Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35
36 #include <asm/uaccess.h>
37
38 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39 static struct kmem_cache *page_cgroup_cache __read_mostly;
40 #define MEM_CGROUP_RECLAIM_RETRIES 5
41
42 /*
43 * Statistics for memory cgroup.
44 */
45 enum mem_cgroup_stat_index {
46 /*
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48 */
49 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
51 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
52 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
53
54 MEM_CGROUP_STAT_NSTATS,
55 };
56
57 struct mem_cgroup_stat_cpu {
58 s64 count[MEM_CGROUP_STAT_NSTATS];
59 } ____cacheline_aligned_in_smp;
60
61 struct mem_cgroup_stat {
62 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63 };
64
65 /*
66 * For accounting under irq disable, no need for increment preempt count.
67 */
68 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69 enum mem_cgroup_stat_index idx, int val)
70 {
71 int cpu = smp_processor_id();
72 stat->cpustat[cpu].count[idx] += val;
73 }
74
75 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77 {
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83 }
84
85 /*
86 * per-zone information in memory controller.
87 */
88
89 enum mem_cgroup_zstat_index {
90 MEM_CGROUP_ZSTAT_ACTIVE,
91 MEM_CGROUP_ZSTAT_INACTIVE,
92
93 NR_MEM_CGROUP_ZSTAT,
94 };
95
96 struct mem_cgroup_per_zone {
97 /*
98 * spin_lock to protect the per cgroup LRU
99 */
100 spinlock_t lru_lock;
101 struct list_head active_list;
102 struct list_head inactive_list;
103 unsigned long count[NR_MEM_CGROUP_ZSTAT];
104 };
105 /* Macro for accessing counter */
106 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
107
108 struct mem_cgroup_per_node {
109 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110 };
111
112 struct mem_cgroup_lru_info {
113 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114 };
115
116 /*
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
121 *
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
126 */
127 struct mem_cgroup {
128 struct cgroup_subsys_state css;
129 /*
130 * the counter to account for memory usage
131 */
132 struct res_counter res;
133 /*
134 * Per cgroup active and inactive list, similar to the
135 * per zone LRU lists.
136 */
137 struct mem_cgroup_lru_info info;
138
139 int prev_priority; /* for recording reclaim priority */
140 /*
141 * statistics.
142 */
143 struct mem_cgroup_stat stat;
144 };
145 static struct mem_cgroup init_mem_cgroup;
146
147 /*
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
149 * lock. We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin). But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
153 */
154 #define PAGE_CGROUP_LOCK_BIT 0x0
155 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
157 #else
158 #define PAGE_CGROUP_LOCK 0x0
159 #endif
160
161 /*
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
164 */
165 struct page_cgroup {
166 struct list_head lru; /* per cgroup LRU list */
167 struct page *page;
168 struct mem_cgroup *mem_cgroup;
169 int flags;
170 };
171 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
172 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
173
174 static int page_cgroup_nid(struct page_cgroup *pc)
175 {
176 return page_to_nid(pc->page);
177 }
178
179 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
180 {
181 return page_zonenum(pc->page);
182 }
183
184 enum charge_type {
185 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED,
187 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
188 };
189
190 /*
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
192 */
193 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194 bool charge)
195 {
196 int val = (charge)? 1 : -1;
197 struct mem_cgroup_stat *stat = &mem->stat;
198
199 VM_BUG_ON(!irqs_disabled());
200 if (flags & PAGE_CGROUP_FLAG_CACHE)
201 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
202 else
203 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204
205 if (charge)
206 __mem_cgroup_stat_add_safe(stat,
207 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208 else
209 __mem_cgroup_stat_add_safe(stat,
210 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
211 }
212
213 static struct mem_cgroup_per_zone *
214 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215 {
216 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217 }
218
219 static struct mem_cgroup_per_zone *
220 page_cgroup_zoneinfo(struct page_cgroup *pc)
221 {
222 struct mem_cgroup *mem = pc->mem_cgroup;
223 int nid = page_cgroup_nid(pc);
224 int zid = page_cgroup_zid(pc);
225
226 return mem_cgroup_zoneinfo(mem, nid, zid);
227 }
228
229 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230 enum mem_cgroup_zstat_index idx)
231 {
232 int nid, zid;
233 struct mem_cgroup_per_zone *mz;
234 u64 total = 0;
235
236 for_each_online_node(nid)
237 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238 mz = mem_cgroup_zoneinfo(mem, nid, zid);
239 total += MEM_CGROUP_ZSTAT(mz, idx);
240 }
241 return total;
242 }
243
244 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
245 {
246 return container_of(cgroup_subsys_state(cont,
247 mem_cgroup_subsys_id), struct mem_cgroup,
248 css);
249 }
250
251 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
252 {
