Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 int mode; /* FALLOC_FL mode currently operating */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 }
210
211 /**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
236 }
237 }
238
239 /*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244 {
245 void **pslot;
246 void *item;
247
248 VM_BUG_ON(!expected);
249 VM_BUG_ON(!replacement);
250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 if (!pslot)
252 return -ENOENT;
253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 if (item != expected)
255 return -ENOENT;
256 radix_tree_replace_slot(pslot, replacement);
257 return 0;
258 }
259
260 /*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 pgoff_t index, swp_entry_t swap)
269 {
270 void *item;
271
272 rcu_read_lock();
273 item = radix_tree_lookup(&mapping->page_tree, index);
274 rcu_read_unlock();
275 return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281 static int shmem_add_to_page_cache(struct page *page,
282 struct address_space *mapping,
283 pgoff_t index, gfp_t gfp, void *expected)
284 {
285 int error;
286
287 VM_BUG_ON_PAGE(!PageLocked(page), page);
288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290 page_cache_get(page);
291 page->mapping = mapping;
292 page->index = index;
293
294 spin_lock_irq(&mapping->tree_lock);
295 if (!expected)
296 error = radix_tree_insert(&mapping->page_tree, index, page);
297 else
298 error = shmem_radix_tree_replace(mapping, index, expected,
299 page);
300 if (!error) {
301 mapping->nrpages++;
302 __inc_zone_page_state(page, NR_FILE_PAGES);
303 __inc_zone_page_state(page, NR_SHMEM);
304 spin_unlock_irq(&mapping->tree_lock);
305 } else {
306 page->mapping = NULL;
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 }
310 return error;
311 }
312
313 /*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318 struct address_space *mapping = page->mapping;
319 int error;
320
321 spin_lock_irq(&mapping->tree_lock);
322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 page->mapping = NULL;
324 mapping->nrpages--;
325 __dec_zone_page_state(page, NR_FILE_PAGES);
326 __dec_zone_page_state(page, NR_SHMEM);
327 spin_unlock_irq(&mapping->tree_lock);
328 page_cache_release(page);
329 BUG_ON(error);
330 }
331
332 /*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335 static int shmem_free_swap(struct address_space *mapping,
336 pgoff_t index, void *radswap)
337 {
338 void *old;
339
340 spin_lock_irq(&mapping->tree_lock);
341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 spin_unlock_irq(&mapping->tree_lock);
343 if (old != radswap)
344 return -ENOENT;
345 free_swap_and_cache(radix_to_swp_entry(radswap));
346 return 0;
347 }
348
349 /*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354 struct pagevec pvec;
355 pgoff_t indices[PAGEVEC_SIZE];
356 pgoff_t index = 0;
357
358 pagevec_init(&pvec, 0);
359 /*
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 */
362 while (!mapping_unevictable(mapping)) {
363 /*
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 */
367 pvec.nr = find_get_entries(mapping, index,
368 PAGEVEC_SIZE, pvec.pages, indices);
369 if (!pvec.nr)
370 break;
371 index = indices[pvec.nr - 1] + 1;
372 pagevec_remove_exceptionals(&pvec);
373 check_move_unevictable_pages(pvec.pages, pvec.nr);
374 pagevec_release(&pvec);
375 cond_resched();
376 }
377 }
378
379 /*
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382 */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 bool unfalloc)
385 {
386 struct address_space *mapping = inode->i_mapping;
387 struct shmem_inode_info *info = SHMEM_I(inode);
388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392 struct pagevec pvec;
393 pgoff_t indices[PAGEVEC_SIZE];
394 long nr_swaps_freed = 0;
395 pgoff_t index;
396 int i;
397
398 if (lend == -1)
399 end = -1; /* unsigned, so actually very big */
400
401 pagevec_init(&pvec, 0);
402 index = start;
403 while (index < end) {
404 pvec.nr = find_get_entries(mapping, index,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 pvec.pages, indices);
407 if (!pvec.nr)
408 break;
409 mem_cgroup_uncharge_start();
410 for (i = 0; i < pagevec_count(&pvec); i++) {
411 struct page *page = pvec.pages[i];
412
413 index = indices[i];
414 if (index >= end)
415 break;
416
417 if (radix_tree_exceptional_entry(page)) {
418 if (unfalloc)
419 continue;
420 nr_swaps_freed += !shmem_free_swap(mapping,
421 index, page);
422 continue;
423 }
424
425 if (!trylock_page(page))
426 continue;
427 if (!unfalloc || !PageUptodate(page)) {
428 if (page->mapping == mapping) {
429 VM_BUG_ON_PAGE(PageWriteback(page), page);
430 truncate_inode_page(mapping, page);
431 }
432 }
433 unlock_page(page);
434 }
435 pagevec_remove_exceptionals(&pvec);
436 pagevec_release(&pvec);
437 mem_cgroup_uncharge_end();
438 cond_resched();
439 index++;
440 }
441
442 if (partial_start) {
443 struct page *page = NULL;
444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 if (page) {
446 unsigned int top = PAGE_CACHE_SIZE;
447 if (start > end) {
448 top = partial_end;
449 partial_end = 0;
450 }
451 zero_user_segment(page, partial_start, top);
452 set_page_dirty(page);
453 unlock_page(page);
454 page_cache_release(page);
455 }
456 }
457 if (partial_end) {
458 struct page *page = NULL;
459 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 if (page) {
461 zero_user_segment(page, 0, partial_end);
462 set_page_dirty(page);
463 unlock_page(page);
464 page_cache_release(page);
465 }
466 }
467 if (start >= end)
468 return;
469
470 index = start;
471 for ( ; ; ) {
472 cond_resched();
473
474 pvec.nr = find_get_entries(mapping, index,
475 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 pvec.pages, indices);
477 if (!pvec.nr) {
478 if (index == start || unfalloc)
479 break;
480 index = start;
481 continue;
482 }
483 if ((index == start || unfalloc) && indices[0] >= end) {
484 pagevec_remove_exceptionals(&pvec);
485 pagevec_release(&pvec);
486 break;
487 }
488 mem_cgroup_uncharge_start();
489 for (i = 0; i < pagevec_count(&pvec); i++) {
490 struct page *page = pvec.pages[i];
491
492 index = indices[i];
493 if (index >= end)
494 break;
495
496 if (radix_tree_exceptional_entry(page)) {
497 if (unfalloc)
498 continue;
499 nr_swaps_freed += !shmem_free_swap(mapping,
500 index, page);
501 continue;
502 }
503
504 lock_page(page);
505 if (!unfalloc || !PageUptodate(page)) {
506 if (page->mapping == mapping) {
507 VM_BUG_ON_PAGE(PageWriteback(page), page);
508 truncate_inode_page(mapping, page);
509 }
510 }
511 unlock_page(page);
512 }
513 pagevec_remove_exceptionals(&pvec);
514 pagevec_release(&pvec);
515 mem_cgroup_uncharge_end();
516 index++;
517 }
518
519 spin_lock(&info->lock);
520 info->swapped -= nr_swaps_freed;
521 shmem_recalc_inode(inode);
522 spin_unlock(&info->lock);
523 }
524
525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526 {
527 shmem_undo_range(inode, lstart, lend, false);
528 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529 }
530 EXPORT_SYMBOL_GPL(shmem_truncate_range);
531
532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534 struct inode *inode = dentry->d_inode;
535 int error;
536
537 error = inode_change_ok(inode, attr);
538 if (error)
539 return error;
540
541 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542 loff_t oldsize = inode->i_size;
543 loff_t newsize = attr->ia_size;
544
545 if (newsize != oldsize) {
546 i_size_write(inode, newsize);
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 if (newsize < oldsize) {
550 loff_t holebegin = round_up(newsize, PAGE_SIZE);
551 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552 shmem_truncate_range(inode, newsize, (loff_t)-1);
553 /* unmap again to remove racily COWed private pages */
554 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555 }
556 }
557
558 setattr_copy(inode, attr);
559 if (attr->ia_valid & ATTR_MODE)
560 error = posix_acl_chmod(inode, inode->i_mode);
561 return error;
562 }
563
564 static void shmem_evict_inode(struct inode *inode)
565 {
566 struct shmem_inode_info *info = SHMEM_I(inode);
567
568 if (inode->i_mapping->a_ops == &shmem_aops) {
569 shmem_unacct_size(info->flags, inode->i_size);
570 inode->i_size = 0;
571 shmem_truncate_range(inode, 0, (loff_t)-1);
572 if (!list_empty(&info->swaplist)) {
573 mutex_lock(&shmem_swaplist_mutex);
574 list_del_init(&info->swaplist);
575 mutex_unlock(&shmem_swaplist_mutex);
576 }
577 } else
578 kfree(info->symlink);
579
580 simple_xattrs_free(&info->xattrs);
581 WARN_ON(inode->i_blocks);
582 shmem_free_inode(inode->i_sb);
583 clear_inode(inode);
584 }
585
586 /*
587 * If swap found in inode, free it and move page from swapcache to filecache.
588 */
589 static int shmem_unuse_inode(struct shmem_inode_info *info,
590 swp_entry_t swap, struct page **pagep)
591 {
592 struct address_space *mapping = info->vfs_inode.i_mapping;
593 void *radswap;
594 pgoff_t index;
595 gfp_t gfp;
596 int error = 0;
597
598 radswap = swp_to_radix_entry(swap);
599 index = radix_tree_locate_item(&mapping->page_tree, radswap);
600 if (index == -1)
601 return 0;
602
603 /*
604 * Move _head_ to start search for next from here.
605 * But be careful: shmem_evict_inode checks list_empty without taking
606 * mutex, and there's an instant in list_move_tail when info->swaplist
607 * would appear empty, if it were the only one on shmem_swaplist.
608 */
609 if (shmem_swaplist.next != &info->swaplist)
610 list_move_tail(&shmem_swaplist, &info->swaplist);
611
612 gfp = mapping_gfp_mask(mapping);
613 if (shmem_should_replace_page(*pagep, gfp)) {
614 mutex_unlock(&shmem_swaplist_mutex);
615 error = shmem_replace_page(pagep, gfp, info, index);
616 mutex_lock(&shmem_swaplist_mutex);
617 /*
618 * We needed to drop mutex to make that restrictive page
619 * allocation, but the inode might have been freed while we
620 * dropped it: although a racing shmem_evict_inode() cannot
621 * complete without emptying the radix_tree, our page lock
622 * on this swapcache page is not enough to prevent that -
623 * free_swap_and_cache() of our swap entry will only
624 * trylock_page(), removing swap from radix_tree whatever.
