
6888 {
6889 cpupri_cleanup(&rd->cpupri);
6890
6891 free_cpumask_var(rd->rto_mask);
6892 free_cpumask_var(rd->online);
6893 free_cpumask_var(rd->span);
6894 kfree(rd);
6895 }
6896
6897 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6898 {
6899 unsigned long flags;
6900
6901 spin_lock_irqsave(&rq->lock, flags);
6902
6903 if (rq->rd) {
6904 struct root_domain *old_rd = rq->rd;
6905
6906 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6907 set_rq_offline(rq);
6908
6909 cpumask_clear_cpu(rq->cpu, old_rd->span);
6910
6911 if (atomic_dec_and_test(&old_rd->refcount))
6912 free_rootdomain(old_rd);
6913 }
6914
6915 atomic_inc(&rd->refcount);
6916 rq->rd = rd;
6917
6918 cpumask_set_cpu(rq->cpu, rd->span);
6919 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6920 set_rq_online(rq);
6921
6922 spin_unlock_irqrestore(&rq->lock, flags);
6923 }
6924
6925 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6926 {
6927 memset(rd, 0, sizeof(*rd));
6928
6929 if (bootmem) {
6930 alloc_bootmem_cpumask_var(&def_root_domain.span);
6931 alloc_bootmem_cpumask_var(&def_root_domain.online);
6932 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6933 cpupri_init(&rd->cpupri, true);
6934 return 0;
6935 }
6936
6937 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6938 goto free_rd;
6939 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6940 goto free_span;
6941 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6942 goto free_online;
6943
6944 if (cpupri_init(&rd->cpupri, false) != 0)
6945 goto free_rto_mask;
6946 return 0;
6947
6948 free_rto_mask:
6949 free_cpumask_var(rd->rto_mask);
6950 free_online:
6951 free_cpumask_var(rd->online);
6952 free_span:
6953 free_cpumask_var(rd->span);
6954 free_rd:
6955 kfree(rd);
6956 return -ENOMEM;
6957 }
6958
6959 static void init_defrootdomain(void)
6960 {
6961 init_rootdomain(&def_root_domain, true);
6962
6963 atomic_set(&def_root_domain.refcount, 1);
6964 }
6965
6966 static struct root_domain *alloc_rootdomain(void)
6967 {
6968 struct root_domain *rd;
6969
6970 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6971 if (!rd)
6972 return NULL;
6973
6974 if (init_rootdomain(rd, false) != 0) {
6975 kfree(rd);
6976 return NULL;
6977 }
6978
6979 return rd;
6980 }
6981
6982 /*
6983 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6984 * hold the hotplug lock.
6985 */
6986 static void
6987 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6988 {
6989 struct rq *rq = cpu_rq(cpu);
6990 struct sched_domain *tmp;
6991
6992 /* Remove the sched domains which do not contribute to scheduling. */
6993 for (tmp = sd; tmp; ) {
6994 struct sched_domain *parent = tmp->parent;
6995 if (!parent)
6996 break;
6997
6998 if (sd_parent_degenerate(tmp, parent)) {
6999 tmp->parent = parent->parent;
7000 if (parent->parent)
7001 parent->parent->child = tmp;
7002 } else
7003 tmp = tmp->parent;
7004 }
7005
7006 if (sd && sd_degenerate(sd)) {
7007 sd = sd->parent;
7008 if (sd)
7009 sd->child = NULL;
7010 }
7011
7012 sched_domain_debug(sd, cpu);
7013
7014 rq_attach_root(rq, rd);
7015 rcu_assign_pointer(rq->sd, sd);
7016 }
7017
7018 /* cpus with isolated domains */
7019 static cpumask_var_t cpu_isolated_map;
7020
7021 /* Setup the mask of cpus configured for isolated domains */
7022 static int __init isolated_cpu_setup(char *str)
7023 {
7024 cpulist_parse(str, cpu_isolated_map);
7025 return 1;
7026 }
7027
7028 __setup("isolcpus=", isolated_cpu_setup);
7029
7030 /*
7031 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7032 * to a function which identifies what group(along with sched group) a CPU
7033 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7034 * (due to the fact that we keep track of groups covered with a struct cpumask).
7035 *
7036 * init_sched_build_groups will build a circular linked list of the groups
7037 * covered by the given span, and will set each group's ->cpumask correctly,
7038 * and ->cpu_power to 0.
7039 */
7040 static void
7041 init_sched_build_groups(const struct cpumask *span,
7042 const struct cpumask *cpu_map,
7043 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7044 struct sched_group **sg,
7045 struct cpumask *tmpmask),
7046 struct cpumask *covered, struct cpumask *tmpmask)
7047 {
7048 struct sched_group *first = NULL, *last = NULL;
7049 int i;
7050
7051 cpumask_clear(covered);
7052
7053 for_each_cpu(i, span) {
7054 struct sched_group *sg;
7055 int group = group_fn(i, cpu_map, &sg, tmpmask);
7056 int j;
7057
7058 if (cpumask_test_cpu(i, covered))
7059 continue;
7060
7061 cpumask_clear(sched_group_cpus(sg));
7062 sg->__cpu_power = 0;
7063
7064 for_each_cpu(j, span) {
7065 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7066 continue;
7067
7068 cpumask_set_cpu(j, covered);
7069 cpumask_set_cpu(j, sched_group_cpus(sg));
7070 }
7071 if (!first)
7072 first = sg;
7073 if (last)
7074 last->next = sg;
7075 last = sg;
7076 }
7077 last->next = first;
7078 }
7079
7080 #define SD_NODES_PER_DOMAIN 16
7081
7082 #ifdef CONFIG_NUMA
7083
7084 /**
7085 * find_next_best_node - find the next node to include in a sched_domain
7086 * @node: node whose sched_domain we're building
7087 * @used_nodes: nodes already in the sched_domain
7088 *
7089 * Find the next node to include in a given scheduling domain. Simply
7090 * finds the closest node not already in the @used_nodes map.
7091 *
7092 * Should use nodemask_t.
7093 */
7094 static int find_next_best_node(int node, nodemask_t *used_nodes)
7095 {
7096 int i, n, val, min_val, best_node = 0;
7097
7098 min_val = INT_MAX;
7099
7100 for (i = 0; i < nr_node_ids; i++) {
7101 /* Start at @node */
7102 n = (node + i) % nr_node_ids;
7103
7104 if (!nr_cpus_node(n))
7105 continue;
7106
7107 /* Skip already used nodes */
7108 if (node_isset(n, *used_nodes))
7109 continue;
7110
7111 /* Simple min distance search */
7112 val = node_distance(node, n);
7113
7114 if (val < min_val) {
7115 min_val = val;
7116 best_node = n;
7117 }
7118 }
7119
7120 node_set(best_node, *used_nodes);
7121 return best_node;
7122 }
7123
7124 /**
7125 * sched_domain_node_span - get a cpumask for a node's sched_domain
7126 * @node: node whose cpumask we're constructing
7127 * @span: resulting cpumask
7128 *
7129 * Given a node, construct a good cpumask for its sched_domain to span. It
7130 * should be one that prevents unnecessary balancing, but also spreads tasks
7131 * out optimally.
7132 */
7133 static void sched_domain_node_span(int node, struct cpumask *span)
7134 {
7135 nodemask_t used_nodes;
7136 /* FIXME: use cpumask_of_node() */
7137 node_to_cpumask_ptr(nodemask, node);
7138 int i;
7139
7140 cpus_clear(*span);
7141 nodes_clear(used_nodes);
7142
7143 cpus_or(*span, *span, *nodemask);
7144 node_set(node, used_nodes);
7145
7146 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7147 int next_node = find_next_best_node(node, &used_nodes);
7148
7149 node_to_cpumask_ptr_next(nodemask, next_node);
7150 cpus_or(*span, *span, *nodemask);
7151 }
7152 }
7153 #endif /* CONFIG_NUMA */
7154
7155 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7156
7157 /*
7158 * The cpus mask in sched_group and sched_domain hangs off the end.
7159 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7160 * for nr_cpu_ids < CONFIG_NR_CPUS.
7161 */
7162 struct static_sched_group {
7163 struct sched_group sg;
7164 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7165 };
7166
7167 struct static_sched_domain {
7168 struct sched_domain sd;
7169 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7170 };
7171
7172 /*
7173 * SMT sched-domains:
7174 */
7175 #ifdef CONFIG_SCHED_SMT
7176 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7177 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7178
7179 static int
7180 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7181 struct sched_group **sg, struct cpumask *unused)
7182 {
7183 if (sg)
7184 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7185 return cpu;
7186 }
7187 #endif /* CONFIG_SCHED_SMT */
7188
7189 /*
7190 * multi-core sched-domains:
7191 */
7192 #ifdef CONFIG_SCHED_MC
7193 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7194 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7195 #endif /* CONFIG_SCHED_MC */
7196
7197 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7198 static int
7199 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7200 struct sched_group **sg, struct cpumask *mask)
7201 {
7202 int group;
7203
7204 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7205 group = cpumask_first(mask);
7206 if (sg)
7207 *sg = &per_cpu(sched_group_core, group).sg;
7208 return group;
7209 }
7210 #elif defined(CONFIG_SCHED_MC)
7211 static int
7212 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7213 struct sched_group **sg, struct cpumask *unused)
7214 {
7215 if (sg)
7216 *sg = &per_cpu(sched_group_core, cpu).sg;
7217 return cpu;
7218 }
7219 #endif
7220
7221 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7222 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7223
7224 static int
7225 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7226 struct sched_group **sg, struct cpumask *mask)
7227 {
7228 int group;
7229 #ifdef CONFIG_SCHED_MC
7230 /* FIXME: Use cpu_coregroup_mask. */
7231 *mask = cpu_coregroup_map(cpu);
7232 cpus_and(*mask, *mask, *cpu_map);
7233 group = cpumask_first(mask);
7234 #elif defined(CONFIG_SCHED_SMT)
7235 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7236 group = cpumask_first(mask);
7237 #else
7238 group = cpu;
7239 #endif
7240 if (sg)
7241 *sg = &per_cpu(sched_group_phys, group).sg;
7242 return group;
7243 }
7244
7245 #ifdef CONFIG_NUMA
7246 /*
7247 * The init_sched_build_groups can't handle what we want to do with node
7248 * groups, so roll our own. Now each node has its own list of groups which
7249 * gets dynamically allocated.