253 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
254 struct mem_cgroup, css);
255 }
256
257 static inline int page_cgroup_locked(struct page *page)
258 {
259 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
260 }
261
262 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
263 {
264 VM_BUG_ON(!page_cgroup_locked(page));
265 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
266 }
267
268 struct page_cgroup *page_get_page_cgroup(struct page *page)
269 {
270 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
271 }
272
273 static void lock_page_cgroup(struct page *page)
274 {
275 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
276 }
277
278 static int try_lock_page_cgroup(struct page *page)
279 {
280 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
281 }
282
283 static void unlock_page_cgroup(struct page *page)
284 {
285 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
286 }
287
288 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
289 struct page_cgroup *pc)
290 {
291 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
292
293 if (from)
294 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
295 else
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
297
298 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
299 list_del(&pc->lru);
300 }
301
302 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
303 struct page_cgroup *pc)
304 {
305 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
306
307 if (!to) {
308 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
309 list_add(&pc->lru, &mz->inactive_list);
310 } else {
311 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
312 list_add(&pc->lru, &mz->active_list);
313 }
314 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
315 }
316
317 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
318 {
319 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
320 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
321
322 if (from)
323 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
324 else
325 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
326
327 if (active) {
328 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
329 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
330 list_move(&pc->lru, &mz->active_list);
331 } else {
332 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
333 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
334 list_move(&pc->lru, &mz->inactive_list);
335 }
336 }
337
338 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
339 {
340 int ret;
341
342 task_lock(task);
343 ret = task->mm && mm_match_cgroup(task->mm, mem);
344 task_unlock(task);
345 return ret;
346 }
347
348 /*
349 * This routine assumes that the appropriate zone's lru lock is already held
350 */
351 void mem_cgroup_move_lists(struct page *page, bool active)
352 {
353 struct page_cgroup *pc;
354 struct mem_cgroup_per_zone *mz;
355 unsigned long flags;
356
357 if (mem_cgroup_subsys.disabled)
358 return;
359
360 /*
361 * We cannot lock_page_cgroup while holding zone's lru_lock,
362 * because other holders of lock_page_cgroup can be interrupted
363 * with an attempt to rotate_reclaimable_page. But we cannot
364 * safely get to page_cgroup without it, so just try_lock it:
365 * mem_cgroup_isolate_pages allows for page left on wrong list.
366 */
367 if (!try_lock_page_cgroup(page))
368 return;
369
370 pc = page_get_page_cgroup(page);
371 if (pc) {
372 mz = page_cgroup_zoneinfo(pc);
373 spin_lock_irqsave(&mz->lru_lock, flags);
374 __mem_cgroup_move_lists(pc, active);
375 spin_unlock_irqrestore(&mz->lru_lock, flags);
376 }
377 unlock_page_cgroup(page);
378 }
379
380 /*
381 * Calculate mapped_ratio under memory controller. This will be used in
382 * vmscan.c for deteremining we have to reclaim mapped pages.
383 */
384 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
385 {
386 long total, rss;
387
388 /*
389 * usage is recorded in bytes. But, here, we assume the number of
390 * physical pages can be represented by "long" on any arch.
391 */
392 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
393 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
394 return (int)((rss * 100L) / total);
395 }
396
397 /*
398 * This function is called from vmscan.c. In page reclaiming loop. balance
399 * between active and inactive list is calculated. For memory controller
400 * page reclaiming, we should use using mem_cgroup's imbalance rather than
401 * zone's global lru imbalance.
402 */
403 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
404 {
405 unsigned long active, inactive;
406 /* active and inactive are the number of pages. 'long' is ok.*/
407 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
408 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
409 return (long) (active / (inactive + 1));
410 }
411
412 /*
413 * prev_priority control...this will be used in memory reclaim path.
414 */
415 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
416 {
417 return mem->prev_priority;
418 }
419
420 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
421 {
422 if (priority < mem->prev_priority)
423 mem->prev_priority = priority;
424 }
425
426 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
427 {
428 mem->prev_priority = priority;
429 }
430
431 /*
432 * Calculate # of pages to be scanned in this priority/zone.
