Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
44 /*
45 * Radix tree node cache.
46 */
47 static struct kmem_cache *radix_tree_node_cachep;
48
49 /*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
62 /*
63 * Per-cpu pool of preloaded nodes
64 */
65 struct radix_tree_preload {
66 unsigned nr;
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71
72 static inline void *node_to_entry(void *ptr)
73 {
74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76
77 #define RADIX_TREE_RETRY node_to_entry(NULL)
78
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82 {
83 void **ptr = node;
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86 }
87 #else
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89 {
90 return false;
91 }
92 #endif
93
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 void **slot)
96 {
97 return slot - parent->slots;
98 }
99
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
102 {
103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 if (radix_tree_is_internal_node(entry)) {
108 unsigned long siboff = get_slot_offset(parent, entry);
109 if (siboff < RADIX_TREE_MAP_SIZE) {
110 offset = siboff;
111 entry = rcu_dereference_raw(parent->slots[offset]);
112 }
113 }
114 #endif
115
116 *nodep = (void *)entry;
117 return offset;
118 }
119
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 return root->gfp_mask & __GFP_BITS_MASK;
123 }
124
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127 {
128 __set_bit(offset, node->tags[tag]);
129 }
130
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133 {
134 __clear_bit(offset, node->tags[tag]);
135 }
136
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139 {
140 return test_bit(offset, node->tags[tag]);
141 }
142
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
149 {
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 root->gfp_mask &= __GFP_BITS_MASK;
156 }
157
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167
168 /*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 unsigned idx;
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180 }
181
182 /**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196 {
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216 }
217
218 #ifndef __KERNEL__
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
220 {
221 unsigned long i;
222
223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
224 node, node->offset,
225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 node->shift, node->count, node->parent);
227
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
231 void *entry = node->slots[i];
232 if (!entry)
233 continue;
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 entry, i,
237 *(void **)entry_to_node(entry),
238 first, last);
239 } else if (!radix_tree_is_internal_node(entry)) {
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
242 } else {
243 dump_node(entry_to_node(entry), first);
244 }
245 }
246 }
247
248 /* For debug */
249 static void radix_tree_dump(struct radix_tree_root *root)
250 {
251 pr_debug("radix root: %p rnode %p tags %x\n",
252 root, root->rnode,
253 root->gfp_mask >> __GFP_BITS_SHIFT);
254 if (!radix_tree_is_internal_node(root->rnode))
255 return;
256 dump_node(entry_to_node(root->rnode), 0);
257 }
258 #endif
259
260 /*
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
263 */
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
266 {
267 struct radix_tree_node *ret = NULL;
268 gfp_t gfp_mask = root_gfp_mask(root);
269
270 /*
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
274 */
275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 struct radix_tree_preload *rtp;
277
278 /*
279 * Even if the caller has preloaded, try to allocate from the
280 * cache first for the new node to get accounted.
281 */
282 ret = kmem_cache_alloc(radix_tree_node_cachep,
283 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
284 if (ret)
285 goto out;
286
287 /*
288 * Provided the caller has preloaded here, we will always
289 * succeed in getting a node here (and never reach
290 * kmem_cache_alloc)
291 */
292 rtp = this_cpu_ptr(&radix_tree_preloads);
293 if (rtp->nr) {
294 ret = rtp->nodes;
295 rtp->nodes = ret->private_data;
296 ret->private_data = NULL;
297 rtp->nr--;
298 }
299 /*
300 * Update the allocation stack trace as this is more useful
301 * for debugging.
302 */
303 kmemleak_update_trace(ret);
304 goto out;
305 }
306 ret = kmem_cache_alloc(radix_tree_node_cachep,
307 gfp_mask | __GFP_ACCOUNT);
308 out:
309 BUG_ON(radix_tree_is_internal_node(ret));
310 return ret;
311 }
312
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
314 {
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
317 int i;
318
319 /*
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
323 */
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
326
327 node->slots[0] = NULL;
328 node->count = 0;
329
330 kmem_cache_free(radix_tree_node_cachep, node);
331 }
332
333 static inline void
334 radix_tree_node_free(struct radix_tree_node *node)
335 {
336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
337 }
338
339 /*
340 * Load up this CPU's radix_tree_node buffer with sufficient objects to
341 * ensure that the addition of a single element in the tree cannot fail. On
342 * success, return zero, with preemption disabled. On error, return -ENOMEM
343 * with preemption not disabled.
344 *
345 * To make use of this facility, the radix tree must be initialised without
346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
347 */
348 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
349 {
350 struct radix_tree_preload *rtp;
351 struct radix_tree_node *node;
352 int ret = -ENOMEM;
353
354 preempt_disable();
355 rtp = this_cpu_ptr(&radix_tree_preloads);
356 while (rtp->nr < nr) {
357 preempt_enable();
358 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
359 if (node == NULL)
360 goto out;
361 preempt_disable();
362 rtp = this_cpu_ptr(&radix_tree_preloads);
363 if (rtp->nr < nr) {
364 node->private_data = rtp->nodes;
365 rtp->nodes = node;
366 rtp->nr++;
367 } else {
368 kmem_cache_free(radix_tree_node_cachep, node);
369 }
370 }
371 ret = 0;
372 out:
373 return ret;
374 }
375
376 /*
377 * Load up this CPU's radix_tree_node buffer with sufficient objects to
378 * ensure that the addition of a single element in the tree cannot fail. On
379 * success, return zero, with preemption disabled. On error, return -ENOMEM
380 * with preemption not disabled.
