Merge commit 'v2.6.27' into timers/hpet
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35
36 #include <asm/uaccess.h>
37
38 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39 static struct kmem_cache *page_cgroup_cache __read_mostly;
40 #define MEM_CGROUP_RECLAIM_RETRIES 5
41
42 /*
43 * Statistics for memory cgroup.
44 */
45 enum mem_cgroup_stat_index {
46 /*
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48 */
49 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
51 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
52 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
53
54 MEM_CGROUP_STAT_NSTATS,
55 };
56
57 struct mem_cgroup_stat_cpu {
58 s64 count[MEM_CGROUP_STAT_NSTATS];
59 } ____cacheline_aligned_in_smp;
60
61 struct mem_cgroup_stat {
62 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63 };
64
65 /*
66 * For accounting under irq disable, no need for increment preempt count.
67 */
68 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69 enum mem_cgroup_stat_index idx, int val)
70 {
71 int cpu = smp_processor_id();
72 stat->cpustat[cpu].count[idx] += val;
73 }
74
75 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77 {
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83 }
84
85 /*
86 * per-zone information in memory controller.
87 */
88
89 enum mem_cgroup_zstat_index {
90 MEM_CGROUP_ZSTAT_ACTIVE,
91 MEM_CGROUP_ZSTAT_INACTIVE,
92
93 NR_MEM_CGROUP_ZSTAT,
94 };
95
96 struct mem_cgroup_per_zone {
97 /*
98 * spin_lock to protect the per cgroup LRU
99 */
100 spinlock_t lru_lock;
101 struct list_head active_list;
102 struct list_head inactive_list;
103 unsigned long count[NR_MEM_CGROUP_ZSTAT];
104 };
105 /* Macro for accessing counter */
106 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
107
108 struct mem_cgroup_per_node {
109 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110 };
111
112 struct mem_cgroup_lru_info {
113 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114 };
115
116 /*
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
121 *
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
126 */
127 struct mem_cgroup {
128 struct cgroup_subsys_state css;
129 /*
130 * the counter to account for memory usage
131 */
132 struct res_counter res;
133 /*
134 * Per cgroup active and inactive list, similar to the
135 * per zone LRU lists.
136 */
137 struct mem_cgroup_lru_info info;
138
139 int prev_priority; /* for recording reclaim priority */
140 /*
141 * statistics.
142 */
143 struct mem_cgroup_stat stat;
144 };
145 static struct mem_cgroup init_mem_cgroup;
146
147 /*
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
149 * lock. We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin). But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
153 */
154 #define PAGE_CGROUP_LOCK_BIT 0x0
155 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
157 #else
158 #define PAGE_CGROUP_LOCK 0x0
159 #endif
160
161 /*
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
164 */
165 struct page_cgroup {
166 struct list_head lru; /* per cgroup LRU list */
167 struct page *page;
168 struct mem_cgroup *mem_cgroup;
169 int flags;
170 };
171 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
172 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
173
174 static int page_cgroup_nid(struct page_cgroup *pc)
175 {
176 return page_to_nid(pc->page);
177 }
178
179 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
180 {
181 return page_zonenum(pc->page);
182 }
183
184 enum charge_type {
185 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED,
187 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
188 };
189
190 /*
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
192 */
193 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194 bool charge)
195 {
196 int val = (charge)? 1 : -1;
197 struct mem_cgroup_stat *stat = &mem->stat;
198
199 VM_BUG_ON(!irqs_disabled());
200 if (flags & PAGE_CGROUP_FLAG_CACHE)
201 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
202 else
203 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204
205 if (charge)
206 __mem_cgroup_stat_add_safe(stat,
207 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208 else
209 __mem_cgroup_stat_add_safe(stat,
210 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
211 }
212
213 static struct mem_cgroup_per_zone *
214 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215 {
216 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217 }
218
219 static struct mem_cgroup_per_zone *
220 page_cgroup_zoneinfo(struct page_cgroup *pc)
221 {
222 struct mem_cgroup *mem = pc->mem_cgroup;
223 int nid = page_cgroup_nid(pc);
224 int zid = page_cgroup_zid(pc);
225
226 return mem_cgroup_zoneinfo(mem, nid, zid);
227 }
228
229 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230 enum mem_cgroup_zstat_index idx)
231 {
232 int nid, zid;
233 struct mem_cgroup_per_zone *mz;
234 u64 total = 0;
235
236 for_each_online_node(nid)
237 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238 mz = mem_cgroup_zoneinfo(mem, nid, zid);
239 total += MEM_CGROUP_ZSTAT(mz, idx);
240 }
241 return total;
242 }
243
244 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
245 {
246 return container_of(cgroup_subsys_state(cont,
247 mem_cgroup_subsys_id), struct mem_cgroup,
248 css);
249 }
250
251 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
252 {
253 /*
254 * mm_update_next_owner() may clear mm->owner to NULL
255 * if it races with swapoff, page migration, etc.