433 * See also vmscan.c
434 *
435 * priority starts from "DEF_PRIORITY" and decremented in each loop.
436 * (see include/linux/mmzone.h)
437 */
438
439 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
440 struct zone *zone, int priority)
441 {
442 long nr_active;
443 int nid = zone->zone_pgdat->node_id;
444 int zid = zone_idx(zone);
445 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
446
447 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
448 return (nr_active >> priority);
449 }
450
451 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
452 struct zone *zone, int priority)
453 {
454 long nr_inactive;
455 int nid = zone->zone_pgdat->node_id;
456 int zid = zone_idx(zone);
457 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
458
459 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
460 return (nr_inactive >> priority);
461 }
462
463 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
464 struct list_head *dst,
465 unsigned long *scanned, int order,
466 int mode, struct zone *z,
467 struct mem_cgroup *mem_cont,
468 int active)
469 {
470 unsigned long nr_taken = 0;
471 struct page *page;
472 unsigned long scan;
473 LIST_HEAD(pc_list);
474 struct list_head *src;
475 struct page_cgroup *pc, *tmp;
476 int nid = z->zone_pgdat->node_id;
477 int zid = zone_idx(z);
478 struct mem_cgroup_per_zone *mz;
479
480 BUG_ON(!mem_cont);
481 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
482 if (active)
483 src = &mz->active_list;
484 else
485 src = &mz->inactive_list;
486
487
488 spin_lock(&mz->lru_lock);
489 scan = 0;
490 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
491 if (scan >= nr_to_scan)
492 break;
493 page = pc->page;
494
495 if (unlikely(!PageLRU(page)))
496 continue;
497
498 if (PageActive(page) && !active) {
499 __mem_cgroup_move_lists(pc, true);
500 continue;
501 }
502 if (!PageActive(page) && active) {
503 __mem_cgroup_move_lists(pc, false);
504 continue;
505 }
506
507 scan++;
508 list_move(&pc->lru, &pc_list);
509
510 if (__isolate_lru_page(page, mode) == 0) {
511 list_move(&page->lru, dst);
512 nr_taken++;
513 }
514 }
515
516 list_splice(&pc_list, src);
517 spin_unlock(&mz->lru_lock);
518
519 *scanned = scan;
520 return nr_taken;
521 }
522
523 /*
524 * Charge the memory controller for page usage.
525 * Return
526 * 0 if the charge was successful
527 * < 0 if the cgroup is over its limit
528 */
529 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
530 gfp_t gfp_mask, enum charge_type ctype,
531 struct mem_cgroup *memcg)
532 {
533 struct mem_cgroup *mem;
534 struct page_cgroup *pc;
535 unsigned long flags;
536 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
537 struct mem_cgroup_per_zone *mz;
538
539 pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
540 if (unlikely(pc == NULL))
541 goto err;
542
543 /*
544 * We always charge the cgroup the mm_struct belongs to.
545 * The mm_struct's mem_cgroup changes on task migration if the
546 * thread group leader migrates. It's possible that mm is not
547 * set, if so charge the init_mm (happens for pagecache usage).
548 */
549 if (likely(!memcg)) {
550 rcu_read_lock();
551 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
552 /*
553 * For every charge from the cgroup, increment reference count
554 */
555 css_get(&mem->css);
556 rcu_read_unlock();
557 } else {
558 mem = memcg;
559 css_get(&memcg->css);
560 }
561
562 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
563 if (!(gfp_mask & __GFP_WAIT))
564 goto out;
565
566 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
567 continue;
568
569 /*
570 * try_to_free_mem_cgroup_pages() might not give us a full
571 * picture of reclaim. Some pages are reclaimed and might be
572 * moved to swap cache or just unmapped from the cgroup.
573 * Check the limit again to see if the reclaim reduced the
574 * current usage of the cgroup before giving up
575 */
576 if (res_counter_check_under_limit(&mem->res))
577 continue;
578
579 if (!nr_retries--) {
580 mem_cgroup_out_of_memory(mem, gfp_mask);
581 goto out;
582 }
583 }
584
585 pc->mem_cgroup = mem;
586 pc->page = page;
587 /*
588 * If a page is accounted as a page cache, insert to inactive list.
589 * If anon, insert to active list.