381 *
382 * To make use of this facility, the radix tree must be initialised without
383 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
384 */
385 int radix_tree_preload(gfp_t gfp_mask)
386 {
387 /* Warn on non-sensical use... */
388 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
389 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
390 }
391 EXPORT_SYMBOL(radix_tree_preload);
392
393 /*
394 * The same as above function, except we don't guarantee preloading happens.
395 * We do it, if we decide it helps. On success, return zero with preemption
396 * disabled. On error, return -ENOMEM with preemption not disabled.
397 */
398 int radix_tree_maybe_preload(gfp_t gfp_mask)
399 {
400 if (gfpflags_allow_blocking(gfp_mask))
401 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
402 /* Preloading doesn't help anything with this gfp mask, skip it */
403 preempt_disable();
404 return 0;
405 }
406 EXPORT_SYMBOL(radix_tree_maybe_preload);
407
408 /*
409 * The same as function above, but preload number of nodes required to insert
410 * (1 << order) continuous naturally-aligned elements.
411 */
412 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
413 {
414 unsigned long nr_subtrees;
415 int nr_nodes, subtree_height;
416
417 /* Preloading doesn't help anything with this gfp mask, skip it */
418 if (!gfpflags_allow_blocking(gfp_mask)) {
419 preempt_disable();
420 return 0;
421 }
422
423 /*
424 * Calculate number and height of fully populated subtrees it takes to
425 * store (1 << order) elements.
426 */
427 nr_subtrees = 1 << order;
428 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
429 subtree_height++)
430 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
431
432 /*
433 * The worst case is zero height tree with a single item at index 0 and
434 * then inserting items starting at ULONG_MAX - (1 << order).
435 *
436 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
437 * 0-index item.
438 */
439 nr_nodes = RADIX_TREE_MAX_PATH;
440
441 /* Plus branch to fully populated subtrees. */
442 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
443
444 /* Root node is shared. */
445 nr_nodes--;
446
447 /* Plus nodes required to build subtrees. */
448 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
449
450 return __radix_tree_preload(gfp_mask, nr_nodes);
451 }
452
453 /*
454 * The maximum index which can be stored in a radix tree
455 */
456 static inline unsigned long shift_maxindex(unsigned int shift)
457 {
458 return (RADIX_TREE_MAP_SIZE << shift) - 1;
459 }
460
461 static inline unsigned long node_maxindex(struct radix_tree_node *node)
462 {
463 return shift_maxindex(node->shift);
464 }
465
466 static unsigned radix_tree_load_root(struct radix_tree_root *root,
467 struct radix_tree_node **nodep, unsigned long *maxindex)
468 {
469 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
470
471 *nodep = node;
472
473 if (likely(radix_tree_is_internal_node(node))) {
474 node = entry_to_node(node);
475 *maxindex = node_maxindex(node);
476 return node->shift + RADIX_TREE_MAP_SHIFT;
477 }
478
479 *maxindex = 0;
480 return 0;
481 }
482
483 /*
484 * Extend a radix tree so it can store key @index.
485 */
486 static int radix_tree_extend(struct radix_tree_root *root,
487 unsigned long index, unsigned int shift)
488 {
489 struct radix_tree_node *slot;
490 unsigned int maxshift;
491 int tag;
492
493 /* Figure out what the shift should be. */
494 maxshift = shift;
495 while (index > shift_maxindex(maxshift))
496 maxshift += RADIX_TREE_MAP_SHIFT;
497
498 slot = root->rnode;
499 if (!slot)
500 goto out;
501
502 do {
503 struct radix_tree_node *node = radix_tree_node_alloc(root);
504
505 if (!node)
506 return -ENOMEM;
507
508 /* Propagate the aggregated tag info into the new root */
509 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
510 if (root_tag_get(root, tag))
511 tag_set(node, tag, 0);
512 }
513
514 BUG_ON(shift > BITS_PER_LONG);
515 node->shift = shift;
516 node->offset = 0;
517 node->count = 1;
518 node->parent = NULL;
519 if (radix_tree_is_internal_node(slot))
520 entry_to_node(slot)->parent = node;
521 node->slots[0] = slot;
522 slot = node_to_entry(node);
523 rcu_assign_pointer(root->rnode, slot);
524 shift += RADIX_TREE_MAP_SHIFT;
525 } while (shift <= maxshift);
526 out:
527 return maxshift + RADIX_TREE_MAP_SHIFT;
528 }
529
530 /**
531 * __radix_tree_create - create a slot in a radix tree
532 * @root: radix tree root
533 * @index: index key
534 * @order: index occupies 2^order aligned slots
535 * @nodep: returns node
536 * @slotp: returns slot
537 *
538 * Create, if necessary, and return the node and slot for an item
539 * at position @index in the radix tree @root.
540 *
541 * Until there is more than one item in the tree, no nodes are
542 * allocated and @root->rnode is used as a direct slot instead of
543 * pointing to a node, in which case *@nodep will be NULL.
544 *
545 * Returns -ENOMEM, or 0 for success.
