Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
92 */
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
122 {
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 return sb->s_fs_info;
130 }
131
132 /*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152 {
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161 }
162
163 /*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209 }
210
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219 }
220
221 /**
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
246 }
247 }
248
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278 }
279
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
285
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 }
295
296 /*
297 * Replace item expected in radix tree by a new item, while holding tree lock.
298 */
299 static int shmem_radix_tree_replace(struct address_space *mapping,
300 pgoff_t index, void *expected, void *replacement)
301 {
302 void **pslot;
303 void *item;
304
305 VM_BUG_ON(!expected);
306 VM_BUG_ON(!replacement);
307 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
308 if (!pslot)
309 return -ENOENT;
310 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
311 if (item != expected)
312 return -ENOENT;
313 radix_tree_replace_slot(pslot, replacement);
314 return 0;
315 }
316
317 /*
318 * Sometimes, before we decide whether to proceed or to fail, we must check
319 * that an entry was not already brought back from swap by a racing thread.
320 *
321 * Checking page is not enough: by the time a SwapCache page is locked, it
322 * might be reused, and again be SwapCache, using the same swap as before.
323 */
324 static bool shmem_confirm_swap(struct address_space *mapping,
325 pgoff_t index, swp_entry_t swap)
326 {
327 void *item;
328
329 rcu_read_lock();
330 item = radix_tree_lookup(&mapping->page_tree, index);
331 rcu_read_unlock();
332 return item == swp_to_radix_entry(swap);
333 }
334
335 /*
336 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
337 *
338 * SHMEM_HUGE_NEVER:
339 * disables huge pages for the mount;
340 * SHMEM_HUGE_ALWAYS:
341 * enables huge pages for the mount;
342 * SHMEM_HUGE_WITHIN_SIZE:
343 * only allocate huge pages if the page will be fully within i_size,
344 * also respect fadvise()/madvise() hints;
345 * SHMEM_HUGE_ADVISE:
346 * only allocate huge pages if requested with fadvise()/madvise();
347 */
348
349 #define SHMEM_HUGE_NEVER 0
350 #define SHMEM_HUGE_ALWAYS 1
351 #define SHMEM_HUGE_WITHIN_SIZE 2
352 #define SHMEM_HUGE_ADVISE 3
353
354 /*
355 * Special values.
356 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
357 *
358 * SHMEM_HUGE_DENY:
359 * disables huge on shm_mnt and all mounts, for emergency use;
360 * SHMEM_HUGE_FORCE:
361 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
362 *
363 */
364 #define SHMEM_HUGE_DENY (-1)
365 #define SHMEM_HUGE_FORCE (-2)
366
367 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
368 /* ifdef here to avoid bloating shmem.o when not necessary */
369
370 int shmem_huge __read_mostly;
371
372 static int shmem_parse_huge(const char *str)
373 {
374 if (!strcmp(str, "never"))
375 return SHMEM_HUGE_NEVER;
376 if (!strcmp(str, "always"))
377 return SHMEM_HUGE_ALWAYS;
378 if (!strcmp(str, "within_size"))
379 return SHMEM_HUGE_WITHIN_SIZE;
380 if (!strcmp(str, "advise"))
381 return SHMEM_HUGE_ADVISE;
382 if (!strcmp(str, "deny"))
383 return SHMEM_HUGE_DENY;
384 if (!strcmp(str, "force"))
385 return SHMEM_HUGE_FORCE;
386 return -EINVAL;
387 }
388
389 static const char *shmem_format_huge(int huge)
390 {
391 switch (huge) {
392 case SHMEM_HUGE_NEVER:
393 return "never";
394 case SHMEM_HUGE_ALWAYS:
395 return "always";
396 case SHMEM_HUGE_WITHIN_SIZE:
397 return "within_size";
398 case SHMEM_HUGE_ADVISE:
399 return "advise";
400 case SHMEM_HUGE_DENY:
401 return "deny";
402 case SHMEM_HUGE_FORCE:
403 return "force";
404 default:
405 VM_BUG_ON(1);
406 return "bad_val";
407 }
408 }
409
410 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
411 struct shrink_control *sc, unsigned long nr_to_split)
412 {
413 LIST_HEAD(list), *pos, *next;
414 struct inode *inode;
415 struct shmem_inode_info *info;
416 struct page *page;
417 unsigned long batch = sc ? sc->nr_to_scan : 128;
418 int removed = 0, split = 0;
419
420 if (list_empty(&sbinfo->shrinklist))
421 return SHRINK_STOP;
422
423 spin_lock(&sbinfo->shrinklist_lock);
424 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
425 info = list_entry(pos, struct shmem_inode_info, shrinklist);
426
427 /* pin the inode */
428 inode = igrab(&info->vfs_inode);
429
430 /* inode is about to be evicted */
431 if (!inode) {
432 list_del_init(&info->shrinklist);
433 removed++;
434 goto next;
435 }
436
437 /* Check if there's anything to gain */
438 if (round_up(inode->i_size, PAGE_SIZE) ==
439 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
440 list_del_init(&info->shrinklist);
441 removed++;
442 iput(inode);
443 goto next;
444 }
445
446 list_move(&info->shrinklist, &list);
447 next:
448 if (!--batch)
449 break;
450 }
451 spin_unlock(&sbinfo->shrinklist_lock);
452
453 list_for_each_safe(pos, next, &list) {
454 int ret;
455
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 inode = &info->vfs_inode;
458
459 if (nr_to_split && split >= nr_to_split) {
460 iput(inode);
461 continue;
462 }
463
464 page = find_lock_page(inode->i_mapping,
465 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
466 if (!page)
467 goto drop;
468
469 if (!PageTransHuge(page)) {
470 unlock_page(page);
471 put_page(page);
472 goto drop;
473 }
474
475 ret = split_huge_page(page);
476 unlock_page(page);
477 put_page(page);
478
479 if (ret) {
480 /* split failed: leave it on the list */
481 iput(inode);
482 continue;
483 }
484
485 split++;
486 drop:
487 list_del_init(&info->shrinklist);
488 removed++;
489 iput(inode);
490 }
491
492 spin_lock(&sbinfo->shrinklist_lock);
493 list_splice_tail(&list, &sbinfo->shrinklist);
494 sbinfo->shrinklist_len -= removed;
495 spin_unlock(&sbinfo->shrinklist_lock);
496
497 return split;
498 }
499
500 static long shmem_unused_huge_scan(struct super_block *sb,
501 struct shrink_control *sc)
502 {
503 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
504
505 if (!READ_ONCE(sbinfo->shrinklist_len))
506 return SHRINK_STOP;
507
508 return shmem_unused_huge_shrink(sbinfo, sc, 0);
509 }
510
511 static long shmem_unused_huge_count(struct super_block *sb,
512 struct shrink_control *sc)
513 {
514 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515 return READ_ONCE(sbinfo->shrinklist_len);
516 }
517 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
518
519 #define shmem_huge SHMEM_HUGE_DENY
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 return 0;
525 }
526 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
527
528 /*
529 * Like add_to_page_cache_locked, but error if expected item has gone.
530 */
531 static int shmem_add_to_page_cache(struct page *page,
532 struct address_space *mapping,
533 pgoff_t index, void *expected)
534 {
535 int error, nr = hpage_nr_pages(page);
536
537 VM_BUG_ON_PAGE(PageTail(page), page);
538 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
539 VM_BUG_ON_PAGE(!PageLocked(page), page);
540 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
541 VM_BUG_ON(expected && PageTransHuge(page));
542
543 page_ref_add(page, nr);
544 page->mapping = mapping;
545 page->index = index;
546
547 spin_lock_irq(&mapping->tree_lock);
548 if (PageTransHuge(page)) {
549 void __rcu **results;
550 pgoff_t idx;
551 int i;
552
553 error = 0;
554 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
555 &results, &idx, index, 1) &&
556 idx < index + HPAGE_PMD_NR) {
557 error = -EEXIST;
558 }
559
560 if (!error) {
561 for (i = 0; i < HPAGE_PMD_NR; i++) {
562 error = radix_tree_insert(&mapping->page_tree,
563 index + i, page + i);
564 VM_BUG_ON(error);
565 }
566 count_vm_event(THP_FILE_ALLOC);
567 }
568 } else if (!expected) {
569 error = radix_tree_insert(&mapping->page_tree, index, page);
570 } else {
571 error = shmem_radix_tree_replace(mapping, index, expected,
572 page);
573 }
574
575 if (!error) {
576 mapping->nrpages += nr;
577 if (PageTransHuge(page))
578 __inc_zone_page_state(page, NR_SHMEM_THPS);
579 __mod_zone_page_state(page_zone(page), NR_FILE_PAGES, nr);
580 __mod_zone_page_state(page_zone(page), NR_SHMEM, nr);
581 spin_unlock_irq(&mapping->tree_lock);
582 } else {
583 page->mapping = NULL;
584 spin_unlock_irq(&mapping->tree_lock);
585 page_ref_sub(page, nr);
586 }
587 return error;
588 }
589
590 /*
591 * Like delete_from_page_cache, but substitutes swap for page.
592 */
593 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
594 {
595 struct address_space *mapping = page->mapping;
596 int error;
597
598 VM_BUG_ON_PAGE(PageCompound(page), page);
599
600 spin_lock_irq(&mapping->tree_lock);
601 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
602 page->mapping = NULL;
603 mapping->nrpages--;
604 __dec_zone_page_state(page, NR_FILE_PAGES);
605 __dec_zone_page_state(page, NR_SHMEM);
606 spin_unlock_irq(&mapping->tree_lock);
607 put_page(page);
608 BUG_ON(error);
609 }
610
611 /*
612 * Remove swap entry from radix tree, free the swap and its page cache.
613 */
614 static int shmem_free_swap(struct address_space *mapping,
615 pgoff_t index, void *radswap)
616 {
617 void *old;
618
619 spin_lock_irq(&mapping->tree_lock);
620 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
621 spin_unlock_irq(&mapping->tree_lock);
622 if (old != radswap)
623 return -ENOENT;
624 free_swap_and_cache(radix_to_swp_entry(radswap));
625 return 0;
626 }
627
628 /*
629 * Determine (in bytes) how many of the shmem object's pages mapped by the
630 * given offsets are swapped out.
631 *
632 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
633 * as long as the inode doesn't go away and racy results are not a problem.
634 */
635 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
636 pgoff_t start, pgoff_t end)
637 {
638 struct radix_tree_iter iter;
639 void **slot;
640 struct page *page;
641 unsigned long swapped = 0;
642
643 rcu_read_lock();
644
645 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
646 if (iter.index >= end)
647 break;
648
649 page = radix_tree_deref_slot(slot);
650
651 if (radix_tree_deref_retry(page)) {
652 slot = radix_tree_iter_retry(&iter);
653 continue;
654 }
655
656 if (radix_tree_exceptional_entry(page))
657 swapped++;
658
659 if (need_resched()) {
660 cond_resched_rcu();
661 slot = radix_tree_iter_next(&iter);
662 }
663 }
664
665 rcu_read_unlock();
666
667 return swapped << PAGE_SHIFT;
668 }
669
670 /*
671 * Determine (in bytes) how many of the shmem object's pages mapped by the
672 * given vma is swapped out.
673 *
674 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
675 * as long as the inode doesn't go away and racy results are not a problem.
676 */
677 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
678 {
679 struct inode *inode = file_inode(vma->vm_file);
680 struct shmem_inode_info *info = SHMEM_I(inode);
681 struct address_space *mapping = inode->i_mapping;
682 unsigned long swapped;
683
684 /* Be careful as we don't hold info->lock */
685 swapped = READ_ONCE(info->swapped);
686
687 /*
688 * The easier cases are when the shmem object has nothing in swap, or
689 * the vma maps it whole. Then we can simply use the stats that we
690 * already track.
691 */
692 if (!swapped)
693 return 0;
694
695 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
696 return swapped << PAGE_SHIFT;
697
698 /* Here comes the more involved part */
699 return shmem_partial_swap_usage(mapping,
700 linear_page_index(vma, vma->vm_start),
701 linear_page_index(vma, vma->vm_end));
702 }
703
704 /*
705 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
706 */
707 void shmem_unlock_mapping(struct address_space *mapping)
708 {
709 struct pagevec pvec;
710 pgoff_t indices[PAGEVEC_SIZE];
711 pgoff_t index = 0;
712
713 pagevec_init(&pvec, 0);
714 /*
715 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
716 */
717 while (!mapping_unevictable(mapping)) {
718 /*
719 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
720 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
721 */
722 pvec.nr = find_get_entries(mapping, index,
723 PAGEVEC_SIZE, pvec.pages, indices);
724 if (!pvec.nr)
725 break;
726 index = indices[pvec.nr - 1] + 1;
727 pagevec_remove_exceptionals(&pvec);
728 check_move_unevictable_pages(pvec.pages, pvec.nr);
729 pagevec_release(&pvec);
730 cond_resched();
731 }
732 }
733
734 /*
735 * Remove range of pages and swap entries from radix tree, and free them.
736 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
737 */
738 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
739 bool unfalloc)
740 {
741 struct address_space *mapping = inode->i_mapping;
742 struct shmem_inode_info *info = SHMEM_I(inode);
743 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
744 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
745 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
746 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
747 struct pagevec pvec;
748 pgoff_t indices[PAGEVEC_SIZE];
749 long nr_swaps_freed = 0;
750 pgoff_t index;
751 int i;
752
753 if (lend == -1)
754 end = -1; /* unsigned, so actually very big */
755
756 pagevec_init(&pvec, 0);
757 index = start;
758 while (index < end) {
759 pvec.nr = find_get_entries(mapping, index,
760 min(end - index, (pgoff_t)PAGEVEC_SIZE),
761 pvec.pages, indices);
762 if (!pvec.nr)
763 break;
764 for (i = 0; i < pagevec_count(&pvec); i++) {
765 struct page *page = pvec.pages[i];
766
767 index = indices[i];
768 if (index >= end)
769 break;
770
771 if (radix_tree_exceptional_entry(page)) {
772 if (unfalloc)
773 continue;
774 nr_swaps_freed += !shmem_free_swap(mapping,
775 index, page);
776 continue;
777 }
778
779 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
780
781 if (!trylock_page(page))
782 continue;
783
784 if (PageTransTail(page)) {
785 /* Middle of THP: zero out the page */
786 clear_highpage(page);
787 unlock_page(page);
788 continue;
789 } else if (PageTransHuge(page)) {
790 if (index == round_down(end, HPAGE_PMD_NR)) {
791 /*
792 * Range ends in the middle of THP:
793 * zero out the page
794 */
795 clear_highpage(page);
796 unlock_page(page);
797 continue;
798 }
799 index += HPAGE_PMD_NR - 1;
800 i += HPAGE_PMD_NR - 1;
801 }
802
803 if (!unfalloc || !PageUptodate(page)) {
804 VM_BUG_ON_PAGE(PageTail(page), page);
805 if (page_mapping(page) == mapping) {
806 VM_BUG_ON_PAGE(PageWriteback(page), page);
807 truncate_inode_page(mapping, page);
808 }
809 }
810 unlock_page(page);
811 }
812 pagevec_remove_exceptionals(&pvec);
813 pagevec_release(&pvec);
814 cond_resched();
815 index++;
816 }
817
818 if (partial_start) {
819 struct page *page = NULL;
820 shmem_getpage(inode, start - 1, &page, SGP_READ);
821 if (page) {
822 unsigned int top = PAGE_SIZE;
823 if (start > end) {
824 top = partial_end;
825 partial_end = 0;
826 }
827 zero_user_segment(page, partial_start, top);
828 set_page_dirty(page);
829 unlock_page(page);
830 put_page(page);
831 }
832 }
833 if (partial_end) {
834 struct page *page = NULL;
835 shmem_getpage(inode, end, &page, SGP_READ);
836 if (page) {
837 zero_user_segment(page, 0, partial_end);
838 set_page_dirty(page);
839 unlock_page(page);
840 put_page(page);
841 }
842 }
843 if (start >= end)
844 return;
845
846 index = start;
847 while (index < end) {
848 cond_resched();
849
850 pvec.nr = find_get_entries(mapping, index,
851 min(end - index, (pgoff_t)PAGEVEC_SIZE),
852 pvec.pages, indices);
853 if (!pvec.nr) {
854 /* If all gone or hole-punch or unfalloc, we're done */
855 if (index == start || end != -1)
856 break;
857 /* But if truncating, restart to make sure all gone */
858 index = start;
859 continue;
860 }
861 for (i = 0; i < pagevec_count(&pvec); i++) {
862 struct page *page = pvec.pages[i];
863
864 index = indices[i];
865 if (index >= end)
866 break;
867
868 if (radix_tree_exceptional_entry(page)) {
869 if (unfalloc)
870 continue;
871 if (shmem_free_swap(mapping, index, page)) {
872 /* Swap was replaced by page: retry */
873 index--;
874 break;
875 }
876 nr_swaps_freed++;
877 continue;
878 }
879
880 lock_page(page);
881
882 if (PageTransTail(page)) {
883 /* Middle of THP: zero out the page */
884 clear_highpage(page);
885 unlock_page(page);
886 /*
887 * Partial thp truncate due 'start' in middle
888 * of THP: don't need to look on these pages
889 * again on !pvec.nr restart.
