e93cc740c22b4e24caf5c0ba531126b34f300b00
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90
91 #include <asm/tlbflush.h>
92 #include <asm/uaccess.h>
93
94 /* Internal flags */
95 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
96 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
97 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
98
99 static struct kmem_cache *policy_cache;
100 static struct kmem_cache *sn_cache;
101
102 #define PDprintk(fmt...)
103
104 /* Highest zone. An specific allocation for a zone below that is not
105 policied. */
106 int policy_zone = ZONE_DMA;
107
108 struct mempolicy default_policy = {
109 .refcnt = ATOMIC_INIT(1), /* never free it */
110 .policy = MPOL_DEFAULT,
111 };
112
113 /* Do sanity checking on a policy */
114 static int mpol_check_policy(int mode, nodemask_t *nodes)
115 {
116 int empty = nodes_empty(*nodes);
117
118 switch (mode) {
119 case MPOL_DEFAULT:
120 if (!empty)
121 return -EINVAL;
122 break;
123 case MPOL_BIND:
124 case MPOL_INTERLEAVE:
125 /* Preferred will only use the first bit, but allow
126 more for now. */
127 if (empty)
128 return -EINVAL;
129 break;
130 }
131 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
132 }
133
134 /* Generate a custom zonelist for the BIND policy. */
135 static struct zonelist *bind_zonelist(nodemask_t *nodes)
136 {
137 struct zonelist *zl;
138 int num, max, nd, k;
139
140 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
141 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
142 if (!zl)
143 return NULL;
144 num = 0;
145 /* First put in the highest zones from all nodes, then all the next
146 lower zones etc. Avoid empty zones because the memory allocator
147 doesn't like them. If you implement node hot removal you
148 have to fix that. */
149 for (k = policy_zone; k >= 0; k--) {
150 for_each_node_mask(nd, *nodes) {
151 struct zone *z = &NODE_DATA(nd)->node_zones[k];
152 if (z->present_pages > 0)
153 zl->zones[num++] = z;
154 }
155 }
156 zl->zones[num] = NULL;
157 return zl;
158 }
159
160 /* Create a new policy */
161 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
162 {
163 struct mempolicy *policy;
164
165 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
166 if (mode == MPOL_DEFAULT)
167 return NULL;
168 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
169 if (!policy)
170 return ERR_PTR(-ENOMEM);
171 atomic_set(&policy->refcnt, 1);
172 switch (mode) {
173 case MPOL_INTERLEAVE:
174 policy->v.nodes = *nodes;
175 if (nodes_weight(*nodes) == 0) {
176 kmem_cache_free(policy_cache, policy);
177 return ERR_PTR(-EINVAL);
178 }
179 break;
180 case MPOL_PREFERRED:
181 policy->v.preferred_node = first_node(*nodes);
182 if (policy->v.preferred_node >= MAX_NUMNODES)
183 policy->v.preferred_node = -1;
184 break;
185 case MPOL_BIND:
186 policy->v.zonelist = bind_zonelist(nodes);
187 if (policy->v.zonelist == NULL) {
188 kmem_cache_free(policy_cache, policy);
189 return ERR_PTR(-ENOMEM);
190 }
191 break;
192 }
193 policy->policy = mode;
194 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
195 return policy;
196 }
197
198 static void gather_stats(struct page *, void *, int pte_dirty);
199 static void migrate_page_add(struct page *page, struct list_head *pagelist,
200 unsigned long flags);
201
202 /* Scan through pages checking if pages follow certain conditions. */
203 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
204 unsigned long addr, unsigned long end,
205 const nodemask_t *nodes, unsigned long flags,
206 void *private)
207 {
208 pte_t *orig_pte;
209 pte_t *pte;
210 spinlock_t *ptl;
211
212 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
213 do {
214 struct page *page;
215 unsigned int nid;
216
217 if (!pte_present(*pte))
218 continue;
219 page = vm_normal_page(vma, addr, *pte);
220 if (!page)
221 continue;
222 /*
223 * The check for PageReserved here is important to avoid
224 * handling zero pages and other pages that may have been
225 * marked special by the system.
226 *
227 * If the PageReserved would not be checked here then f.e.
228 * the location of the zero page could have an influence
229 * on MPOL_MF_STRICT, zero pages would be counted for
230 * the per node stats, and there would be useless attempts
231 * to put zero pages on the migration list.
232 */
233 if (PageReserved(page))
234 continue;
235 nid = page_to_nid(page);
236 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
237 continue;
238
239 if (flags & MPOL_MF_STATS)
240 gather_stats(page, private, pte_dirty(*pte));
241 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
242 migrate_page_add(page, private, flags);
243 else
244 break;
245 } while (pte++, addr += PAGE_SIZE, addr != end);
246 pte_unmap_unlock(orig_pte, ptl);
247 return addr != end;
248 }
249
250 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
251 unsigned long addr, unsigned long end,
252 const nodemask_t *nodes, unsigned long flags,
253 void *private)
254 {
255 pmd_t *pmd;
256 unsigned long next;
257
258 pmd = pmd_offset(pud, addr);
259 do {
260 next = pmd_addr_end(addr, end);
261 if (pmd_none_or_clear_bad(pmd))
262 continue;
263 if (check_pte_range(vma, pmd, addr, next, nodes,
264 flags, private))
265 return -EIO;
266 } while (pmd++, addr = next, addr != end);
267 return 0;
268 }
269
270 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
271 unsigned long addr, unsigned long end,
272 const nodemask_t *nodes, unsigned long flags,
273 void *private)
274 {
275 pud_t *pud;
276 unsigned long next;
277
278 pud = pud_offset(pgd, addr);
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
283 if (check_pmd_range(vma, pud, addr, next, nodes,
284 flags, private))
285 return -EIO;
286 } while (pud++, addr = next, addr != end);
287 return 0;
288 }
289
290 static inline int check_pgd_range(struct vm_area_struct *vma,
291 unsigned long addr, unsigned long end,
292 const nodemask_t *nodes, unsigned long flags,
293 void *private)
294 {
295 pgd_t *pgd;
296 unsigned long next;
297
298 pgd = pgd_offset(vma->vm_mm, addr);
299 do {
300 next = pgd_addr_end(addr, end);
301 if (pgd_none_or_clear_bad(pgd))
302 continue;
303 if (check_pud_range(vma, pgd, addr, next, nodes,
304 flags, private))
305 return -EIO;
306 } while (pgd++, addr = next, addr != end);
307 return 0;
308 }
309
310 /* Check if a vma is migratable */
311 static inline int vma_migratable(struct vm_area_struct *vma)
312 {
313 if (vma->vm_flags & (
314 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
315 return 0;
316 return 1;
317 }
318
319 /*
320 * Check if all pages in a range are on a set of nodes.