546 */
547 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
548 unsigned order, struct radix_tree_node **nodep,
549 void ***slotp)
550 {
551 struct radix_tree_node *node = NULL, *child;
552 void **slot = (void **)&root->rnode;
553 unsigned long maxindex;
554 unsigned int shift, offset = 0;
555 unsigned long max = index | ((1UL << order) - 1);
556
557 shift = radix_tree_load_root(root, &child, &maxindex);
558
559 /* Make sure the tree is high enough. */
560 if (max > maxindex) {
561 int error = radix_tree_extend(root, max, shift);
562 if (error < 0)
563 return error;
564 shift = error;
565 child = root->rnode;
566 if (order == shift)
567 shift += RADIX_TREE_MAP_SHIFT;
568 }
569
570 while (shift > order) {
571 shift -= RADIX_TREE_MAP_SHIFT;
572 if (child == NULL) {
573 /* Have to add a child node. */
574 child = radix_tree_node_alloc(root);
575 if (!child)
576 return -ENOMEM;
577 child->shift = shift;
578 child->offset = offset;
579 child->parent = node;
580 rcu_assign_pointer(*slot, node_to_entry(child));
581 if (node)
582 node->count++;
583 } else if (!radix_tree_is_internal_node(child))
584 break;
585
586 /* Go a level down */
587 node = entry_to_node(child);
588 offset = radix_tree_descend(node, &child, index);
589 slot = &node->slots[offset];
590 }
591
592 #ifdef CONFIG_RADIX_TREE_MULTIORDER
593 /* Insert pointers to the canonical entry */
594 if (order > shift) {
595 unsigned i, n = 1 << (order - shift);
596 offset = offset & ~(n - 1);
597 slot = &node->slots[offset];
598 child = node_to_entry(slot);
599 for (i = 0; i < n; i++) {
600 if (slot[i])
601 return -EEXIST;
602 }
603
604 for (i = 1; i < n; i++) {
605 rcu_assign_pointer(slot[i], child);
606 node->count++;
607 }
608 }
609 #endif
610
611 if (nodep)
612 *nodep = node;
613 if (slotp)
614 *slotp = slot;
615 return 0;
616 }
617
618 /**
619 * __radix_tree_insert - insert into a radix tree
620 * @root: radix tree root
621 * @index: index key
622 * @order: key covers the 2^order indices around index
623 * @item: item to insert
624 *
625 * Insert an item into the radix tree at position @index.
626 */
627 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
628 unsigned order, void *item)
629 {
630 struct radix_tree_node *node;
631 void **slot;
632 int error;
633
634 BUG_ON(radix_tree_is_internal_node(item));
635
636 error = __radix_tree_create(root, index, order, &node, &slot);
637 if (error)
638 return error;
639 if (*slot != NULL)
640 return -EEXIST;
641 rcu_assign_pointer(*slot, item);
642
643 if (node) {
644 unsigned offset = get_slot_offset(node, slot);
645 node->count++;
646 BUG_ON(tag_get(node, 0, offset));
647 BUG_ON(tag_get(node, 1, offset));
648 BUG_ON(tag_get(node, 2, offset));
649 } else {
650 BUG_ON(root_tags_get(root));
651 }
652
653 return 0;
654 }
655 EXPORT_SYMBOL(__radix_tree_insert);
656
657 /**
658 * __radix_tree_lookup - lookup an item in a radix tree
659 * @root: radix tree root
660 * @index: index key
661 * @nodep: returns node
662 * @slotp: returns slot
663 *
664 * Lookup and return the item at position @index in the radix
665 * tree @root.
666 *
667 * Until there is more than one item in the tree, no nodes are
668 * allocated and @root->rnode is used as a direct slot instead of
669 * pointing to a node, in which case *@nodep will be NULL.
670 */
671 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
672 struct radix_tree_node **nodep, void ***slotp)
673 {
674 struct radix_tree_node *node, *parent;
675 unsigned long maxindex;
676 void **slot;
677
678 restart:
679 parent = NULL;
680 slot = (void **)&root->rnode;
681 radix_tree_load_root(root, &node, &maxindex);
682 if (index > maxindex)
683 return NULL;
684
685 while (radix_tree_is_internal_node(node)) {
686 unsigned offset;
687
688 if (node == RADIX_TREE_RETRY)
689 goto restart;
690 parent = entry_to_node(node);
691 offset = radix_tree_descend(parent, &node, index);
692 slot = parent->slots + offset;
693 }
694
695 if (nodep)
696 *nodep = parent;
697 if (slotp)
698 *slotp = slot;
699 return node;
700 }
701
702 /**
703 * radix_tree_lookup_slot - lookup a slot in a radix tree
704 * @root: radix tree root
705 * @index: index key
706 *
707 * Returns: the slot corresponding to the position @index in the
708 * radix tree @root. This is useful for update-if-exists operations.
709 *
710 * This function can be called under rcu_read_lock iff the slot is not
711 * modified by radix_tree_replace_slot, otherwise it must be called
712 * exclusive from other writers. Any dereference of the slot must be done
713 * using radix_tree_deref_slot.
714 */
715 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
716 {
717 void **slot;
718
719 if (!__radix_tree_lookup(root, index, NULL, &slot))
720 return NULL;
721 return slot;
722 }
723 EXPORT_SYMBOL(radix_tree_lookup_slot);
724
725 /**
726 * radix_tree_lookup - perform lookup operation on a radix tree
727 * @root: radix tree root
728 * @index: index key
729 *
730 * Lookup the item at the position @index in the radix tree @root.
731 *
732 * This function can be called under rcu_read_lock, however the caller
733 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
734 * them safely). No RCU barriers are required to access or modify the
735 * returned item, however.
736 */
737 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
738 {
739 return __radix_tree_lookup(root, index, NULL, NULL);
740 }
741 EXPORT_SYMBOL(radix_tree_lookup);
742
743 /**
744 * radix_tree_tag_set - set a tag on a radix tree node
745 * @root: radix tree root
746 * @index: index key
747 * @tag: tag index
748 *
749 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
750 * corresponding to @index in the radix tree. From
751 * the root all the way down to the leaf node.
752 *
753 * Returns the address of the tagged item. Setting a tag on a not-present
754 * item is a bug.