890 */
891 if (index != round_down(end, HPAGE_PMD_NR))
892 start++;
893 continue;
894 } else if (PageTransHuge(page)) {
895 if (index == round_down(end, HPAGE_PMD_NR)) {
896 /*
897 * Range ends in the middle of THP:
898 * zero out the page
899 */
900 clear_highpage(page);
901 unlock_page(page);
902 continue;
903 }
904 index += HPAGE_PMD_NR - 1;
905 i += HPAGE_PMD_NR - 1;
906 }
907
908 if (!unfalloc || !PageUptodate(page)) {
909 VM_BUG_ON_PAGE(PageTail(page), page);
910 if (page_mapping(page) == mapping) {
911 VM_BUG_ON_PAGE(PageWriteback(page), page);
912 truncate_inode_page(mapping, page);
913 } else {
914 /* Page was replaced by swap: retry */
915 unlock_page(page);
916 index--;
917 break;
918 }
919 }
920 unlock_page(page);
921 }
922 pagevec_remove_exceptionals(&pvec);
923 pagevec_release(&pvec);
924 index++;
925 }
926
927 spin_lock_irq(&info->lock);
928 info->swapped -= nr_swaps_freed;
929 shmem_recalc_inode(inode);
930 spin_unlock_irq(&info->lock);
931 }
932
933 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
934 {
935 shmem_undo_range(inode, lstart, lend, false);
936 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
937 }
938 EXPORT_SYMBOL_GPL(shmem_truncate_range);
939
940 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
941 struct kstat *stat)
942 {
943 struct inode *inode = dentry->d_inode;
944 struct shmem_inode_info *info = SHMEM_I(inode);
945
946 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
947 spin_lock_irq(&info->lock);
948 shmem_recalc_inode(inode);
949 spin_unlock_irq(&info->lock);
950 }
951 generic_fillattr(inode, stat);
952 return 0;
953 }
954
955 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
956 {
957 struct inode *inode = d_inode(dentry);
958 struct shmem_inode_info *info = SHMEM_I(inode);
959 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
960 int error;
961
962 error = inode_change_ok(inode, attr);
963 if (error)
964 return error;
965
966 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
967 loff_t oldsize = inode->i_size;
968 loff_t newsize = attr->ia_size;
969
970 /* protected by i_mutex */
971 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
972 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
973 return -EPERM;
974
975 if (newsize != oldsize) {
976 error = shmem_reacct_size(SHMEM_I(inode)->flags,
977 oldsize, newsize);
978 if (error)
979 return error;
980 i_size_write(inode, newsize);
981 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
982 }
983 if (newsize <= oldsize) {
984 loff_t holebegin = round_up(newsize, PAGE_SIZE);
985 if (oldsize > holebegin)
986 unmap_mapping_range(inode->i_mapping,
987 holebegin, 0, 1);
988 if (info->alloced)
989 shmem_truncate_range(inode,
990 newsize, (loff_t)-1);
991 /* unmap again to remove racily COWed private pages */
992 if (oldsize > holebegin)
993 unmap_mapping_range(inode->i_mapping,
994 holebegin, 0, 1);
995
996 /*
997 * Part of the huge page can be beyond i_size: subject
998 * to shrink under memory pressure.
999 */
1000 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1001 spin_lock(&sbinfo->shrinklist_lock);
1002 if (list_empty(&info->shrinklist)) {
1003 list_add_tail(&info->shrinklist,
1004 &sbinfo->shrinklist);
1005 sbinfo->shrinklist_len++;
1006 }
1007 spin_unlock(&sbinfo->shrinklist_lock);
1008 }
1009 }
1010 }
1011
1012 setattr_copy(inode, attr);
1013 if (attr->ia_valid & ATTR_MODE)
1014 error = posix_acl_chmod(inode, inode->i_mode);
1015 return error;
1016 }
1017
1018 static void shmem_evict_inode(struct inode *inode)
1019 {
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022
1023 if (inode->i_mapping->a_ops == &shmem_aops) {
1024 shmem_unacct_size(info->flags, inode->i_size);
1025 inode->i_size = 0;
1026 shmem_truncate_range(inode, 0, (loff_t)-1);
1027 if (!list_empty(&info->shrinklist)) {
1028 spin_lock(&sbinfo->shrinklist_lock);
1029 if (!list_empty(&info->shrinklist)) {
1030 list_del_init(&info->shrinklist);
1031 sbinfo->shrinklist_len--;
1032 }
1033 spin_unlock(&sbinfo->shrinklist_lock);
1034 }
1035 if (!list_empty(&info->swaplist)) {
1036 mutex_lock(&shmem_swaplist_mutex);
1037 list_del_init(&info->swaplist);
1038 mutex_unlock(&shmem_swaplist_mutex);
1039 }
1040 }
1041
1042 simple_xattrs_free(&info->xattrs);
1043 WARN_ON(inode->i_blocks);
1044 shmem_free_inode(inode->i_sb);
1045 clear_inode(inode);
1046 }
1047
1048 /*
1049 * If swap found in inode, free it and move page from swapcache to filecache.
1050 */
1051 static int shmem_unuse_inode(struct shmem_inode_info *info,
1052 swp_entry_t swap, struct page **pagep)
1053 {
1054 struct address_space *mapping = info->vfs_inode.i_mapping;
1055 void *radswap;
1056 pgoff_t index;
1057 gfp_t gfp;
1058 int error = 0;
1059
1060 radswap = swp_to_radix_entry(swap);
1061 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1062 if (index == -1)
1063 return -EAGAIN; /* tell shmem_unuse we found nothing */
1064
1065 /*
1066 * Move _head_ to start search for next from here.
1067 * But be careful: shmem_evict_inode checks list_empty without taking
1068 * mutex, and there's an instant in list_move_tail when info->swaplist
1069 * would appear empty, if it were the only one on shmem_swaplist.
1070 */
1071 if (shmem_swaplist.next != &info->swaplist)
1072 list_move_tail(&shmem_swaplist, &info->swaplist);
1073
1074 gfp = mapping_gfp_mask(mapping);
1075 if (shmem_should_replace_page(*pagep, gfp)) {
1076 mutex_unlock(&shmem_swaplist_mutex);
1077 error = shmem_replace_page(pagep, gfp, info, index);
1078 mutex_lock(&shmem_swaplist_mutex);
1079 /*
1080 * We needed to drop mutex to make that restrictive page
1081 * allocation, but the inode might have been freed while we
1082 * dropped it: although a racing shmem_evict_inode() cannot
1083 * complete without emptying the radix_tree, our page lock
1084 * on this swapcache page is not enough to prevent that -
1085 * free_swap_and_cache() of our swap entry will only
1086 * trylock_page(), removing swap from radix_tree whatever.
1087 *
1088 * We must not proceed to shmem_add_to_page_cache() if the
1089 * inode has been freed, but of course we cannot rely on
1090 * inode or mapping or info to check that. However, we can
1091 * safely check if our swap entry is still in use (and here
1092 * it can't have got reused for another page): if it's still
1093 * in use, then the inode cannot have been freed yet, and we
1094 * can safely proceed (if it's no longer in use, that tells
1095 * nothing about the inode, but we don't need to unuse swap).
1096 */
1097 if (!page_swapcount(*pagep))
1098 error = -ENOENT;
1099 }
1100
1101 /*
1102 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1103 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1104 * beneath us (pagelock doesn't help until the page is in pagecache).
1105 */
1106 if (!error)
1107 error = shmem_add_to_page_cache(*pagep, mapping, index,
1108 radswap);
1109 if (error != -ENOMEM) {
1110 /*
1111 * Truncation and eviction use free_swap_and_cache(), which
1112 * only does trylock page: if we raced, best clean up here.
1113 */
1114 delete_from_swap_cache(*pagep);
1115 set_page_dirty(*pagep);
1116 if (!error) {
1117 spin_lock_irq(&info->lock);
1118 info->swapped--;
1119 spin_unlock_irq(&info->lock);
1120 swap_free(swap);
1121 }
1122 }
1123 return error;
1124 }
1125
1126 /*
1127 * Search through swapped inodes to find and replace swap by page.
1128 */
1129 int shmem_unuse(swp_entry_t swap, struct page *page)
1130 {
1131 struct list_head *this, *next;
1132 struct shmem_inode_info *info;
1133 struct mem_cgroup *memcg;
1134 int error = 0;
1135
1136 /*
1137 * There's a faint possibility that swap page was replaced before
1138 * caller locked it: caller will come back later with the right page.
1139 */
1140 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1141 goto out;
1142
1143 /*
1144 * Charge page using GFP_KERNEL while we can wait, before taking
1145 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1146 * Charged back to the user (not to caller) when swap account is used.
1147 */
1148 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1149 false);
1150 if (error)
1151 goto out;
1152 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1153 error = -EAGAIN;
1154
1155 mutex_lock(&shmem_swaplist_mutex);
1156 list_for_each_safe(this, next, &shmem_swaplist) {
1157 info = list_entry(this, struct shmem_inode_info, swaplist);
1158 if (info->swapped)
1159 error = shmem_unuse_inode(info, swap, &page);
1160 else
1161 list_del_init(&info->swaplist);
1162 cond_resched();
1163 if (error != -EAGAIN)
1164 break;
1165 /* found nothing in this: move on to search the next */
1166 }
1167 mutex_unlock(&shmem_swaplist_mutex);
1168
1169 if (error) {
1170 if (error != -ENOMEM)
1171 error = 0;
1172 mem_cgroup_cancel_charge(page, memcg, false);
1173 } else
1174 mem_cgroup_commit_charge(page, memcg, true, false);
1175 out:
1176 unlock_page(page);
1177 put_page(page);
1178 return error;
1179 }
1180
1181 /*
1182 * Move the page from the page cache to the swap cache.
1183 */
1184 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1185 {
1186 struct shmem_inode_info *info;
1187 struct address_space *mapping;
1188 struct inode *inode;
1189 swp_entry_t swap;
1190 pgoff_t index;
1191
1192 VM_BUG_ON_PAGE(PageCompound(page), page);
1193 BUG_ON(!PageLocked(page));
1194 mapping = page->mapping;
1195 index = page->index;
1196 inode = mapping->host;
1197 info = SHMEM_I(inode);
1198 if (info->flags & VM_LOCKED)
1199 goto redirty;
1200 if (!total_swap_pages)
1201 goto redirty;
1202
1203 /*
1204 * Our capabilities prevent regular writeback or sync from ever calling
1205 * shmem_writepage; but a stacking filesystem might use ->writepage of
1206 * its underlying filesystem, in which case tmpfs should write out to
1207 * swap only in response to memory pressure, and not for the writeback
1208 * threads or sync.
1209 */
1210 if (!wbc->for_reclaim) {
1211 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1212 goto redirty;
1213 }
1214
1215 /*
1216 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1217 * value into swapfile.c, the only way we can correctly account for a
1218 * fallocated page arriving here is now to initialize it and write it.
1219 *
1220 * That's okay for a page already fallocated earlier, but if we have
1221 * not yet completed the fallocation, then (a) we want to keep track
1222 * of this page in case we have to undo it, and (b) it may not be a
1223 * good idea to continue anyway, once we're pushing into swap. So
1224 * reactivate the page, and let shmem_fallocate() quit when too many.
1225 */
1226 if (!PageUptodate(page)) {
1227 if (inode->i_private) {
1228 struct shmem_falloc *shmem_falloc;
1229 spin_lock(&inode->i_lock);
1230 shmem_falloc = inode->i_private;
1231 if (shmem_falloc &&
1232 !shmem_falloc->waitq &&
1233 index >= shmem_falloc->start &&
1234 index < shmem_falloc->next)
1235 shmem_falloc->nr_unswapped++;
1236 else
1237 shmem_falloc = NULL;
1238 spin_unlock(&inode->i_lock);
1239 if (shmem_falloc)
1240 goto redirty;
1241 }
1242 clear_highpage(page);
1243 flush_dcache_page(page);
1244 SetPageUptodate(page);
1245 }
1246
1247 swap = get_swap_page();
1248 if (!swap.val)
1249 goto redirty;
1250
1251 if (mem_cgroup_try_charge_swap(page, swap))
1252 goto free_swap;
1253
1254 /*
1255 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1256 * if it's not already there. Do it now before the page is
1257 * moved to swap cache, when its pagelock no longer protects
1258 * the inode from eviction. But don't unlock the mutex until
1259 * we've incremented swapped, because shmem_unuse_inode() will
1260 * prune a !swapped inode from the swaplist under this mutex.