321 * If pagelist != NULL then isolate pages from the LRU and
322 * put them on the pagelist.
323 */
324 static struct vm_area_struct *
325 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
326 const nodemask_t *nodes, unsigned long flags, void *private)
327 {
328 int err;
329 struct vm_area_struct *first, *vma, *prev;
330
331 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
332
333 err = migrate_prep();
334 if (err)
335 return ERR_PTR(err);
336 }
337
338 first = find_vma(mm, start);
339 if (!first)
340 return ERR_PTR(-EFAULT);
341 prev = NULL;
342 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
343 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
344 if (!vma->vm_next && vma->vm_end < end)
345 return ERR_PTR(-EFAULT);
346 if (prev && prev->vm_end < vma->vm_start)
347 return ERR_PTR(-EFAULT);
348 }
349 if (!is_vm_hugetlb_page(vma) &&
350 ((flags & MPOL_MF_STRICT) ||
351 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
352 vma_migratable(vma)))) {
353 unsigned long endvma = vma->vm_end;
354
355 if (endvma > end)
356 endvma = end;
357 if (vma->vm_start > start)
358 start = vma->vm_start;
359 err = check_pgd_range(vma, start, endvma, nodes,
360 flags, private);
361 if (err) {
362 first = ERR_PTR(err);
363 break;
364 }
365 }
366 prev = vma;
367 }
368 return first;
369 }
370
371 /* Apply policy to a single VMA */
372 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
373 {
374 int err = 0;
375 struct mempolicy *old = vma->vm_policy;
376
377 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
378 vma->vm_start, vma->vm_end, vma->vm_pgoff,
379 vma->vm_ops, vma->vm_file,
380 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
381
382 if (vma->vm_ops && vma->vm_ops->set_policy)
383 err = vma->vm_ops->set_policy(vma, new);
384 if (!err) {
385 mpol_get(new);
386 vma->vm_policy = new;
387 mpol_free(old);
388 }
389 return err;
390 }
391
392 /* Step 2: apply policy to a range and do splits. */
393 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
394 unsigned long end, struct mempolicy *new)
395 {
396 struct vm_area_struct *next;
397 int err;
398
399 err = 0;
400 for (; vma && vma->vm_start < end; vma = next) {
401 next = vma->vm_next;
402 if (vma->vm_start < start)
403 err = split_vma(vma->vm_mm, vma, start, 1);
404 if (!err && vma->vm_end > end)
405 err = split_vma(vma->vm_mm, vma, end, 0);
406 if (!err)
407 err = policy_vma(vma, new);
408 if (err)
409 break;
410 }
411 return err;
412 }
413
414 static int contextualize_policy(int mode, nodemask_t *nodes)
415 {
416 if (!nodes)
417 return 0;
418
419 cpuset_update_task_memory_state();
420 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
421 return -EINVAL;
422 return mpol_check_policy(mode, nodes);
423 }
424
425 /* Set the process memory policy */
426 long do_set_mempolicy(int mode, nodemask_t *nodes)
427 {
428 struct mempolicy *new;
429
430 if (contextualize_policy(mode, nodes))
431 return -EINVAL;
432 new = mpol_new(mode, nodes);
433 if (IS_ERR(new))
434 return PTR_ERR(new);
435 mpol_free(current->mempolicy);
436 current->mempolicy = new;
437 if (new && new->policy == MPOL_INTERLEAVE)
438 current->il_next = first_node(new->v.nodes);
439 return 0;
440 }
441
442 /* Fill a zone bitmap for a policy */
443 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
444 {
445 int i;
446
447 nodes_clear(*nodes);
448 switch (p->policy) {
449 case MPOL_BIND:
450 for (i = 0; p->v.zonelist->zones[i]; i++)
451 node_set(p->v.zonelist->zones[i]->zone_pgdat->node_id,
452 *nodes);
453 break;
454 case MPOL_DEFAULT:
455 break;
456 case MPOL_INTERLEAVE:
457 *nodes = p->v.nodes;
458 break;
459 case MPOL_PREFERRED:
460 /* or use current node instead of online map? */
461 if (p->v.preferred_node < 0)
462 *nodes = node_online_map;
463 else
464 node_set(p->v.preferred_node, *nodes);
465 break;
466 default:
467 BUG();
468 }
469 }
470
471 static int lookup_node(struct mm_struct *mm, unsigned long addr)
472 {
473 struct page *p;
474 int err;
475
476 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
477 if (err >= 0) {
478 err = page_to_nid(p);
479 put_page(p);
480 }
481 return err;
482 }
483
484 /* Retrieve NUMA policy */
485 long do_get_mempolicy(int *policy, nodemask_t *nmask,
486 unsigned long addr, unsigned long flags)
487 {
488 int err;
489 struct mm_struct *mm = current->mm;
490 struct vm_area_struct *vma = NULL;
491 struct mempolicy *pol = current->mempolicy;
492
493 cpuset_update_task_memory_state();
494 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
495 return -EINVAL;
496 if (flags & MPOL_F_ADDR) {
497 down_read(&mm->mmap_sem);
498 vma = find_vma_intersection(mm, addr, addr+1);
499 if (!vma) {
500 up_read(&mm->mmap_sem);
501 return -EFAULT;
502 }
503 if (vma->vm_ops && vma->vm_ops->get_policy)
504 pol = vma->vm_ops->get_policy(vma, addr);
505 else
506 pol = vma->vm_policy;
507 } else if (addr)
508 return -EINVAL;
509
510 if (!pol)
511 pol = &default_policy;
512
513 if (flags & MPOL_F_NODE) {
514 if (flags & MPOL_F_ADDR) {
515 err = lookup_node(mm, addr);
516 if (err < 0)
517 goto out;
518 *policy = err;
519 } else if (pol == current->mempolicy &&
520 pol->policy == MPOL_INTERLEAVE) {
521 *policy = current->il_next;
522 } else {
523 err = -EINVAL;
524 goto out;
525 }
526 } else
527 *policy = pol->policy;
528
529 if (vma) {
530 up_read(&current->mm->mmap_sem);
531 vma = NULL;
532 }
533
534 err = 0;
535 if (nmask)
536 get_zonemask(pol, nmask);
537
538 out:
539 if (vma)
540 up_read(&current->mm->mmap_sem);
541 return err;
542 }
543
544 #ifdef CONFIG_MIGRATION
545 /*
546 * page migration
547 */
548 static void migrate_page_add(struct page *page, struct list_head *pagelist,
549 unsigned long flags)
550 {
551 /*
552 * Avoid migrating a page that is shared with others.
