Merge branch 'reset-seq' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libat...
[deliverable/linux.git] / net / mac80211 / ieee80211.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <net/mac80211.h>
12 #include <net/ieee80211_radiotap.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/etherdevice.h>
20 #include <linux/if_arp.h>
21 #include <linux/wireless.h>
22 #include <linux/rtnetlink.h>
23 #include <net/iw_handler.h>
24 #include <linux/compiler.h>
25 #include <linux/bitmap.h>
26 #include <net/cfg80211.h>
27
28 #include "ieee80211_common.h"
29 #include "ieee80211_i.h"
30 #include "ieee80211_rate.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "aes_ccm.h"
36 #include "ieee80211_led.h"
37 #include "ieee80211_cfg.h"
38 #include "debugfs.h"
39 #include "debugfs_netdev.h"
40 #include "debugfs_key.h"
41
42 /* privid for wiphys to determine whether they belong to us or not */
43 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
44
45 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
46 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
47 static const unsigned char rfc1042_header[] =
48 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
49
50 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
51 static const unsigned char bridge_tunnel_header[] =
52 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
53
54 /* No encapsulation header if EtherType < 0x600 (=length) */
55 static const unsigned char eapol_header[] =
56 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e };
57
58
59 static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata,
60 struct ieee80211_hdr *hdr)
61 {
62 /* Set the sequence number for this frame. */
63 hdr->seq_ctrl = cpu_to_le16(sdata->sequence);
64
65 /* Increase the sequence number. */
66 sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ;
67 }
68
69 struct ieee80211_key_conf *
70 ieee80211_key_data2conf(struct ieee80211_local *local,
71 const struct ieee80211_key *data)
72 {
73 struct ieee80211_key_conf *conf;
74
75 conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC);
76 if (!conf)
77 return NULL;
78
79 conf->hw_key_idx = data->hw_key_idx;
80 conf->alg = data->alg;
81 conf->keylen = data->keylen;
82 conf->flags = 0;
83 if (data->force_sw_encrypt)
84 conf->flags |= IEEE80211_KEY_FORCE_SW_ENCRYPT;
85 conf->keyidx = data->keyidx;
86 if (data->default_tx_key)
87 conf->flags |= IEEE80211_KEY_DEFAULT_TX_KEY;
88 if (local->default_wep_only)
89 conf->flags |= IEEE80211_KEY_DEFAULT_WEP_ONLY;
90 memcpy(conf->key, data->key, data->keylen);
91
92 return conf;
93 }
94
95 struct ieee80211_key *ieee80211_key_alloc(struct ieee80211_sub_if_data *sdata,
96 int idx, size_t key_len, gfp_t flags)
97 {
98 struct ieee80211_key *key;
99
100 key = kzalloc(sizeof(struct ieee80211_key) + key_len, flags);
101 if (!key)
102 return NULL;
103 kref_init(&key->kref);
104 return key;
105 }
106
107 static void ieee80211_key_release(struct kref *kref)
108 {
109 struct ieee80211_key *key;
110
111 key = container_of(kref, struct ieee80211_key, kref);
112 if (key->alg == ALG_CCMP)
113 ieee80211_aes_key_free(key->u.ccmp.tfm);
114 ieee80211_debugfs_key_remove(key);
115 kfree(key);
116 }
117
118 void ieee80211_key_free(struct ieee80211_key *key)
119 {
120 if (key)
121 kref_put(&key->kref, ieee80211_key_release);
122 }
123
124 static int rate_list_match(const int *rate_list, int rate)
125 {
126 int i;
127
128 if (!rate_list)
129 return 0;
130
131 for (i = 0; rate_list[i] >= 0; i++)
132 if (rate_list[i] == rate)
133 return 1;
134
135 return 0;
136 }
137
138
139 void ieee80211_prepare_rates(struct ieee80211_local *local,
140 struct ieee80211_hw_mode *mode)
141 {
142 int i;
143
144 for (i = 0; i < mode->num_rates; i++) {
145 struct ieee80211_rate *rate = &mode->rates[i];
146
147 rate->flags &= ~(IEEE80211_RATE_SUPPORTED |
148 IEEE80211_RATE_BASIC);
149
150 if (local->supp_rates[mode->mode]) {
151 if (!rate_list_match(local->supp_rates[mode->mode],
152 rate->rate))
153 continue;
154 }
155
156 rate->flags |= IEEE80211_RATE_SUPPORTED;
157
158 /* Use configured basic rate set if it is available. If not,
159 * use defaults that are sane for most cases. */
160 if (local->basic_rates[mode->mode]) {
161 if (rate_list_match(local->basic_rates[mode->mode],
162 rate->rate))
163 rate->flags |= IEEE80211_RATE_BASIC;
164 } else switch (mode->mode) {
165 case MODE_IEEE80211A:
166 if (rate->rate == 60 || rate->rate == 120 ||
167 rate->rate == 240)
168 rate->flags |= IEEE80211_RATE_BASIC;
169 break;
170 case MODE_IEEE80211B:
171 if (rate->rate == 10 || rate->rate == 20)
172 rate->flags |= IEEE80211_RATE_BASIC;
173 break;
174 case MODE_ATHEROS_TURBO:
175 if (rate->rate == 120 || rate->rate == 240 ||
176 rate->rate == 480)
177 rate->flags |= IEEE80211_RATE_BASIC;
178 break;
179 case MODE_IEEE80211G:
180 if (rate->rate == 10 || rate->rate == 20 ||
181 rate->rate == 55 || rate->rate == 110)
182 rate->flags |= IEEE80211_RATE_BASIC;
183 break;
184 }
185
186 /* Set ERP and MANDATORY flags based on phymode */
187 switch (mode->mode) {
188 case MODE_IEEE80211A:
189 if (rate->rate == 60 || rate->rate == 120 ||
190 rate->rate == 240)
191 rate->flags |= IEEE80211_RATE_MANDATORY;
192 break;
193 case MODE_IEEE80211B:
194 if (rate->rate == 10)
195 rate->flags |= IEEE80211_RATE_MANDATORY;
196 break;
197 case MODE_ATHEROS_TURBO:
198 break;
199 case MODE_IEEE80211G:
200 if (rate->rate == 10 || rate->rate == 20 ||
201 rate->rate == 55 || rate->rate == 110 ||
202 rate->rate == 60 || rate->rate == 120 ||
203 rate->rate == 240)
204 rate->flags |= IEEE80211_RATE_MANDATORY;
205 break;
206 }
207 if (ieee80211_is_erp_rate(mode->mode, rate->rate))
208 rate->flags |= IEEE80211_RATE_ERP;
209 }
210 }
211
212
213 static void ieee80211_key_threshold_notify(struct net_device *dev,
214 struct ieee80211_key *key,
215 struct sta_info *sta)
216 {
217 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
218 struct sk_buff *skb;
219 struct ieee80211_msg_key_notification *msg;
220
221 /* if no one will get it anyway, don't even allocate it.
222 * unlikely because this is only relevant for APs
223 * where the device must be open... */
224 if (unlikely(!local->apdev))
225 return;
226
227 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
228 sizeof(struct ieee80211_msg_key_notification));
229 if (!skb)
230 return;
231
232 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
233 msg = (struct ieee80211_msg_key_notification *)
234 skb_put(skb, sizeof(struct ieee80211_msg_key_notification));
235 msg->tx_rx_count = key->tx_rx_count;
236 memcpy(msg->ifname, dev->name, IFNAMSIZ);
237 if (sta)
238 memcpy(msg->addr, sta->addr, ETH_ALEN);
239 else
240 memset(msg->addr, 0xff, ETH_ALEN);
241
242 key->tx_rx_count = 0;
243
244 ieee80211_rx_mgmt(local, skb, NULL,
245 ieee80211_msg_key_threshold_notification);
246 }
247
248
249 static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len)
250 {
251 u16 fc;
252
253 if (len < 24)
254 return NULL;
255
256 fc = le16_to_cpu(hdr->frame_control);
257
258 switch (fc & IEEE80211_FCTL_FTYPE) {
259 case IEEE80211_FTYPE_DATA:
260 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
261 case IEEE80211_FCTL_TODS:
262 return hdr->addr1;
263 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
264 return NULL;
265 case IEEE80211_FCTL_FROMDS:
266 return hdr->addr2;
267 case 0:
268 return hdr->addr3;
269 }
270 break;
271 case IEEE80211_FTYPE_MGMT:
272 return hdr->addr3;
273 case IEEE80211_FTYPE_CTL:
274 if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)
275 return hdr->addr1;
276 else
277 return NULL;
278 }
279
280 return NULL;
281 }
282
283 int ieee80211_get_hdrlen(u16 fc)
284 {
285 int hdrlen = 24;
286
287 switch (fc & IEEE80211_FCTL_FTYPE) {
288 case IEEE80211_FTYPE_DATA:
289 if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS))
290 hdrlen = 30; /* Addr4 */
291 /*
292 * The QoS Control field is two bytes and its presence is
293 * indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to
294 * hdrlen if that bit is set.
295 * This works by masking out the bit and shifting it to
296 * bit position 1 so the result has the value 0 or 2.
297 */
298 hdrlen += (fc & IEEE80211_STYPE_QOS_DATA)
299 >> (ilog2(IEEE80211_STYPE_QOS_DATA)-1);
300 break;
301 case IEEE80211_FTYPE_CTL:
302 /*
303 * ACK and CTS are 10 bytes, all others 16. To see how
304 * to get this condition consider
305 * subtype mask: 0b0000000011110000 (0x00F0)
306 * ACK subtype: 0b0000000011010000 (0x00D0)
307 * CTS subtype: 0b0000000011000000 (0x00C0)
308 * bits that matter: ^^^ (0x00E0)
309 * value of those: 0b0000000011000000 (0x00C0)
310 */
311 if ((fc & 0xE0) == 0xC0)
312 hdrlen = 10;
313 else
314 hdrlen = 16;
315 break;
316 }
317
318 return hdrlen;
319 }
320 EXPORT_SYMBOL(ieee80211_get_hdrlen);
321
322 int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
323 {
324 const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data;
325 int hdrlen;
326
327 if (unlikely(skb->len < 10))
328 return 0;
329 hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
330 if (unlikely(hdrlen > skb->len))
331 return 0;
332 return hdrlen;
333 }
334 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
335
336 static int ieee80211_get_radiotap_len(struct sk_buff *skb)
337 {
338 struct ieee80211_radiotap_header *hdr =
339 (struct ieee80211_radiotap_header *) skb->data;
340
341 return le16_to_cpu(hdr->it_len);
342 }
343
344 #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP
345 static void ieee80211_dump_frame(const char *ifname, const char *title,
346 const struct sk_buff *skb)
347 {
348 const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
349 u16 fc;
350 int hdrlen;
351
352 printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
353 if (skb->len < 4) {
354 printk("\n");
355 return;
356 }
357
358 fc = le16_to_cpu(hdr->frame_control);
359 hdrlen = ieee80211_get_hdrlen(fc);
360 if (hdrlen > skb->len)
361 hdrlen = skb->len;
362 if (hdrlen >= 4)
363 printk(" FC=0x%04x DUR=0x%04x",
364 fc, le16_to_cpu(hdr->duration_id));
365 if (hdrlen >= 10)
366 printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1));
367 if (hdrlen >= 16)
368 printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2));
369 if (hdrlen >= 24)
370 printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3));
371 if (hdrlen >= 30)
372 printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4));
373 printk("\n");
374 }
375 #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
376 static inline void ieee80211_dump_frame(const char *ifname, const char *title,
377 struct sk_buff *skb)
378 {
379 }
380 #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
381
382
383 static int ieee80211_is_eapol(const struct sk_buff *skb)
384 {
385 const struct ieee80211_hdr *hdr;
386 u16 fc;
387 int hdrlen;
388
389 if (unlikely(skb->len < 10))
390 return 0;
391
392 hdr = (const struct ieee80211_hdr *) skb->data;
393 fc = le16_to_cpu(hdr->frame_control);
394
395 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
396 return 0;
397
398 hdrlen = ieee80211_get_hdrlen(fc);
399
400 if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) &&
401 memcmp(skb->data + hdrlen, eapol_header,
402 sizeof(eapol_header)) == 0))
403 return 1;
404
405 return 0;
406 }
407
408
409 static ieee80211_txrx_result
410 ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
411 {
412 struct rate_control_extra extra;
413
414 memset(&extra, 0, sizeof(extra));
415 extra.mode = tx->u.tx.mode;
416 extra.mgmt_data = tx->sdata &&
417 tx->sdata->type == IEEE80211_IF_TYPE_MGMT;
418 extra.ethertype = tx->ethertype;
419
420 tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb,
421 &extra);
422 if (unlikely(extra.probe != NULL)) {
423 tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE;
424 tx->u.tx.probe_last_frag = 1;
425 tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val;
426 tx->u.tx.rate = extra.probe;
427 } else {
428 tx->u.tx.control->alt_retry_rate = -1;
429 }
430 if (!tx->u.tx.rate)
431 return TXRX_DROP;
432 if (tx->u.tx.mode->mode == MODE_IEEE80211G &&
433 tx->local->cts_protect_erp_frames && tx->fragmented &&
434 extra.nonerp) {
435 tx->u.tx.last_frag_rate = tx->u.tx.rate;
436 tx->u.tx.probe_last_frag = extra.probe ? 1 : 0;
437
438 tx->u.tx.rate = extra.nonerp;
439 tx->u.tx.control->rate = extra.nonerp;
440 tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
441 } else {
442 tx->u.tx.last_frag_rate = tx->u.tx.rate;
443 tx->u.tx.control->rate = tx->u.tx.rate;
444 }
445 tx->u.tx.control->tx_rate = tx->u.tx.rate->val;
446 if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) &&
447 tx->local->short_preamble &&
448 (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
449 tx->u.tx.short_preamble = 1;
450 tx->u.tx.control->tx_rate = tx->u.tx.rate->val2;
451 }
452
453 return TXRX_CONTINUE;
454 }
455
456
457 static ieee80211_txrx_result
458 ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
459 {
460 if (tx->sta)
461 tx->u.tx.control->key_idx = tx->sta->key_idx_compression;
462 else
463 tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID;
464
465 if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT))
466 tx->key = NULL;
467 else if (tx->sta && tx->sta->key)
468 tx->key = tx->sta->key;
469 else if (tx->sdata->default_key)
470 tx->key = tx->sdata->default_key;
471 else if (tx->sdata->drop_unencrypted &&
472 !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) {
473 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
474 return TXRX_DROP;
475 } else
476 tx->key = NULL;
477
478 if (tx->key) {
479 tx->key->tx_rx_count++;
480 if (unlikely(tx->local->key_tx_rx_threshold &&
481 tx->key->tx_rx_count >
482 tx->local->key_tx_rx_threshold)) {
483 ieee80211_key_threshold_notify(tx->dev, tx->key,
484 tx->sta);
485 }
486 }
487
488 return TXRX_CONTINUE;
489 }
490
491
492 static ieee80211_txrx_result
493 ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
494 {
495 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
496 size_t hdrlen, per_fragm, num_fragm, payload_len, left;
497 struct sk_buff **frags, *first, *frag;
498 int i;
499 u16 seq;
500 u8 *pos;
501 int frag_threshold = tx->local->fragmentation_threshold;
502
503 if (!tx->fragmented)
504 return TXRX_CONTINUE;
505
506 first = tx->skb;
507
508 hdrlen = ieee80211_get_hdrlen(tx->fc);
509 payload_len = first->len - hdrlen;
510 per_fragm = frag_threshold - hdrlen - FCS_LEN;
511 num_fragm = (payload_len + per_fragm - 1) / per_fragm;
512
513 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
514 if (!frags)
515 goto fail;
516
517 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
518 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
519 pos = first->data + hdrlen + per_fragm;
520 left = payload_len - per_fragm;
521 for (i = 0; i < num_fragm - 1; i++) {
522 struct ieee80211_hdr *fhdr;
523 size_t copylen;
524
525 if (left <= 0)
526 goto fail;
527
528 /* reserve enough extra head and tail room for possible
529 * encryption */
530 frag = frags[i] =
531 dev_alloc_skb(tx->local->hw.extra_tx_headroom +
532 frag_threshold +
533 IEEE80211_ENCRYPT_HEADROOM +
534 IEEE80211_ENCRYPT_TAILROOM);
535 if (!frag)
536 goto fail;
537 /* Make sure that all fragments use the same priority so
538 * that they end up using the same TX queue */
539 frag->priority = first->priority;
540 skb_reserve(frag, tx->local->hw.extra_tx_headroom +
541 IEEE80211_ENCRYPT_HEADROOM);
542 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
543 memcpy(fhdr, first->data, hdrlen);
544 if (i == num_fragm - 2)
545 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
546 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
547 copylen = left > per_fragm ? per_fragm : left;
548 memcpy(skb_put(frag, copylen), pos, copylen);
549
550 pos += copylen;
551 left -= copylen;
552 }
553 skb_trim(first, hdrlen + per_fragm);
554
555 tx->u.tx.num_extra_frag = num_fragm - 1;
556 tx->u.tx.extra_frag = frags;
557
558 return TXRX_CONTINUE;
559
560 fail:
561 printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
562 if (frags) {
563 for (i = 0; i < num_fragm - 1; i++)
564 if (frags[i])
565 dev_kfree_skb(frags[i]);
566 kfree(frags);
567 }
568 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
569 return TXRX_DROP;
570 }
571
572
573 static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
574 {
575 if (tx->key->force_sw_encrypt) {
576 if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
577 return -1;
578 } else {
579 tx->u.tx.control->key_idx = tx->key->hw_key_idx;
580 if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
581 if (ieee80211_wep_add_iv(tx->local, skb, tx->key) ==
582 NULL)
583 return -1;
584 }
585 }
586 return 0;
587 }
588
589
590 void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx)
591 {
592 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
593
594 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
595 if (tx->u.tx.extra_frag) {
596 struct ieee80211_hdr *fhdr;
597 int i;
598 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
599 fhdr = (struct ieee80211_hdr *)
600 tx->u.tx.extra_frag[i]->data;
601 fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
602 }
603 }
604 }
605
606
607 static ieee80211_txrx_result
608 ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx)
609 {
610 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
611 u16 fc;
612
613 fc = le16_to_cpu(hdr->frame_control);
614
615 if (!tx->key || tx->key->alg != ALG_WEP ||
616 ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
617 ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
618 (fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
619 return TXRX_CONTINUE;
620
621 tx->u.tx.control->iv_len = WEP_IV_LEN;
622 tx->u.tx.control->icv_len = WEP_ICV_LEN;
623 ieee80211_tx_set_iswep(tx);
624
625 if (wep_encrypt_skb(tx, tx->skb) < 0) {
626 I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
627 return TXRX_DROP;
628 }
629
630 if (tx->u.tx.extra_frag) {
631 int i;
632 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
633 if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
634 I802_DEBUG_INC(tx->local->
635 tx_handlers_drop_wep);
636 return TXRX_DROP;
637 }
638 }
639 }
640
641 return TXRX_CONTINUE;
642 }
643
644
645 static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
646 int rate, int erp, int short_preamble)
647 {
648 int dur;
649
650 /* calculate duration (in microseconds, rounded up to next higher
651 * integer if it includes a fractional microsecond) to send frame of
652 * len bytes (does not include FCS) at the given rate. Duration will
653 * also include SIFS.
654 *
655 * rate is in 100 kbps, so divident is multiplied by 10 in the
656 * DIV_ROUND_UP() operations.