7250 */
7251 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7252 static struct sched_group ***sched_group_nodes_bycpu;
7253
7254 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7255 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7256
7257 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7258 struct sched_group **sg,
7259 struct cpumask *nodemask)
7260 {
7261 int group;
7262 /* FIXME: use cpumask_of_node */
7263 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7264
7265 cpumask_and(nodemask, pnodemask, cpu_map);
7266 group = cpumask_first(nodemask);
7267
7268 if (sg)
7269 *sg = &per_cpu(sched_group_allnodes, group).sg;
7270 return group;
7271 }
7272
7273 static void init_numa_sched_groups_power(struct sched_group *group_head)
7274 {
7275 struct sched_group *sg = group_head;
7276 int j;
7277
7278 if (!sg)
7279 return;
7280 do {
7281 for_each_cpu(j, sched_group_cpus(sg)) {
7282 struct sched_domain *sd;
7283
7284 sd = &per_cpu(phys_domains, j).sd;
7285 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7286 /*
7287 * Only add "power" once for each
7288 * physical package.
7289 */
7290 continue;
7291 }
7292
7293 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7294 }
7295 sg = sg->next;
7296 } while (sg != group_head);
7297 }
7298 #endif /* CONFIG_NUMA */
7299
7300 #ifdef CONFIG_NUMA
7301 /* Free memory allocated for various sched_group structures */
7302 static void free_sched_groups(const struct cpumask *cpu_map,
7303 struct cpumask *nodemask)
7304 {
7305 int cpu, i;
7306
7307 for_each_cpu(cpu, cpu_map) {
7308 struct sched_group **sched_group_nodes
7309 = sched_group_nodes_bycpu[cpu];
7310
7311 if (!sched_group_nodes)
7312 continue;
7313
7314 for (i = 0; i < nr_node_ids; i++) {
7315 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7316 /* FIXME: Use cpumask_of_node */
7317 node_to_cpumask_ptr(pnodemask, i);
7318
7319 cpus_and(*nodemask, *pnodemask, *cpu_map);
7320 if (cpumask_empty(nodemask))
7321 continue;
7322
7323 if (sg == NULL)
7324 continue;
7325 sg = sg->next;
7326 next_sg:
7327 oldsg = sg;
7328 sg = sg->next;
7329 kfree(oldsg);
7330 if (oldsg != sched_group_nodes[i])
7331 goto next_sg;
7332 }
7333 kfree(sched_group_nodes);
7334 sched_group_nodes_bycpu[cpu] = NULL;
7335 }
7336 }
7337 #else /* !CONFIG_NUMA */
7338 static void free_sched_groups(const struct cpumask *cpu_map,
7339 struct cpumask *nodemask)
7340 {
7341 }
7342 #endif /* CONFIG_NUMA */
7343
7344 /*
7345 * Initialize sched groups cpu_power.
7346 *
7347 * cpu_power indicates the capacity of sched group, which is used while
7348 * distributing the load between different sched groups in a sched domain.
7349 * Typically cpu_power for all the groups in a sched domain will be same unless
7350 * there are asymmetries in the topology. If there are asymmetries, group
7351 * having more cpu_power will pickup more load compared to the group having
7352 * less cpu_power.
7353 *
7354 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7355 * the maximum number of tasks a group can handle in the presence of other idle
7356 * or lightly loaded groups in the same sched domain.
7357 */
7358 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7359 {
7360 struct sched_domain *child;
7361 struct sched_group *group;
7362
7363 WARN_ON(!sd || !sd->groups);
7364
7365 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7366 return;
7367
7368 child = sd->child;
7369
7370 sd->groups->__cpu_power = 0;
7371
7372 /*
7373 * For perf policy, if the groups in child domain share resources
7374 * (for example cores sharing some portions of the cache hierarchy
7375 * or SMT), then set this domain groups cpu_power such that each group
7376 * can handle only one task, when there are other idle groups in the
7377 * same sched domain.
7378 */
7379 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7380 (child->flags &
7381 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7382 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7383 return;
7384 }
7385
7386 /*
7387 * add cpu_power of each child group to this groups cpu_power
7388 */
7389 group = child->groups;
7390 do {
7391 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7392 group = group->next;
7393 } while (group != child->groups);
7394 }
7395
7396 /*
7397 * Initializers for schedule domains
7398 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7399 */
7400
7401 #ifdef CONFIG_SCHED_DEBUG
7402 # define SD_INIT_NAME(sd, type) sd->name = #type
7403 #else
7404 # define SD_INIT_NAME(sd, type) do { } while (0)
7405 #endif
7406
7407 #define SD_INIT(sd, type) sd_init_##type(sd)
7408
7409 #define SD_INIT_FUNC(type) \
7410 static noinline void sd_init_##type(struct sched_domain *sd) \
7411 { \
7412 memset(sd, 0, sizeof(*sd)); \
7413 *sd = SD_##type##_INIT; \
7414 sd->level = SD_LV_##type; \
7415 SD_INIT_NAME(sd, type); \
7416 }
7417
7418 SD_INIT_FUNC(CPU)
7419 #ifdef CONFIG_NUMA
7420 SD_INIT_FUNC(ALLNODES)
7421 SD_INIT_FUNC(NODE)
7422 #endif
7423 #ifdef CONFIG_SCHED_SMT
7424 SD_INIT_FUNC(SIBLING)
7425 #endif
7426 #ifdef CONFIG_SCHED_MC
7427 SD_INIT_FUNC(MC)
7428 #endif
7429
7430 static int default_relax_domain_level = -1;
7431
7432 static int __init setup_relax_domain_level(char *str)
7433 {
7434 unsigned long val;
7435
7436 val = simple_strtoul(str, NULL, 0);
7437 if (val < SD_LV_MAX)
7438 default_relax_domain_level = val;
7439
7440 return 1;
7441 }
7442 __setup("relax_domain_level=", setup_relax_domain_level);
7443
7444 static void set_domain_attribute(struct sched_domain *sd,
7445 struct sched_domain_attr *attr)
7446 {
7447 int request;
7448
7449 if (!attr || attr->relax_domain_level < 0) {
7450 if (default_relax_domain_level < 0)
7451 return;
7452 else
7453 request = default_relax_domain_level;
7454 } else
7455 request = attr->relax_domain_level;
7456 if (request < sd->level) {
7457 /* turn off idle balance on this domain */
7458 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7459 } else {
7460 /* turn on idle balance on this domain */
7461 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7462 }
7463 }
7464
7465 /*
7466 * Build sched domains for a given set of cpus and attach the sched domains
7467 * to the individual cpus
7468 */
7469 static int __build_sched_domains(const struct cpumask *cpu_map,
7470 struct sched_domain_attr *attr)
7471 {
7472 int i, err = -ENOMEM;
7473 struct root_domain *rd;
7474 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7475 tmpmask;
7476 #ifdef CONFIG_NUMA
7477 cpumask_var_t domainspan, covered, notcovered;
7478 struct sched_group **sched_group_nodes = NULL;
7479 int sd_allnodes = 0;
7480
7481 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7482 goto out;
7483 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7484 goto free_domainspan;
7485 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7486 goto free_covered;
7487 #endif
7488
7489 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7490 goto free_notcovered;
7491 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7492 goto free_nodemask;
7493 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7494 goto free_this_sibling_map;
7495 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7496 goto free_this_core_map;
7497 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7498 goto free_send_covered;
7499
7500 #ifdef CONFIG_NUMA
7501 /*
7502 * Allocate the per-node list of sched groups
7503 */
7504 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7505 GFP_KERNEL);
7506 if (!sched_group_nodes) {
7507 printk(KERN_WARNING "Can not alloc sched group node list\n");
7508 goto free_tmpmask;
7509 }
7510 #endif
7511
7512 rd = alloc_rootdomain();
7513 if (!rd) {
7514 printk(KERN_WARNING "Cannot alloc root domain\n");
7515 goto free_sched_groups;
7516 }
7517
7518 #ifdef CONFIG_NUMA
7519 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7520 #endif
7521
7522 /*
7523 * Set up domains for cpus specified by the cpu_map.
