sched: allow the group scheduler to have multiple levels
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 cpu_set(rq->cpu, rq->rd->rto_mask);
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
44 }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50 return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55 return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_RT_GROUP_SCHED
59
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
61 {
62 if (!rt_rq->tg)
63 return RUNTIME_INF;
64
65 return rt_rq->rt_runtime;
66 }
67
68 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69 {
70 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
71 }
72
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77 {
78 return rt_rq->rq;
79 }
80
81 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82 {
83 return rt_se->rt_rq;
84 }
85
86 #define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
88
89 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90 {
91 return rt_se->my_q;
92 }
93
94 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
97 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
98 {
99 struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
104 enqueue_rt_entity(rt_se);
105 if (rt_rq->highest_prio < curr->prio)
106 resched_task(curr);
107 }
108 }
109
110 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
111 {
112 struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114 if (rt_se && on_rt_rq(rt_se))
115 dequeue_rt_entity(rt_se);
116 }
117
118 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119 {
120 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121 }
122
123 static int rt_se_boosted(struct sched_rt_entity *rt_se)
124 {
125 struct rt_rq *rt_rq = group_rt_rq(rt_se);
126 struct task_struct *p;
127
128 if (rt_rq)
129 return !!rt_rq->rt_nr_boosted;
130
131 p = rt_task_of(rt_se);
132 return p->prio != p->normal_prio;
133 }
134
135 #ifdef CONFIG_SMP
136 static inline cpumask_t sched_rt_period_mask(void)
137 {
138 return cpu_rq(smp_processor_id())->rd->span;
139 }
140 #else
141 static inline cpumask_t sched_rt_period_mask(void)
142 {
143 return cpu_online_map;
144 }
145 #endif
146
147 static inline
148 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
149 {
150 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151 }
152
153 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154 {
155 return &rt_rq->tg->rt_bandwidth;
156 }
157
158 #else
159
160 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161 {
162 return rt_rq->rt_runtime;
163 }
164
165 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166 {
167 return ktime_to_ns(def_rt_bandwidth.rt_period);
168 }
169
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174 {
175 return container_of(rt_rq, struct rq, rt);
176 }
177
178 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179 {
180 struct task_struct *p = rt_task_of(rt_se);
181 struct rq *rq = task_rq(p);
182
183 return &rq->rt;
184 }
185
186 #define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
188
189 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190 {
191 return NULL;
192 }
193
194 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
195 {
196 }
197
198 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
199 {
200 }
201
202 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203 {
204 return rt_rq->rt_throttled;
205 }
206
207 static inline cpumask_t sched_rt_period_mask(void)
208 {
209 return cpu_online_map;
210 }
211
212 static inline
213 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214 {
215 return &cpu_rq(cpu)->rt;
216 }
217
218 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219 {
220 return &def_rt_bandwidth;
221 }
222
223 #endif
224
225 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226 {
227 int i, idle = 1;
228 cpumask_t span;
229
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
232
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
241 u64 runtime;
242
243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
249 }
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
252 spin_unlock(&rt_rq->rt_runtime_lock);
253 }
254
255 if (enqueue)
256 sched_rt_rq_enqueue(rt_rq);
257 spin_unlock(&rq->lock);
258 }
259
260 return idle;
261 }
262
263 #ifdef CONFIG_SMP
264 static int balance_runtime(struct rt_rq *rt_rq)
265 {
266 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268 int i, weight, more = 0;
269 u64 rt_period;
270
271 weight = cpus_weight(rd->span);
272
273 spin_lock(&rt_b->rt_runtime_lock);
274 rt_period = ktime_to_ns(rt_b->rt_period);
275 for_each_cpu_mask(i, rd->span) {
276 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277 s64 diff;
278
279 if (iter == rt_rq)
280 continue;
281
282 spin_lock(&iter->rt_runtime_lock);
283 diff = iter->rt_runtime - iter->rt_time;
284 if (diff > 0) {
285 do_div(diff, weight);
286 if (rt_rq->rt_runtime + diff > rt_period)
287 diff = rt_period - rt_rq->rt_runtime;
288 iter->rt_runtime -= diff;
289 rt_rq->rt_runtime += diff;