755 */
756 void *radix_tree_tag_set(struct radix_tree_root *root,
757 unsigned long index, unsigned int tag)
758 {
759 struct radix_tree_node *node, *parent;
760 unsigned long maxindex;
761
762 radix_tree_load_root(root, &node, &maxindex);
763 BUG_ON(index > maxindex);
764
765 while (radix_tree_is_internal_node(node)) {
766 unsigned offset;
767
768 parent = entry_to_node(node);
769 offset = radix_tree_descend(parent, &node, index);
770 BUG_ON(!node);
771
772 if (!tag_get(parent, tag, offset))
773 tag_set(parent, tag, offset);
774 }
775
776 /* set the root's tag bit */
777 if (!root_tag_get(root, tag))
778 root_tag_set(root, tag);
779
780 return node;
781 }
782 EXPORT_SYMBOL(radix_tree_tag_set);
783
784 static void node_tag_clear(struct radix_tree_root *root,
785 struct radix_tree_node *node,
786 unsigned int tag, unsigned int offset)
787 {
788 while (node) {
789 if (!tag_get(node, tag, offset))
790 return;
791 tag_clear(node, tag, offset);
792 if (any_tag_set(node, tag))
793 return;
794
795 offset = node->offset;
796 node = node->parent;
797 }
798
799 /* clear the root's tag bit */
800 if (root_tag_get(root, tag))
801 root_tag_clear(root, tag);
802 }
803
804 /**
805 * radix_tree_tag_clear - clear a tag on a radix tree node
806 * @root: radix tree root
807 * @index: index key
808 * @tag: tag index
809 *
810 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
811 * corresponding to @index in the radix tree. If this causes
812 * the leaf node to have no tags set then clear the tag in the
813 * next-to-leaf node, etc.
814 *
815 * Returns the address of the tagged item on success, else NULL. ie:
816 * has the same return value and semantics as radix_tree_lookup().
817 */
818 void *radix_tree_tag_clear(struct radix_tree_root *root,
819 unsigned long index, unsigned int tag)
820 {
821 struct radix_tree_node *node, *parent;
822 unsigned long maxindex;
823 int uninitialized_var(offset);
824
825 radix_tree_load_root(root, &node, &maxindex);
826 if (index > maxindex)
827 return NULL;
828
829 parent = NULL;
830
831 while (radix_tree_is_internal_node(node)) {
832 parent = entry_to_node(node);
833 offset = radix_tree_descend(parent, &node, index);
834 }
835
836 if (node)
837 node_tag_clear(root, parent, tag, offset);
838
839 return node;
840 }
841 EXPORT_SYMBOL(radix_tree_tag_clear);
842
843 /**
844 * radix_tree_tag_get - get a tag on a radix tree node
845 * @root: radix tree root
846 * @index: index key
847 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
848 *
849 * Return values:
850 *
851 * 0: tag not present or not set
852 * 1: tag set
853 *
854 * Note that the return value of this function may not be relied on, even if
855 * the RCU lock is held, unless tag modification and node deletion are excluded
856 * from concurrency.
857 */
858 int radix_tree_tag_get(struct radix_tree_root *root,
859 unsigned long index, unsigned int tag)
860 {
861 struct radix_tree_node *node, *parent;
862 unsigned long maxindex;
863
864 if (!root_tag_get(root, tag))
865 return 0;
866
867 radix_tree_load_root(root, &node, &maxindex);
868 if (index > maxindex)
869 return 0;
870 if (node == NULL)
871 return 0;
872
873 while (radix_tree_is_internal_node(node)) {
874 unsigned offset;
875
876 parent = entry_to_node(node);
877 offset = radix_tree_descend(parent, &node, index);
878
879 if (!node)
880 return 0;
881 if (!tag_get(parent, tag, offset))
882 return 0;
883 if (node == RADIX_TREE_RETRY)
884 break;
885 }
886
887 return 1;
888 }
889 EXPORT_SYMBOL(radix_tree_tag_get);
890
891 static inline void __set_iter_shift(struct radix_tree_iter *iter,
892 unsigned int shift)
893 {
894 #ifdef CONFIG_RADIX_TREE_MULTIORDER
895 iter->shift = shift;
896 #endif
897 }
898
899 /**
900 * radix_tree_next_chunk - find next chunk of slots for iteration
901 *
902 * @root: radix tree root
903 * @iter: iterator state
904 * @flags: RADIX_TREE_ITER_* flags and tag index
905 * Returns: pointer to chunk first slot, or NULL if iteration is over
906 */
907 void **radix_tree_next_chunk(struct radix_tree_root *root,
908 struct radix_tree_iter *iter, unsigned flags)
909 {
910 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
911 struct radix_tree_node *node, *child;
912 unsigned long index, offset, maxindex;
913
914 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
915 return NULL;
916
917 /*
918 * Catch next_index overflow after ~0UL. iter->index never overflows
919 * during iterating; it can be zero only at the beginning.
920 * And we cannot overflow iter->next_index in a single step,
921 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
922 *
923 * This condition also used by radix_tree_next_slot() to stop
924 * contiguous iterating, and forbid swithing to the next chunk.
925 */
926 index = iter->next_index;
927 if (!index && iter->index)
928 return NULL;
929
930 restart:
931 radix_tree_load_root(root, &child, &maxindex);
932 if (index > maxindex)
933 return NULL;
934 if (!child)
935 return NULL;
936
937 if (!radix_tree_is_internal_node(child)) {
938 /* Single-slot tree */
939 iter->index = index;
940 iter->next_index = maxindex + 1;
941 iter->tags = 1;
942 __set_iter_shift(iter, 0);
943 return (void **)&root->rnode;
944 }
945
946 do {
947 node = entry_to_node(child);
948 offset = radix_tree_descend(node, &child, index);
949
950 if ((flags & RADIX_TREE_ITER_TAGGED) ?
