Merge branch 'juju' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux13...
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/div64.h>
43 #include <asm/timex.h>
44 #include <asm/io.h>
45
46 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
47
48 EXPORT_SYMBOL(jiffies_64);
49
50 /*
51 * per-CPU timer vector definitions:
52 */
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
59
60 typedef struct tvec_s {
61 struct list_head vec[TVN_SIZE];
62 } tvec_t;
63
64 typedef struct tvec_root_s {
65 struct list_head vec[TVR_SIZE];
66 } tvec_root_t;
67
68 struct tvec_t_base_s {
69 spinlock_t lock;
70 struct timer_list *running_timer;
71 unsigned long timer_jiffies;
72 tvec_root_t tv1;
73 tvec_t tv2;
74 tvec_t tv3;
75 tvec_t tv4;
76 tvec_t tv5;
77 } ____cacheline_aligned;
78
79 typedef struct tvec_t_base_s tvec_base_t;
80
81 tvec_base_t boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
84
85 /*
86 * Note that all tvec_bases is 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
89 */
90 #define TBASE_DEFERRABLE_FLAG (0x1)
91
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(tvec_base_t *base)
94 {
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97
98 static inline tvec_base_t *tbase_get_base(tvec_base_t *base)
99 {
100 return ((tvec_base_t *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102
103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 timer->base = ((tvec_base_t *)((unsigned long)(timer->base) |
106 TBASE_DEFERRABLE_FLAG));
107 }
108
109 static inline void
110 timer_set_base(struct timer_list *timer, tvec_base_t *new_base)
111 {
112 timer->base = (tvec_base_t *)((unsigned long)(new_base) |
113 tbase_get_deferrable(timer->base));
114 }
115
116 /**
117 * __round_jiffies - function to round jiffies to a full second
118 * @j: the time in (absolute) jiffies that should be rounded
119 * @cpu: the processor number on which the timeout will happen
120 *
121 * __round_jiffies() rounds an absolute time in the future (in jiffies)
122 * up or down to (approximately) full seconds. This is useful for timers
123 * for which the exact time they fire does not matter too much, as long as
124 * they fire approximately every X seconds.
125 *
126 * By rounding these timers to whole seconds, all such timers will fire
127 * at the same time, rather than at various times spread out. The goal
128 * of this is to have the CPU wake up less, which saves power.
129 *
130 * The exact rounding is skewed for each processor to avoid all
131 * processors firing at the exact same time, which could lead
132 * to lock contention or spurious cache line bouncing.
133 *
134 * The return value is the rounded version of the @j parameter.
135 */
136 unsigned long __round_jiffies(unsigned long j, int cpu)
137 {
138 int rem;
139 unsigned long original = j;
140
141 /*
142 * We don't want all cpus firing their timers at once hitting the
143 * same lock or cachelines, so we skew each extra cpu with an extra
144 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
145 * already did this.
146 * The skew is done by adding 3*cpunr, then round, then subtract this
147 * extra offset again.
148 */
149 j += cpu * 3;
150
151 rem = j % HZ;
152
153 /*
154 * If the target jiffie is just after a whole second (which can happen
155 * due to delays of the timer irq, long irq off times etc etc) then
156 * we should round down to the whole second, not up. Use 1/4th second
157 * as cutoff for this rounding as an extreme upper bound for this.
158 */
159 if (rem < HZ/4) /* round down */
160 j = j - rem;
161 else /* round up */
162 j = j - rem + HZ;
163
164 /* now that we have rounded, subtract the extra skew again */
165 j -= cpu * 3;
166
167 if (j <= jiffies) /* rounding ate our timeout entirely; */
168 return original;
169 return j;
170 }
171 EXPORT_SYMBOL_GPL(__round_jiffies);
172
173 /**
174 * __round_jiffies_relative - function to round jiffies to a full second
175 * @j: the time in (relative) jiffies that should be rounded
176 * @cpu: the processor number on which the timeout will happen
177 *
178 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
182 *
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
186 *
187 * The exact rounding is skewed for each processor to avoid all
188 * processors firing at the exact same time, which could lead
189 * to lock contention or spurious cache line bouncing.
190 *
191 * The return value is the rounded version of the @j parameter.
192 */
193 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
194 {
195 /*
196 * In theory the following code can skip a jiffy in case jiffies
197 * increments right between the addition and the later subtraction.
198 * However since the entire point of this function is to use approximate
199 * timeouts, it's entirely ok to not handle that.
200 */
201 return __round_jiffies(j + jiffies, cpu) - jiffies;
202 }
203 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
204
205 /**
206 * round_jiffies - function to round jiffies to a full second
207 * @j: the time in (absolute) jiffies that should be rounded
208 *
209 * round_jiffies() rounds an absolute time in the future (in jiffies)
210 * up or down to (approximately) full seconds. This is useful for timers
211 * for which the exact time they fire does not matter too much, as long as
212 * they fire approximately every X seconds.
213 *
214 * By rounding these timers to whole seconds, all such timers will fire
215 * at the same time, rather than at various times spread out. The goal
216 * of this is to have the CPU wake up less, which saves power.
217 *
218 * The return value is the rounded version of the @j parameter.
219 */
220 unsigned long round_jiffies(unsigned long j)
221 {
222 return __round_jiffies(j, raw_smp_processor_id());
223 }
224 EXPORT_SYMBOL_GPL(round_jiffies);
225
226 /**
227 * round_jiffies_relative - function to round jiffies to a full second
228 * @j: the time in (relative) jiffies that should be rounded
229 *
230 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
231 * up or down to (approximately) full seconds. This is useful for timers
232 * for which the exact time they fire does not matter too much, as long as
233 * they fire approximately every X seconds.