290 more = 1;
291 if (rt_rq->rt_runtime == rt_period) {
292 spin_unlock(&iter->rt_runtime_lock);
293 break;
294 }
295 }
296 spin_unlock(&iter->rt_runtime_lock);
297 }
298 spin_unlock(&rt_b->rt_runtime_lock);
299
300 return more;
301 }
302 #endif
303
304 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305 {
306 #ifdef CONFIG_RT_GROUP_SCHED
307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309 if (rt_rq)
310 return rt_rq->highest_prio;
311 #endif
312
313 return rt_task_of(rt_se)->prio;
314 }
315
316 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
317 {
318 u64 runtime = sched_rt_runtime(rt_rq);
319
320 if (runtime == RUNTIME_INF)
321 return 0;
322
323 if (rt_rq->rt_throttled)
324 return rt_rq_throttled(rt_rq);
325
326 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327 return 0;
328
329 #ifdef CONFIG_SMP
330 if (rt_rq->rt_time > runtime) {
331 int more;
332
333 spin_unlock(&rt_rq->rt_runtime_lock);
334 more = balance_runtime(rt_rq);
335 spin_lock(&rt_rq->rt_runtime_lock);
336
337 if (more)
338 runtime = sched_rt_runtime(rt_rq);
339 }
340 #endif
341
342 if (rt_rq->rt_time > runtime) {
343 rt_rq->rt_throttled = 1;
344 if (rt_rq_throttled(rt_rq)) {
345 sched_rt_rq_dequeue(rt_rq);
346 return 1;
347 }
348 }
349
350 return 0;
351 }
352
353 /*
354 * Update the current task's runtime statistics. Skip current tasks that
355 * are not in our scheduling class.
356 */
357 static void update_curr_rt(struct rq *rq)
358 {
359 struct task_struct *curr = rq->curr;
360 struct sched_rt_entity *rt_se = &curr->rt;
361 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
362 u64 delta_exec;
363
364 if (!task_has_rt_policy(curr))
365 return;
366
367 delta_exec = rq->clock - curr->se.exec_start;
368 if (unlikely((s64)delta_exec < 0))
369 delta_exec = 0;
370
371 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
372
373 curr->se.sum_exec_runtime += delta_exec;
374 curr->se.exec_start = rq->clock;
375 cpuacct_charge(curr, delta_exec);
376
377 for_each_sched_rt_entity(rt_se) {
378 rt_rq = rt_rq_of_se(rt_se);
379
380 spin_lock(&rt_rq->rt_runtime_lock);
381 rt_rq->rt_time += delta_exec;
382 if (sched_rt_runtime_exceeded(rt_rq))
383 resched_task(curr);
384 spin_unlock(&rt_rq->rt_runtime_lock);
385 }
386 }
387
388 static inline
389 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390 {
391 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392 rt_rq->rt_nr_running++;
393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
395 rt_rq->highest_prio = rt_se_prio(rt_se);
396 #endif
397 #ifdef CONFIG_SMP
398 if (rt_se->nr_cpus_allowed > 1) {
399 struct rq *rq = rq_of_rt_rq(rt_rq);
400 rq->rt.rt_nr_migratory++;
401 }
402
403 update_rt_migration(rq_of_rt_rq(rt_rq));
404 #endif
405 #ifdef CONFIG_RT_GROUP_SCHED
406 if (rt_se_boosted(rt_se))
407 rt_rq->rt_nr_boosted++;
408
409 if (rt_rq->tg)
410 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
411 #else
412 start_rt_bandwidth(&def_rt_bandwidth);
413 #endif
414 }
415
416 static inline
417 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 {
419 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
420 WARN_ON(!rt_rq->rt_nr_running);
421 rt_rq->rt_nr_running--;
422 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
423 if (rt_rq->rt_nr_running) {
424 struct rt_prio_array *array;
425
426 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
427 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
428 /* recalculate */
429 array = &rt_rq->active;
430 rt_rq->highest_prio =
431 sched_find_first_bit(array->bitmap);
432 } /* otherwise leave rq->highest prio alone */
433 } else
434 rt_rq->highest_prio = MAX_RT_PRIO;
435 #endif
436 #ifdef CONFIG_SMP
437 if (rt_se->nr_cpus_allowed > 1) {
438 struct rq *rq = rq_of_rt_rq(rt_rq);
439 rq->rt.rt_nr_migratory--;
440 }
441
442 update_rt_migration(rq_of_rt_rq(rt_rq));
443 #endif /* CONFIG_SMP */
444 #ifdef CONFIG_RT_GROUP_SCHED
445 if (rt_se_boosted(rt_se))
446 rt_rq->rt_nr_boosted--;
447
448 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
449 #endif
450 }
451
452 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
453 {
454 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
455 struct rt_prio_array *array = &rt_rq->active;
456 struct rt_rq *group_rq = group_rt_rq(rt_se);
457
458 if (group_rq && rt_rq_throttled(group_rq))
459 return;
460
461 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
462 __set_bit(rt_se_prio(rt_se), array->bitmap);
463
464 inc_rt_tasks(rt_se, rt_rq);
465 }
466
467 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
468 {
469 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
470 struct rt_prio_array *array = &rt_rq->active;
471
472 list_del_init(&rt_se->run_list);
473 if (list_empty(array->queue + rt_se_prio(rt_se)))
474 __clear_bit(rt_se_prio(rt_se), array->bitmap);
475
476 dec_rt_tasks(rt_se, rt_rq);
477 }
478
479 /*
480 * Because the prio of an upper entry depends on the lower
481 * entries, we must remove entries top - down.