951 !tag_get(node, tag, offset) : !child) {
952 /* Hole detected */
953 if (flags & RADIX_TREE_ITER_CONTIG)
954 return NULL;
955
956 if (flags & RADIX_TREE_ITER_TAGGED)
957 offset = radix_tree_find_next_bit(
958 node->tags[tag],
959 RADIX_TREE_MAP_SIZE,
960 offset + 1);
961 else
962 while (++offset < RADIX_TREE_MAP_SIZE) {
963 void *slot = node->slots[offset];
964 if (is_sibling_entry(node, slot))
965 continue;
966 if (slot)
967 break;
968 }
969 index &= ~node_maxindex(node);
970 index += offset << node->shift;
971 /* Overflow after ~0UL */
972 if (!index)
973 return NULL;
974 if (offset == RADIX_TREE_MAP_SIZE)
975 goto restart;
976 child = rcu_dereference_raw(node->slots[offset]);
977 }
978
979 if ((child == NULL) || (child == RADIX_TREE_RETRY))
980 goto restart;
981 } while (radix_tree_is_internal_node(child));
982
983 /* Update the iterator state */
984 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
985 iter->next_index = (index | node_maxindex(node)) + 1;
986 __set_iter_shift(iter, node->shift);
987
988 /* Construct iter->tags bit-mask from node->tags[tag] array */
989 if (flags & RADIX_TREE_ITER_TAGGED) {
990 unsigned tag_long, tag_bit;
991
992 tag_long = offset / BITS_PER_LONG;
993 tag_bit = offset % BITS_PER_LONG;
994 iter->tags = node->tags[tag][tag_long] >> tag_bit;
995 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
996 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
997 /* Pick tags from next element */
998 if (tag_bit)
999 iter->tags |= node->tags[tag][tag_long + 1] <<
1000 (BITS_PER_LONG - tag_bit);
1001 /* Clip chunk size, here only BITS_PER_LONG tags */
1002 iter->next_index = index + BITS_PER_LONG;
1003 }
1004 }
1005
1006 return node->slots + offset;
1007 }
1008 EXPORT_SYMBOL(radix_tree_next_chunk);
1009
1010 /**
1011 * radix_tree_range_tag_if_tagged - for each item in given range set given
1012 * tag if item has another tag set
1013 * @root: radix tree root
1014 * @first_indexp: pointer to a starting index of a range to scan
1015 * @last_index: last index of a range to scan
1016 * @nr_to_tag: maximum number items to tag
1017 * @iftag: tag index to test
1018 * @settag: tag index to set if tested tag is set
1019 *
1020 * This function scans range of radix tree from first_index to last_index
1021 * (inclusive). For each item in the range if iftag is set, the function sets
1022 * also settag. The function stops either after tagging nr_to_tag items or
1023 * after reaching last_index.
1024 *
1025 * The tags must be set from the leaf level only and propagated back up the
1026 * path to the root. We must do this so that we resolve the full path before
1027 * setting any tags on intermediate nodes. If we set tags as we descend, then
1028 * we can get to the leaf node and find that the index that has the iftag
1029 * set is outside the range we are scanning. This reults in dangling tags and
1030 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1031 *
1032 * The function returns the number of leaves where the tag was set and sets
1033 * *first_indexp to the first unscanned index.
1034 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1035 * be prepared to handle that.
1036 */
1037 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1038 unsigned long *first_indexp, unsigned long last_index,
1039 unsigned long nr_to_tag,
1040 unsigned int iftag, unsigned int settag)
1041 {
1042 struct radix_tree_node *parent, *node, *child;
1043 unsigned long maxindex;
1044 unsigned long tagged = 0;
1045 unsigned long index = *first_indexp;
1046
1047 radix_tree_load_root(root, &child, &maxindex);
1048 last_index = min(last_index, maxindex);
1049 if (index > last_index)
1050 return 0;
1051 if (!nr_to_tag)
1052 return 0;
1053 if (!root_tag_get(root, iftag)) {
1054 *first_indexp = last_index + 1;
1055 return 0;
1056 }
1057 if (!radix_tree_is_internal_node(child)) {
1058 *first_indexp = last_index + 1;
1059 root_tag_set(root, settag);
1060 return 1;
1061 }
1062
1063 node = entry_to_node(child);
1064
1065 for (;;) {
1066 unsigned offset = radix_tree_descend(node, &child, index);
1067 if (!child)
1068 goto next;
1069 if (!tag_get(node, iftag, offset))
1070 goto next;
1071 /* Sibling slots never have tags set on them */
1072 if (radix_tree_is_internal_node(child)) {
1073 node = entry_to_node(child);
1074 continue;
1075 }
1076
1077 /* tag the leaf */
1078 tagged++;
1079 tag_set(node, settag, offset);
1080
1081 /* walk back up the path tagging interior nodes */
1082 parent = node;
1083 for (;;) {
1084 offset = parent->offset;
1085 parent = parent->parent;
1086 if (!parent)
1087 break;
1088 /* stop if we find a node with the tag already set */
1089 if (tag_get(parent, settag, offset))
1090 break;
1091 tag_set(parent, settag, offset);
1092 }
1093 next:
1094 /* Go to next entry in node */
1095 index = ((index >> node->shift) + 1) << node->shift;
1096 /* Overflow can happen when last_index is ~0UL... */
1097 if (index > last_index || !index)
1098 break;
1099 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1100 while (offset == 0) {
1101 /*
1102 * We've fully scanned this node. Go up. Because
1103 * last_index is guaranteed to be in the tree, what
1104 * we do below cannot wander astray.