657 */
658
659 if (local->hw.conf.phymode == MODE_IEEE80211A || erp ||
660 local->hw.conf.phymode == MODE_ATHEROS_TURBO) {
661 /*
662 * OFDM:
663 *
664 * N_DBPS = DATARATE x 4
665 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
666 * (16 = SIGNAL time, 6 = tail bits)
667 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
668 *
669 * T_SYM = 4 usec
670 * 802.11a - 17.5.2: aSIFSTime = 16 usec
671 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
672 * signal ext = 6 usec
673 */
674 /* FIX: Atheros Turbo may have different (shorter) duration? */
675 dur = 16; /* SIFS + signal ext */
676 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
677 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
678 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
679 4 * rate); /* T_SYM x N_SYM */
680 } else {
681 /*
682 * 802.11b or 802.11g with 802.11b compatibility:
683 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
684 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
685 *
686 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
687 * aSIFSTime = 10 usec
688 * aPreambleLength = 144 usec or 72 usec with short preamble
689 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
690 */
691 dur = 10; /* aSIFSTime = 10 usec */
692 dur += short_preamble ? (72 + 24) : (144 + 48);
693
694 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
695 }
696
697 return dur;
698 }
699
700
701 /* Exported duration function for driver use */
702 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
703 size_t frame_len, int rate)
704 {
705 struct ieee80211_local *local = hw_to_local(hw);
706 u16 dur;
707 int erp;
708
709 erp = ieee80211_is_erp_rate(hw->conf.phymode, rate);
710 dur = ieee80211_frame_duration(local, frame_len, rate,
711 erp, local->short_preamble);
712
713 return cpu_to_le16(dur);
714 }
715 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
716
717
718 static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
719 int next_frag_len)
720 {
721 int rate, mrate, erp, dur, i;
722 struct ieee80211_rate *txrate = tx->u.tx.rate;
723 struct ieee80211_local *local = tx->local;
724 struct ieee80211_hw_mode *mode = tx->u.tx.mode;
725
726 erp = txrate->flags & IEEE80211_RATE_ERP;
727
728 /*
729 * data and mgmt (except PS Poll):
730 * - during CFP: 32768
731 * - during contention period:
732 * if addr1 is group address: 0
733 * if more fragments = 0 and addr1 is individual address: time to
734 * transmit one ACK plus SIFS
735 * if more fragments = 1 and addr1 is individual address: time to
736 * transmit next fragment plus 2 x ACK plus 3 x SIFS
737 *
738 * IEEE 802.11, 9.6:
739 * - control response frame (CTS or ACK) shall be transmitted using the
740 * same rate as the immediately previous frame in the frame exchange
741 * sequence, if this rate belongs to the PHY mandatory rates, or else
742 * at the highest possible rate belonging to the PHY rates in the
743 * BSSBasicRateSet
744 */
745
746 if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) {
747 /* TODO: These control frames are not currently sent by
748 * 80211.o, but should they be implemented, this function
749 * needs to be updated to support duration field calculation.
750 *
751 * RTS: time needed to transmit pending data/mgmt frame plus
752 * one CTS frame plus one ACK frame plus 3 x SIFS
753 * CTS: duration of immediately previous RTS minus time
754 * required to transmit CTS and its SIFS
755 * ACK: 0 if immediately previous directed data/mgmt had
756 * more=0, with more=1 duration in ACK frame is duration
757 * from previous frame minus time needed to transmit ACK
758 * and its SIFS
759 * PS Poll: BIT(15) | BIT(14) | aid
760 */
761 return 0;
762 }
763
764 /* data/mgmt */
765 if (0 /* FIX: data/mgmt during CFP */)
766 return 32768;
767
768 if (group_addr) /* Group address as the destination - no ACK */
769 return 0;
770
771 /* Individual destination address:
772 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
773 * CTS and ACK frames shall be transmitted using the highest rate in
774 * basic rate set that is less than or equal to the rate of the
775 * immediately previous frame and that is using the same modulation
776 * (CCK or OFDM). If no basic rate set matches with these requirements,
777 * the highest mandatory rate of the PHY that is less than or equal to
778 * the rate of the previous frame is used.
779 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
780 */
781 rate = -1;
782 mrate = 10; /* use 1 Mbps if everything fails */
783 for (i = 0; i < mode->num_rates; i++) {
784 struct ieee80211_rate *r = &mode->rates[i];
785 if (r->rate > txrate->rate)
786 break;
787
788 if (IEEE80211_RATE_MODULATION(txrate->flags) !=
789 IEEE80211_RATE_MODULATION(r->flags))
790 continue;
791
792 if (r->flags & IEEE80211_RATE_BASIC)
793 rate = r->rate;
794 else if (r->flags & IEEE80211_RATE_MANDATORY)
795 mrate = r->rate;
796 }
797 if (rate == -1) {
798 /* No matching basic rate found; use highest suitable mandatory
799 * PHY rate */
800 rate = mrate;
801 }
802
803 /* Time needed to transmit ACK
804 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
805 * to closest integer */
806
807 dur = ieee80211_frame_duration(local, 10, rate, erp,
808 local->short_preamble);
809
810 if (next_frag_len) {
811 /* Frame is fragmented: duration increases with time needed to
812 * transmit next fragment plus ACK and 2 x SIFS. */
813 dur *= 2; /* ACK + SIFS */
814 /* next fragment */
815 dur += ieee80211_frame_duration(local, next_frag_len,
816 txrate->rate, erp,
817 local->short_preamble);
818 }
819
820 return dur;
821 }
822
823
824 static ieee80211_txrx_result
825 ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
826 {
827 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
828 u16 dur;
829 struct ieee80211_tx_control *control = tx->u.tx.control;
830 struct ieee80211_hw_mode *mode = tx->u.tx.mode;
831
832 if (!is_multicast_ether_addr(hdr->addr1)) {
833 if (tx->skb->len + FCS_LEN > tx->local->rts_threshold &&
834 tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) {
835 control->flags |= IEEE80211_TXCTL_USE_RTS_CTS;
836 control->retry_limit =
837 tx->local->long_retry_limit;
838 } else {
839 control->retry_limit =
840 tx->local->short_retry_limit;
841 }
842 } else {
843 control->retry_limit = 1;
844 }
845
846 if (tx->fragmented) {
847 /* Do not use multiple retry rates when sending fragmented
848 * frames.
849 * TODO: The last fragment could still use multiple retry
850 * rates. */
851 control->alt_retry_rate = -1;
852 }
853
854 /* Use CTS protection for unicast frames sent using extended rates if
855 * there are associated non-ERP stations and RTS/CTS is not configured
856 * for the frame. */
857 if (mode->mode == MODE_IEEE80211G &&
858 (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) &&
859 tx->u.tx.unicast &&
860 tx->local->cts_protect_erp_frames &&
861 !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS))
862 control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT;
863
864 /* Setup duration field for the first fragment of the frame. Duration
865 * for remaining fragments will be updated when they are being sent
866 * to low-level driver in ieee80211_tx(). */
867 dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1),
868 tx->fragmented ? tx->u.tx.extra_frag[0]->len :
869 0);
870 hdr->duration_id = cpu_to_le16(dur);
871
872 if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) ||
873 (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) {
874 struct ieee80211_rate *rate;
875
876 /* Do not use multiple retry rates when using RTS/CTS */
877 control->alt_retry_rate = -1;
878
879 /* Use min(data rate, max base rate) as CTS/RTS rate */
880 rate = tx->u.tx.rate;
881 while (rate > mode->rates &&
882 !(rate->flags & IEEE80211_RATE_BASIC))
883 rate--;
884
885 control->rts_cts_rate = rate->val;
886 control->rts_rate = rate;
887 }
888
889 if (tx->sta) {
890 tx->sta->tx_packets++;
891 tx->sta->tx_fragments++;
892 tx->sta->tx_bytes += tx->skb->len;
893 if (tx->u.tx.extra_frag) {
894 int i;
895 tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
896 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
897 tx->sta->tx_bytes +=
898 tx->u.tx.extra_frag[i]->len;
899 }
900 }
901 }
902
903 return TXRX_CONTINUE;
904 }
905
906
907 static ieee80211_txrx_result
908 ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
909 {
910 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
911 struct sk_buff *skb = tx->skb;
912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
913 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
914 u32 sta_flags;
915
916 if (unlikely(tx->local->sta_scanning != 0) &&
917 ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
918 (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ))
919 return TXRX_DROP;
920
921 if (tx->u.tx.ps_buffered)
922 return TXRX_CONTINUE;
923
924 sta_flags = tx->sta ? tx->sta->flags : 0;
925
926 if (likely(tx->u.tx.unicast)) {
927 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
928 tx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
929 (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) {
930 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
931 printk(KERN_DEBUG "%s: dropped data frame to not "
932 "associated station " MAC_FMT "\n",
933 tx->dev->name, MAC_ARG(hdr->addr1));
934 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
935 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
936 return TXRX_DROP;
937 }
938 } else {
939 if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
940 tx->local->num_sta == 0 &&
941 !tx->local->allow_broadcast_always &&
942 tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) {
943 /*
944 * No associated STAs - no need to send multicast
945 * frames.
946 */
947 return TXRX_DROP;
948 }
949 return TXRX_CONTINUE;
950 }
951
952 if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x &&
953 !(sta_flags & WLAN_STA_AUTHORIZED))) {
954 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
955 printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT
956 " (unauthorized port)\n", tx->dev->name,
957 MAC_ARG(hdr->addr1));
958 #endif
959 I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port);
960 return TXRX_DROP;
961 }
962
963 return TXRX_CONTINUE;
964 }
965
966 static ieee80211_txrx_result
967 ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx)
968 {
969 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
970
971 if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24)
972 ieee80211_include_sequence(tx->sdata, hdr);
973
974 return TXRX_CONTINUE;
975 }
976
977 /* This function is called whenever the AP is about to exceed the maximum limit
978 * of buffered frames for power saving STAs. This situation should not really
979 * happen often during normal operation, so dropping the oldest buffered packet
980 * from each queue should be OK to make some room for new frames. */
981 static void purge_old_ps_buffers(struct ieee80211_local *local)
982 {
983 int total = 0, purged = 0;
984 struct sk_buff *skb;
985 struct ieee80211_sub_if_data *sdata;
986 struct sta_info *sta;
987
988 read_lock(&local->sub_if_lock);
989 list_for_each_entry(sdata, &local->sub_if_list, list) {
990 struct ieee80211_if_ap *ap;
991 if (sdata->dev == local->mdev ||
992 sdata->type != IEEE80211_IF_TYPE_AP)
993 continue;
994 ap = &sdata->u.ap;
995 skb = skb_dequeue(&ap->ps_bc_buf);
996 if (skb) {
997 purged++;
998 dev_kfree_skb(skb);
999 }
1000 total += skb_queue_len(&ap->ps_bc_buf);
1001 }
1002 read_unlock(&local->sub_if_lock);
1003
1004 spin_lock_bh(&local->sta_lock);
1005 list_for_each_entry(sta, &local->sta_list, list) {
1006 skb = skb_dequeue(&sta->ps_tx_buf);
1007 if (skb) {
1008 purged++;
1009 dev_kfree_skb(skb);
1010 }
1011 total += skb_queue_len(&sta->ps_tx_buf);
1012 }
1013 spin_unlock_bh(&local->sta_lock);
1014
1015 local->total_ps_buffered = total;
1016 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
1017 local->mdev->name, purged);
1018 }
1019
1020
1021 static inline ieee80211_txrx_result
1022 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
1023 {
1024 /* broadcast/multicast frame */
1025 /* If any of the associated stations is in power save mode,
1026 * the frame is buffered to be sent after DTIM beacon frame */
1027 if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) &&
1028 tx->sdata->type != IEEE80211_IF_TYPE_WDS &&
1029 tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) &&
1030 !(tx->fc & IEEE80211_FCTL_ORDER)) {
1031 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
1032 purge_old_ps_buffers(tx->local);
1033 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
1034 AP_MAX_BC_BUFFER) {
1035 if (net_ratelimit()) {
1036 printk(KERN_DEBUG "%s: BC TX buffer full - "
1037 "dropping the oldest frame\n",
1038 tx->dev->name);
1039 }
1040 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
1041 } else
1042 tx->local->total_ps_buffered++;
1043 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
1044 return TXRX_QUEUED;
1045 }
1046
1047 return TXRX_CONTINUE;
1048 }
1049
1050
1051 static inline ieee80211_txrx_result
1052 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
1053 {
1054 struct sta_info *sta = tx->sta;
1055
1056 if (unlikely(!sta ||
1057 ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1058 (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)))
1059 return TXRX_CONTINUE;
1060
1061 if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) {
1062 struct ieee80211_tx_packet_data *pkt_data;
1063 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1064 printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries "
1065 "before %d)\n",
1066 MAC_ARG(sta->addr), sta->aid,
1067 skb_queue_len(&sta->ps_tx_buf));
1068 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1069 sta->flags |= WLAN_STA_TIM;
1070 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
1071 purge_old_ps_buffers(tx->local);
1072 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
1073 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
1074 if (net_ratelimit()) {
1075 printk(KERN_DEBUG "%s: STA " MAC_FMT " TX "
1076 "buffer full - dropping oldest frame\n",
1077 tx->dev->name, MAC_ARG(sta->addr));
1078 }
1079 dev_kfree_skb(old);
1080 } else
1081 tx->local->total_ps_buffered++;
1082 /* Queue frame to be sent after STA sends an PS Poll frame */
1083 if (skb_queue_empty(&sta->ps_tx_buf)) {
1084 if (tx->local->ops->set_tim)
1085 tx->local->ops->set_tim(local_to_hw(tx->local),
1086 sta->aid, 1);
1087 if (tx->sdata->bss)
1088 bss_tim_set(tx->local, tx->sdata->bss, sta->aid);
1089 }
1090 pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
1091 pkt_data->jiffies = jiffies;
1092 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
1093 return TXRX_QUEUED;
1094 }
1095 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1096 else if (unlikely(sta->flags & WLAN_STA_PS)) {
1097 printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll "
1098 "set -> send frame\n", tx->dev->name,
1099 MAC_ARG(sta->addr));
1100 }
1101 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1102 sta->pspoll = 0;
1103
1104 return TXRX_CONTINUE;
1105 }
1106
1107
1108 static ieee80211_txrx_result
1109 ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
1110 {
1111 if (unlikely(tx->u.tx.ps_buffered))
1112 return TXRX_CONTINUE;
1113
1114 if (tx->u.tx.unicast)
1115 return ieee80211_tx_h_unicast_ps_buf(tx);
1116 else
1117 return ieee80211_tx_h_multicast_ps_buf(tx);
1118 }
1119
1120
1121 static void inline
1122 __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
1123 struct sk_buff *skb,
1124 struct net_device *dev,
1125 struct ieee80211_tx_control *control)
1126 {
1127 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1128 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1129 int hdrlen;
1130
1131 memset(tx, 0, sizeof(*tx));
1132 tx->skb = skb;
1133 tx->dev = dev; /* use original interface */
1134 tx->local = local;
1135 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1136 tx->sta = sta_info_get(local, hdr->addr1);
1137 tx->fc = le16_to_cpu(hdr->frame_control);
1138 control->power_level = local->hw.conf.power_level;
1139 tx->u.tx.control = control;
1140 tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1);
1141 if (is_multicast_ether_addr(hdr->addr1))
1142 control->flags |= IEEE80211_TXCTL_NO_ACK;
1143 else
1144 control->flags &= ~IEEE80211_TXCTL_NO_ACK;
1145 tx->fragmented = local->fragmentation_threshold <
1146 IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast &&
1147 skb->len + FCS_LEN > local->fragmentation_threshold &&
1148 (!local->ops->set_frag_threshold);
1149 if (!tx->sta)
1150 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
1151 else if (tx->sta->clear_dst_mask) {
1152 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
1153 tx->sta->clear_dst_mask = 0;
1154 }
1155 control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
1156 if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta)
1157 control->antenna_sel_tx = tx->sta->antenna_sel_tx;
1158 hdrlen = ieee80211_get_hdrlen(tx->fc);
1159 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1160 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1161 tx->ethertype = (pos[0] << 8) | pos[1];
1162 }
1163 control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT;
1164
1165 }
1166
1167 static int inline is_ieee80211_device(struct net_device *dev,
1168 struct net_device *master)
1169 {
1170 return (wdev_priv(dev->ieee80211_ptr) ==
1171 wdev_priv(master->ieee80211_ptr));
1172 }
1173
1174 /* Device in tx->dev has a reference added; use dev_put(tx->dev) when
1175 * finished with it. */
1176 static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
1177 struct sk_buff *skb,
1178 struct net_device *mdev,
1179 struct ieee80211_tx_control *control)
1180 {
1181 struct ieee80211_tx_packet_data *pkt_data;
1182 struct net_device *dev;
1183
1184 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1185 dev = dev_get_by_index(pkt_data->ifindex);
1186 if (unlikely(dev && !is_ieee80211_device(dev, mdev))) {
1187 dev_put(dev);
1188 dev = NULL;
1189 }
1190 if (unlikely(!dev))
1191 return -ENODEV;
1192 __ieee80211_tx_prepare(tx, skb, dev, control);
1193 return 0;
1194 }
1195
1196 static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local,
1197 int queue)
1198 {
1199 return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
1200 }
1201
1202 static inline int __ieee80211_queue_pending(const struct ieee80211_local *local,
1203 int queue)
1204 {
1205 return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]);
1206 }
1207
1208 #define IEEE80211_TX_OK 0
1209 #define IEEE80211_TX_AGAIN 1
1210 #define IEEE80211_TX_FRAG_AGAIN 2
1211
1212 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
1213 struct ieee80211_txrx_data *tx)
1214 {
1215 struct ieee80211_tx_control *control = tx->u.tx.control;
1216 int ret, i;
1217
1218 if (!ieee80211_qdisc_installed(local->mdev) &&
1219 __ieee80211_queue_stopped(local, 0)) {
1220 netif_stop_queue(local->mdev);
1221 return IEEE80211_TX_AGAIN;
1222 }
1223 if (skb) {
1224 ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb);
1225 ret = local->ops->tx(local_to_hw(local), skb, control);
1226 if (ret)
1227 return IEEE80211_TX_AGAIN;
1228 local->mdev->trans_start = jiffies;
1229 ieee80211_led_tx(local, 1);
1230 }
1231 if (tx->u.tx.extra_frag) {
1232 control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
1233 IEEE80211_TXCTL_USE_CTS_PROTECT |
1234 IEEE80211_TXCTL_CLEAR_DST_MASK |
1235 IEEE80211_TXCTL_FIRST_FRAGMENT);
1236 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
1237 if (!tx->u.tx.extra_frag[i])
1238 continue;
1239 if (__ieee80211_queue_stopped(local, control->queue))
1240 return IEEE80211_TX_FRAG_AGAIN;
1241 if (i == tx->u.tx.num_extra_frag) {
1242 control->tx_rate = tx->u.tx.last_frag_hwrate;
1243 control->rate = tx->u.tx.last_frag_rate;
1244 if (tx->u.tx.probe_last_frag)
1245 control->flags |=
1246 IEEE80211_TXCTL_RATE_CTRL_PROBE;
1247 else
1248 control->flags &=
1249 ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
1250 }
1251
1252 ieee80211_dump_frame(local->mdev->name,
1253 "TX to low-level driver",
1254 tx->u.tx.extra_frag[i]);
1255 ret = local->ops->tx(local_to_hw(local),
1256 tx->u.tx.extra_frag[i],
1257 control);
1258 if (ret)
1259 return IEEE80211_TX_FRAG_AGAIN;
1260 local->mdev->trans_start = jiffies;
1261 ieee80211_led_tx(local, 1);
1262 tx->u.tx.extra_frag[i] = NULL;
1263 }
1264 kfree(tx->u.tx.extra_frag);
1265 tx->u.tx.extra_frag = NULL;
1266 }
1267 return IEEE80211_TX_OK;
1268 }
1269
1270 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1271 struct ieee80211_tx_control *control, int mgmt)
1272 {
1273 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1274 struct sta_info *sta;
1275 ieee80211_tx_handler *handler;
1276 struct ieee80211_txrx_data tx;
1277 ieee80211_txrx_result res = TXRX_DROP;
1278 int ret, i;
1279
1280 WARN_ON(__ieee80211_queue_pending(local, control->queue));
1281
1282 if (unlikely(skb->len < 10)) {
1283 dev_kfree_skb(skb);
1284 return 0;
1285 }
1286
1287 __ieee80211_tx_prepare(&tx, skb, dev, control);
1288 sta = tx.sta;
1289 tx.u.tx.mgmt_interface = mgmt;
1290 tx.u.tx.mode = local->hw.conf.mode;
1291
1292 for (handler = local->tx_handlers; *handler != NULL; handler++) {
1293 res = (*handler)(&tx);
1294 if (res != TXRX_CONTINUE)
1295 break;
1296 }
1297
1298 skb = tx.skb; /* handlers are allowed to change skb */
1299
1300 if (sta)
1301 sta_info_put(sta);
1302
1303 if (unlikely(res == TXRX_DROP)) {
1304 I802_DEBUG_INC(local->tx_handlers_drop);
1305 goto drop;
1306 }
1307
1308 if (unlikely(res == TXRX_QUEUED)) {
1309 I802_DEBUG_INC(local->tx_handlers_queued);
1310 return 0;
1311 }
1312
1313 if (tx.u.tx.extra_frag) {