256 * So this can be called with p == NULL.
257 */
258 if (unlikely(!p))
259 return NULL;
260
261 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
262 struct mem_cgroup, css);
263 }
264
265 static inline int page_cgroup_locked(struct page *page)
266 {
267 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
268 }
269
270 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
271 {
272 VM_BUG_ON(!page_cgroup_locked(page));
273 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
274 }
275
276 struct page_cgroup *page_get_page_cgroup(struct page *page)
277 {
278 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
279 }
280
281 static void lock_page_cgroup(struct page *page)
282 {
283 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
284 }
285
286 static int try_lock_page_cgroup(struct page *page)
287 {
288 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
289 }
290
291 static void unlock_page_cgroup(struct page *page)
292 {
293 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
294 }
295
296 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
297 struct page_cgroup *pc)
298 {
299 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
300
301 if (from)
302 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
303 else
304 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
305
306 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
307 list_del(&pc->lru);
308 }
309
310 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
311 struct page_cgroup *pc)
312 {
313 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
314
315 if (!to) {
316 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
317 list_add(&pc->lru, &mz->inactive_list);
318 } else {
319 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
320 list_add(&pc->lru, &mz->active_list);
321 }
322 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
323 }
324
325 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
326 {
327 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
328 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
329
330 if (from)
331 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
332 else
333 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
334
335 if (active) {
336 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
337 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
338 list_move(&pc->lru, &mz->active_list);
339 } else {
340 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
341 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
342 list_move(&pc->lru, &mz->inactive_list);
343 }
344 }
345
346 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
347 {
348 int ret;
349
350 task_lock(task);
351 ret = task->mm && mm_match_cgroup(task->mm, mem);
352 task_unlock(task);
353 return ret;
354 }
355
356 /*
357 * This routine assumes that the appropriate zone's lru lock is already held
358 */
359 void mem_cgroup_move_lists(struct page *page, bool active)
360 {
361 struct page_cgroup *pc;
362 struct mem_cgroup_per_zone *mz;
363 unsigned long flags;
364
365 if (mem_cgroup_subsys.disabled)
366 return;
367
368 /*
369 * We cannot lock_page_cgroup while holding zone's lru_lock,
370 * because other holders of lock_page_cgroup can be interrupted
371 * with an attempt to rotate_reclaimable_page. But we cannot
372 * safely get to page_cgroup without it, so just try_lock it:
373 * mem_cgroup_isolate_pages allows for page left on wrong list.
374 */
375 if (!try_lock_page_cgroup(page))
376 return;
377
378 pc = page_get_page_cgroup(page);
379 if (pc) {
380 mz = page_cgroup_zoneinfo(pc);
381 spin_lock_irqsave(&mz->lru_lock, flags);
382 __mem_cgroup_move_lists(pc, active);
383 spin_unlock_irqrestore(&mz->lru_lock, flags);
384 }
385 unlock_page_cgroup(page);
386 }
387
388 /*
389 * Calculate mapped_ratio under memory controller. This will be used in
390 * vmscan.c for deteremining we have to reclaim mapped pages.