7524 */
7525 for_each_cpu(i, cpu_map) {
7526 struct sched_domain *sd = NULL, *p;
7527
7528 /* FIXME: use cpumask_of_node */
7529 *nodemask = node_to_cpumask(cpu_to_node(i));
7530 cpus_and(*nodemask, *nodemask, *cpu_map);
7531
7532 #ifdef CONFIG_NUMA
7533 if (cpumask_weight(cpu_map) >
7534 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7535 sd = &per_cpu(allnodes_domains, i);
7536 SD_INIT(sd, ALLNODES);
7537 set_domain_attribute(sd, attr);
7538 cpumask_copy(sched_domain_span(sd), cpu_map);
7539 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7540 p = sd;
7541 sd_allnodes = 1;
7542 } else
7543 p = NULL;
7544
7545 sd = &per_cpu(node_domains, i);
7546 SD_INIT(sd, NODE);
7547 set_domain_attribute(sd, attr);
7548 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7549 sd->parent = p;
7550 if (p)
7551 p->child = sd;
7552 cpumask_and(sched_domain_span(sd),
7553 sched_domain_span(sd), cpu_map);
7554 #endif
7555
7556 p = sd;
7557 sd = &per_cpu(phys_domains, i).sd;
7558 SD_INIT(sd, CPU);
7559 set_domain_attribute(sd, attr);
7560 cpumask_copy(sched_domain_span(sd), nodemask);
7561 sd->parent = p;
7562 if (p)
7563 p->child = sd;
7564 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7565
7566 #ifdef CONFIG_SCHED_MC
7567 p = sd;
7568 sd = &per_cpu(core_domains, i).sd;
7569 SD_INIT(sd, MC);
7570 set_domain_attribute(sd, attr);
7571 *sched_domain_span(sd) = cpu_coregroup_map(i);
7572 cpumask_and(sched_domain_span(sd),
7573 sched_domain_span(sd), cpu_map);
7574 sd->parent = p;
7575 p->child = sd;
7576 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7577 #endif
7578
7579 #ifdef CONFIG_SCHED_SMT
7580 p = sd;
7581 sd = &per_cpu(cpu_domains, i).sd;
7582 SD_INIT(sd, SIBLING);
7583 set_domain_attribute(sd, attr);
7584 cpumask_and(sched_domain_span(sd),
7585 &per_cpu(cpu_sibling_map, i), cpu_map);
7586 sd->parent = p;
7587 p->child = sd;
7588 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7589 #endif
7590 }
7591
7592 #ifdef CONFIG_SCHED_SMT
7593 /* Set up CPU (sibling) groups */
7594 for_each_cpu(i, cpu_map) {
7595 cpumask_and(this_sibling_map,
7596 &per_cpu(cpu_sibling_map, i), cpu_map);
7597 if (i != cpumask_first(this_sibling_map))
7598 continue;
7599
7600 init_sched_build_groups(this_sibling_map, cpu_map,
7601 &cpu_to_cpu_group,
7602 send_covered, tmpmask);
7603 }
7604 #endif
7605
7606 #ifdef CONFIG_SCHED_MC
7607 /* Set up multi-core groups */
7608 for_each_cpu(i, cpu_map) {
7609 /* FIXME: Use cpu_coregroup_mask */
7610 *this_core_map = cpu_coregroup_map(i);
7611 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7612 if (i != cpumask_first(this_core_map))
7613 continue;
7614
7615 init_sched_build_groups(this_core_map, cpu_map,
7616 &cpu_to_core_group,
7617 send_covered, tmpmask);
7618 }
7619 #endif
7620
7621 /* Set up physical groups */
7622 for (i = 0; i < nr_node_ids; i++) {
7623 /* FIXME: Use cpumask_of_node */
7624 *nodemask = node_to_cpumask(i);
7625 cpus_and(*nodemask, *nodemask, *cpu_map);
7626 if (cpumask_empty(nodemask))
7627 continue;
7628
7629 init_sched_build_groups(nodemask, cpu_map,
7630 &cpu_to_phys_group,
7631 send_covered, tmpmask);
7632 }
7633
7634 #ifdef CONFIG_NUMA
7635 /* Set up node groups */
7636 if (sd_allnodes) {
7637 init_sched_build_groups(cpu_map, cpu_map,
7638 &cpu_to_allnodes_group,
7639 send_covered, tmpmask);
7640 }
7641
7642 for (i = 0; i < nr_node_ids; i++) {
7643 /* Set up node groups */
7644 struct sched_group *sg, *prev;
7645 int j;
7646
7647 /* FIXME: Use cpumask_of_node */
7648 *nodemask = node_to_cpumask(i);
7649 cpumask_clear(covered);
7650
7651 cpus_and(*nodemask, *nodemask, *cpu_map);
7652 if (cpumask_empty(nodemask)) {
7653 sched_group_nodes[i] = NULL;
7654 continue;
7655 }
7656
7657 sched_domain_node_span(i, domainspan);
7658 cpumask_and(domainspan, domainspan, cpu_map);
7659
7660 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7661 GFP_KERNEL, i);
7662 if (!sg) {
7663 printk(KERN_WARNING "Can not alloc domain group for "
7664 "node %d\n", i);
7665 goto error;
7666 }
7667 sched_group_nodes[i] = sg;
7668 for_each_cpu(j, nodemask) {
7669 struct sched_domain *sd;
7670
7671 sd = &per_cpu(node_domains, j);
7672 sd->groups = sg;
7673 }
7674 sg->__cpu_power = 0;
7675 cpumask_copy(sched_group_cpus(sg), nodemask);
7676 sg->next = sg;
7677 cpumask_or(covered, covered, nodemask);
7678 prev = sg;
7679
7680 for (j = 0; j < nr_node_ids; j++) {
7681 int n = (i + j) % nr_node_ids;
7682 /* FIXME: Use cpumask_of_node */
7683 node_to_cpumask_ptr(pnodemask, n);
7684
7685 cpumask_complement(notcovered, covered);
7686 cpumask_and(tmpmask, notcovered, cpu_map);
7687 cpumask_and(tmpmask, tmpmask, domainspan);
7688 if (cpumask_empty(tmpmask))
7689 break;
7690
7691 cpumask_and(tmpmask, tmpmask, pnodemask);
7692 if (cpumask_empty(tmpmask))
7693 continue;
7694
7695 sg = kmalloc_node(sizeof(struct sched_group) +
7696 cpumask_size(),
7697 GFP_KERNEL, i);
7698 if (!sg) {
7699 printk(KERN_WARNING
7700 "Can not alloc domain group for node %d\n", j);
7701 goto error;
7702 }
7703 sg->__cpu_power = 0;
7704 cpumask_copy(sched_group_cpus(sg), tmpmask);
7705 sg->next = prev->next;
7706 cpumask_or(covered, covered, tmpmask);
7707 prev->next = sg;
7708 prev = sg;
7709 }
7710 }
7711 #endif
7712
7713 /* Calculate CPU power for physical packages and nodes */
7714 #ifdef CONFIG_SCHED_SMT
7715 for_each_cpu(i, cpu_map) {
7716 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7717
7718 init_sched_groups_power(i, sd);
7719 }
7720 #endif
7721 #ifdef CONFIG_SCHED_MC
7722 for_each_cpu(i, cpu_map) {
7723 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7724
7725 init_sched_groups_power(i, sd);
7726 }
7727 #endif
7728
7729 for_each_cpu(i, cpu_map) {
7730 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7731
7732 init_sched_groups_power(i, sd);
7733 }
7734
7735 #ifdef CONFIG_NUMA
7736 for (i = 0; i < nr_node_ids; i++)
7737 init_numa_sched_groups_power(sched_group_nodes[i]);
7738
7739 if (sd_allnodes) {
7740 struct sched_group *sg;
7741
7742 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7743 tmpmask);
7744 init_numa_sched_groups_power(sg);
7745 }
7746 #endif
7747
7748 /* Attach the domains */
7749 for_each_cpu(i, cpu_map) {
7750 struct sched_domain *sd;
7751 #ifdef CONFIG_SCHED_SMT
7752 sd = &per_cpu(cpu_domains, i).sd;
7753 #elif defined(CONFIG_SCHED_MC)
7754 sd = &per_cpu(core_domains, i).sd;
7755 #else
7756 sd = &per_cpu(phys_domains, i).sd;
7757 #endif
7758 cpu_attach_domain(sd, rd, i);
7759 }
7760
7761 err = 0;
7762
7763 free_tmpmask:
7764 free_cpumask_var(tmpmask);
7765 free_send_covered:
7766 free_cpumask_var(send_covered);
7767 free_this_core_map:
7768 free_cpumask_var(this_core_map);
7769 free_this_sibling_map:
7770 free_cpumask_var(this_sibling_map);
7771 free_nodemask:
7772 free_cpumask_var(nodemask);
7773 free_notcovered:
7774 #ifdef CONFIG_NUMA
7775 free_cpumask_var(notcovered);
7776 free_covered:
7777 free_cpumask_var(covered);
7778 free_domainspan:
7779 free_cpumask_var(domainspan);
7780 out:
7781 #endif
7782 return err;
7783
7784 free_sched_groups:
7785 #ifdef CONFIG_NUMA
7786 kfree(sched_group_nodes);
7787 #endif
7788 goto free_tmpmask;
7789
7790 #ifdef CONFIG_NUMA
7791 error:
7792 free_sched_groups(cpu_map, tmpmask);
7793 free_rootdomain(rd);
7794 goto free_tmpmask;
7795 #endif
7796 }
7797
7798 static int build_sched_domains(const struct cpumask *cpu_map)
7799 {
7800 return __build_sched_domains(cpu_map, NULL);
7801 }
7802
7803 static struct cpumask *doms_cur; /* current sched domains */
7804 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7805 static struct sched_domain_attr *dattr_cur;
7806 /* attribues of custom domains in 'doms_cur' */
7807
7808 /*
7809 * Special case: If a kmalloc of a doms_cur partition (array of
7810 * cpumask) fails, then fallback to a single sched domain,
7811 * as determined by the single cpumask fallback_doms.
7812 */
7813 static cpumask_var_t fallback_doms;
7814
7815 /*
7816 * arch_update_cpu_topology lets virtualized architectures update the
7817 * cpu core maps. It is supposed to return 1 if the topology changed
7818 * or 0 if it stayed the same.
7819 */
7820 int __attribute__((weak)) arch_update_cpu_topology(void)
7821 {
7822 return 0;
7823 }
7824
7825 /*
7826 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7827 * For now this just excludes isolated cpus, but could be used to
7828 * exclude other special cases in the future.
7829 */
7830 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7831 {
7832 int err;
7833
7834 arch_update_cpu_topology();
7835 ndoms_cur = 1;
7836 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7837 if (!doms_cur)
7838 doms_cur = fallback_doms;
7839 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7840 dattr_cur = NULL;
7841 err = build_sched_domains(doms_cur);
7842 register_sched_domain_sysctl();
7843
7844 return err;
7845 }
7846
7847 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7848 struct cpumask *tmpmask)
7849 {
7850 free_sched_groups(cpu_map, tmpmask);
7851 }
7852
7853 /*
7854 * Detach sched domains from a group of cpus specified in cpu_map
7855 * These cpus will now be attached to the NULL domain
7856 */
7857 static void detach_destroy_domains(const struct cpumask *cpu_map)
7858 {
7859 /* Save because hotplug lock held. */
7860 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7861 int i;
7862
7863 for_each_cpu(i, cpu_map)
7864 cpu_attach_domain(NULL, &def_root_domain, i);
7865 synchronize_sched();
7866 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7867 }
7868
7869 /* handle null as "default" */
7870 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7871 struct sched_domain_attr *new, int idx_new)
7872 {
7873 struct sched_domain_attr tmp;
7874
7875 /* fast path */
7876 if (!new && !cur)
7877 return 1;
7878
7879 tmp = SD_ATTR_INIT;
7880 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7881 new ? (new + idx_new) : &tmp,
7882 sizeof(struct sched_domain_attr));
7883 }
7884
7885 /*
7886 * Partition sched domains as specified by the 'ndoms_new'
7887 * cpumasks in the array doms_new[] of cpumasks. This compares
7888 * doms_new[] to the current sched domain partitioning, doms_cur[].