590 */
591 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
592 pc->flags = PAGE_CGROUP_FLAG_CACHE;
593 else
594 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
595
596 lock_page_cgroup(page);
597 if (unlikely(page_get_page_cgroup(page))) {
598 unlock_page_cgroup(page);
599 res_counter_uncharge(&mem->res, PAGE_SIZE);
600 css_put(&mem->css);
601 kmem_cache_free(page_cgroup_cache, pc);
602 goto done;
603 }
604 page_assign_page_cgroup(page, pc);
605
606 mz = page_cgroup_zoneinfo(pc);
607 spin_lock_irqsave(&mz->lru_lock, flags);
608 __mem_cgroup_add_list(mz, pc);
609 spin_unlock_irqrestore(&mz->lru_lock, flags);
610
611 unlock_page_cgroup(page);
612 done:
613 return 0;
614 out:
615 css_put(&mem->css);
616 kmem_cache_free(page_cgroup_cache, pc);
617 err:
618 return -ENOMEM;
619 }
620
621 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
622 {
623 if (mem_cgroup_subsys.disabled)
624 return 0;
625
626 /*
627 * If already mapped, we don't have to account.
628 * If page cache, page->mapping has address_space.
629 * But page->mapping may have out-of-use anon_vma pointer,
630 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
631 * is NULL.
632 */
633 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
634 return 0;
635 if (unlikely(!mm))
636 mm = &init_mm;
637 return mem_cgroup_charge_common(page, mm, gfp_mask,
638 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
639 }
640
641 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
642 gfp_t gfp_mask)
643 {
644 if (mem_cgroup_subsys.disabled)
645 return 0;
646
647 /*
648 * Corner case handling. This is called from add_to_page_cache()
649 * in usual. But some FS (shmem) precharges this page before calling it
650 * and call add_to_page_cache() with GFP_NOWAIT.
651 *
652 * For GFP_NOWAIT case, the page may be pre-charged before calling
653 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
654 * charge twice. (It works but has to pay a bit larger cost.)
655 */
656 if (!(gfp_mask & __GFP_WAIT)) {
657 struct page_cgroup *pc;
658
659 lock_page_cgroup(page);
660 pc = page_get_page_cgroup(page);
661 if (pc) {
662 VM_BUG_ON(pc->page != page);
663 VM_BUG_ON(!pc->mem_cgroup);
664 unlock_page_cgroup(page);
665 return 0;
666 }
667 unlock_page_cgroup(page);
668 }
669
670 if (unlikely(!mm))
671 mm = &init_mm;
672
673 return mem_cgroup_charge_common(page, mm, gfp_mask,
674 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
675 }
676
677 /*
678 * uncharge if !page_mapped(page)
679 */
680 static void
681 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
682 {
683 struct page_cgroup *pc;
684 struct mem_cgroup *mem;
685 struct mem_cgroup_per_zone *mz;
686 unsigned long flags;
687
688 if (mem_cgroup_subsys.disabled)
689 return;
690
691 /*
692 * Check if our page_cgroup is valid
693 */
694 lock_page_cgroup(page);
695 pc = page_get_page_cgroup(page);
696 if (unlikely(!pc))
697 goto unlock;
698
699 VM_BUG_ON(pc->page != page);
700
701 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
702 && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
703 || page_mapped(page)))
704 goto unlock;
705
706 mz = page_cgroup_zoneinfo(pc);
707 spin_lock_irqsave(&mz->lru_lock, flags);
708 __mem_cgroup_remove_list(mz, pc);
709 spin_unlock_irqrestore(&mz->lru_lock, flags);
710
711 page_assign_page_cgroup(page, NULL);
712 unlock_page_cgroup(page);
713
714 mem = pc->mem_cgroup;
715 res_counter_uncharge(&mem->res, PAGE_SIZE);
716 css_put(&mem->css);
717
718 kmem_cache_free(page_cgroup_cache, pc);
719 return;
720 unlock:
721 unlock_page_cgroup(page);
722 }
723
724 void mem_cgroup_uncharge_page(struct page *page)
725 {
726 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
727 }
728
729 void mem_cgroup_uncharge_cache_page(struct page *page)
730 {
731 VM_BUG_ON(page_mapped(page));
732 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
733 }
734
735 /*
736 * Before starting migration, account against new page.