1314 for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
1315 int next_len, dur;
1316 struct ieee80211_hdr *hdr =
1317 (struct ieee80211_hdr *)
1318 tx.u.tx.extra_frag[i]->data;
1319
1320 if (i + 1 < tx.u.tx.num_extra_frag) {
1321 next_len = tx.u.tx.extra_frag[i + 1]->len;
1322 } else {
1323 next_len = 0;
1324 tx.u.tx.rate = tx.u.tx.last_frag_rate;
1325 tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val;
1326 }
1327 dur = ieee80211_duration(&tx, 0, next_len);
1328 hdr->duration_id = cpu_to_le16(dur);
1329 }
1330 }
1331
1332 retry:
1333 ret = __ieee80211_tx(local, skb, &tx);
1334 if (ret) {
1335 struct ieee80211_tx_stored_packet *store =
1336 &local->pending_packet[control->queue];
1337
1338 if (ret == IEEE80211_TX_FRAG_AGAIN)
1339 skb = NULL;
1340 set_bit(IEEE80211_LINK_STATE_PENDING,
1341 &local->state[control->queue]);
1342 smp_mb();
1343 /* When the driver gets out of buffers during sending of
1344 * fragments and calls ieee80211_stop_queue, there is
1345 * a small window between IEEE80211_LINK_STATE_XOFF and
1346 * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer
1347 * gets available in that window (i.e. driver calls
1348 * ieee80211_wake_queue), we would end up with ieee80211_tx
1349 * called with IEEE80211_LINK_STATE_PENDING. Prevent this by
1350 * continuing transmitting here when that situation is
1351 * possible to have happened. */
1352 if (!__ieee80211_queue_stopped(local, control->queue)) {
1353 clear_bit(IEEE80211_LINK_STATE_PENDING,
1354 &local->state[control->queue]);
1355 goto retry;
1356 }
1357 memcpy(&store->control, control,
1358 sizeof(struct ieee80211_tx_control));
1359 store->skb = skb;
1360 store->extra_frag = tx.u.tx.extra_frag;
1361 store->num_extra_frag = tx.u.tx.num_extra_frag;
1362 store->last_frag_hwrate = tx.u.tx.last_frag_hwrate;
1363 store->last_frag_rate = tx.u.tx.last_frag_rate;
1364 store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag;
1365 }
1366 return 0;
1367
1368 drop:
1369 if (skb)
1370 dev_kfree_skb(skb);
1371 for (i = 0; i < tx.u.tx.num_extra_frag; i++)
1372 if (tx.u.tx.extra_frag[i])
1373 dev_kfree_skb(tx.u.tx.extra_frag[i]);
1374 kfree(tx.u.tx.extra_frag);
1375 return 0;
1376 }
1377
1378 static void ieee80211_tx_pending(unsigned long data)
1379 {
1380 struct ieee80211_local *local = (struct ieee80211_local *)data;
1381 struct net_device *dev = local->mdev;
1382 struct ieee80211_tx_stored_packet *store;
1383 struct ieee80211_txrx_data tx;
1384 int i, ret, reschedule = 0;
1385
1386 netif_tx_lock_bh(dev);
1387 for (i = 0; i < local->hw.queues; i++) {
1388 if (__ieee80211_queue_stopped(local, i))
1389 continue;
1390 if (!__ieee80211_queue_pending(local, i)) {
1391 reschedule = 1;
1392 continue;
1393 }
1394 store = &local->pending_packet[i];
1395 tx.u.tx.control = &store->control;
1396 tx.u.tx.extra_frag = store->extra_frag;
1397 tx.u.tx.num_extra_frag = store->num_extra_frag;
1398 tx.u.tx.last_frag_hwrate = store->last_frag_hwrate;
1399 tx.u.tx.last_frag_rate = store->last_frag_rate;
1400 tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe;
1401 ret = __ieee80211_tx(local, store->skb, &tx);
1402 if (ret) {
1403 if (ret == IEEE80211_TX_FRAG_AGAIN)
1404 store->skb = NULL;
1405 } else {
1406 clear_bit(IEEE80211_LINK_STATE_PENDING,
1407 &local->state[i]);
1408 reschedule = 1;
1409 }
1410 }
1411 netif_tx_unlock_bh(dev);
1412 if (reschedule) {
1413 if (!ieee80211_qdisc_installed(dev)) {
1414 if (!__ieee80211_queue_stopped(local, 0))
1415 netif_wake_queue(dev);
1416 } else
1417 netif_schedule(dev);
1418 }
1419 }
1420
1421 static void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1422 {
1423 int i, j;
1424 struct ieee80211_tx_stored_packet *store;
1425
1426 for (i = 0; i < local->hw.queues; i++) {
1427 if (!__ieee80211_queue_pending(local, i))
1428 continue;
1429 store = &local->pending_packet[i];
1430 kfree_skb(store->skb);
1431 for (j = 0; j < store->num_extra_frag; j++)
1432 kfree_skb(store->extra_frag[j]);
1433 kfree(store->extra_frag);
1434 clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]);
1435 }
1436 }
1437
1438 static int ieee80211_master_start_xmit(struct sk_buff *skb,
1439 struct net_device *dev)
1440 {
1441 struct ieee80211_tx_control control;
1442 struct ieee80211_tx_packet_data *pkt_data;
1443 struct net_device *odev = NULL;
1444 struct ieee80211_sub_if_data *osdata;
1445 int headroom;
1446 int ret;
1447
1448 /*
1449 * copy control out of the skb so other people can use skb->cb
1450 */
1451 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1452 memset(&control, 0, sizeof(struct ieee80211_tx_control));
1453
1454 if (pkt_data->ifindex)
1455 odev = dev_get_by_index(pkt_data->ifindex);
1456 if (unlikely(odev && !is_ieee80211_device(odev, dev))) {
1457 dev_put(odev);
1458 odev = NULL;
1459 }
1460 if (unlikely(!odev)) {
1461 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1462 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1463 "originating device\n", dev->name);
1464 #endif
1465 dev_kfree_skb(skb);
1466 return 0;
1467 }
1468 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1469
1470 headroom = osdata->local->hw.extra_tx_headroom +
1471 IEEE80211_ENCRYPT_HEADROOM;
1472 if (skb_headroom(skb) < headroom) {
1473 if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) {
1474 dev_kfree_skb(skb);
1475 return 0;
1476 }
1477 }
1478
1479 control.ifindex = odev->ifindex;
1480 control.type = osdata->type;
1481 if (pkt_data->req_tx_status)
1482 control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS;
1483 if (pkt_data->do_not_encrypt)
1484 control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;
1485 if (pkt_data->requeue)
1486 control.flags |= IEEE80211_TXCTL_REQUEUE;
1487 control.queue = pkt_data->queue;
1488
1489 ret = ieee80211_tx(odev, skb, &control,
1490 control.type == IEEE80211_IF_TYPE_MGMT);
1491 dev_put(odev);
1492
1493 return ret;
1494 }
1495
1496
1497 /**
1498 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1499 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1500 * @skb: packet to be sent
1501 * @dev: incoming interface
1502 *
1503 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1504 * not be freed, and caller is responsible for either retrying later or freeing
1505 * skb).
1506 *
1507 * This function takes in an Ethernet header and encapsulates it with suitable
1508 * IEEE 802.11 header based on which interface the packet is coming in. The
1509 * encapsulated packet will then be passed to master interface, wlan#.11, for
1510 * transmission (through low-level driver).
1511 */
1512 static int ieee80211_subif_start_xmit(struct sk_buff *skb,
1513 struct net_device *dev)
1514 {
1515 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1516 struct ieee80211_tx_packet_data *pkt_data;
1517 struct ieee80211_sub_if_data *sdata;
1518 int ret = 1, head_need;
1519 u16 ethertype, hdrlen, fc;
1520 struct ieee80211_hdr hdr;
1521 const u8 *encaps_data;
1522 int encaps_len, skip_header_bytes;
1523 int nh_pos, h_pos, no_encrypt = 0;
1524 struct sta_info *sta;
1525
1526 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1527 if (unlikely(skb->len < ETH_HLEN)) {
1528 printk(KERN_DEBUG "%s: short skb (len=%d)\n",
1529 dev->name, skb->len);
1530 ret = 0;
1531 goto fail;
1532 }
1533
1534 nh_pos = skb_network_header(skb) - skb->data;
1535 h_pos = skb_transport_header(skb) - skb->data;
1536
1537 /* convert Ethernet header to proper 802.11 header (based on
1538 * operation mode) */
1539 ethertype = (skb->data[12] << 8) | skb->data[13];
1540 /* TODO: handling for 802.1x authorized/unauthorized port */
1541 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
1542
1543 if (likely(sdata->type == IEEE80211_IF_TYPE_AP ||
1544 sdata->type == IEEE80211_IF_TYPE_VLAN)) {
1545 fc |= IEEE80211_FCTL_FROMDS;
1546 /* DA BSSID SA */
1547 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1548 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1549 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1550 hdrlen = 24;
1551 } else if (sdata->type == IEEE80211_IF_TYPE_WDS) {
1552 fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS;
1553 /* RA TA DA SA */
1554 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1555 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1556 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1557 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1558 hdrlen = 30;
1559 } else if (sdata->type == IEEE80211_IF_TYPE_STA) {
1560 fc |= IEEE80211_FCTL_TODS;
1561 /* BSSID SA DA */
1562 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
1563 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1564 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1565 hdrlen = 24;
1566 } else if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
1567 /* DA SA BSSID */
1568 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1570 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
1571 hdrlen = 24;
1572 } else {
1573 ret = 0;
1574 goto fail;
1575 }
1576
1577 /* receiver is QoS enabled, use a QoS type frame */
1578 sta = sta_info_get(local, hdr.addr1);
1579 if (sta) {
1580 if (sta->flags & WLAN_STA_WME) {
1581 fc |= IEEE80211_STYPE_QOS_DATA;
1582 hdrlen += 2;
1583 }
1584 sta_info_put(sta);
1585 }
1586
1587 hdr.frame_control = cpu_to_le16(fc);
1588 hdr.duration_id = 0;
1589 hdr.seq_ctrl = 0;
1590
1591 skip_header_bytes = ETH_HLEN;
1592 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1593 encaps_data = bridge_tunnel_header;
1594 encaps_len = sizeof(bridge_tunnel_header);
1595 skip_header_bytes -= 2;
1596 } else if (ethertype >= 0x600) {
1597 encaps_data = rfc1042_header;
1598 encaps_len = sizeof(rfc1042_header);
1599 skip_header_bytes -= 2;
1600 } else {
1601 encaps_data = NULL;
1602 encaps_len = 0;
1603 }
1604
1605 skb_pull(skb, skip_header_bytes);
1606 nh_pos -= skip_header_bytes;
1607 h_pos -= skip_header_bytes;
1608
1609 /* TODO: implement support for fragments so that there is no need to
1610 * reallocate and copy payload; it might be enough to support one
1611 * extra fragment that would be copied in the beginning of the frame
1612 * data.. anyway, it would be nice to include this into skb structure
1613 * somehow
1614 *
1615 * There are few options for this:
1616 * use skb->cb as an extra space for 802.11 header
1617 * allocate new buffer if not enough headroom
1618 * make sure that there is enough headroom in every skb by increasing
1619 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
1620 * alloc_skb() (net/core/skbuff.c)
1621 */
1622 head_need = hdrlen + encaps_len + local->hw.extra_tx_headroom;
1623 head_need -= skb_headroom(skb);
1624
1625 /* We are going to modify skb data, so make a copy of it if happens to
1626 * be cloned. This could happen, e.g., with Linux bridge code passing
1627 * us broadcast frames. */
1628
1629 if (head_need > 0 || skb_cloned(skb)) {
1630 #if 0
1631 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
1632 "of headroom\n", dev->name, head_need);
1633 #endif
1634
1635 if (skb_cloned(skb))
1636 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1637 else
1638 I802_DEBUG_INC(local->tx_expand_skb_head);
1639 /* Since we have to reallocate the buffer, make sure that there
1640 * is enough room for possible WEP IV/ICV and TKIP (8 bytes
1641 * before payload and 12 after). */
1642 if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
1643 12, GFP_ATOMIC)) {
1644 printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
1645 "\n", dev->name);
1646 goto fail;
1647 }
1648 }
1649
1650 if (encaps_data) {
1651 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1652 nh_pos += encaps_len;
1653 h_pos += encaps_len;
1654 }
1655 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1656 nh_pos += hdrlen;
1657 h_pos += hdrlen;
1658
1659 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1660 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
1661 pkt_data->ifindex = sdata->dev->ifindex;
1662 pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
1663 pkt_data->do_not_encrypt = no_encrypt;
1664
1665 skb->dev = local->mdev;
1666 sdata->stats.tx_packets++;
1667 sdata->stats.tx_bytes += skb->len;
1668
1669 /* Update skb pointers to various headers since this modified frame
1670 * is going to go through Linux networking code that may potentially
1671 * need things like pointer to IP header. */
1672 skb_set_mac_header(skb, 0);
1673 skb_set_network_header(skb, nh_pos);
1674 skb_set_transport_header(skb, h_pos);
1675
1676 dev->trans_start = jiffies;
1677 dev_queue_xmit(skb);
1678
1679 return 0;
1680
1681 fail:
1682 if (!ret)
1683 dev_kfree_skb(skb);
1684
1685 return ret;
1686 }
1687
1688
1689 /*
1690 * This is the transmit routine for the 802.11 type interfaces
1691 * called by upper layers of the linux networking
1692 * stack when it has a frame to transmit
1693 */
1694 static int
1695 ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev)
1696 {
1697 struct ieee80211_sub_if_data *sdata;
1698 struct ieee80211_tx_packet_data *pkt_data;
1699 struct ieee80211_hdr *hdr;
1700 u16 fc;
1701
1702 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1703
1704 if (skb->len < 10) {
1705 dev_kfree_skb(skb);
1706 return 0;
1707 }
1708
1709 if (skb_headroom(skb) < sdata->local->hw.extra_tx_headroom) {
1710 if (pskb_expand_head(skb,
1711 sdata->local->hw.extra_tx_headroom, 0, GFP_ATOMIC)) {
1712 dev_kfree_skb(skb);
1713 return 0;
1714 }
1715 }
1716
1717 hdr = (struct ieee80211_hdr *) skb->data;
1718 fc = le16_to_cpu(hdr->frame_control);
1719
1720 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
1721 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
1722 pkt_data->ifindex = sdata->dev->ifindex;
1723 pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
1724
1725 skb->priority = 20; /* use hardcoded priority for mgmt TX queue */
1726 skb->dev = sdata->local->mdev;
1727
1728 /*
1729 * We're using the protocol field of the the frame control header
1730 * to request TX callback for hostapd. BIT(1) is checked.
1731 */
1732 if ((fc & BIT(1)) == BIT(1)) {
1733 pkt_data->req_tx_status = 1;
1734 fc &= ~BIT(1);
1735 hdr->frame_control = cpu_to_le16(fc);
1736 }
1737
1738 pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED);
1739
1740 sdata->stats.tx_packets++;
1741 sdata->stats.tx_bytes += skb->len;
1742
1743 dev_queue_xmit(skb);
1744
1745 return 0;
1746 }
1747
1748
1749 static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
1750 struct ieee80211_if_ap *bss,
1751 struct sk_buff *skb)
1752 {
1753 u8 *pos, *tim;
1754 int aid0 = 0;
1755 int i, have_bits = 0, n1, n2;
1756
1757 /* Generate bitmap for TIM only if there are any STAs in power save
1758 * mode. */
1759 spin_lock_bh(&local->sta_lock);
1760 if (atomic_read(&bss->num_sta_ps) > 0)
1761 /* in the hope that this is faster than
1762 * checking byte-for-byte */
1763 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1764 IEEE80211_MAX_AID+1);
1765
1766 if (bss->dtim_count == 0)
1767 bss->dtim_count = bss->dtim_period - 1;
1768 else
1769 bss->dtim_count--;
1770
1771 tim = pos = (u8 *) skb_put(skb, 6);
1772 *pos++ = WLAN_EID_TIM;
1773 *pos++ = 4;
1774 *pos++ = bss->dtim_count;
1775 *pos++ = bss->dtim_period;
1776
1777 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1778 aid0 = 1;
1779
1780 if (have_bits) {
1781 /* Find largest even number N1 so that bits numbered 1 through
1782 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1783 * (N2 + 1) x 8 through 2007 are 0. */
1784 n1 = 0;
1785 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1786 if (bss->tim[i]) {
1787 n1 = i & 0xfe;
1788 break;
1789 }
1790 }
1791 n2 = n1;
1792 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1793 if (bss->tim[i]) {
1794 n2 = i;
1795 break;
1796 }
1797 }
1798
1799 /* Bitmap control */
1800 *pos++ = n1 | aid0;
1801 /* Part Virt Bitmap */
1802 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1803
1804 tim[1] = n2 - n1 + 4;
1805 skb_put(skb, n2 - n1);
1806 } else {
1807 *pos++ = aid0; /* Bitmap control */
1808 *pos++ = 0; /* Part Virt Bitmap */
1809 }
1810 spin_unlock_bh(&local->sta_lock);
1811 }
1812
1813
1814 struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id,
1815 struct ieee80211_tx_control *control)
1816 {
1817 struct ieee80211_local *local = hw_to_local(hw);
1818 struct sk_buff *skb;
1819 struct net_device *bdev;
1820 struct ieee80211_sub_if_data *sdata = NULL;
1821 struct ieee80211_if_ap *ap = NULL;
1822 struct ieee80211_rate *rate;
1823 struct rate_control_extra extra;
1824 u8 *b_head, *b_tail;
1825 int bh_len, bt_len;
1826
1827 bdev = dev_get_by_index(if_id);
1828 if (bdev) {
1829 sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
1830 ap = &sdata->u.ap;
1831 dev_put(bdev);
1832 }
1833
1834 if (!ap || sdata->type != IEEE80211_IF_TYPE_AP ||
1835 !ap->beacon_head) {
1836 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1837 if (net_ratelimit())
1838 printk(KERN_DEBUG "no beacon data avail for idx=%d "
1839 "(%s)\n", if_id, bdev ? bdev->name : "N/A");
1840 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
1841 return NULL;
1842 }
1843
1844 /* Assume we are generating the normal beacon locally */
1845 b_head = ap->beacon_head;
1846 b_tail = ap->beacon_tail;
1847 bh_len = ap->beacon_head_len;
1848 bt_len = ap->beacon_tail_len;
1849
1850 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1851 bh_len + bt_len + 256 /* maximum TIM len */);
1852 if (!skb)
1853 return NULL;
1854
1855 skb_reserve(skb, local->hw.extra_tx_headroom);
1856 memcpy(skb_put(skb, bh_len), b_head, bh_len);
1857
1858 ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data);
1859
1860 ieee80211_beacon_add_tim(local, ap, skb);
1861
1862 if (b_tail) {
1863 memcpy(skb_put(skb, bt_len), b_tail, bt_len);
1864 }
1865
1866 if (control) {
1867 memset(&extra, 0, sizeof(extra));
1868 extra.mode = local->oper_hw_mode;
1869
1870 rate = rate_control_get_rate(local, local->mdev, skb, &extra);
1871 if (!rate) {
1872 if (net_ratelimit()) {
1873 printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate "
1874 "found\n", local->mdev->name);
1875 }
1876 dev_kfree_skb(skb);
1877 return NULL;
1878 }
1879
1880 control->tx_rate = (local->short_preamble &&
1881 (rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
1882 rate->val2 : rate->val;
1883 control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
1884 control->power_level = local->hw.conf.power_level;
1885 control->flags |= IEEE80211_TXCTL_NO_ACK;
1886 control->retry_limit = 1;
1887 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
1888 }
1889
1890 ap->num_beacons++;
1891 return skb;
1892 }
1893 EXPORT_SYMBOL(ieee80211_beacon_get);
1894
1895 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1896 size_t frame_len,
1897 const struct ieee80211_tx_control *frame_txctl)
1898 {
1899 struct ieee80211_local *local = hw_to_local(hw);
1900 struct ieee80211_rate *rate;
1901 int short_preamble = local->short_preamble;
1902 int erp;
1903 u16 dur;
1904
1905 rate = frame_txctl->rts_rate;
1906 erp = !!(rate->flags & IEEE80211_RATE_ERP);
1907
1908 /* CTS duration */
1909 dur = ieee80211_frame_duration(local, 10, rate->rate,
1910 erp, short_preamble);
1911 /* Data frame duration */
1912 dur += ieee80211_frame_duration(local, frame_len, rate->rate,
1913 erp, short_preamble);
1914 /* ACK duration */
1915 dur += ieee80211_frame_duration(local, 10, rate->rate,
1916 erp, short_preamble);
1917
1918 return cpu_to_le16(dur);
1919 }
1920 EXPORT_SYMBOL(ieee80211_rts_duration);
1921
1922
1923 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1924 size_t frame_len,
1925 const struct ieee80211_tx_control *frame_txctl)
1926 {
1927 struct ieee80211_local *local = hw_to_local(hw);
1928 struct ieee80211_rate *rate;
1929 int short_preamble = local->short_preamble;
1930 int erp;
1931 u16 dur;
1932
1933 rate = frame_txctl->rts_rate;
1934 erp = !!(rate->flags & IEEE80211_RATE_ERP);
1935
1936 /* Data frame duration */
1937 dur = ieee80211_frame_duration(local, frame_len, rate->rate,
1938 erp, short_preamble);
1939 if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) {
1940 /* ACK duration */
1941 dur += ieee80211_frame_duration(local, 10, rate->rate,
1942 erp, short_preamble);
1943 }
1944
1945 return cpu_to_le16(dur);
1946 }
1947 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
1948
1949 void ieee80211_rts_get(struct ieee80211_hw *hw,
1950 const void *frame, size_t frame_len,
1951 const struct ieee80211_tx_control *frame_txctl,
1952 struct ieee80211_rts *rts)
1953 {
1954 const struct ieee80211_hdr *hdr = frame;
1955 u16 fctl;
1956
1957 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS;
1958 rts->frame_control = cpu_to_le16(fctl);
1959 rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl);
1960 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
1961 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
1962 }
1963 EXPORT_SYMBOL(ieee80211_rts_get);
1964
1965 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1966 const void *frame, size_t frame_len,
1967 const struct ieee80211_tx_control *frame_txctl,
1968 struct ieee80211_cts *cts)
1969 {
1970 const struct ieee80211_hdr *hdr = frame;
1971 u16 fctl;
1972
1973 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS;
1974 cts->frame_control = cpu_to_le16(fctl);
1975 cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl);
1976 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
1977 }
1978 EXPORT_SYMBOL(ieee80211_ctstoself_get);
1979
1980 struct sk_buff *
1981 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id,
1982 struct ieee80211_tx_control *control)
1983 {
1984 struct ieee80211_local *local = hw_to_local(hw);
1985 struct sk_buff *skb;
1986 struct sta_info *sta;
1987 ieee80211_tx_handler *handler;
1988 struct ieee80211_txrx_data tx;
1989 ieee80211_txrx_result res = TXRX_DROP;