234 *
235 * By rounding these timers to whole seconds, all such timers will fire
236 * at the same time, rather than at various times spread out. The goal
237 * of this is to have the CPU wake up less, which saves power.
238 *
239 * The return value is the rounded version of the @j parameter.
240 */
241 unsigned long round_jiffies_relative(unsigned long j)
242 {
243 return __round_jiffies_relative(j, raw_smp_processor_id());
244 }
245 EXPORT_SYMBOL_GPL(round_jiffies_relative);
246
247
248 static inline void set_running_timer(tvec_base_t *base,
249 struct timer_list *timer)
250 {
251 #ifdef CONFIG_SMP
252 base->running_timer = timer;
253 #endif
254 }
255
256 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
257 {
258 unsigned long expires = timer->expires;
259 unsigned long idx = expires - base->timer_jiffies;
260 struct list_head *vec;
261
262 if (idx < TVR_SIZE) {
263 int i = expires & TVR_MASK;
264 vec = base->tv1.vec + i;
265 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
266 int i = (expires >> TVR_BITS) & TVN_MASK;
267 vec = base->tv2.vec + i;
268 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
269 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
270 vec = base->tv3.vec + i;
271 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
272 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
273 vec = base->tv4.vec + i;
274 } else if ((signed long) idx < 0) {
275 /*
276 * Can happen if you add a timer with expires == jiffies,
277 * or you set a timer to go off in the past
278 */
279 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
280 } else {
281 int i;
282 /* If the timeout is larger than 0xffffffff on 64-bit
283 * architectures then we use the maximum timeout:
284 */
285 if (idx > 0xffffffffUL) {
286 idx = 0xffffffffUL;
287 expires = idx + base->timer_jiffies;
288 }
289 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
290 vec = base->tv5.vec + i;
291 }
292 /*
293 * Timers are FIFO:
294 */
295 list_add_tail(&timer->entry, vec);
296 }
297
298 #ifdef CONFIG_TIMER_STATS
299 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
300 {
301 if (timer->start_site)
302 return;
303
304 timer->start_site = addr;
305 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
306 timer->start_pid = current->pid;
307 }
308 #endif
309
310 /**
311 * init_timer - initialize a timer.
312 * @timer: the timer to be initialized
313 *
314 * init_timer() must be done to a timer prior calling *any* of the
315 * other timer functions.
316 */
317 void fastcall init_timer(struct timer_list *timer)
318 {
319 timer->entry.next = NULL;
320 timer->base = __raw_get_cpu_var(tvec_bases);
321 #ifdef CONFIG_TIMER_STATS
322 timer->start_site = NULL;
323 timer->start_pid = -1;
324 memset(timer->start_comm, 0, TASK_COMM_LEN);
325 #endif
326 }
327 EXPORT_SYMBOL(init_timer);
328
329 void fastcall init_timer_deferrable(struct timer_list *timer)
330 {
331 init_timer(timer);
332 timer_set_deferrable(timer);
333 }
334 EXPORT_SYMBOL(init_timer_deferrable);
335
336 static inline void detach_timer(struct timer_list *timer,
337 int clear_pending)
338 {
339 struct list_head *entry = &timer->entry;
340
341 __list_del(entry->prev, entry->next);
342 if (clear_pending)
343 entry->next = NULL;
344 entry->prev = LIST_POISON2;
345 }
346
347 /*
348 * We are using hashed locking: holding per_cpu(tvec_bases).lock
349 * means that all timers which are tied to this base via timer->base are
350 * locked, and the base itself is locked too.
351 *
352 * So __run_timers/migrate_timers can safely modify all timers which could
353 * be found on ->tvX lists.
354 *
355 * When the timer's base is locked, and the timer removed from list, it is
356 * possible to set timer->base = NULL and drop the lock: the timer remains
357 * locked.
358 */
359 static tvec_base_t *lock_timer_base(struct timer_list *timer,
360 unsigned long *flags)
361 __acquires(timer->base->lock)
362 {
363 tvec_base_t *base;
364
365 for (;;) {
366 tvec_base_t *prelock_base = timer->base;
367 base = tbase_get_base(prelock_base);
368 if (likely(base != NULL)) {
369 spin_lock_irqsave(&base->lock, *flags);
370 if (likely(prelock_base == timer->base))
371 return base;
372 /* The timer has migrated to another CPU */
373 spin_unlock_irqrestore(&base->lock, *flags);
374 }
375 cpu_relax();
376 }
377 }
378
379 int __mod_timer(struct timer_list *timer, unsigned long expires)
380 {
381 tvec_base_t *base, *new_base;
382 unsigned long flags;
383 int ret = 0;
384
385 timer_stats_timer_set_start_info(timer);
386 BUG_ON(!timer->function);
387
388 base = lock_timer_base(timer, &flags);
389
390 if (timer_pending(timer)) {
391 detach_timer(timer, 0);
392 ret = 1;
393 }
394
395 new_base = __get_cpu_var(tvec_bases);
396
397 if (base != new_base) {
398 /*
399 * We are trying to schedule the timer on the local CPU.
400 * However we can't change timer's base while it is running,
401 * otherwise del_timer_sync() can't detect that the timer's
402 * handler yet has not finished. This also guarantees that
403 * the timer is serialized wrt itself.
404 */
405 if (likely(base->running_timer != timer)) {
406 /* See the comment in lock_timer_base() */
407 timer_set_base(timer, NULL);
408 spin_unlock(&base->lock);
409 base = new_base;
410 spin_lock(&base->lock);
411 timer_set_base(timer, base);
412 }
413 }
414
415 timer->expires = expires;
416 internal_add_timer(base, timer);
417 spin_unlock_irqrestore(&base->lock, flags);
418
419 return ret;
420 }
421
422 EXPORT_SYMBOL(__mod_timer);
423
424 /**
425 * add_timer_on - start a timer on a particular CPU
426 * @timer: the timer to be added
427 * @cpu: the CPU to start it on
428 *
429 * This is not very scalable on SMP. Double adds are not possible.