625 *
626 * We must not proceed to shmem_add_to_page_cache() if the
627 * inode has been freed, but of course we cannot rely on
628 * inode or mapping or info to check that. However, we can
629 * safely check if our swap entry is still in use (and here
630 * it can't have got reused for another page): if it's still
631 * in use, then the inode cannot have been freed yet, and we
632 * can safely proceed (if it's no longer in use, that tells
633 * nothing about the inode, but we don't need to unuse swap).
634 */
635 if (!page_swapcount(*pagep))
636 error = -ENOENT;
637 }
638
639 /*
640 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642 * beneath us (pagelock doesn't help until the page is in pagecache).
643 */
644 if (!error)
645 error = shmem_add_to_page_cache(*pagep, mapping, index,
646 GFP_NOWAIT, radswap);
647 if (error != -ENOMEM) {
648 /*
649 * Truncation and eviction use free_swap_and_cache(), which
650 * only does trylock page: if we raced, best clean up here.
651 */
652 delete_from_swap_cache(*pagep);
653 set_page_dirty(*pagep);
654 if (!error) {
655 spin_lock(&info->lock);
656 info->swapped--;
657 spin_unlock(&info->lock);
658 swap_free(swap);
659 }
660 error = 1; /* not an error, but entry was found */
661 }
662 return error;
663 }
664
665 /*
666 * Search through swapped inodes to find and replace swap by page.
667 */
668 int shmem_unuse(swp_entry_t swap, struct page *page)
669 {
670 struct list_head *this, *next;
671 struct shmem_inode_info *info;
672 int found = 0;
673 int error = 0;
674
675 /*
676 * There's a faint possibility that swap page was replaced before
677 * caller locked it: caller will come back later with the right page.
678 */
679 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680 goto out;
681
682 /*
683 * Charge page using GFP_KERNEL while we can wait, before taking
684 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685 * Charged back to the user (not to caller) when swap account is used.
686 */
687 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688 if (error)
689 goto out;
690 /* No radix_tree_preload: swap entry keeps a place for page in tree */
691
692 mutex_lock(&shmem_swaplist_mutex);
693 list_for_each_safe(this, next, &shmem_swaplist) {
694 info = list_entry(this, struct shmem_inode_info, swaplist);
695 if (info->swapped)
696 found = shmem_unuse_inode(info, swap, &page);
697 else
698 list_del_init(&info->swaplist);
699 cond_resched();
700 if (found)
701 break;
702 }
703 mutex_unlock(&shmem_swaplist_mutex);
704
705 if (found < 0)
706 error = found;
707 out:
708 unlock_page(page);
709 page_cache_release(page);
710 return error;
711 }
712
713 /*
714 * Move the page from the page cache to the swap cache.
715 */
716 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717 {
718 struct shmem_inode_info *info;
719 struct address_space *mapping;
720 struct inode *inode;
721 swp_entry_t swap;
722 pgoff_t index;
723
724 BUG_ON(!PageLocked(page));
725 mapping = page->mapping;
726 index = page->index;
727 inode = mapping->host;
728 info = SHMEM_I(inode);
729 if (info->flags & VM_LOCKED)
730 goto redirty;
731 if (!total_swap_pages)
732 goto redirty;
733
734 /*
735 * shmem_backing_dev_info's capabilities prevent regular writeback or
736 * sync from ever calling shmem_writepage; but a stacking filesystem
737 * might use ->writepage of its underlying filesystem, in which case
738 * tmpfs should write out to swap only in response to memory pressure,
739 * and not for the writeback threads or sync.
740 */
741 if (!wbc->for_reclaim) {
742 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
743 goto redirty;
744 }
745
746 /*
747 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748 * value into swapfile.c, the only way we can correctly account for a
749 * fallocated page arriving here is now to initialize it and write it.
750 *
751 * That's okay for a page already fallocated earlier, but if we have
752 * not yet completed the fallocation, then (a) we want to keep track
753 * of this page in case we have to undo it, and (b) it may not be a
754 * good idea to continue anyway, once we're pushing into swap. So
755 * reactivate the page, and let shmem_fallocate() quit when too many.
756 */
757 if (!PageUptodate(page)) {
758 if (inode->i_private) {
759 struct shmem_falloc *shmem_falloc;
760 spin_lock(&inode->i_lock);
761 shmem_falloc = inode->i_private;
762 if (shmem_falloc &&
763 !shmem_falloc->mode &&
764 index >= shmem_falloc->start &&
765 index < shmem_falloc->next)
766 shmem_falloc->nr_unswapped++;
767 else
768 shmem_falloc = NULL;
769 spin_unlock(&inode->i_lock);
770 if (shmem_falloc)
771 goto redirty;
772 }
773 clear_highpage(page);
774 flush_dcache_page(page);
775 SetPageUptodate(page);
776 }
777
778 swap = get_swap_page();
779 if (!swap.val)
780 goto redirty;
781
782 /*
783 * Add inode to shmem_unuse()'s list of swapped-out inodes,
784 * if it's not already there. Do it now before the page is
785 * moved to swap cache, when its pagelock no longer protects
786 * the inode from eviction. But don't unlock the mutex until
787 * we've incremented swapped, because shmem_unuse_inode() will
788 * prune a !swapped inode from the swaplist under this mutex.
789 */
790 mutex_lock(&shmem_swaplist_mutex);
791 if (list_empty(&info->swaplist))
792 list_add_tail(&info->swaplist, &shmem_swaplist);
793
794 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795 swap_shmem_alloc(swap);
796 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798 spin_lock(&info->lock);
799 info->swapped++;
800 shmem_recalc_inode(inode);
801 spin_unlock(&info->lock);
802
803 mutex_unlock(&shmem_swaplist_mutex);
804 BUG_ON(page_mapped(page));
805 swap_writepage(page, wbc);
806 return 0;
807 }
808
809 mutex_unlock(&shmem_swaplist_mutex);
810 swapcache_free(swap, NULL);
811 redirty:
812 set_page_dirty(page);
813 if (wbc->for_reclaim)
814 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
815 unlock_page(page);
816 return 0;
817 }
818
819 #ifdef CONFIG_NUMA
820 #ifdef CONFIG_TMPFS
821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822 {
823 char buffer[64];
824
825 if (!mpol || mpol->mode == MPOL_DEFAULT)
826 return; /* show nothing */
827
828 mpol_to_str(buffer, sizeof(buffer), mpol);
829
830 seq_printf(seq, ",mpol=%s", buffer);
831 }
832
833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834 {
835 struct mempolicy *mpol = NULL;
836 if (sbinfo->mpol) {
837 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
838 mpol = sbinfo->mpol;
839 mpol_get(mpol);
840 spin_unlock(&sbinfo->stat_lock);
841 }
842 return mpol;
843 }
844 #endif /* CONFIG_TMPFS */
845
846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847 struct shmem_inode_info *info, pgoff_t index)
848 {
849 struct vm_area_struct pvma;
850 struct page *page;
851
852 /* Create a pseudo vma that just contains the policy */
853 pvma.vm_start = 0;
854 /* Bias interleave by inode number to distribute better across nodes */
855 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856 pvma.vm_ops = NULL;
857 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859 page = swapin_readahead(swap, gfp, &pvma, 0);
860
861 /* Drop reference taken by mpol_shared_policy_lookup() */
862 mpol_cond_put(pvma.vm_policy);
863
864 return page;
865 }
866
867 static struct page *shmem_alloc_page(gfp_t gfp,
868 struct shmem_inode_info *info, pgoff_t index)
869 {
870 struct vm_area_struct pvma;
871 struct page *page;
872
873 /* Create a pseudo vma that just contains the policy */
874 pvma.vm_start = 0;
875 /* Bias interleave by inode number to distribute better across nodes */
876 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877 pvma.vm_ops = NULL;
878 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879
880 page = alloc_page_vma(gfp, &pvma, 0);
881
882 /* Drop reference taken by mpol_shared_policy_lookup() */
883 mpol_cond_put(pvma.vm_policy);
884
885 return page;
886 }
887 #else /* !CONFIG_NUMA */
888 #ifdef CONFIG_TMPFS
889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890 {
891 }
892 #endif /* CONFIG_TMPFS */
893
894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895 struct shmem_inode_info *info, pgoff_t index)
896 {
897 return swapin_readahead(swap, gfp, NULL, 0);
898 }
899
900 static inline struct page *shmem_alloc_page(gfp_t gfp,
901 struct shmem_inode_info *info, pgoff_t index)
902 {
903 return alloc_page(gfp);
904 }
905 #endif /* CONFIG_NUMA */
906
907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 return NULL;
911 }
912 #endif
913
914 /*
915 * When a page is moved from swapcache to shmem filecache (either by the
916 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917 * shmem_unuse_inode()), it may have been read in earlier from swap, in
918 * ignorance of the mapping it belongs to. If that mapping has special
919 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920 * we may need to copy to a suitable page before moving to filecache.
921 *
922 * In a future release, this may well be extended to respect cpuset and
923 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924 * but for now it is a simple matter of zone.
925 */
926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927 {
928 return page_zonenum(page) > gfp_zone(gfp);
929 }
930
931 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932 struct shmem_inode_info *info, pgoff_t index)
933 {
934 struct page *oldpage, *newpage;
935 struct address_space *swap_mapping;
936 pgoff_t swap_index;
937 int error;
938
939 oldpage = *pagep;
940 swap_index = page_private(oldpage);
941 swap_mapping = page_mapping(oldpage);
942
943 /*
944 * We have arrived here because our zones are constrained, so don't
945 * limit chance of success by further cpuset and node constraints.
946 */
947 gfp &= ~GFP_CONSTRAINT_MASK;
948 newpage = shmem_alloc_page(gfp, info, index);
949 if (!newpage)
950 return -ENOMEM;
951
952 page_cache_get(newpage);
953 copy_highpage(newpage, oldpage);
954 flush_dcache_page(newpage);
955
956 __set_page_locked(newpage);
957 SetPageUptodate(newpage);
958 SetPageSwapBacked(newpage);
959 set_page_private(newpage, swap_index);
960 SetPageSwapCache(newpage);
961
962 /*
963 * Our caller will very soon move newpage out of swapcache, but it's
964 * a nice clean interface for us to replace oldpage by newpage there.
965 */
966 spin_lock_irq(&swap_mapping->tree_lock);
967 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968 newpage);
969 if (!error) {
970 __inc_zone_page_state(newpage, NR_FILE_PAGES);
971 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
972 }
973 spin_unlock_irq(&swap_mapping->tree_lock);
974
975 if (unlikely(error)) {
976 /*
977 * Is this possible? I think not, now that our callers check
978 * both PageSwapCache and page_private after getting page lock;
979 * but be defensive. Reverse old to newpage for clear and free.