1105 */
1106 node = node->parent;
1107 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1108 }
1109 if (is_sibling_entry(node, node->slots[offset]))
1110 goto next;
1111 if (tagged >= nr_to_tag)
1112 break;
1113 }
1114 /*
1115 * We need not to tag the root tag if there is no tag which is set with
1116 * settag within the range from *first_indexp to last_index.
1117 */
1118 if (tagged > 0)
1119 root_tag_set(root, settag);
1120 *first_indexp = index;
1121
1122 return tagged;
1123 }
1124 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1125
1126 /**
1127 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1128 * @root: radix tree root
1129 * @results: where the results of the lookup are placed
1130 * @first_index: start the lookup from this key
1131 * @max_items: place up to this many items at *results
1132 *
1133 * Performs an index-ascending scan of the tree for present items. Places
1134 * them at *@results and returns the number of items which were placed at
1135 * *@results.
1136 *
1137 * The implementation is naive.
1138 *
1139 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1140 * rcu_read_lock. In this case, rather than the returned results being
1141 * an atomic snapshot of the tree at a single point in time, the
1142 * semantics of an RCU protected gang lookup are as though multiple
1143 * radix_tree_lookups have been issued in individual locks, and results
1144 * stored in 'results'.
1145 */
1146 unsigned int
1147 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1148 unsigned long first_index, unsigned int max_items)
1149 {
1150 struct radix_tree_iter iter;
1151 void **slot;
1152 unsigned int ret = 0;
1153
1154 if (unlikely(!max_items))
1155 return 0;
1156
1157 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1158 results[ret] = rcu_dereference_raw(*slot);
1159 if (!results[ret])
1160 continue;
1161 if (radix_tree_is_internal_node(results[ret])) {
1162 slot = radix_tree_iter_retry(&iter);
1163 continue;
1164 }
1165 if (++ret == max_items)
1166 break;
1167 }
1168
1169 return ret;
1170 }
1171 EXPORT_SYMBOL(radix_tree_gang_lookup);
1172
1173 /**
1174 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1175 * @root: radix tree root
1176 * @results: where the results of the lookup are placed
1177 * @indices: where their indices should be placed (but usually NULL)
1178 * @first_index: start the lookup from this key
1179 * @max_items: place up to this many items at *results
1180 *
1181 * Performs an index-ascending scan of the tree for present items. Places
1182 * their slots at *@results and returns the number of items which were
1183 * placed at *@results.
1184 *
1185 * The implementation is naive.
1186 *
1187 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1188 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1189 * protection, radix_tree_deref_slot may fail requiring a retry.
1190 */
1191 unsigned int
1192 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1193 void ***results, unsigned long *indices,
1194 unsigned long first_index, unsigned int max_items)
1195 {
1196 struct radix_tree_iter iter;
1197 void **slot;
1198 unsigned int ret = 0;
1199
1200 if (unlikely(!max_items))
1201 return 0;
1202
1203 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1204 results[ret] = slot;
1205 if (indices)
1206 indices[ret] = iter.index;
1207 if (++ret == max_items)
1208 break;
1209 }
1210
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1214
1215 /**
1216 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1217 * based on a tag
1218 * @root: radix tree root
1219 * @results: where the results of the lookup are placed
1220 * @first_index: start the lookup from this key
1221 * @max_items: place up to this many items at *results
1222 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1223 *
1224 * Performs an index-ascending scan of the tree for present items which
1225 * have the tag indexed by @tag set. Places the items at *@results and
1226 * returns the number of items which were placed at *@results.
1227 */
1228 unsigned int
1229 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1230 unsigned long first_index, unsigned int max_items,
1231 unsigned int tag)
1232 {
1233 struct radix_tree_iter iter;
1234 void **slot;
1235 unsigned int ret = 0;
1236
1237 if (unlikely(!max_items))
1238 return 0;
1239
1240 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1241 results[ret] = rcu_dereference_raw(*slot);
1242 if (!results[ret])
1243 continue;
1244 if (radix_tree_is_internal_node(results[ret])) {
1245 slot = radix_tree_iter_retry(&iter);
1246 continue;
1247 }
1248 if (++ret == max_items)
1249 break;
1250 }
1251
1252 return ret;
1253 }
1254 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1255
1256 /**
1257 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1258 * radix tree based on a tag
1259 * @root: radix tree root
1260 * @results: where the results of the lookup are placed
1261 * @first_index: start the lookup from this key
1262 * @max_items: place up to this many items at *results
1263 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1264 *
1265 * Performs an index-ascending scan of the tree for present items which
1266 * have the tag indexed by @tag set. Places the slots at *@results and
1267 * returns the number of slots which were placed at *@results.
1268 */
1269 unsigned int
1270 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1271 unsigned long first_index, unsigned int max_items,
1272 unsigned int tag)
1273 {
1274 struct radix_tree_iter iter;
1275 void **slot;
1276 unsigned int ret = 0;
1277
1278 if (unlikely(!max_items))
1279 return 0;
1280
1281 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1282 results[ret] = slot;
1283 if (++ret == max_items)
1284 break;
1285 }
1286
1287 return ret;
1288 }
1289 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1290
1291 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1292 #include <linux/sched.h> /* for cond_resched() */
1293
1294 struct locate_info {
1295 unsigned long found_index;
1296 bool stop;
1297 };
1298
1299 /*
1300 * This linear search is at present only useful to shmem_unuse_inode().