391 */
392 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
393 {
394 long total, rss;
395
396 /*
397 * usage is recorded in bytes. But, here, we assume the number of
398 * physical pages can be represented by "long" on any arch.
399 */
400 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
401 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
402 return (int)((rss * 100L) / total);
403 }
404
405 /*
406 * This function is called from vmscan.c. In page reclaiming loop. balance
407 * between active and inactive list is calculated. For memory controller
408 * page reclaiming, we should use using mem_cgroup's imbalance rather than
409 * zone's global lru imbalance.
410 */
411 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
412 {
413 unsigned long active, inactive;
414 /* active and inactive are the number of pages. 'long' is ok.*/
415 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
416 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
417 return (long) (active / (inactive + 1));
418 }
419
420 /*
421 * prev_priority control...this will be used in memory reclaim path.
422 */
423 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
424 {
425 return mem->prev_priority;
426 }
427
428 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
429 {
430 if (priority < mem->prev_priority)
431 mem->prev_priority = priority;
432 }
433
434 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
435 {
436 mem->prev_priority = priority;
437 }
438
439 /*
440 * Calculate # of pages to be scanned in this priority/zone.
441 * See also vmscan.c
442 *
443 * priority starts from "DEF_PRIORITY" and decremented in each loop.
444 * (see include/linux/mmzone.h)
445 */
446
447 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
448 struct zone *zone, int priority)
449 {
450 long nr_active;
451 int nid = zone->zone_pgdat->node_id;
452 int zid = zone_idx(zone);
453 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
454
455 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
456 return (nr_active >> priority);
457 }
458
459 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
460 struct zone *zone, int priority)
461 {
462 long nr_inactive;
463 int nid = zone->zone_pgdat->node_id;
464 int zid = zone_idx(zone);
465 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
466
467 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
468 return (nr_inactive >> priority);
469 }
470
471 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
472 struct list_head *dst,
473 unsigned long *scanned, int order,
474 int mode, struct zone *z,
475 struct mem_cgroup *mem_cont,
476 int active)
477 {
478 unsigned long nr_taken = 0;
479 struct page *page;
480 unsigned long scan;
481 LIST_HEAD(pc_list);
482 struct list_head *src;
483 struct page_cgroup *pc, *tmp;
484 int nid = z->zone_pgdat->node_id;
485 int zid = zone_idx(z);
486 struct mem_cgroup_per_zone *mz;
487
488 BUG_ON(!mem_cont);
489 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
490 if (active)
491 src = &mz->active_list;
492 else
493 src = &mz->inactive_list;
494
495
496 spin_lock(&mz->lru_lock);
497 scan = 0;
498 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
499 if (scan >= nr_to_scan)
500 break;
501 page = pc->page;
502
503 if (unlikely(!PageLRU(page)))
504 continue;
505
506 if (PageActive(page) && !active) {
507 __mem_cgroup_move_lists(pc, true);
508 continue;
509 }
510 if (!PageActive(page) && active) {
511 __mem_cgroup_move_lists(pc, false);
512 continue;
513 }
514
515 scan++;
516 list_move(&pc->lru, &pc_list);
517
518 if (__isolate_lru_page(page, mode) == 0) {
519 list_move(&page->lru, dst);
520 nr_taken++;
521 }
522 }
523
524 list_splice(&pc_list, src);
525 spin_unlock(&mz->lru_lock);
526
527 *scanned = scan;
528 return nr_taken;
529 }
530
531 /*
532 * Charge the memory controller for page usage.