7889 * It destroys each deleted domain and builds each new domain.
7890 *
7891 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7892 * The masks don't intersect (don't overlap.) We should setup one
7893 * sched domain for each mask. CPUs not in any of the cpumasks will
7894 * not be load balanced. If the same cpumask appears both in the
7895 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7896 * it as it is.
7897 *
7898 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7899 * ownership of it and will kfree it when done with it. If the caller
7900 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7901 * ndoms_new == 1, and partition_sched_domains() will fallback to
7902 * the single partition 'fallback_doms', it also forces the domains
7903 * to be rebuilt.
7904 *
7905 * If doms_new == NULL it will be replaced with cpu_online_mask.
7906 * ndoms_new == 0 is a special case for destroying existing domains,
7907 * and it will not create the default domain.
7908 *
7909 * Call with hotplug lock held
7910 */
7911 /* FIXME: Change to struct cpumask *doms_new[] */
7912 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7913 struct sched_domain_attr *dattr_new)
7914 {
7915 int i, j, n;
7916 int new_topology;
7917
7918 mutex_lock(&sched_domains_mutex);
7919
7920 /* always unregister in case we don't destroy any domains */
7921 unregister_sched_domain_sysctl();
7922
7923 /* Let architecture update cpu core mappings. */
7924 new_topology = arch_update_cpu_topology();
7925
7926 n = doms_new ? ndoms_new : 0;
7927
7928 /* Destroy deleted domains */
7929 for (i = 0; i < ndoms_cur; i++) {
7930 for (j = 0; j < n && !new_topology; j++) {
7931 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7932 && dattrs_equal(dattr_cur, i, dattr_new, j))
7933 goto match1;
7934 }
7935 /* no match - a current sched domain not in new doms_new[] */
7936 detach_destroy_domains(doms_cur + i);
7937 match1:
7938 ;
7939 }
7940
7941 if (doms_new == NULL) {
7942 ndoms_cur = 0;
7943 doms_new = fallback_doms;
7944 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7945 WARN_ON_ONCE(dattr_new);
7946 }
7947
7948 /* Build new domains */
7949 for (i = 0; i < ndoms_new; i++) {
7950 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7951 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7952 && dattrs_equal(dattr_new, i, dattr_cur, j))
7953 goto match2;
7954 }
7955 /* no match - add a new doms_new */
7956 __build_sched_domains(doms_new + i,
7957 dattr_new ? dattr_new + i : NULL);
7958 match2:
7959 ;
7960 }
7961
7962 /* Remember the new sched domains */
7963 if (doms_cur != fallback_doms)
7964 kfree(doms_cur);
7965 kfree(dattr_cur); /* kfree(NULL) is safe */
7966 doms_cur = doms_new;
7967 dattr_cur = dattr_new;
7968 ndoms_cur = ndoms_new;
7969
7970 register_sched_domain_sysctl();
7971
7972 mutex_unlock(&sched_domains_mutex);
7973 }
7974
7975 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7976 int arch_reinit_sched_domains(void)
7977 {
7978 get_online_cpus();
7979
7980 /* Destroy domains first to force the rebuild */
7981 partition_sched_domains(0, NULL, NULL);
7982
7983 rebuild_sched_domains();
7984 put_online_cpus();
7985
7986 return 0;
7987 }
7988
7989 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7990 {
7991 int ret;
7992 unsigned int level = 0;
7993
7994 if (sscanf(buf, "%u", &level) != 1)
7995 return -EINVAL;
7996
7997 /*
7998 * level is always be positive so don't check for
7999 * level < POWERSAVINGS_BALANCE_NONE which is 0
8000 * What happens on 0 or 1 byte write,
8001 * need to check for count as well?
8002 */
8003
8004 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8005 return -EINVAL;
8006
8007 if (smt)
8008 sched_smt_power_savings = level;
8009 else
8010 sched_mc_power_savings = level;
8011
8012 ret = arch_reinit_sched_domains();
8013
8014 return ret ? ret : count;
8015 }
8016
8017 #ifdef CONFIG_SCHED_MC
8018 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8019 char *page)
8020 {
8021 return sprintf(page, "%u\n", sched_mc_power_savings);
8022 }
8023 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8024 const char *buf, size_t count)
8025 {
8026 return sched_power_savings_store(buf, count, 0);
8027 }
8028 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8029 sched_mc_power_savings_show,
8030 sched_mc_power_savings_store);
8031 #endif
8032
8033 #ifdef CONFIG_SCHED_SMT
8034 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8035 char *page)
8036 {
8037 return sprintf(page, "%u\n", sched_smt_power_savings);
8038 }
8039 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8040 const char *buf, size_t count)
8041 {
8042 return sched_power_savings_store(buf, count, 1);
8043 }
8044 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8045 sched_smt_power_savings_show,
8046 sched_smt_power_savings_store);
8047 #endif
8048
8049 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8050 {
8051 int err = 0;
8052
8053 #ifdef CONFIG_SCHED_SMT
8054 if (smt_capable())
8055 err = sysfs_create_file(&cls->kset.kobj,
8056 &attr_sched_smt_power_savings.attr);
8057 #endif
8058 #ifdef CONFIG_SCHED_MC
8059 if (!err && mc_capable())
8060 err = sysfs_create_file(&cls->kset.kobj,
8061 &attr_sched_mc_power_savings.attr);
8062 #endif
8063 return err;
8064 }
8065 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8066
8067 #ifndef CONFIG_CPUSETS
8068 /*
8069 * Add online and remove offline CPUs from the scheduler domains.
8070 * When cpusets are enabled they take over this function.
8071 */
8072 static int update_sched_domains(struct notifier_block *nfb,
8073 unsigned long action, void *hcpu)
8074 {
8075 switch (action) {
8076 case CPU_ONLINE:
8077 case CPU_ONLINE_FROZEN:
8078 case CPU_DEAD:
8079 case CPU_DEAD_FROZEN:
8080 partition_sched_domains(1, NULL, NULL);
8081 return NOTIFY_OK;
8082
8083 default:
8084 return NOTIFY_DONE;
8085 }
8086 }
8087 #endif
8088
8089 static int update_runtime(struct notifier_block *nfb,
8090 unsigned long action, void *hcpu)
8091 {
8092 int cpu = (int)(long)hcpu;
8093
8094 switch (action) {
8095 case CPU_DOWN_PREPARE:
8096 case CPU_DOWN_PREPARE_FROZEN:
8097 disable_runtime(cpu_rq(cpu));
8098 return NOTIFY_OK;
8099
8100 case CPU_DOWN_FAILED:
8101 case CPU_DOWN_FAILED_FROZEN:
8102 case CPU_ONLINE:
8103 case CPU_ONLINE_FROZEN:
8104 enable_runtime(cpu_rq(cpu));
8105 return NOTIFY_OK;
8106
8107 default:
8108 return NOTIFY_DONE;
8109 }
8110 }
8111
8112 void __init sched_init_smp(void)
8113 {
8114 cpumask_var_t non_isolated_cpus;
8115
8116 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8117
8118 #if defined(CONFIG_NUMA)
8119 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8120 GFP_KERNEL);
8121 BUG_ON(sched_group_nodes_bycpu == NULL);
8122 #endif
8123 get_online_cpus();
8124 mutex_lock(&sched_domains_mutex);
8125 arch_init_sched_domains(cpu_online_mask);
8126 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8127 if (cpumask_empty(non_isolated_cpus))
8128 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8129 mutex_unlock(&sched_domains_mutex);
8130 put_online_cpus();
8131
8132 #ifndef CONFIG_CPUSETS
8133 /* XXX: Theoretical race here - CPU may be hotplugged now */
8134 hotcpu_notifier(update_sched_domains, 0);
8135 #endif
8136
8137 /* RT runtime code needs to handle some hotplug events */
8138 hotcpu_notifier(update_runtime, 0);
8139
8140 init_hrtick();
8141
8142 /* Move init over to a non-isolated CPU */
8143 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8144 BUG();
8145 sched_init_granularity();
8146 free_cpumask_var(non_isolated_cpus);
8147
8148 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8149 init_sched_rt_class();
8150 }
8151 #else
8152 void __init sched_init_smp(void)
8153 {
8154 sched_init_granularity();
8155 }
8156 #endif /* CONFIG_SMP */
8157
8158 int in_sched_functions(unsigned long addr)
8159 {
8160 return in_lock_functions(addr) ||
8161 (addr >= (unsigned long)__sched_text_start
8162 && addr < (unsigned long)__sched_text_end);
8163 }
8164
8165 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8166 {
8167 cfs_rq->tasks_timeline = RB_ROOT;
8168 INIT_LIST_HEAD(&cfs_rq->tasks);
8169 #ifdef CONFIG_FAIR_GROUP_SCHED
8170 cfs_rq->rq = rq;
8171 #endif
8172 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8173 }
8174
8175 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8176 {
8177 struct rt_prio_array *array;
8178 int i;
8179
8180 array = &rt_rq->active;
8181 for (i = 0; i < MAX_RT_PRIO; i++) {
8182 INIT_LIST_HEAD(array->queue + i);
8183 __clear_bit(i, array->bitmap);
8184 }
8185 /* delimiter for bitsearch: */
8186 __set_bit(MAX_RT_PRIO, array->bitmap);
8187
8188 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8189 rt_rq->highest_prio = MAX_RT_PRIO;
8190 #endif
8191 #ifdef CONFIG_SMP
8192 rt_rq->rt_nr_migratory = 0;
8193 rt_rq->overloaded = 0;
8194 #endif
8195
8196 rt_rq->rt_time = 0;
8197 rt_rq->rt_throttled = 0;
8198 rt_rq->rt_runtime = 0;
8199 spin_lock_init(&rt_rq->rt_runtime_lock);
8200
8201 #ifdef CONFIG_RT_GROUP_SCHED
8202 rt_rq->rt_nr_boosted = 0;
8203 rt_rq->rq = rq;
8204 #endif
8205 }
8206
8207 #ifdef CONFIG_FAIR_GROUP_SCHED
8208 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8209 struct sched_entity *se, int cpu, int add,
8210 struct sched_entity *parent)
8211 {
8212 struct rq *rq = cpu_rq(cpu);
8213 tg->cfs_rq[cpu] = cfs_rq;
8214 init_cfs_rq(cfs_rq, rq);
8215 cfs_rq->tg = tg;
8216 if (add)
8217 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8218
8219 tg->se[cpu] = se;
8220 /* se could be NULL for init_task_group */
8221 if (!se)
8222 return;
8223
8224 if (!parent)
8225 se->cfs_rq = &rq->cfs;
8226 else
8227 se->cfs_rq = parent->my_q;
8228
8229 se->my_q = cfs_rq;
8230 se->load.weight = tg->shares;
8231 se->load.inv_weight = 0;
8232 se->parent = parent;
8233 }
8234 #endif
8235
8236 #ifdef CONFIG_RT_GROUP_SCHED
8237 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8238 struct sched_rt_entity *rt_se, int cpu, int add,
8239 struct sched_rt_entity *parent)
8240 {
8241 struct rq *rq = cpu_rq(cpu);
8242
8243 tg->rt_rq[cpu] = rt_rq;
8244 init_rt_rq(rt_rq, rq);
8245 rt_rq->tg = tg;
8246 rt_rq->rt_se = rt_se;
8247 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8248 if (add)
8249 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8250
8251 tg->rt_se[cpu] = rt_se;
8252 if (!rt_se)
8253 return;
8254
8255 if (!parent)
8256 rt_se->rt_rq = &rq->rt;
8257 else
8258 rt_se->rt_rq = parent->my_q;
8259
8260 rt_se->my_q = rt_rq;
8261 rt_se->parent = parent;
8262 INIT_LIST_HEAD(&rt_se->run_list);
8263 }
8264 #endif
8265
8266 void __init sched_init(void)
8267 {
8268 int i, j;
8269 unsigned long alloc_size = 0, ptr;
8270
8271 #ifdef CONFIG_FAIR_GROUP_SCHED
8272 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8273 #endif
8274 #ifdef CONFIG_RT_GROUP_SCHED
8275 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8276 #endif
8277 #ifdef CONFIG_USER_SCHED
8278 alloc_size *= 2;
8279 #endif
8280 /*
8281 * As sched_init() is called before page_alloc is setup,
8282 * we use alloc_bootmem().