553 */
554 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
555 isolate_lru_page(page, pagelist);
556 }
557
558 /*
559 * Migrate pages from one node to a target node.
560 * Returns error or the number of pages not migrated.
561 */
562 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
563 {
564 nodemask_t nmask;
565 LIST_HEAD(pagelist);
566 int err = 0;
567
568 nodes_clear(nmask);
569 node_set(source, nmask);
570
571 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
572 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
573
574 if (!list_empty(&pagelist)) {
575 err = migrate_pages_to(&pagelist, NULL, dest);
576 if (!list_empty(&pagelist))
577 putback_lru_pages(&pagelist);
578 }
579 return err;
580 }
581
582 /*
583 * Move pages between the two nodesets so as to preserve the physical
584 * layout as much as possible.
585 *
586 * Returns the number of page that could not be moved.
587 */
588 int do_migrate_pages(struct mm_struct *mm,
589 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
590 {
591 LIST_HEAD(pagelist);
592 int busy = 0;
593 int err = 0;
594 nodemask_t tmp;
595
596 down_read(&mm->mmap_sem);
597
598 /*
599 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
600 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
601 * bit in 'tmp', and return that <source, dest> pair for migration.
602 * The pair of nodemasks 'to' and 'from' define the map.
603 *
604 * If no pair of bits is found that way, fallback to picking some
605 * pair of 'source' and 'dest' bits that are not the same. If the
606 * 'source' and 'dest' bits are the same, this represents a node
607 * that will be migrating to itself, so no pages need move.
608 *
609 * If no bits are left in 'tmp', or if all remaining bits left
610 * in 'tmp' correspond to the same bit in 'to', return false
611 * (nothing left to migrate).
612 *
613 * This lets us pick a pair of nodes to migrate between, such that
614 * if possible the dest node is not already occupied by some other
615 * source node, minimizing the risk of overloading the memory on a
616 * node that would happen if we migrated incoming memory to a node
617 * before migrating outgoing memory source that same node.
618 *
619 * A single scan of tmp is sufficient. As we go, we remember the
620 * most recent <s, d> pair that moved (s != d). If we find a pair
621 * that not only moved, but what's better, moved to an empty slot
622 * (d is not set in tmp), then we break out then, with that pair.
623 * Otherwise when we finish scannng from_tmp, we at least have the
624 * most recent <s, d> pair that moved. If we get all the way through
625 * the scan of tmp without finding any node that moved, much less
626 * moved to an empty node, then there is nothing left worth migrating.
627 */
628
629 tmp = *from_nodes;
630 while (!nodes_empty(tmp)) {
631 int s,d;
632 int source = -1;
633 int dest = 0;
634
635 for_each_node_mask(s, tmp) {
636 d = node_remap(s, *from_nodes, *to_nodes);
637 if (s == d)
638 continue;
639
640 source = s; /* Node moved. Memorize */
641 dest = d;
642
643 /* dest not in remaining from nodes? */
644 if (!node_isset(dest, tmp))
645 break;
646 }
647 if (source == -1)
648 break;
649
650 node_clear(source, tmp);
651 err = migrate_to_node(mm, source, dest, flags);
652 if (err > 0)
653 busy += err;
654 if (err < 0)
655 break;
656 }
657
658 up_read(&mm->mmap_sem);
659 if (err < 0)
660 return err;
661 return busy;
662
663 }
664
665 #else
666
667 static void migrate_page_add(struct page *page, struct list_head *pagelist,
668 unsigned long flags)
669 {
670 }
671
672 int do_migrate_pages(struct mm_struct *mm,
673 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
674 {
675 return -ENOSYS;
676 }
677 #endif
678
679 long do_mbind(unsigned long start, unsigned long len,
680 unsigned long mode, nodemask_t *nmask, unsigned long flags)
681 {
682 struct vm_area_struct *vma;
683 struct mm_struct *mm = current->mm;
684 struct mempolicy *new;
685 unsigned long end;
686 int err;
687 LIST_HEAD(pagelist);
688
689 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
690 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
691 || mode > MPOL_MAX)
692 return -EINVAL;
693 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
694 return -EPERM;
695
696 if (start & ~PAGE_MASK)
697 return -EINVAL;
698
699 if (mode == MPOL_DEFAULT)
700 flags &= ~MPOL_MF_STRICT;
701
702 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
703 end = start + len;
704
705 if (end < start)
706 return -EINVAL;
707 if (end == start)
708 return 0;
709
710 if (mpol_check_policy(mode, nmask))
711 return -EINVAL;
712
713 new = mpol_new(mode, nmask);
714 if (IS_ERR(new))
715 return PTR_ERR(new);
716
717 /*
718 * If we are using the default policy then operation
719 * on discontinuous address spaces is okay after all
720 */
721 if (!new)
722 flags |= MPOL_MF_DISCONTIG_OK;
723
724 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
725 mode,nodes_addr(nodes)[0]);
726
727 down_write(&mm->mmap_sem);
728 vma = check_range(mm, start, end, nmask,
729 flags | MPOL_MF_INVERT, &pagelist);
730
731 err = PTR_ERR(vma);
732 if (!IS_ERR(vma)) {
733 int nr_failed = 0;
734
735 err = mbind_range(vma, start, end, new);
736
737 if (!list_empty(&pagelist))
738 nr_failed = migrate_pages_to(&pagelist, vma, -1);
739
740 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
741 err = -EIO;
742 }
743
744 if (!list_empty(&pagelist))
745 putback_lru_pages(&pagelist);
746
747 up_write(&mm->mmap_sem);
748 mpol_free(new);
749 return err;
750 }
751
752 /*
753 * User space interface with variable sized bitmaps for nodelists.