533 * Return
534 * 0 if the charge was successful
535 * < 0 if the cgroup is over its limit
536 */
537 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
538 gfp_t gfp_mask, enum charge_type ctype,
539 struct mem_cgroup *memcg)
540 {
541 struct mem_cgroup *mem;
542 struct page_cgroup *pc;
543 unsigned long flags;
544 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
545 struct mem_cgroup_per_zone *mz;
546
547 pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
548 if (unlikely(pc == NULL))
549 goto err;
550
551 /*
552 * We always charge the cgroup the mm_struct belongs to.
553 * The mm_struct's mem_cgroup changes on task migration if the
554 * thread group leader migrates. It's possible that mm is not
555 * set, if so charge the init_mm (happens for pagecache usage).
556 */
557 if (likely(!memcg)) {
558 rcu_read_lock();
559 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
560 if (unlikely(!mem)) {
561 rcu_read_unlock();
562 kmem_cache_free(page_cgroup_cache, pc);
563 return 0;
564 }
565 /*
566 * For every charge from the cgroup, increment reference count
567 */
568 css_get(&mem->css);
569 rcu_read_unlock();
570 } else {
571 mem = memcg;
572 css_get(&memcg->css);
573 }
574
575 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
576 if (!(gfp_mask & __GFP_WAIT))
577 goto out;
578
579 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
580 continue;
581
582 /*
583 * try_to_free_mem_cgroup_pages() might not give us a full
584 * picture of reclaim. Some pages are reclaimed and might be
585 * moved to swap cache or just unmapped from the cgroup.
586 * Check the limit again to see if the reclaim reduced the
587 * current usage of the cgroup before giving up
588 */
589 if (res_counter_check_under_limit(&mem->res))
590 continue;
591
592 if (!nr_retries--) {
593 mem_cgroup_out_of_memory(mem, gfp_mask);
594 goto out;
595 }
596 }
597
598 pc->mem_cgroup = mem;
599 pc->page = page;
600 /*
601 * If a page is accounted as a page cache, insert to inactive list.
602 * If anon, insert to active list.
603 */
604 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
605 pc->flags = PAGE_CGROUP_FLAG_CACHE;
606 else
607 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
608
609 lock_page_cgroup(page);
610 if (unlikely(page_get_page_cgroup(page))) {
611 unlock_page_cgroup(page);
612 res_counter_uncharge(&mem->res, PAGE_SIZE);
613 css_put(&mem->css);
614 kmem_cache_free(page_cgroup_cache, pc);
615 goto done;
616 }
617 page_assign_page_cgroup(page, pc);
618
619 mz = page_cgroup_zoneinfo(pc);
620 spin_lock_irqsave(&mz->lru_lock, flags);
621 __mem_cgroup_add_list(mz, pc);
622 spin_unlock_irqrestore(&mz->lru_lock, flags);
623
624 unlock_page_cgroup(page);
625 done:
626 return 0;
627 out:
628 css_put(&mem->css);
629 kmem_cache_free(page_cgroup_cache, pc);
630 err:
631 return -ENOMEM;
632 }
633
634 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
635 {
636 if (mem_cgroup_subsys.disabled)
637 return 0;
638
639 /*
640 * If already mapped, we don't have to account.
641 * If page cache, page->mapping has address_space.
642 * But page->mapping may have out-of-use anon_vma pointer,
643 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
644 * is NULL.
645 */
646 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
647 return 0;
648 if (unlikely(!mm))
649 mm = &init_mm;
650 return mem_cgroup_charge_common(page, mm, gfp_mask,
651 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
652 }
653
654 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
655 gfp_t gfp_mask)
656 {
657 if (mem_cgroup_subsys.disabled)
658 return 0;
659
660 /*
661 * Corner case handling. This is called from add_to_page_cache()
662 * in usual. But some FS (shmem) precharges this page before calling it
663 * and call add_to_page_cache() with GFP_NOWAIT.
664 *
665 * For GFP_NOWAIT case, the page may be pre-charged before calling
666 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
667 * charge twice. (It works but has to pay a bit larger cost.)