980 */
981 oldpage = newpage;
982 } else {
983 mem_cgroup_replace_page_cache(oldpage, newpage);
984 lru_cache_add_anon(newpage);
985 *pagep = newpage;
986 }
987
988 ClearPageSwapCache(oldpage);
989 set_page_private(oldpage, 0);
990
991 unlock_page(oldpage);
992 page_cache_release(oldpage);
993 page_cache_release(oldpage);
994 return error;
995 }
996
997 /*
998 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999 *
1000 * If we allocate a new one we do not mark it dirty. That's up to the
1001 * vm. If we swap it in we mark it dirty since we also free the swap
1002 * entry since a page cannot live in both the swap and page cache
1003 */
1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006 {
1007 struct address_space *mapping = inode->i_mapping;
1008 struct shmem_inode_info *info;
1009 struct shmem_sb_info *sbinfo;
1010 struct page *page;
1011 swp_entry_t swap;
1012 int error;
1013 int once = 0;
1014 int alloced = 0;
1015
1016 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017 return -EFBIG;
1018 repeat:
1019 swap.val = 0;
1020 page = find_lock_entry(mapping, index);
1021 if (radix_tree_exceptional_entry(page)) {
1022 swap = radix_to_swp_entry(page);
1023 page = NULL;
1024 }
1025
1026 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028 error = -EINVAL;
1029 goto failed;
1030 }
1031
1032 if (page && sgp == SGP_WRITE)
1033 mark_page_accessed(page);
1034
1035 /* fallocated page? */
1036 if (page && !PageUptodate(page)) {
1037 if (sgp != SGP_READ)
1038 goto clear;
1039 unlock_page(page);
1040 page_cache_release(page);
1041 page = NULL;
1042 }
1043 if (page || (sgp == SGP_READ && !swap.val)) {
1044 *pagep = page;
1045 return 0;
1046 }
1047
1048 /*
1049 * Fast cache lookup did not find it:
1050 * bring it back from swap or allocate.
1051 */
1052 info = SHMEM_I(inode);
1053 sbinfo = SHMEM_SB(inode->i_sb);
1054
1055 if (swap.val) {
1056 /* Look it up and read it in.. */
1057 page = lookup_swap_cache(swap);
1058 if (!page) {
1059 /* here we actually do the io */
1060 if (fault_type)
1061 *fault_type |= VM_FAULT_MAJOR;
1062 page = shmem_swapin(swap, gfp, info, index);
1063 if (!page) {
1064 error = -ENOMEM;
1065 goto failed;
1066 }
1067 }
1068
1069 /* We have to do this with page locked to prevent races */
1070 lock_page(page);
1071 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1072 !shmem_confirm_swap(mapping, index, swap)) {
1073 error = -EEXIST; /* try again */
1074 goto unlock;
1075 }
1076 if (!PageUptodate(page)) {
1077 error = -EIO;
1078 goto failed;
1079 }
1080 wait_on_page_writeback(page);
1081
1082 if (shmem_should_replace_page(page, gfp)) {
1083 error = shmem_replace_page(&page, gfp, info, index);
1084 if (error)
1085 goto failed;
1086 }
1087
1088 error = mem_cgroup_charge_file(page, current->mm,
1089 gfp & GFP_RECLAIM_MASK);
1090 if (!error) {
1091 error = shmem_add_to_page_cache(page, mapping, index,
1092 gfp, swp_to_radix_entry(swap));
1093 /*
1094 * We already confirmed swap under page lock, and make
1095 * no memory allocation here, so usually no possibility
1096 * of error; but free_swap_and_cache() only trylocks a
1097 * page, so it is just possible that the entry has been
1098 * truncated or holepunched since swap was confirmed.
1099 * shmem_undo_range() will have done some of the
1100 * unaccounting, now delete_from_swap_cache() will do
1101 * the rest (including mem_cgroup_uncharge_swapcache).
1102 * Reset swap.val? No, leave it so "failed" goes back to
1103 * "repeat": reading a hole and writing should succeed.
1104 */
1105 if (error)
1106 delete_from_swap_cache(page);
1107 }
1108 if (error)
1109 goto failed;
1110
1111 spin_lock(&info->lock);
1112 info->swapped--;
1113 shmem_recalc_inode(inode);
1114 spin_unlock(&info->lock);
1115
1116 if (sgp == SGP_WRITE)
1117 mark_page_accessed(page);
1118
1119 delete_from_swap_cache(page);
1120 set_page_dirty(page);
1121 swap_free(swap);
1122
1123 } else {
1124 if (shmem_acct_block(info->flags)) {
1125 error = -ENOSPC;
1126 goto failed;
1127 }
1128 if (sbinfo->max_blocks) {
1129 if (percpu_counter_compare(&sbinfo->used_blocks,
1130 sbinfo->max_blocks) >= 0) {
1131 error = -ENOSPC;
1132 goto unacct;
1133 }
1134 percpu_counter_inc(&sbinfo->used_blocks);
1135 }
1136
1137 page = shmem_alloc_page(gfp, info, index);
1138 if (!page) {
1139 error = -ENOMEM;
1140 goto decused;
1141 }
1142
1143 __SetPageSwapBacked(page);
1144 __set_page_locked(page);
1145 if (sgp == SGP_WRITE)
1146 init_page_accessed(page);
1147
1148 error = mem_cgroup_charge_file(page, current->mm,
1149 gfp & GFP_RECLAIM_MASK);
1150 if (error)
1151 goto decused;
1152 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1153 if (!error) {
1154 error = shmem_add_to_page_cache(page, mapping, index,
1155 gfp, NULL);
1156 radix_tree_preload_end();
1157 }
1158 if (error) {
1159 mem_cgroup_uncharge_cache_page(page);
1160 goto decused;
1161 }
1162 lru_cache_add_anon(page);
1163
1164 spin_lock(&info->lock);
1165 info->alloced++;
1166 inode->i_blocks += BLOCKS_PER_PAGE;
1167 shmem_recalc_inode(inode);
1168 spin_unlock(&info->lock);
1169 alloced = true;
1170
1171 /*
1172 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1173 */
1174 if (sgp == SGP_FALLOC)
1175 sgp = SGP_WRITE;
1176 clear:
1177 /*
1178 * Let SGP_WRITE caller clear ends if write does not fill page;
1179 * but SGP_FALLOC on a page fallocated earlier must initialize
1180 * it now, lest undo on failure cancel our earlier guarantee.
1181 */
1182 if (sgp != SGP_WRITE) {
1183 clear_highpage(page);
1184 flush_dcache_page(page);
1185 SetPageUptodate(page);
1186 }
1187 if (sgp == SGP_DIRTY)
1188 set_page_dirty(page);
1189 }
1190
1191 /* Perhaps the file has been truncated since we checked */
1192 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1193 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1194 error = -EINVAL;
1195 if (alloced)
1196 goto trunc;
1197 else
1198 goto failed;
1199 }
1200 *pagep = page;
1201 return 0;
1202
1203 /*
1204 * Error recovery.
1205 */
1206 trunc:
1207 info = SHMEM_I(inode);
1208 ClearPageDirty(page);
1209 delete_from_page_cache(page);
1210 spin_lock(&info->lock);
1211 info->alloced--;
1212 inode->i_blocks -= BLOCKS_PER_PAGE;
1213 spin_unlock(&info->lock);
1214 decused:
1215 sbinfo = SHMEM_SB(inode->i_sb);
1216 if (sbinfo->max_blocks)
1217 percpu_counter_add(&sbinfo->used_blocks, -1);
1218 unacct:
1219 shmem_unacct_blocks(info->flags, 1);
1220 failed:
1221 if (swap.val && error != -EINVAL &&
1222 !shmem_confirm_swap(mapping, index, swap))
1223 error = -EEXIST;
1224 unlock:
1225 if (page) {
1226 unlock_page(page);
1227 page_cache_release(page);
1228 }
1229 if (error == -ENOSPC && !once++) {
1230 info = SHMEM_I(inode);
1231 spin_lock(&info->lock);
1232 shmem_recalc_inode(inode);
1233 spin_unlock(&info->lock);
1234 goto repeat;
1235 }
1236 if (error == -EEXIST) /* from above or from radix_tree_insert */
1237 goto repeat;
1238 return error;
1239 }
1240
1241 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1242 {
1243 struct inode *inode = file_inode(vma->vm_file);
1244 int error;
1245 int ret = VM_FAULT_LOCKED;
1246
1247 /*
1248 * Trinity finds that probing a hole which tmpfs is punching can
1249 * prevent the hole-punch from ever completing: which in turn
1250 * locks writers out with its hold on i_mutex. So refrain from
1251 * faulting pages into the hole while it's being punched, and
1252 * wait on i_mutex to be released if vmf->flags permits.
1253 */
1254 if (unlikely(inode->i_private)) {
1255 struct shmem_falloc *shmem_falloc;
1256
1257 spin_lock(&inode->i_lock);
1258 shmem_falloc = inode->i_private;
1259 if (!shmem_falloc ||
1260 shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1261 vmf->pgoff < shmem_falloc->start ||
1262 vmf->pgoff >= shmem_falloc->next)
1263 shmem_falloc = NULL;
1264 spin_unlock(&inode->i_lock);
1265 /*
1266 * i_lock has protected us from taking shmem_falloc seriously
1267 * once return from shmem_fallocate() went back up that stack.
1268 * i_lock does not serialize with i_mutex at all, but it does
1269 * not matter if sometimes we wait unnecessarily, or sometimes
1270 * miss out on waiting: we just need to make those cases rare.