1990 struct net_device *bdev;
1991 struct ieee80211_sub_if_data *sdata;
1992 struct ieee80211_if_ap *bss = NULL;
1993
1994 bdev = dev_get_by_index(if_id);
1995 if (bdev) {
1996 sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
1997 bss = &sdata->u.ap;
1998 dev_put(bdev);
1999 }
2000 if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head)
2001 return NULL;
2002
2003 if (bss->dtim_count != 0)
2004 return NULL; /* send buffered bc/mc only after DTIM beacon */
2005 memset(control, 0, sizeof(*control));
2006 while (1) {
2007 skb = skb_dequeue(&bss->ps_bc_buf);
2008 if (!skb)
2009 return NULL;
2010 local->total_ps_buffered--;
2011
2012 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2013 struct ieee80211_hdr *hdr =
2014 (struct ieee80211_hdr *) skb->data;
2015 /* more buffered multicast/broadcast frames ==> set
2016 * MoreData flag in IEEE 802.11 header to inform PS
2017 * STAs */
2018 hdr->frame_control |=
2019 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2020 }
2021
2022 if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0)
2023 break;
2024 dev_kfree_skb_any(skb);
2025 }
2026 sta = tx.sta;
2027 tx.u.tx.ps_buffered = 1;
2028
2029 for (handler = local->tx_handlers; *handler != NULL; handler++) {
2030 res = (*handler)(&tx);
2031 if (res == TXRX_DROP || res == TXRX_QUEUED)
2032 break;
2033 }
2034 dev_put(tx.dev);
2035 skb = tx.skb; /* handlers are allowed to change skb */
2036
2037 if (res == TXRX_DROP) {
2038 I802_DEBUG_INC(local->tx_handlers_drop);
2039 dev_kfree_skb(skb);
2040 skb = NULL;
2041 } else if (res == TXRX_QUEUED) {
2042 I802_DEBUG_INC(local->tx_handlers_queued);
2043 skb = NULL;
2044 }
2045
2046 if (sta)
2047 sta_info_put(sta);
2048
2049 return skb;
2050 }
2051 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2052
2053 static int __ieee80211_if_config(struct net_device *dev,
2054 struct sk_buff *beacon,
2055 struct ieee80211_tx_control *control)
2056 {
2057 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2058 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2059 struct ieee80211_if_conf conf;
2060 static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2061
2062 if (!local->ops->config_interface || !netif_running(dev))
2063 return 0;
2064
2065 memset(&conf, 0, sizeof(conf));
2066 conf.type = sdata->type;
2067 if (sdata->type == IEEE80211_IF_TYPE_STA ||
2068 sdata->type == IEEE80211_IF_TYPE_IBSS) {
2069 if (local->sta_scanning &&
2070 local->scan_dev == dev)
2071 conf.bssid = scan_bssid;
2072 else
2073 conf.bssid = sdata->u.sta.bssid;
2074 conf.ssid = sdata->u.sta.ssid;
2075 conf.ssid_len = sdata->u.sta.ssid_len;
2076 conf.generic_elem = sdata->u.sta.extra_ie;
2077 conf.generic_elem_len = sdata->u.sta.extra_ie_len;
2078 } else if (sdata->type == IEEE80211_IF_TYPE_AP) {
2079 conf.ssid = sdata->u.ap.ssid;
2080 conf.ssid_len = sdata->u.ap.ssid_len;
2081 conf.generic_elem = sdata->u.ap.generic_elem;
2082 conf.generic_elem_len = sdata->u.ap.generic_elem_len;
2083 conf.beacon = beacon;
2084 conf.beacon_control = control;
2085 }
2086 return local->ops->config_interface(local_to_hw(local),
2087 dev->ifindex, &conf);
2088 }
2089
2090 int ieee80211_if_config(struct net_device *dev)
2091 {
2092 return __ieee80211_if_config(dev, NULL, NULL);
2093 }
2094
2095 int ieee80211_if_config_beacon(struct net_device *dev)
2096 {
2097 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2098 struct ieee80211_tx_control control;
2099 struct sk_buff *skb;
2100
2101 if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE))
2102 return 0;
2103 skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control);
2104 if (!skb)
2105 return -ENOMEM;
2106 return __ieee80211_if_config(dev, skb, &control);
2107 }
2108
2109 int ieee80211_hw_config(struct ieee80211_local *local)
2110 {
2111 struct ieee80211_hw_mode *mode;
2112 struct ieee80211_channel *chan;
2113 int ret = 0;
2114
2115 if (local->sta_scanning) {
2116 chan = local->scan_channel;
2117 mode = local->scan_hw_mode;
2118 } else {
2119 chan = local->oper_channel;
2120 mode = local->oper_hw_mode;
2121 }
2122
2123 local->hw.conf.channel = chan->chan;
2124 local->hw.conf.channel_val = chan->val;
2125 local->hw.conf.power_level = chan->power_level;
2126 local->hw.conf.freq = chan->freq;
2127 local->hw.conf.phymode = mode->mode;
2128 local->hw.conf.antenna_max = chan->antenna_max;
2129 local->hw.conf.chan = chan;
2130 local->hw.conf.mode = mode;
2131
2132 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2133 printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d "
2134 "phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq,
2135 local->hw.conf.phymode);
2136 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2137
2138 if (local->ops->config)
2139 ret = local->ops->config(local_to_hw(local), &local->hw.conf);
2140
2141 return ret;
2142 }
2143
2144
2145 static int ieee80211_change_mtu(struct net_device *dev, int new_mtu)
2146 {
2147 /* FIX: what would be proper limits for MTU?
2148 * This interface uses 802.3 frames. */
2149 if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) {
2150 printk(KERN_WARNING "%s: invalid MTU %d\n",
2151 dev->name, new_mtu);
2152 return -EINVAL;
2153 }
2154
2155 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2156 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
2157 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2158 dev->mtu = new_mtu;
2159 return 0;
2160 }
2161
2162
2163 static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu)
2164 {
2165 /* FIX: what would be proper limits for MTU?
2166 * This interface uses 802.11 frames. */
2167 if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) {
2168 printk(KERN_WARNING "%s: invalid MTU %d\n",
2169 dev->name, new_mtu);
2170 return -EINVAL;
2171 }
2172
2173 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2174 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
2175 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2176 dev->mtu = new_mtu;
2177 return 0;
2178 }
2179
2180 enum netif_tx_lock_class {
2181 TX_LOCK_NORMAL,
2182 TX_LOCK_MASTER,
2183 };
2184
2185 static inline void netif_tx_lock_nested(struct net_device *dev, int subclass)
2186 {
2187 spin_lock_nested(&dev->_xmit_lock, subclass);
2188 dev->xmit_lock_owner = smp_processor_id();
2189 }
2190
2191 static void ieee80211_set_multicast_list(struct net_device *dev)
2192 {
2193 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2194 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2195 unsigned short flags;
2196
2197 netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER);
2198 if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) {
2199 if (sdata->allmulti) {
2200 sdata->allmulti = 0;
2201 local->iff_allmultis--;
2202 } else {
2203 sdata->allmulti = 1;
2204 local->iff_allmultis++;
2205 }
2206 }
2207 if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) {
2208 if (sdata->promisc) {
2209 sdata->promisc = 0;
2210 local->iff_promiscs--;
2211 } else {
2212 sdata->promisc = 1;
2213 local->iff_promiscs++;
2214 }
2215 }
2216 if (dev->mc_count != sdata->mc_count) {
2217 local->mc_count = local->mc_count - sdata->mc_count +
2218 dev->mc_count;
2219 sdata->mc_count = dev->mc_count;
2220 }
2221 if (local->ops->set_multicast_list) {
2222 flags = local->mdev->flags;
2223 if (local->iff_allmultis)
2224 flags |= IFF_ALLMULTI;
2225 if (local->iff_promiscs)
2226 flags |= IFF_PROMISC;
2227 read_lock(&local->sub_if_lock);
2228 local->ops->set_multicast_list(local_to_hw(local), flags,
2229 local->mc_count);
2230 read_unlock(&local->sub_if_lock);
2231 }
2232 netif_tx_unlock(local->mdev);
2233 }
2234
2235 struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw,
2236 struct dev_mc_list *prev,
2237 void **ptr)
2238 {
2239 struct ieee80211_local *local = hw_to_local(hw);
2240 struct ieee80211_sub_if_data *sdata = *ptr;
2241 struct dev_mc_list *mc;
2242
2243 if (!prev) {
2244 WARN_ON(sdata);
2245 sdata = NULL;
2246 }
2247 if (!prev || !prev->next) {
2248 if (sdata)
2249 sdata = list_entry(sdata->list.next,
2250 struct ieee80211_sub_if_data, list);
2251 else
2252 sdata = list_entry(local->sub_if_list.next,
2253 struct ieee80211_sub_if_data, list);
2254 if (&sdata->list != &local->sub_if_list)
2255 mc = sdata->dev->mc_list;
2256 else
2257 mc = NULL;
2258 } else
2259 mc = prev->next;
2260
2261 *ptr = sdata;
2262 return mc;
2263 }
2264 EXPORT_SYMBOL(ieee80211_get_mc_list_item);
2265
2266 static struct net_device_stats *ieee80211_get_stats(struct net_device *dev)
2267 {
2268 struct ieee80211_sub_if_data *sdata;
2269 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2270 return &(sdata->stats);
2271 }
2272
2273 static void ieee80211_if_shutdown(struct net_device *dev)
2274 {
2275 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2276 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2277
2278 ASSERT_RTNL();
2279 switch (sdata->type) {
2280 case IEEE80211_IF_TYPE_STA:
2281 case IEEE80211_IF_TYPE_IBSS:
2282 sdata->u.sta.state = IEEE80211_DISABLED;
2283 del_timer_sync(&sdata->u.sta.timer);
2284 skb_queue_purge(&sdata->u.sta.skb_queue);
2285 if (!local->ops->hw_scan &&
2286 local->scan_dev == sdata->dev) {
2287 local->sta_scanning = 0;
2288 cancel_delayed_work(&local->scan_work);
2289 }
2290 flush_workqueue(local->hw.workqueue);
2291 break;
2292 }
2293 }
2294
2295 static inline int identical_mac_addr_allowed(int type1, int type2)
2296 {
2297 return (type1 == IEEE80211_IF_TYPE_MNTR ||
2298 type2 == IEEE80211_IF_TYPE_MNTR ||
2299 (type1 == IEEE80211_IF_TYPE_AP &&
2300 type2 == IEEE80211_IF_TYPE_WDS) ||
2301 (type1 == IEEE80211_IF_TYPE_WDS &&
2302 (type2 == IEEE80211_IF_TYPE_WDS ||
2303 type2 == IEEE80211_IF_TYPE_AP)) ||
2304 (type1 == IEEE80211_IF_TYPE_AP &&
2305 type2 == IEEE80211_IF_TYPE_VLAN) ||
2306 (type1 == IEEE80211_IF_TYPE_VLAN &&
2307 (type2 == IEEE80211_IF_TYPE_AP ||
2308 type2 == IEEE80211_IF_TYPE_VLAN)));
2309 }
2310
2311 static int ieee80211_master_open(struct net_device *dev)
2312 {
2313 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2314 struct ieee80211_sub_if_data *sdata;
2315 int res = -EOPNOTSUPP;
2316
2317 read_lock(&local->sub_if_lock);
2318 list_for_each_entry(sdata, &local->sub_if_list, list) {
2319 if (sdata->dev != dev && netif_running(sdata->dev)) {
2320 res = 0;
2321 break;
2322 }
2323 }
2324 read_unlock(&local->sub_if_lock);
2325 return res;
2326 }
2327
2328 static int ieee80211_master_stop(struct net_device *dev)
2329 {
2330 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2331 struct ieee80211_sub_if_data *sdata;
2332
2333 read_lock(&local->sub_if_lock);
2334 list_for_each_entry(sdata, &local->sub_if_list, list)
2335 if (sdata->dev != dev && netif_running(sdata->dev))
2336 dev_close(sdata->dev);
2337 read_unlock(&local->sub_if_lock);
2338
2339 return 0;
2340 }
2341
2342 static int ieee80211_mgmt_open(struct net_device *dev)
2343 {
2344 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2345
2346 if (!netif_running(local->mdev))
2347 return -EOPNOTSUPP;
2348 return 0;
2349 }
2350
2351 static int ieee80211_mgmt_stop(struct net_device *dev)
2352 {
2353 return 0;
2354 }
2355
2356 /* Check if running monitor interfaces should go to a "soft monitor" mode
2357 * and switch them if necessary. */
2358 static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local)
2359 {
2360 struct ieee80211_if_init_conf conf;
2361
2362 if (local->open_count && local->open_count == local->monitors &&
2363 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) &&
2364 local->ops->remove_interface) {
2365 conf.if_id = -1;
2366 conf.type = IEEE80211_IF_TYPE_MNTR;
2367 conf.mac_addr = NULL;
2368 local->ops->remove_interface(local_to_hw(local), &conf);
2369 }
2370 }
2371
2372 /* Check if running monitor interfaces should go to a "hard monitor" mode
2373 * and switch them if necessary. */
2374 static void ieee80211_start_hard_monitor(struct ieee80211_local *local)
2375 {
2376 struct ieee80211_if_init_conf conf;
2377
2378 if (local->open_count && local->open_count == local->monitors &&
2379 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) &&
2380 local->ops->add_interface) {
2381 conf.if_id = -1;
2382 conf.type = IEEE80211_IF_TYPE_MNTR;
2383 conf.mac_addr = NULL;
2384 local->ops->add_interface(local_to_hw(local), &conf);
2385 }
2386 }
2387
2388 static int ieee80211_open(struct net_device *dev)
2389 {
2390 struct ieee80211_sub_if_data *sdata, *nsdata;
2391 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2392 struct ieee80211_if_init_conf conf;
2393 int res;
2394
2395 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2396 read_lock(&local->sub_if_lock);
2397 list_for_each_entry(nsdata, &local->sub_if_list, list) {
2398 struct net_device *ndev = nsdata->dev;
2399
2400 if (ndev != dev && ndev != local->mdev && netif_running(ndev) &&
2401 compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 &&
2402 !identical_mac_addr_allowed(sdata->type, nsdata->type)) {
2403 read_unlock(&local->sub_if_lock);
2404 return -ENOTUNIQ;
2405 }
2406 }
2407 read_unlock(&local->sub_if_lock);
2408
2409 if (sdata->type == IEEE80211_IF_TYPE_WDS &&
2410 is_zero_ether_addr(sdata->u.wds.remote_addr))
2411 return -ENOLINK;
2412
2413 if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count &&
2414 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
2415 /* run the interface in a "soft monitor" mode */
2416 local->monitors++;
2417 local->open_count++;
2418 local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
2419 return 0;
2420 }
2421 ieee80211_start_soft_monitor(local);
2422
2423 if (local->ops->add_interface) {
2424 conf.if_id = dev->ifindex;
2425 conf.type = sdata->type;
2426 conf.mac_addr = dev->dev_addr;
2427 res = local->ops->add_interface(local_to_hw(local), &conf);
2428 if (res) {
2429 if (sdata->type == IEEE80211_IF_TYPE_MNTR)
2430 ieee80211_start_hard_monitor(local);
2431 return res;
2432 }
2433 } else {
2434 if (sdata->type != IEEE80211_IF_TYPE_STA)
2435 return -EOPNOTSUPP;
2436 if (local->open_count > 0)
2437 return -ENOBUFS;
2438 }
2439
2440 if (local->open_count == 0) {
2441 res = 0;
2442 tasklet_enable(&local->tx_pending_tasklet);
2443 tasklet_enable(&local->tasklet);
2444 if (local->ops->open)
2445 res = local->ops->open(local_to_hw(local));
2446 if (res == 0) {
2447 res = dev_open(local->mdev);
2448 if (res) {
2449 if (local->ops->stop)
2450 local->ops->stop(local_to_hw(local));
2451 } else {
2452 res = ieee80211_hw_config(local);
2453 if (res && local->ops->stop)
2454 local->ops->stop(local_to_hw(local));
2455 else if (!res && local->apdev)
2456 dev_open(local->apdev);
2457 }
2458 }
2459 if (res) {
2460 if (local->ops->remove_interface)
2461 local->ops->remove_interface(local_to_hw(local),
2462 &conf);
2463 return res;
2464 }
2465 }
2466 local->open_count++;
2467
2468 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
2469 local->monitors++;
2470 local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
2471 } else
2472 ieee80211_if_config(dev);
2473
2474 if (sdata->type == IEEE80211_IF_TYPE_STA &&
2475 !local->user_space_mlme)
2476 netif_carrier_off(dev);
2477
2478 netif_start_queue(dev);
2479 return 0;
2480 }
2481
2482
2483 static int ieee80211_stop(struct net_device *dev)
2484 {
2485 struct ieee80211_sub_if_data *sdata;
2486 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2487
2488 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2489
2490 if (sdata->type == IEEE80211_IF_TYPE_MNTR &&
2491 local->open_count > 1 &&
2492 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
2493 /* remove "soft monitor" interface */
2494 local->open_count--;
2495 local->monitors--;
2496 if (!local->monitors)
2497 local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
2498 return 0;
2499 }
2500
2501 netif_stop_queue(dev);
2502 ieee80211_if_shutdown(dev);
2503
2504 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
2505 local->monitors--;
2506 if (!local->monitors)
2507 local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
2508 }
2509
2510 local->open_count--;
2511 if (local->open_count == 0) {
2512 if (netif_running(local->mdev))
2513 dev_close(local->mdev);
2514 if (local->apdev)
2515 dev_close(local->apdev);
2516 if (local->ops->stop)
2517 local->ops->stop(local_to_hw(local));
2518 tasklet_disable(&local->tx_pending_tasklet);
2519 tasklet_disable(&local->tasklet);
2520 }
2521 if (local->ops->remove_interface) {
2522 struct ieee80211_if_init_conf conf;
2523
2524 conf.if_id = dev->ifindex;
2525 conf.type = sdata->type;
2526 conf.mac_addr = dev->dev_addr;
2527 local->ops->remove_interface(local_to_hw(local), &conf);
2528 }
2529
2530 ieee80211_start_hard_monitor(local);
2531
2532 return 0;
2533 }
2534
2535
2536 static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr)
2537 {
2538 memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */
2539 return ETH_ALEN;
2540 }
2541
2542 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
2543 {
2544 return compare_ether_addr(raddr, addr) == 0 ||
2545 is_broadcast_ether_addr(raddr);
2546 }
2547
2548
2549 static ieee80211_txrx_result
2550 ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
2551 {
2552 struct net_device *dev = rx->dev;
2553 struct ieee80211_local *local = rx->local;
2554 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
2555 u16 fc, hdrlen, ethertype;
2556 u8 *payload;
2557 u8 dst[ETH_ALEN];
2558 u8 src[ETH_ALEN];
2559 struct sk_buff *skb = rx->skb, *skb2;
2560 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2561
2562 fc = rx->fc;
2563 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
2564 return TXRX_CONTINUE;
2565
2566 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
2567 return TXRX_DROP;
2568
2569 hdrlen = ieee80211_get_hdrlen(fc);
2570
2571 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
2572 * header
2573 * IEEE 802.11 address fields:
2574 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
2575 * 0 0 DA SA BSSID n/a
2576 * 0 1 DA BSSID SA n/a
2577 * 1 0 BSSID SA DA n/a
2578 * 1 1 RA TA DA SA
2579 */
2580
2581 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
2582 case IEEE80211_FCTL_TODS:
2583 /* BSSID SA DA */
2584 memcpy(dst, hdr->addr3, ETH_ALEN);
2585 memcpy(src, hdr->addr2, ETH_ALEN);
2586
2587 if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
2588 sdata->type != IEEE80211_IF_TYPE_VLAN)) {
2589 printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID="
2590 MAC_FMT " SA=" MAC_FMT " DA=" MAC_FMT ")\n",
2591 dev->name, MAC_ARG(hdr->addr1),
2592 MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3));
2593 return TXRX_DROP;
2594 }
2595 break;
2596 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
2597 /* RA TA DA SA */
2598 memcpy(dst, hdr->addr3, ETH_ALEN);
2599 memcpy(src, hdr->addr4, ETH_ALEN);
2600
2601 if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
2602 printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA="
2603 MAC_FMT " TA=" MAC_FMT " DA=" MAC_FMT " SA="
2604 MAC_FMT ")\n",
2605 rx->dev->name, MAC_ARG(hdr->addr1),
2606 MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3),
2607 MAC_ARG(hdr->addr4));
2608 return TXRX_DROP;
2609 }
2610 break;
2611 case IEEE80211_FCTL_FROMDS:
2612 /* DA BSSID SA */
2613 memcpy(dst, hdr->addr1, ETH_ALEN);
2614 memcpy(src, hdr->addr3, ETH_ALEN);
2615
2616 if (sdata->type != IEEE80211_IF_TYPE_STA) {
2617 return TXRX_DROP;
2618 }
2619 break;
2620 case 0:
2621 /* DA SA BSSID */
2622 memcpy(dst, hdr->addr1, ETH_ALEN);
2623 memcpy(src, hdr->addr2, ETH_ALEN);
2624
2625 if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
2626 if (net_ratelimit()) {
2627 printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
2628 MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT
2629 ")\n",
2630 dev->name, MAC_ARG(hdr->addr1),
2631 MAC_ARG(hdr->addr2),
2632 MAC_ARG(hdr->addr3));
2633 }
2634 return TXRX_DROP;
2635 }
2636 break;
2637 }
2638
2639 payload = skb->data + hdrlen;
2640
2641 if (unlikely(skb->len - hdrlen < 8)) {
2642 if (net_ratelimit()) {
2643 printk(KERN_DEBUG "%s: RX too short data frame "
2644 "payload\n", dev->name);
2645 }
2646 return TXRX_DROP;
2647 }
2648
2649 ethertype = (payload[6] << 8) | payload[7];
2650
2651 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
2652 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
2653 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
2654 /* remove RFC1042 or Bridge-Tunnel encapsulation and
2655 * replace EtherType */
2656 skb_pull(skb, hdrlen + 6);
2657 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
2658 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
2659 } else {
2660 struct ethhdr *ehdr;
2661 __be16 len;
2662 skb_pull(skb, hdrlen);
2663 len = htons(skb->len);
2664 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
2665 memcpy(ehdr->h_dest, dst, ETH_ALEN);
2666 memcpy(ehdr->h_source, src, ETH_ALEN);
2667 ehdr->h_proto = len;
2668 }
2669 skb->dev = dev;
2670
2671 skb2 = NULL;
2672
2673 sdata->stats.rx_packets++;
2674 sdata->stats.rx_bytes += skb->len;
2675
2676 if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
2677 || sdata->type == IEEE80211_IF_TYPE_VLAN) && rx->u.rx.ra_match) {
2678 if (is_multicast_ether_addr(skb->data)) {
2679 /* send multicast frames both to higher layers in
2680 * local net stack and back to the wireless media */
2681 skb2 = skb_copy(skb, GFP_ATOMIC);
2682 if (!skb2)
2683 printk(KERN_DEBUG "%s: failed to clone "
2684 "multicast frame\n", dev->name);
2685 } else {
2686 struct sta_info *dsta;
2687 dsta = sta_info_get(local, skb->data);
2688 if (dsta && !dsta->dev) {
2689 printk(KERN_DEBUG "Station with null dev "
2690 "structure!\n");
2691 } else if (dsta && dsta->dev == dev) {
2692 /* Destination station is associated to this
2693 * AP, so send the frame directly to it and
2694 * do not pass the frame to local net stack.