737 */
738 int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
739 {
740 struct page_cgroup *pc;
741 struct mem_cgroup *mem = NULL;
742 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
743 int ret = 0;
744
745 if (mem_cgroup_subsys.disabled)
746 return 0;
747
748 lock_page_cgroup(page);
749 pc = page_get_page_cgroup(page);
750 if (pc) {
751 mem = pc->mem_cgroup;
752 css_get(&mem->css);
753 if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
754 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
755 }
756 unlock_page_cgroup(page);
757 if (mem) {
758 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
759 ctype, mem);
760 css_put(&mem->css);
761 }
762 return ret;
763 }
764
765 /* remove redundant charge if migration failed*/
766 void mem_cgroup_end_migration(struct page *newpage)
767 {
768 /*
769 * At success, page->mapping is not NULL.
770 * special rollback care is necessary when
771 * 1. at migration failure. (newpage->mapping is cleared in this case)
772 * 2. the newpage was moved but not remapped again because the task
773 * exits and the newpage is obsolete. In this case, the new page
774 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
775 * always for avoiding mess. The page_cgroup will be removed if
776 * unnecessary. File cache pages is still on radix-tree. Don't
777 * care it.
778 */
779 if (!newpage->mapping)
780 __mem_cgroup_uncharge_common(newpage,
781 MEM_CGROUP_CHARGE_TYPE_FORCE);
782 else if (PageAnon(newpage))
783 mem_cgroup_uncharge_page(newpage);
784 }
785
786 /*
787 * A call to try to shrink memory usage under specified resource controller.
788 * This is typically used for page reclaiming for shmem for reducing side
789 * effect of page allocation from shmem, which is used by some mem_cgroup.
790 */
791 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
792 {
793 struct mem_cgroup *mem;
794 int progress = 0;
795 int retry = MEM_CGROUP_RECLAIM_RETRIES;
796
797 if (mem_cgroup_subsys.disabled)
798 return 0;
799 if (!mm)
800 return 0;
801
802 rcu_read_lock();
803 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
804 css_get(&mem->css);
805 rcu_read_unlock();
806
807 do {
808 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
809 progress += res_counter_check_under_limit(&mem->res);
810 } while (!progress && --retry);
811
812 css_put(&mem->css);
813 if (!retry)
814 return -ENOMEM;
815 return 0;
816 }
817
818 int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
819 {
820
821 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
822 int progress;
823 int ret = 0;
824
825 while (res_counter_set_limit(&memcg->res, val)) {
826 if (signal_pending(current)) {
827 ret = -EINTR;
828 break;
829 }
830 if (!retry_count) {
831 ret = -EBUSY;
832 break;
833 }
834 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
835 if (!progress)
836 retry_count--;
837 }
838 return ret;
839 }
840
841
842 /*
843 * This routine traverse page_cgroup in given list and drop them all.
844 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
845 */
846 #define FORCE_UNCHARGE_BATCH (128)
847 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
848 struct mem_cgroup_per_zone *mz,
849 int active)
850 {
851 struct page_cgroup *pc;
852 struct page *page;
853 int count = FORCE_UNCHARGE_BATCH;
854 unsigned long flags;
855 struct list_head *list;
856
857 if (active)
858 list = &mz->active_list;
859 else
860 list = &mz->inactive_list;
861
862 spin_lock_irqsave(&mz->lru_lock, flags);
863 while (!list_empty(list)) {
864 pc = list_entry(list->prev, struct page_cgroup, lru);
865 page = pc->page;
866 get_page(page);
867 spin_unlock_irqrestore(&mz->lru_lock, flags);
868 /*
869 * Check if this page is on LRU. !LRU page can be found
870 * if it's under page migration.
871 */
872 if (PageLRU(page)) {
873 __mem_cgroup_uncharge_common(page,
874 MEM_CGROUP_CHARGE_TYPE_FORCE);
875 put_page(page);
876 if (--count <= 0) {
877 count = FORCE_UNCHARGE_BATCH;
878 cond_resched();
879 }
880 } else
881 cond_resched();
882 spin_lock_irqsave(&mz->lru_lock, flags);
883 }
884 spin_unlock_irqrestore(&mz->lru_lock, flags);
885 }
886
887 /*
888 * make mem_cgroup's charge to be 0 if there is no task.
889 * This enables deleting this mem_cgroup.
890 */
891 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
892 {
893 int ret = -EBUSY;
894 int node, zid;
895
896 css_get(&mem->css);
897 /*
898 * page reclaim code (kswapd etc..) will move pages between
899 * active_list <-> inactive_list while we don't take a lock.