430 */
431 void add_timer_on(struct timer_list *timer, int cpu)
432 {
433 tvec_base_t *base = per_cpu(tvec_bases, cpu);
434 unsigned long flags;
435
436 timer_stats_timer_set_start_info(timer);
437 BUG_ON(timer_pending(timer) || !timer->function);
438 spin_lock_irqsave(&base->lock, flags);
439 timer_set_base(timer, base);
440 internal_add_timer(base, timer);
441 spin_unlock_irqrestore(&base->lock, flags);
442 }
443
444
445 /**
446 * mod_timer - modify a timer's timeout
447 * @timer: the timer to be modified
448 * @expires: new timeout in jiffies
449 *
450 * mod_timer() is a more efficient way to update the expire field of an
451 * active timer (if the timer is inactive it will be activated)
452 *
453 * mod_timer(timer, expires) is equivalent to:
454 *
455 * del_timer(timer); timer->expires = expires; add_timer(timer);
456 *
457 * Note that if there are multiple unserialized concurrent users of the
458 * same timer, then mod_timer() is the only safe way to modify the timeout,
459 * since add_timer() cannot modify an already running timer.
460 *
461 * The function returns whether it has modified a pending timer or not.
462 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
463 * active timer returns 1.)
464 */
465 int mod_timer(struct timer_list *timer, unsigned long expires)
466 {
467 BUG_ON(!timer->function);
468
469 timer_stats_timer_set_start_info(timer);
470 /*
471 * This is a common optimization triggered by the
472 * networking code - if the timer is re-modified
473 * to be the same thing then just return:
474 */
475 if (timer->expires == expires && timer_pending(timer))
476 return 1;
477
478 return __mod_timer(timer, expires);
479 }
480
481 EXPORT_SYMBOL(mod_timer);
482
483 /**
484 * del_timer - deactive a timer.
485 * @timer: the timer to be deactivated
486 *
487 * del_timer() deactivates a timer - this works on both active and inactive
488 * timers.
489 *
490 * The function returns whether it has deactivated a pending timer or not.
491 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
492 * active timer returns 1.)
493 */
494 int del_timer(struct timer_list *timer)
495 {
496 tvec_base_t *base;
497 unsigned long flags;
498 int ret = 0;
499
500 timer_stats_timer_clear_start_info(timer);
501 if (timer_pending(timer)) {
502 base = lock_timer_base(timer, &flags);
503 if (timer_pending(timer)) {
504 detach_timer(timer, 1);
505 ret = 1;
506 }
507 spin_unlock_irqrestore(&base->lock, flags);
508 }
509
510 return ret;
511 }
512
513 EXPORT_SYMBOL(del_timer);
514
515 #ifdef CONFIG_SMP
516 /**
517 * try_to_del_timer_sync - Try to deactivate a timer
518 * @timer: timer do del
519 *
520 * This function tries to deactivate a timer. Upon successful (ret >= 0)
521 * exit the timer is not queued and the handler is not running on any CPU.
522 *
523 * It must not be called from interrupt contexts.
524 */
525 int try_to_del_timer_sync(struct timer_list *timer)
526 {
527 tvec_base_t *base;
528 unsigned long flags;
529 int ret = -1;
530
531 base = lock_timer_base(timer, &flags);
532
533 if (base->running_timer == timer)
534 goto out;
535
536 ret = 0;
537 if (timer_pending(timer)) {
538 detach_timer(timer, 1);
539 ret = 1;
540 }
541 out:
542 spin_unlock_irqrestore(&base->lock, flags);
543
544 return ret;
545 }
546
547 EXPORT_SYMBOL(try_to_del_timer_sync);
548
549 /**
550 * del_timer_sync - deactivate a timer and wait for the handler to finish.
551 * @timer: the timer to be deactivated
552 *
553 * This function only differs from del_timer() on SMP: besides deactivating
554 * the timer it also makes sure the handler has finished executing on other
555 * CPUs.
556 *
557 * Synchronization rules: Callers must prevent restarting of the timer,
558 * otherwise this function is meaningless. It must not be called from
559 * interrupt contexts. The caller must not hold locks which would prevent
560 * completion of the timer's handler. The timer's handler must not call
561 * add_timer_on(). Upon exit the timer is not queued and the handler is
562 * not running on any CPU.
563 *
564 * The function returns whether it has deactivated a pending timer or not.
565 */
566 int del_timer_sync(struct timer_list *timer)
567 {
568 for (;;) {
569 int ret = try_to_del_timer_sync(timer);
570 if (ret >= 0)
571 return ret;
572 cpu_relax();
573 }
574 }
575
576 EXPORT_SYMBOL(del_timer_sync);
577 #endif
578
579 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
580 {
581 /* cascade all the timers from tv up one level */
582 struct timer_list *timer, *tmp;
583 struct list_head tv_list;
584
585 list_replace_init(tv->vec + index, &tv_list);
586
587 /*
588 * We are removing _all_ timers from the list, so we
589 * don't have to detach them individually.
590 */
591 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
592 BUG_ON(tbase_get_base(timer->base) != base);
593 internal_add_timer(base, timer);
594 }
595
596 return index;
597 }
598
599 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
600
601 /**
602 * __run_timers - run all expired timers (if any) on this CPU.
603 * @base: the timer vector to be processed.
604 *
605 * This function cascades all vectors and executes all expired timer
606 * vectors.