1271 */
1272 if (shmem_falloc) {
1273 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1274 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1275 up_read(&vma->vm_mm->mmap_sem);
1276 mutex_lock(&inode->i_mutex);
1277 mutex_unlock(&inode->i_mutex);
1278 return VM_FAULT_RETRY;
1279 }
1280 /* cond_resched? Leave that to GUP or return to user */
1281 return VM_FAULT_NOPAGE;
1282 }
1283 }
1284
1285 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1286 if (error)
1287 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1288
1289 if (ret & VM_FAULT_MAJOR) {
1290 count_vm_event(PGMAJFAULT);
1291 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1292 }
1293 return ret;
1294 }
1295
1296 #ifdef CONFIG_NUMA
1297 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1298 {
1299 struct inode *inode = file_inode(vma->vm_file);
1300 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1301 }
1302
1303 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1304 unsigned long addr)
1305 {
1306 struct inode *inode = file_inode(vma->vm_file);
1307 pgoff_t index;
1308
1309 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1310 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1311 }
1312 #endif
1313
1314 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1315 {
1316 struct inode *inode = file_inode(file);
1317 struct shmem_inode_info *info = SHMEM_I(inode);
1318 int retval = -ENOMEM;
1319
1320 spin_lock(&info->lock);
1321 if (lock && !(info->flags & VM_LOCKED)) {
1322 if (!user_shm_lock(inode->i_size, user))
1323 goto out_nomem;
1324 info->flags |= VM_LOCKED;
1325 mapping_set_unevictable(file->f_mapping);
1326 }
1327 if (!lock && (info->flags & VM_LOCKED) && user) {
1328 user_shm_unlock(inode->i_size, user);
1329 info->flags &= ~VM_LOCKED;
1330 mapping_clear_unevictable(file->f_mapping);
1331 }
1332 retval = 0;
1333
1334 out_nomem:
1335 spin_unlock(&info->lock);
1336 return retval;
1337 }
1338
1339 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1340 {
1341 file_accessed(file);
1342 vma->vm_ops = &shmem_vm_ops;
1343 return 0;
1344 }
1345
1346 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1347 umode_t mode, dev_t dev, unsigned long flags)
1348 {
1349 struct inode *inode;
1350 struct shmem_inode_info *info;
1351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1352
1353 if (shmem_reserve_inode(sb))
1354 return NULL;
1355
1356 inode = new_inode(sb);
1357 if (inode) {
1358 inode->i_ino = get_next_ino();
1359 inode_init_owner(inode, dir, mode);
1360 inode->i_blocks = 0;
1361 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1362 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1363 inode->i_generation = get_seconds();
1364 info = SHMEM_I(inode);
1365 memset(info, 0, (char *)inode - (char *)info);
1366 spin_lock_init(&info->lock);
1367 info->flags = flags & VM_NORESERVE;
1368 INIT_LIST_HEAD(&info->swaplist);
1369 simple_xattrs_init(&info->xattrs);
1370 cache_no_acl(inode);
1371
1372 switch (mode & S_IFMT) {
1373 default:
1374 inode->i_op = &shmem_special_inode_operations;
1375 init_special_inode(inode, mode, dev);
1376 break;
1377 case S_IFREG:
1378 inode->i_mapping->a_ops = &shmem_aops;
1379 inode->i_op = &shmem_inode_operations;
1380 inode->i_fop = &shmem_file_operations;
1381 mpol_shared_policy_init(&info->policy,
1382 shmem_get_sbmpol(sbinfo));
1383 break;
1384 case S_IFDIR:
1385 inc_nlink(inode);
1386 /* Some things misbehave if size == 0 on a directory */
1387 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1388 inode->i_op = &shmem_dir_inode_operations;
1389 inode->i_fop = &simple_dir_operations;
1390 break;
1391 case S_IFLNK:
1392 /*
1393 * Must not load anything in the rbtree,
1394 * mpol_free_shared_policy will not be called.
1395 */
1396 mpol_shared_policy_init(&info->policy, NULL);
1397 break;
1398 }
1399 } else
1400 shmem_free_inode(sb);
1401 return inode;
1402 }
1403
1404 bool shmem_mapping(struct address_space *mapping)
1405 {
1406 return mapping->backing_dev_info == &shmem_backing_dev_info;
1407 }
1408
1409 #ifdef CONFIG_TMPFS
1410 static const struct inode_operations shmem_symlink_inode_operations;
1411 static const struct inode_operations shmem_short_symlink_operations;
1412
1413 #ifdef CONFIG_TMPFS_XATTR
1414 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1415 #else
1416 #define shmem_initxattrs NULL
1417 #endif
1418
1419 static int
1420 shmem_write_begin(struct file *file, struct address_space *mapping,
1421 loff_t pos, unsigned len, unsigned flags,
1422 struct page **pagep, void **fsdata)
1423 {
1424 struct inode *inode = mapping->host;
1425 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1426 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1427 }
1428
1429 static int
1430 shmem_write_end(struct file *file, struct address_space *mapping,
1431 loff_t pos, unsigned len, unsigned copied,
1432 struct page *page, void *fsdata)
1433 {
1434 struct inode *inode = mapping->host;
1435
1436 if (pos + copied > inode->i_size)
1437 i_size_write(inode, pos + copied);
1438
1439 if (!PageUptodate(page)) {
1440 if (copied < PAGE_CACHE_SIZE) {
1441 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1442 zero_user_segments(page, 0, from,
1443 from + copied, PAGE_CACHE_SIZE);
1444 }
1445 SetPageUptodate(page);
1446 }
1447 set_page_dirty(page);
1448 unlock_page(page);
1449 page_cache_release(page);
1450
1451 return copied;
1452 }
1453
1454 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1455 {
1456 struct file *file = iocb->ki_filp;
1457 struct inode *inode = file_inode(file);
1458 struct address_space *mapping = inode->i_mapping;
1459 pgoff_t index;
1460 unsigned long offset;
1461 enum sgp_type sgp = SGP_READ;
1462 int error = 0;
1463 ssize_t retval = 0;
1464 loff_t *ppos = &iocb->ki_pos;
1465
1466 /*
1467 * Might this read be for a stacking filesystem? Then when reading
1468 * holes of a sparse file, we actually need to allocate those pages,
1469 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1470 */
1471 if (segment_eq(get_fs(), KERNEL_DS))
1472 sgp = SGP_DIRTY;
1473
1474 index = *ppos >> PAGE_CACHE_SHIFT;
1475 offset = *ppos & ~PAGE_CACHE_MASK;
1476
1477 for (;;) {
1478 struct page *page = NULL;
1479 pgoff_t end_index;
1480 unsigned long nr, ret;
1481 loff_t i_size = i_size_read(inode);
1482
1483 end_index = i_size >> PAGE_CACHE_SHIFT;
1484 if (index > end_index)
1485 break;
1486 if (index == end_index) {
1487 nr = i_size & ~PAGE_CACHE_MASK;
1488 if (nr <= offset)
1489 break;
1490 }
1491
1492 error = shmem_getpage(inode, index, &page, sgp, NULL);
1493 if (error) {
1494 if (error == -EINVAL)
1495 error = 0;
1496 break;
1497 }
1498 if (page)
1499 unlock_page(page);
1500
1501 /*
1502 * We must evaluate after, since reads (unlike writes)
1503 * are called without i_mutex protection against truncate
1504 */
1505 nr = PAGE_CACHE_SIZE;
1506 i_size = i_size_read(inode);
1507 end_index = i_size >> PAGE_CACHE_SHIFT;
1508 if (index == end_index) {
1509 nr = i_size & ~PAGE_CACHE_MASK;
1510 if (nr <= offset) {
1511 if (page)
1512 page_cache_release(page);
1513 break;
1514 }
1515 }
1516 nr -= offset;
1517
1518 if (page) {
1519 /*
1520 * If users can be writing to this page using arbitrary
1521 * virtual addresses, take care about potential aliasing
1522 * before reading the page on the kernel side.
1523 */
1524 if (mapping_writably_mapped(mapping))
1525 flush_dcache_page(page);
1526 /*
1527 * Mark the page accessed if we read the beginning.
1528 */
1529 if (!offset)
1530 mark_page_accessed(page);
1531 } else {
1532 page = ZERO_PAGE(0);
1533 page_cache_get(page);
1534 }
1535
1536 /*
1537 * Ok, we have the page, and it's up-to-date, so
1538 * now we can copy it to user space...