8283 */
8284 if (alloc_size) {
8285 ptr = (unsigned long)alloc_bootmem(alloc_size);
8286
8287 #ifdef CONFIG_FAIR_GROUP_SCHED
8288 init_task_group.se = (struct sched_entity **)ptr;
8289 ptr += nr_cpu_ids * sizeof(void **);
8290
8291 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8292 ptr += nr_cpu_ids * sizeof(void **);
8293
8294 #ifdef CONFIG_USER_SCHED
8295 root_task_group.se = (struct sched_entity **)ptr;
8296 ptr += nr_cpu_ids * sizeof(void **);
8297
8298 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8299 ptr += nr_cpu_ids * sizeof(void **);
8300 #endif /* CONFIG_USER_SCHED */
8301 #endif /* CONFIG_FAIR_GROUP_SCHED */
8302 #ifdef CONFIG_RT_GROUP_SCHED
8303 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8304 ptr += nr_cpu_ids * sizeof(void **);
8305
8306 init_task_group.rt_rq = (struct rt_rq **)ptr;
8307 ptr += nr_cpu_ids * sizeof(void **);
8308
8309 #ifdef CONFIG_USER_SCHED
8310 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8311 ptr += nr_cpu_ids * sizeof(void **);
8312
8313 root_task_group.rt_rq = (struct rt_rq **)ptr;
8314 ptr += nr_cpu_ids * sizeof(void **);
8315 #endif /* CONFIG_USER_SCHED */
8316 #endif /* CONFIG_RT_GROUP_SCHED */
8317 }
8318
8319 #ifdef CONFIG_SMP
8320 init_defrootdomain();
8321 #endif
8322
8323 init_rt_bandwidth(&def_rt_bandwidth,
8324 global_rt_period(), global_rt_runtime());
8325
8326 #ifdef CONFIG_RT_GROUP_SCHED
8327 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8328 global_rt_period(), global_rt_runtime());
8329 #ifdef CONFIG_USER_SCHED
8330 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8331 global_rt_period(), RUNTIME_INF);
8332 #endif /* CONFIG_USER_SCHED */
8333 #endif /* CONFIG_RT_GROUP_SCHED */
8334
8335 #ifdef CONFIG_GROUP_SCHED
8336 list_add(&init_task_group.list, &task_groups);
8337 INIT_LIST_HEAD(&init_task_group.children);
8338
8339 #ifdef CONFIG_USER_SCHED
8340 INIT_LIST_HEAD(&root_task_group.children);
8341 init_task_group.parent = &root_task_group;
8342 list_add(&init_task_group.siblings, &root_task_group.children);
8343 #endif /* CONFIG_USER_SCHED */
8344 #endif /* CONFIG_GROUP_SCHED */
8345
8346 for_each_possible_cpu(i) {
8347 struct rq *rq;
8348
8349 rq = cpu_rq(i);
8350 spin_lock_init(&rq->lock);
8351 rq->nr_running = 0;
8352 init_cfs_rq(&rq->cfs, rq);
8353 init_rt_rq(&rq->rt, rq);
8354 #ifdef CONFIG_FAIR_GROUP_SCHED
8355 init_task_group.shares = init_task_group_load;
8356 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8357 #ifdef CONFIG_CGROUP_SCHED
8358 /*
8359 * How much cpu bandwidth does init_task_group get?
8360 *
8361 * In case of task-groups formed thr' the cgroup filesystem, it
8362 * gets 100% of the cpu resources in the system. This overall
8363 * system cpu resource is divided among the tasks of
8364 * init_task_group and its child task-groups in a fair manner,
8365 * based on each entity's (task or task-group's) weight
8366 * (se->load.weight).
8367 *
8368 * In other words, if init_task_group has 10 tasks of weight
8369 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8370 * then A0's share of the cpu resource is:
8371 *
8372 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8373 *
8374 * We achieve this by letting init_task_group's tasks sit
8375 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8376 */
8377 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8378 #elif defined CONFIG_USER_SCHED
8379 root_task_group.shares = NICE_0_LOAD;
8380 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8381 /*
8382 * In case of task-groups formed thr' the user id of tasks,
8383 * init_task_group represents tasks belonging to root user.
8384 * Hence it forms a sibling of all subsequent groups formed.
8385 * In this case, init_task_group gets only a fraction of overall
8386 * system cpu resource, based on the weight assigned to root
8387 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8388 * by letting tasks of init_task_group sit in a separate cfs_rq
8389 * (init_cfs_rq) and having one entity represent this group of
8390 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8391 */
8392 init_tg_cfs_entry(&init_task_group,
8393 &per_cpu(init_cfs_rq, i),
8394 &per_cpu(init_sched_entity, i), i, 1,
8395 root_task_group.se[i]);
8396
8397 #endif
8398 #endif /* CONFIG_FAIR_GROUP_SCHED */
8399
8400 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8401 #ifdef CONFIG_RT_GROUP_SCHED
8402 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8403 #ifdef CONFIG_CGROUP_SCHED
8404 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8405 #elif defined CONFIG_USER_SCHED
8406 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8407 init_tg_rt_entry(&init_task_group,
8408 &per_cpu(init_rt_rq, i),
8409 &per_cpu(init_sched_rt_entity, i), i, 1,
8410 root_task_group.rt_se[i]);
8411 #endif
8412 #endif
8413
8414 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8415 rq->cpu_load[j] = 0;
8416 #ifdef CONFIG_SMP
8417 rq->sd = NULL;
8418 rq->rd = NULL;
8419 rq->active_balance = 0;
8420 rq->next_balance = jiffies;
8421 rq->push_cpu = 0;
8422 rq->cpu = i;
8423 rq->online = 0;
8424 rq->migration_thread = NULL;
8425 INIT_LIST_HEAD(&rq->migration_queue);
8426 rq_attach_root(rq, &def_root_domain);
8427 #endif
8428 init_rq_hrtick(rq);
8429 atomic_set(&rq->nr_iowait, 0);
8430 }
8431
8432 set_load_weight(&init_task);
8433
8434 #ifdef CONFIG_PREEMPT_NOTIFIERS
8435 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8436 #endif
8437
8438 #ifdef CONFIG_SMP
8439 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8440 #endif
8441
8442 #ifdef CONFIG_RT_MUTEXES
8443 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8444 #endif
8445
8446 /*
8447 * The boot idle thread does lazy MMU switching as well:
8448 */
8449 atomic_inc(&init_mm.mm_count);
8450 enter_lazy_tlb(&init_mm, current);
8451
8452 /*
8453 * Make us the idle thread. Technically, schedule() should not be
8454 * called from this thread, however somewhere below it might be,
8455 * but because we are the idle thread, we just pick up running again
8456 * when this runqueue becomes "idle".