2695 */
2696 skb2 = skb;
2697 skb = NULL;
2698 }
2699 if (dsta)
2700 sta_info_put(dsta);
2701 }
2702 }
2703
2704 if (skb) {
2705 /* deliver to local stack */
2706 skb->protocol = eth_type_trans(skb, dev);
2707 memset(skb->cb, 0, sizeof(skb->cb));
2708 netif_rx(skb);
2709 }
2710
2711 if (skb2) {
2712 /* send to wireless media */
2713 skb2->protocol = __constant_htons(ETH_P_802_3);
2714 skb_set_network_header(skb2, 0);
2715 skb_set_mac_header(skb2, 0);
2716 dev_queue_xmit(skb2);
2717 }
2718
2719 return TXRX_QUEUED;
2720 }
2721
2722
2723 static struct ieee80211_rate *
2724 ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate)
2725 {
2726 struct ieee80211_hw_mode *mode;
2727 int r;
2728
2729 list_for_each_entry(mode, &local->modes_list, list) {
2730 if (mode->mode != phymode)
2731 continue;
2732 for (r = 0; r < mode->num_rates; r++) {
2733 struct ieee80211_rate *rate = &mode->rates[r];
2734 if (rate->val == hw_rate ||
2735 (rate->flags & IEEE80211_RATE_PREAMBLE2 &&
2736 rate->val2 == hw_rate))
2737 return rate;
2738 }
2739 }
2740
2741 return NULL;
2742 }
2743
2744 static void
2745 ieee80211_fill_frame_info(struct ieee80211_local *local,
2746 struct ieee80211_frame_info *fi,
2747 struct ieee80211_rx_status *status)
2748 {
2749 if (status) {
2750 struct timespec ts;
2751 struct ieee80211_rate *rate;
2752
2753 jiffies_to_timespec(jiffies, &ts);
2754 fi->hosttime = cpu_to_be64((u64) ts.tv_sec * 1000000 +
2755 ts.tv_nsec / 1000);
2756 fi->mactime = cpu_to_be64(status->mactime);
2757 switch (status->phymode) {
2758 case MODE_IEEE80211A:
2759 fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a);
2760 break;
2761 case MODE_IEEE80211B:
2762 fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b);
2763 break;
2764 case MODE_IEEE80211G:
2765 fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g);
2766 break;
2767 case MODE_ATHEROS_TURBO:
2768 fi->phytype =
2769 htonl(ieee80211_phytype_dsss_dot11_turbo);
2770 break;
2771 default:
2772 fi->phytype = htonl(0xAAAAAAAA);
2773 break;
2774 }
2775 fi->channel = htonl(status->channel);
2776 rate = ieee80211_get_rate(local, status->phymode,
2777 status->rate);
2778 if (rate) {
2779 fi->datarate = htonl(rate->rate);
2780 if (rate->flags & IEEE80211_RATE_PREAMBLE2) {
2781 if (status->rate == rate->val)
2782 fi->preamble = htonl(2); /* long */
2783 else if (status->rate == rate->val2)
2784 fi->preamble = htonl(1); /* short */
2785 } else
2786 fi->preamble = htonl(0);
2787 } else {
2788 fi->datarate = htonl(0);
2789 fi->preamble = htonl(0);
2790 }
2791
2792 fi->antenna = htonl(status->antenna);
2793 fi->priority = htonl(0xffffffff); /* no clue */
2794 fi->ssi_type = htonl(ieee80211_ssi_raw);
2795 fi->ssi_signal = htonl(status->ssi);
2796 fi->ssi_noise = 0x00000000;
2797 fi->encoding = 0;
2798 } else {
2799 /* clear everything because we really don't know.
2800 * the msg_type field isn't present on monitor frames
2801 * so we don't know whether it will be present or not,
2802 * but it's ok to not clear it since it'll be assigned
2803 * anyway */
2804 memset(fi, 0, sizeof(*fi) - sizeof(fi->msg_type));
2805
2806 fi->ssi_type = htonl(ieee80211_ssi_none);
2807 }
2808 fi->version = htonl(IEEE80211_FI_VERSION);
2809 fi->length = cpu_to_be32(sizeof(*fi) - sizeof(fi->msg_type));
2810 }
2811
2812 /* this routine is actually not just for this, but also
2813 * for pushing fake 'management' frames into userspace.
2814 * it shall be replaced by a netlink-based system. */
2815 void
2816 ieee80211_rx_mgmt(struct ieee80211_local *local, struct sk_buff *skb,
2817 struct ieee80211_rx_status *status, u32 msg_type)
2818 {
2819 struct ieee80211_frame_info *fi;
2820 const size_t hlen = sizeof(struct ieee80211_frame_info);
2821 struct ieee80211_sub_if_data *sdata;
2822
2823 skb->dev = local->apdev;
2824
2825 sdata = IEEE80211_DEV_TO_SUB_IF(local->apdev);
2826
2827 if (skb_headroom(skb) < hlen) {
2828 I802_DEBUG_INC(local->rx_expand_skb_head);
2829 if (pskb_expand_head(skb, hlen, 0, GFP_ATOMIC)) {
2830 dev_kfree_skb(skb);
2831 return;
2832 }
2833 }
2834
2835 fi = (struct ieee80211_frame_info *) skb_push(skb, hlen);
2836
2837 ieee80211_fill_frame_info(local, fi, status);
2838 fi->msg_type = htonl(msg_type);
2839
2840 sdata->stats.rx_packets++;
2841 sdata->stats.rx_bytes += skb->len;
2842
2843 skb_set_mac_header(skb, 0);
2844 skb->ip_summed = CHECKSUM_UNNECESSARY;
2845 skb->pkt_type = PACKET_OTHERHOST;
2846 skb->protocol = htons(ETH_P_802_2);
2847 memset(skb->cb, 0, sizeof(skb->cb));
2848 netif_rx(skb);
2849 }
2850
2851 static void
2852 ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb,
2853 struct ieee80211_rx_status *status)
2854 {
2855 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2856 struct ieee80211_sub_if_data *sdata;
2857 struct ieee80211_rate *rate;
2858 struct ieee80211_rtap_hdr {
2859 struct ieee80211_radiotap_header hdr;
2860 u8 flags;
2861 u8 rate;
2862 __le16 chan_freq;
2863 __le16 chan_flags;
2864 u8 antsignal;
2865 } __attribute__ ((packed)) *rthdr;
2866
2867 skb->dev = dev;
2868
2869 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2870
2871 if (status->flag & RX_FLAG_RADIOTAP)
2872 goto out;
2873
2874 if (skb_headroom(skb) < sizeof(*rthdr)) {
2875 I802_DEBUG_INC(local->rx_expand_skb_head);
2876 if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
2877 dev_kfree_skb(skb);
2878 return;
2879 }
2880 }
2881
2882 rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr));
2883 memset(rthdr, 0, sizeof(*rthdr));
2884 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2885 rthdr->hdr.it_present =
2886 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2887 (1 << IEEE80211_RADIOTAP_RATE) |
2888 (1 << IEEE80211_RADIOTAP_CHANNEL) |
2889 (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL));
2890 rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
2891 IEEE80211_RADIOTAP_F_FCS : 0;
2892 rate = ieee80211_get_rate(local, status->phymode, status->rate);
2893 if (rate)
2894 rthdr->rate = rate->rate / 5;
2895 rthdr->chan_freq = cpu_to_le16(status->freq);
2896 rthdr->chan_flags =
2897 status->phymode == MODE_IEEE80211A ?
2898 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) :
2899 cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ);
2900 rthdr->antsignal = status->ssi;
2901
2902 out:
2903 sdata->stats.rx_packets++;
2904 sdata->stats.rx_bytes += skb->len;
2905
2906 skb_set_mac_header(skb, 0);
2907 skb->ip_summed = CHECKSUM_UNNECESSARY;
2908 skb->pkt_type = PACKET_OTHERHOST;
2909 skb->protocol = htons(ETH_P_802_2);
2910 memset(skb->cb, 0, sizeof(skb->cb));
2911 netif_rx(skb);
2912 }
2913
2914 int ieee80211_radar_status(struct ieee80211_hw *hw, int channel,
2915 int radar, int radar_type)
2916 {
2917 struct sk_buff *skb;
2918 struct ieee80211_radar_info *msg;
2919 struct ieee80211_local *local = hw_to_local(hw);
2920
2921 if (!local->apdev)
2922 return 0;
2923
2924 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
2925 sizeof(struct ieee80211_radar_info));
2926
2927 if (!skb)
2928 return -ENOMEM;
2929 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
2930
2931 msg = (struct ieee80211_radar_info *)
2932 skb_put(skb, sizeof(struct ieee80211_radar_info));
2933 msg->channel = channel;
2934 msg->radar = radar;
2935 msg->radar_type = radar_type;
2936
2937 ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_radar);
2938 return 0;
2939 }
2940 EXPORT_SYMBOL(ieee80211_radar_status);
2941
2942 int ieee80211_set_aid_for_sta(struct ieee80211_hw *hw, u8 *peer_address,
2943 u16 aid)
2944 {
2945 struct sk_buff *skb;
2946 struct ieee80211_msg_set_aid_for_sta *msg;
2947 struct ieee80211_local *local = hw_to_local(hw);
2948
2949 /* unlikely because if this event only happens for APs,
2950 * which require an open ap device. */
2951 if (unlikely(!local->apdev))
2952 return 0;
2953
2954 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
2955 sizeof(struct ieee80211_msg_set_aid_for_sta));
2956
2957 if (!skb)
2958 return -ENOMEM;
2959 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
2960
2961 msg = (struct ieee80211_msg_set_aid_for_sta *)
2962 skb_put(skb, sizeof(struct ieee80211_msg_set_aid_for_sta));
2963 memcpy(msg->sta_address, peer_address, ETH_ALEN);
2964 msg->aid = aid;
2965
2966 ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_set_aid_for_sta);
2967 return 0;
2968 }
2969 EXPORT_SYMBOL(ieee80211_set_aid_for_sta);
2970
2971 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
2972 {
2973 struct ieee80211_sub_if_data *sdata;
2974 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
2975
2976 if (sdata->bss)
2977 atomic_inc(&sdata->bss->num_sta_ps);
2978 sta->flags |= WLAN_STA_PS;
2979 sta->pspoll = 0;
2980 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
2981 printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power "
2982 "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
2983 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
2984 }
2985
2986
2987 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
2988 {
2989 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2990 struct sk_buff *skb;
2991 int sent = 0;
2992 struct ieee80211_sub_if_data *sdata;
2993 struct ieee80211_tx_packet_data *pkt_data;
2994
2995 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
2996 if (sdata->bss)
2997 atomic_dec(&sdata->bss->num_sta_ps);
2998 sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
2999 sta->pspoll = 0;
3000 if (!skb_queue_empty(&sta->ps_tx_buf)) {
3001 if (local->ops->set_tim)
3002 local->ops->set_tim(local_to_hw(local), sta->aid, 0);
3003 if (sdata->bss)
3004 bss_tim_clear(local, sdata->bss, sta->aid);
3005 }
3006 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
3007 printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power "
3008 "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
3009 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
3010 /* Send all buffered frames to the station */
3011 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
3012 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
3013 sent++;
3014 pkt_data->requeue = 1;
3015 dev_queue_xmit(skb);
3016 }
3017 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
3018 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
3019 local->total_ps_buffered--;
3020 sent++;
3021 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
3022 printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame "
3023 "since STA not sleeping anymore\n", dev->name,
3024 MAC_ARG(sta->addr), sta->aid);
3025 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
3026 pkt_data->requeue = 1;
3027 dev_queue_xmit(skb);
3028 }
3029
3030 return sent;
3031 }
3032
3033
3034 static ieee80211_txrx_result
3035 ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
3036 {
3037 struct sk_buff *skb;
3038 int no_pending_pkts;
3039
3040 if (likely(!rx->sta ||
3041 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
3042 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
3043 !rx->u.rx.ra_match))
3044 return TXRX_CONTINUE;
3045
3046 skb = skb_dequeue(&rx->sta->tx_filtered);
3047 if (!skb) {
3048 skb = skb_dequeue(&rx->sta->ps_tx_buf);
3049 if (skb)
3050 rx->local->total_ps_buffered--;
3051 }
3052 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
3053 skb_queue_empty(&rx->sta->ps_tx_buf);
3054
3055 if (skb) {
3056 struct ieee80211_hdr *hdr =
3057 (struct ieee80211_hdr *) skb->data;
3058
3059 /* tell TX path to send one frame even though the STA may
3060 * still remain is PS mode after this frame exchange */
3061 rx->sta->pspoll = 1;
3062
3063 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
3064 printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries "
3065 "after %d)\n",
3066 MAC_ARG(rx->sta->addr), rx->sta->aid,
3067 skb_queue_len(&rx->sta->ps_tx_buf));
3068 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
3069
3070 /* Use MoreData flag to indicate whether there are more
3071 * buffered frames for this STA */
3072 if (no_pending_pkts) {
3073 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
3074 rx->sta->flags &= ~WLAN_STA_TIM;
3075 } else
3076 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
3077
3078 dev_queue_xmit(skb);
3079
3080 if (no_pending_pkts) {
3081 if (rx->local->ops->set_tim)
3082 rx->local->ops->set_tim(local_to_hw(rx->local),
3083 rx->sta->aid, 0);
3084 if (rx->sdata->bss)
3085 bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
3086 }
3087 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
3088 } else if (!rx->u.rx.sent_ps_buffered) {
3089 printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even "
3090 "though there is no buffered frames for it\n",
3091 rx->dev->name, MAC_ARG(rx->sta->addr));
3092 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
3093
3094 }
3095
3096 /* Free PS Poll skb here instead of returning TXRX_DROP that would
3097 * count as an dropped frame. */
3098 dev_kfree_skb(rx->skb);
3099
3100 return TXRX_QUEUED;
3101 }
3102
3103
3104 static inline struct ieee80211_fragment_entry *
3105 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
3106 unsigned int frag, unsigned int seq, int rx_queue,
3107 struct sk_buff **skb)
3108 {
3109 struct ieee80211_fragment_entry *entry;
3110 int idx;
3111
3112 idx = sdata->fragment_next;
3113 entry = &sdata->fragments[sdata->fragment_next++];
3114 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
3115 sdata->fragment_next = 0;
3116
3117 if (!skb_queue_empty(&entry->skb_list)) {
3118 #ifdef CONFIG_MAC80211_DEBUG
3119 struct ieee80211_hdr *hdr =
3120 (struct ieee80211_hdr *) entry->skb_list.next->data;
3121 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
3122 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
3123 "addr1=" MAC_FMT " addr2=" MAC_FMT "\n",
3124 sdata->dev->name, idx,
3125 jiffies - entry->first_frag_time, entry->seq,
3126 entry->last_frag, MAC_ARG(hdr->addr1),
3127 MAC_ARG(hdr->addr2));
3128 #endif /* CONFIG_MAC80211_DEBUG */
3129 __skb_queue_purge(&entry->skb_list);
3130 }
3131
3132 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
3133 *skb = NULL;
3134 entry->first_frag_time = jiffies;
3135 entry->seq = seq;
3136 entry->rx_queue = rx_queue;
3137 entry->last_frag = frag;
3138 entry->ccmp = 0;
3139 entry->extra_len = 0;
3140
3141 return entry;
3142 }
3143
3144
3145 static inline struct ieee80211_fragment_entry *
3146 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
3147 u16 fc, unsigned int frag, unsigned int seq,
3148 int rx_queue, struct ieee80211_hdr *hdr)
3149 {
3150 struct ieee80211_fragment_entry *entry;
3151 int i, idx;
3152
3153 idx = sdata->fragment_next;
3154 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
3155 struct ieee80211_hdr *f_hdr;
3156 u16 f_fc;
3157
3158 idx--;
3159 if (idx < 0)
3160 idx = IEEE80211_FRAGMENT_MAX - 1;
3161
3162 entry = &sdata->fragments[idx];
3163 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
3164 entry->rx_queue != rx_queue ||
3165 entry->last_frag + 1 != frag)
3166 continue;
3167
3168 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
3169 f_fc = le16_to_cpu(f_hdr->frame_control);
3170
3171 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
3172 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
3173 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
3174 continue;
3175
3176 if (entry->first_frag_time + 2 * HZ < jiffies) {
3177 __skb_queue_purge(&entry->skb_list);
3178 continue;
3179 }
3180 return entry;
3181 }
3182
3183 return NULL;
3184 }
3185
3186
3187 static ieee80211_txrx_result
3188 ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
3189 {
3190 struct ieee80211_hdr *hdr;
3191 u16 sc;
3192 unsigned int frag, seq;
3193 struct ieee80211_fragment_entry *entry;
3194 struct sk_buff *skb;
3195
3196 hdr = (struct ieee80211_hdr *) rx->skb->data;
3197 sc = le16_to_cpu(hdr->seq_ctrl);
3198 frag = sc & IEEE80211_SCTL_FRAG;
3199
3200 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
3201 (rx->skb)->len < 24 ||
3202 is_multicast_ether_addr(hdr->addr1))) {
3203 /* not fragmented */
3204 goto out;
3205 }
3206 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
3207
3208 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
3209
3210 if (frag == 0) {
3211 /* This is the first fragment of a new frame. */
3212 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
3213 rx->u.rx.queue, &(rx->skb));
3214 if (rx->key && rx->key->alg == ALG_CCMP &&
3215 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
3216 /* Store CCMP PN so that we can verify that the next
3217 * fragment has a sequential PN value. */
3218 entry->ccmp = 1;
3219 memcpy(entry->last_pn,
3220 rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
3221 CCMP_PN_LEN);
3222 }
3223 return TXRX_QUEUED;
3224 }
3225
3226 /* This is a fragment for a frame that should already be pending in
3227 * fragment cache. Add this fragment to the end of the pending entry.