754 */
755
756 /* Copy a node mask from user space. */
757 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
758 unsigned long maxnode)
759 {
760 unsigned long k;
761 unsigned long nlongs;
762 unsigned long endmask;
763
764 --maxnode;
765 nodes_clear(*nodes);
766 if (maxnode == 0 || !nmask)
767 return 0;
768 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
769 return -EINVAL;
770
771 nlongs = BITS_TO_LONGS(maxnode);
772 if ((maxnode % BITS_PER_LONG) == 0)
773 endmask = ~0UL;
774 else
775 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
776
777 /* When the user specified more nodes than supported just check
778 if the non supported part is all zero. */
779 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
780 if (nlongs > PAGE_SIZE/sizeof(long))
781 return -EINVAL;
782 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
783 unsigned long t;
784 if (get_user(t, nmask + k))
785 return -EFAULT;
786 if (k == nlongs - 1) {
787 if (t & endmask)
788 return -EINVAL;
789 } else if (t)
790 return -EINVAL;
791 }
792 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
793 endmask = ~0UL;
794 }
795
796 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
797 return -EFAULT;
798 nodes_addr(*nodes)[nlongs-1] &= endmask;
799 return 0;
800 }
801
802 /* Copy a kernel node mask to user space */
803 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
804 nodemask_t *nodes)
805 {
806 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
807 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
808
809 if (copy > nbytes) {
810 if (copy > PAGE_SIZE)
811 return -EINVAL;
812 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
813 return -EFAULT;
814 copy = nbytes;
815 }
816 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
817 }
818
819 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
820 unsigned long mode,
821 unsigned long __user *nmask, unsigned long maxnode,
822 unsigned flags)
823 {
824 nodemask_t nodes;
825 int err;
826
827 err = get_nodes(&nodes, nmask, maxnode);
828 if (err)
829 return err;
830 return do_mbind(start, len, mode, &nodes, flags);
831 }
832
833 /* Set the process memory policy */
834 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
835 unsigned long maxnode)
836 {
837 int err;
838 nodemask_t nodes;
839
840 if (mode < 0 || mode > MPOL_MAX)
841 return -EINVAL;
842 err = get_nodes(&nodes, nmask, maxnode);
843 if (err)
844 return err;
845 return do_set_mempolicy(mode, &nodes);
846 }
847
848 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
849 const unsigned long __user *old_nodes,
850 const unsigned long __user *new_nodes)
851 {
852 struct mm_struct *mm;
853 struct task_struct *task;
854 nodemask_t old;
855 nodemask_t new;
856 nodemask_t task_nodes;
857 int err;
858
859 err = get_nodes(&old, old_nodes, maxnode);
860 if (err)
861 return err;
862
863 err = get_nodes(&new, new_nodes, maxnode);
864 if (err)
865 return err;
866
867 /* Find the mm_struct */
868 read_lock(&tasklist_lock);
869 task = pid ? find_task_by_pid(pid) : current;
870 if (!task) {
871 read_unlock(&tasklist_lock);
872 return -ESRCH;
873 }
874 mm = get_task_mm(task);
875 read_unlock(&tasklist_lock);
876
877 if (!mm)
878 return -EINVAL;
879
880 /*
881 * Check if this process has the right to modify the specified
882 * process. The right exists if the process has administrative
883 * capabilities, superuser priviledges or the same
884 * userid as the target process.
885 */
886 if ((current->euid != task->suid) && (current->euid != task->uid) &&
887 (current->uid != task->suid) && (current->uid != task->uid) &&
888 !capable(CAP_SYS_NICE)) {
889 err = -EPERM;
890 goto out;
891 }
892
893 task_nodes = cpuset_mems_allowed(task);
894 /* Is the user allowed to access the target nodes? */
895 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
896 err = -EPERM;
897 goto out;
898 }
899
900 err = do_migrate_pages(mm, &old, &new,
901 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
902 out:
903 mmput(mm);
904 return err;
905 }
906
907
908 /* Retrieve NUMA policy */
909 asmlinkage long sys_get_mempolicy(int __user *policy,
910 unsigned long __user *nmask,
911 unsigned long maxnode,
912 unsigned long addr, unsigned long flags)
913 {
914 int err, pval;
915 nodemask_t nodes;
916
917 if (nmask != NULL && maxnode < MAX_NUMNODES)
918 return -EINVAL;
919
920 err = do_get_mempolicy(&pval, &nodes, addr, flags);
921
922 if (err)
923 return err;
924
925 if (policy && put_user(pval, policy))
926 return -EFAULT;
927
928 if (nmask)
929 err = copy_nodes_to_user(nmask, maxnode, &nodes);
930
931 return err;
932 }
933
934 #ifdef CONFIG_COMPAT
935
936 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
937 compat_ulong_t __user *nmask,
938 compat_ulong_t maxnode,
939 compat_ulong_t addr, compat_ulong_t flags)
940 {
941 long err;
942 unsigned long __user *nm = NULL;
943 unsigned long nr_bits, alloc_size;
944 DECLARE_BITMAP(bm, MAX_NUMNODES);
945
946 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
947 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
948
949 if (nmask)
950 nm = compat_alloc_user_space(alloc_size);
951
952 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
953
954 if (!err && nmask) {
955 err = copy_from_user(bm, nm, alloc_size);
956 /* ensure entire bitmap is zeroed */
957 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
958 err |= compat_put_bitmap(nmask, bm, nr_bits);
959 }
960
961 return err;
962 }
963
964 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
965 compat_ulong_t maxnode)
966 {
967 long err = 0;
968 unsigned long __user *nm = NULL;
969 unsigned long nr_bits, alloc_size;
970 DECLARE_BITMAP(bm, MAX_NUMNODES);
971
972 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
973 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
974
975 if (nmask) {
976 err = compat_get_bitmap(bm, nmask, nr_bits);
977 nm = compat_alloc_user_space(alloc_size);
978 err |= copy_to_user(nm, bm, alloc_size);
979 }
980
981 if (err)
982 return -EFAULT;
983
984 return sys_set_mempolicy(mode, nm, nr_bits+1);
985 }
986
987 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
988 compat_ulong_t mode, compat_ulong_t __user *nmask,
989 compat_ulong_t maxnode, compat_ulong_t flags)
990 {
991 long err = 0;
992 unsigned long __user *nm = NULL;
993 unsigned long nr_bits, alloc_size;