1261 */
1262 mutex_lock(&shmem_swaplist_mutex);
1263 if (list_empty(&info->swaplist))
1264 list_add_tail(&info->swaplist, &shmem_swaplist);
1265
1266 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1267 spin_lock_irq(&info->lock);
1268 shmem_recalc_inode(inode);
1269 info->swapped++;
1270 spin_unlock_irq(&info->lock);
1271
1272 swap_shmem_alloc(swap);
1273 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1274
1275 mutex_unlock(&shmem_swaplist_mutex);
1276 BUG_ON(page_mapped(page));
1277 swap_writepage(page, wbc);
1278 return 0;
1279 }
1280
1281 mutex_unlock(&shmem_swaplist_mutex);
1282 free_swap:
1283 swapcache_free(swap);
1284 redirty:
1285 set_page_dirty(page);
1286 if (wbc->for_reclaim)
1287 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1288 unlock_page(page);
1289 return 0;
1290 }
1291
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1293 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1294 {
1295 char buffer[64];
1296
1297 if (!mpol || mpol->mode == MPOL_DEFAULT)
1298 return; /* show nothing */
1299
1300 mpol_to_str(buffer, sizeof(buffer), mpol);
1301
1302 seq_printf(seq, ",mpol=%s", buffer);
1303 }
1304
1305 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1306 {
1307 struct mempolicy *mpol = NULL;
1308 if (sbinfo->mpol) {
1309 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1310 mpol = sbinfo->mpol;
1311 mpol_get(mpol);
1312 spin_unlock(&sbinfo->stat_lock);
1313 }
1314 return mpol;
1315 }
1316 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1317 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1318 {
1319 }
1320 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1321 {
1322 return NULL;
1323 }
1324 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1325 #ifndef CONFIG_NUMA
1326 #define vm_policy vm_private_data
1327 #endif
1328
1329 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1330 struct shmem_inode_info *info, pgoff_t index)
1331 {
1332 /* Create a pseudo vma that just contains the policy */
1333 vma->vm_start = 0;
1334 /* Bias interleave by inode number to distribute better across nodes */
1335 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1336 vma->vm_ops = NULL;
1337 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1338 }
1339
1340 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1341 {
1342 /* Drop reference taken by mpol_shared_policy_lookup() */
1343 mpol_cond_put(vma->vm_policy);
1344 }
1345
1346 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1347 struct shmem_inode_info *info, pgoff_t index)
1348 {
1349 struct vm_area_struct pvma;
1350 struct page *page;
1351
1352 shmem_pseudo_vma_init(&pvma, info, index);
1353 page = swapin_readahead(swap, gfp, &pvma, 0);
1354 shmem_pseudo_vma_destroy(&pvma);
1355
1356 return page;
1357 }
1358
1359 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1360 struct shmem_inode_info *info, pgoff_t index)
1361 {
1362 struct vm_area_struct pvma;
1363 struct inode *inode = &info->vfs_inode;
1364 struct address_space *mapping = inode->i_mapping;
1365 pgoff_t idx, hindex = round_down(index, HPAGE_PMD_NR);
1366 void __rcu **results;
1367 struct page *page;
1368
1369 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1370 return NULL;
1371
1372 rcu_read_lock();
1373 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1374 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1375 rcu_read_unlock();
1376 return NULL;
1377 }
1378 rcu_read_unlock();
1379
1380 shmem_pseudo_vma_init(&pvma, info, hindex);
1381 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1382 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1383 shmem_pseudo_vma_destroy(&pvma);
1384 if (page)
1385 prep_transhuge_page(page);
1386 return page;
1387 }
1388
1389 static struct page *shmem_alloc_page(gfp_t gfp,
1390 struct shmem_inode_info *info, pgoff_t index)
1391 {
1392 struct vm_area_struct pvma;
1393 struct page *page;
1394
1395 shmem_pseudo_vma_init(&pvma, info, index);
1396 page = alloc_page_vma(gfp, &pvma, 0);
1397 shmem_pseudo_vma_destroy(&pvma);
1398
1399 return page;
1400 }
1401
1402 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1403 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1404 pgoff_t index, bool huge)
1405 {
1406 struct page *page;
1407 int nr;
1408 int err = -ENOSPC;
1409
1410 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1411 huge = false;
1412 nr = huge ? HPAGE_PMD_NR : 1;
1413
1414 if (shmem_acct_block(info->flags, nr))
1415 goto failed;
1416 if (sbinfo->max_blocks) {
1417 if (percpu_counter_compare(&sbinfo->used_blocks,
1418 sbinfo->max_blocks - nr) > 0)
1419 goto unacct;
1420 percpu_counter_add(&sbinfo->used_blocks, nr);
1421 }
1422
1423 if (huge)
1424 page = shmem_alloc_hugepage(gfp, info, index);
1425 else
1426 page = shmem_alloc_page(gfp, info, index);
1427 if (page) {
1428 __SetPageLocked(page);
1429 __SetPageSwapBacked(page);
1430 return page;
1431 }
1432
1433 err = -ENOMEM;
1434 if (sbinfo->max_blocks)
1435 percpu_counter_add(&sbinfo->used_blocks, -nr);
1436 unacct:
1437 shmem_unacct_blocks(info->flags, nr);
1438 failed:
1439 return ERR_PTR(err);
1440 }
1441
1442 /*
1443 * When a page is moved from swapcache to shmem filecache (either by the
1444 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1445 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1446 * ignorance of the mapping it belongs to. If that mapping has special
1447 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1448 * we may need to copy to a suitable page before moving to filecache.
1449 *
1450 * In a future release, this may well be extended to respect cpuset and
1451 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1452 * but for now it is a simple matter of zone.
1453 */
1454 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1455 {
1456 return page_zonenum(page) > gfp_zone(gfp);
1457 }
1458
1459 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1460 struct shmem_inode_info *info, pgoff_t index)
1461 {
1462 struct page *oldpage, *newpage;
1463 struct address_space *swap_mapping;
1464 pgoff_t swap_index;
1465 int error;
1466
1467 oldpage = *pagep;
1468 swap_index = page_private(oldpage);
1469 swap_mapping = page_mapping(oldpage);
1470
1471 /*
1472 * We have arrived here because our zones are constrained, so don't
1473 * limit chance of success by further cpuset and node constraints.
1474 */
1475 gfp &= ~GFP_CONSTRAINT_MASK;
1476 newpage = shmem_alloc_page(gfp, info, index);
1477 if (!newpage)
1478 return -ENOMEM;
1479
1480 get_page(newpage);
1481 copy_highpage(newpage, oldpage);
1482 flush_dcache_page(newpage);
1483
1484 SetPageUptodate(newpage);
1485 set_page_private(newpage, swap_index);
1486 SetPageSwapCache(newpage);
1487
1488 /*
1489 * Our caller will very soon move newpage out of swapcache, but it's
1490 * a nice clean interface for us to replace oldpage by newpage there.
1491 */
1492 spin_lock_irq(&swap_mapping->tree_lock);
1493 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1494 newpage);
1495 if (!error) {
1496 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1497 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1498 }
1499 spin_unlock_irq(&swap_mapping->tree_lock);
1500
1501 if (unlikely(error)) {
1502 /*
1503 * Is this possible? I think not, now that our callers check
1504 * both PageSwapCache and page_private after getting page lock;
1505 * but be defensive. Reverse old to newpage for clear and free.
1506 */
1507 oldpage = newpage;
1508 } else {
1509 mem_cgroup_migrate(oldpage, newpage);
1510 lru_cache_add_anon(newpage);
1511 *pagep = newpage;
1512 }
1513
1514 ClearPageSwapCache(oldpage);
1515 set_page_private(oldpage, 0);
1516
1517 unlock_page(oldpage);
1518 put_page(oldpage);
1519 put_page(oldpage);
1520 return error;
1521 }
1522
1523 /*
1524 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1525 *
1526 * If we allocate a new one we do not mark it dirty. That's up to the
1527 * vm. If we swap it in we mark it dirty since we also free the swap
1528 * entry since a page cannot live in both the swap and page cache.
1529 *
1530 * fault_mm and fault_type are only supplied by shmem_fault:
1531 * otherwise they are NULL.
1532 */
1533 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1534 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1535 struct mm_struct *fault_mm, int *fault_type)
1536 {
1537 struct address_space *mapping = inode->i_mapping;
1538 struct shmem_inode_info *info;
1539 struct shmem_sb_info *sbinfo;
1540 struct mm_struct *charge_mm;
1541 struct mem_cgroup *memcg;
1542 struct page *page;
1543 swp_entry_t swap;
1544 enum sgp_type sgp_huge = sgp;
1545 pgoff_t hindex = index;
1546 int error;
1547 int once = 0;
1548 int alloced = 0;
1549
1550 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1551 return -EFBIG;
1552 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1553 sgp = SGP_CACHE;
1554 repeat:
1555 swap.val = 0;
1556 page = find_lock_entry(mapping, index);
1557 if (radix_tree_exceptional_entry(page)) {
1558 swap = radix_to_swp_entry(page);
1559 page = NULL;
1560 }
1561
1562 if (sgp <= SGP_CACHE &&
1563 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1564 error = -EINVAL;
1565 goto unlock;
1566 }
1567
1568 if (page && sgp == SGP_WRITE)
1569 mark_page_accessed(page);
1570
1571 /* fallocated page? */
1572 if (page && !PageUptodate(page)) {
1573 if (sgp != SGP_READ)
1574 goto clear;
1575 unlock_page(page);
1576 put_page(page);
1577 page = NULL;
1578 }
1579 if (page || (sgp == SGP_READ && !swap.val)) {
1580 *pagep = page;
1581 return 0;
1582 }
1583
1584 /*
1585 * Fast cache lookup did not find it:
1586 * bring it back from swap or allocate.
1587 */
1588 info = SHMEM_I(inode);
1589 sbinfo = SHMEM_SB(inode->i_sb);
1590 charge_mm = fault_mm ? : current->mm;
1591
1592 if (swap.val) {
1593 /* Look it up and read it in.. */
1594 page = lookup_swap_cache(swap);
1595 if (!page) {
1596 /* Or update major stats only when swapin succeeds?? */
1597 if (fault_type) {
1598 *fault_type |= VM_FAULT_MAJOR;
1599 count_vm_event(PGMAJFAULT);
1600 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1601 }
1602 /* Here we actually start the io */
1603 page = shmem_swapin(swap, gfp, info, index);
1604 if (!page) {
1605 error = -ENOMEM;
1606 goto failed;
1607 }
1608 }
1609
1610 /* We have to do this with page locked to prevent races */
1611 lock_page(page);
1612 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1613 !shmem_confirm_swap(mapping, index, swap)) {
1614 error = -EEXIST; /* try again */
1615 goto unlock;
1616 }
1617 if (!PageUptodate(page)) {
1618 error = -EIO;
1619 goto failed;
1620 }
1621 wait_on_page_writeback(page);
1622
1623 if (shmem_should_replace_page(page, gfp)) {
1624 error = shmem_replace_page(&page, gfp, info, index);
1625 if (error)
1626 goto failed;
1627 }
1628
1629 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1630 false);
1631 if (!error) {
1632 error = shmem_add_to_page_cache(page, mapping, index,
1633 swp_to_radix_entry(swap));
1634 /*
1635 * We already confirmed swap under page lock, and make
1636 * no memory allocation here, so usually no possibility
1637 * of error; but free_swap_and_cache() only trylocks a
1638 * page, so it is just possible that the entry has been
1639 * truncated or holepunched since swap was confirmed.
1640 * shmem_undo_range() will have done some of the
1641 * unaccounting, now delete_from_swap_cache() will do
1642 * the rest.
1643 * Reset swap.val? No, leave it so "failed" goes back to
1644 * "repeat": reading a hole and writing should succeed.
1645 */
1646 if (error) {
1647 mem_cgroup_cancel_charge(page, memcg, false);
1648 delete_from_swap_cache(page);
1649 }
1650 }
1651 if (error)
1652 goto failed;
1653
1654 mem_cgroup_commit_charge(page, memcg, true, false);
1655
1656 spin_lock_irq(&info->lock);
1657 info->swapped--;
1658 shmem_recalc_inode(inode);
1659 spin_unlock_irq(&info->lock);
1660
1661 if (sgp == SGP_WRITE)
1662 mark_page_accessed(page);
1663
1664 delete_from_swap_cache(page);
1665 set_page_dirty(page);
1666 swap_free(swap);
1667
1668 } else {
1669 /* shmem_symlink() */
1670 if (mapping->a_ops != &shmem_aops)
1671 goto alloc_nohuge;
1672 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1673 goto alloc_nohuge;
1674 if (shmem_huge == SHMEM_HUGE_FORCE)
1675 goto alloc_huge;
1676 switch (sbinfo->huge) {
1677 loff_t i_size;
1678 pgoff_t off;
1679 case SHMEM_HUGE_NEVER:
1680 goto alloc_nohuge;
1681 case SHMEM_HUGE_WITHIN_SIZE:
1682 off = round_up(index, HPAGE_PMD_NR);
1683 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1684 if (i_size >= HPAGE_PMD_SIZE &&
1685 i_size >> PAGE_SHIFT >= off)
1686 goto alloc_huge;
1687 /* fallthrough */
1688 case SHMEM_HUGE_ADVISE:
1689 if (sgp_huge == SGP_HUGE)
1690 goto alloc_huge;
1691 /* TODO: implement fadvise() hints */
1692 goto alloc_nohuge;
1693 }
1694
1695 alloc_huge:
1696 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1697 index, true);
1698 if (IS_ERR(page)) {
1699 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1700 index, false);
1701 }
1702 if (IS_ERR(page)) {
1703 int retry = 5;
1704 error = PTR_ERR(page);
1705 page = NULL;
1706 if (error != -ENOSPC)
1707 goto failed;
1708 /*
1709 * Try to reclaim some spece by splitting a huge page
1710 * beyond i_size on the filesystem.
1711 */
1712 while (retry--) {
1713 int ret;
1714 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1715 if (ret == SHRINK_STOP)
1716 break;
1717 if (ret)
1718 goto alloc_nohuge;
1719 }
1720 goto failed;
1721 }
1722
1723 if (PageTransHuge(page))
1724 hindex = round_down(index, HPAGE_PMD_NR);
1725 else
1726 hindex = index;
1727
1728 if (sgp == SGP_WRITE)
1729 __SetPageReferenced(page);
1730
1731 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1732 PageTransHuge(page));
1733 if (error)
1734 goto unacct;
1735 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1736 compound_order(page));
1737 if (!error) {
1738 error = shmem_add_to_page_cache(page, mapping, hindex,
1739 NULL);
1740 radix_tree_preload_end();
1741 }
1742 if (error) {
1743 mem_cgroup_cancel_charge(page, memcg,
1744 PageTransHuge(page));
1745 goto unacct;
1746 }
1747 mem_cgroup_commit_charge(page, memcg, false,
1748 PageTransHuge(page));
1749 lru_cache_add_anon(page);
1750
1751 spin_lock_irq(&info->lock);
1752 info->alloced += 1 << compound_order(page);
1753 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1754 shmem_recalc_inode(inode);
1755 spin_unlock_irq(&info->lock);
1756 alloced = true;
1757
1758 if (PageTransHuge(page) &&
1759 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1760 hindex + HPAGE_PMD_NR - 1) {
1761 /*
1762 * Part of the huge page is beyond i_size: subject
1763 * to shrink under memory pressure.