482 *
483 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
484 */
485 static void dequeue_rt_stack(struct task_struct *p)
486 {
487 struct sched_rt_entity *rt_se, *top_se;
488
489 /*
490 * dequeue all, top - down.
491 */
492 do {
493 rt_se = &p->rt;
494 top_se = NULL;
495 for_each_sched_rt_entity(rt_se) {
496 if (on_rt_rq(rt_se))
497 top_se = rt_se;
498 }
499 if (top_se)
500 dequeue_rt_entity(top_se);
501 } while (top_se);
502 }
503
504 /*
505 * Adding/removing a task to/from a priority array:
506 */
507 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
508 {
509 struct sched_rt_entity *rt_se = &p->rt;
510
511 if (wakeup)
512 rt_se->timeout = 0;
513
514 dequeue_rt_stack(p);
515
516 /*
517 * enqueue everybody, bottom - up.
518 */
519 for_each_sched_rt_entity(rt_se)
520 enqueue_rt_entity(rt_se);
521 }
522
523 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
524 {
525 struct sched_rt_entity *rt_se = &p->rt;
526 struct rt_rq *rt_rq;
527
528 update_curr_rt(rq);
529
530 dequeue_rt_stack(p);
531
532 /*
533 * re-enqueue all non-empty rt_rq entities.
534 */
535 for_each_sched_rt_entity(rt_se) {
536 rt_rq = group_rt_rq(rt_se);
537 if (rt_rq && rt_rq->rt_nr_running)
538 enqueue_rt_entity(rt_se);
539 }
540 }
541
542 /*
543 * Put task to the end of the run list without the overhead of dequeue
544 * followed by enqueue.
545 */
546 static
547 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
548 {
549 struct rt_prio_array *array = &rt_rq->active;
550
551 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
552 }
553
554 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
555 {
556 struct sched_rt_entity *rt_se = &p->rt;
557 struct rt_rq *rt_rq;
558
559 for_each_sched_rt_entity(rt_se) {
560 rt_rq = rt_rq_of_se(rt_se);
561 requeue_rt_entity(rt_rq, rt_se);
562 }
563 }
564
565 static void yield_task_rt(struct rq *rq)
566 {
567 requeue_task_rt(rq, rq->curr);
568 }
569
570 #ifdef CONFIG_SMP
571 static int find_lowest_rq(struct task_struct *task);
572
573 static int select_task_rq_rt(struct task_struct *p, int sync)
574 {
575 struct rq *rq = task_rq(p);
576
577 /*
578 * If the current task is an RT task, then
579 * try to see if we can wake this RT task up on another
580 * runqueue. Otherwise simply start this RT task
581 * on its current runqueue.
582 *
583 * We want to avoid overloading runqueues. Even if
584 * the RT task is of higher priority than the current RT task.
585 * RT tasks behave differently than other tasks. If
586 * one gets preempted, we try to push it off to another queue.
587 * So trying to keep a preempting RT task on the same
588 * cache hot CPU will force the running RT task to
589 * a cold CPU. So we waste all the cache for the lower
590 * RT task in hopes of saving some of a RT task
591 * that is just being woken and probably will have
592 * cold cache anyway.