8457 */
8458 init_idle(current, smp_processor_id());
8459 /*
8460 * During early bootup we pretend to be a normal task:
8461 */
8462 current->sched_class = &fair_sched_class;
8463
8464 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8465 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8466 #ifdef CONFIG_SMP
8467 #ifdef CONFIG_NO_HZ
8468 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8469 #endif
8470 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8471 #endif /* SMP */
8472
8473 scheduler_running = 1;
8474 }
8475
8476 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8477 void __might_sleep(char *file, int line)
8478 {
8479 #ifdef in_atomic
8480 static unsigned long prev_jiffy; /* ratelimiting */
8481
8482 if ((!in_atomic() && !irqs_disabled()) ||
8483 system_state != SYSTEM_RUNNING || oops_in_progress)
8484 return;
8485 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8486 return;
8487 prev_jiffy = jiffies;
8488
8489 printk(KERN_ERR
8490 "BUG: sleeping function called from invalid context at %s:%d\n",
8491 file, line);
8492 printk(KERN_ERR
8493 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8494 in_atomic(), irqs_disabled(),
8495 current->pid, current->comm);
8496
8497 debug_show_held_locks(current);
8498 if (irqs_disabled())
8499 print_irqtrace_events(current);
8500 dump_stack();
8501 #endif
8502 }
8503 EXPORT_SYMBOL(__might_sleep);
8504 #endif
8505
8506 #ifdef CONFIG_MAGIC_SYSRQ
8507 static void normalize_task(struct rq *rq, struct task_struct *p)
8508 {
8509 int on_rq;
8510
8511 update_rq_clock(rq);
8512 on_rq = p->se.on_rq;
8513 if (on_rq)
8514 deactivate_task(rq, p, 0);
8515 __setscheduler(rq, p, SCHED_NORMAL, 0);
8516 if (on_rq) {
8517 activate_task(rq, p, 0);
8518 resched_task(rq->curr);
8519 }
8520 }
8521
8522 void normalize_rt_tasks(void)
8523 {
8524 struct task_struct *g, *p;
8525 unsigned long flags;
8526 struct rq *rq;
8527
8528 read_lock_irqsave(&tasklist_lock, flags);
8529 do_each_thread(g, p) {
8530 /*
8531 * Only normalize user tasks:
8532 */
8533 if (!p->mm)
8534 continue;
8535
8536 p->se.exec_start = 0;
8537 #ifdef CONFIG_SCHEDSTATS
8538 p->se.wait_start = 0;
8539 p->se.sleep_start = 0;
8540 p->se.block_start = 0;
8541 #endif
8542
8543 if (!rt_task(p)) {
8544 /*
8545 * Renice negative nice level userspace
8546 * tasks back to 0:
8547 */
8548 if (TASK_NICE(p) < 0 && p->mm)
8549 set_user_nice(p, 0);
8550 continue;
8551 }
8552
8553 spin_lock(&p->pi_lock);
8554 rq = __task_rq_lock(p);
8555
8556 normalize_task(rq, p);
8557
8558 __task_rq_unlock(rq);
8559 spin_unlock(&p->pi_lock);
8560 } while_each_thread(g, p);
8561
8562 read_unlock_irqrestore(&tasklist_lock, flags);
8563 }
8564
8565 #endif /* CONFIG_MAGIC_SYSRQ */
8566
8567 #ifdef CONFIG_IA64
8568 /*
8569 * These functions are only useful for the IA64 MCA handling.
8570 *
8571 * They can only be called when the whole system has been
8572 * stopped - every CPU needs to be quiescent, and no scheduling
8573 * activity can take place. Using them for anything else would
8574 * be a serious bug, and as a result, they aren't even visible
8575 * under any other configuration.
8576 */
8577
8578 /**
8579 * curr_task - return the current task for a given cpu.
8580 * @cpu: the processor in question.
8581 *
8582 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8583 */
8584 struct task_struct *curr_task(int cpu)
8585 {
8586 return cpu_curr(cpu);
8587 }
8588
8589 /**
8590 * set_curr_task - set the current task for a given cpu.
8591 * @cpu: the processor in question.
8592 * @p: the task pointer to set.
8593 *
8594 * Description: This function must only be used when non-maskable interrupts
8595 * are serviced on a separate stack. It allows the architecture to switch the
8596 * notion of the current task on a cpu in a non-blocking manner. This function
8597 * must be called with all CPU's synchronized, and interrupts disabled, the
8598 * and caller must save the original value of the current task (see
8599 * curr_task() above) and restore that value before reenabling interrupts and
8600 * re-starting the system.
8601 *
8602 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8603 */
8604 void set_curr_task(int cpu, struct task_struct *p)
8605 {
8606 cpu_curr(cpu) = p;
8607 }
8608
8609 #endif
8610
8611 #ifdef CONFIG_FAIR_GROUP_SCHED
8612 static void free_fair_sched_group(struct task_group *tg)
8613 {
8614 int i;
8615
8616 for_each_possible_cpu(i) {
8617 if (tg->cfs_rq)
8618 kfree(tg->cfs_rq[i]);
8619 if (tg->se)
8620 kfree(tg->se[i]);
8621 }
8622
8623 kfree(tg->cfs_rq);
8624 kfree(tg->se);
8625 }
8626
8627 static
8628 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8629 {
8630 struct cfs_rq *cfs_rq;
8631 struct sched_entity *se;
8632 struct rq *rq;
8633 int i;
8634
8635 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8636 if (!tg->cfs_rq)
8637 goto err;
8638 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8639 if (!tg->se)
8640 goto err;
8641
8642 tg->shares = NICE_0_LOAD;
8643
8644 for_each_possible_cpu(i) {
8645 rq = cpu_rq(i);
8646
8647 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8648 GFP_KERNEL, cpu_to_node(i));
8649 if (!cfs_rq)
8650 goto err;
8651
8652 se = kzalloc_node(sizeof(struct sched_entity),
8653 GFP_KERNEL, cpu_to_node(i));
8654 if (!se)
8655 goto err;
8656
8657 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8658 }
8659
8660 return 1;
8661
8662 err:
8663 return 0;
8664 }
8665
8666 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8667 {
8668 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8669 &cpu_rq(cpu)->leaf_cfs_rq_list);
8670 }
8671
8672 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8673 {
8674 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8675 }
8676 #else /* !CONFG_FAIR_GROUP_SCHED */
8677 static inline void free_fair_sched_group(struct task_group *tg)
8678 {
8679 }
8680
8681 static inline
8682 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8683 {
8684 return 1;
8685 }
8686
8687 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8688 {
8689 }
8690
8691 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8692 {
8693 }
8694 #endif /* CONFIG_FAIR_GROUP_SCHED */
8695
8696 #ifdef CONFIG_RT_GROUP_SCHED
8697 static void free_rt_sched_group(struct task_group *tg)
8698 {
8699 int i;
8700
8701 destroy_rt_bandwidth(&tg->rt_bandwidth);
8702
8703 for_each_possible_cpu(i) {
8704 if (tg->rt_rq)
8705 kfree(tg->rt_rq[i]);
8706 if (tg->rt_se)
8707 kfree(tg->rt_se[i]);
8708 }
8709
8710 kfree(tg->rt_rq);
8711 kfree(tg->rt_se);
8712 }
8713
8714 static
8715 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8716 {
8717 struct rt_rq *rt_rq;
8718 struct sched_rt_entity *rt_se;
8719 struct rq *rq;
8720 int i;
8721
8722 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8723 if (!tg->rt_rq)
8724 goto err;
8725 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8726 if (!tg->rt_se)
8727 goto err;
8728
8729 init_rt_bandwidth(&tg->rt_bandwidth,
8730 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8731
8732 for_each_possible_cpu(i) {
8733 rq = cpu_rq(i);
8734
8735 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8736 GFP_KERNEL, cpu_to_node(i));
8737 if (!rt_rq)
8738 goto err;
8739
8740 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8741 GFP_KERNEL, cpu_to_node(i));
8742 if (!rt_se)
8743 goto err;
8744
8745 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8746 }
8747
8748 return 1;
8749
8750 err:
8751 return 0;
8752 }
8753
8754 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8755 {
8756 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8757 &cpu_rq(cpu)->leaf_rt_rq_list);
8758 }
8759
8760 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8761 {
8762 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8763 }
8764 #else /* !CONFIG_RT_GROUP_SCHED */
8765 static inline void free_rt_sched_group(struct task_group *tg)
8766 {
8767 }
8768
8769 static inline
8770 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8771 {
8772 return 1;
8773 }
8774
8775 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8776 {
8777 }
8778
8779 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8780 {
8781 }
8782 #endif /* CONFIG_RT_GROUP_SCHED */
8783
8784 #ifdef CONFIG_GROUP_SCHED
8785 static void free_sched_group(struct task_group *tg)
8786 {
8787 free_fair_sched_group(tg);
8788 free_rt_sched_group(tg);
8789 kfree(tg);
8790 }
8791
8792 /* allocate runqueue etc for a new task group */
8793 struct task_group *sched_create_group(struct task_group *parent)
8794 {
8795 struct task_group *tg;
8796 unsigned long flags;
8797 int i;
8798
8799 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8800 if (!tg)
8801 return ERR_PTR(-ENOMEM);
8802
8803 if (!alloc_fair_sched_group(tg, parent))
8804 goto err;
8805
8806 if (!alloc_rt_sched_group(tg, parent))
8807 goto err;
8808
8809 spin_lock_irqsave(&task_group_lock, flags);
8810 for_each_possible_cpu(i) {
8811 register_fair_sched_group(tg, i);
8812 register_rt_sched_group(tg, i);
8813 }
8814 list_add_rcu(&tg->list, &task_groups);
8815
8816 WARN_ON(!parent); /* root should already exist */
8817
8818 tg->parent = parent;
8819 INIT_LIST_HEAD(&tg->children);
8820 list_add_rcu(&tg->siblings, &parent->children);
8821 spin_unlock_irqrestore(&task_group_lock, flags);
8822
8823 return tg;
8824
8825 err:
8826 free_sched_group(tg);
8827 return ERR_PTR(-ENOMEM);
8828 }
8829
8830 /* rcu callback to free various structures associated with a task group */
8831 static void free_sched_group_rcu(struct rcu_head *rhp)
8832 {
8833 /* now it should be safe to free those cfs_rqs */
8834 free_sched_group(container_of(rhp, struct task_group, rcu));
8835 }
8836
8837 /* Destroy runqueue etc associated with a task group */
8838 void sched_destroy_group(struct task_group *tg)
8839 {
8840 unsigned long flags;
8841 int i;
8842
8843 spin_lock_irqsave(&task_group_lock, flags);
8844 for_each_possible_cpu(i) {
8845 unregister_fair_sched_group(tg, i);
8846 unregister_rt_sched_group(tg, i);
8847 }
8848 list_del_rcu(&tg->list);
8849 list_del_rcu(&tg->siblings);
8850 spin_unlock_irqrestore(&task_group_lock, flags);
8851
8852 /* wait for possible concurrent references to cfs_rqs complete */
8853 call_rcu(&tg->rcu, free_sched_group_rcu);
8854 }
8855
8856 /* change task's runqueue when it moves between groups.