900 * So, we have to do loop here until all lists are empty.
901 */
902 while (mem->res.usage > 0) {
903 if (atomic_read(&mem->css.cgroup->count) > 0)
904 goto out;
905 for_each_node_state(node, N_POSSIBLE)
906 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
907 struct mem_cgroup_per_zone *mz;
908 mz = mem_cgroup_zoneinfo(mem, node, zid);
909 /* drop all page_cgroup in active_list */
910 mem_cgroup_force_empty_list(mem, mz, 1);
911 /* drop all page_cgroup in inactive_list */
912 mem_cgroup_force_empty_list(mem, mz, 0);
913 }
914 }
915 ret = 0;
916 out:
917 css_put(&mem->css);
918 return ret;
919 }
920
921 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
922 {
923 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
924 cft->private);
925 }
926 /*
927 * The user of this function is...
928 * RES_LIMIT.
929 */
930 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
931 const char *buffer)
932 {
933 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
934 unsigned long long val;
935 int ret;
936
937 switch (cft->private) {
938 case RES_LIMIT:
939 /* This function does all necessary parse...reuse it */
940 ret = res_counter_memparse_write_strategy(buffer, &val);
941 if (!ret)
942 ret = mem_cgroup_resize_limit(memcg, val);
943 break;
944 default:
945 ret = -EINVAL; /* should be BUG() ? */
946 break;
947 }
948 return ret;
949 }
950
951 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
952 {
953 struct mem_cgroup *mem;
954
955 mem = mem_cgroup_from_cont(cont);
956 switch (event) {
957 case RES_MAX_USAGE:
958 res_counter_reset_max(&mem->res);
959 break;
960 case RES_FAILCNT:
961 res_counter_reset_failcnt(&mem->res);
962 break;
963 }
964 return 0;
965 }
966
967 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
968 {
969 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
970 }
971
972 static const struct mem_cgroup_stat_desc {
973 const char *msg;
974 u64 unit;
975 } mem_cgroup_stat_desc[] = {
976 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
977 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
978 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
979 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
980 };
981
982 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
983 struct cgroup_map_cb *cb)
984 {
985 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
986 struct mem_cgroup_stat *stat = &mem_cont->stat;
987 int i;
988
989 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
990 s64 val;
991
992 val = mem_cgroup_read_stat(stat, i);
993 val *= mem_cgroup_stat_desc[i].unit;
994 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
995 }
996 /* showing # of active pages */
997 {
998 unsigned long active, inactive;
999
1000 inactive = mem_cgroup_get_all_zonestat(mem_cont,
1001 MEM_CGROUP_ZSTAT_INACTIVE);
1002 active = mem_cgroup_get_all_zonestat(mem_cont,
1003 MEM_CGROUP_ZSTAT_ACTIVE);
1004 cb->fill(cb, "active", (active) * PAGE_SIZE);
1005 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
1006 }
1007 return 0;
1008 }
1009
1010 static struct cftype mem_cgroup_files[] = {
1011 {
1012 .name = "usage_in_bytes",
1013 .private = RES_USAGE,
1014 .read_u64 = mem_cgroup_read,
1015 },
1016 {
1017 .name = "max_usage_in_bytes",
1018 .private = RES_MAX_USAGE,
1019 .trigger = mem_cgroup_reset,
1020 .read_u64 = mem_cgroup_read,
1021 },
1022 {
1023 .name = "limit_in_bytes",
1024 .private = RES_LIMIT,
1025 .write_string = mem_cgroup_write,
1026 .read_u64 = mem_cgroup_read,
1027 },
1028 {
1029 .name = "failcnt",
1030 .private = RES_FAILCNT,
1031 .trigger = mem_cgroup_reset,
1032 .read_u64 = mem_cgroup_read,
1033 },
1034 {
1035 .name = "force_empty",
1036 .trigger = mem_force_empty_write,
1037 },
1038 {
1039 .name = "stat",
1040 .read_map = mem_control_stat_show,
1041 },
1042 };
1043
1044 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1045 {
1046 struct mem_cgroup_per_node *pn;
1047 struct mem_cgroup_per_zone *mz;
1048 int zone, tmp = node;
1049 /*
1050 * This routine is called against possible nodes.
1051 * But it's BUG to call kmalloc() against offline node.