1301 */
1302 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1303 unsigned long index, struct locate_info *info)
1304 {
1305 unsigned long i;
1306
1307 do {
1308 unsigned int shift = slot->shift;
1309
1310 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1311 i < RADIX_TREE_MAP_SIZE;
1312 i++, index += (1UL << shift)) {
1313 struct radix_tree_node *node =
1314 rcu_dereference_raw(slot->slots[i]);
1315 if (node == RADIX_TREE_RETRY)
1316 goto out;
1317 if (!radix_tree_is_internal_node(node)) {
1318 if (node == item) {
1319 info->found_index = index;
1320 info->stop = true;
1321 goto out;
1322 }
1323 continue;
1324 }
1325 node = entry_to_node(node);
1326 if (is_sibling_entry(slot, node))
1327 continue;
1328 slot = node;
1329 break;
1330 }
1331 } while (i < RADIX_TREE_MAP_SIZE);
1332
1333 out:
1334 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1335 info->stop = true;
1336 return index;
1337 }
1338
1339 /**
1340 * radix_tree_locate_item - search through radix tree for item
1341 * @root: radix tree root
1342 * @item: item to be found
1343 *
1344 * Returns index where item was found, or -1 if not found.
1345 * Caller must hold no lock (since this time-consuming function needs
1346 * to be preemptible), and must check afterwards if item is still there.
1347 */
1348 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1349 {
1350 struct radix_tree_node *node;
1351 unsigned long max_index;
1352 unsigned long cur_index = 0;
1353 struct locate_info info = {
1354 .found_index = -1,
1355 .stop = false,
1356 };
1357
1358 do {
1359 rcu_read_lock();
1360 node = rcu_dereference_raw(root->rnode);
1361 if (!radix_tree_is_internal_node(node)) {
1362 rcu_read_unlock();
1363 if (node == item)
1364 info.found_index = 0;
1365 break;
1366 }
1367
1368 node = entry_to_node(node);
1369
1370 max_index = node_maxindex(node);
1371 if (cur_index > max_index) {
1372 rcu_read_unlock();
1373 break;
1374 }
1375
1376 cur_index = __locate(node, item, cur_index, &info);
1377 rcu_read_unlock();
1378 cond_resched();
1379 } while (!info.stop && cur_index <= max_index);
1380
1381 return info.found_index;
1382 }
1383 #else
1384 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1385 {
1386 return -1;
1387 }
1388 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1389
1390 /**
1391 * radix_tree_shrink - shrink radix tree to minimum height
1392 * @root radix tree root
1393 */
1394 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1395 {
1396 bool shrunk = false;
1397
1398 for (;;) {
1399 struct radix_tree_node *node = root->rnode;
1400 struct radix_tree_node *child;
1401
1402 if (!radix_tree_is_internal_node(node))
1403 break;
1404 node = entry_to_node(node);
1405
1406 /*
1407 * The candidate node has more than one child, or its child
1408 * is not at the leftmost slot, or the child is a multiorder
1409 * entry, we cannot shrink.
1410 */
1411 if (node->count != 1)
1412 break;
1413 child = node->slots[0];
1414 if (!child)
1415 break;
1416 if (!radix_tree_is_internal_node(child) && node->shift)
1417 break;
1418
1419 if (radix_tree_is_internal_node(child))
1420 entry_to_node(child)->parent = NULL;
1421
1422 /*
1423 * We don't need rcu_assign_pointer(), since we are simply
1424 * moving the node from one part of the tree to another: if it
1425 * was safe to dereference the old pointer to it
1426 * (node->slots[0]), it will be safe to dereference the new
1427 * one (root->rnode) as far as dependent read barriers go.
1428 */
1429 root->rnode = child;
1430
1431 /*
1432 * We have a dilemma here. The node's slot[0] must not be
1433 * NULLed in case there are concurrent lookups expecting to
1434 * find the item. However if this was a bottom-level node,
1435 * then it may be subject to the slot pointer being visible
1436 * to callers dereferencing it. If item corresponding to
1437 * slot[0] is subsequently deleted, these callers would expect
1438 * their slot to become empty sooner or later.
1439 *
1440 * For example, lockless pagecache will look up a slot, deref
1441 * the page pointer, and if the page has 0 refcount it means it
1442 * was concurrently deleted from pagecache so try the deref
1443 * again. Fortunately there is already a requirement for logic
1444 * to retry the entire slot lookup -- the indirect pointer
1445 * problem (replacing direct root node with an indirect pointer
1446 * also results in a stale slot). So tag the slot as indirect
1447 * to force callers to retry.
1448 */
1449 if (!radix_tree_is_internal_node(child))
1450 node->slots[0] = RADIX_TREE_RETRY;
1451
1452 radix_tree_node_free(node);
1453 shrunk = true;
1454 }
1455
1456 return shrunk;
1457 }
1458
1459 /**
1460 * __radix_tree_delete_node - try to free node after clearing a slot
1461 * @root: radix tree root
1462 * @node: node containing @index
1463 *
1464 * After clearing the slot at @index in @node from radix tree
1465 * rooted at @root, call this function to attempt freeing the
1466 * node and shrinking the tree.
1467 *
1468 * Returns %true if @node was freed, %false otherwise.