994 nodemask_t bm;
995
996 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
997 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
998
999 if (nmask) {
1000 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1001 nm = compat_alloc_user_space(alloc_size);
1002 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1003 }
1004
1005 if (err)
1006 return -EFAULT;
1007
1008 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1009 }
1010
1011 #endif
1012
1013 /* Return effective policy for a VMA */
1014 static struct mempolicy * get_vma_policy(struct task_struct *task,
1015 struct vm_area_struct *vma, unsigned long addr)
1016 {
1017 struct mempolicy *pol = task->mempolicy;
1018
1019 if (vma) {
1020 if (vma->vm_ops && vma->vm_ops->get_policy)
1021 pol = vma->vm_ops->get_policy(vma, addr);
1022 else if (vma->vm_policy &&
1023 vma->vm_policy->policy != MPOL_DEFAULT)
1024 pol = vma->vm_policy;
1025 }
1026 if (!pol)
1027 pol = &default_policy;
1028 return pol;
1029 }
1030
1031 /* Return a zonelist representing a mempolicy */
1032 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1033 {
1034 int nd;
1035
1036 switch (policy->policy) {
1037 case MPOL_PREFERRED:
1038 nd = policy->v.preferred_node;
1039 if (nd < 0)
1040 nd = numa_node_id();
1041 break;
1042 case MPOL_BIND:
1043 /* Lower zones don't get a policy applied */
1044 /* Careful: current->mems_allowed might have moved */
1045 if (gfp_zone(gfp) >= policy_zone)
1046 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1047 return policy->v.zonelist;
1048 /*FALL THROUGH*/
1049 case MPOL_INTERLEAVE: /* should not happen */
1050 case MPOL_DEFAULT:
1051 nd = numa_node_id();
1052 break;
1053 default:
1054 nd = 0;
1055 BUG();
1056 }
1057 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1058 }
1059
1060 /* Do dynamic interleaving for a process */
1061 static unsigned interleave_nodes(struct mempolicy *policy)
1062 {
1063 unsigned nid, next;
1064 struct task_struct *me = current;
1065
1066 nid = me->il_next;
1067 next = next_node(nid, policy->v.nodes);
1068 if (next >= MAX_NUMNODES)
1069 next = first_node(policy->v.nodes);
1070 me->il_next = next;
1071 return nid;
1072 }
1073
1074 /*
1075 * Depending on the memory policy provide a node from which to allocate the
1076 * next slab entry.
1077 */
1078 unsigned slab_node(struct mempolicy *policy)
1079 {
1080 switch (policy->policy) {
1081 case MPOL_INTERLEAVE:
1082 return interleave_nodes(policy);
1083
1084 case MPOL_BIND:
1085 /*
1086 * Follow bind policy behavior and start allocation at the
1087 * first node.
1088 */
1089 return policy->v.zonelist->zones[0]->zone_pgdat->node_id;
1090
1091 case MPOL_PREFERRED:
1092 if (policy->v.preferred_node >= 0)
1093 return policy->v.preferred_node;
1094 /* Fall through */
1095
1096 default:
1097 return numa_node_id();
1098 }
1099 }
1100
1101 /* Do static interleaving for a VMA with known offset. */
1102 static unsigned offset_il_node(struct mempolicy *pol,
1103 struct vm_area_struct *vma, unsigned long off)
1104 {
1105 unsigned nnodes = nodes_weight(pol->v.nodes);
1106 unsigned target = (unsigned)off % nnodes;
1107 int c;
1108 int nid = -1;
1109
1110 c = 0;
1111 do {
1112 nid = next_node(nid, pol->v.nodes);
1113 c++;
1114 } while (c <= target);
1115 return nid;
1116 }
1117
1118 /* Determine a node number for interleave */
1119 static inline unsigned interleave_nid(struct mempolicy *pol,
1120 struct vm_area_struct *vma, unsigned long addr, int shift)
1121 {
1122 if (vma) {
1123 unsigned long off;
1124
1125 off = vma->vm_pgoff;
1126 off += (addr - vma->vm_start) >> shift;
1127 return offset_il_node(pol, vma, off);
1128 } else
1129 return interleave_nodes(pol);
1130 }
1131
1132 #ifdef CONFIG_HUGETLBFS
1133 /* Return a zonelist suitable for a huge page allocation. */
1134 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1135 {
1136 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1137
1138 if (pol->policy == MPOL_INTERLEAVE) {
1139 unsigned nid;
1140
1141 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1142 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1143 }
1144 return zonelist_policy(GFP_HIGHUSER, pol);
1145 }
1146 #endif
1147
1148 /* Allocate a page in interleaved policy.
1149 Own path because it needs to do special accounting. */
1150 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1151 unsigned nid)
1152 {
1153 struct zonelist *zl;
1154 struct page *page;
1155
1156 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1157 page = __alloc_pages(gfp, order, zl);
1158 if (page && page_zone(page) == zl->zones[0]) {
1159 zone_pcp(zl->zones[0],get_cpu())->interleave_hit++;
1160 put_cpu();
1161 }
1162 return page;
1163 }
1164
1165 /**
1166 * alloc_page_vma - Allocate a page for a VMA.
1167 *
1168 * @gfp:
1169 * %GFP_USER user allocation.
1170 * %GFP_KERNEL kernel allocations,
1171 * %GFP_HIGHMEM highmem/user allocations,
1172 * %GFP_FS allocation should not call back into a file system.
1173 * %GFP_ATOMIC don't sleep.
1174 *
1175 * @vma: Pointer to VMA or NULL if not available.
1176 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1177 *
1178 * This function allocates a page from the kernel page pool and applies
1179 * a NUMA policy associated with the VMA or the current process.
1180 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1181 * mm_struct of the VMA to prevent it from going away. Should be used for
1182 * all allocations for pages that will be mapped into
1183 * user space. Returns NULL when no page can be allocated.
1184 *
1185 * Should be called with the mm_sem of the vma hold.
1186 */
1187 struct page *
1188 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1189 {
1190 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1191
1192 cpuset_update_task_memory_state();
1193
1194 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1195 unsigned nid;
1196
1197 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1198 return alloc_page_interleave(gfp, 0, nid);
1199 }
1200 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1201 }
1202
1203 /**
1204 * alloc_pages_current - Allocate pages.
1205 *
1206 * @gfp:
1207 * %GFP_USER user allocation,
1208 * %GFP_KERNEL kernel allocation,
1209 * %GFP_HIGHMEM highmem allocation,
1210 * %GFP_FS don't call back into a file system.