607 */
608 static inline void __run_timers(tvec_base_t *base)
609 {
610 struct timer_list *timer;
611
612 spin_lock_irq(&base->lock);
613 while (time_after_eq(jiffies, base->timer_jiffies)) {
614 struct list_head work_list;
615 struct list_head *head = &work_list;
616 int index = base->timer_jiffies & TVR_MASK;
617
618 /*
619 * Cascade timers:
620 */
621 if (!index &&
622 (!cascade(base, &base->tv2, INDEX(0))) &&
623 (!cascade(base, &base->tv3, INDEX(1))) &&
624 !cascade(base, &base->tv4, INDEX(2)))
625 cascade(base, &base->tv5, INDEX(3));
626 ++base->timer_jiffies;
627 list_replace_init(base->tv1.vec + index, &work_list);
628 while (!list_empty(head)) {
629 void (*fn)(unsigned long);
630 unsigned long data;
631
632 timer = list_first_entry(head, struct timer_list,entry);
633 fn = timer->function;
634 data = timer->data;
635
636 timer_stats_account_timer(timer);
637
638 set_running_timer(base, timer);
639 detach_timer(timer, 1);
640 spin_unlock_irq(&base->lock);
641 {
642 int preempt_count = preempt_count();
643 fn(data);
644 if (preempt_count != preempt_count()) {
645 printk(KERN_WARNING "huh, entered %p "
646 "with preempt_count %08x, exited"
647 " with %08x?\n",
648 fn, preempt_count,
649 preempt_count());
650 BUG();
651 }
652 }
653 spin_lock_irq(&base->lock);
654 }
655 }
656 set_running_timer(base, NULL);
657 spin_unlock_irq(&base->lock);
658 }
659
660 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
661 /*
662 * Find out when the next timer event is due to happen. This
663 * is used on S/390 to stop all activity when a cpus is idle.
664 * This functions needs to be called disabled.
665 */
666 static unsigned long __next_timer_interrupt(tvec_base_t *base)
667 {
668 unsigned long timer_jiffies = base->timer_jiffies;
669 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
670 int index, slot, array, found = 0;
671 struct timer_list *nte;
672 tvec_t *varray[4];
673
674 /* Look for timer events in tv1. */
675 index = slot = timer_jiffies & TVR_MASK;
676 do {
677 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
678 if (tbase_get_deferrable(nte->base))
679 continue;
680
681 found = 1;
682 expires = nte->expires;
683 /* Look at the cascade bucket(s)? */
684 if (!index || slot < index)
685 goto cascade;
686 return expires;
687 }
688 slot = (slot + 1) & TVR_MASK;
689 } while (slot != index);
690
691 cascade:
692 /* Calculate the next cascade event */
693 if (index)
694 timer_jiffies += TVR_SIZE - index;
695 timer_jiffies >>= TVR_BITS;
696
697 /* Check tv2-tv5. */
698 varray[0] = &base->tv2;
699 varray[1] = &base->tv3;
700 varray[2] = &base->tv4;
701 varray[3] = &base->tv5;
702
703 for (array = 0; array < 4; array++) {
704 tvec_t *varp = varray[array];
705
706 index = slot = timer_jiffies & TVN_MASK;
707 do {
708 list_for_each_entry(nte, varp->vec + slot, entry) {
709 found = 1;
710 if (time_before(nte->expires, expires))
711 expires = nte->expires;
712 }
713 /*
714 * Do we still search for the first timer or are
715 * we looking up the cascade buckets ?
716 */
717 if (found) {
718 /* Look at the cascade bucket(s)? */
719 if (!index || slot < index)
720 break;
721 return expires;
722 }
723 slot = (slot + 1) & TVN_MASK;
724 } while (slot != index);
725
726 if (index)
727 timer_jiffies += TVN_SIZE - index;
728 timer_jiffies >>= TVN_BITS;
729 }
730 return expires;
731 }
732
733 /*
734 * Check, if the next hrtimer event is before the next timer wheel
735 * event:
736 */
737 static unsigned long cmp_next_hrtimer_event(unsigned long now,
738 unsigned long expires)
739 {
740 ktime_t hr_delta = hrtimer_get_next_event();
741 struct timespec tsdelta;
742 unsigned long delta;
743
744 if (hr_delta.tv64 == KTIME_MAX)
745 return expires;
746
747 /*
748 * Expired timer available, let it expire in the next tick
749 */
750 if (hr_delta.tv64 <= 0)
751 return now + 1;
752
753 tsdelta = ktime_to_timespec(hr_delta);
754 delta = timespec_to_jiffies(&tsdelta);
755 /*
756 * Take rounding errors in to account and make sure, that it
757 * expires in the next tick. Otherwise we go into an endless
758 * ping pong due to tick_nohz_stop_sched_tick() retriggering
759 * the timer softirq
760 */
761 if (delta < 1)
762 delta = 1;
763 now += delta;
764 if (time_before(now, expires))
765 return now;
766 return expires;
767 }
768
769 /**
770 * next_timer_interrupt - return the jiffy of the next pending timer
771 * @now: current time (in jiffies)
772 */
773 unsigned long get_next_timer_interrupt(unsigned long now)
774 {
775 tvec_base_t *base = __get_cpu_var(tvec_bases);
776 unsigned long expires;
777
778 spin_lock(&base->lock);
779 expires = __next_timer_interrupt(base);
780 spin_unlock(&base->lock);
781
782 if (time_before_eq(expires, now))
783 return now;
784
785 return cmp_next_hrtimer_event(now, expires);
786 }
787
788 #ifdef CONFIG_NO_IDLE_HZ
789 unsigned long next_timer_interrupt(void)
790 {
791 return get_next_timer_interrupt(jiffies);
792 }
793 #endif
794
795 #endif
796
797 /*
798 * Called from the timer interrupt handler to charge one tick to the current
799 * process. user_tick is 1 if the tick is user time, 0 for system.