1539 */
1540 ret = copy_page_to_iter(page, offset, nr, to);
1541 retval += ret;
1542 offset += ret;
1543 index += offset >> PAGE_CACHE_SHIFT;
1544 offset &= ~PAGE_CACHE_MASK;
1545
1546 page_cache_release(page);
1547 if (!iov_iter_count(to))
1548 break;
1549 if (ret < nr) {
1550 error = -EFAULT;
1551 break;
1552 }
1553 cond_resched();
1554 }
1555
1556 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1557 file_accessed(file);
1558 return retval ? retval : error;
1559 }
1560
1561 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1562 struct pipe_inode_info *pipe, size_t len,
1563 unsigned int flags)
1564 {
1565 struct address_space *mapping = in->f_mapping;
1566 struct inode *inode = mapping->host;
1567 unsigned int loff, nr_pages, req_pages;
1568 struct page *pages[PIPE_DEF_BUFFERS];
1569 struct partial_page partial[PIPE_DEF_BUFFERS];
1570 struct page *page;
1571 pgoff_t index, end_index;
1572 loff_t isize, left;
1573 int error, page_nr;
1574 struct splice_pipe_desc spd = {
1575 .pages = pages,
1576 .partial = partial,
1577 .nr_pages_max = PIPE_DEF_BUFFERS,
1578 .flags = flags,
1579 .ops = &page_cache_pipe_buf_ops,
1580 .spd_release = spd_release_page,
1581 };
1582
1583 isize = i_size_read(inode);
1584 if (unlikely(*ppos >= isize))
1585 return 0;
1586
1587 left = isize - *ppos;
1588 if (unlikely(left < len))
1589 len = left;
1590
1591 if (splice_grow_spd(pipe, &spd))
1592 return -ENOMEM;
1593
1594 index = *ppos >> PAGE_CACHE_SHIFT;
1595 loff = *ppos & ~PAGE_CACHE_MASK;
1596 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1597 nr_pages = min(req_pages, spd.nr_pages_max);
1598
1599 spd.nr_pages = find_get_pages_contig(mapping, index,
1600 nr_pages, spd.pages);
1601 index += spd.nr_pages;
1602 error = 0;
1603
1604 while (spd.nr_pages < nr_pages) {
1605 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1606 if (error)
1607 break;
1608 unlock_page(page);
1609 spd.pages[spd.nr_pages++] = page;
1610 index++;
1611 }
1612
1613 index = *ppos >> PAGE_CACHE_SHIFT;
1614 nr_pages = spd.nr_pages;
1615 spd.nr_pages = 0;
1616
1617 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1618 unsigned int this_len;
1619
1620 if (!len)
1621 break;
1622
1623 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1624 page = spd.pages[page_nr];
1625
1626 if (!PageUptodate(page) || page->mapping != mapping) {
1627 error = shmem_getpage(inode, index, &page,
1628 SGP_CACHE, NULL);
1629 if (error)
1630 break;
1631 unlock_page(page);
1632 page_cache_release(spd.pages[page_nr]);
1633 spd.pages[page_nr] = page;
1634 }
1635
1636 isize = i_size_read(inode);
1637 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1638 if (unlikely(!isize || index > end_index))
1639 break;
1640
1641 if (end_index == index) {
1642 unsigned int plen;
1643
1644 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1645 if (plen <= loff)
1646 break;
1647
1648 this_len = min(this_len, plen - loff);
1649 len = this_len;
1650 }
1651
1652 spd.partial[page_nr].offset = loff;
1653 spd.partial[page_nr].len = this_len;
1654 len -= this_len;
1655 loff = 0;
1656 spd.nr_pages++;
1657 index++;
1658 }
1659
1660 while (page_nr < nr_pages)
1661 page_cache_release(spd.pages[page_nr++]);
1662
1663 if (spd.nr_pages)
1664 error = splice_to_pipe(pipe, &spd);
1665
1666 splice_shrink_spd(&spd);
1667
1668 if (error > 0) {
1669 *ppos += error;
1670 file_accessed(in);
1671 }
1672 return error;
1673 }
1674
1675 /*
1676 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1677 */
1678 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1679 pgoff_t index, pgoff_t end, int whence)
1680 {
1681 struct page *page;
1682 struct pagevec pvec;
1683 pgoff_t indices[PAGEVEC_SIZE];
1684 bool done = false;
1685 int i;
1686
1687 pagevec_init(&pvec, 0);
1688 pvec.nr = 1; /* start small: we may be there already */
1689 while (!done) {
1690 pvec.nr = find_get_entries(mapping, index,
1691 pvec.nr, pvec.pages, indices);
1692 if (!pvec.nr) {
1693 if (whence == SEEK_DATA)
1694 index = end;
1695 break;
1696 }
1697 for (i = 0; i < pvec.nr; i++, index++) {
1698 if (index < indices[i]) {
1699 if (whence == SEEK_HOLE) {
1700 done = true;
1701 break;
1702 }
1703 index = indices[i];
1704 }
1705 page = pvec.pages[i];
1706 if (page && !radix_tree_exceptional_entry(page)) {
1707 if (!PageUptodate(page))
1708 page = NULL;
1709 }
1710 if (index >= end ||
1711 (page && whence == SEEK_DATA) ||
1712 (!page && whence == SEEK_HOLE)) {
1713 done = true;
1714 break;
1715 }
1716 }
1717 pagevec_remove_exceptionals(&pvec);
1718 pagevec_release(&pvec);
1719 pvec.nr = PAGEVEC_SIZE;
1720 cond_resched();
1721 }
1722 return index;
1723 }
1724
1725 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1726 {
1727 struct address_space *mapping = file->f_mapping;
1728 struct inode *inode = mapping->host;
1729 pgoff_t start, end;
1730 loff_t new_offset;
1731
1732 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1733 return generic_file_llseek_size(file, offset, whence,
1734 MAX_LFS_FILESIZE, i_size_read(inode));
1735 mutex_lock(&inode->i_mutex);
1736 /* We're holding i_mutex so we can access i_size directly */
1737
1738 if (offset < 0)
1739 offset = -EINVAL;
1740 else if (offset >= inode->i_size)
1741 offset = -ENXIO;
1742 else {
1743 start = offset >> PAGE_CACHE_SHIFT;
1744 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1745 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1746 new_offset <<= PAGE_CACHE_SHIFT;
1747 if (new_offset > offset) {
1748 if (new_offset < inode->i_size)
1749 offset = new_offset;
1750 else if (whence == SEEK_DATA)
1751 offset = -ENXIO;
1752 else
1753 offset = inode->i_size;
1754 }
1755 }
1756
1757 if (offset >= 0)
1758 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1759 mutex_unlock(&inode->i_mutex);
1760 return offset;
1761 }
1762
1763 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1764 loff_t len)
1765 {
1766 struct inode *inode = file_inode(file);
1767 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1768 struct shmem_falloc shmem_falloc;
1769 pgoff_t start, index, end;
1770 int error;
1771
1772 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1773 return -EOPNOTSUPP;
1774
1775 mutex_lock(&inode->i_mutex);
1776
1777 shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1778
1779 if (mode & FALLOC_FL_PUNCH_HOLE) {
1780 struct address_space *mapping = file->f_mapping;
1781 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1782 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1783
1784 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1785 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1786 spin_lock(&inode->i_lock);
1787 inode->i_private = &shmem_falloc;
1788 spin_unlock(&inode->i_lock);
1789
1790 if ((u64)unmap_end > (u64)unmap_start)
1791 unmap_mapping_range(mapping, unmap_start,
1792 1 + unmap_end - unmap_start, 0);
1793 shmem_truncate_range(inode, offset, offset + len - 1);
1794 /* No need to unmap again: hole-punching leaves COWed pages */
1795 error = 0;
1796 goto undone;
1797 }
1798
1799 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1800 error = inode_newsize_ok(inode, offset + len);
1801 if (error)
1802 goto out;
1803
1804 start = offset >> PAGE_CACHE_SHIFT;
1805 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1806 /* Try to avoid a swapstorm if len is impossible to satisfy */
1807 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1808 error = -ENOSPC;
1809 goto out;
1810 }
1811
1812 shmem_falloc.start = start;
1813 shmem_falloc.next = start;
1814 shmem_falloc.nr_falloced = 0;
1815 shmem_falloc.nr_unswapped = 0;
1816 spin_lock(&inode->i_lock);
1817 inode->i_private = &shmem_falloc;
1818 spin_unlock(&inode->i_lock);
1819
1820 for (index = start; index < end; index++) {
1821 struct page *page;
1822
1823 /*
1824 * Good, the fallocate(2) manpage permits EINTR: we may have
1825 * been interrupted because we are using up too much memory.
1826 */
1827 if (signal_pending(current))
1828 error = -EINTR;
1829 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1830 error = -ENOMEM;
1831 else
1832 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1833 NULL);
1834 if (error) {
1835 /* Remove the !PageUptodate pages we added */
1836 shmem_undo_range(inode,
1837 (loff_t)start << PAGE_CACHE_SHIFT,
1838 (loff_t)index << PAGE_CACHE_SHIFT, true);
1839 goto undone;
1840 }
1841
1842 /*
1843 * Inform shmem_writepage() how far we have reached.
1844 * No need for lock or barrier: we have the page lock.
1845 */
1846 shmem_falloc.next++;
1847 if (!PageUptodate(page))
1848 shmem_falloc.nr_falloced++;
1849
1850 /*
1851 * If !PageUptodate, leave it that way so that freeable pages
1852 * can be recognized if we need to rollback on error later.
1853 * But set_page_dirty so that memory pressure will swap rather
1854 * than free the pages we are allocating (and SGP_CACHE pages
1855 * might still be clean: we now need to mark those dirty too).
1856 */
1857 set_page_dirty(page);
1858 unlock_page(page);
1859 page_cache_release(page);
1860 cond_resched();
1861 }
1862
1863 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1864 i_size_write(inode, offset + len);
1865 inode->i_ctime = CURRENT_TIME;
1866 undone:
1867 spin_lock(&inode->i_lock);
1868 inode->i_private = NULL;
1869 spin_unlock(&inode->i_lock);
1870 out:
1871 mutex_unlock(&inode->i_mutex);
1872 return error;
1873 }
1874
1875 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1876 {
1877 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1878
1879 buf->f_type = TMPFS_MAGIC;
1880 buf->f_bsize = PAGE_CACHE_SIZE;
1881 buf->f_namelen = NAME_MAX;
1882 if (sbinfo->max_blocks) {
1883 buf->f_blocks = sbinfo->max_blocks;
1884 buf->f_bavail =
1885 buf->f_bfree = sbinfo->max_blocks -
1886 percpu_counter_sum(&sbinfo->used_blocks);
1887 }
1888 if (sbinfo->max_inodes) {
1889 buf->f_files = sbinfo->max_inodes;
1890 buf->f_ffree = sbinfo->free_inodes;
1891 }
1892 /* else leave those fields 0 like simple_statfs */
1893 return 0;
1894 }
1895
1896 /*
1897 * File creation. Allocate an inode, and we're done..
1898 */
1899 static int
1900 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1901 {
1902 struct inode *inode;
1903 int error = -ENOSPC;
1904
1905 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1906 if (inode) {
1907 error = simple_acl_create(dir, inode);
1908 if (error)
1909 goto out_iput;
1910 error = security_inode_init_security(inode, dir,
1911 &dentry->d_name,
1912 shmem_initxattrs, NULL);
1913 if (error && error != -EOPNOTSUPP)
1914 goto out_iput;
1915
1916 error = 0;
1917 dir->i_size += BOGO_DIRENT_SIZE;
1918 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1919 d_instantiate(dentry, inode);
1920 dget(dentry); /* Extra count - pin the dentry in core */
1921 }
1922 return error;
1923 out_iput:
1924 iput(inode);
1925 return error;
1926 }
1927
1928 static int
1929 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1930 {
1931 struct inode *inode;
1932 int error = -ENOSPC;
1933
1934 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1935 if (inode) {
1936 error = security_inode_init_security(inode, dir,
1937 NULL,
1938 shmem_initxattrs, NULL);
1939 if (error && error != -EOPNOTSUPP)
1940 goto out_iput;
1941 error = simple_acl_create(dir, inode);
1942 if (error)
1943 goto out_iput;
1944 d_tmpfile(dentry, inode);
1945 }
1946 return error;
1947 out_iput:
1948 iput(inode);
1949 return error;
1950 }
1951
1952 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1953 {
1954 int error;
1955
1956 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1957 return error;
1958 inc_nlink(dir);
1959 return 0;
1960 }
1961
1962 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1963 bool excl)
1964 {
1965 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1966 }
1967
1968 /*
1969 * Link a file..
1970 */
1971 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1972 {
1973 struct inode *inode = old_dentry->d_inode;
1974 int ret;
1975
1976 /*
1977 * No ordinary (disk based) filesystem counts links as inodes;
1978 * but each new link needs a new dentry, pinning lowmem, and
1979 * tmpfs dentries cannot be pruned until they are unlinked.