1211 * %GFP_ATOMIC don't sleep.
1212 * @order: Power of two of allocation size in pages. 0 is a single page.
1213 *
1214 * Allocate a page from the kernel page pool. When not in
1215 * interrupt context and apply the current process NUMA policy.
1216 * Returns NULL when no page can be allocated.
1217 *
1218 * Don't call cpuset_update_task_memory_state() unless
1219 * 1) it's ok to take cpuset_sem (can WAIT), and
1220 * 2) allocating for current task (not interrupt).
1221 */
1222 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1223 {
1224 struct mempolicy *pol = current->mempolicy;
1225
1226 if ((gfp & __GFP_WAIT) && !in_interrupt())
1227 cpuset_update_task_memory_state();
1228 if (!pol || in_interrupt())
1229 pol = &default_policy;
1230 if (pol->policy == MPOL_INTERLEAVE)
1231 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1232 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1233 }
1234 EXPORT_SYMBOL(alloc_pages_current);
1235
1236 /*
1237 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1238 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1239 * with the mems_allowed returned by cpuset_mems_allowed(). This
1240 * keeps mempolicies cpuset relative after its cpuset moves. See
1241 * further kernel/cpuset.c update_nodemask().
1242 */
1243 void *cpuset_being_rebound;
1244
1245 /* Slow path of a mempolicy copy */
1246 struct mempolicy *__mpol_copy(struct mempolicy *old)
1247 {
1248 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1249
1250 if (!new)
1251 return ERR_PTR(-ENOMEM);
1252 if (current_cpuset_is_being_rebound()) {
1253 nodemask_t mems = cpuset_mems_allowed(current);
1254 mpol_rebind_policy(old, &mems);
1255 }
1256 *new = *old;
1257 atomic_set(&new->refcnt, 1);
1258 if (new->policy == MPOL_BIND) {
1259 int sz = ksize(old->v.zonelist);
1260 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1261 if (!new->v.zonelist) {
1262 kmem_cache_free(policy_cache, new);
1263 return ERR_PTR(-ENOMEM);
1264 }
1265 memcpy(new->v.zonelist, old->v.zonelist, sz);
1266 }
1267 return new;
1268 }
1269
1270 /* Slow path of a mempolicy comparison */
1271 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1272 {
1273 if (!a || !b)
1274 return 0;
1275 if (a->policy != b->policy)
1276 return 0;
1277 switch (a->policy) {
1278 case MPOL_DEFAULT:
1279 return 1;
1280 case MPOL_INTERLEAVE:
1281 return nodes_equal(a->v.nodes, b->v.nodes);
1282 case MPOL_PREFERRED:
1283 return a->v.preferred_node == b->v.preferred_node;
1284 case MPOL_BIND: {
1285 int i;
1286 for (i = 0; a->v.zonelist->zones[i]; i++)
1287 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1288 return 0;
1289 return b->v.zonelist->zones[i] == NULL;
1290 }
1291 default:
1292 BUG();
1293 return 0;
1294 }
1295 }
1296
1297 /* Slow path of a mpol destructor. */
1298 void __mpol_free(struct mempolicy *p)
1299 {
1300 if (!atomic_dec_and_test(&p->refcnt))
1301 return;
1302 if (p->policy == MPOL_BIND)
1303 kfree(p->v.zonelist);
1304 p->policy = MPOL_DEFAULT;
1305 kmem_cache_free(policy_cache, p);
1306 }
1307
1308 /*
1309 * Shared memory backing store policy support.
1310 *
1311 * Remember policies even when nobody has shared memory mapped.
1312 * The policies are kept in Red-Black tree linked from the inode.
1313 * They are protected by the sp->lock spinlock, which should be held
1314 * for any accesses to the tree.
1315 */
1316
1317 /* lookup first element intersecting start-end */
1318 /* Caller holds sp->lock */
1319 static struct sp_node *
1320 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1321 {
1322 struct rb_node *n = sp->root.rb_node;
1323
1324 while (n) {
1325 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1326
1327 if (start >= p->end)
1328 n = n->rb_right;
1329 else if (end <= p->start)
1330 n = n->rb_left;
1331 else
1332 break;
1333 }
1334 if (!n)
1335 return NULL;
1336 for (;;) {
1337 struct sp_node *w = NULL;
1338 struct rb_node *prev = rb_prev(n);
1339 if (!prev)
1340 break;
1341 w = rb_entry(prev, struct sp_node, nd);
1342 if (w->end <= start)
1343 break;
1344 n = prev;
1345 }
1346 return rb_entry(n, struct sp_node, nd);
1347 }
1348
1349 /* Insert a new shared policy into the list. */
1350 /* Caller holds sp->lock */
1351 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1352 {
1353 struct rb_node **p = &sp->root.rb_node;
1354 struct rb_node *parent = NULL;
1355 struct sp_node *nd;
1356
1357 while (*p) {
1358 parent = *p;
1359 nd = rb_entry(parent, struct sp_node, nd);
1360 if (new->start < nd->start)
1361 p = &(*p)->rb_left;
1362 else if (new->end > nd->end)
1363 p = &(*p)->rb_right;
1364 else
1365 BUG();
1366 }
1367 rb_link_node(&new->nd, parent, p);
1368 rb_insert_color(&new->nd, &sp->root);
1369 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1370 new->policy ? new->policy->policy : 0);
1371 }
1372
1373 /* Find shared policy intersecting idx */
1374 struct mempolicy *
1375 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1376 {
1377 struct mempolicy *pol = NULL;
1378 struct sp_node *sn;
1379
1380 if (!sp->root.rb_node)
1381 return NULL;
1382 spin_lock(&sp->lock);
1383 sn = sp_lookup(sp, idx, idx+1);
1384 if (sn) {
1385 mpol_get(sn->policy);
1386 pol = sn->policy;
1387 }
1388 spin_unlock(&sp->lock);
1389 return pol;
1390 }
1391
1392 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1393 {
1394 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1395 rb_erase(&n->nd, &sp->root);
1396 mpol_free(n->policy);
1397 kmem_cache_free(sn_cache, n);
1398 }
1399
1400 struct sp_node *
1401 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1402 {