593 */
594 if (unlikely(rt_task(rq->curr)) &&
595 (p->rt.nr_cpus_allowed > 1)) {
596 int cpu = find_lowest_rq(p);
597
598 return (cpu == -1) ? task_cpu(p) : cpu;
599 }
600
601 /*
602 * Otherwise, just let it ride on the affined RQ and the
603 * post-schedule router will push the preempted task away
604 */
605 return task_cpu(p);
606 }
607 #endif /* CONFIG_SMP */
608
609 /*
610 * Preempt the current task with a newly woken task if needed:
611 */
612 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
613 {
614 if (p->prio < rq->curr->prio)
615 resched_task(rq->curr);
616 }
617
618 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
619 struct rt_rq *rt_rq)
620 {
621 struct rt_prio_array *array = &rt_rq->active;
622 struct sched_rt_entity *next = NULL;
623 struct list_head *queue;
624 int idx;
625
626 idx = sched_find_first_bit(array->bitmap);
627 BUG_ON(idx >= MAX_RT_PRIO);
628
629 queue = array->queue + idx;
630 next = list_entry(queue->next, struct sched_rt_entity, run_list);
631
632 return next;
633 }
634
635 static struct task_struct *pick_next_task_rt(struct rq *rq)
636 {
637 struct sched_rt_entity *rt_se;
638 struct task_struct *p;
639 struct rt_rq *rt_rq;
640
641 rt_rq = &rq->rt;
642
643 if (unlikely(!rt_rq->rt_nr_running))
644 return NULL;
645
646 if (rt_rq_throttled(rt_rq))
647 return NULL;
648
649 do {
650 rt_se = pick_next_rt_entity(rq, rt_rq);
651 BUG_ON(!rt_se);
652 rt_rq = group_rt_rq(rt_se);
653 } while (rt_rq);
654
655 p = rt_task_of(rt_se);
656 p->se.exec_start = rq->clock;
657 return p;
658 }
659
660 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
661 {
662 update_curr_rt(rq);
663 p->se.exec_start = 0;
664 }
665
666 #ifdef CONFIG_SMP
667
668 /* Only try algorithms three times */
669 #define RT_MAX_TRIES 3
670
671 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
672 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
673
674 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
675 {
676 if (!task_running(rq, p) &&
677 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
678 (p->rt.nr_cpus_allowed > 1))
679 return 1;
680 return 0;
681 }
682
683 /* Return the second highest RT task, NULL otherwise */
684 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
685 {
686 struct task_struct *next = NULL;
687 struct sched_rt_entity *rt_se;
688 struct rt_prio_array *array;
689 struct rt_rq *rt_rq;
690 int idx;
691
692 for_each_leaf_rt_rq(rt_rq, rq) {
693 array = &rt_rq->active;
694 idx = sched_find_first_bit(array->bitmap);
695 next_idx:
696 if (idx >= MAX_RT_PRIO)
697 continue;
698 if (next && next->prio < idx)
699 continue;
700 list_for_each_entry(rt_se, array->queue + idx, run_list) {
701 struct task_struct *p = rt_task_of(rt_se);
702 if (pick_rt_task(rq, p, cpu)) {
703 next = p;
704 break;
705 }
706 }
707 if (!next) {
708 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
709 goto next_idx;
710 }
711 }
712
713 return next;
714 }
715
716 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
717
718 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
719 {
720 int lowest_prio = -1;
721 int lowest_cpu = -1;
722 int count = 0;
723 int cpu;
724
725 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
726
727 /*
728 * Scan each rq for the lowest prio.
729 */
730 for_each_cpu_mask(cpu, *lowest_mask) {
731 struct rq *rq = cpu_rq(cpu);
732
733 /* We look for lowest RT prio or non-rt CPU */
734 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
735 /*
736 * if we already found a low RT queue
737 * and now we found this non-rt queue
738 * clear the mask and set our bit.
739 * Otherwise just return the queue as is
740 * and the count==1 will cause the algorithm
741 * to use the first bit found.
742 */
743 if (lowest_cpu != -1) {
744 cpus_clear(*lowest_mask);
745 cpu_set(rq->cpu, *lowest_mask);
746 }
747 return 1;
748 }
749
750 /* no locking for now */
751 if ((rq->rt.highest_prio > task->prio)
752 && (rq->rt.highest_prio >= lowest_prio)) {
753 if (rq->rt.highest_prio > lowest_prio) {
754 /* new low - clear old data */
755 lowest_prio = rq->rt.highest_prio;
756 lowest_cpu = cpu;
757 count = 0;
758 }
759 count++;
760 } else
761 cpu_clear(cpu, *lowest_mask);
762 }
763
764 /*
765 * Clear out all the set bits that represent
766 * runqueues that were of higher prio than
767 * the lowest_prio.