3228 */
3229 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
3230 rx->u.rx.queue, hdr);
3231 if (!entry) {
3232 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
3233 return TXRX_DROP;
3234 }
3235
3236 /* Verify that MPDUs within one MSDU have sequential PN values.
3237 * (IEEE 802.11i, 8.3.3.4.5) */
3238 if (entry->ccmp) {
3239 int i;
3240 u8 pn[CCMP_PN_LEN], *rpn;
3241 if (!rx->key || rx->key->alg != ALG_CCMP)
3242 return TXRX_DROP;
3243 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
3244 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
3245 pn[i]++;
3246 if (pn[i])
3247 break;
3248 }
3249 rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
3250 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
3251 printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential"
3252 " A2=" MAC_FMT " PN=%02x%02x%02x%02x%02x%02x "
3253 "(expected %02x%02x%02x%02x%02x%02x)\n",
3254 rx->dev->name, MAC_ARG(hdr->addr2),
3255 rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5],
3256 pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]);
3257 return TXRX_DROP;
3258 }
3259 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
3260 }
3261
3262 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
3263 __skb_queue_tail(&entry->skb_list, rx->skb);
3264 entry->last_frag = frag;
3265 entry->extra_len += rx->skb->len;
3266 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
3267 rx->skb = NULL;
3268 return TXRX_QUEUED;
3269 }
3270
3271 rx->skb = __skb_dequeue(&entry->skb_list);
3272 if (skb_tailroom(rx->skb) < entry->extra_len) {
3273 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
3274 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
3275 GFP_ATOMIC))) {
3276 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
3277 __skb_queue_purge(&entry->skb_list);
3278 return TXRX_DROP;
3279 }
3280 }
3281 while ((skb = __skb_dequeue(&entry->skb_list)))
3282 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
3283
3284 /* Complete frame has been reassembled - process it now */
3285 rx->fragmented = 1;
3286
3287 out:
3288 if (rx->sta)
3289 rx->sta->rx_packets++;
3290 if (is_multicast_ether_addr(hdr->addr1))
3291 rx->local->dot11MulticastReceivedFrameCount++;
3292 else
3293 ieee80211_led_rx(rx->local);
3294 return TXRX_CONTINUE;
3295 }
3296
3297
3298 static ieee80211_txrx_result
3299 ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
3300 {
3301 if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) {
3302 ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status);
3303 return TXRX_QUEUED;
3304 }
3305
3306 if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP)
3307 skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb));
3308
3309 return TXRX_CONTINUE;
3310 }
3311
3312
3313 static ieee80211_txrx_result
3314 ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
3315 {
3316 struct ieee80211_hdr *hdr;
3317 int always_sta_key;
3318 hdr = (struct ieee80211_hdr *) rx->skb->data;
3319
3320 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
3321 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
3322 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
3323 rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
3324 hdr->seq_ctrl)) {
3325 if (rx->u.rx.ra_match) {
3326 rx->local->dot11FrameDuplicateCount++;
3327 rx->sta->num_duplicates++;
3328 }
3329 return TXRX_DROP;
3330 } else
3331 rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
3332 }
3333
3334 if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) &&
3335 rx->skb->len > FCS_LEN)
3336 skb_trim(rx->skb, rx->skb->len - FCS_LEN);
3337
3338 if (unlikely(rx->skb->len < 16)) {
3339 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
3340 return TXRX_DROP;
3341 }
3342
3343 if (!rx->u.rx.ra_match)
3344 rx->skb->pkt_type = PACKET_OTHERHOST;
3345 else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
3346 rx->skb->pkt_type = PACKET_HOST;
3347 else if (is_multicast_ether_addr(hdr->addr1)) {
3348 if (is_broadcast_ether_addr(hdr->addr1))
3349 rx->skb->pkt_type = PACKET_BROADCAST;
3350 else
3351 rx->skb->pkt_type = PACKET_MULTICAST;
3352 } else
3353 rx->skb->pkt_type = PACKET_OTHERHOST;
3354
3355 /* Drop disallowed frame classes based on STA auth/assoc state;
3356 * IEEE 802.11, Chap 5.5.
3357 *
3358 * 80211.o does filtering only based on association state, i.e., it
3359 * drops Class 3 frames from not associated stations. hostapd sends
3360 * deauth/disassoc frames when needed. In addition, hostapd is
3361 * responsible for filtering on both auth and assoc states.
3362 */
3363 if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
3364 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
3365 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
3366 rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
3367 (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
3368 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
3369 !(rx->fc & IEEE80211_FCTL_TODS) &&
3370 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
3371 || !rx->u.rx.ra_match) {
3372 /* Drop IBSS frames and frames for other hosts
3373 * silently. */
3374 return TXRX_DROP;
3375 }
3376
3377 if (!rx->local->apdev)
3378 return TXRX_DROP;
3379
3380 ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
3381 ieee80211_msg_sta_not_assoc);
3382 return TXRX_QUEUED;
3383 }
3384
3385 if (rx->sdata->type == IEEE80211_IF_TYPE_STA)
3386 always_sta_key = 0;
3387 else
3388 always_sta_key = 1;
3389
3390 if (rx->sta && rx->sta->key && always_sta_key) {
3391 rx->key = rx->sta->key;
3392 } else {
3393 if (rx->sta && rx->sta->key)
3394 rx->key = rx->sta->key;
3395 else
3396 rx->key = rx->sdata->default_key;
3397
3398 if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
3399 rx->fc & IEEE80211_FCTL_PROTECTED) {
3400 int keyidx = ieee80211_wep_get_keyidx(rx->skb);
3401
3402 if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS &&
3403 (!rx->sta || !rx->sta->key || keyidx > 0))
3404 rx->key = rx->sdata->keys[keyidx];
3405
3406 if (!rx->key) {
3407 if (!rx->u.rx.ra_match)
3408 return TXRX_DROP;
3409 printk(KERN_DEBUG "%s: RX WEP frame with "
3410 "unknown keyidx %d (A1=" MAC_FMT " A2="
3411 MAC_FMT " A3=" MAC_FMT ")\n",
3412 rx->dev->name, keyidx,
3413 MAC_ARG(hdr->addr1),
3414 MAC_ARG(hdr->addr2),
3415 MAC_ARG(hdr->addr3));
3416 if (!rx->local->apdev)
3417 return TXRX_DROP;
3418 ieee80211_rx_mgmt(
3419 rx->local, rx->skb, rx->u.rx.status,
3420 ieee80211_msg_wep_frame_unknown_key);
3421 return TXRX_QUEUED;
3422 }
3423 }
3424 }
3425
3426 if (rx->fc & IEEE80211_FCTL_PROTECTED && rx->key && rx->u.rx.ra_match) {
3427 rx->key->tx_rx_count++;
3428 if (unlikely(rx->local->key_tx_rx_threshold &&
3429 rx->key->tx_rx_count >
3430 rx->local->key_tx_rx_threshold)) {
3431 ieee80211_key_threshold_notify(rx->dev, rx->key,
3432 rx->sta);
3433 }
3434 }
3435
3436 return TXRX_CONTINUE;
3437 }
3438
3439
3440 static ieee80211_txrx_result
3441 ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
3442 {
3443 struct sta_info *sta = rx->sta;
3444 struct net_device *dev = rx->dev;
3445 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
3446
3447 if (!sta)
3448 return TXRX_CONTINUE;
3449
3450 /* Update last_rx only for IBSS packets which are for the current
3451 * BSSID to avoid keeping the current IBSS network alive in cases where
3452 * other STAs are using different BSSID. */
3453 if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
3454 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
3455 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
3456 sta->last_rx = jiffies;
3457 } else
3458 if (!is_multicast_ether_addr(hdr->addr1) ||
3459 rx->sdata->type == IEEE80211_IF_TYPE_STA) {
3460 /* Update last_rx only for unicast frames in order to prevent
3461 * the Probe Request frames (the only broadcast frames from a
3462 * STA in infrastructure mode) from keeping a connection alive.
3463 */
3464 sta->last_rx = jiffies;
3465 }
3466
3467 if (!rx->u.rx.ra_match)
3468 return TXRX_CONTINUE;
3469
3470 sta->rx_fragments++;
3471 sta->rx_bytes += rx->skb->len;
3472 sta->last_rssi = (sta->last_rssi * 15 +
3473 rx->u.rx.status->ssi) / 16;
3474 sta->last_signal = (sta->last_signal * 15 +
3475 rx->u.rx.status->signal) / 16;
3476 sta->last_noise = (sta->last_noise * 15 +
3477 rx->u.rx.status->noise) / 16;
3478
3479 if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
3480 /* Change STA power saving mode only in the end of a frame
3481 * exchange sequence */
3482 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
3483 rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
3484 else if (!(sta->flags & WLAN_STA_PS) &&
3485 (rx->fc & IEEE80211_FCTL_PM))
3486 ap_sta_ps_start(dev, sta);
3487 }
3488
3489 /* Drop data::nullfunc frames silently, since they are used only to
3490 * control station power saving mode. */
3491 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
3492 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
3493 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
3494 /* Update counter and free packet here to avoid counting this
3495 * as a dropped packed. */
3496 sta->rx_packets++;
3497 dev_kfree_skb(rx->skb);
3498 return TXRX_QUEUED;
3499 }
3500
3501 return TXRX_CONTINUE;
3502 } /* ieee80211_rx_h_sta_process */
3503
3504
3505 static ieee80211_txrx_result
3506 ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
3507 {
3508 if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
3509 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
3510 !rx->key || rx->key->alg != ALG_WEP || !rx->u.rx.ra_match)
3511 return TXRX_CONTINUE;
3512
3513 /* Check for weak IVs, if hwaccel did not remove IV from the frame */
3514 if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) ||
3515 rx->key->force_sw_encrypt) {
3516 u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key);
3517 if (iv) {
3518 rx->sta->wep_weak_iv_count++;
3519 }
3520 }
3521
3522 return TXRX_CONTINUE;
3523 }
3524
3525
3526 static ieee80211_txrx_result
3527 ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
3528 {
3529 /* If the device handles decryption totally, skip this test */
3530 if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP)
3531 return TXRX_CONTINUE;
3532
3533 if ((rx->key && rx->key->alg != ALG_WEP) ||
3534 !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
3535 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
3536 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
3537 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
3538 return TXRX_CONTINUE;
3539
3540 if (!rx->key) {
3541 printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
3542 rx->dev->name);
3543 return TXRX_DROP;
3544 }
3545
3546 if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
3547 rx->key->force_sw_encrypt) {
3548 if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
3549 printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
3550 "failed\n", rx->dev->name);
3551 return TXRX_DROP;
3552 }
3553 } else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
3554 ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
3555 /* remove ICV */
3556 skb_trim(rx->skb, rx->skb->len - 4);
3557 }
3558
3559 return TXRX_CONTINUE;
3560 }
3561
3562
3563 static ieee80211_txrx_result
3564 ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
3565 {
3566 if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
3567 rx->sdata->type != IEEE80211_IF_TYPE_STA && rx->u.rx.ra_match) {
3568 /* Pass both encrypted and unencrypted EAPOL frames to user
3569 * space for processing. */
3570 if (!rx->local->apdev)
3571 return TXRX_DROP;
3572 ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
3573 ieee80211_msg_normal);
3574 return TXRX_QUEUED;
3575 }
3576
3577 if (unlikely(rx->sdata->ieee802_1x &&
3578 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
3579 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
3580 (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
3581 !ieee80211_is_eapol(rx->skb))) {
3582 #ifdef CONFIG_MAC80211_DEBUG
3583 struct ieee80211_hdr *hdr =
3584 (struct ieee80211_hdr *) rx->skb->data;
3585 printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT
3586 " (unauthorized port)\n", rx->dev->name,
3587 MAC_ARG(hdr->addr2));
3588 #endif /* CONFIG_MAC80211_DEBUG */
3589 return TXRX_DROP;
3590 }
3591
3592 return TXRX_CONTINUE;
3593 }
3594
3595
3596 static ieee80211_txrx_result
3597 ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
3598 {
3599 /* If the device handles decryption totally, skip this test */
3600 if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP)
3601 return TXRX_CONTINUE;
3602
3603 /* Drop unencrypted frames if key is set. */
3604 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
3605 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
3606 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
3607 (rx->key || rx->sdata->drop_unencrypted) &&
3608 (rx->sdata->eapol == 0 ||
3609 !ieee80211_is_eapol(rx->skb)))) {
3610 printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
3611 "encryption\n", rx->dev->name);
3612 return TXRX_DROP;
3613 }
3614 return TXRX_CONTINUE;
3615 }
3616
3617
3618 static ieee80211_txrx_result
3619 ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
3620 {
3621 struct ieee80211_sub_if_data *sdata;
3622
3623 if (!rx->u.rx.ra_match)
3624 return TXRX_DROP;
3625
3626 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
3627 if ((sdata->type == IEEE80211_IF_TYPE_STA ||
3628 sdata->type == IEEE80211_IF_TYPE_IBSS) &&
3629 !rx->local->user_space_mlme) {
3630 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
3631 } else {
3632 /* Management frames are sent to hostapd for processing */
3633 if (!rx->local->apdev)
3634 return TXRX_DROP;
3635 ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
3636 ieee80211_msg_normal);
3637 }
3638 return TXRX_QUEUED;
3639 }
3640
3641
3642 static ieee80211_txrx_result
3643 ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
3644 {
3645 struct ieee80211_local *local = rx->local;
3646 struct sk_buff *skb = rx->skb;
3647
3648 if (unlikely(local->sta_scanning != 0)) {
3649 ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
3650 return TXRX_QUEUED;
3651 }
3652
3653 if (unlikely(rx->u.rx.in_scan)) {
3654 /* scanning finished during invoking of handlers */
3655 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
3656 return TXRX_DROP;
3657 }
3658
3659 return TXRX_CONTINUE;
3660 }
3661
3662
3663 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
3664 struct ieee80211_hdr *hdr,
3665 struct sta_info *sta,
3666 struct ieee80211_txrx_data *rx)
3667 {
3668 int keyidx, hdrlen;
3669
3670 hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
3671 if (rx->skb->len >= hdrlen + 4)
3672 keyidx = rx->skb->data[hdrlen + 3] >> 6;
3673 else
3674 keyidx = -1;
3675
3676 /* TODO: verify that this is not triggered by fragmented
3677 * frames (hw does not verify MIC for them). */
3678 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
3679 "failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n",
3680 dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1), keyidx);
3681
3682 if (!sta) {
3683 /* Some hardware versions seem to generate incorrect
3684 * Michael MIC reports; ignore them to avoid triggering
3685 * countermeasures. */
3686 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
3687 "error for unknown address " MAC_FMT "\n",
3688 dev->name, MAC_ARG(hdr->addr2));
3689 goto ignore;
3690 }
3691
3692 if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
3693 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
3694 "error for a frame with no ISWEP flag (src "
3695 MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2));
3696 goto ignore;
3697 }
3698
3699 if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
3700 rx->sdata->type == IEEE80211_IF_TYPE_AP) {
3701 keyidx = ieee80211_wep_get_keyidx(rx->skb);
3702 /* AP with Pairwise keys support should never receive Michael
3703 * MIC errors for non-zero keyidx because these are reserved
3704 * for group keys and only the AP is sending real multicast
3705 * frames in BSS. */
3706 if (keyidx) {
3707 printk(KERN_DEBUG "%s: ignored Michael MIC error for "
3708 "a frame with non-zero keyidx (%d) (src " MAC_FMT
3709 ")\n", dev->name, keyidx, MAC_ARG(hdr->addr2));
3710 goto ignore;
3711 }
3712 }
3713
3714 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
3715 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
3716 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
3717 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
3718 "error for a frame that cannot be encrypted "
3719 "(fc=0x%04x) (src " MAC_FMT ")\n",
3720 dev->name, rx->fc, MAC_ARG(hdr->addr2));
3721 goto ignore;
3722 }
3723
3724 do {
3725 union iwreq_data wrqu;
3726 char *buf = kmalloc(128, GFP_ATOMIC);
3727 if (!buf)
3728 break;
3729
3730 /* TODO: needed parameters: count, key type, TSC */
3731 sprintf(buf, "MLME-MICHAELMICFAILURE.indication("
3732 "keyid=%d %scast addr=" MAC_FMT ")",
3733 keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni",
3734 MAC_ARG(hdr->addr2));
3735 memset(&wrqu, 0, sizeof(wrqu));
3736 wrqu.data.length = strlen(buf);
3737 wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf);
3738 kfree(buf);
3739 } while (0);
3740
3741 /* TODO: consider verifying the MIC error report with software
3742 * implementation if we get too many spurious reports from the
3743 * hardware. */
3744 if (!rx->local->apdev)
3745 goto ignore;
3746 ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
3747 ieee80211_msg_michael_mic_failure);
3748 return;
3749
3750 ignore:
3751 dev_kfree_skb(rx->skb);
3752 rx->skb = NULL;
3753 }
3754
3755 static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
3756 struct ieee80211_local *local,
3757 ieee80211_rx_handler *handlers,
3758 struct ieee80211_txrx_data *rx,
3759 struct sta_info *sta)
3760 {
3761 ieee80211_rx_handler *handler;
3762 ieee80211_txrx_result res = TXRX_DROP;
3763
3764 for (handler = handlers; *handler != NULL; handler++) {
3765 res = (*handler)(rx);
3766 if (res != TXRX_CONTINUE) {
3767 if (res == TXRX_DROP) {
3768 I802_DEBUG_INC(local->rx_handlers_drop);
3769 if (sta)
3770 sta->rx_dropped++;
3771 }
3772 if (res == TXRX_QUEUED)
3773 I802_DEBUG_INC(local->rx_handlers_queued);
3774 break;
3775 }
3776 }
3777
3778 if (res == TXRX_DROP) {
3779 dev_kfree_skb(rx->skb);
3780 }
3781 return res;
3782 }
3783
3784 static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
3785 ieee80211_rx_handler *handlers,
3786 struct ieee80211_txrx_data *rx,
3787 struct sta_info *sta)
3788 {
3789 if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
3790 TXRX_CONTINUE)
3791 dev_kfree_skb(rx->skb);
3792 }
3793
3794 /*
3795 * This is the receive path handler. It is called by a low level driver when an
3796 * 802.11 MPDU is received from the hardware.