1403 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1404
1405 if (!n)
1406 return NULL;
1407 n->start = start;
1408 n->end = end;
1409 mpol_get(pol);
1410 n->policy = pol;
1411 return n;
1412 }
1413
1414 /* Replace a policy range. */
1415 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1416 unsigned long end, struct sp_node *new)
1417 {
1418 struct sp_node *n, *new2 = NULL;
1419
1420 restart:
1421 spin_lock(&sp->lock);
1422 n = sp_lookup(sp, start, end);
1423 /* Take care of old policies in the same range. */
1424 while (n && n->start < end) {
1425 struct rb_node *next = rb_next(&n->nd);
1426 if (n->start >= start) {
1427 if (n->end <= end)
1428 sp_delete(sp, n);
1429 else
1430 n->start = end;
1431 } else {
1432 /* Old policy spanning whole new range. */
1433 if (n->end > end) {
1434 if (!new2) {
1435 spin_unlock(&sp->lock);
1436 new2 = sp_alloc(end, n->end, n->policy);
1437 if (!new2)
1438 return -ENOMEM;
1439 goto restart;
1440 }
1441 n->end = start;
1442 sp_insert(sp, new2);
1443 new2 = NULL;
1444 break;
1445 } else
1446 n->end = start;
1447 }
1448 if (!next)
1449 break;
1450 n = rb_entry(next, struct sp_node, nd);
1451 }
1452 if (new)
1453 sp_insert(sp, new);
1454 spin_unlock(&sp->lock);
1455 if (new2) {
1456 mpol_free(new2->policy);
1457 kmem_cache_free(sn_cache, new2);
1458 }
1459 return 0;
1460 }
1461
1462 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1463 nodemask_t *policy_nodes)
1464 {
1465 info->root = RB_ROOT;
1466 spin_lock_init(&info->lock);
1467
1468 if (policy != MPOL_DEFAULT) {
1469 struct mempolicy *newpol;
1470
1471 /* Falls back to MPOL_DEFAULT on any error */
1472 newpol = mpol_new(policy, policy_nodes);
1473 if (!IS_ERR(newpol)) {
1474 /* Create pseudo-vma that contains just the policy */
1475 struct vm_area_struct pvma;
1476
1477 memset(&pvma, 0, sizeof(struct vm_area_struct));
1478 /* Policy covers entire file */
1479 pvma.vm_end = TASK_SIZE;
1480 mpol_set_shared_policy(info, &pvma, newpol);
1481 mpol_free(newpol);
1482 }
1483 }
1484 }
1485
1486 int mpol_set_shared_policy(struct shared_policy *info,
1487 struct vm_area_struct *vma, struct mempolicy *npol)
1488 {
1489 int err;
1490 struct sp_node *new = NULL;
1491 unsigned long sz = vma_pages(vma);
1492
1493 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1494 vma->vm_pgoff,
1495 sz, npol? npol->policy : -1,
1496 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1497
1498 if (npol) {
1499 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1500 if (!new)
1501 return -ENOMEM;
1502 }
1503 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1504 if (err && new)
1505 kmem_cache_free(sn_cache, new);
1506 return err;
1507 }
1508
1509 /* Free a backing policy store on inode delete. */
1510 void mpol_free_shared_policy(struct shared_policy *p)
1511 {
1512 struct sp_node *n;
1513 struct rb_node *next;
1514
1515 if (!p->root.rb_node)
1516 return;
1517 spin_lock(&p->lock);
1518 next = rb_first(&p->root);
1519 while (next) {
1520 n = rb_entry(next, struct sp_node, nd);
1521 next = rb_next(&n->nd);
1522 rb_erase(&n->nd, &p->root);
1523 mpol_free(n->policy);
1524 kmem_cache_free(sn_cache, n);
1525 }
1526 spin_unlock(&p->lock);
1527 }
1528
1529 /* assumes fs == KERNEL_DS */
1530 void __init numa_policy_init(void)
1531 {
1532 policy_cache = kmem_cache_create("numa_policy",
1533 sizeof(struct mempolicy),
1534 0, SLAB_PANIC, NULL, NULL);
1535
1536 sn_cache = kmem_cache_create("shared_policy_node",
1537 sizeof(struct sp_node),
1538 0, SLAB_PANIC, NULL, NULL);
1539
1540 /* Set interleaving policy for system init. This way not all
1541 the data structures allocated at system boot end up in node zero. */
1542
1543 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1544 printk("numa_policy_init: interleaving failed\n");
1545 }
1546
1547 /* Reset policy of current process to default */
1548 void numa_default_policy(void)
1549 {
1550 do_set_mempolicy(MPOL_DEFAULT, NULL);
1551 }
1552
1553 /* Migrate a policy to a different set of nodes */
1554 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1555 {
1556 nodemask_t *mpolmask;
1557 nodemask_t tmp;
1558
1559 if (!pol)
1560 return;
1561 mpolmask = &pol->cpuset_mems_allowed;
1562 if (nodes_equal(*mpolmask, *newmask))
1563 return;
1564
1565 switch (pol->policy) {
1566 case MPOL_DEFAULT:
1567 break;
1568 case MPOL_INTERLEAVE:
1569 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1570 pol->v.nodes = tmp;
1571 *mpolmask = *newmask;
1572 current->il_next = node_remap(current->il_next,
1573 *mpolmask, *newmask);
1574 break;
1575 case MPOL_PREFERRED:
1576 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1577 *mpolmask, *newmask);
1578 *mpolmask = *newmask;
1579 break;
1580 case MPOL_BIND: {
1581 nodemask_t nodes;
1582 struct zone **z;
1583 struct zonelist *zonelist;
1584
1585 nodes_clear(nodes);
1586 for (z = pol->v.zonelist->zones; *z; z++)
1587 node_set((*z)->zone_pgdat->node_id, nodes);
1588 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1589 nodes = tmp;
1590
1591 zonelist = bind_zonelist(&nodes);
1592
1593 /* If no mem, then zonelist is NULL and we keep old zonelist.
1594 * If that old zonelist has no remaining mems_allowed nodes,
1595 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1596 */
1597
1598 if (zonelist) {
1599 /* Good - got mem - substitute new zonelist */
1600 kfree(pol->v.zonelist);
1601 pol->v.zonelist = zonelist;
1602 }
1603 *mpolmask = *newmask;
1604 break;
1605 }
1606 default:
1607 BUG();
1608 break;
1609 }
1610 }
1611
1612 /*
1613 * Wrapper for mpol_rebind_policy() that just requires task
1614 * pointer, and updates task mempolicy.