1764 */
1765 spin_lock(&sbinfo->shrinklist_lock);
1766 if (list_empty(&info->shrinklist)) {
1767 list_add_tail(&info->shrinklist,
1768 &sbinfo->shrinklist);
1769 sbinfo->shrinklist_len++;
1770 }
1771 spin_unlock(&sbinfo->shrinklist_lock);
1772 }
1773
1774 /*
1775 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1776 */
1777 if (sgp == SGP_FALLOC)
1778 sgp = SGP_WRITE;
1779 clear:
1780 /*
1781 * Let SGP_WRITE caller clear ends if write does not fill page;
1782 * but SGP_FALLOC on a page fallocated earlier must initialize
1783 * it now, lest undo on failure cancel our earlier guarantee.
1784 */
1785 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1786 struct page *head = compound_head(page);
1787 int i;
1788
1789 for (i = 0; i < (1 << compound_order(head)); i++) {
1790 clear_highpage(head + i);
1791 flush_dcache_page(head + i);
1792 }
1793 SetPageUptodate(head);
1794 }
1795 }
1796
1797 /* Perhaps the file has been truncated since we checked */
1798 if (sgp <= SGP_CACHE &&
1799 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1800 if (alloced) {
1801 ClearPageDirty(page);
1802 delete_from_page_cache(page);
1803 spin_lock_irq(&info->lock);
1804 shmem_recalc_inode(inode);
1805 spin_unlock_irq(&info->lock);
1806 }
1807 error = -EINVAL;
1808 goto unlock;
1809 }
1810 *pagep = page + index - hindex;
1811 return 0;
1812
1813 /*
1814 * Error recovery.
1815 */
1816 unacct:
1817 if (sbinfo->max_blocks)
1818 percpu_counter_sub(&sbinfo->used_blocks,
1819 1 << compound_order(page));
1820 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1821
1822 if (PageTransHuge(page)) {
1823 unlock_page(page);
1824 put_page(page);
1825 goto alloc_nohuge;
1826 }
1827 failed:
1828 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1829 error = -EEXIST;
1830 unlock:
1831 if (page) {
1832 unlock_page(page);
1833 put_page(page);
1834 }
1835 if (error == -ENOSPC && !once++) {
1836 info = SHMEM_I(inode);
1837 spin_lock_irq(&info->lock);
1838 shmem_recalc_inode(inode);
1839 spin_unlock_irq(&info->lock);
1840 goto repeat;
1841 }
1842 if (error == -EEXIST) /* from above or from radix_tree_insert */
1843 goto repeat;
1844 return error;
1845 }
1846
1847 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1848 {
1849 struct inode *inode = file_inode(vma->vm_file);
1850 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1851 enum sgp_type sgp;
1852 int error;
1853 int ret = VM_FAULT_LOCKED;
1854
1855 /*
1856 * Trinity finds that probing a hole which tmpfs is punching can
1857 * prevent the hole-punch from ever completing: which in turn
1858 * locks writers out with its hold on i_mutex. So refrain from
1859 * faulting pages into the hole while it's being punched. Although
1860 * shmem_undo_range() does remove the additions, it may be unable to
1861 * keep up, as each new page needs its own unmap_mapping_range() call,
1862 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1863 *
1864 * It does not matter if we sometimes reach this check just before the
1865 * hole-punch begins, so that one fault then races with the punch:
1866 * we just need to make racing faults a rare case.
1867 *
1868 * The implementation below would be much simpler if we just used a
1869 * standard mutex or completion: but we cannot take i_mutex in fault,
1870 * and bloating every shmem inode for this unlikely case would be sad.
1871 */
1872 if (unlikely(inode->i_private)) {
1873 struct shmem_falloc *shmem_falloc;
1874
1875 spin_lock(&inode->i_lock);
1876 shmem_falloc = inode->i_private;
1877 if (shmem_falloc &&
1878 shmem_falloc->waitq &&
1879 vmf->pgoff >= shmem_falloc->start &&
1880 vmf->pgoff < shmem_falloc->next) {
1881 wait_queue_head_t *shmem_falloc_waitq;
1882 DEFINE_WAIT(shmem_fault_wait);
1883
1884 ret = VM_FAULT_NOPAGE;
1885 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1886 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1887 /* It's polite to up mmap_sem if we can */
1888 up_read(&vma->vm_mm->mmap_sem);
1889 ret = VM_FAULT_RETRY;
1890 }
1891
1892 shmem_falloc_waitq = shmem_falloc->waitq;
1893 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1894 TASK_UNINTERRUPTIBLE);
1895 spin_unlock(&inode->i_lock);
1896 schedule();
1897
1898 /*
1899 * shmem_falloc_waitq points into the shmem_fallocate()
1900 * stack of the hole-punching task: shmem_falloc_waitq
1901 * is usually invalid by the time we reach here, but
1902 * finish_wait() does not dereference it in that case;
1903 * though i_lock needed lest racing with wake_up_all().
1904 */
1905 spin_lock(&inode->i_lock);
1906 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1907 spin_unlock(&inode->i_lock);
1908 return ret;
1909 }
1910 spin_unlock(&inode->i_lock);
1911 }
1912
1913 sgp = SGP_CACHE;
1914 if (vma->vm_flags & VM_HUGEPAGE)
1915 sgp = SGP_HUGE;
1916 else if (vma->vm_flags & VM_NOHUGEPAGE)
1917 sgp = SGP_NOHUGE;
1918
1919 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1920 gfp, vma->vm_mm, &ret);
1921 if (error)
1922 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1923 return ret;
1924 }
1925
1926 unsigned long shmem_get_unmapped_area(struct file *file,
1927 unsigned long uaddr, unsigned long len,
1928 unsigned long pgoff, unsigned long flags)
1929 {
1930 unsigned long (*get_area)(struct file *,
1931 unsigned long, unsigned long, unsigned long, unsigned long);
1932 unsigned long addr;
1933 unsigned long offset;
1934 unsigned long inflated_len;
1935 unsigned long inflated_addr;
1936 unsigned long inflated_offset;
1937
1938 if (len > TASK_SIZE)
1939 return -ENOMEM;
1940
1941 get_area = current->mm->get_unmapped_area;
1942 addr = get_area(file, uaddr, len, pgoff, flags);
1943
1944 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1945 return addr;
1946 if (IS_ERR_VALUE(addr))
1947 return addr;
1948 if (addr & ~PAGE_MASK)
1949 return addr;
1950 if (addr > TASK_SIZE - len)
1951 return addr;
1952
1953 if (shmem_huge == SHMEM_HUGE_DENY)
1954 return addr;
1955 if (len < HPAGE_PMD_SIZE)
1956 return addr;
1957 if (flags & MAP_FIXED)
1958 return addr;
1959 /*
1960 * Our priority is to support MAP_SHARED mapped hugely;
1961 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1962 * But if caller specified an address hint, respect that as before.
1963 */
1964 if (uaddr)
1965 return addr;
1966
1967 if (shmem_huge != SHMEM_HUGE_FORCE) {
1968 struct super_block *sb;
1969
1970 if (file) {
1971 VM_BUG_ON(file->f_op != &shmem_file_operations);
1972 sb = file_inode(file)->i_sb;
1973 } else {
1974 /*
1975 * Called directly from mm/mmap.c, or drivers/char/mem.c
1976 * for "/dev/zero", to create a shared anonymous object.
1977 */
1978 if (IS_ERR(shm_mnt))
1979 return addr;
1980 sb = shm_mnt->mnt_sb;
1981 }
1982 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1983 return addr;
1984 }
1985
1986 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1987 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1988 return addr;
1989 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1990 return addr;
1991
1992 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1993 if (inflated_len > TASK_SIZE)
1994 return addr;
1995 if (inflated_len < len)
1996 return addr;
1997
1998 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1999 if (IS_ERR_VALUE(inflated_addr))
2000 return addr;
2001 if (inflated_addr & ~PAGE_MASK)
2002 return addr;
2003
2004 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2005 inflated_addr += offset - inflated_offset;
2006 if (inflated_offset > offset)
2007 inflated_addr += HPAGE_PMD_SIZE;
2008
2009 if (inflated_addr > TASK_SIZE - len)
2010 return addr;
2011 return inflated_addr;
2012 }
2013
2014 #ifdef CONFIG_NUMA
2015 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2016 {
2017 struct inode *inode = file_inode(vma->vm_file);
2018 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2019 }
2020
2021 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2022 unsigned long addr)
2023 {
2024 struct inode *inode = file_inode(vma->vm_file);
2025 pgoff_t index;
2026
2027 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2028 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2029 }
2030 #endif
2031
2032 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2033 {
2034 struct inode *inode = file_inode(file);
2035 struct shmem_inode_info *info = SHMEM_I(inode);
2036 int retval = -ENOMEM;
2037
2038 spin_lock_irq(&info->lock);
2039 if (lock && !(info->flags & VM_LOCKED)) {
2040 if (!user_shm_lock(inode->i_size, user))
2041 goto out_nomem;
2042 info->flags |= VM_LOCKED;
2043 mapping_set_unevictable(file->f_mapping);
2044 }
2045 if (!lock && (info->flags & VM_LOCKED) && user) {
2046 user_shm_unlock(inode->i_size, user);
2047 info->flags &= ~VM_LOCKED;
2048 mapping_clear_unevictable(file->f_mapping);
2049 }
2050 retval = 0;
2051
2052 out_nomem:
2053 spin_unlock_irq(&info->lock);
2054 return retval;
2055 }
2056
2057 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2058 {
2059 file_accessed(file);
2060 vma->vm_ops = &shmem_vm_ops;
2061 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2062 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2063 (vma->vm_end & HPAGE_PMD_MASK)) {
2064 khugepaged_enter(vma, vma->vm_flags);
2065 }
2066 return 0;
2067 }
2068
2069 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2070 umode_t mode, dev_t dev, unsigned long flags)
2071 {
2072 struct inode *inode;
2073 struct shmem_inode_info *info;
2074 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2075
2076 if (shmem_reserve_inode(sb))
2077 return NULL;
2078
2079 inode = new_inode(sb);
2080 if (inode) {
2081 inode->i_ino = get_next_ino();
2082 inode_init_owner(inode, dir, mode);
2083 inode->i_blocks = 0;
2084 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2085 inode->i_generation = get_seconds();
2086 info = SHMEM_I(inode);
2087 memset(info, 0, (char *)inode - (char *)info);
2088 spin_lock_init(&info->lock);
2089 info->seals = F_SEAL_SEAL;
2090 info->flags = flags & VM_NORESERVE;
2091 INIT_LIST_HEAD(&info->shrinklist);
2092 INIT_LIST_HEAD(&info->swaplist);
2093 simple_xattrs_init(&info->xattrs);
2094 cache_no_acl(inode);
2095
2096 switch (mode & S_IFMT) {
2097 default:
2098 inode->i_op = &shmem_special_inode_operations;
2099 init_special_inode(inode, mode, dev);
2100 break;
2101 case S_IFREG:
2102 inode->i_mapping->a_ops = &shmem_aops;
2103 inode->i_op = &shmem_inode_operations;
2104 inode->i_fop = &shmem_file_operations;
2105 mpol_shared_policy_init(&info->policy,
2106 shmem_get_sbmpol(sbinfo));
2107 break;
2108 case S_IFDIR:
2109 inc_nlink(inode);
2110 /* Some things misbehave if size == 0 on a directory */
2111 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2112 inode->i_op = &shmem_dir_inode_operations;
2113 inode->i_fop = &simple_dir_operations;
2114 break;
2115 case S_IFLNK:
2116 /*
2117 * Must not load anything in the rbtree,
2118 * mpol_free_shared_policy will not be called.
2119 */
2120 mpol_shared_policy_init(&info->policy, NULL);
2121 break;
2122 }
2123 } else
2124 shmem_free_inode(sb);
2125 return inode;
2126 }
2127
2128 bool shmem_mapping(struct address_space *mapping)
2129 {
2130 if (!mapping->host)
2131 return false;
2132
2133 return mapping->host->i_sb->s_op == &shmem_ops;
2134 }
2135
2136 #ifdef CONFIG_TMPFS
2137 static const struct inode_operations shmem_symlink_inode_operations;
2138 static const struct inode_operations shmem_short_symlink_operations;
2139
2140 #ifdef CONFIG_TMPFS_XATTR
2141 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2142 #else
2143 #define shmem_initxattrs NULL
2144 #endif
2145
2146 static int
2147 shmem_write_begin(struct file *file, struct address_space *mapping,
2148 loff_t pos, unsigned len, unsigned flags,
2149 struct page **pagep, void **fsdata)
2150 {
2151 struct inode *inode = mapping->host;
2152 struct shmem_inode_info *info = SHMEM_I(inode);
2153 pgoff_t index = pos >> PAGE_SHIFT;
2154
2155 /* i_mutex is held by caller */
2156 if (unlikely(info->seals)) {
2157 if (info->seals & F_SEAL_WRITE)
2158 return -EPERM;
2159 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2160 return -EPERM;
2161 }
2162
2163 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2164 }
2165
2166 static int
2167 shmem_write_end(struct file *file, struct address_space *mapping,
2168 loff_t pos, unsigned len, unsigned copied,
2169 struct page *page, void *fsdata)
2170 {
2171 struct inode *inode = mapping->host;
2172
2173 if (pos + copied > inode->i_size)
2174 i_size_write(inode, pos + copied);
2175
2176 if (!PageUptodate(page)) {
2177 struct page *head = compound_head(page);
2178 if (PageTransCompound(page)) {
2179 int i;
2180
2181 for (i = 0; i < HPAGE_PMD_NR; i++) {
2182 if (head + i == page)
2183 continue;
2184 clear_highpage(head + i);
2185 flush_dcache_page(head + i);
2186 }
2187 }
2188 if (copied < PAGE_SIZE) {
2189 unsigned from = pos & (PAGE_SIZE - 1);
2190 zero_user_segments(page, 0, from,
2191 from + copied, PAGE_SIZE);
2192 }
2193 SetPageUptodate(head);
2194 }
2195 set_page_dirty(page);
2196 unlock_page(page);
2197 put_page(page);
2198
2199 return copied;
2200 }
2201
2202 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2203 {
2204 struct file *file = iocb->ki_filp;
2205 struct inode *inode = file_inode(file);
2206 struct address_space *mapping = inode->i_mapping;
2207 pgoff_t index;
2208 unsigned long offset;
2209 enum sgp_type sgp = SGP_READ;
2210 int error = 0;
2211 ssize_t retval = 0;
2212 loff_t *ppos = &iocb->ki_pos;
2213
2214 /*
2215 * Might this read be for a stacking filesystem? Then when reading
2216 * holes of a sparse file, we actually need to allocate those pages,
2217 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2218 */
2219 if (!iter_is_iovec(to))
2220 sgp = SGP_CACHE;
2221
2222 index = *ppos >> PAGE_SHIFT;
2223 offset = *ppos & ~PAGE_MASK;
2224
2225 for (;;) {
2226 struct page *page = NULL;
2227 pgoff_t end_index;
2228 unsigned long nr, ret;
2229 loff_t i_size = i_size_read(inode);
2230
2231 end_index = i_size >> PAGE_SHIFT;
2232 if (index > end_index)
2233 break;
2234 if (index == end_index) {
2235 nr = i_size & ~PAGE_MASK;
2236 if (nr <= offset)
2237 break;
2238 }
2239
2240 error = shmem_getpage(inode, index, &page, sgp);
2241 if (error) {
2242 if (error == -EINVAL)
2243 error = 0;
2244 break;
2245 }
2246 if (page) {
2247 if (sgp == SGP_CACHE)
2248 set_page_dirty(page);
2249 unlock_page(page);
2250 }
2251
2252 /*
2253 * We must evaluate after, since reads (unlike writes)
2254 * are called without i_mutex protection against truncate
2255 */
2256 nr = PAGE_SIZE;
2257 i_size = i_size_read(inode);
2258 end_index = i_size >> PAGE_SHIFT;
2259 if (index == end_index) {
2260 nr = i_size & ~PAGE_MASK;
2261 if (nr <= offset) {
2262 if (page)
2263 put_page(page);
2264 break;
2265 }
2266 }
2267 nr -= offset;
2268
2269 if (page) {
2270 /*
2271 * If users can be writing to this page using arbitrary
2272 * virtual addresses, take care about potential aliasing
2273 * before reading the page on the kernel side.