800 */
801 void update_process_times(int user_tick)
802 {
803 struct task_struct *p = current;
804 int cpu = smp_processor_id();
805
806 /* Note: this timer irq context must be accounted for as well. */
807 if (user_tick)
808 account_user_time(p, jiffies_to_cputime(1));
809 else
810 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
811 run_local_timers();
812 if (rcu_pending(cpu))
813 rcu_check_callbacks(cpu, user_tick);
814 scheduler_tick();
815 run_posix_cpu_timers(p);
816 }
817
818 /*
819 * Nr of active tasks - counted in fixed-point numbers
820 */
821 static unsigned long count_active_tasks(void)
822 {
823 return nr_active() * FIXED_1;
824 }
825
826 /*
827 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
828 * imply that avenrun[] is the standard name for this kind of thing.
829 * Nothing else seems to be standardized: the fractional size etc
830 * all seem to differ on different machines.
831 *
832 * Requires xtime_lock to access.
833 */
834 unsigned long avenrun[3];
835
836 EXPORT_SYMBOL(avenrun);
837
838 /*
839 * calc_load - given tick count, update the avenrun load estimates.
840 * This is called while holding a write_lock on xtime_lock.
841 */
842 static inline void calc_load(unsigned long ticks)
843 {
844 unsigned long active_tasks; /* fixed-point */
845 static int count = LOAD_FREQ;
846
847 count -= ticks;
848 if (unlikely(count < 0)) {
849 active_tasks = count_active_tasks();
850 do {
851 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
852 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
853 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
854 count += LOAD_FREQ;
855 } while (count < 0);
856 }
857 }
858
859 /*
860 * This function runs timers and the timer-tq in bottom half context.
861 */
862 static void run_timer_softirq(struct softirq_action *h)
863 {
864 tvec_base_t *base = __get_cpu_var(tvec_bases);
865
866 hrtimer_run_queues();
867
868 if (time_after_eq(jiffies, base->timer_jiffies))
869 __run_timers(base);
870 }
871
872 /*
873 * Called by the local, per-CPU timer interrupt on SMP.
874 */
875 void run_local_timers(void)
876 {
877 raise_softirq(TIMER_SOFTIRQ);
878 softlockup_tick();
879 }
880
881 /*
882 * Called by the timer interrupt. xtime_lock must already be taken
883 * by the timer IRQ!
884 */
885 static inline void update_times(unsigned long ticks)
886 {
887 update_wall_time();
888 calc_load(ticks);
889 }
890
891 /*
892 * The 64-bit jiffies value is not atomic - you MUST NOT read it
893 * without sampling the sequence number in xtime_lock.
894 * jiffies is defined in the linker script...
895 */
896
897 void do_timer(unsigned long ticks)
898 {
899 jiffies_64 += ticks;
900 update_times(ticks);
901 }
902
903 #ifdef __ARCH_WANT_SYS_ALARM
904
905 /*
906 * For backwards compatibility? This can be done in libc so Alpha
907 * and all newer ports shouldn't need it.
908 */
909 asmlinkage unsigned long sys_alarm(unsigned int seconds)
910 {
911 return alarm_setitimer(seconds);
912 }
913
914 #endif
915
916 #ifndef __alpha__
917
918 /*
919 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
920 * should be moved into arch/i386 instead?
921 */
922
923 /**
924 * sys_getpid - return the thread group id of the current process
925 *
926 * Note, despite the name, this returns the tgid not the pid. The tgid and
927 * the pid are identical unless CLONE_THREAD was specified on clone() in
928 * which case the tgid is the same in all threads of the same group.
929 *
930 * This is SMP safe as current->tgid does not change.
931 */
932 asmlinkage long sys_getpid(void)
933 {
934 return current->tgid;
935 }
936
937 /*
938 * Accessing ->real_parent is not SMP-safe, it could
939 * change from under us. However, we can use a stale
940 * value of ->real_parent under rcu_read_lock(), see
941 * release_task()->call_rcu(delayed_put_task_struct).
942 */
943 asmlinkage long sys_getppid(void)
944 {
945 int pid;
946
947 rcu_read_lock();
948 pid = rcu_dereference(current->real_parent)->tgid;
949 rcu_read_unlock();
950
951 return pid;
952 }
953
954 asmlinkage long sys_getuid(void)
955 {
956 /* Only we change this so SMP safe */
957 return current->uid;
958 }
959
960 asmlinkage long sys_geteuid(void)
961 {
962 /* Only we change this so SMP safe */
963 return current->euid;
964 }
965
966 asmlinkage long sys_getgid(void)
967 {
968 /* Only we change this so SMP safe */
969 return current->gid;
970 }
971
972 asmlinkage long sys_getegid(void)
973 {
974 /* Only we change this so SMP safe */
975 return current->egid;
976 }
977
978 #endif
979
980 static void process_timeout(unsigned long __data)
981 {
982 wake_up_process((struct task_struct *)__data);
983 }
984
985 /**
986 * schedule_timeout - sleep until timeout
987 * @timeout: timeout value in jiffies
988 *
989 * Make the current task sleep until @timeout jiffies have
990 * elapsed. The routine will return immediately unless
991 * the current task state has been set (see set_current_state()).
992 *
993 * You can set the task state as follows -
994 *
995 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
996 * pass before the routine returns. The routine will return 0
997 *
998 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
999 * delivered to the current task. In this case the remaining time
1000 * in jiffies will be returned, or 0 if the timer expired in time
1001 *
1002 * The current task state is guaranteed to be TASK_RUNNING when this
1003 * routine returns.
1004 *
1005 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1006 * the CPU away without a bound on the timeout. In this case the return
1007 * value will be %MAX_SCHEDULE_TIMEOUT.
1008 *
1009 * In all cases the return value is guaranteed to be non-negative.