1980 */
1981 ret = shmem_reserve_inode(inode->i_sb);
1982 if (ret)
1983 goto out;
1984
1985 dir->i_size += BOGO_DIRENT_SIZE;
1986 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1987 inc_nlink(inode);
1988 ihold(inode); /* New dentry reference */
1989 dget(dentry); /* Extra pinning count for the created dentry */
1990 d_instantiate(dentry, inode);
1991 out:
1992 return ret;
1993 }
1994
1995 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1996 {
1997 struct inode *inode = dentry->d_inode;
1998
1999 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2000 shmem_free_inode(inode->i_sb);
2001
2002 dir->i_size -= BOGO_DIRENT_SIZE;
2003 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2004 drop_nlink(inode);
2005 dput(dentry); /* Undo the count from "create" - this does all the work */
2006 return 0;
2007 }
2008
2009 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2010 {
2011 if (!simple_empty(dentry))
2012 return -ENOTEMPTY;
2013
2014 drop_nlink(dentry->d_inode);
2015 drop_nlink(dir);
2016 return shmem_unlink(dir, dentry);
2017 }
2018
2019 /*
2020 * The VFS layer already does all the dentry stuff for rename,
2021 * we just have to decrement the usage count for the target if
2022 * it exists so that the VFS layer correctly free's it when it
2023 * gets overwritten.
2024 */
2025 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2026 {
2027 struct inode *inode = old_dentry->d_inode;
2028 int they_are_dirs = S_ISDIR(inode->i_mode);
2029
2030 if (!simple_empty(new_dentry))
2031 return -ENOTEMPTY;
2032
2033 if (new_dentry->d_inode) {
2034 (void) shmem_unlink(new_dir, new_dentry);
2035 if (they_are_dirs)
2036 drop_nlink(old_dir);
2037 } else if (they_are_dirs) {
2038 drop_nlink(old_dir);
2039 inc_nlink(new_dir);
2040 }
2041
2042 old_dir->i_size -= BOGO_DIRENT_SIZE;
2043 new_dir->i_size += BOGO_DIRENT_SIZE;
2044 old_dir->i_ctime = old_dir->i_mtime =
2045 new_dir->i_ctime = new_dir->i_mtime =
2046 inode->i_ctime = CURRENT_TIME;
2047 return 0;
2048 }
2049
2050 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2051 {
2052 int error;
2053 int len;
2054 struct inode *inode;
2055 struct page *page;
2056 char *kaddr;
2057 struct shmem_inode_info *info;
2058
2059 len = strlen(symname) + 1;
2060 if (len > PAGE_CACHE_SIZE)
2061 return -ENAMETOOLONG;
2062
2063 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2064 if (!inode)
2065 return -ENOSPC;
2066
2067 error = security_inode_init_security(inode, dir, &dentry->d_name,
2068 shmem_initxattrs, NULL);
2069 if (error) {
2070 if (error != -EOPNOTSUPP) {
2071 iput(inode);
2072 return error;
2073 }
2074 error = 0;
2075 }
2076
2077 info = SHMEM_I(inode);
2078 inode->i_size = len-1;
2079 if (len <= SHORT_SYMLINK_LEN) {
2080 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2081 if (!info->symlink) {
2082 iput(inode);
2083 return -ENOMEM;
2084 }
2085 inode->i_op = &shmem_short_symlink_operations;
2086 } else {
2087 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2088 if (error) {
2089 iput(inode);
2090 return error;
2091 }
2092 inode->i_mapping->a_ops = &shmem_aops;
2093 inode->i_op = &shmem_symlink_inode_operations;
2094 kaddr = kmap_atomic(page);
2095 memcpy(kaddr, symname, len);
2096 kunmap_atomic(kaddr);
2097 SetPageUptodate(page);
2098 set_page_dirty(page);
2099 unlock_page(page);
2100 page_cache_release(page);
2101 }
2102 dir->i_size += BOGO_DIRENT_SIZE;
2103 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2104 d_instantiate(dentry, inode);
2105 dget(dentry);
2106 return 0;
2107 }
2108
2109 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2110 {
2111 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2112 return NULL;
2113 }
2114
2115 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2116 {
2117 struct page *page = NULL;
2118 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2119 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2120 if (page)
2121 unlock_page(page);
2122 return page;
2123 }
2124
2125 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2126 {
2127 if (!IS_ERR(nd_get_link(nd))) {
2128 struct page *page = cookie;
2129 kunmap(page);
2130 mark_page_accessed(page);
2131 page_cache_release(page);
2132 }
2133 }
2134
2135 #ifdef CONFIG_TMPFS_XATTR
2136 /*
2137 * Superblocks without xattr inode operations may get some security.* xattr
2138 * support from the LSM "for free". As soon as we have any other xattrs
2139 * like ACLs, we also need to implement the security.* handlers at
2140 * filesystem level, though.
2141 */
2142
2143 /*
2144 * Callback for security_inode_init_security() for acquiring xattrs.
2145 */
2146 static int shmem_initxattrs(struct inode *inode,
2147 const struct xattr *xattr_array,
2148 void *fs_info)
2149 {
2150 struct shmem_inode_info *info = SHMEM_I(inode);
2151 const struct xattr *xattr;
2152 struct simple_xattr *new_xattr;
2153 size_t len;
2154
2155 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2156 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2157 if (!new_xattr)
2158 return -ENOMEM;
2159
2160 len = strlen(xattr->name) + 1;
2161 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2162 GFP_KERNEL);
2163 if (!new_xattr->name) {
2164 kfree(new_xattr);
2165 return -ENOMEM;
2166 }
2167
2168 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2169 XATTR_SECURITY_PREFIX_LEN);
2170 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2171 xattr->name, len);
2172
2173 simple_xattr_list_add(&info->xattrs, new_xattr);
2174 }
2175
2176 return 0;
2177 }
2178
2179 static const struct xattr_handler *shmem_xattr_handlers[] = {
2180 #ifdef CONFIG_TMPFS_POSIX_ACL
2181 &posix_acl_access_xattr_handler,
2182 &posix_acl_default_xattr_handler,
2183 #endif
2184 NULL
2185 };
2186
2187 static int shmem_xattr_validate(const char *name)
2188 {
2189 struct { const char *prefix; size_t len; } arr[] = {
2190 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2191 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2192 };
2193 int i;
2194
2195 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2196 size_t preflen = arr[i].len;
2197 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2198 if (!name[preflen])
2199 return -EINVAL;
2200 return 0;
2201 }
2202 }
2203 return -EOPNOTSUPP;
2204 }
2205
2206 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2207 void *buffer, size_t size)
2208 {
2209 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2210 int err;
2211
2212 /*
2213 * If this is a request for a synthetic attribute in the system.*
2214 * namespace use the generic infrastructure to resolve a handler
2215 * for it via sb->s_xattr.
2216 */
2217 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2218 return generic_getxattr(dentry, name, buffer, size);
2219
2220 err = shmem_xattr_validate(name);
2221 if (err)
2222 return err;
2223
2224 return simple_xattr_get(&info->xattrs, name, buffer, size);
2225 }
2226
2227 static int shmem_setxattr(struct dentry *dentry, const char *name,
2228 const void *value, size_t size, int flags)
2229 {
2230 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2231 int err;
2232
2233 /*
2234 * If this is a request for a synthetic attribute in the system.*
2235 * namespace use the generic infrastructure to resolve a handler
2236 * for it via sb->s_xattr.
2237 */
2238 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2239 return generic_setxattr(dentry, name, value, size, flags);
2240
2241 err = shmem_xattr_validate(name);
2242 if (err)
2243 return err;
2244
2245 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2246 }
2247
2248 static int shmem_removexattr(struct dentry *dentry, const char *name)
2249 {
2250 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2251 int err;
2252
2253 /*
2254 * If this is a request for a synthetic attribute in the system.*
2255 * namespace use the generic infrastructure to resolve a handler
2256 * for it via sb->s_xattr.
2257 */
2258 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2259 return generic_removexattr(dentry, name);
2260
2261 err = shmem_xattr_validate(name);
2262 if (err)
2263 return err;
2264
2265 return simple_xattr_remove(&info->xattrs, name);
2266 }
2267
2268 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2269 {
2270 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2271 return simple_xattr_list(&info->xattrs, buffer, size);
2272 }
2273 #endif /* CONFIG_TMPFS_XATTR */
2274
2275 static const struct inode_operations shmem_short_symlink_operations = {
2276 .readlink = generic_readlink,
2277 .follow_link = shmem_follow_short_symlink,
2278 #ifdef CONFIG_TMPFS_XATTR
2279 .setxattr = shmem_setxattr,
2280 .getxattr = shmem_getxattr,
2281 .listxattr = shmem_listxattr,
2282 .removexattr = shmem_removexattr,
2283 #endif
2284 };
2285
2286 static const struct inode_operations shmem_symlink_inode_operations = {
2287 .readlink = generic_readlink,
2288 .follow_link = shmem_follow_link,
2289 .put_link = shmem_put_link,
2290 #ifdef CONFIG_TMPFS_XATTR
2291 .setxattr = shmem_setxattr,
2292 .getxattr = shmem_getxattr,
2293 .listxattr = shmem_listxattr,
2294 .removexattr = shmem_removexattr,
2295 #endif
2296 };
2297
2298 static struct dentry *shmem_get_parent(struct dentry *child)
2299 {
2300 return ERR_PTR(-ESTALE);
2301 }
2302
2303 static int shmem_match(struct inode *ino, void *vfh)
2304 {
2305 __u32 *fh = vfh;
2306 __u64 inum = fh[2];
2307 inum = (inum << 32) | fh[1];
2308 return ino->i_ino == inum && fh[0] == ino->i_generation;
2309 }
2310
2311 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2312 struct fid *fid, int fh_len, int fh_type)
2313 {
2314 struct inode *inode;
2315 struct dentry *dentry = NULL;
2316 u64 inum;
2317
2318 if (fh_len < 3)
2319 return NULL;
2320
2321 inum = fid->raw[2];
2322 inum = (inum << 32) | fid->raw[1];
2323
2324 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2325 shmem_match, fid->raw);
2326 if (inode) {
2327 dentry = d_find_alias(inode);
2328 iput(inode);
2329 }
2330
2331 return dentry;
2332 }
2333
2334 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2335 struct inode *parent)
2336 {
2337 if (*len < 3) {
2338 *len = 3;
2339 return FILEID_INVALID;
2340 }
2341
2342 if (inode_unhashed(inode)) {
2343 /* Unfortunately insert_inode_hash is not idempotent,
2344 * so as we hash inodes here rather than at creation
2345 * time, we need a lock to ensure we only try
2346 * to do it once
2347 */
2348 static DEFINE_SPINLOCK(lock);
2349 spin_lock(&lock);
2350 if (inode_unhashed(inode))
2351 __insert_inode_hash(inode,
2352 inode->i_ino + inode->i_generation);
2353 spin_unlock(&lock);
2354 }
2355
2356 fh[0] = inode->i_generation;
2357 fh[1] = inode->i_ino;
2358 fh[2] = ((__u64)inode->i_ino) >> 32;
2359
2360 *len = 3;
2361 return 1;
2362 }
2363
2364 static const struct export_operations shmem_export_ops = {
2365 .get_parent = shmem_get_parent,
2366 .encode_fh = shmem_encode_fh,
2367 .fh_to_dentry = shmem_fh_to_dentry,
2368 };
2369
2370 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2371 bool remount)
2372 {
2373 char *this_char, *value, *rest;
2374 struct mempolicy *mpol = NULL;
2375 uid_t uid;
2376 gid_t gid;
2377
2378 while (options != NULL) {
2379 this_char = options;
2380 for (;;) {
2381 /*
2382 * NUL-terminate this option: unfortunately,
2383 * mount options form a comma-separated list,
2384 * but mpol's nodelist may also contain commas.