3797 */
3798 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
3799 struct ieee80211_rx_status *status)
3800 {
3801 struct ieee80211_local *local = hw_to_local(hw);
3802 struct ieee80211_sub_if_data *sdata;
3803 struct sta_info *sta;
3804 struct ieee80211_hdr *hdr;
3805 struct ieee80211_txrx_data rx;
3806 u16 type;
3807 int multicast;
3808 int radiotap_len = 0;
3809
3810 if (status->flag & RX_FLAG_RADIOTAP) {
3811 radiotap_len = ieee80211_get_radiotap_len(skb);
3812 skb_pull(skb, radiotap_len);
3813 }
3814
3815 hdr = (struct ieee80211_hdr *) skb->data;
3816 memset(&rx, 0, sizeof(rx));
3817 rx.skb = skb;
3818 rx.local = local;
3819
3820 rx.u.rx.status = status;
3821 rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
3822 type = rx.fc & IEEE80211_FCTL_FTYPE;
3823 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
3824 local->dot11ReceivedFragmentCount++;
3825 multicast = is_multicast_ether_addr(hdr->addr1);
3826
3827 if (skb->len >= 16)
3828 sta = rx.sta = sta_info_get(local, hdr->addr2);
3829 else
3830 sta = rx.sta = NULL;
3831
3832 if (sta) {
3833 rx.dev = sta->dev;
3834 rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
3835 }
3836
3837 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
3838 ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
3839 goto end;
3840 }
3841
3842 if (unlikely(local->sta_scanning))
3843 rx.u.rx.in_scan = 1;
3844
3845 if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
3846 sta) != TXRX_CONTINUE)
3847 goto end;
3848 skb = rx.skb;
3849
3850 skb_push(skb, radiotap_len);
3851 if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS) &&
3852 !local->iff_promiscs && !multicast) {
3853 rx.u.rx.ra_match = 1;
3854 ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
3855 sta);
3856 } else {
3857 struct ieee80211_sub_if_data *prev = NULL;
3858 struct sk_buff *skb_new;
3859 u8 *bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len);
3860
3861 read_lock(&local->sub_if_lock);
3862 list_for_each_entry(sdata, &local->sub_if_list, list) {
3863 rx.u.rx.ra_match = 1;
3864 switch (sdata->type) {
3865 case IEEE80211_IF_TYPE_STA:
3866 if (!bssid)
3867 continue;
3868 if (!ieee80211_bssid_match(bssid,
3869 sdata->u.sta.bssid)) {
3870 if (!rx.u.rx.in_scan)
3871 continue;
3872 rx.u.rx.ra_match = 0;
3873 } else if (!multicast &&
3874 compare_ether_addr(sdata->dev->dev_addr,
3875 hdr->addr1) != 0) {
3876 if (!sdata->promisc)
3877 continue;
3878 rx.u.rx.ra_match = 0;
3879 }
3880 break;
3881 case IEEE80211_IF_TYPE_IBSS:
3882 if (!bssid)
3883 continue;
3884 if (!ieee80211_bssid_match(bssid,
3885 sdata->u.sta.bssid)) {
3886 if (!rx.u.rx.in_scan)
3887 continue;
3888 rx.u.rx.ra_match = 0;
3889 } else if (!multicast &&
3890 compare_ether_addr(sdata->dev->dev_addr,
3891 hdr->addr1) != 0) {
3892 if (!sdata->promisc)
3893 continue;
3894 rx.u.rx.ra_match = 0;
3895 } else if (!sta)
3896 sta = rx.sta =
3897 ieee80211_ibss_add_sta(sdata->dev,
3898 skb, bssid,
3899 hdr->addr2);
3900 break;
3901 case IEEE80211_IF_TYPE_AP:
3902 if (!bssid) {
3903 if (compare_ether_addr(sdata->dev->dev_addr,
3904 hdr->addr1) != 0)
3905 continue;
3906 } else if (!ieee80211_bssid_match(bssid,
3907 sdata->dev->dev_addr)) {
3908 if (!rx.u.rx.in_scan)
3909 continue;
3910 rx.u.rx.ra_match = 0;
3911 }
3912 if (sdata->dev == local->mdev &&
3913 !rx.u.rx.in_scan)
3914 /* do not receive anything via
3915 * master device when not scanning */
3916 continue;
3917 break;
3918 case IEEE80211_IF_TYPE_WDS:
3919 if (bssid ||
3920 (rx.fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
3921 continue;
3922 if (compare_ether_addr(sdata->u.wds.remote_addr,
3923 hdr->addr2) != 0)
3924 continue;
3925 break;
3926 }
3927
3928 if (prev) {
3929 skb_new = skb_copy(skb, GFP_ATOMIC);
3930 if (!skb_new) {
3931 if (net_ratelimit())
3932 printk(KERN_DEBUG "%s: failed to copy "
3933 "multicast frame for %s",
3934 local->mdev->name, prev->dev->name);
3935 continue;
3936 }
3937 rx.skb = skb_new;
3938 rx.dev = prev->dev;
3939 rx.sdata = prev;
3940 ieee80211_invoke_rx_handlers(local,
3941 local->rx_handlers,
3942 &rx, sta);
3943 }
3944 prev = sdata;
3945 }
3946 if (prev) {
3947 rx.skb = skb;
3948 rx.dev = prev->dev;
3949 rx.sdata = prev;
3950 ieee80211_invoke_rx_handlers(local, local->rx_handlers,
3951 &rx, sta);
3952 } else
3953 dev_kfree_skb(skb);
3954 read_unlock(&local->sub_if_lock);
3955 }
3956
3957 end:
3958 if (sta)
3959 sta_info_put(sta);
3960 }
3961 EXPORT_SYMBOL(__ieee80211_rx);
3962
3963 static ieee80211_txrx_result
3964 ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
3965 {
3966 struct ieee80211_local *local = tx->local;
3967 struct ieee80211_hw_mode *mode = tx->u.tx.mode;
3968 struct sk_buff *skb = tx->skb;
3969 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3970 u32 load = 0, hdrtime;
3971
3972 /* TODO: this could be part of tx_status handling, so that the number
3973 * of retries would be known; TX rate should in that case be stored
3974 * somewhere with the packet */
3975
3976 /* Estimate total channel use caused by this frame */
3977
3978 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
3979 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
3980
3981 if (mode->mode == MODE_IEEE80211A ||
3982 mode->mode == MODE_ATHEROS_TURBO ||
3983 mode->mode == MODE_ATHEROS_TURBOG ||
3984 (mode->mode == MODE_IEEE80211G &&
3985 tx->u.tx.rate->flags & IEEE80211_RATE_ERP))
3986 hdrtime = CHAN_UTIL_HDR_SHORT;
3987 else
3988 hdrtime = CHAN_UTIL_HDR_LONG;
3989
3990 load = hdrtime;
3991 if (!is_multicast_ether_addr(hdr->addr1))
3992 load += hdrtime;
3993
3994 if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS)
3995 load += 2 * hdrtime;
3996 else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
3997 load += hdrtime;
3998
3999 load += skb->len * tx->u.tx.rate->rate_inv;
4000
4001 if (tx->u.tx.extra_frag) {
4002 int i;
4003 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
4004 load += 2 * hdrtime;
4005 load += tx->u.tx.extra_frag[i]->len *
4006 tx->u.tx.rate->rate;
4007 }
4008 }
4009
4010 /* Divide channel_use by 8 to avoid wrapping around the counter */
4011 load >>= CHAN_UTIL_SHIFT;
4012 local->channel_use_raw += load;
4013 if (tx->sta)
4014 tx->sta->channel_use_raw += load;
4015 tx->sdata->channel_use_raw += load;
4016
4017 return TXRX_CONTINUE;
4018 }
4019
4020
4021 static ieee80211_txrx_result
4022 ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
4023 {
4024 struct ieee80211_local *local = rx->local;
4025 struct sk_buff *skb = rx->skb;
4026 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
4027 u32 load = 0, hdrtime;
4028 struct ieee80211_rate *rate;
4029 struct ieee80211_hw_mode *mode = local->hw.conf.mode;
4030 int i;
4031
4032 /* Estimate total channel use caused by this frame */
4033
4034 if (unlikely(mode->num_rates < 0))
4035 return TXRX_CONTINUE;
4036
4037 rate = &mode->rates[0];
4038 for (i = 0; i < mode->num_rates; i++) {
4039 if (mode->rates[i].val == rx->u.rx.status->rate) {
4040 rate = &mode->rates[i];
4041 break;
4042 }
4043 }
4044
4045 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
4046 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
4047
4048 if (mode->mode == MODE_IEEE80211A ||
4049 mode->mode == MODE_ATHEROS_TURBO ||
4050 mode->mode == MODE_ATHEROS_TURBOG ||
4051 (mode->mode == MODE_IEEE80211G &&
4052 rate->flags & IEEE80211_RATE_ERP))
4053 hdrtime = CHAN_UTIL_HDR_SHORT;
4054 else
4055 hdrtime = CHAN_UTIL_HDR_LONG;
4056
4057 load = hdrtime;
4058 if (!is_multicast_ether_addr(hdr->addr1))
4059 load += hdrtime;
4060
4061 load += skb->len * rate->rate_inv;
4062
4063 /* Divide channel_use by 8 to avoid wrapping around the counter */
4064 load >>= CHAN_UTIL_SHIFT;
4065 local->channel_use_raw += load;
4066 if (rx->sta)
4067 rx->sta->channel_use_raw += load;
4068 rx->u.rx.load = load;
4069
4070 return TXRX_CONTINUE;
4071 }
4072
4073 static ieee80211_txrx_result
4074 ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
4075 {
4076 rx->sdata->channel_use_raw += rx->u.rx.load;
4077 return TXRX_CONTINUE;
4078 }
4079
4080 static void ieee80211_stat_refresh(unsigned long data)
4081 {
4082 struct ieee80211_local *local = (struct ieee80211_local *) data;
4083 struct sta_info *sta;
4084 struct ieee80211_sub_if_data *sdata;
4085
4086 if (!local->stat_time)
4087 return;
4088
4089 /* go through all stations */
4090 spin_lock_bh(&local->sta_lock);
4091 list_for_each_entry(sta, &local->sta_list, list) {
4092 sta->channel_use = (sta->channel_use_raw / local->stat_time) /
4093 CHAN_UTIL_PER_10MS;
4094 sta->channel_use_raw = 0;
4095 }
4096 spin_unlock_bh(&local->sta_lock);
4097
4098 /* go through all subinterfaces */
4099 read_lock(&local->sub_if_lock);
4100 list_for_each_entry(sdata, &local->sub_if_list, list) {
4101 sdata->channel_use = (sdata->channel_use_raw /
4102 local->stat_time) / CHAN_UTIL_PER_10MS;
4103 sdata->channel_use_raw = 0;
4104 }
4105 read_unlock(&local->sub_if_lock);
4106
4107 /* hardware interface */
4108 local->channel_use = (local->channel_use_raw /
4109 local->stat_time) / CHAN_UTIL_PER_10MS;
4110 local->channel_use_raw = 0;
4111
4112 local->stat_timer.expires = jiffies + HZ * local->stat_time / 100;
4113 add_timer(&local->stat_timer);
4114 }
4115
4116
4117 /* This is a version of the rx handler that can be called from hard irq
4118 * context. Post the skb on the queue and schedule the tasklet */
4119 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
4120 struct ieee80211_rx_status *status)
4121 {
4122 struct ieee80211_local *local = hw_to_local(hw);
4123
4124 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4125
4126 skb->dev = local->mdev;
4127 /* copy status into skb->cb for use by tasklet */
4128 memcpy(skb->cb, status, sizeof(*status));
4129 skb->pkt_type = IEEE80211_RX_MSG;
4130 skb_queue_tail(&local->skb_queue, skb);
4131 tasklet_schedule(&local->tasklet);
4132 }
4133 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4134
4135 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
4136 struct sk_buff *skb,
4137 struct ieee80211_tx_status *status)
4138 {
4139 struct ieee80211_local *local = hw_to_local(hw);
4140 struct ieee80211_tx_status *saved;
4141 int tmp;
4142
4143 skb->dev = local->mdev;
4144 saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC);
4145 if (unlikely(!saved)) {
4146 if (net_ratelimit())
4147 printk(KERN_WARNING "%s: Not enough memory, "
4148 "dropping tx status", skb->dev->name);
4149 /* should be dev_kfree_skb_irq, but due to this function being
4150 * named _irqsafe instead of just _irq we can't be sure that
4151 * people won't call it from non-irq contexts */
4152 dev_kfree_skb_any(skb);
4153 return;
4154 }
4155 memcpy(saved, status, sizeof(struct ieee80211_tx_status));
4156 /* copy pointer to saved status into skb->cb for use by tasklet */
4157 memcpy(skb->cb, &saved, sizeof(saved));
4158
4159 skb->pkt_type = IEEE80211_TX_STATUS_MSG;
4160 skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ?
4161 &local->skb_queue : &local->skb_queue_unreliable, skb);
4162 tmp = skb_queue_len(&local->skb_queue) +
4163 skb_queue_len(&local->skb_queue_unreliable);
4164 while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
4165 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
4166 memcpy(&saved, skb->cb, sizeof(saved));
4167 kfree(saved);
4168 dev_kfree_skb_irq(skb);
4169 tmp--;
4170 I802_DEBUG_INC(local->tx_status_drop);
4171 }
4172 tasklet_schedule(&local->tasklet);
4173 }
4174 EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
4175
4176 static void ieee80211_tasklet_handler(unsigned long data)
4177 {
4178 struct ieee80211_local *local = (struct ieee80211_local *) data;
4179 struct sk_buff *skb;
4180 struct ieee80211_rx_status rx_status;
4181 struct ieee80211_tx_status *tx_status;
4182
4183 while ((skb = skb_dequeue(&local->skb_queue)) ||
4184 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
4185 switch (skb->pkt_type) {
4186 case IEEE80211_RX_MSG:
4187 /* status is in skb->cb */
4188 memcpy(&rx_status, skb->cb, sizeof(rx_status));
4189 /* Clear skb->type in order to not confuse kernel
4190 * netstack. */
4191 skb->pkt_type = 0;
4192 __ieee80211_rx(local_to_hw(local), skb, &rx_status);
4193 break;
4194 case IEEE80211_TX_STATUS_MSG:
4195 /* get pointer to saved status out of skb->cb */
4196 memcpy(&tx_status, skb->cb, sizeof(tx_status));
4197 skb->pkt_type = 0;
4198 ieee80211_tx_status(local_to_hw(local),
4199 skb, tx_status);
4200 kfree(tx_status);
4201 break;
4202 default: /* should never get here! */
4203 printk(KERN_ERR "%s: Unknown message type (%d)\n",
4204 local->mdev->name, skb->pkt_type);
4205 dev_kfree_skb(skb);
4206 break;
4207 }
4208 }
4209 }
4210
4211
4212 /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
4213 * make a prepared TX frame (one that has been given to hw) to look like brand
4214 * new IEEE 802.11 frame that is ready to go through TX processing again.
4215 * Also, tx_packet_data in cb is restored from tx_control. */
4216 static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
4217 struct ieee80211_key *key,
4218 struct sk_buff *skb,
4219 struct ieee80211_tx_control *control)
4220 {
4221 int hdrlen, iv_len, mic_len;
4222 struct ieee80211_tx_packet_data *pkt_data;
4223
4224 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
4225 pkt_data->ifindex = control->ifindex;
4226 pkt_data->mgmt_iface = (control->type == IEEE80211_IF_TYPE_MGMT);
4227 pkt_data->req_tx_status = !!(control->flags & IEEE80211_TXCTL_REQ_TX_STATUS);
4228 pkt_data->do_not_encrypt = !!(control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT);
4229 pkt_data->requeue = !!(control->flags & IEEE80211_TXCTL_REQUEUE);
4230 pkt_data->queue = control->queue;
4231
4232 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
4233
4234 if (!key)
4235 goto no_key;
4236
4237 switch (key->alg) {
4238 case ALG_WEP:
4239 iv_len = WEP_IV_LEN;
4240 mic_len = WEP_ICV_LEN;
4241 break;
4242 case ALG_TKIP:
4243 iv_len = TKIP_IV_LEN;
4244 mic_len = TKIP_ICV_LEN;
4245 break;
4246 case ALG_CCMP:
4247 iv_len = CCMP_HDR_LEN;
4248 mic_len = CCMP_MIC_LEN;
4249 break;
4250 default:
4251 goto no_key;
4252 }
4253
4254 if (skb->len >= mic_len && key->force_sw_encrypt)
4255 skb_trim(skb, skb->len - mic_len);
4256 if (skb->len >= iv_len && skb->len > hdrlen) {
4257 memmove(skb->data + iv_len, skb->data, hdrlen);
4258 skb_pull(skb, iv_len);
4259 }
4260
4261 no_key:
4262 {
4263 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
4264 u16 fc = le16_to_cpu(hdr->frame_control);
4265 if ((fc & 0x8C) == 0x88) /* QoS Control Field */ {
4266 fc &= ~IEEE80211_STYPE_QOS_DATA;
4267 hdr->frame_control = cpu_to_le16(fc);
4268 memmove(skb->data + 2, skb->data, hdrlen - 2);
4269 skb_pull(skb, 2);
4270 }
4271 }
4272 }
4273
4274
4275 void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
4276 struct ieee80211_tx_status *status)
4277 {
4278 struct sk_buff *skb2;
4279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
4280 struct ieee80211_local *local = hw_to_local(hw);
4281 u16 frag, type;
4282 u32 msg_type;
4283
4284 if (!status) {
4285 printk(KERN_ERR
4286 "%s: ieee80211_tx_status called with NULL status\n",
4287 local->mdev->name);
4288 dev_kfree_skb(skb);
4289 return;
4290 }
4291
4292 if (status->excessive_retries) {
4293 struct sta_info *sta;
4294 sta = sta_info_get(local, hdr->addr1);
4295 if (sta) {
4296 if (sta->flags & WLAN_STA_PS) {
4297 /* The STA is in power save mode, so assume
4298 * that this TX packet failed because of that.
4299 */
4300 status->excessive_retries = 0;
4301 status->flags |= IEEE80211_TX_STATUS_TX_FILTERED;
4302 }
4303 sta_info_put(sta);
4304 }
4305 }
4306
4307 if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) {
4308 struct sta_info *sta;
4309 sta = sta_info_get(local, hdr->addr1);
4310 if (sta) {
4311 sta->tx_filtered_count++;
4312
4313 /* Clear the TX filter mask for this STA when sending
4314 * the next packet. If the STA went to power save mode,
4315 * this will happen when it is waking up for the next
4316 * time. */
4317 sta->clear_dst_mask = 1;
4318
4319 /* TODO: Is the WLAN_STA_PS flag always set here or is
4320 * the race between RX and TX status causing some
4321 * packets to be filtered out before 80211.o gets an
4322 * update for PS status? This seems to be the case, so
4323 * no changes are likely to be needed. */
4324 if (sta->flags & WLAN_STA_PS &&
4325 skb_queue_len(&sta->tx_filtered) <
4326 STA_MAX_TX_BUFFER) {
4327 ieee80211_remove_tx_extra(local, sta->key,
4328 skb,
4329 &status->control);
4330 skb_queue_tail(&sta->tx_filtered, skb);
4331 } else if (!(sta->flags & WLAN_STA_PS) &&
4332 !(status->control.flags & IEEE80211_TXCTL_REQUEUE)) {
4333 /* Software retry the packet once */
4334 status->control.flags |= IEEE80211_TXCTL_REQUEUE;
4335 ieee80211_remove_tx_extra(local, sta->key,
4336 skb,
4337 &status->control);
4338 dev_queue_xmit(skb);
4339 } else {
4340 if (net_ratelimit()) {
4341 printk(KERN_DEBUG "%s: dropped TX "
4342 "filtered frame queue_len=%d "
4343 "PS=%d @%lu\n",
4344 local->mdev->name,
4345 skb_queue_len(
4346 &sta->tx_filtered),
4347 !!(sta->flags & WLAN_STA_PS),
4348 jiffies);
4349 }
4350 dev_kfree_skb(skb);
4351 }
4352 sta_info_put(sta);
4353 return;
4354 }
4355 } else {
4356 /* FIXME: STUPID to call this with both local and local->mdev */
4357 rate_control_tx_status(local, local->mdev, skb, status);
4358 }
4359
4360 ieee80211_led_tx(local, 0);
4361
4362 /* SNMP counters
4363 * Fragments are passed to low-level drivers as separate skbs, so these
4364 * are actually fragments, not frames. Update frame counters only for
4365 * the first fragment of the frame. */
4366
4367 frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
4368 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
4369
4370 if (status->flags & IEEE80211_TX_STATUS_ACK) {
4371 if (frag == 0) {
4372 local->dot11TransmittedFrameCount++;
4373 if (is_multicast_ether_addr(hdr->addr1))
4374 local->dot11MulticastTransmittedFrameCount++;
4375 if (status->retry_count > 0)
4376 local->dot11RetryCount++;
4377 if (status->retry_count > 1)
4378 local->dot11MultipleRetryCount++;
4379 }
4380
4381 /* This counter shall be incremented for an acknowledged MPDU
4382 * with an individual address in the address 1 field or an MPDU
4383 * with a multicast address in the address 1 field of type Data
4384 * or Management. */
4385 if (!is_multicast_ether_addr(hdr->addr1) ||
4386 type == IEEE80211_FTYPE_DATA ||
4387 type == IEEE80211_FTYPE_MGMT)
4388 local->dot11TransmittedFragmentCount++;
4389 } else {
4390 if (frag == 0)
4391 local->dot11FailedCount++;
4392 }
4393
4394 if (!(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS)
4395 || unlikely(!local->apdev)) {
4396 dev_kfree_skb(skb);
4397 return;
4398 }
4399
4400 msg_type = (status->flags & IEEE80211_TX_STATUS_ACK) ?