668 */
669 if (!(gfp_mask & __GFP_WAIT)) {
670 struct page_cgroup *pc;
671
672 lock_page_cgroup(page);
673 pc = page_get_page_cgroup(page);
674 if (pc) {
675 VM_BUG_ON(pc->page != page);
676 VM_BUG_ON(!pc->mem_cgroup);
677 unlock_page_cgroup(page);
678 return 0;
679 }
680 unlock_page_cgroup(page);
681 }
682
683 if (unlikely(!mm))
684 mm = &init_mm;
685
686 return mem_cgroup_charge_common(page, mm, gfp_mask,
687 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
688 }
689
690 /*
691 * uncharge if !page_mapped(page)
692 */
693 static void
694 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
695 {
696 struct page_cgroup *pc;
697 struct mem_cgroup *mem;
698 struct mem_cgroup_per_zone *mz;
699 unsigned long flags;
700
701 if (mem_cgroup_subsys.disabled)
702 return;
703
704 /*
705 * Check if our page_cgroup is valid
706 */
707 lock_page_cgroup(page);
708 pc = page_get_page_cgroup(page);
709 if (unlikely(!pc))
710 goto unlock;
711
712 VM_BUG_ON(pc->page != page);
713
714 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
715 && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
716 || page_mapped(page)))
717 goto unlock;
718
719 mz = page_cgroup_zoneinfo(pc);
720 spin_lock_irqsave(&mz->lru_lock, flags);
721 __mem_cgroup_remove_list(mz, pc);
722 spin_unlock_irqrestore(&mz->lru_lock, flags);
723
724 page_assign_page_cgroup(page, NULL);
725 unlock_page_cgroup(page);
726
727 mem = pc->mem_cgroup;
728 res_counter_uncharge(&mem->res, PAGE_SIZE);
729 css_put(&mem->css);
730
731 kmem_cache_free(page_cgroup_cache, pc);
732 return;
733 unlock:
734 unlock_page_cgroup(page);
735 }
736
737 void mem_cgroup_uncharge_page(struct page *page)
738 {
739 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
740 }
741
742 void mem_cgroup_uncharge_cache_page(struct page *page)
743 {
744 VM_BUG_ON(page_mapped(page));
745 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
746 }
747
748 /*
749 * Before starting migration, account against new page.
750 */
751 int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
752 {
753 struct page_cgroup *pc;
754 struct mem_cgroup *mem = NULL;
755 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
756 int ret = 0;
757
758 if (mem_cgroup_subsys.disabled)
759 return 0;
760
761 lock_page_cgroup(page);
762 pc = page_get_page_cgroup(page);
763 if (pc) {
764 mem = pc->mem_cgroup;
765 css_get(&mem->css);
766 if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
767 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
768 }
769 unlock_page_cgroup(page);
770 if (mem) {
771 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
772 ctype, mem);
773 css_put(&mem->css);
774 }
775 return ret;
776 }
777
778 /* remove redundant charge if migration failed*/
779 void mem_cgroup_end_migration(struct page *newpage)
780 {
781 /*
782 * At success, page->mapping is not NULL.
783 * special rollback care is necessary when
784 * 1. at migration failure. (newpage->mapping is cleared in this case)
785 * 2. the newpage was moved but not remapped again because the task
786 * exits and the newpage is obsolete. In this case, the new page
787 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
788 * always for avoiding mess. The page_cgroup will be removed if
789 * unnecessary. File cache pages is still on radix-tree. Don't
790 * care it.
791 */
792 if (!newpage->mapping)
793 __mem_cgroup_uncharge_common(newpage,
794 MEM_CGROUP_CHARGE_TYPE_FORCE);
795 else if (PageAnon(newpage))
796 mem_cgroup_uncharge_page(newpage);
797 }
798
799 /*
800 * A call to try to shrink memory usage under specified resource controller.
801 * This is typically used for page reclaiming for shmem for reducing side
802 * effect of page allocation from shmem, which is used by some mem_cgroup.