2385 */
2386 options = strchr(options, ',');
2387 if (options == NULL)
2388 break;
2389 options++;
2390 if (!isdigit(*options)) {
2391 options[-1] = '\0';
2392 break;
2393 }
2394 }
2395 if (!*this_char)
2396 continue;
2397 if ((value = strchr(this_char,'=')) != NULL) {
2398 *value++ = 0;
2399 } else {
2400 printk(KERN_ERR
2401 "tmpfs: No value for mount option '%s'\n",
2402 this_char);
2403 goto error;
2404 }
2405
2406 if (!strcmp(this_char,"size")) {
2407 unsigned long long size;
2408 size = memparse(value,&rest);
2409 if (*rest == '%') {
2410 size <<= PAGE_SHIFT;
2411 size *= totalram_pages;
2412 do_div(size, 100);
2413 rest++;
2414 }
2415 if (*rest)
2416 goto bad_val;
2417 sbinfo->max_blocks =
2418 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2419 } else if (!strcmp(this_char,"nr_blocks")) {
2420 sbinfo->max_blocks = memparse(value, &rest);
2421 if (*rest)
2422 goto bad_val;
2423 } else if (!strcmp(this_char,"nr_inodes")) {
2424 sbinfo->max_inodes = memparse(value, &rest);
2425 if (*rest)
2426 goto bad_val;
2427 } else if (!strcmp(this_char,"mode")) {
2428 if (remount)
2429 continue;
2430 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2431 if (*rest)
2432 goto bad_val;
2433 } else if (!strcmp(this_char,"uid")) {
2434 if (remount)
2435 continue;
2436 uid = simple_strtoul(value, &rest, 0);
2437 if (*rest)
2438 goto bad_val;
2439 sbinfo->uid = make_kuid(current_user_ns(), uid);
2440 if (!uid_valid(sbinfo->uid))
2441 goto bad_val;
2442 } else if (!strcmp(this_char,"gid")) {
2443 if (remount)
2444 continue;
2445 gid = simple_strtoul(value, &rest, 0);
2446 if (*rest)
2447 goto bad_val;
2448 sbinfo->gid = make_kgid(current_user_ns(), gid);
2449 if (!gid_valid(sbinfo->gid))
2450 goto bad_val;
2451 } else if (!strcmp(this_char,"mpol")) {
2452 mpol_put(mpol);
2453 mpol = NULL;
2454 if (mpol_parse_str(value, &mpol))
2455 goto bad_val;
2456 } else {
2457 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2458 this_char);
2459 goto error;
2460 }
2461 }
2462 sbinfo->mpol = mpol;
2463 return 0;
2464
2465 bad_val:
2466 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2467 value, this_char);
2468 error:
2469 mpol_put(mpol);
2470 return 1;
2471
2472 }
2473
2474 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2475 {
2476 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2477 struct shmem_sb_info config = *sbinfo;
2478 unsigned long inodes;
2479 int error = -EINVAL;
2480
2481 config.mpol = NULL;
2482 if (shmem_parse_options(data, &config, true))
2483 return error;
2484
2485 spin_lock(&sbinfo->stat_lock);
2486 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2487 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2488 goto out;
2489 if (config.max_inodes < inodes)
2490 goto out;
2491 /*
2492 * Those tests disallow limited->unlimited while any are in use;
2493 * but we must separately disallow unlimited->limited, because
2494 * in that case we have no record of how much is already in use.
2495 */
2496 if (config.max_blocks && !sbinfo->max_blocks)
2497 goto out;
2498 if (config.max_inodes && !sbinfo->max_inodes)
2499 goto out;
2500
2501 error = 0;
2502 sbinfo->max_blocks = config.max_blocks;
2503 sbinfo->max_inodes = config.max_inodes;
2504 sbinfo->free_inodes = config.max_inodes - inodes;
2505
2506 /*
2507 * Preserve previous mempolicy unless mpol remount option was specified.
2508 */
2509 if (config.mpol) {
2510 mpol_put(sbinfo->mpol);
2511 sbinfo->mpol = config.mpol; /* transfers initial ref */
2512 }
2513 out:
2514 spin_unlock(&sbinfo->stat_lock);
2515 return error;
2516 }
2517
2518 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2519 {
2520 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2521
2522 if (sbinfo->max_blocks != shmem_default_max_blocks())
2523 seq_printf(seq, ",size=%luk",
2524 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2525 if (sbinfo->max_inodes != shmem_default_max_inodes())
2526 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2527 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2528 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2529 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2530 seq_printf(seq, ",uid=%u",
2531 from_kuid_munged(&init_user_ns, sbinfo->uid));
2532 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2533 seq_printf(seq, ",gid=%u",
2534 from_kgid_munged(&init_user_ns, sbinfo->gid));
2535 shmem_show_mpol(seq, sbinfo->mpol);
2536 return 0;
2537 }
2538 #endif /* CONFIG_TMPFS */
2539
2540 static void shmem_put_super(struct super_block *sb)
2541 {
2542 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2543
2544 percpu_counter_destroy(&sbinfo->used_blocks);
2545 mpol_put(sbinfo->mpol);
2546 kfree(sbinfo);
2547 sb->s_fs_info = NULL;
2548 }
2549
2550 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2551 {
2552 struct inode *inode;
2553 struct shmem_sb_info *sbinfo;
2554 int err = -ENOMEM;
2555
2556 /* Round up to L1_CACHE_BYTES to resist false sharing */
2557 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2558 L1_CACHE_BYTES), GFP_KERNEL);
2559 if (!sbinfo)
2560 return -ENOMEM;
2561
2562 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2563 sbinfo->uid = current_fsuid();
2564 sbinfo->gid = current_fsgid();
2565 sb->s_fs_info = sbinfo;
2566
2567 #ifdef CONFIG_TMPFS
2568 /*
2569 * Per default we only allow half of the physical ram per
2570 * tmpfs instance, limiting inodes to one per page of lowmem;
2571 * but the internal instance is left unlimited.
2572 */
2573 if (!(sb->s_flags & MS_KERNMOUNT)) {
2574 sbinfo->max_blocks = shmem_default_max_blocks();
2575 sbinfo->max_inodes = shmem_default_max_inodes();
2576 if (shmem_parse_options(data, sbinfo, false)) {
2577 err = -EINVAL;
2578 goto failed;
2579 }
2580 } else {
2581 sb->s_flags |= MS_NOUSER;
2582 }
2583 sb->s_export_op = &shmem_export_ops;
2584 sb->s_flags |= MS_NOSEC;
2585 #else
2586 sb->s_flags |= MS_NOUSER;
2587 #endif
2588
2589 spin_lock_init(&sbinfo->stat_lock);
2590 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2591 goto failed;
2592 sbinfo->free_inodes = sbinfo->max_inodes;
2593
2594 sb->s_maxbytes = MAX_LFS_FILESIZE;
2595 sb->s_blocksize = PAGE_CACHE_SIZE;
2596 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2597 sb->s_magic = TMPFS_MAGIC;
2598 sb->s_op = &shmem_ops;
2599 sb->s_time_gran = 1;
2600 #ifdef CONFIG_TMPFS_XATTR
2601 sb->s_xattr = shmem_xattr_handlers;
2602 #endif
2603 #ifdef CONFIG_TMPFS_POSIX_ACL
2604 sb->s_flags |= MS_POSIXACL;
2605 #endif
2606
2607 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2608 if (!inode)
2609 goto failed;
2610 inode->i_uid = sbinfo->uid;
2611 inode->i_gid = sbinfo->gid;
2612 sb->s_root = d_make_root(inode);
2613 if (!sb->s_root)
2614 goto failed;
2615 return 0;
2616
2617 failed:
2618 shmem_put_super(sb);
2619 return err;
2620 }
2621
2622 static struct kmem_cache *shmem_inode_cachep;
2623
2624 static struct inode *shmem_alloc_inode(struct super_block *sb)
2625 {
2626 struct shmem_inode_info *info;
2627 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2628 if (!info)
2629 return NULL;
2630 return &info->vfs_inode;
2631 }
2632
2633 static void shmem_destroy_callback(struct rcu_head *head)
2634 {
2635 struct inode *inode = container_of(head, struct inode, i_rcu);
2636 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2637 }
2638
2639 static void shmem_destroy_inode(struct inode *inode)
2640 {
2641 if (S_ISREG(inode->i_mode))
2642 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2643 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2644 }
2645
2646 static void shmem_init_inode(void *foo)
2647 {
2648 struct shmem_inode_info *info = foo;
2649 inode_init_once(&info->vfs_inode);
2650 }
2651
2652 static int shmem_init_inodecache(void)
2653 {
2654 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2655 sizeof(struct shmem_inode_info),
2656 0, SLAB_PANIC, shmem_init_inode);
2657 return 0;
2658 }
2659
2660 static void shmem_destroy_inodecache(void)
2661 {
2662 kmem_cache_destroy(shmem_inode_cachep);
2663 }
2664
2665 static const struct address_space_operations shmem_aops = {
2666 .writepage = shmem_writepage,
2667 .set_page_dirty = __set_page_dirty_no_writeback,
2668 #ifdef CONFIG_TMPFS
2669 .write_begin = shmem_write_begin,
2670 .write_end = shmem_write_end,
2671 #endif
2672 .migratepage = migrate_page,
2673 .error_remove_page = generic_error_remove_page,
2674 };
2675
2676 static const struct file_operations shmem_file_operations = {
2677 .mmap = shmem_mmap,
2678 #ifdef CONFIG_TMPFS
2679 .llseek = shmem_file_llseek,
2680 .read = new_sync_read,
2681 .write = new_sync_write,
2682 .read_iter = shmem_file_read_iter,
2683 .write_iter = generic_file_write_iter,
2684 .fsync = noop_fsync,
2685 .splice_read = shmem_file_splice_read,
2686 .splice_write = iter_file_splice_write,
2687 .fallocate = shmem_fallocate,
2688 #endif
2689 };
2690
2691 static const struct inode_operations shmem_inode_operations = {
2692 .setattr = shmem_setattr,
2693 #ifdef CONFIG_TMPFS_XATTR
2694 .setxattr = shmem_setxattr,
2695 .getxattr = shmem_getxattr,
2696 .listxattr = shmem_listxattr,
2697 .removexattr = shmem_removexattr,
2698 .set_acl = simple_set_acl,
2699 #endif