1010 */
1011 fastcall signed long __sched schedule_timeout(signed long timeout)
1012 {
1013 struct timer_list timer;
1014 unsigned long expire;
1015
1016 switch (timeout)
1017 {
1018 case MAX_SCHEDULE_TIMEOUT:
1019 /*
1020 * These two special cases are useful to be comfortable
1021 * in the caller. Nothing more. We could take
1022 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1023 * but I' d like to return a valid offset (>=0) to allow
1024 * the caller to do everything it want with the retval.
1025 */
1026 schedule();
1027 goto out;
1028 default:
1029 /*
1030 * Another bit of PARANOID. Note that the retval will be
1031 * 0 since no piece of kernel is supposed to do a check
1032 * for a negative retval of schedule_timeout() (since it
1033 * should never happens anyway). You just have the printk()
1034 * that will tell you if something is gone wrong and where.
1035 */
1036 if (timeout < 0) {
1037 printk(KERN_ERR "schedule_timeout: wrong timeout "
1038 "value %lx\n", timeout);
1039 dump_stack();
1040 current->state = TASK_RUNNING;
1041 goto out;
1042 }
1043 }
1044
1045 expire = timeout + jiffies;
1046
1047 setup_timer(&timer, process_timeout, (unsigned long)current);
1048 __mod_timer(&timer, expire);
1049 schedule();
1050 del_singleshot_timer_sync(&timer);
1051
1052 timeout = expire - jiffies;
1053
1054 out:
1055 return timeout < 0 ? 0 : timeout;
1056 }
1057 EXPORT_SYMBOL(schedule_timeout);
1058
1059 /*
1060 * We can use __set_current_state() here because schedule_timeout() calls
1061 * schedule() unconditionally.
1062 */
1063 signed long __sched schedule_timeout_interruptible(signed long timeout)
1064 {
1065 __set_current_state(TASK_INTERRUPTIBLE);
1066 return schedule_timeout(timeout);
1067 }
1068 EXPORT_SYMBOL(schedule_timeout_interruptible);
1069
1070 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1071 {
1072 __set_current_state(TASK_UNINTERRUPTIBLE);
1073 return schedule_timeout(timeout);
1074 }
1075 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1076
1077 /* Thread ID - the internal kernel "pid" */
1078 asmlinkage long sys_gettid(void)
1079 {
1080 return current->pid;
1081 }
1082
1083 /**
1084 * do_sysinfo - fill in sysinfo struct
1085 * @info: pointer to buffer to fill
1086 */
1087 int do_sysinfo(struct sysinfo *info)
1088 {
1089 unsigned long mem_total, sav_total;
1090 unsigned int mem_unit, bitcount;
1091 unsigned long seq;
1092
1093 memset(info, 0, sizeof(struct sysinfo));
1094
1095 do {
1096 struct timespec tp;
1097 seq = read_seqbegin(&xtime_lock);
1098
1099 /*
1100 * This is annoying. The below is the same thing
1101 * posix_get_clock_monotonic() does, but it wants to
1102 * take the lock which we want to cover the loads stuff
1103 * too.
1104 */
1105
1106 getnstimeofday(&tp);
1107 tp.tv_sec += wall_to_monotonic.tv_sec;
1108 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1109 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1110 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1111 tp.tv_sec++;
1112 }
1113 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1114
1115 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1116 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1117 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1118
1119 info->procs = nr_threads;
1120 } while (read_seqretry(&xtime_lock, seq));
1121
1122 si_meminfo(info);
1123 si_swapinfo(info);
1124
1125 /*
1126 * If the sum of all the available memory (i.e. ram + swap)
1127 * is less than can be stored in a 32 bit unsigned long then
1128 * we can be binary compatible with 2.2.x kernels. If not,
1129 * well, in that case 2.2.x was broken anyways...
1130 *
1131 * -Erik Andersen <andersee@debian.org>
1132 */
1133
1134 mem_total = info->totalram + info->totalswap;
1135 if (mem_total < info->totalram || mem_total < info->totalswap)
1136 goto out;
1137 bitcount = 0;
1138 mem_unit = info->mem_unit;
1139 while (mem_unit > 1) {
1140 bitcount++;
1141 mem_unit >>= 1;
1142 sav_total = mem_total;
1143 mem_total <<= 1;
1144 if (mem_total < sav_total)
1145 goto out;
1146 }
1147
1148 /*
1149 * If mem_total did not overflow, multiply all memory values by
1150 * info->mem_unit and set it to 1. This leaves things compatible
1151 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1152 * kernels...
1153 */
1154
1155 info->mem_unit = 1;
1156 info->totalram <<= bitcount;
1157 info->freeram <<= bitcount;
1158 info->sharedram <<= bitcount;
1159 info->bufferram <<= bitcount;
1160 info->totalswap <<= bitcount;
1161 info->freeswap <<= bitcount;
1162 info->totalhigh <<= bitcount;
1163 info->freehigh <<= bitcount;
1164
1165 out:
1166 return 0;
1167 }
1168
1169 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1170 {
1171 struct sysinfo val;
1172
1173 do_sysinfo(&val);
1174
1175 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1176 return -EFAULT;
1177
1178 return 0;
1179 }
1180
1181 /*
1182 * lockdep: we want to track each per-CPU base as a separate lock-class,
1183 * but timer-bases are kmalloc()-ed, so we need to attach separate
1184 * keys to them:
1185 */
1186 static struct lock_class_key base_lock_keys[NR_CPUS];
1187
1188 static int __devinit init_timers_cpu(int cpu)
1189 {
1190 int j;
1191 tvec_base_t *base;
1192 static char __devinitdata tvec_base_done[NR_CPUS];
1193
1194 if (!tvec_base_done[cpu]) {
1195 static char boot_done;
1196
1197 if (boot_done) {
1198 /*
1199 * The APs use this path later in boot
1200 */
1201 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1202 cpu_to_node(cpu));
1203 if (!base)
1204 return -ENOMEM;
1205
1206 /* Make sure that tvec_base is 2 byte aligned */
1207 if (tbase_get_deferrable(base)) {
1208 WARN_ON(1);
1209 kfree(base);
1210 return -ENOMEM;
1211 }
1212 memset(base, 0, sizeof(*base));
1213 per_cpu(tvec_bases, cpu) = base;
1214 } else {
1215 /*
1216 * This is for the boot CPU - we use compile-time
1217 * static initialisation because per-cpu memory isn't
1218 * ready yet and because the memory allocators are not
1219 * initialised either.