803 */
804 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
805 {
806 struct mem_cgroup *mem;
807 int progress = 0;
808 int retry = MEM_CGROUP_RECLAIM_RETRIES;
809
810 if (mem_cgroup_subsys.disabled)
811 return 0;
812 if (!mm)
813 return 0;
814
815 rcu_read_lock();
816 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
817 if (unlikely(!mem)) {
818 rcu_read_unlock();
819 return 0;
820 }
821 css_get(&mem->css);
822 rcu_read_unlock();
823
824 do {
825 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
826 progress += res_counter_check_under_limit(&mem->res);
827 } while (!progress && --retry);
828
829 css_put(&mem->css);
830 if (!retry)
831 return -ENOMEM;
832 return 0;
833 }
834
835 int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
836 {
837
838 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
839 int progress;
840 int ret = 0;
841
842 while (res_counter_set_limit(&memcg->res, val)) {
843 if (signal_pending(current)) {
844 ret = -EINTR;
845 break;
846 }
847 if (!retry_count) {
848 ret = -EBUSY;
849 break;
850 }
851 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
852 if (!progress)
853 retry_count--;
854 }
855 return ret;
856 }
857
858
859 /*
860 * This routine traverse page_cgroup in given list and drop them all.
861 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
862 */
863 #define FORCE_UNCHARGE_BATCH (128)
864 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
865 struct mem_cgroup_per_zone *mz,
866 int active)
867 {
868 struct page_cgroup *pc;
869 struct page *page;
870 int count = FORCE_UNCHARGE_BATCH;
871 unsigned long flags;
872 struct list_head *list;
873
874 if (active)
875 list = &mz->active_list;
876 else
877 list = &mz->inactive_list;
878
879 spin_lock_irqsave(&mz->lru_lock, flags);
880 while (!list_empty(list)) {
881 pc = list_entry(list->prev, struct page_cgroup, lru);
882 page = pc->page;
883 get_page(page);
884 spin_unlock_irqrestore(&mz->lru_lock, flags);
885 /*
886 * Check if this page is on LRU. !LRU page can be found
887 * if it's under page migration.
888 */
889 if (PageLRU(page)) {
890 __mem_cgroup_uncharge_common(page,
891 MEM_CGROUP_CHARGE_TYPE_FORCE);
892 put_page(page);
893 if (--count <= 0) {
894 count = FORCE_UNCHARGE_BATCH;
895 cond_resched();
896 }
897 } else
898 cond_resched();
899 spin_lock_irqsave(&mz->lru_lock, flags);
900 }
901 spin_unlock_irqrestore(&mz->lru_lock, flags);
902 }
903
904 /*
905 * make mem_cgroup's charge to be 0 if there is no task.
906 * This enables deleting this mem_cgroup.
907 */
908 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
909 {
910 int ret = -EBUSY;
911 int node, zid;
912
913 css_get(&mem->css);
914 /*
915 * page reclaim code (kswapd etc..) will move pages between
916 * active_list <-> inactive_list while we don't take a lock.
917 * So, we have to do loop here until all lists are empty.
918 */
919 while (mem->res.usage > 0) {
920 if (atomic_read(&mem->css.cgroup->count) > 0)
921 goto out;
922 for_each_node_state(node, N_POSSIBLE)
923 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
924 struct mem_cgroup_per_zone *mz;
925 mz = mem_cgroup_zoneinfo(mem, node, zid);
926 /* drop all page_cgroup in active_list */
927 mem_cgroup_force_empty_list(mem, mz, 1);
928 /* drop all page_cgroup in inactive_list */
929 mem_cgroup_force_empty_list(mem, mz, 0);
930 }
931 }
932 ret = 0;
933 out:
934 css_put(&mem->css);
935 return ret;
936 }
937
938 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
939 {
940 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
941 cft->private);
942 }
943 /*
944 * The user of this function is...
945 * RES_LIMIT.