1469 */
1470 bool __radix_tree_delete_node(struct radix_tree_root *root,
1471 struct radix_tree_node *node)
1472 {
1473 bool deleted = false;
1474
1475 do {
1476 struct radix_tree_node *parent;
1477
1478 if (node->count) {
1479 if (node == entry_to_node(root->rnode))
1480 deleted |= radix_tree_shrink(root);
1481 return deleted;
1482 }
1483
1484 parent = node->parent;
1485 if (parent) {
1486 parent->slots[node->offset] = NULL;
1487 parent->count--;
1488 } else {
1489 root_tag_clear_all(root);
1490 root->rnode = NULL;
1491 }
1492
1493 radix_tree_node_free(node);
1494 deleted = true;
1495
1496 node = parent;
1497 } while (node);
1498
1499 return deleted;
1500 }
1501
1502 static inline void delete_sibling_entries(struct radix_tree_node *node,
1503 void *ptr, unsigned offset)
1504 {
1505 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1506 int i;
1507 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1508 if (node->slots[offset + i] != ptr)
1509 break;
1510 node->slots[offset + i] = NULL;
1511 node->count--;
1512 }
1513 #endif
1514 }
1515
1516 /**
1517 * radix_tree_delete_item - delete an item from a radix tree
1518 * @root: radix tree root
1519 * @index: index key
1520 * @item: expected item
1521 *
1522 * Remove @item at @index from the radix tree rooted at @root.
1523 *
1524 * Returns the address of the deleted item, or NULL if it was not present
1525 * or the entry at the given @index was not @item.
1526 */
1527 void *radix_tree_delete_item(struct radix_tree_root *root,
1528 unsigned long index, void *item)
1529 {
1530 struct radix_tree_node *node;
1531 unsigned int offset;
1532 void **slot;
1533 void *entry;
1534 int tag;
1535
1536 entry = __radix_tree_lookup(root, index, &node, &slot);
1537 if (!entry)
1538 return NULL;
1539
1540 if (item && entry != item)
1541 return NULL;
1542
1543 if (!node) {
1544 root_tag_clear_all(root);
1545 root->rnode = NULL;
1546 return entry;
1547 }
1548
1549 offset = get_slot_offset(node, slot);
1550
1551 /* Clear all tags associated with the item to be deleted. */
1552 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1553 node_tag_clear(root, node, tag, offset);
1554
1555 delete_sibling_entries(node, node_to_entry(slot), offset);
1556 node->slots[offset] = NULL;
1557 node->count--;
1558
1559 __radix_tree_delete_node(root, node);
1560
1561 return entry;
1562 }
1563 EXPORT_SYMBOL(radix_tree_delete_item);
1564
1565 /**
1566 * radix_tree_delete - delete an item from a radix tree
1567 * @root: radix tree root
1568 * @index: index key
1569 *
1570 * Remove the item at @index from the radix tree rooted at @root.
1571 *
1572 * Returns the address of the deleted item, or NULL if it was not present.
1573 */
1574 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1575 {
1576 return radix_tree_delete_item(root, index, NULL);
1577 }
1578 EXPORT_SYMBOL(radix_tree_delete);
1579
1580 struct radix_tree_node *radix_tree_replace_clear_tags(
1581 struct radix_tree_root *root,
1582 unsigned long index, void *entry)
1583 {
1584 struct radix_tree_node *node;
1585 void **slot;
1586
1587 __radix_tree_lookup(root, index, &node, &slot);
1588
1589 if (node) {
1590 unsigned int tag, offset = get_slot_offset(node, slot);
1591 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1592 node_tag_clear(root, node, tag, offset);
1593 } else {
1594 /* Clear root node tags */
1595 root->gfp_mask &= __GFP_BITS_MASK;
1596 }
1597
1598 radix_tree_replace_slot(slot, entry);
1599 return node;
1600 }
1601
1602 /**
1603 * radix_tree_tagged - test whether any items in the tree are tagged
1604 * @root: radix tree root
1605 * @tag: tag to test
1606 */
1607 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1608 {
1609 return root_tag_get(root, tag);
1610 }
1611 EXPORT_SYMBOL(radix_tree_tagged);
1612
1613 static void
1614 radix_tree_node_ctor(void *arg)
1615 {
1616 struct radix_tree_node *node = arg;
1617
1618 memset(node, 0, sizeof(*node));
1619 INIT_LIST_HEAD(&node->private_list);
1620 }
1621
1622 static __init unsigned long __maxindex(unsigned int height)
1623 {
1624 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1625 int shift = RADIX_TREE_INDEX_BITS - width;
1626
1627 if (shift < 0)
1628 return ~0UL;
1629 if (shift >= BITS_PER_LONG)
1630 return 0UL;
1631 return ~0UL >> shift;
1632 }
1633
1634 static __init void radix_tree_init_maxnodes(void)
1635 {
1636 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1637 unsigned int i, j;
1638
1639 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1640 height_to_maxindex[i] = __maxindex(i);
1641 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1642 for (j = i; j > 0; j--)
1643 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1644 }
1645 }
1646
1647 static int radix_tree_callback(struct notifier_block *nfb,
1648 unsigned long action, void *hcpu)
1649 {
1650 int cpu = (long)hcpu;
1651 struct radix_tree_preload *rtp;
1652 struct radix_tree_node *node;
1653
1654 /* Free per-cpu pool of preloaded nodes */
1655 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1656 rtp = &per_cpu(radix_tree_preloads, cpu);
1657 while (rtp->nr) {
1658 node = rtp->nodes;
1659 rtp->nodes = node->private_data;
1660 kmem_cache_free(radix_tree_node_cachep, node);
1661 rtp->nr--;
1662 }
1663 }
1664 return NOTIFY_OK;
1665 }
1666
1667 void __init radix_tree_init(void)
1668 {
1669 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1670 sizeof(struct radix_tree_node), 0,
1671 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1672 radix_tree_node_ctor);
1673 radix_tree_init_maxnodes();
1674 hotcpu_notifier(radix_tree_callback, 0);
1675 }
This page took 0.068366 seconds and 5 git commands to generate.