2274 */
2275 if (mapping_writably_mapped(mapping))
2276 flush_dcache_page(page);
2277 /*
2278 * Mark the page accessed if we read the beginning.
2279 */
2280 if (!offset)
2281 mark_page_accessed(page);
2282 } else {
2283 page = ZERO_PAGE(0);
2284 get_page(page);
2285 }
2286
2287 /*
2288 * Ok, we have the page, and it's up-to-date, so
2289 * now we can copy it to user space...
2290 */
2291 ret = copy_page_to_iter(page, offset, nr, to);
2292 retval += ret;
2293 offset += ret;
2294 index += offset >> PAGE_SHIFT;
2295 offset &= ~PAGE_MASK;
2296
2297 put_page(page);
2298 if (!iov_iter_count(to))
2299 break;
2300 if (ret < nr) {
2301 error = -EFAULT;
2302 break;
2303 }
2304 cond_resched();
2305 }
2306
2307 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2308 file_accessed(file);
2309 return retval ? retval : error;
2310 }
2311
2312 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2313 struct pipe_inode_info *pipe, size_t len,
2314 unsigned int flags)
2315 {
2316 struct address_space *mapping = in->f_mapping;
2317 struct inode *inode = mapping->host;
2318 unsigned int loff, nr_pages, req_pages;
2319 struct page *pages[PIPE_DEF_BUFFERS];
2320 struct partial_page partial[PIPE_DEF_BUFFERS];
2321 struct page *page;
2322 pgoff_t index, end_index;
2323 loff_t isize, left;
2324 int error, page_nr;
2325 struct splice_pipe_desc spd = {
2326 .pages = pages,
2327 .partial = partial,
2328 .nr_pages_max = PIPE_DEF_BUFFERS,
2329 .flags = flags,
2330 .ops = &page_cache_pipe_buf_ops,
2331 .spd_release = spd_release_page,
2332 };
2333
2334 isize = i_size_read(inode);
2335 if (unlikely(*ppos >= isize))
2336 return 0;
2337
2338 left = isize - *ppos;
2339 if (unlikely(left < len))
2340 len = left;
2341
2342 if (splice_grow_spd(pipe, &spd))
2343 return -ENOMEM;
2344
2345 index = *ppos >> PAGE_SHIFT;
2346 loff = *ppos & ~PAGE_MASK;
2347 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2348 nr_pages = min(req_pages, spd.nr_pages_max);
2349
2350 spd.nr_pages = find_get_pages_contig(mapping, index,
2351 nr_pages, spd.pages);
2352 index += spd.nr_pages;
2353 error = 0;
2354
2355 while (spd.nr_pages < nr_pages) {
2356 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2357 if (error)
2358 break;
2359 unlock_page(page);
2360 spd.pages[spd.nr_pages++] = page;
2361 index++;
2362 }
2363
2364 index = *ppos >> PAGE_SHIFT;
2365 nr_pages = spd.nr_pages;
2366 spd.nr_pages = 0;
2367
2368 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2369 unsigned int this_len;
2370
2371 if (!len)
2372 break;
2373
2374 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2375 page = spd.pages[page_nr];
2376
2377 if (!PageUptodate(page) || page->mapping != mapping) {
2378 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2379 if (error)
2380 break;
2381 unlock_page(page);
2382 put_page(spd.pages[page_nr]);
2383 spd.pages[page_nr] = page;
2384 }
2385
2386 isize = i_size_read(inode);
2387 end_index = (isize - 1) >> PAGE_SHIFT;
2388 if (unlikely(!isize || index > end_index))
2389 break;
2390
2391 if (end_index == index) {
2392 unsigned int plen;
2393
2394 plen = ((isize - 1) & ~PAGE_MASK) + 1;
2395 if (plen <= loff)
2396 break;
2397
2398 this_len = min(this_len, plen - loff);
2399 len = this_len;
2400 }
2401
2402 spd.partial[page_nr].offset = loff;
2403 spd.partial[page_nr].len = this_len;
2404 len -= this_len;
2405 loff = 0;
2406 spd.nr_pages++;
2407 index++;
2408 }
2409
2410 while (page_nr < nr_pages)
2411 put_page(spd.pages[page_nr++]);
2412
2413 if (spd.nr_pages)
2414 error = splice_to_pipe(pipe, &spd);
2415
2416 splice_shrink_spd(&spd);
2417
2418 if (error > 0) {
2419 *ppos += error;
2420 file_accessed(in);
2421 }
2422 return error;
2423 }
2424
2425 /*
2426 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2427 */
2428 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2429 pgoff_t index, pgoff_t end, int whence)
2430 {
2431 struct page *page;
2432 struct pagevec pvec;
2433 pgoff_t indices[PAGEVEC_SIZE];
2434 bool done = false;
2435 int i;
2436
2437 pagevec_init(&pvec, 0);
2438 pvec.nr = 1; /* start small: we may be there already */
2439 while (!done) {
2440 pvec.nr = find_get_entries(mapping, index,
2441 pvec.nr, pvec.pages, indices);
2442 if (!pvec.nr) {
2443 if (whence == SEEK_DATA)
2444 index = end;
2445 break;
2446 }
2447 for (i = 0; i < pvec.nr; i++, index++) {
2448 if (index < indices[i]) {
2449 if (whence == SEEK_HOLE) {
2450 done = true;
2451 break;
2452 }
2453 index = indices[i];
2454 }
2455 page = pvec.pages[i];
2456 if (page && !radix_tree_exceptional_entry(page)) {
2457 if (!PageUptodate(page))
2458 page = NULL;
2459 }
2460 if (index >= end ||
2461 (page && whence == SEEK_DATA) ||
2462 (!page && whence == SEEK_HOLE)) {
2463 done = true;
2464 break;
2465 }
2466 }
2467 pagevec_remove_exceptionals(&pvec);
2468 pagevec_release(&pvec);
2469 pvec.nr = PAGEVEC_SIZE;
2470 cond_resched();
2471 }
2472 return index;
2473 }
2474
2475 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2476 {
2477 struct address_space *mapping = file->f_mapping;
2478 struct inode *inode = mapping->host;
2479 pgoff_t start, end;
2480 loff_t new_offset;
2481
2482 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2483 return generic_file_llseek_size(file, offset, whence,
2484 MAX_LFS_FILESIZE, i_size_read(inode));
2485 inode_lock(inode);
2486 /* We're holding i_mutex so we can access i_size directly */
2487
2488 if (offset < 0)
2489 offset = -EINVAL;
2490 else if (offset >= inode->i_size)
2491 offset = -ENXIO;
2492 else {
2493 start = offset >> PAGE_SHIFT;
2494 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2495 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2496 new_offset <<= PAGE_SHIFT;
2497 if (new_offset > offset) {
2498 if (new_offset < inode->i_size)
2499 offset = new_offset;
2500 else if (whence == SEEK_DATA)
2501 offset = -ENXIO;
2502 else
2503 offset = inode->i_size;
2504 }
2505 }
2506
2507 if (offset >= 0)
2508 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2509 inode_unlock(inode);
2510 return offset;
2511 }
2512
2513 /*
2514 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2515 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2516 */
2517 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2518 #define LAST_SCAN 4 /* about 150ms max */
2519
2520 static void shmem_tag_pins(struct address_space *mapping)
2521 {
2522 struct radix_tree_iter iter;
2523 void **slot;
2524 pgoff_t start;
2525 struct page *page;
2526
2527 lru_add_drain();
2528 start = 0;
2529 rcu_read_lock();
2530
2531 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2532 page = radix_tree_deref_slot(slot);
2533 if (!page || radix_tree_exception(page)) {
2534 if (radix_tree_deref_retry(page)) {
2535 slot = radix_tree_iter_retry(&iter);
2536 continue;
2537 }
2538 } else if (page_count(page) - page_mapcount(page) > 1) {
2539 spin_lock_irq(&mapping->tree_lock);
2540 radix_tree_tag_set(&mapping->page_tree, iter.index,
2541 SHMEM_TAG_PINNED);
2542 spin_unlock_irq(&mapping->tree_lock);
2543 }
2544
2545 if (need_resched()) {
2546 cond_resched_rcu();
2547 slot = radix_tree_iter_next(&iter);
2548 }
2549 }
2550 rcu_read_unlock();
2551 }
2552
2553 /*
2554 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2555 * via get_user_pages(), drivers might have some pending I/O without any active
2556 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2557 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2558 * them to be dropped.
2559 * The caller must guarantee that no new user will acquire writable references
2560 * to those pages to avoid races.
2561 */
2562 static int shmem_wait_for_pins(struct address_space *mapping)
2563 {
2564 struct radix_tree_iter iter;
2565 void **slot;
2566 pgoff_t start;
2567 struct page *page;
2568 int error, scan;
2569
2570 shmem_tag_pins(mapping);
2571
2572 error = 0;
2573 for (scan = 0; scan <= LAST_SCAN; scan++) {
2574 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2575 break;
2576
2577 if (!scan)
2578 lru_add_drain_all();
2579 else if (schedule_timeout_killable((HZ << scan) / 200))
2580 scan = LAST_SCAN;
2581
2582 start = 0;
2583 rcu_read_lock();
2584 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2585 start, SHMEM_TAG_PINNED) {
2586
2587 page = radix_tree_deref_slot(slot);
2588 if (radix_tree_exception(page)) {
2589 if (radix_tree_deref_retry(page)) {
2590 slot = radix_tree_iter_retry(&iter);
2591 continue;
2592 }
2593
2594 page = NULL;
2595 }
2596
2597 if (page &&
2598 page_count(page) - page_mapcount(page) != 1) {
2599 if (scan < LAST_SCAN)
2600 goto continue_resched;
2601
2602 /*
2603 * On the last scan, we clean up all those tags
2604 * we inserted; but make a note that we still
2605 * found pages pinned.
2606 */
2607 error = -EBUSY;
2608 }
2609
2610 spin_lock_irq(&mapping->tree_lock);
2611 radix_tree_tag_clear(&mapping->page_tree,
2612 iter.index, SHMEM_TAG_PINNED);
2613 spin_unlock_irq(&mapping->tree_lock);
2614 continue_resched:
2615 if (need_resched()) {
2616 cond_resched_rcu();
2617 slot = radix_tree_iter_next(&iter);
2618 }
2619 }
2620 rcu_read_unlock();
2621 }
2622
2623 return error;
2624 }
2625
2626 #define F_ALL_SEALS (F_SEAL_SEAL | \
2627 F_SEAL_SHRINK | \
2628 F_SEAL_GROW | \
2629 F_SEAL_WRITE)
2630
2631 int shmem_add_seals(struct file *file, unsigned int seals)
2632 {
2633 struct inode *inode = file_inode(file);
2634 struct shmem_inode_info *info = SHMEM_I(inode);
2635 int error;
2636
2637 /*
2638 * SEALING
2639 * Sealing allows multiple parties to share a shmem-file but restrict
2640 * access to a specific subset of file operations. Seals can only be
2641 * added, but never removed. This way, mutually untrusted parties can
2642 * share common memory regions with a well-defined policy. A malicious
2643 * peer can thus never perform unwanted operations on a shared object.
2644 *
2645 * Seals are only supported on special shmem-files and always affect
2646 * the whole underlying inode. Once a seal is set, it may prevent some
2647 * kinds of access to the file. Currently, the following seals are
2648 * defined:
2649 * SEAL_SEAL: Prevent further seals from being set on this file
2650 * SEAL_SHRINK: Prevent the file from shrinking
2651 * SEAL_GROW: Prevent the file from growing
2652 * SEAL_WRITE: Prevent write access to the file
2653 *
2654 * As we don't require any trust relationship between two parties, we
2655 * must prevent seals from being removed. Therefore, sealing a file
2656 * only adds a given set of seals to the file, it never touches
2657 * existing seals. Furthermore, the "setting seals"-operation can be
2658 * sealed itself, which basically prevents any further seal from being
2659 * added.
2660 *
2661 * Semantics of sealing are only defined on volatile files. Only
2662 * anonymous shmem files support sealing. More importantly, seals are
2663 * never written to disk. Therefore, there's no plan to support it on
2664 * other file types.
2665 */
2666
2667 if (file->f_op != &shmem_file_operations)
2668 return -EINVAL;
2669 if (!(file->f_mode & FMODE_WRITE))
2670 return -EPERM;
2671 if (seals & ~(unsigned int)F_ALL_SEALS)
2672 return -EINVAL;
2673
2674 inode_lock(inode);
2675
2676 if (info->seals & F_SEAL_SEAL) {
2677 error = -EPERM;
2678 goto unlock;
2679 }
2680
2681 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2682 error = mapping_deny_writable(file->f_mapping);
2683 if (error)
2684 goto unlock;
2685
2686 error = shmem_wait_for_pins(file->f_mapping);
2687 if (error) {
2688 mapping_allow_writable(file->f_mapping);
2689 goto unlock;
2690 }
2691 }
2692
2693 info->seals |= seals;
2694 error = 0;
2695
2696 unlock:
2697 inode_unlock(inode);
2698 return error;
2699 }
2700 EXPORT_SYMBOL_GPL(shmem_add_seals);
2701
2702 int shmem_get_seals(struct file *file)
2703 {
2704 if (file->f_op != &shmem_file_operations)
2705 return -EINVAL;
2706
2707 return SHMEM_I(file_inode(file))->seals;
2708 }
2709 EXPORT_SYMBOL_GPL(shmem_get_seals);
2710
2711 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2712 {
2713 long error;
2714
2715 switch (cmd) {
2716 case F_ADD_SEALS:
2717 /* disallow upper 32bit */
2718 if (arg > UINT_MAX)
2719 return -EINVAL;
2720
2721 error = shmem_add_seals(file, arg);
2722 break;
2723 case F_GET_SEALS:
2724 error = shmem_get_seals(file);
2725 break;
2726 default:
2727 error = -EINVAL;
2728 break;
2729 }
2730
2731 return error;
2732 }
2733
2734 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735 loff_t len)
2736 {
2737 struct inode *inode = file_inode(file);
2738 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2739 struct shmem_inode_info *info = SHMEM_I(inode);
2740 struct shmem_falloc shmem_falloc;
2741 pgoff_t start, index, end;
2742 int error;
2743
2744 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745 return -EOPNOTSUPP;
2746
2747 inode_lock(inode);
2748
2749 if (mode & FALLOC_FL_PUNCH_HOLE) {
2750 struct address_space *mapping = file->f_mapping;
2751 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2753 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2754
2755 /* protected by i_mutex */
2756 if (info->seals & F_SEAL_WRITE) {
2757 error = -EPERM;
2758 goto out;
2759 }
2760
2761 shmem_falloc.waitq = &shmem_falloc_waitq;
2762 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2763 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764 spin_lock(&inode->i_lock);
2765 inode->i_private = &shmem_falloc;
2766 spin_unlock(&inode->i_lock);
2767
2768 if ((u64)unmap_end > (u64)unmap_start)
2769 unmap_mapping_range(mapping, unmap_start,
2770 1 + unmap_end - unmap_start, 0);
2771 shmem_truncate_range(inode, offset, offset + len - 1);
2772 /* No need to unmap again: hole-punching leaves COWed pages */
2773
2774 spin_lock(&inode->i_lock);
2775 inode->i_private = NULL;
2776 wake_up_all(&shmem_falloc_waitq);
2777 spin_unlock(&inode->i_lock);
2778 error = 0;
2779 goto out;
2780 }
2781
2782 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2783 error = inode_newsize_ok(inode, offset + len);
2784 if (error)
2785 goto out;
2786
2787 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2788 error = -EPERM;
2789 goto out;
2790 }
2791
2792 start = offset >> PAGE_SHIFT;
2793 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2794 /* Try to avoid a swapstorm if len is impossible to satisfy */
2795 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2796 error = -ENOSPC;
2797 goto out;
2798 }
2799
2800 shmem_falloc.waitq = NULL;
2801 shmem_falloc.start = start;
2802 shmem_falloc.next = start;
2803 shmem_falloc.nr_falloced = 0;
2804 shmem_falloc.nr_unswapped = 0;
2805 spin_lock(&inode->i_lock);
2806 inode->i_private = &shmem_falloc;
2807 spin_unlock(&inode->i_lock);
2808
2809 for (index = start; index < end; index++) {
2810 struct page *page;
2811
2812 /*
2813 * Good, the fallocate(2) manpage permits EINTR: we may have
2814 * been interrupted because we are using up too much memory.