946 */
947 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
948 const char *buffer)
949 {
950 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
951 unsigned long long val;
952 int ret;
953
954 switch (cft->private) {
955 case RES_LIMIT:
956 /* This function does all necessary parse...reuse it */
957 ret = res_counter_memparse_write_strategy(buffer, &val);
958 if (!ret)
959 ret = mem_cgroup_resize_limit(memcg, val);
960 break;
961 default:
962 ret = -EINVAL; /* should be BUG() ? */
963 break;
964 }
965 return ret;
966 }
967
968 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
969 {
970 struct mem_cgroup *mem;
971
972 mem = mem_cgroup_from_cont(cont);
973 switch (event) {
974 case RES_MAX_USAGE:
975 res_counter_reset_max(&mem->res);
976 break;
977 case RES_FAILCNT:
978 res_counter_reset_failcnt(&mem->res);
979 break;
980 }
981 return 0;
982 }
983
984 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
985 {
986 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
987 }
988
989 static const struct mem_cgroup_stat_desc {
990 const char *msg;
991 u64 unit;
992 } mem_cgroup_stat_desc[] = {
993 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
994 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
995 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
996 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
997 };
998
999 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1000 struct cgroup_map_cb *cb)
1001 {
1002 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1003 struct mem_cgroup_stat *stat = &mem_cont->stat;
1004 int i;
1005
1006 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1007 s64 val;
1008
1009 val = mem_cgroup_read_stat(stat, i);
1010 val *= mem_cgroup_stat_desc[i].unit;
1011 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1012 }
1013 /* showing # of active pages */
1014 {
1015 unsigned long active, inactive;
1016
1017 inactive = mem_cgroup_get_all_zonestat(mem_cont,
1018 MEM_CGROUP_ZSTAT_INACTIVE);
1019 active = mem_cgroup_get_all_zonestat(mem_cont,
1020 MEM_CGROUP_ZSTAT_ACTIVE);
1021 cb->fill(cb, "active", (active) * PAGE_SIZE);
1022 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
1023 }
1024 return 0;
1025 }
1026
1027 static struct cftype mem_cgroup_files[] = {
1028 {
1029 .name = "usage_in_bytes",
1030 .private = RES_USAGE,
1031 .read_u64 = mem_cgroup_read,
1032 },
1033 {
1034 .name = "max_usage_in_bytes",
1035 .private = RES_MAX_USAGE,
1036 .trigger = mem_cgroup_reset,
1037 .read_u64 = mem_cgroup_read,
1038 },
1039 {
1040 .name = "limit_in_bytes",
1041 .private = RES_LIMIT,
1042 .write_string = mem_cgroup_write,
1043 .read_u64 = mem_cgroup_read,
1044 },
1045 {
1046 .name = "failcnt",
1047 .private = RES_FAILCNT,
1048 .trigger = mem_cgroup_reset,
1049 .read_u64 = mem_cgroup_read,
1050 },
1051 {
1052 .name = "force_empty",
1053 .trigger = mem_force_empty_write,
1054 },
1055 {
1056 .name = "stat",
1057 .read_map = mem_control_stat_show,
1058 },
1059 };
1060
1061 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1062 {
1063 struct mem_cgroup_per_node *pn;
1064 struct mem_cgroup_per_zone *mz;
1065 int zone, tmp = node;
1066 /*
1067 * This routine is called against possible nodes.
1068 * But it's BUG to call kmalloc() against offline node.
1069 *
1070 * TODO: this routine can waste much memory for nodes which will
1071 * never be onlined. It's better to use memory hotplug callback
1072 * function.