8857 * The caller of this function should have put the task in its new group
8858 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8859 * reflect its new group.
8860 */
8861 void sched_move_task(struct task_struct *tsk)
8862 {
8863 int on_rq, running;
8864 unsigned long flags;
8865 struct rq *rq;
8866
8867 rq = task_rq_lock(tsk, &flags);
8868
8869 update_rq_clock(rq);
8870
8871 running = task_current(rq, tsk);
8872 on_rq = tsk->se.on_rq;
8873
8874 if (on_rq)
8875 dequeue_task(rq, tsk, 0);
8876 if (unlikely(running))
8877 tsk->sched_class->put_prev_task(rq, tsk);
8878
8879 set_task_rq(tsk, task_cpu(tsk));
8880
8881 #ifdef CONFIG_FAIR_GROUP_SCHED
8882 if (tsk->sched_class->moved_group)
8883 tsk->sched_class->moved_group(tsk);
8884 #endif
8885
8886 if (unlikely(running))
8887 tsk->sched_class->set_curr_task(rq);
8888 if (on_rq)
8889 enqueue_task(rq, tsk, 0);
8890
8891 task_rq_unlock(rq, &flags);
8892 }
8893 #endif /* CONFIG_GROUP_SCHED */
8894
8895 #ifdef CONFIG_FAIR_GROUP_SCHED
8896 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8897 {
8898 struct cfs_rq *cfs_rq = se->cfs_rq;
8899 int on_rq;
8900
8901 on_rq = se->on_rq;
8902 if (on_rq)
8903 dequeue_entity(cfs_rq, se, 0);
8904
8905 se->load.weight = shares;
8906 se->load.inv_weight = 0;
8907
8908 if (on_rq)
8909 enqueue_entity(cfs_rq, se, 0);
8910 }
8911
8912 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8913 {
8914 struct cfs_rq *cfs_rq = se->cfs_rq;
8915 struct rq *rq = cfs_rq->rq;
8916 unsigned long flags;
8917
8918 spin_lock_irqsave(&rq->lock, flags);
8919 __set_se_shares(se, shares);
8920 spin_unlock_irqrestore(&rq->lock, flags);
8921 }
8922
8923 static DEFINE_MUTEX(shares_mutex);
8924
8925 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8926 {
8927 int i;
8928 unsigned long flags;
8929
8930 /*
8931 * We can't change the weight of the root cgroup.
8932 */
8933 if (!tg->se[0])
8934 return -EINVAL;
8935
8936 if (shares < MIN_SHARES)
8937 shares = MIN_SHARES;
8938 else if (shares > MAX_SHARES)
8939 shares = MAX_SHARES;
8940
8941 mutex_lock(&shares_mutex);
8942 if (tg->shares == shares)
8943 goto done;
8944
8945 spin_lock_irqsave(&task_group_lock, flags);
8946 for_each_possible_cpu(i)
8947 unregister_fair_sched_group(tg, i);
8948 list_del_rcu(&tg->siblings);
8949 spin_unlock_irqrestore(&task_group_lock, flags);
8950
8951 /* wait for any ongoing reference to this group to finish */
8952 synchronize_sched();
8953
8954 /*
8955 * Now we are free to modify the group's share on each cpu
8956 * w/o tripping rebalance_share or load_balance_fair.
8957 */
8958 tg->shares = shares;
8959 for_each_possible_cpu(i) {
8960 /*
8961 * force a rebalance
8962 */
8963 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8964 set_se_shares(tg->se[i], shares);
8965 }
8966
8967 /*
8968 * Enable load balance activity on this group, by inserting it back on
8969 * each cpu's rq->leaf_cfs_rq_list.
8970 */
8971 spin_lock_irqsave(&task_group_lock, flags);
8972 for_each_possible_cpu(i)
8973 register_fair_sched_group(tg, i);
8974 list_add_rcu(&tg->siblings, &tg->parent->children);
8975 spin_unlock_irqrestore(&task_group_lock, flags);
8976 done:
8977 mutex_unlock(&shares_mutex);
8978 return 0;
8979 }
8980
8981 unsigned long sched_group_shares(struct task_group *tg)
8982 {
8983 return tg->shares;
8984 }
8985 #endif
8986
8987 #ifdef CONFIG_RT_GROUP_SCHED
8988 /*
8989 * Ensure that the real time constraints are schedulable.
8990 */
8991 static DEFINE_MUTEX(rt_constraints_mutex);
8992
8993 static unsigned long to_ratio(u64 period, u64 runtime)
8994 {
8995 if (runtime == RUNTIME_INF)
8996 return 1ULL << 20;
8997
8998 return div64_u64(runtime << 20, period);
8999 }
9000
9001 /* Must be called with tasklist_lock held */
9002 static inline int tg_has_rt_tasks(struct task_group *tg)
9003 {
9004 struct task_struct *g, *p;
9005
9006 do_each_thread(g, p) {
9007 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9008 return 1;
9009 } while_each_thread(g, p);
9010
9011 return 0;
9012 }
9013
9014 struct rt_schedulable_data {
9015 struct task_group *tg;
9016 u64 rt_period;
9017 u64 rt_runtime;
9018 };
9019
9020 static int tg_schedulable(struct task_group *tg, void *data)
9021 {
9022 struct rt_schedulable_data *d = data;
9023 struct task_group *child;
9024 unsigned long total, sum = 0;
9025 u64 period, runtime;
9026
9027 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9028 runtime = tg->rt_bandwidth.rt_runtime;
9029
9030 if (tg == d->tg) {
9031 period = d->rt_period;
9032 runtime = d->rt_runtime;
9033 }
9034
9035 /*
9036 * Cannot have more runtime than the period.
9037 */
9038 if (runtime > period && runtime != RUNTIME_INF)
9039 return -EINVAL;
9040
9041 /*
9042 * Ensure we don't starve existing RT tasks.
9043 */
9044 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9045 return -EBUSY;
9046
9047 total = to_ratio(period, runtime);
9048
9049 /*
9050 * Nobody can have more than the global setting allows.
9051 */
9052 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9053 return -EINVAL;
9054
9055 /*
9056 * The sum of our children's runtime should not exceed our own.
9057 */
9058 list_for_each_entry_rcu(child, &tg->children, siblings) {
9059 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9060 runtime = child->rt_bandwidth.rt_runtime;
9061
9062 if (child == d->tg) {
9063 period = d->rt_period;
9064 runtime = d->rt_runtime;
9065 }
9066
9067 sum += to_ratio(period, runtime);
9068 }
9069
9070 if (sum > total)
9071 return -EINVAL;
9072
9073 return 0;
9074 }
9075
9076 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9077 {
9078 struct rt_schedulable_data data = {
9079 .tg = tg,
9080 .rt_period = period,
9081 .rt_runtime = runtime,
9082 };
9083
9084 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9085 }
9086
9087 static int tg_set_bandwidth(struct task_group *tg,
9088 u64 rt_period, u64 rt_runtime)
9089 {
9090 int i, err = 0;
9091
9092 mutex_lock(&rt_constraints_mutex);
9093 read_lock(&tasklist_lock);
9094 err = __rt_schedulable(tg, rt_period, rt_runtime);
9095 if (err)
9096 goto unlock;
9097
9098 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9099 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9100 tg->rt_bandwidth.rt_runtime = rt_runtime;
9101
9102 for_each_possible_cpu(i) {
9103 struct rt_rq *rt_rq = tg->rt_rq[i];
9104
9105 spin_lock(&rt_rq->rt_runtime_lock);
9106 rt_rq->rt_runtime = rt_runtime;
9107 spin_unlock(&rt_rq->rt_runtime_lock);
9108 }
9109 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9110 unlock:
9111 read_unlock(&tasklist_lock);
9112 mutex_unlock(&rt_constraints_mutex);
9113
9114 return err;
9115 }
9116
9117 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9118 {
9119 u64 rt_runtime, rt_period;
9120
9121 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9122 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9123 if (rt_runtime_us < 0)
9124 rt_runtime = RUNTIME_INF;
9125
9126 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9127 }
9128
9129 long sched_group_rt_runtime(struct task_group *tg)
9130 {
9131 u64 rt_runtime_us;
9132
9133 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9134 return -1;
9135
9136 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9137 do_div(rt_runtime_us, NSEC_PER_USEC);
9138 return rt_runtime_us;
9139 }
9140
9141 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9142 {
9143 u64 rt_runtime, rt_period;
9144
9145 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9146 rt_runtime = tg->rt_bandwidth.rt_runtime;
9147
9148 if (rt_period == 0)
9149 return -EINVAL;
9150
9151 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9152 }
9153
9154 long sched_group_rt_period(struct task_group *tg)
9155 {
9156 u64 rt_period_us;
9157
9158 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9159 do_div(rt_period_us, NSEC_PER_USEC);
9160 return rt_period_us;
9161 }
9162
9163 static int sched_rt_global_constraints(void)
9164 {
9165 u64 runtime, period;
9166 int ret = 0;
9167
9168 if (sysctl_sched_rt_period <= 0)
9169 return -EINVAL;
9170
9171 runtime = global_rt_runtime();
9172 period = global_rt_period();
9173
9174 /*
9175 * Sanity check on the sysctl variables.