1220 */
1221 boot_done = 1;
1222 base = &boot_tvec_bases;
1223 }
1224 tvec_base_done[cpu] = 1;
1225 } else {
1226 base = per_cpu(tvec_bases, cpu);
1227 }
1228
1229 spin_lock_init(&base->lock);
1230 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1231
1232 for (j = 0; j < TVN_SIZE; j++) {
1233 INIT_LIST_HEAD(base->tv5.vec + j);
1234 INIT_LIST_HEAD(base->tv4.vec + j);
1235 INIT_LIST_HEAD(base->tv3.vec + j);
1236 INIT_LIST_HEAD(base->tv2.vec + j);
1237 }
1238 for (j = 0; j < TVR_SIZE; j++)
1239 INIT_LIST_HEAD(base->tv1.vec + j);
1240
1241 base->timer_jiffies = jiffies;
1242 return 0;
1243 }
1244
1245 #ifdef CONFIG_HOTPLUG_CPU
1246 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1247 {
1248 struct timer_list *timer;
1249
1250 while (!list_empty(head)) {
1251 timer = list_first_entry(head, struct timer_list, entry);
1252 detach_timer(timer, 0);
1253 timer_set_base(timer, new_base);
1254 internal_add_timer(new_base, timer);
1255 }
1256 }
1257
1258 static void __devinit migrate_timers(int cpu)
1259 {
1260 tvec_base_t *old_base;
1261 tvec_base_t *new_base;
1262 int i;
1263
1264 BUG_ON(cpu_online(cpu));
1265 old_base = per_cpu(tvec_bases, cpu);
1266 new_base = get_cpu_var(tvec_bases);
1267
1268 local_irq_disable();
1269 double_spin_lock(&new_base->lock, &old_base->lock,
1270 smp_processor_id() < cpu);
1271
1272 BUG_ON(old_base->running_timer);
1273
1274 for (i = 0; i < TVR_SIZE; i++)
1275 migrate_timer_list(new_base, old_base->tv1.vec + i);
1276 for (i = 0; i < TVN_SIZE; i++) {
1277 migrate_timer_list(new_base, old_base->tv2.vec + i);
1278 migrate_timer_list(new_base, old_base->tv3.vec + i);
1279 migrate_timer_list(new_base, old_base->tv4.vec + i);
1280 migrate_timer_list(new_base, old_base->tv5.vec + i);
1281 }
1282
1283 double_spin_unlock(&new_base->lock, &old_base->lock,
1284 smp_processor_id() < cpu);
1285 local_irq_enable();
1286 put_cpu_var(tvec_bases);
1287 }
1288 #endif /* CONFIG_HOTPLUG_CPU */
1289
1290 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1291 unsigned long action, void *hcpu)
1292 {
1293 long cpu = (long)hcpu;
1294 switch(action) {
1295 case CPU_UP_PREPARE:
1296 case CPU_UP_PREPARE_FROZEN:
1297 if (init_timers_cpu(cpu) < 0)
1298 return NOTIFY_BAD;
1299 break;
1300 #ifdef CONFIG_HOTPLUG_CPU
1301 case CPU_DEAD:
1302 case CPU_DEAD_FROZEN:
1303 migrate_timers(cpu);
1304 break;
1305 #endif
1306 default:
1307 break;
1308 }
1309 return NOTIFY_OK;
1310 }
1311
1312 static struct notifier_block __cpuinitdata timers_nb = {
1313 .notifier_call = timer_cpu_notify,
1314 };
1315
1316
1317 void __init init_timers(void)
1318 {
1319 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1320 (void *)(long)smp_processor_id());
1321
1322 init_timer_stats();
1323
1324 BUG_ON(err == NOTIFY_BAD);
1325 register_cpu_notifier(&timers_nb);
1326 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1327 }
1328
1329 #ifdef CONFIG_TIME_INTERPOLATION
1330
1331 struct time_interpolator *time_interpolator __read_mostly;
1332 static struct time_interpolator *time_interpolator_list __read_mostly;
1333 static DEFINE_SPINLOCK(time_interpolator_lock);
1334
1335 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1336 {
1337 unsigned long (*x)(void);
1338
1339 switch (src)
1340 {
1341 case TIME_SOURCE_FUNCTION:
1342 x = time_interpolator->addr;
1343 return x();
1344
1345 case TIME_SOURCE_MMIO64 :
1346 return readq_relaxed((void __iomem *)time_interpolator->addr);
1347
1348 case TIME_SOURCE_MMIO32 :
1349 return readl_relaxed((void __iomem *)time_interpolator->addr);
1350
1351 default: return get_cycles();
1352 }
1353 }
1354
1355 static inline u64 time_interpolator_get_counter(int writelock)
1356 {
1357 unsigned int src = time_interpolator->source;
1358
1359 if (time_interpolator->jitter)
1360 {
1361 cycles_t lcycle;
1362 cycles_t now;
1363
1364 do {
1365 lcycle = time_interpolator->last_cycle;
1366 now = time_interpolator_get_cycles(src);
1367 if (lcycle && time_after(lcycle, now))
1368 return lcycle;
1369
1370 /* When holding the xtime write lock, there's no need
1371 * to add the overhead of the cmpxchg. Readers are
1372 * force to retry until the write lock is released.