768 */
769 if (lowest_cpu > 0) {
770 /*
771 * Perhaps we could add another cpumask op to
772 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
773 * Then that could be optimized to use memset and such.
774 */
775 for_each_cpu_mask(cpu, *lowest_mask) {
776 if (cpu >= lowest_cpu)
777 break;
778 cpu_clear(cpu, *lowest_mask);
779 }
780 }
781
782 return count;
783 }
784
785 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
786 {
787 int first;
788
789 /* "this_cpu" is cheaper to preempt than a remote processor */
790 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
791 return this_cpu;
792
793 first = first_cpu(*mask);
794 if (first != NR_CPUS)
795 return first;
796
797 return -1;
798 }
799
800 static int find_lowest_rq(struct task_struct *task)
801 {
802 struct sched_domain *sd;
803 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
804 int this_cpu = smp_processor_id();
805 int cpu = task_cpu(task);
806 int count = find_lowest_cpus(task, lowest_mask);
807
808 if (!count)
809 return -1; /* No targets found */
810
811 /*
812 * There is no sense in performing an optimal search if only one
813 * target is found.
814 */
815 if (count == 1)
816 return first_cpu(*lowest_mask);
817
818 /*
819 * At this point we have built a mask of cpus representing the
820 * lowest priority tasks in the system. Now we want to elect
821 * the best one based on our affinity and topology.
822 *
823 * We prioritize the last cpu that the task executed on since
824 * it is most likely cache-hot in that location.
825 */
826 if (cpu_isset(cpu, *lowest_mask))
827 return cpu;
828
829 /*
830 * Otherwise, we consult the sched_domains span maps to figure
831 * out which cpu is logically closest to our hot cache data.
832 */
833 if (this_cpu == cpu)
834 this_cpu = -1; /* Skip this_cpu opt if the same */
835
836 for_each_domain(cpu, sd) {
837 if (sd->flags & SD_WAKE_AFFINE) {
838 cpumask_t domain_mask;
839 int best_cpu;
840
841 cpus_and(domain_mask, sd->span, *lowest_mask);
842
843 best_cpu = pick_optimal_cpu(this_cpu,
844 &domain_mask);
845 if (best_cpu != -1)
846 return best_cpu;
847 }
848 }
849
850 /*
851 * And finally, if there were no matches within the domains
852 * just give the caller *something* to work with from the compatible
853 * locations.
854 */
855 return pick_optimal_cpu(this_cpu, lowest_mask);
856 }
857
858 /* Will lock the rq it finds */
859 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
860 {
861 struct rq *lowest_rq = NULL;
862 int tries;
863 int cpu;
864
865 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
866 cpu = find_lowest_rq(task);
867
868 if ((cpu == -1) || (cpu == rq->cpu))
869 break;
870
871 lowest_rq = cpu_rq(cpu);
872
873 /* if the prio of this runqueue changed, try again */
874 if (double_lock_balance(rq, lowest_rq)) {
875 /*
876 * We had to unlock the run queue. In
877 * the mean time, task could have
878 * migrated already or had its affinity changed.
879 * Also make sure that it wasn't scheduled on its rq.
880 */
881 if (unlikely(task_rq(task) != rq ||
882 !cpu_isset(lowest_rq->cpu,
883 task->cpus_allowed) ||
884 task_running(rq, task) ||
885 !task->se.on_rq)) {
886
887 spin_unlock(&lowest_rq->lock);
888 lowest_rq = NULL;
889 break;
890 }
891 }
892
893 /* If this rq is still suitable use it. */
894 if (lowest_rq->rt.highest_prio > task->prio)
895 break;
896
897 /* try again */
898 spin_unlock(&lowest_rq->lock);
899 lowest_rq = NULL;
900 }
901
902 return lowest_rq;
903 }
904
905 /*
906 * If the current CPU has more than one RT task, see if the non
907 * running task can migrate over to a CPU that is running a task
908 * of lesser priority.