1073 */
1074 if (!node_state(node, N_NORMAL_MEMORY))
1075 tmp = -1;
1076 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1077 if (!pn)
1078 return 1;
1079
1080 mem->info.nodeinfo[node] = pn;
1081 memset(pn, 0, sizeof(*pn));
1082
1083 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1084 mz = &pn->zoneinfo[zone];
1085 INIT_LIST_HEAD(&mz->active_list);
1086 INIT_LIST_HEAD(&mz->inactive_list);
1087 spin_lock_init(&mz->lru_lock);
1088 }
1089 return 0;
1090 }
1091
1092 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1093 {
1094 kfree(mem->info.nodeinfo[node]);
1095 }
1096
1097 static struct mem_cgroup *mem_cgroup_alloc(void)
1098 {
1099 struct mem_cgroup *mem;
1100
1101 if (sizeof(*mem) < PAGE_SIZE)
1102 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1103 else
1104 mem = vmalloc(sizeof(*mem));
1105
1106 if (mem)
1107 memset(mem, 0, sizeof(*mem));
1108 return mem;
1109 }
1110
1111 static void mem_cgroup_free(struct mem_cgroup *mem)
1112 {
1113 if (sizeof(*mem) < PAGE_SIZE)
1114 kfree(mem);
1115 else
1116 vfree(mem);
1117 }
1118
1119
1120 static struct cgroup_subsys_state *
1121 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1122 {
1123 struct mem_cgroup *mem;
1124 int node;
1125
1126 if (unlikely((cont->parent) == NULL)) {
1127 mem = &init_mem_cgroup;
1128 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1129 } else {
1130 mem = mem_cgroup_alloc();
1131 if (!mem)
1132 return ERR_PTR(-ENOMEM);
1133 }
1134
1135 res_counter_init(&mem->res);
1136
1137 for_each_node_state(node, N_POSSIBLE)
1138 if (alloc_mem_cgroup_per_zone_info(mem, node))
1139 goto free_out;
1140
1141 return &mem->css;
1142 free_out:
1143 for_each_node_state(node, N_POSSIBLE)
1144 free_mem_cgroup_per_zone_info(mem, node);
1145 if (cont->parent != NULL)
1146 mem_cgroup_free(mem);
1147 return ERR_PTR(-ENOMEM);
1148 }
1149
1150 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1151 struct cgroup *cont)
1152 {
1153 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1154 mem_cgroup_force_empty(mem);
1155 }
1156
1157 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1158 struct cgroup *cont)
1159 {
1160 int node;
1161 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1162
1163 for_each_node_state(node, N_POSSIBLE)
1164 free_mem_cgroup_per_zone_info(mem, node);
1165
1166 mem_cgroup_free(mem_cgroup_from_cont(cont));
1167 }
1168
1169 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1170 struct cgroup *cont)
1171 {
1172 return cgroup_add_files(cont, ss, mem_cgroup_files,
1173 ARRAY_SIZE(mem_cgroup_files));
1174 }
1175
1176 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1177 struct cgroup *cont,
1178 struct cgroup *old_cont,
1179 struct task_struct *p)
1180 {
1181 struct mm_struct *mm;
1182 struct mem_cgroup *mem, *old_mem;
1183
1184 mm = get_task_mm(p);
1185 if (mm == NULL)
1186 return;
1187
1188 mem = mem_cgroup_from_cont(cont);
1189 old_mem = mem_cgroup_from_cont(old_cont);
1190
1191 /*
1192 * Only thread group leaders are allowed to migrate, the mm_struct is
1193 * in effect owned by the leader
1194 */
1195 if (!thread_group_leader(p))
1196 goto out;
1197
1198 out:
1199 mmput(mm);
1200 }
1201
1202 struct cgroup_subsys mem_cgroup_subsys = {
1203 .name = "memory",
1204 .subsys_id = mem_cgroup_subsys_id,
1205 .create = mem_cgroup_create,
1206 .pre_destroy = mem_cgroup_pre_destroy,
1207 .destroy = mem_cgroup_destroy,
1208 .populate = mem_cgroup_populate,
1209 .attach = mem_cgroup_move_task,
1210 .early_init = 0,
1211 };
This page took 0.058891 seconds and 6 git commands to generate.