4401 ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail;
4402
4403 /* skb was the original skb used for TX. Clone it and give the clone
4404 * to netif_rx(). Free original skb. */
4405 skb2 = skb_copy(skb, GFP_ATOMIC);
4406 if (!skb2) {
4407 dev_kfree_skb(skb);
4408 return;
4409 }
4410 dev_kfree_skb(skb);
4411 skb = skb2;
4412
4413 /* Send frame to hostapd */
4414 ieee80211_rx_mgmt(local, skb, NULL, msg_type);
4415 }
4416 EXPORT_SYMBOL(ieee80211_tx_status);
4417
4418 /* TODO: implement register/unregister functions for adding TX/RX handlers
4419 * into ordered list */
4420
4421 /* rx_pre handlers don't have dev and sdata fields available in
4422 * ieee80211_txrx_data */
4423 static ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
4424 {
4425 ieee80211_rx_h_parse_qos,
4426 ieee80211_rx_h_load_stats,
4427 NULL
4428 };
4429
4430 static ieee80211_rx_handler ieee80211_rx_handlers[] =
4431 {
4432 ieee80211_rx_h_if_stats,
4433 ieee80211_rx_h_monitor,
4434 ieee80211_rx_h_passive_scan,
4435 ieee80211_rx_h_check,
4436 ieee80211_rx_h_sta_process,
4437 ieee80211_rx_h_ccmp_decrypt,
4438 ieee80211_rx_h_tkip_decrypt,
4439 ieee80211_rx_h_wep_weak_iv_detection,
4440 ieee80211_rx_h_wep_decrypt,
4441 ieee80211_rx_h_defragment,
4442 ieee80211_rx_h_ps_poll,
4443 ieee80211_rx_h_michael_mic_verify,
4444 /* this must be after decryption - so header is counted in MPDU mic
4445 * must be before pae and data, so QOS_DATA format frames
4446 * are not passed to user space by these functions
4447 */
4448 ieee80211_rx_h_remove_qos_control,
4449 ieee80211_rx_h_802_1x_pae,
4450 ieee80211_rx_h_drop_unencrypted,
4451 ieee80211_rx_h_data,
4452 ieee80211_rx_h_mgmt,
4453 NULL
4454 };
4455
4456 static ieee80211_tx_handler ieee80211_tx_handlers[] =
4457 {
4458 ieee80211_tx_h_check_assoc,
4459 ieee80211_tx_h_sequence,
4460 ieee80211_tx_h_ps_buf,
4461 ieee80211_tx_h_select_key,
4462 ieee80211_tx_h_michael_mic_add,
4463 ieee80211_tx_h_fragment,
4464 ieee80211_tx_h_tkip_encrypt,
4465 ieee80211_tx_h_ccmp_encrypt,
4466 ieee80211_tx_h_wep_encrypt,
4467 ieee80211_tx_h_rate_ctrl,
4468 ieee80211_tx_h_misc,
4469 ieee80211_tx_h_load_stats,
4470 NULL
4471 };
4472
4473
4474 int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr)
4475 {
4476 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
4477 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
4478 struct sta_info *sta;
4479
4480 if (compare_ether_addr(remote_addr, sdata->u.wds.remote_addr) == 0)
4481 return 0;
4482
4483 /* Create STA entry for the new peer */
4484 sta = sta_info_add(local, dev, remote_addr, GFP_KERNEL);
4485 if (!sta)
4486 return -ENOMEM;
4487 sta_info_put(sta);
4488
4489 /* Remove STA entry for the old peer */
4490 sta = sta_info_get(local, sdata->u.wds.remote_addr);
4491 if (sta) {
4492 sta_info_put(sta);
4493 sta_info_free(sta, 0);
4494 } else {
4495 printk(KERN_DEBUG "%s: could not find STA entry for WDS link "
4496 "peer " MAC_FMT "\n",
4497 dev->name, MAC_ARG(sdata->u.wds.remote_addr));
4498 }
4499
4500 /* Update WDS link data */
4501 memcpy(&sdata->u.wds.remote_addr, remote_addr, ETH_ALEN);
4502
4503 return 0;
4504 }
4505
4506 /* Must not be called for mdev and apdev */
4507 void ieee80211_if_setup(struct net_device *dev)
4508 {
4509 ether_setup(dev);
4510 dev->hard_start_xmit = ieee80211_subif_start_xmit;
4511 dev->wireless_handlers = &ieee80211_iw_handler_def;
4512 dev->set_multicast_list = ieee80211_set_multicast_list;
4513 dev->change_mtu = ieee80211_change_mtu;
4514 dev->get_stats = ieee80211_get_stats;
4515 dev->open = ieee80211_open;
4516 dev->stop = ieee80211_stop;
4517 dev->uninit = ieee80211_if_reinit;
4518 dev->destructor = ieee80211_if_free;
4519 }
4520
4521 void ieee80211_if_mgmt_setup(struct net_device *dev)
4522 {
4523 ether_setup(dev);
4524 dev->hard_start_xmit = ieee80211_mgmt_start_xmit;
4525 dev->change_mtu = ieee80211_change_mtu_apdev;
4526 dev->get_stats = ieee80211_get_stats;
4527 dev->open = ieee80211_mgmt_open;
4528 dev->stop = ieee80211_mgmt_stop;
4529 dev->type = ARPHRD_IEEE80211_PRISM;
4530 dev->hard_header_parse = header_parse_80211;
4531 dev->uninit = ieee80211_if_reinit;
4532 dev->destructor = ieee80211_if_free;
4533 }
4534
4535 int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local,
4536 const char *name)
4537 {
4538 struct rate_control_ref *ref, *old;
4539
4540 ASSERT_RTNL();
4541 if (local->open_count || netif_running(local->mdev) ||
4542 (local->apdev && netif_running(local->apdev)))
4543 return -EBUSY;
4544
4545 ref = rate_control_alloc(name, local);
4546 if (!ref) {
4547 printk(KERN_WARNING "%s: Failed to select rate control "
4548 "algorithm\n", local->mdev->name);
4549 return -ENOENT;
4550 }
4551
4552 old = local->rate_ctrl;
4553 local->rate_ctrl = ref;
4554 if (old) {
4555 rate_control_put(old);
4556 sta_info_flush(local, NULL);
4557 }
4558
4559 printk(KERN_DEBUG "%s: Selected rate control "
4560 "algorithm '%s'\n", local->mdev->name,
4561 ref->ops->name);
4562
4563
4564 return 0;
4565 }
4566
4567 static void rate_control_deinitialize(struct ieee80211_local *local)
4568 {
4569 struct rate_control_ref *ref;
4570
4571 ref = local->rate_ctrl;
4572 local->rate_ctrl = NULL;
4573 rate_control_put(ref);
4574 }
4575
4576 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
4577 const struct ieee80211_ops *ops)
4578 {
4579 struct net_device *mdev;
4580 struct ieee80211_local *local;
4581 struct ieee80211_sub_if_data *sdata;
4582 int priv_size;
4583 struct wiphy *wiphy;
4584
4585 /* Ensure 32-byte alignment of our private data and hw private data.
4586 * We use the wiphy priv data for both our ieee80211_local and for
4587 * the driver's private data
4588 *
4589 * In memory it'll be like this:
4590 *
4591 * +-------------------------+
4592 * | struct wiphy |
4593 * +-------------------------+
4594 * | struct ieee80211_local |
4595 * +-------------------------+
4596 * | driver's private data |
4597 * +-------------------------+
4598 *
4599 */
4600 priv_size = ((sizeof(struct ieee80211_local) +
4601 NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) +
4602 priv_data_len;
4603
4604 wiphy = wiphy_new(&mac80211_config_ops, priv_size);
4605
4606 if (!wiphy)
4607 return NULL;
4608
4609 wiphy->privid = mac80211_wiphy_privid;
4610
4611 local = wiphy_priv(wiphy);
4612 local->hw.wiphy = wiphy;
4613
4614 local->hw.priv = (char *)local +
4615 ((sizeof(struct ieee80211_local) +
4616 NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4617
4618 local->ops = ops;
4619
4620 /* for now, mdev needs sub_if_data :/ */
4621 mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data),
4622 "wmaster%d", ether_setup);
4623 if (!mdev) {
4624 wiphy_free(wiphy);
4625 return NULL;
4626 }
4627
4628 sdata = IEEE80211_DEV_TO_SUB_IF(mdev);
4629 mdev->ieee80211_ptr = &sdata->wdev;
4630 sdata->wdev.wiphy = wiphy;
4631
4632 local->hw.queues = 1; /* default */
4633
4634 local->mdev = mdev;
4635 local->rx_pre_handlers = ieee80211_rx_pre_handlers;
4636 local->rx_handlers = ieee80211_rx_handlers;
4637 local->tx_handlers = ieee80211_tx_handlers;
4638
4639 local->bridge_packets = 1;
4640
4641 local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
4642 local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
4643 local->short_retry_limit = 7;
4644 local->long_retry_limit = 4;
4645 local->hw.conf.radio_enabled = 1;
4646 local->rate_ctrl_num_up = RATE_CONTROL_NUM_UP;
4647 local->rate_ctrl_num_down = RATE_CONTROL_NUM_DOWN;
4648
4649 local->enabled_modes = (unsigned int) -1;
4650
4651 INIT_LIST_HEAD(&local->modes_list);
4652
4653 rwlock_init(&local->sub_if_lock);
4654 INIT_LIST_HEAD(&local->sub_if_list);
4655
4656 INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work);
4657 init_timer(&local->stat_timer);
4658 local->stat_timer.function = ieee80211_stat_refresh;
4659 local->stat_timer.data = (unsigned long) local;
4660 ieee80211_rx_bss_list_init(mdev);
4661
4662 sta_info_init(local);
4663
4664 mdev->hard_start_xmit = ieee80211_master_start_xmit;
4665 mdev->open = ieee80211_master_open;
4666 mdev->stop = ieee80211_master_stop;
4667 mdev->type = ARPHRD_IEEE80211;
4668 mdev->hard_header_parse = header_parse_80211;
4669
4670 sdata->type = IEEE80211_IF_TYPE_AP;
4671 sdata->dev = mdev;
4672 sdata->local = local;
4673 sdata->u.ap.force_unicast_rateidx = -1;
4674 sdata->u.ap.max_ratectrl_rateidx = -1;
4675 ieee80211_if_sdata_init(sdata);
4676 list_add_tail(&sdata->list, &local->sub_if_list);
4677
4678 tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending,
4679 (unsigned long)local);
4680 tasklet_disable(&local->tx_pending_tasklet);
4681
4682 tasklet_init(&local->tasklet,
4683 ieee80211_tasklet_handler,
4684 (unsigned long) local);
4685 tasklet_disable(&local->tasklet);
4686
4687 skb_queue_head_init(&local->skb_queue);
4688 skb_queue_head_init(&local->skb_queue_unreliable);
4689
4690 return local_to_hw(local);
4691 }
4692 EXPORT_SYMBOL(ieee80211_alloc_hw);
4693
4694 int ieee80211_register_hw(struct ieee80211_hw *hw)
4695 {
4696 struct ieee80211_local *local = hw_to_local(hw);
4697 const char *name;
4698 int result;
4699
4700 result = wiphy_register(local->hw.wiphy);
4701 if (result < 0)
4702 return result;
4703
4704 name = wiphy_dev(local->hw.wiphy)->driver->name;
4705 local->hw.workqueue = create_singlethread_workqueue(name);
4706 if (!local->hw.workqueue) {
4707 result = -ENOMEM;
4708 goto fail_workqueue;
4709 }
4710
4711 debugfs_hw_add(local);
4712
4713 local->hw.conf.beacon_int = 1000;
4714
4715 local->wstats_flags |= local->hw.max_rssi ?
4716 IW_QUAL_LEVEL_UPDATED : IW_QUAL_LEVEL_INVALID;
4717 local->wstats_flags |= local->hw.max_signal ?
4718 IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID;
4719 local->wstats_flags |= local->hw.max_noise ?
4720 IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID;
4721 if (local->hw.max_rssi < 0 || local->hw.max_noise < 0)
4722 local->wstats_flags |= IW_QUAL_DBM;
4723
4724 result = sta_info_start(local);
4725 if (result < 0)
4726 goto fail_sta_info;
4727
4728 rtnl_lock();
4729 result = dev_alloc_name(local->mdev, local->mdev->name);
4730 if (result < 0)
4731 goto fail_dev;
4732
4733 memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN);
4734 SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy));
4735
4736 result = register_netdevice(local->mdev);
4737 if (result < 0)
4738 goto fail_dev;
4739
4740 ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
4741
4742 result = ieee80211_init_rate_ctrl_alg(local, NULL);
4743 if (result < 0) {
4744 printk(KERN_DEBUG "%s: Failed to initialize rate control "
4745 "algorithm\n", local->mdev->name);
4746 goto fail_rate;
4747 }
4748
4749 result = ieee80211_wep_init(local);
4750
4751 if (result < 0) {
4752 printk(KERN_DEBUG "%s: Failed to initialize wep\n",
4753 local->mdev->name);
4754 goto fail_wep;
4755 }
4756
4757 ieee80211_install_qdisc(local->mdev);
4758
4759 /* add one default STA interface */
4760 result = ieee80211_if_add(local->mdev, "wlan%d", NULL,
4761 IEEE80211_IF_TYPE_STA);
4762 if (result)
4763 printk(KERN_WARNING "%s: Failed to add default virtual iface\n",
4764 local->mdev->name);
4765
4766 local->reg_state = IEEE80211_DEV_REGISTERED;
4767 rtnl_unlock();
4768
4769 ieee80211_led_init(local);
4770
4771 return 0;
4772
4773 fail_wep:
4774 rate_control_deinitialize(local);
4775 fail_rate:
4776 ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
4777 unregister_netdevice(local->mdev);
4778 fail_dev:
4779 rtnl_unlock();
4780 sta_info_stop(local);
4781 fail_sta_info:
4782 debugfs_hw_del(local);
4783 destroy_workqueue(local->hw.workqueue);
4784 fail_workqueue:
4785 wiphy_unregister(local->hw.wiphy);
4786 return result;
4787 }
4788 EXPORT_SYMBOL(ieee80211_register_hw);
4789
4790 int ieee80211_register_hwmode(struct ieee80211_hw *hw,
4791 struct ieee80211_hw_mode *mode)
4792 {
4793 struct ieee80211_local *local = hw_to_local(hw);
4794 struct ieee80211_rate *rate;
4795 int i;
4796
4797 INIT_LIST_HEAD(&mode->list);
4798 list_add_tail(&mode->list, &local->modes_list);
4799
4800 local->hw_modes |= (1 << mode->mode);
4801 for (i = 0; i < mode->num_rates; i++) {
4802 rate = &(mode->rates[i]);
4803 rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate;
4804 }
4805 ieee80211_prepare_rates(local, mode);
4806
4807 if (!local->oper_hw_mode) {
4808 /* Default to this mode */
4809 local->hw.conf.phymode = mode->mode;
4810 local->oper_hw_mode = local->scan_hw_mode = mode;
4811 local->oper_channel = local->scan_channel = &mode->channels[0];
4812 local->hw.conf.mode = local->oper_hw_mode;
4813 local->hw.conf.chan = local->oper_channel;
4814 }
4815
4816 if (!(hw->flags & IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED))
4817 ieee80211_init_client(local->mdev);
4818
4819 return 0;
4820 }
4821 EXPORT_SYMBOL(ieee80211_register_hwmode);
4822
4823 void ieee80211_unregister_hw(struct ieee80211_hw *hw)
4824 {
4825 struct ieee80211_local *local = hw_to_local(hw);
4826 struct ieee80211_sub_if_data *sdata, *tmp;
4827 struct list_head tmp_list;
4828 int i;
4829
4830 tasklet_kill(&local->tx_pending_tasklet);
4831 tasklet_kill(&local->tasklet);
4832
4833 rtnl_lock();
4834
4835 BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED);
4836
4837 local->reg_state = IEEE80211_DEV_UNREGISTERED;
4838 if (local->apdev)
4839 ieee80211_if_del_mgmt(local);
4840
4841 write_lock_bh(&local->sub_if_lock);
4842 list_replace_init(&local->sub_if_list, &tmp_list);
4843 write_unlock_bh(&local->sub_if_lock);
4844
4845 list_for_each_entry_safe(sdata, tmp, &tmp_list, list)
4846 __ieee80211_if_del(local, sdata);
4847
4848 rtnl_unlock();
4849
4850 if (local->stat_time)
4851 del_timer_sync(&local->stat_timer);
4852
4853 ieee80211_rx_bss_list_deinit(local->mdev);
4854 ieee80211_clear_tx_pending(local);
4855 sta_info_stop(local);
4856 rate_control_deinitialize(local);
4857 debugfs_hw_del(local);
4858
4859 for (i = 0; i < NUM_IEEE80211_MODES; i++) {
4860 kfree(local->supp_rates[i]);
4861 kfree(local->basic_rates[i]);
4862 }
4863
4864 if (skb_queue_len(&local->skb_queue)
4865 || skb_queue_len(&local->skb_queue_unreliable))
4866 printk(KERN_WARNING "%s: skb_queue not empty\n",
4867 local->mdev->name);
4868 skb_queue_purge(&local->skb_queue);
4869 skb_queue_purge(&local->skb_queue_unreliable);
4870
4871 destroy_workqueue(local->hw.workqueue);
4872 wiphy_unregister(local->hw.wiphy);
4873 ieee80211_wep_free(local);
4874 ieee80211_led_exit(local);
4875 }
4876 EXPORT_SYMBOL(ieee80211_unregister_hw);
4877
4878 void ieee80211_free_hw(struct ieee80211_hw *hw)
4879 {
4880 struct ieee80211_local *local = hw_to_local(hw);
4881
4882 ieee80211_if_free(local->mdev);
4883 wiphy_free(local->hw.wiphy);
4884 }
4885 EXPORT_SYMBOL(ieee80211_free_hw);
4886
4887 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
4888 {
4889 struct ieee80211_local *local = hw_to_local(hw);
4890
4891 if (test_and_clear_bit(IEEE80211_LINK_STATE_XOFF,
4892 &local->state[queue])) {
4893 if (test_bit(IEEE80211_LINK_STATE_PENDING,
4894 &local->state[queue]))
4895 tasklet_schedule(&local->tx_pending_tasklet);
4896 else
4897 if (!ieee80211_qdisc_installed(local->mdev)) {
4898 if (queue == 0)
4899 netif_wake_queue(local->mdev);
4900 } else
4901 __netif_schedule(local->mdev);
4902 }
4903 }
4904 EXPORT_SYMBOL(ieee80211_wake_queue);
4905
4906 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
4907 {
4908 struct ieee80211_local *local = hw_to_local(hw);
4909
4910 if (!ieee80211_qdisc_installed(local->mdev) && queue == 0)
4911 netif_stop_queue(local->mdev);
4912 set_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
4913 }
4914 EXPORT_SYMBOL(ieee80211_stop_queue);
4915
4916 void ieee80211_start_queues(struct ieee80211_hw *hw)
4917 {
4918 struct ieee80211_local *local = hw_to_local(hw);
4919 int i;
4920
4921 for (i = 0; i < local->hw.queues; i++)
4922 clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[i]);
4923 if (!ieee80211_qdisc_installed(local->mdev))
4924 netif_start_queue(local->mdev);
4925 }
4926 EXPORT_SYMBOL(ieee80211_start_queues);
4927
4928 void ieee80211_stop_queues(struct ieee80211_hw *hw)
4929 {
4930 int i;
4931
4932 for (i = 0; i < hw->queues; i++)
4933 ieee80211_stop_queue(hw, i);
4934 }
4935 EXPORT_SYMBOL(ieee80211_stop_queues);
4936
4937 void ieee80211_wake_queues(struct ieee80211_hw *hw)
4938 {
4939 int i;
4940
4941 for (i = 0; i < hw->queues; i++)
4942 ieee80211_wake_queue(hw, i);
4943 }
4944 EXPORT_SYMBOL(ieee80211_wake_queues);
4945
4946 struct net_device_stats *ieee80211_dev_stats(struct net_device *dev)
4947 {
4948 struct ieee80211_sub_if_data *sdata;
4949 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
4950 return &sdata->stats;
4951 }
4952
4953 static int __init ieee80211_init(void)
4954 {
4955 struct sk_buff *skb;
4956 int ret;
4957
4958 BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb));
4959
4960 ret = ieee80211_wme_register();
4961 if (ret) {
4962 printk(KERN_DEBUG "ieee80211_init: failed to "
4963 "initialize WME (err=%d)\n", ret);
4964 return ret;
4965 }
4966
4967 ieee80211_debugfs_netdev_init();
4968
4969 return 0;
4970 }
4971
4972
4973 static void __exit ieee80211_exit(void)
4974 {
4975 ieee80211_wme_unregister();
4976 ieee80211_debugfs_netdev_exit();
4977 }
4978
4979
4980 module_init(ieee80211_init);
4981 module_exit(ieee80211_exit);
4982
4983 MODULE_DESCRIPTION("IEEE 802.11 subsystem");
4984 MODULE_LICENSE("GPL");
This page took 0.13248 seconds and 5 git commands to generate.