9176 */
9177 if (runtime > period && runtime != RUNTIME_INF)
9178 return -EINVAL;
9179
9180 mutex_lock(&rt_constraints_mutex);
9181 read_lock(&tasklist_lock);
9182 ret = __rt_schedulable(NULL, 0, 0);
9183 read_unlock(&tasklist_lock);
9184 mutex_unlock(&rt_constraints_mutex);
9185
9186 return ret;
9187 }
9188 #else /* !CONFIG_RT_GROUP_SCHED */
9189 static int sched_rt_global_constraints(void)
9190 {
9191 unsigned long flags;
9192 int i;
9193
9194 if (sysctl_sched_rt_period <= 0)
9195 return -EINVAL;
9196
9197 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9198 for_each_possible_cpu(i) {
9199 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9200
9201 spin_lock(&rt_rq->rt_runtime_lock);
9202 rt_rq->rt_runtime = global_rt_runtime();
9203 spin_unlock(&rt_rq->rt_runtime_lock);
9204 }
9205 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9206
9207 return 0;
9208 }
9209 #endif /* CONFIG_RT_GROUP_SCHED */
9210
9211 int sched_rt_handler(struct ctl_table *table, int write,
9212 struct file *filp, void __user *buffer, size_t *lenp,
9213 loff_t *ppos)
9214 {
9215 int ret;
9216 int old_period, old_runtime;
9217 static DEFINE_MUTEX(mutex);
9218
9219 mutex_lock(&mutex);
9220 old_period = sysctl_sched_rt_period;
9221 old_runtime = sysctl_sched_rt_runtime;
9222
9223 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9224
9225 if (!ret && write) {
9226 ret = sched_rt_global_constraints();
9227 if (ret) {
9228 sysctl_sched_rt_period = old_period;
9229 sysctl_sched_rt_runtime = old_runtime;
9230 } else {
9231 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9232 def_rt_bandwidth.rt_period =
9233 ns_to_ktime(global_rt_period());
9234 }
9235 }
9236 mutex_unlock(&mutex);
9237
9238 return ret;
9239 }
9240
9241 #ifdef CONFIG_CGROUP_SCHED
9242
9243 /* return corresponding task_group object of a cgroup */
9244 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9245 {
9246 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9247 struct task_group, css);
9248 }
9249
9250 static struct cgroup_subsys_state *
9251 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9252 {
9253 struct task_group *tg, *parent;
9254
9255 if (!cgrp->parent) {
9256 /* This is early initialization for the top cgroup */
9257 return &init_task_group.css;
9258 }
9259
9260 parent = cgroup_tg(cgrp->parent);
9261 tg = sched_create_group(parent);
9262 if (IS_ERR(tg))
9263 return ERR_PTR(-ENOMEM);
9264
9265 return &tg->css;
9266 }
9267
9268 static void
9269 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9270 {
9271 struct task_group *tg = cgroup_tg(cgrp);
9272
9273 sched_destroy_group(tg);
9274 }
9275
9276 static int
9277 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9278 struct task_struct *tsk)
9279 {
9280 #ifdef CONFIG_RT_GROUP_SCHED
9281 /* Don't accept realtime tasks when there is no way for them to run */
9282 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9283 return -EINVAL;
9284 #else
9285 /* We don't support RT-tasks being in separate groups */
9286 if (tsk->sched_class != &fair_sched_class)
9287 return -EINVAL;
9288 #endif
9289
9290 return 0;
9291 }
9292
9293 static void
9294 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9295 struct cgroup *old_cont, struct task_struct *tsk)
9296 {
9297 sched_move_task(tsk);
9298 }
9299
9300 #ifdef CONFIG_FAIR_GROUP_SCHED
9301 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9302 u64 shareval)
9303 {
9304 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9305 }
9306
9307 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9308 {
9309 struct task_group *tg = cgroup_tg(cgrp);
9310
9311 return (u64) tg->shares;
9312 }
9313 #endif /* CONFIG_FAIR_GROUP_SCHED */
9314
9315 #ifdef CONFIG_RT_GROUP_SCHED
9316 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9317 s64 val)
9318 {
9319 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9320 }
9321
9322 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9323 {
9324 return sched_group_rt_runtime(cgroup_tg(cgrp));
9325 }
9326
9327 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9328 u64 rt_period_us)
9329 {
9330 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9331 }
9332
9333 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9334 {
9335 return sched_group_rt_period(cgroup_tg(cgrp));
9336 }
9337 #endif /* CONFIG_RT_GROUP_SCHED */
9338
9339 static struct cftype cpu_files[] = {
9340 #ifdef CONFIG_FAIR_GROUP_SCHED
9341 {
9342 .name = "shares",
9343 .read_u64 = cpu_shares_read_u64,
9344 .write_u64 = cpu_shares_write_u64,
9345 },
9346 #endif
9347 #ifdef CONFIG_RT_GROUP_SCHED
9348 {
9349 .name = "rt_runtime_us",
9350 .read_s64 = cpu_rt_runtime_read,
9351 .write_s64 = cpu_rt_runtime_write,
9352 },
9353 {
9354 .name = "rt_period_us",
9355 .read_u64 = cpu_rt_period_read_uint,
9356 .write_u64 = cpu_rt_period_write_uint,
9357 },
9358 #endif
9359 };
9360
9361 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9362 {
9363 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9364 }
9365
9366 struct cgroup_subsys cpu_cgroup_subsys = {
9367 .name = "cpu",
9368 .create = cpu_cgroup_create,
9369 .destroy = cpu_cgroup_destroy,
9370 .can_attach = cpu_cgroup_can_attach,
9371 .attach = cpu_cgroup_attach,
9372 .populate = cpu_cgroup_populate,
9373 .subsys_id = cpu_cgroup_subsys_id,
9374 .early_init = 1,
9375 };
9376
9377 #endif /* CONFIG_CGROUP_SCHED */
9378
9379 #ifdef CONFIG_CGROUP_CPUACCT
9380
9381 /*
9382 * CPU accounting code for task groups.
9383 *
9384 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9385 * (balbir@in.ibm.com).
9386 */
9387
9388 /* track cpu usage of a group of tasks and its child groups */
9389 struct cpuacct {
9390 struct cgroup_subsys_state css;
9391 /* cpuusage holds pointer to a u64-type object on every cpu */
9392 u64 *cpuusage;
9393 struct cpuacct *parent;
9394 };
9395
9396 struct cgroup_subsys cpuacct_subsys;
9397
9398 /* return cpu accounting group corresponding to this container */
9399 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9400 {
9401 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9402 struct cpuacct, css);
9403 }
9404
9405 /* return cpu accounting group to which this task belongs */
9406 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9407 {
9408 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9409 struct cpuacct, css);
9410 }
9411
9412 /* create a new cpu accounting group */
9413 static struct cgroup_subsys_state *cpuacct_create(
9414 struct cgroup_subsys *ss, struct cgroup *cgrp)
9415 {
9416 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9417
9418 if (!ca)
9419 return ERR_PTR(-ENOMEM);
9420
9421 ca->cpuusage = alloc_percpu(u64);
9422 if (!ca->cpuusage) {
9423 kfree(ca);
9424 return ERR_PTR(-ENOMEM);
9425 }
9426
9427 if (cgrp->parent)
9428 ca->parent = cgroup_ca(cgrp->parent);
9429
9430 return &ca->css;
9431 }
9432
9433 /* destroy an existing cpu accounting group */
9434 static void
9435 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9436 {
9437 struct cpuacct *ca = cgroup_ca(cgrp);
9438
9439 free_percpu(ca->cpuusage);
9440 kfree(ca);
9441 }
9442
9443 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9444 {
9445 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9446 u64 data;
9447
9448 #ifndef CONFIG_64BIT
9449 /*
9450 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9451 */
9452 spin_lock_irq(&cpu_rq(cpu)->lock);
9453 data = *cpuusage;
9454 spin_unlock_irq(&cpu_rq(cpu)->lock);
9455 #else
9456 data = *cpuusage;
9457 #endif
9458
9459 return data;
9460 }
9461
9462 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9463 {
9464 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9465
9466 #ifndef CONFIG_64BIT
9467 /*
9468 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9469 */
9470 spin_lock_irq(&cpu_rq(cpu)->lock);
9471 *cpuusage = val;
9472 spin_unlock_irq(&cpu_rq(cpu)->lock);
9473 #else
9474 *cpuusage = val;
9475 #endif
9476 }
9477
9478 /* return total cpu usage (in nanoseconds) of a group */
9479 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9480 {
9481 struct cpuacct *ca = cgroup_ca(cgrp);
9482 u64 totalcpuusage = 0;
9483 int i;
9484
9485 for_each_present_cpu(i)
9486 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9487
9488 return totalcpuusage;
9489 }
9490
9491 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9492 u64 reset)
9493 {
9494 struct cpuacct *ca = cgroup_ca(cgrp);
9495 int err = 0;
9496 int i;
9497
9498 if (reset) {
9499 err = -EINVAL;
9500 goto out;
9501 }
9502
9503 for_each_present_cpu(i)
9504 cpuacct_cpuusage_write(ca, i, 0);
9505
9506 out:
9507 return err;
9508 }
9509
9510 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9511 struct seq_file *m)
9512 {
9513 struct cpuacct *ca = cgroup_ca(cgroup);
9514 u64 percpu;
9515 int i;
9516
9517 for_each_present_cpu(i) {
9518 percpu = cpuacct_cpuusage_read(ca, i);
9519 seq_printf(m, "%llu ", (unsigned long long) percpu);
9520 }
9521 seq_printf(m, "\n");
9522 return 0;
9523 }
9524
9525 static struct cftype files[] = {
9526 {
9527 .name = "usage",
9528 .read_u64 = cpuusage_read,
9529 .write_u64 = cpuusage_write,
9530 },
9531 {
9532 .name = "usage_percpu",
9533 .read_seq_string = cpuacct_percpu_seq_read,
9534 },
9535
9536 };
9537
9538 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9539 {
9540 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9541 }
9542
9543 /*
9544 * charge this task's execution time to its accounting group.
9545 *
9546 * called with rq->lock held.
9547 */
9548 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9549 {
9550 struct cpuacct *ca;
9551 int cpu;
9552
9553 if (!cpuacct_subsys.active)
9554 return;
9555
9556 cpu = task_cpu(tsk);
9557 ca = task_ca(tsk);
9558
9559 for (; ca; ca = ca->parent) {
9560 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9561 *cpuusage += cputime;
9562 }
9563 }
9564
9565 struct cgroup_subsys cpuacct_subsys = {
9566 .name = "cpuacct",
9567 .create = cpuacct_create,
9568 .destroy = cpuacct_destroy,
9569 .populate = cpuacct_populate,
9570 .subsys_id = cpuacct_subsys_id,
9571 };
9572 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.283423 seconds and 6 git commands to generate.