2815 */
2816 if (signal_pending(current))
2817 error = -EINTR;
2818 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2819 error = -ENOMEM;
2820 else
2821 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2822 if (error) {
2823 /* Remove the !PageUptodate pages we added */
2824 if (index > start) {
2825 shmem_undo_range(inode,
2826 (loff_t)start << PAGE_SHIFT,
2827 ((loff_t)index << PAGE_SHIFT) - 1, true);
2828 }
2829 goto undone;
2830 }
2831
2832 /*
2833 * Inform shmem_writepage() how far we have reached.
2834 * No need for lock or barrier: we have the page lock.
2835 */
2836 shmem_falloc.next++;
2837 if (!PageUptodate(page))
2838 shmem_falloc.nr_falloced++;
2839
2840 /*
2841 * If !PageUptodate, leave it that way so that freeable pages
2842 * can be recognized if we need to rollback on error later.
2843 * But set_page_dirty so that memory pressure will swap rather
2844 * than free the pages we are allocating (and SGP_CACHE pages
2845 * might still be clean: we now need to mark those dirty too).
2846 */
2847 set_page_dirty(page);
2848 unlock_page(page);
2849 put_page(page);
2850 cond_resched();
2851 }
2852
2853 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2854 i_size_write(inode, offset + len);
2855 inode->i_ctime = CURRENT_TIME;
2856 undone:
2857 spin_lock(&inode->i_lock);
2858 inode->i_private = NULL;
2859 spin_unlock(&inode->i_lock);
2860 out:
2861 inode_unlock(inode);
2862 return error;
2863 }
2864
2865 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2866 {
2867 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2868
2869 buf->f_type = TMPFS_MAGIC;
2870 buf->f_bsize = PAGE_SIZE;
2871 buf->f_namelen = NAME_MAX;
2872 if (sbinfo->max_blocks) {
2873 buf->f_blocks = sbinfo->max_blocks;
2874 buf->f_bavail =
2875 buf->f_bfree = sbinfo->max_blocks -
2876 percpu_counter_sum(&sbinfo->used_blocks);
2877 }
2878 if (sbinfo->max_inodes) {
2879 buf->f_files = sbinfo->max_inodes;
2880 buf->f_ffree = sbinfo->free_inodes;
2881 }
2882 /* else leave those fields 0 like simple_statfs */
2883 return 0;
2884 }
2885
2886 /*
2887 * File creation. Allocate an inode, and we're done..
2888 */
2889 static int
2890 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2891 {
2892 struct inode *inode;
2893 int error = -ENOSPC;
2894
2895 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2896 if (inode) {
2897 error = simple_acl_create(dir, inode);
2898 if (error)
2899 goto out_iput;
2900 error = security_inode_init_security(inode, dir,
2901 &dentry->d_name,
2902 shmem_initxattrs, NULL);
2903 if (error && error != -EOPNOTSUPP)
2904 goto out_iput;
2905
2906 error = 0;
2907 dir->i_size += BOGO_DIRENT_SIZE;
2908 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2909 d_instantiate(dentry, inode);
2910 dget(dentry); /* Extra count - pin the dentry in core */
2911 }
2912 return error;
2913 out_iput:
2914 iput(inode);
2915 return error;
2916 }
2917
2918 static int
2919 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2920 {
2921 struct inode *inode;
2922 int error = -ENOSPC;
2923
2924 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2925 if (inode) {
2926 error = security_inode_init_security(inode, dir,
2927 NULL,
2928 shmem_initxattrs, NULL);
2929 if (error && error != -EOPNOTSUPP)
2930 goto out_iput;
2931 error = simple_acl_create(dir, inode);
2932 if (error)
2933 goto out_iput;
2934 d_tmpfile(dentry, inode);
2935 }
2936 return error;
2937 out_iput:
2938 iput(inode);
2939 return error;
2940 }
2941
2942 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 int error;
2945
2946 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2947 return error;
2948 inc_nlink(dir);
2949 return 0;
2950 }
2951
2952 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2953 bool excl)
2954 {
2955 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2956 }
2957
2958 /*
2959 * Link a file..
2960 */
2961 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2962 {
2963 struct inode *inode = d_inode(old_dentry);
2964 int ret;
2965
2966 /*
2967 * No ordinary (disk based) filesystem counts links as inodes;
2968 * but each new link needs a new dentry, pinning lowmem, and
2969 * tmpfs dentries cannot be pruned until they are unlinked.
2970 */
2971 ret = shmem_reserve_inode(inode->i_sb);
2972 if (ret)
2973 goto out;
2974
2975 dir->i_size += BOGO_DIRENT_SIZE;
2976 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2977 inc_nlink(inode);
2978 ihold(inode); /* New dentry reference */
2979 dget(dentry); /* Extra pinning count for the created dentry */
2980 d_instantiate(dentry, inode);
2981 out:
2982 return ret;
2983 }
2984
2985 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2986 {
2987 struct inode *inode = d_inode(dentry);
2988
2989 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2990 shmem_free_inode(inode->i_sb);
2991
2992 dir->i_size -= BOGO_DIRENT_SIZE;
2993 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2994 drop_nlink(inode);
2995 dput(dentry); /* Undo the count from "create" - this does all the work */
2996 return 0;
2997 }
2998
2999 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3000 {
3001 if (!simple_empty(dentry))
3002 return -ENOTEMPTY;
3003
3004 drop_nlink(d_inode(dentry));
3005 drop_nlink(dir);
3006 return shmem_unlink(dir, dentry);
3007 }
3008
3009 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3010 {
3011 bool old_is_dir = d_is_dir(old_dentry);
3012 bool new_is_dir = d_is_dir(new_dentry);
3013
3014 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3015 if (old_is_dir) {
3016 drop_nlink(old_dir);
3017 inc_nlink(new_dir);
3018 } else {
3019 drop_nlink(new_dir);
3020 inc_nlink(old_dir);
3021 }
3022 }
3023 old_dir->i_ctime = old_dir->i_mtime =
3024 new_dir->i_ctime = new_dir->i_mtime =
3025 d_inode(old_dentry)->i_ctime =
3026 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
3027
3028 return 0;
3029 }
3030
3031 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3032 {
3033 struct dentry *whiteout;
3034 int error;
3035
3036 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3037 if (!whiteout)
3038 return -ENOMEM;
3039
3040 error = shmem_mknod(old_dir, whiteout,
3041 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3042 dput(whiteout);
3043 if (error)
3044 return error;
3045
3046 /*
3047 * Cheat and hash the whiteout while the old dentry is still in
3048 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3049 *
3050 * d_lookup() will consistently find one of them at this point,
3051 * not sure which one, but that isn't even important.
3052 */
3053 d_rehash(whiteout);
3054 return 0;
3055 }
3056
3057 /*
3058 * The VFS layer already does all the dentry stuff for rename,
3059 * we just have to decrement the usage count for the target if
3060 * it exists so that the VFS layer correctly free's it when it
3061 * gets overwritten.
3062 */
3063 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3064 {
3065 struct inode *inode = d_inode(old_dentry);
3066 int they_are_dirs = S_ISDIR(inode->i_mode);
3067
3068 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3069 return -EINVAL;
3070
3071 if (flags & RENAME_EXCHANGE)
3072 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3073
3074 if (!simple_empty(new_dentry))
3075 return -ENOTEMPTY;
3076
3077 if (flags & RENAME_WHITEOUT) {
3078 int error;
3079
3080 error = shmem_whiteout(old_dir, old_dentry);
3081 if (error)
3082 return error;
3083 }
3084
3085 if (d_really_is_positive(new_dentry)) {
3086 (void) shmem_unlink(new_dir, new_dentry);
3087 if (they_are_dirs) {
3088 drop_nlink(d_inode(new_dentry));
3089 drop_nlink(old_dir);
3090 }
3091 } else if (they_are_dirs) {
3092 drop_nlink(old_dir);
3093 inc_nlink(new_dir);
3094 }
3095
3096 old_dir->i_size -= BOGO_DIRENT_SIZE;
3097 new_dir->i_size += BOGO_DIRENT_SIZE;
3098 old_dir->i_ctime = old_dir->i_mtime =
3099 new_dir->i_ctime = new_dir->i_mtime =
3100 inode->i_ctime = CURRENT_TIME;
3101 return 0;
3102 }
3103
3104 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3105 {
3106 int error;
3107 int len;
3108 struct inode *inode;
3109 struct page *page;
3110 struct shmem_inode_info *info;
3111
3112 len = strlen(symname) + 1;
3113 if (len > PAGE_SIZE)
3114 return -ENAMETOOLONG;
3115
3116 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3117 if (!inode)
3118 return -ENOSPC;
3119
3120 error = security_inode_init_security(inode, dir, &dentry->d_name,
3121 shmem_initxattrs, NULL);
3122 if (error) {
3123 if (error != -EOPNOTSUPP) {
3124 iput(inode);
3125 return error;
3126 }
3127 error = 0;
3128 }
3129
3130 info = SHMEM_I(inode);
3131 inode->i_size = len-1;
3132 if (len <= SHORT_SYMLINK_LEN) {
3133 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3134 if (!inode->i_link) {
3135 iput(inode);
3136 return -ENOMEM;
3137 }
3138 inode->i_op = &shmem_short_symlink_operations;
3139 } else {
3140 inode_nohighmem(inode);
3141 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3142 if (error) {
3143 iput(inode);
3144 return error;
3145 }
3146 inode->i_mapping->a_ops = &shmem_aops;
3147 inode->i_op = &shmem_symlink_inode_operations;
3148 memcpy(page_address(page), symname, len);
3149 SetPageUptodate(page);
3150 set_page_dirty(page);
3151 unlock_page(page);
3152 put_page(page);
3153 }
3154 dir->i_size += BOGO_DIRENT_SIZE;
3155 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
3156 d_instantiate(dentry, inode);
3157 dget(dentry);
3158 return 0;
3159 }
3160
3161 static void shmem_put_link(void *arg)
3162 {
3163 mark_page_accessed(arg);
3164 put_page(arg);
3165 }
3166
3167 static const char *shmem_get_link(struct dentry *dentry,
3168 struct inode *inode,
3169 struct delayed_call *done)
3170 {
3171 struct page *page = NULL;
3172 int error;
3173 if (!dentry) {
3174 page = find_get_page(inode->i_mapping, 0);
3175 if (!page)
3176 return ERR_PTR(-ECHILD);
3177 if (!PageUptodate(page)) {
3178 put_page(page);
3179 return ERR_PTR(-ECHILD);
3180 }
3181 } else {
3182 error = shmem_getpage(inode, 0, &page, SGP_READ);
3183 if (error)
3184 return ERR_PTR(error);
3185 unlock_page(page);
3186 }
3187 set_delayed_call(done, shmem_put_link, page);
3188 return page_address(page);
3189 }
3190
3191 #ifdef CONFIG_TMPFS_XATTR
3192 /*
3193 * Superblocks without xattr inode operations may get some security.* xattr
3194 * support from the LSM "for free". As soon as we have any other xattrs
3195 * like ACLs, we also need to implement the security.* handlers at
3196 * filesystem level, though.
3197 */
3198
3199 /*
3200 * Callback for security_inode_init_security() for acquiring xattrs.