2700 };
2701
2702 static const struct inode_operations shmem_dir_inode_operations = {
2703 #ifdef CONFIG_TMPFS
2704 .create = shmem_create,
2705 .lookup = simple_lookup,
2706 .link = shmem_link,
2707 .unlink = shmem_unlink,
2708 .symlink = shmem_symlink,
2709 .mkdir = shmem_mkdir,
2710 .rmdir = shmem_rmdir,
2711 .mknod = shmem_mknod,
2712 .rename = shmem_rename,
2713 .tmpfile = shmem_tmpfile,
2714 #endif
2715 #ifdef CONFIG_TMPFS_XATTR
2716 .setxattr = shmem_setxattr,
2717 .getxattr = shmem_getxattr,
2718 .listxattr = shmem_listxattr,
2719 .removexattr = shmem_removexattr,
2720 #endif
2721 #ifdef CONFIG_TMPFS_POSIX_ACL
2722 .setattr = shmem_setattr,
2723 .set_acl = simple_set_acl,
2724 #endif
2725 };
2726
2727 static const struct inode_operations shmem_special_inode_operations = {
2728 #ifdef CONFIG_TMPFS_XATTR
2729 .setxattr = shmem_setxattr,
2730 .getxattr = shmem_getxattr,
2731 .listxattr = shmem_listxattr,
2732 .removexattr = shmem_removexattr,
2733 #endif
2734 #ifdef CONFIG_TMPFS_POSIX_ACL
2735 .setattr = shmem_setattr,
2736 .set_acl = simple_set_acl,
2737 #endif
2738 };
2739
2740 static const struct super_operations shmem_ops = {
2741 .alloc_inode = shmem_alloc_inode,
2742 .destroy_inode = shmem_destroy_inode,
2743 #ifdef CONFIG_TMPFS
2744 .statfs = shmem_statfs,
2745 .remount_fs = shmem_remount_fs,
2746 .show_options = shmem_show_options,
2747 #endif
2748 .evict_inode = shmem_evict_inode,
2749 .drop_inode = generic_delete_inode,
2750 .put_super = shmem_put_super,
2751 };
2752
2753 static const struct vm_operations_struct shmem_vm_ops = {
2754 .fault = shmem_fault,
2755 .map_pages = filemap_map_pages,
2756 #ifdef CONFIG_NUMA
2757 .set_policy = shmem_set_policy,
2758 .get_policy = shmem_get_policy,
2759 #endif
2760 .remap_pages = generic_file_remap_pages,
2761 };
2762
2763 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2764 int flags, const char *dev_name, void *data)
2765 {
2766 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2767 }
2768
2769 static struct file_system_type shmem_fs_type = {
2770 .owner = THIS_MODULE,
2771 .name = "tmpfs",
2772 .mount = shmem_mount,
2773 .kill_sb = kill_litter_super,
2774 .fs_flags = FS_USERNS_MOUNT,
2775 };
2776
2777 int __init shmem_init(void)
2778 {
2779 int error;
2780
2781 /* If rootfs called this, don't re-init */
2782 if (shmem_inode_cachep)
2783 return 0;
2784
2785 error = bdi_init(&shmem_backing_dev_info);
2786 if (error)
2787 goto out4;
2788
2789 error = shmem_init_inodecache();
2790 if (error)
2791 goto out3;
2792
2793 error = register_filesystem(&shmem_fs_type);
2794 if (error) {
2795 printk(KERN_ERR "Could not register tmpfs\n");
2796 goto out2;
2797 }
2798
2799 shm_mnt = kern_mount(&shmem_fs_type);
2800 if (IS_ERR(shm_mnt)) {
2801 error = PTR_ERR(shm_mnt);
2802 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2803 goto out1;
2804 }
2805 return 0;
2806
2807 out1:
2808 unregister_filesystem(&shmem_fs_type);
2809 out2:
2810 shmem_destroy_inodecache();
2811 out3:
2812 bdi_destroy(&shmem_backing_dev_info);
2813 out4:
2814 shm_mnt = ERR_PTR(error);
2815 return error;
2816 }
2817
2818 #else /* !CONFIG_SHMEM */
2819
2820 /*
2821 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2822 *
2823 * This is intended for small system where the benefits of the full
2824 * shmem code (swap-backed and resource-limited) are outweighed by
2825 * their complexity. On systems without swap this code should be
2826 * effectively equivalent, but much lighter weight.
2827 */
2828
2829 static struct file_system_type shmem_fs_type = {
2830 .name = "tmpfs",
2831 .mount = ramfs_mount,
2832 .kill_sb = kill_litter_super,
2833 .fs_flags = FS_USERNS_MOUNT,
2834 };
2835
2836 int __init shmem_init(void)
2837 {
2838 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2839
2840 shm_mnt = kern_mount(&shmem_fs_type);
2841 BUG_ON(IS_ERR(shm_mnt));
2842
2843 return 0;
2844 }
2845
2846 int shmem_unuse(swp_entry_t swap, struct page *page)
2847 {
2848 return 0;
2849 }
2850
2851 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2852 {
2853 return 0;
2854 }
2855
2856 void shmem_unlock_mapping(struct address_space *mapping)
2857 {
2858 }
2859
2860 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2861 {
2862 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2863 }
2864 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2865
2866 #define shmem_vm_ops generic_file_vm_ops
2867 #define shmem_file_operations ramfs_file_operations
2868 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2869 #define shmem_acct_size(flags, size) 0
2870 #define shmem_unacct_size(flags, size) do {} while (0)
2871
2872 #endif /* CONFIG_SHMEM */
2873
2874 /* common code */
2875
2876 static struct dentry_operations anon_ops = {
2877 .d_dname = simple_dname
2878 };
2879
2880 static struct file *__shmem_file_setup(const char *name, loff_t size,
2881 unsigned long flags, unsigned int i_flags)
2882 {
2883 struct file *res;
2884 struct inode *inode;
2885 struct path path;
2886 struct super_block *sb;
2887 struct qstr this;
2888
2889 if (IS_ERR(shm_mnt))
2890 return ERR_CAST(shm_mnt);
2891
2892 if (size < 0 || size > MAX_LFS_FILESIZE)
2893 return ERR_PTR(-EINVAL);
2894
2895 if (shmem_acct_size(flags, size))
2896 return ERR_PTR(-ENOMEM);
2897
2898 res = ERR_PTR(-ENOMEM);
2899 this.name = name;
2900 this.len = strlen(name);
2901 this.hash = 0; /* will go */
2902 sb = shm_mnt->mnt_sb;
2903 path.dentry = d_alloc_pseudo(sb, &this);
2904 if (!path.dentry)
2905 goto put_memory;
2906 d_set_d_op(path.dentry, &anon_ops);
2907 path.mnt = mntget(shm_mnt);
2908
2909 res = ERR_PTR(-ENOSPC);
2910 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2911 if (!inode)
2912 goto put_dentry;
2913
2914 inode->i_flags |= i_flags;
2915 d_instantiate(path.dentry, inode);
2916 inode->i_size = size;
2917 clear_nlink(inode); /* It is unlinked */
2918 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2919 if (IS_ERR(res))
2920 goto put_dentry;
2921
2922 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2923 &shmem_file_operations);
2924 if (IS_ERR(res))
2925 goto put_dentry;
2926
2927 return res;
2928
2929 put_dentry:
2930 path_put(&path);
2931 put_memory:
2932 shmem_unacct_size(flags, size);
2933 return res;
2934 }
2935
2936 /**
2937 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2938 * kernel internal. There will be NO LSM permission checks against the
2939 * underlying inode. So users of this interface must do LSM checks at a
2940 * higher layer. The one user is the big_key implementation. LSM checks
2941 * are provided at the key level rather than the inode level.
2942 * @name: name for dentry (to be seen in /proc/<pid>/maps
2943 * @size: size to be set for the file
2944 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2945 */
2946 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2947 {
2948 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2949 }
2950
2951 /**
2952 * shmem_file_setup - get an unlinked file living in tmpfs
2953 * @name: name for dentry (to be seen in /proc/<pid>/maps
2954 * @size: size to be set for the file
2955 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2956 */
2957 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2958 {
2959 return __shmem_file_setup(name, size, flags, 0);
2960 }
2961 EXPORT_SYMBOL_GPL(shmem_file_setup);
2962
2963 /**
2964 * shmem_zero_setup - setup a shared anonymous mapping
2965 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2966 */
2967 int shmem_zero_setup(struct vm_area_struct *vma)
2968 {
2969 struct file *file;
2970 loff_t size = vma->vm_end - vma->vm_start;
2971
2972 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2973 if (IS_ERR(file))
2974 return PTR_ERR(file);
2975
2976 if (vma->vm_file)
2977 fput(vma->vm_file);
2978 vma->vm_file = file;
2979 vma->vm_ops = &shmem_vm_ops;
2980 return 0;
2981 }
2982
2983 /**
2984 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2985 * @mapping: the page's address_space
2986 * @index: the page index
2987 * @gfp: the page allocator flags to use if allocating
2988 *
2989 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2990 * with any new page allocations done using the specified allocation flags.
2991 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2992 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2993 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2994 *
2995 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2996 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2997 */
2998 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2999 pgoff_t index, gfp_t gfp)
3000 {
3001 #ifdef CONFIG_SHMEM
3002 struct inode *inode = mapping->host;
3003 struct page *page;
3004 int error;
3005
3006 BUG_ON(mapping->a_ops != &shmem_aops);
3007 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3008 if (error)
3009 page = ERR_PTR(error);
3010 else
3011 unlock_page(page);
3012 return page;
3013 #else
3014 /*
3015 * The tiny !SHMEM case uses ramfs without swap
3016 */
3017 return read_cache_page_gfp(mapping, index, gfp);
3018 #endif
3019 }
3020 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.096184 seconds and 6 git commands to generate.