1373 */
1374 if (writelock) {
1375 time_interpolator->last_cycle = now;
1376 return now;
1377 }
1378 /* Keep track of the last timer value returned. The use of cmpxchg here
1379 * will cause contention in an SMP environment.
1380 */
1381 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1382 return now;
1383 }
1384 else
1385 return time_interpolator_get_cycles(src);
1386 }
1387
1388 void time_interpolator_reset(void)
1389 {
1390 time_interpolator->offset = 0;
1391 time_interpolator->last_counter = time_interpolator_get_counter(1);
1392 }
1393
1394 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1395
1396 unsigned long time_interpolator_get_offset(void)
1397 {
1398 /* If we do not have a time interpolator set up then just return zero */
1399 if (!time_interpolator)
1400 return 0;
1401
1402 return time_interpolator->offset +
1403 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1404 }
1405
1406 #define INTERPOLATOR_ADJUST 65536
1407 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1408
1409 void time_interpolator_update(long delta_nsec)
1410 {
1411 u64 counter;
1412 unsigned long offset;
1413
1414 /* If there is no time interpolator set up then do nothing */
1415 if (!time_interpolator)
1416 return;
1417
1418 /*
1419 * The interpolator compensates for late ticks by accumulating the late
1420 * time in time_interpolator->offset. A tick earlier than expected will
1421 * lead to a reset of the offset and a corresponding jump of the clock
1422 * forward. Again this only works if the interpolator clock is running
1423 * slightly slower than the regular clock and the tuning logic insures
1424 * that.
1425 */
1426
1427 counter = time_interpolator_get_counter(1);
1428 offset = time_interpolator->offset +
1429 GET_TI_NSECS(counter, time_interpolator);
1430
1431 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1432 time_interpolator->offset = offset - delta_nsec;
1433 else {
1434 time_interpolator->skips++;
1435 time_interpolator->ns_skipped += delta_nsec - offset;
1436 time_interpolator->offset = 0;
1437 }
1438 time_interpolator->last_counter = counter;
1439
1440 /* Tuning logic for time interpolator invoked every minute or so.
1441 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1442 * Increase interpolator clock speed if we skip too much time.
1443 */
1444 if (jiffies % INTERPOLATOR_ADJUST == 0)
1445 {
1446 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1447 time_interpolator->nsec_per_cyc--;
1448 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1449 time_interpolator->nsec_per_cyc++;
1450 time_interpolator->skips = 0;
1451 time_interpolator->ns_skipped = 0;
1452 }
1453 }
1454
1455 static inline int
1456 is_better_time_interpolator(struct time_interpolator *new)
1457 {
1458 if (!time_interpolator)
1459 return 1;
1460 return new->frequency > 2*time_interpolator->frequency ||
1461 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1462 }
1463
1464 void
1465 register_time_interpolator(struct time_interpolator *ti)
1466 {
1467 unsigned long flags;
1468
1469 /* Sanity check */
1470 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1471
1472 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1473 spin_lock(&time_interpolator_lock);
1474 write_seqlock_irqsave(&xtime_lock, flags);
1475 if (is_better_time_interpolator(ti)) {
1476 time_interpolator = ti;
1477 time_interpolator_reset();
1478 }
1479 write_sequnlock_irqrestore(&xtime_lock, flags);
1480
1481 ti->next = time_interpolator_list;
1482 time_interpolator_list = ti;
1483 spin_unlock(&time_interpolator_lock);
1484 }
1485
1486 void
1487 unregister_time_interpolator(struct time_interpolator *ti)
1488 {
1489 struct time_interpolator *curr, **prev;
1490 unsigned long flags;
1491
1492 spin_lock(&time_interpolator_lock);
1493 prev = &time_interpolator_list;
1494 for (curr = *prev; curr; curr = curr->next) {
1495 if (curr == ti) {
1496 *prev = curr->next;
1497 break;
1498 }
1499 prev = &curr->next;
1500 }
1501
1502 clocksource_resume();
1503
1504 write_seqlock_irqsave(&xtime_lock, flags);
1505 if (ti == time_interpolator) {
1506 /* we lost the best time-interpolator: */
1507 time_interpolator = NULL;
1508 /* find the next-best interpolator */
1509 for (curr = time_interpolator_list; curr; curr = curr->next)
1510 if (is_better_time_interpolator(curr))
1511 time_interpolator = curr;
1512 time_interpolator_reset();
1513 }
1514 write_sequnlock_irqrestore(&xtime_lock, flags);
1515 spin_unlock(&time_interpolator_lock);
1516 }
1517 #endif /* CONFIG_TIME_INTERPOLATION */
1518
1519 /**
1520 * msleep - sleep safely even with waitqueue interruptions
1521 * @msecs: Time in milliseconds to sleep for
1522 */
1523 void msleep(unsigned int msecs)
1524 {
1525 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1526
1527 while (timeout)
1528 timeout = schedule_timeout_uninterruptible(timeout);
1529 }
1530
1531 EXPORT_SYMBOL(msleep);
1532
1533 /**
1534 * msleep_interruptible - sleep waiting for signals
1535 * @msecs: Time in milliseconds to sleep for
1536 */
1537 unsigned long msleep_interruptible(unsigned int msecs)
1538 {
1539 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1540
1541 while (timeout && !signal_pending(current))
1542 timeout = schedule_timeout_interruptible(timeout);
1543 return jiffies_to_msecs(timeout);
1544 }
1545
1546 EXPORT_SYMBOL(msleep_interruptible);
This page took 0.108647 seconds and 6 git commands to generate.