909 */
910 static int push_rt_task(struct rq *rq)
911 {
912 struct task_struct *next_task;
913 struct rq *lowest_rq;
914 int ret = 0;
915 int paranoid = RT_MAX_TRIES;
916
917 if (!rq->rt.overloaded)
918 return 0;
919
920 next_task = pick_next_highest_task_rt(rq, -1);
921 if (!next_task)
922 return 0;
923
924 retry:
925 if (unlikely(next_task == rq->curr)) {
926 WARN_ON(1);
927 return 0;
928 }
929
930 /*
931 * It's possible that the next_task slipped in of
932 * higher priority than current. If that's the case
933 * just reschedule current.
934 */
935 if (unlikely(next_task->prio < rq->curr->prio)) {
936 resched_task(rq->curr);
937 return 0;
938 }
939
940 /* We might release rq lock */
941 get_task_struct(next_task);
942
943 /* find_lock_lowest_rq locks the rq if found */
944 lowest_rq = find_lock_lowest_rq(next_task, rq);
945 if (!lowest_rq) {
946 struct task_struct *task;
947 /*
948 * find lock_lowest_rq releases rq->lock
949 * so it is possible that next_task has changed.
950 * If it has, then try again.
951 */
952 task = pick_next_highest_task_rt(rq, -1);
953 if (unlikely(task != next_task) && task && paranoid--) {
954 put_task_struct(next_task);
955 next_task = task;
956 goto retry;
957 }
958 goto out;
959 }
960
961 deactivate_task(rq, next_task, 0);
962 set_task_cpu(next_task, lowest_rq->cpu);
963 activate_task(lowest_rq, next_task, 0);
964
965 resched_task(lowest_rq->curr);
966
967 spin_unlock(&lowest_rq->lock);
968
969 ret = 1;
970 out:
971 put_task_struct(next_task);
972
973 return ret;
974 }
975
976 /*
977 * TODO: Currently we just use the second highest prio task on
978 * the queue, and stop when it can't migrate (or there's
979 * no more RT tasks). There may be a case where a lower
980 * priority RT task has a different affinity than the
981 * higher RT task. In this case the lower RT task could
982 * possibly be able to migrate where as the higher priority
983 * RT task could not. We currently ignore this issue.
984 * Enhancements are welcome!
985 */
986 static void push_rt_tasks(struct rq *rq)
987 {
988 /* push_rt_task will return true if it moved an RT */
989 while (push_rt_task(rq))
990 ;
991 }
992
993 static int pull_rt_task(struct rq *this_rq)
994 {
995 int this_cpu = this_rq->cpu, ret = 0, cpu;
996 struct task_struct *p, *next;
997 struct rq *src_rq;
998
999 if (likely(!rt_overloaded(this_rq)))
1000 return 0;
1001
1002 next = pick_next_task_rt(this_rq);
1003
1004 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1005 if (this_cpu == cpu)
1006 continue;
1007
1008 src_rq = cpu_rq(cpu);
1009 /*
1010 * We can potentially drop this_rq's lock in
1011 * double_lock_balance, and another CPU could
1012 * steal our next task - hence we must cause
1013 * the caller to recalculate the next task
1014 * in that case:
1015 */
1016 if (double_lock_balance(this_rq, src_rq)) {
1017 struct task_struct *old_next = next;
1018
1019 next = pick_next_task_rt(this_rq);
1020 if (next != old_next)
1021 ret = 1;
1022 }
1023
1024 /*
1025 * Are there still pullable RT tasks?
1026 */
1027 if (src_rq->rt.rt_nr_running <= 1)
1028 goto skip;
1029
1030 p = pick_next_highest_task_rt(src_rq, this_cpu);
1031
1032 /*
1033 * Do we have an RT task that preempts
1034 * the to-be-scheduled task?
1035 */
1036 if (p && (!next || (p->prio < next->prio))) {
1037 WARN_ON(p == src_rq->curr);
1038 WARN_ON(!p->se.on_rq);
1039
1040 /*
1041 * There's a chance that p is higher in priority
1042 * than what's currently running on its cpu.
1043 * This is just that p is wakeing up and hasn't
1044 * had a chance to schedule. We only pull
1045 * p if it is lower in priority than the
1046 * current task on the run queue or
1047 * this_rq next task is lower in prio than
1048 * the current task on that rq.
1049 */
1050 if (p->prio < src_rq->curr->prio ||
1051 (next && next->prio < src_rq->curr->prio))
1052 goto skip;
1053
1054 ret = 1;
1055
1056 deactivate_task(src_rq, p, 0);
1057 set_task_cpu(p, this_cpu);
1058 activate_task(this_rq, p, 0);
1059 /*
1060 * We continue with the search, just in
1061 * case there's an even higher prio task
1062 * in another runqueue. (low likelyhood
1063 * but possible)
1064 *
1065 * Update next so that we won't pick a task
1066 * on another cpu with a priority lower (or equal)
1067 * than the one we just picked.