3201 */
3202 static int shmem_initxattrs(struct inode *inode,
3203 const struct xattr *xattr_array,
3204 void *fs_info)
3205 {
3206 struct shmem_inode_info *info = SHMEM_I(inode);
3207 const struct xattr *xattr;
3208 struct simple_xattr *new_xattr;
3209 size_t len;
3210
3211 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3212 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3213 if (!new_xattr)
3214 return -ENOMEM;
3215
3216 len = strlen(xattr->name) + 1;
3217 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3218 GFP_KERNEL);
3219 if (!new_xattr->name) {
3220 kfree(new_xattr);
3221 return -ENOMEM;
3222 }
3223
3224 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3225 XATTR_SECURITY_PREFIX_LEN);
3226 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3227 xattr->name, len);
3228
3229 simple_xattr_list_add(&info->xattrs, new_xattr);
3230 }
3231
3232 return 0;
3233 }
3234
3235 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3236 struct dentry *unused, struct inode *inode,
3237 const char *name, void *buffer, size_t size)
3238 {
3239 struct shmem_inode_info *info = SHMEM_I(inode);
3240
3241 name = xattr_full_name(handler, name);
3242 return simple_xattr_get(&info->xattrs, name, buffer, size);
3243 }
3244
3245 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3246 struct dentry *unused, struct inode *inode,
3247 const char *name, const void *value,
3248 size_t size, int flags)
3249 {
3250 struct shmem_inode_info *info = SHMEM_I(inode);
3251
3252 name = xattr_full_name(handler, name);
3253 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3254 }
3255
3256 static const struct xattr_handler shmem_security_xattr_handler = {
3257 .prefix = XATTR_SECURITY_PREFIX,
3258 .get = shmem_xattr_handler_get,
3259 .set = shmem_xattr_handler_set,
3260 };
3261
3262 static const struct xattr_handler shmem_trusted_xattr_handler = {
3263 .prefix = XATTR_TRUSTED_PREFIX,
3264 .get = shmem_xattr_handler_get,
3265 .set = shmem_xattr_handler_set,
3266 };
3267
3268 static const struct xattr_handler *shmem_xattr_handlers[] = {
3269 #ifdef CONFIG_TMPFS_POSIX_ACL
3270 &posix_acl_access_xattr_handler,
3271 &posix_acl_default_xattr_handler,
3272 #endif
3273 &shmem_security_xattr_handler,
3274 &shmem_trusted_xattr_handler,
3275 NULL
3276 };
3277
3278 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3279 {
3280 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3281 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3282 }
3283 #endif /* CONFIG_TMPFS_XATTR */
3284
3285 static const struct inode_operations shmem_short_symlink_operations = {
3286 .readlink = generic_readlink,
3287 .get_link = simple_get_link,
3288 #ifdef CONFIG_TMPFS_XATTR
3289 .setxattr = generic_setxattr,
3290 .getxattr = generic_getxattr,
3291 .listxattr = shmem_listxattr,
3292 .removexattr = generic_removexattr,
3293 #endif
3294 };
3295
3296 static const struct inode_operations shmem_symlink_inode_operations = {
3297 .readlink = generic_readlink,
3298 .get_link = shmem_get_link,
3299 #ifdef CONFIG_TMPFS_XATTR
3300 .setxattr = generic_setxattr,
3301 .getxattr = generic_getxattr,
3302 .listxattr = shmem_listxattr,
3303 .removexattr = generic_removexattr,
3304 #endif
3305 };
3306
3307 static struct dentry *shmem_get_parent(struct dentry *child)
3308 {
3309 return ERR_PTR(-ESTALE);
3310 }
3311
3312 static int shmem_match(struct inode *ino, void *vfh)
3313 {
3314 __u32 *fh = vfh;
3315 __u64 inum = fh[2];
3316 inum = (inum << 32) | fh[1];
3317 return ino->i_ino == inum && fh[0] == ino->i_generation;
3318 }
3319
3320 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3321 struct fid *fid, int fh_len, int fh_type)
3322 {
3323 struct inode *inode;
3324 struct dentry *dentry = NULL;
3325 u64 inum;
3326
3327 if (fh_len < 3)
3328 return NULL;
3329
3330 inum = fid->raw[2];
3331 inum = (inum << 32) | fid->raw[1];
3332
3333 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3334 shmem_match, fid->raw);
3335 if (inode) {
3336 dentry = d_find_alias(inode);
3337 iput(inode);
3338 }
3339
3340 return dentry;
3341 }
3342
3343 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3344 struct inode *parent)
3345 {
3346 if (*len < 3) {
3347 *len = 3;
3348 return FILEID_INVALID;
3349 }
3350
3351 if (inode_unhashed(inode)) {
3352 /* Unfortunately insert_inode_hash is not idempotent,
3353 * so as we hash inodes here rather than at creation
3354 * time, we need a lock to ensure we only try
3355 * to do it once
3356 */
3357 static DEFINE_SPINLOCK(lock);
3358 spin_lock(&lock);
3359 if (inode_unhashed(inode))
3360 __insert_inode_hash(inode,
3361 inode->i_ino + inode->i_generation);
3362 spin_unlock(&lock);
3363 }
3364
3365 fh[0] = inode->i_generation;
3366 fh[1] = inode->i_ino;
3367 fh[2] = ((__u64)inode->i_ino) >> 32;
3368
3369 *len = 3;
3370 return 1;
3371 }
3372
3373 static const struct export_operations shmem_export_ops = {
3374 .get_parent = shmem_get_parent,
3375 .encode_fh = shmem_encode_fh,
3376 .fh_to_dentry = shmem_fh_to_dentry,
3377 };
3378
3379 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3380 bool remount)
3381 {
3382 char *this_char, *value, *rest;
3383 struct mempolicy *mpol = NULL;
3384 uid_t uid;
3385 gid_t gid;
3386
3387 while (options != NULL) {
3388 this_char = options;
3389 for (;;) {
3390 /*
3391 * NUL-terminate this option: unfortunately,
3392 * mount options form a comma-separated list,
3393 * but mpol's nodelist may also contain commas.
3394 */
3395 options = strchr(options, ',');
3396 if (options == NULL)
3397 break;
3398 options++;
3399 if (!isdigit(*options)) {
3400 options[-1] = '\0';
3401 break;
3402 }
3403 }
3404 if (!*this_char)
3405 continue;
3406 if ((value = strchr(this_char,'=')) != NULL) {
3407 *value++ = 0;
3408 } else {
3409 pr_err("tmpfs: No value for mount option '%s'\n",
3410 this_char);
3411 goto error;
3412 }
3413
3414 if (!strcmp(this_char,"size")) {
3415 unsigned long long size;
3416 size = memparse(value,&rest);
3417 if (*rest == '%') {
3418 size <<= PAGE_SHIFT;
3419 size *= totalram_pages;
3420 do_div(size, 100);
3421 rest++;
3422 }
3423 if (*rest)
3424 goto bad_val;
3425 sbinfo->max_blocks =
3426 DIV_ROUND_UP(size, PAGE_SIZE);
3427 } else if (!strcmp(this_char,"nr_blocks")) {
3428 sbinfo->max_blocks = memparse(value, &rest);
3429 if (*rest)
3430 goto bad_val;
3431 } else if (!strcmp(this_char,"nr_inodes")) {
3432 sbinfo->max_inodes = memparse(value, &rest);
3433 if (*rest)
3434 goto bad_val;
3435 } else if (!strcmp(this_char,"mode")) {
3436 if (remount)
3437 continue;
3438 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3439 if (*rest)
3440 goto bad_val;
3441 } else if (!strcmp(this_char,"uid")) {
3442 if (remount)
3443 continue;
3444 uid = simple_strtoul(value, &rest, 0);
3445 if (*rest)
3446 goto bad_val;
3447 sbinfo->uid = make_kuid(current_user_ns(), uid);
3448 if (!uid_valid(sbinfo->uid))
3449 goto bad_val;
3450 } else if (!strcmp(this_char,"gid")) {
3451 if (remount)
3452 continue;
3453 gid = simple_strtoul(value, &rest, 0);
3454 if (*rest)
3455 goto bad_val;
3456 sbinfo->gid = make_kgid(current_user_ns(), gid);
3457 if (!gid_valid(sbinfo->gid))
3458 goto bad_val;
3459 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3460 } else if (!strcmp(this_char, "huge")) {
3461 int huge;
3462 huge = shmem_parse_huge(value);
3463 if (huge < 0)
3464 goto bad_val;
3465 if (!has_transparent_hugepage() &&
3466 huge != SHMEM_HUGE_NEVER)
3467 goto bad_val;
3468 sbinfo->huge = huge;
3469 #endif
3470 #ifdef CONFIG_NUMA
3471 } else if (!strcmp(this_char,"mpol")) {
3472 mpol_put(mpol);
3473 mpol = NULL;
3474 if (mpol_parse_str(value, &mpol))
3475 goto bad_val;
3476 #endif
3477 } else {
3478 pr_err("tmpfs: Bad mount option %s\n", this_char);
3479 goto error;
3480 }
3481 }
3482 sbinfo->mpol = mpol;
3483 return 0;
3484
3485 bad_val:
3486 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3487 value, this_char);
3488 error:
3489 mpol_put(mpol);
3490 return 1;
3491
3492 }
3493
3494 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3495 {
3496 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3497 struct shmem_sb_info config = *sbinfo;
3498 unsigned long inodes;
3499 int error = -EINVAL;
3500
3501 config.mpol = NULL;
3502 if (shmem_parse_options(data, &config, true))
3503 return error;
3504
3505 spin_lock(&sbinfo->stat_lock);
3506 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3507 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3508 goto out;
3509 if (config.max_inodes < inodes)
3510 goto out;
3511 /*
3512 * Those tests disallow limited->unlimited while any are in use;
3513 * but we must separately disallow unlimited->limited, because
3514 * in that case we have no record of how much is already in use.
3515 */
3516 if (config.max_blocks && !sbinfo->max_blocks)
3517 goto out;
3518 if (config.max_inodes && !sbinfo->max_inodes)
3519 goto out;
3520
3521 error = 0;
3522 sbinfo->huge = config.huge;
3523 sbinfo->max_blocks = config.max_blocks;
3524 sbinfo->max_inodes = config.max_inodes;
3525 sbinfo->free_inodes = config.max_inodes - inodes;
3526
3527 /*
3528 * Preserve previous mempolicy unless mpol remount option was specified.
3529 */
3530 if (config.mpol) {
3531 mpol_put(sbinfo->mpol);
3532 sbinfo->mpol = config.mpol; /* transfers initial ref */
3533 }
3534 out:
3535 spin_unlock(&sbinfo->stat_lock);
3536 return error;
3537 }
3538
3539 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3540 {
3541 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3542
3543 if (sbinfo->max_blocks != shmem_default_max_blocks())
3544 seq_printf(seq, ",size=%luk",
3545 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3546 if (sbinfo->max_inodes != shmem_default_max_inodes())
3547 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3548 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3549 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3550 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3551 seq_printf(seq, ",uid=%u",
3552 from_kuid_munged(&init_user_ns, sbinfo->uid));
3553 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3554 seq_printf(seq, ",gid=%u",
3555 from_kgid_munged(&init_user_ns, sbinfo->gid));
3556 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3557 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3558 if (sbinfo->huge)
3559 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3560 #endif
3561 shmem_show_mpol(seq, sbinfo->mpol);
3562 return 0;
3563 }
3564
3565 #define MFD_NAME_PREFIX "memfd:"
3566 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3567 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3568
3569 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3570
3571 SYSCALL_DEFINE2(memfd_create,
3572 const char __user *, uname,
3573 unsigned int, flags)
3574 {
3575 struct shmem_inode_info *info;
3576 struct file *file;
3577 int fd, error;
3578 char *name;
3579 long len;
3580
3581 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3582 return -EINVAL;
3583
3584 /* length includes terminating zero */
3585 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3586 if (len <= 0)
3587 return -EFAULT;
3588 if (len > MFD_NAME_MAX_LEN + 1)
3589 return -EINVAL;
3590
3591 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3592 if (!name)
3593 return -ENOMEM;
3594
3595 strcpy(name, MFD_NAME_PREFIX);
3596 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3597 error = -EFAULT;
3598 goto err_name;
3599 }
3600
3601 /* terminating-zero may have changed after strnlen_user() returned */
3602 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3603 error = -EFAULT;
3604 goto err_name;
3605 }
3606
3607 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3608 if (fd < 0) {
3609 error = fd;
3610 goto err_name;
3611 }
3612
3613 file = shmem_file_setup(name, 0, VM_NORESERVE);
3614 if (IS_ERR(file)) {
3615 error = PTR_ERR(file);
3616 goto err_fd;
3617 }
3618 info = SHMEM_I(file_inode(file));
3619 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3620 file->f_flags |= O_RDWR | O_LARGEFILE;
3621 if (flags & MFD_ALLOW_SEALING)
3622 info->seals &= ~F_SEAL_SEAL;
3623
3624 fd_install(fd, file);
3625 kfree(name);
3626 return fd;
3627
3628 err_fd:
3629 put_unused_fd(fd);
3630 err_name:
3631 kfree(name);
3632 return error;
3633 }
3634
3635 #endif /* CONFIG_TMPFS */
3636
3637 static void shmem_put_super(struct super_block *sb)
3638 {
3639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3640
3641 percpu_counter_destroy(&sbinfo->used_blocks);
3642 mpol_put(sbinfo->mpol);
3643 kfree(sbinfo);
3644 sb->s_fs_info = NULL;
3645 }
3646
3647 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3648 {
3649 struct inode *inode;
3650 struct shmem_sb_info *sbinfo;
3651 int err = -ENOMEM;
3652
3653 /* Round up to L1_CACHE_BYTES to resist false sharing */
3654 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3655 L1_CACHE_BYTES), GFP_KERNEL);
3656 if (!sbinfo)
3657 return -ENOMEM;
3658
3659 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3660 sbinfo->uid = current_fsuid();
3661 sbinfo->gid = current_fsgid();
3662 sb->s_fs_info = sbinfo;
3663
3664 #ifdef CONFIG_TMPFS
3665 /*
3666 * Per default we only allow half of the physical ram per
3667 * tmpfs instance, limiting inodes to one per page of lowmem;
3668 * but the internal instance is left unlimited.