1615 */
1616
1617 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1618 {
1619 mpol_rebind_policy(tsk->mempolicy, new);
1620 }
1621
1622 /*
1623 * Rebind each vma in mm to new nodemask.
1624 *
1625 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1626 */
1627
1628 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1629 {
1630 struct vm_area_struct *vma;
1631
1632 down_write(&mm->mmap_sem);
1633 for (vma = mm->mmap; vma; vma = vma->vm_next)
1634 mpol_rebind_policy(vma->vm_policy, new);
1635 up_write(&mm->mmap_sem);
1636 }
1637
1638 /*
1639 * Display pages allocated per node and memory policy via /proc.
1640 */
1641
1642 static const char *policy_types[] = { "default", "prefer", "bind",
1643 "interleave" };
1644
1645 /*
1646 * Convert a mempolicy into a string.
1647 * Returns the number of characters in buffer (if positive)
1648 * or an error (negative)
1649 */
1650 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1651 {
1652 char *p = buffer;
1653 int l;
1654 nodemask_t nodes;
1655 int mode = pol ? pol->policy : MPOL_DEFAULT;
1656
1657 switch (mode) {
1658 case MPOL_DEFAULT:
1659 nodes_clear(nodes);
1660 break;
1661
1662 case MPOL_PREFERRED:
1663 nodes_clear(nodes);
1664 node_set(pol->v.preferred_node, nodes);
1665 break;
1666
1667 case MPOL_BIND:
1668 get_zonemask(pol, &nodes);
1669 break;
1670
1671 case MPOL_INTERLEAVE:
1672 nodes = pol->v.nodes;
1673 break;
1674
1675 default:
1676 BUG();
1677 return -EFAULT;
1678 }
1679
1680 l = strlen(policy_types[mode]);
1681 if (buffer + maxlen < p + l + 1)
1682 return -ENOSPC;
1683
1684 strcpy(p, policy_types[mode]);
1685 p += l;
1686
1687 if (!nodes_empty(nodes)) {
1688 if (buffer + maxlen < p + 2)
1689 return -ENOSPC;
1690 *p++ = '=';
1691 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1692 }
1693 return p - buffer;
1694 }
1695
1696 struct numa_maps {
1697 unsigned long pages;
1698 unsigned long anon;
1699 unsigned long active;
1700 unsigned long writeback;
1701 unsigned long mapcount_max;
1702 unsigned long dirty;
1703 unsigned long swapcache;
1704 unsigned long node[MAX_NUMNODES];
1705 };
1706
1707 static void gather_stats(struct page *page, void *private, int pte_dirty)
1708 {
1709 struct numa_maps *md = private;
1710 int count = page_mapcount(page);
1711
1712 md->pages++;
1713 if (pte_dirty || PageDirty(page))
1714 md->dirty++;
1715
1716 if (PageSwapCache(page))
1717 md->swapcache++;
1718
1719 if (PageActive(page))
1720 md->active++;
1721
1722 if (PageWriteback(page))
1723 md->writeback++;
1724
1725 if (PageAnon(page))
1726 md->anon++;
1727
1728 if (count > md->mapcount_max)
1729 md->mapcount_max = count;
1730
1731 md->node[page_to_nid(page)]++;
1732 cond_resched();
1733 }
1734
1735 #ifdef CONFIG_HUGETLB_PAGE
1736 static void check_huge_range(struct vm_area_struct *vma,
1737 unsigned long start, unsigned long end,
1738 struct numa_maps *md)
1739 {
1740 unsigned long addr;
1741 struct page *page;
1742
1743 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1744 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1745 pte_t pte;
1746
1747 if (!ptep)
1748 continue;
1749
1750 pte = *ptep;
1751 if (pte_none(pte))
1752 continue;
1753
1754 page = pte_page(pte);
1755 if (!page)
1756 continue;
1757
1758 gather_stats(page, md, pte_dirty(*ptep));
1759 }
1760 }
1761 #else
1762 static inline void check_huge_range(struct vm_area_struct *vma,
1763 unsigned long start, unsigned long end,
1764 struct numa_maps *md)
1765 {
1766 }
1767 #endif
1768
1769 int show_numa_map(struct seq_file *m, void *v)
1770 {
1771 struct task_struct *task = m->private;
1772 struct vm_area_struct *vma = v;
1773 struct numa_maps *md;
1774 struct file *file = vma->vm_file;
1775 struct mm_struct *mm = vma->vm_mm;
1776 int n;
1777 char buffer[50];
1778
1779 if (!mm)
1780 return 0;
1781
1782 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1783 if (!md)
1784 return 0;
1785
1786 mpol_to_str(buffer, sizeof(buffer),
1787 get_vma_policy(task, vma, vma->vm_start));
1788
1789 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1790
1791 if (file) {
1792 seq_printf(m, " file=");
1793 seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1794 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1795 seq_printf(m, " heap");
1796 } else if (vma->vm_start <= mm->start_stack &&
1797 vma->vm_end >= mm->start_stack) {
1798 seq_printf(m, " stack");
1799 }
1800
1801 if (is_vm_hugetlb_page(vma)) {
1802 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1803 seq_printf(m, " huge");
1804 } else {
1805 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1806 &node_online_map, MPOL_MF_STATS, md);
1807 }
1808
1809 if (!md->pages)
1810 goto out;
1811
1812 if (md->anon)
1813 seq_printf(m," anon=%lu",md->anon);
1814
1815 if (md->dirty)
1816 seq_printf(m," dirty=%lu",md->dirty);
1817
1818 if (md->pages != md->anon && md->pages != md->dirty)
1819 seq_printf(m, " mapped=%lu", md->pages);
1820
1821 if (md->mapcount_max > 1)
1822 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1823
1824 if (md->swapcache)
1825 seq_printf(m," swapcache=%lu", md->swapcache);
1826
1827 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1828 seq_printf(m," active=%lu", md->active);
1829
1830 if (md->writeback)
1831 seq_printf(m," writeback=%lu", md->writeback);
1832
1833 for_each_online_node(n)
1834 if (md->node[n])
1835 seq_printf(m, " N%d=%lu", n, md->node[n]);
1836 out:
1837 seq_putc(m, '\n');
1838 kfree(md);
1839
1840 if (m->count < m->size)
1841 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
1842 return 0;
1843 }
1844
This page took 0.112182 seconds and 4 git commands to generate.