1068 */
1069 next = p;
1070
1071 }
1072 skip:
1073 spin_unlock(&src_rq->lock);
1074 }
1075
1076 return ret;
1077 }
1078
1079 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1080 {
1081 /* Try to pull RT tasks here if we lower this rq's prio */
1082 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1083 pull_rt_task(rq);
1084 }
1085
1086 static void post_schedule_rt(struct rq *rq)
1087 {
1088 /*
1089 * If we have more than one rt_task queued, then
1090 * see if we can push the other rt_tasks off to other CPUS.
1091 * Note we may release the rq lock, and since
1092 * the lock was owned by prev, we need to release it
1093 * first via finish_lock_switch and then reaquire it here.
1094 */
1095 if (unlikely(rq->rt.overloaded)) {
1096 spin_lock_irq(&rq->lock);
1097 push_rt_tasks(rq);
1098 spin_unlock_irq(&rq->lock);
1099 }
1100 }
1101
1102
1103 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1104 {
1105 if (!task_running(rq, p) &&
1106 (p->prio >= rq->rt.highest_prio) &&
1107 rq->rt.overloaded)
1108 push_rt_tasks(rq);
1109 }
1110
1111 static unsigned long
1112 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1113 unsigned long max_load_move,
1114 struct sched_domain *sd, enum cpu_idle_type idle,
1115 int *all_pinned, int *this_best_prio)
1116 {
1117 /* don't touch RT tasks */
1118 return 0;
1119 }
1120
1121 static int
1122 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1123 struct sched_domain *sd, enum cpu_idle_type idle)
1124 {
1125 /* don't touch RT tasks */
1126 return 0;
1127 }
1128
1129 static void set_cpus_allowed_rt(struct task_struct *p,
1130 const cpumask_t *new_mask)
1131 {
1132 int weight = cpus_weight(*new_mask);
1133
1134 BUG_ON(!rt_task(p));
1135
1136 /*
1137 * Update the migration status of the RQ if we have an RT task
1138 * which is running AND changing its weight value.
1139 */
1140 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1141 struct rq *rq = task_rq(p);
1142
1143 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1144 rq->rt.rt_nr_migratory++;
1145 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1146 BUG_ON(!rq->rt.rt_nr_migratory);
1147 rq->rt.rt_nr_migratory--;
1148 }
1149
1150 update_rt_migration(rq);
1151 }
1152
1153 p->cpus_allowed = *new_mask;
1154 p->rt.nr_cpus_allowed = weight;
1155 }
1156
1157 /* Assumes rq->lock is held */
1158 static void join_domain_rt(struct rq *rq)
1159 {
1160 if (rq->rt.overloaded)
1161 rt_set_overload(rq);
1162 }
1163
1164 /* Assumes rq->lock is held */
1165 static void leave_domain_rt(struct rq *rq)
1166 {
1167 if (rq->rt.overloaded)
1168 rt_clear_overload(rq);
1169 }
1170
1171 /*
1172 * When switch from the rt queue, we bring ourselves to a position
1173 * that we might want to pull RT tasks from other runqueues.
1174 */
1175 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1176 int running)
1177 {
1178 /*
1179 * If there are other RT tasks then we will reschedule
1180 * and the scheduling of the other RT tasks will handle
1181 * the balancing. But if we are the last RT task
1182 * we may need to handle the pulling of RT tasks
1183 * now.
1184 */
1185 if (!rq->rt.rt_nr_running)
1186 pull_rt_task(rq);
1187 }
1188 #endif /* CONFIG_SMP */
1189
1190 /*
1191 * When switching a task to RT, we may overload the runqueue
1192 * with RT tasks. In this case we try to push them off to
1193 * other runqueues.
1194 */
1195 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1196 int running)
1197 {
1198 int check_resched = 1;
1199
1200 /*
1201 * If we are already running, then there's nothing
1202 * that needs to be done. But if we are not running
1203 * we may need to preempt the current running task.
1204 * If that current running task is also an RT task
1205 * then see if we can move to another run queue.