3669 */
3670 if (!(sb->s_flags & MS_KERNMOUNT)) {
3671 sbinfo->max_blocks = shmem_default_max_blocks();
3672 sbinfo->max_inodes = shmem_default_max_inodes();
3673 if (shmem_parse_options(data, sbinfo, false)) {
3674 err = -EINVAL;
3675 goto failed;
3676 }
3677 } else {
3678 sb->s_flags |= MS_NOUSER;
3679 }
3680 sb->s_export_op = &shmem_export_ops;
3681 sb->s_flags |= MS_NOSEC;
3682 #else
3683 sb->s_flags |= MS_NOUSER;
3684 #endif
3685
3686 spin_lock_init(&sbinfo->stat_lock);
3687 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3688 goto failed;
3689 sbinfo->free_inodes = sbinfo->max_inodes;
3690 spin_lock_init(&sbinfo->shrinklist_lock);
3691 INIT_LIST_HEAD(&sbinfo->shrinklist);
3692
3693 sb->s_maxbytes = MAX_LFS_FILESIZE;
3694 sb->s_blocksize = PAGE_SIZE;
3695 sb->s_blocksize_bits = PAGE_SHIFT;
3696 sb->s_magic = TMPFS_MAGIC;
3697 sb->s_op = &shmem_ops;
3698 sb->s_time_gran = 1;
3699 #ifdef CONFIG_TMPFS_XATTR
3700 sb->s_xattr = shmem_xattr_handlers;
3701 #endif
3702 #ifdef CONFIG_TMPFS_POSIX_ACL
3703 sb->s_flags |= MS_POSIXACL;
3704 #endif
3705
3706 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3707 if (!inode)
3708 goto failed;
3709 inode->i_uid = sbinfo->uid;
3710 inode->i_gid = sbinfo->gid;
3711 sb->s_root = d_make_root(inode);
3712 if (!sb->s_root)
3713 goto failed;
3714 return 0;
3715
3716 failed:
3717 shmem_put_super(sb);
3718 return err;
3719 }
3720
3721 static struct kmem_cache *shmem_inode_cachep;
3722
3723 static struct inode *shmem_alloc_inode(struct super_block *sb)
3724 {
3725 struct shmem_inode_info *info;
3726 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3727 if (!info)
3728 return NULL;
3729 return &info->vfs_inode;
3730 }
3731
3732 static void shmem_destroy_callback(struct rcu_head *head)
3733 {
3734 struct inode *inode = container_of(head, struct inode, i_rcu);
3735 if (S_ISLNK(inode->i_mode))
3736 kfree(inode->i_link);
3737 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3738 }
3739
3740 static void shmem_destroy_inode(struct inode *inode)
3741 {
3742 if (S_ISREG(inode->i_mode))
3743 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3744 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3745 }
3746
3747 static void shmem_init_inode(void *foo)
3748 {
3749 struct shmem_inode_info *info = foo;
3750 inode_init_once(&info->vfs_inode);
3751 }
3752
3753 static int shmem_init_inodecache(void)
3754 {
3755 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3756 sizeof(struct shmem_inode_info),
3757 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3758 return 0;
3759 }
3760
3761 static void shmem_destroy_inodecache(void)
3762 {
3763 kmem_cache_destroy(shmem_inode_cachep);
3764 }
3765
3766 static const struct address_space_operations shmem_aops = {
3767 .writepage = shmem_writepage,
3768 .set_page_dirty = __set_page_dirty_no_writeback,
3769 #ifdef CONFIG_TMPFS
3770 .write_begin = shmem_write_begin,
3771 .write_end = shmem_write_end,
3772 #endif
3773 #ifdef CONFIG_MIGRATION
3774 .migratepage = migrate_page,
3775 #endif
3776 .error_remove_page = generic_error_remove_page,
3777 };
3778
3779 static const struct file_operations shmem_file_operations = {
3780 .mmap = shmem_mmap,
3781 .get_unmapped_area = shmem_get_unmapped_area,
3782 #ifdef CONFIG_TMPFS
3783 .llseek = shmem_file_llseek,
3784 .read_iter = shmem_file_read_iter,
3785 .write_iter = generic_file_write_iter,
3786 .fsync = noop_fsync,
3787 .splice_read = shmem_file_splice_read,
3788 .splice_write = iter_file_splice_write,
3789 .fallocate = shmem_fallocate,
3790 #endif
3791 };
3792
3793 static const struct inode_operations shmem_inode_operations = {
3794 .getattr = shmem_getattr,
3795 .setattr = shmem_setattr,
3796 #ifdef CONFIG_TMPFS_XATTR
3797 .setxattr = generic_setxattr,
3798 .getxattr = generic_getxattr,
3799 .listxattr = shmem_listxattr,
3800 .removexattr = generic_removexattr,
3801 .set_acl = simple_set_acl,
3802 #endif
3803 };
3804
3805 static const struct inode_operations shmem_dir_inode_operations = {
3806 #ifdef CONFIG_TMPFS
3807 .create = shmem_create,
3808 .lookup = simple_lookup,
3809 .link = shmem_link,
3810 .unlink = shmem_unlink,
3811 .symlink = shmem_symlink,
3812 .mkdir = shmem_mkdir,
3813 .rmdir = shmem_rmdir,
3814 .mknod = shmem_mknod,
3815 .rename2 = shmem_rename2,
3816 .tmpfile = shmem_tmpfile,
3817 #endif
3818 #ifdef CONFIG_TMPFS_XATTR
3819 .setxattr = generic_setxattr,
3820 .getxattr = generic_getxattr,
3821 .listxattr = shmem_listxattr,
3822 .removexattr = generic_removexattr,
3823 #endif
3824 #ifdef CONFIG_TMPFS_POSIX_ACL
3825 .setattr = shmem_setattr,
3826 .set_acl = simple_set_acl,
3827 #endif
3828 };
3829
3830 static const struct inode_operations shmem_special_inode_operations = {
3831 #ifdef CONFIG_TMPFS_XATTR
3832 .setxattr = generic_setxattr,
3833 .getxattr = generic_getxattr,
3834 .listxattr = shmem_listxattr,
3835 .removexattr = generic_removexattr,
3836 #endif
3837 #ifdef CONFIG_TMPFS_POSIX_ACL
3838 .setattr = shmem_setattr,
3839 .set_acl = simple_set_acl,
3840 #endif
3841 };
3842
3843 static const struct super_operations shmem_ops = {
3844 .alloc_inode = shmem_alloc_inode,
3845 .destroy_inode = shmem_destroy_inode,
3846 #ifdef CONFIG_TMPFS
3847 .statfs = shmem_statfs,
3848 .remount_fs = shmem_remount_fs,
3849 .show_options = shmem_show_options,
3850 #endif
3851 .evict_inode = shmem_evict_inode,
3852 .drop_inode = generic_delete_inode,
3853 .put_super = shmem_put_super,
3854 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3855 .nr_cached_objects = shmem_unused_huge_count,
3856 .free_cached_objects = shmem_unused_huge_scan,
3857 #endif
3858 };
3859
3860 static const struct vm_operations_struct shmem_vm_ops = {
3861 .fault = shmem_fault,
3862 .map_pages = filemap_map_pages,
3863 #ifdef CONFIG_NUMA
3864 .set_policy = shmem_set_policy,
3865 .get_policy = shmem_get_policy,
3866 #endif
3867 };
3868
3869 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3870 int flags, const char *dev_name, void *data)
3871 {
3872 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3873 }
3874
3875 static struct file_system_type shmem_fs_type = {
3876 .owner = THIS_MODULE,
3877 .name = "tmpfs",
3878 .mount = shmem_mount,
3879 .kill_sb = kill_litter_super,
3880 .fs_flags = FS_USERNS_MOUNT,
3881 };
3882
3883 int __init shmem_init(void)
3884 {
3885 int error;
3886
3887 /* If rootfs called this, don't re-init */
3888 if (shmem_inode_cachep)
3889 return 0;
3890
3891 error = shmem_init_inodecache();
3892 if (error)
3893 goto out3;
3894
3895 error = register_filesystem(&shmem_fs_type);
3896 if (error) {
3897 pr_err("Could not register tmpfs\n");
3898 goto out2;
3899 }
3900
3901 shm_mnt = kern_mount(&shmem_fs_type);
3902 if (IS_ERR(shm_mnt)) {
3903 error = PTR_ERR(shm_mnt);
3904 pr_err("Could not kern_mount tmpfs\n");
3905 goto out1;
3906 }
3907
3908 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3909 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3910 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3911 else
3912 shmem_huge = 0; /* just in case it was patched */
3913 #endif
3914 return 0;
3915
3916 out1:
3917 unregister_filesystem(&shmem_fs_type);
3918 out2:
3919 shmem_destroy_inodecache();
3920 out3:
3921 shm_mnt = ERR_PTR(error);
3922 return error;
3923 }
3924
3925 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3926 static ssize_t shmem_enabled_show(struct kobject *kobj,
3927 struct kobj_attribute *attr, char *buf)
3928 {
3929 int values[] = {
3930 SHMEM_HUGE_ALWAYS,
3931 SHMEM_HUGE_WITHIN_SIZE,
3932 SHMEM_HUGE_ADVISE,
3933 SHMEM_HUGE_NEVER,
3934 SHMEM_HUGE_DENY,
3935 SHMEM_HUGE_FORCE,
3936 };
3937 int i, count;
3938
3939 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3940 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3941
3942 count += sprintf(buf + count, fmt,
3943 shmem_format_huge(values[i]));
3944 }
3945 buf[count - 1] = '\n';
3946 return count;
3947 }
3948
3949 static ssize_t shmem_enabled_store(struct kobject *kobj,
3950 struct kobj_attribute *attr, const char *buf, size_t count)
3951 {
3952 char tmp[16];
3953 int huge;
3954
3955 if (count + 1 > sizeof(tmp))
3956 return -EINVAL;
3957 memcpy(tmp, buf, count);
3958 tmp[count] = '\0';
3959 if (count && tmp[count - 1] == '\n')
3960 tmp[count - 1] = '\0';
3961
3962 huge = shmem_parse_huge(tmp);
3963 if (huge == -EINVAL)
3964 return -EINVAL;
3965 if (!has_transparent_hugepage() &&
3966 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967 return -EINVAL;
3968
3969 shmem_huge = huge;
3970 if (shmem_huge < SHMEM_HUGE_DENY)
3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 return count;
3973 }
3974
3975 struct kobj_attribute shmem_enabled_attr =
3976 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3977
3978 bool shmem_huge_enabled(struct vm_area_struct *vma)
3979 {
3980 struct inode *inode = file_inode(vma->vm_file);
3981 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3982 loff_t i_size;
3983 pgoff_t off;
3984
3985 if (shmem_huge == SHMEM_HUGE_FORCE)
3986 return true;
3987 if (shmem_huge == SHMEM_HUGE_DENY)
3988 return false;
3989 switch (sbinfo->huge) {
3990 case SHMEM_HUGE_NEVER:
3991 return false;
3992 case SHMEM_HUGE_ALWAYS:
3993 return true;
3994 case SHMEM_HUGE_WITHIN_SIZE:
3995 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3996 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3997 if (i_size >= HPAGE_PMD_SIZE &&
3998 i_size >> PAGE_SHIFT >= off)
3999 return true;
4000 case SHMEM_HUGE_ADVISE:
4001 /* TODO: implement fadvise() hints */
4002 return (vma->vm_flags & VM_HUGEPAGE);
4003 default:
4004 VM_BUG_ON(1);
4005 return false;
4006 }
4007 }
4008 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4009
4010 #else /* !CONFIG_SHMEM */
4011
4012 /*
4013 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014 *
4015 * This is intended for small system where the benefits of the full
4016 * shmem code (swap-backed and resource-limited) are outweighed by
4017 * their complexity. On systems without swap this code should be
4018 * effectively equivalent, but much lighter weight.
4019 */
4020
4021 static struct file_system_type shmem_fs_type = {
4022 .name = "tmpfs",
4023 .mount = ramfs_mount,
4024 .kill_sb = kill_litter_super,
4025 .fs_flags = FS_USERNS_MOUNT,
4026 };
4027
4028 int __init shmem_init(void)
4029 {
4030 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4031
4032 shm_mnt = kern_mount(&shmem_fs_type);
4033 BUG_ON(IS_ERR(shm_mnt));
4034
4035 return 0;
4036 }
4037
4038 int shmem_unuse(swp_entry_t swap, struct page *page)
4039 {
4040 return 0;
4041 }
4042
4043 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4044 {
4045 return 0;
4046 }
4047
4048 void shmem_unlock_mapping(struct address_space *mapping)
4049 {
4050 }
4051
4052 #ifdef CONFIG_MMU
4053 unsigned long shmem_get_unmapped_area(struct file *file,
4054 unsigned long addr, unsigned long len,
4055 unsigned long pgoff, unsigned long flags)
4056 {
4057 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4058 }
4059 #endif
4060
4061 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4062 {
4063 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4064 }
4065 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4066
4067 #define shmem_vm_ops generic_file_vm_ops
4068 #define shmem_file_operations ramfs_file_operations
4069 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4070 #define shmem_acct_size(flags, size) 0
4071 #define shmem_unacct_size(flags, size) do {} while (0)
4072
4073 #endif /* CONFIG_SHMEM */
4074
4075 /* common code */
4076
4077 static struct dentry_operations anon_ops = {
4078 .d_dname = simple_dname
4079 };
4080
4081 static struct file *__shmem_file_setup(const char *name, loff_t size,
4082 unsigned long flags, unsigned int i_flags)
4083 {
4084 struct file *res;
4085 struct inode *inode;
4086 struct path path;
4087 struct super_block *sb;
4088 struct qstr this;
4089
4090 if (IS_ERR(shm_mnt))
4091 return ERR_CAST(shm_mnt);
4092
4093 if (size < 0 || size > MAX_LFS_FILESIZE)
4094 return ERR_PTR(-EINVAL);
4095
4096 if (shmem_acct_size(flags, size))
4097 return ERR_PTR(-ENOMEM);
4098
4099 res = ERR_PTR(-ENOMEM);
4100 this.name = name;
4101 this.len = strlen(name);
4102 this.hash = 0; /* will go */
4103 sb = shm_mnt->mnt_sb;
4104 path.mnt = mntget(shm_mnt);
4105 path.dentry = d_alloc_pseudo(sb, &this);
4106 if (!path.dentry)
4107 goto put_memory;
4108 d_set_d_op(path.dentry, &anon_ops);
4109
4110 res = ERR_PTR(-ENOSPC);
4111 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4112 if (!inode)
4113 goto put_memory;
4114
4115 inode->i_flags |= i_flags;
4116 d_instantiate(path.dentry, inode);
4117 inode->i_size = size;
4118 clear_nlink(inode); /* It is unlinked */
4119 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4120 if (IS_ERR(res))
4121 goto put_path;
4122
4123 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4124 &shmem_file_operations);
4125 if (IS_ERR(res))
4126 goto put_path;
4127
4128 return res;
4129
4130 put_memory:
4131 shmem_unacct_size(flags, size);
4132 put_path:
4133 path_put(&path);
4134 return res;
4135 }
4136
4137 /**
4138 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4139 * kernel internal. There will be NO LSM permission checks against the
4140 * underlying inode. So users of this interface must do LSM checks at a
4141 * higher layer. The users are the big_key and shm implementations. LSM
4142 * checks are provided at the key or shm level rather than the inode.
4143 * @name: name for dentry (to be seen in /proc/<pid>/maps
4144 * @size: size to be set for the file
4145 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4146 */
4147 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4148 {
4149 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4150 }
4151
4152 /**
4153 * shmem_file_setup - get an unlinked file living in tmpfs
4154 * @name: name for dentry (to be seen in /proc/<pid>/maps
4155 * @size: size to be set for the file
4156 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157 */
4158 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4159 {
4160 return __shmem_file_setup(name, size, flags, 0);
4161 }
4162 EXPORT_SYMBOL_GPL(shmem_file_setup);
4163
4164 /**
4165 * shmem_zero_setup - setup a shared anonymous mapping
4166 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4167 */
4168 int shmem_zero_setup(struct vm_area_struct *vma)
4169 {
4170 struct file *file;
4171 loff_t size = vma->vm_end - vma->vm_start;
4172
4173 /*
4174 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4175 * between XFS directory reading and selinux: since this file is only
4176 * accessible to the user through its mapping, use S_PRIVATE flag to
4177 * bypass file security, in the same way as shmem_kernel_file_setup().
4178 */
4179 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4180 if (IS_ERR(file))
4181 return PTR_ERR(file);
4182
4183 if (vma->vm_file)
4184 fput(vma->vm_file);
4185 vma->vm_file = file;
4186 vma->vm_ops = &shmem_vm_ops;
4187
4188 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4189 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4190 (vma->vm_end & HPAGE_PMD_MASK)) {
4191 khugepaged_enter(vma, vma->vm_flags);
4192 }
4193
4194 return 0;
4195 }
4196
4197 /**
4198 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4199 * @mapping: the page's address_space
4200 * @index: the page index
4201 * @gfp: the page allocator flags to use if allocating
4202 *
4203 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4204 * with any new page allocations done using the specified allocation flags.
4205 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4206 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4207 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4208 *
4209 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4210 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4211 */
4212 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4213 pgoff_t index, gfp_t gfp)
4214 {
4215 #ifdef CONFIG_SHMEM
4216 struct inode *inode = mapping->host;
4217 struct page *page;
4218 int error;
4219
4220 BUG_ON(mapping->a_ops != &shmem_aops);
4221 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4222 gfp, NULL, NULL);
4223 if (error)
4224 page = ERR_PTR(error);
4225 else
4226 unlock_page(page);
4227 return page;
4228 #else
4229 /*
4230 * The tiny !SHMEM case uses ramfs without swap
4231 */
4232 return read_cache_page_gfp(mapping, index, gfp);
4233 #endif
4234 }
4235 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.109045 seconds and 6 git commands to generate.