1052 *
1053 * TODO: this routine can waste much memory for nodes which will
1054 * never be onlined. It's better to use memory hotplug callback
1055 * function.
1056 */
1057 if (!node_state(node, N_NORMAL_MEMORY))
1058 tmp = -1;
1059 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1060 if (!pn)
1061 return 1;
1062
1063 mem->info.nodeinfo[node] = pn;
1064 memset(pn, 0, sizeof(*pn));
1065
1066 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1067 mz = &pn->zoneinfo[zone];
1068 INIT_LIST_HEAD(&mz->active_list);
1069 INIT_LIST_HEAD(&mz->inactive_list);
1070 spin_lock_init(&mz->lru_lock);
1071 }
1072 return 0;
1073 }
1074
1075 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1076 {
1077 kfree(mem->info.nodeinfo[node]);
1078 }
1079
1080 static struct mem_cgroup *mem_cgroup_alloc(void)
1081 {
1082 struct mem_cgroup *mem;
1083
1084 if (sizeof(*mem) < PAGE_SIZE)
1085 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1086 else
1087 mem = vmalloc(sizeof(*mem));
1088
1089 if (mem)
1090 memset(mem, 0, sizeof(*mem));
1091 return mem;
1092 }
1093
1094 static void mem_cgroup_free(struct mem_cgroup *mem)
1095 {
1096 if (sizeof(*mem) < PAGE_SIZE)
1097 kfree(mem);
1098 else
1099 vfree(mem);
1100 }
1101
1102
1103 static struct cgroup_subsys_state *
1104 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1105 {
1106 struct mem_cgroup *mem;
1107 int node;
1108
1109 if (unlikely((cont->parent) == NULL)) {
1110 mem = &init_mem_cgroup;
1111 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1112 } else {
1113 mem = mem_cgroup_alloc();
1114 if (!mem)
1115 return ERR_PTR(-ENOMEM);
1116 }
1117
1118 res_counter_init(&mem->res);
1119
1120 for_each_node_state(node, N_POSSIBLE)
1121 if (alloc_mem_cgroup_per_zone_info(mem, node))
1122 goto free_out;
1123
1124 return &mem->css;
1125 free_out:
1126 for_each_node_state(node, N_POSSIBLE)
1127 free_mem_cgroup_per_zone_info(mem, node);
1128 if (cont->parent != NULL)
1129 mem_cgroup_free(mem);
1130 return ERR_PTR(-ENOMEM);
1131 }
1132
1133 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1134 struct cgroup *cont)
1135 {
1136 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1137 mem_cgroup_force_empty(mem);
1138 }
1139
1140 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1141 struct cgroup *cont)
1142 {
1143 int node;
1144 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1145
1146 for_each_node_state(node, N_POSSIBLE)
1147 free_mem_cgroup_per_zone_info(mem, node);
1148
1149 mem_cgroup_free(mem_cgroup_from_cont(cont));
1150 }
1151
1152 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1153 struct cgroup *cont)
1154 {
1155 return cgroup_add_files(cont, ss, mem_cgroup_files,
1156 ARRAY_SIZE(mem_cgroup_files));
1157 }
1158
1159 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1160 struct cgroup *cont,
1161 struct cgroup *old_cont,
1162 struct task_struct *p)
1163 {
1164 struct mm_struct *mm;
1165 struct mem_cgroup *mem, *old_mem;
1166
1167 mm = get_task_mm(p);
1168 if (mm == NULL)
1169 return;
1170
1171 mem = mem_cgroup_from_cont(cont);
1172 old_mem = mem_cgroup_from_cont(old_cont);
1173
1174 /*
1175 * Only thread group leaders are allowed to migrate, the mm_struct is
1176 * in effect owned by the leader
1177 */
1178 if (!thread_group_leader(p))
1179 goto out;
1180
1181 out:
1182 mmput(mm);
1183 }
1184
1185 struct cgroup_subsys mem_cgroup_subsys = {
1186 .name = "memory",
1187 .subsys_id = mem_cgroup_subsys_id,
1188 .create = mem_cgroup_create,
1189 .pre_destroy = mem_cgroup_pre_destroy,
1190 .destroy = mem_cgroup_destroy,
1191 .populate = mem_cgroup_populate,
1192 .attach = mem_cgroup_move_task,
1193 .early_init = 0,
1194 };
This page took 0.054116 seconds and 6 git commands to generate.