1206 */
1207 if (!running) {
1208 #ifdef CONFIG_SMP
1209 if (rq->rt.overloaded && push_rt_task(rq) &&
1210 /* Don't resched if we changed runqueues */
1211 rq != task_rq(p))
1212 check_resched = 0;
1213 #endif /* CONFIG_SMP */
1214 if (check_resched && p->prio < rq->curr->prio)
1215 resched_task(rq->curr);
1216 }
1217 }
1218
1219 /*
1220 * Priority of the task has changed. This may cause
1221 * us to initiate a push or pull.
1222 */
1223 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1224 int oldprio, int running)
1225 {
1226 if (running) {
1227 #ifdef CONFIG_SMP
1228 /*
1229 * If our priority decreases while running, we
1230 * may need to pull tasks to this runqueue.
1231 */
1232 if (oldprio < p->prio)
1233 pull_rt_task(rq);
1234 /*
1235 * If there's a higher priority task waiting to run
1236 * then reschedule. Note, the above pull_rt_task
1237 * can release the rq lock and p could migrate.
1238 * Only reschedule if p is still on the same runqueue.
1239 */
1240 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1241 resched_task(p);
1242 #else
1243 /* For UP simply resched on drop of prio */
1244 if (oldprio < p->prio)
1245 resched_task(p);
1246 #endif /* CONFIG_SMP */
1247 } else {
1248 /*
1249 * This task is not running, but if it is
1250 * greater than the current running task
1251 * then reschedule.
1252 */
1253 if (p->prio < rq->curr->prio)
1254 resched_task(rq->curr);
1255 }
1256 }
1257
1258 static void watchdog(struct rq *rq, struct task_struct *p)
1259 {
1260 unsigned long soft, hard;
1261
1262 if (!p->signal)
1263 return;
1264
1265 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1266 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1267
1268 if (soft != RLIM_INFINITY) {
1269 unsigned long next;
1270
1271 p->rt.timeout++;
1272 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1273 if (p->rt.timeout > next)
1274 p->it_sched_expires = p->se.sum_exec_runtime;
1275 }
1276 }
1277
1278 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1279 {
1280 update_curr_rt(rq);
1281
1282 watchdog(rq, p);
1283
1284 /*
1285 * RR tasks need a special form of timeslice management.
1286 * FIFO tasks have no timeslices.
1287 */
1288 if (p->policy != SCHED_RR)
1289 return;
1290
1291 if (--p->rt.time_slice)
1292 return;
1293
1294 p->rt.time_slice = DEF_TIMESLICE;
1295
1296 /*
1297 * Requeue to the end of queue if we are not the only element
1298 * on the queue:
1299 */
1300 if (p->rt.run_list.prev != p->rt.run_list.next) {
1301 requeue_task_rt(rq, p);
1302 set_tsk_need_resched(p);
1303 }
1304 }
1305
1306 static void set_curr_task_rt(struct rq *rq)
1307 {
1308 struct task_struct *p = rq->curr;
1309
1310 p->se.exec_start = rq->clock;
1311 }
1312
1313 const struct sched_class rt_sched_class = {
1314 .next = &fair_sched_class,
1315 .enqueue_task = enqueue_task_rt,
1316 .dequeue_task = dequeue_task_rt,
1317 .yield_task = yield_task_rt,
1318 #ifdef CONFIG_SMP
1319 .select_task_rq = select_task_rq_rt,
1320 #endif /* CONFIG_SMP */
1321
1322 .check_preempt_curr = check_preempt_curr_rt,
1323
1324 .pick_next_task = pick_next_task_rt,
1325 .put_prev_task = put_prev_task_rt,
1326
1327 #ifdef CONFIG_SMP
1328 .load_balance = load_balance_rt,
1329 .move_one_task = move_one_task_rt,
1330 .set_cpus_allowed = set_cpus_allowed_rt,
1331 .join_domain = join_domain_rt,
1332 .leave_domain = leave_domain_rt,
1333 .pre_schedule = pre_schedule_rt,
1334 .post_schedule = post_schedule_rt,
1335 .task_wake_up = task_wake_up_rt,
1336 .switched_from = switched_from_rt,
1337 #endif
1338
1339 .set_curr_task = set_curr_task_rt,
1340 .task_tick = task_tick_rt,
1341
1342 .prio_changed = prio_changed_rt,
1343 .switched_to = switched_to_rt,
1344 };
This page took 0.078844 seconds and 5 git commands to generate.