gdb: Don't skip prologue for explicit line breakpoints in assembler
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
42a4f53d 3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
4de283e4
TT
23#include "opcode/i386.h"
24#include "dis-asm.h"
c4f35dd8
MK
25#include "arch-utils.h"
26#include "block.h"
27#include "dummy-frame.h"
4de283e4 28#include "frame.h"
c4f35dd8
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
d55e5aa6
TT
31#include "inferior.h"
32#include "infrun.h"
4de283e4
TT
33#include "gdbcmd.h"
34#include "gdbcore.h"
c4f35dd8 35#include "objfiles.h"
53e95fcf 36#include "regcache.h"
2c261fae 37#include "regset.h"
53e95fcf 38#include "symfile.h"
4de283e4
TT
39#include "disasm.h"
40#include "amd64-tdep.h"
41#include "i387-tdep.h"
42#include "common/x86-xstate.h"
43#include <algorithm>
22916b07 44#include "target-descriptions.h"
4de283e4
TT
45#include "arch/amd64.h"
46#include "producer.h"
47#include "ax.h"
48#include "ax-gdb.h"
49#include "common/byte-vector.h"
50#include "osabi.h"
1d509aa6 51#include "x86-tdep.h"
6710bf39 52
e53bef9f
MK
53/* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
90f90721 55 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
402ecd56 60/* Register information. */
c4f35dd8 61
6707b003 62static const char *amd64_register_names[] =
de220d0f 63{
6707b003 64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
65
66 /* %r8 is indeed register number 8. */
6707b003
UW
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 69
af233647 70 /* %st0 is register number 24. */
6707b003
UW
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 73
af233647 74 /* %xmm0 is register number 40. */
6707b003
UW
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
0e04a514
ML
78};
79
a055a187
L
80static const char *amd64_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86};
87
01f9f808
MS
88static const char *amd64_ymm_avx512_names[] =
89{
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94};
95
a055a187
L
96static const char *amd64_ymmh_names[] =
97{
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102};
de220d0f 103
01f9f808
MS
104static const char *amd64_ymmh_avx512_names[] =
105{
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110};
111
e43e105e
WT
112static const char *amd64_mpx_names[] =
113{
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115};
116
01f9f808
MS
117static const char *amd64_k_names[] =
118{
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121};
122
123static const char *amd64_zmmh_names[] =
124{
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133};
134
135static const char *amd64_zmm_names[] =
136{
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145};
146
147static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152};
153
51547df6
MS
154static const char *amd64_pkeys_names[] = {
155 "pkru"
156};
157
c4f35dd8
MK
158/* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
53e95fcf 160
e53bef9f 161static int amd64_dwarf_regmap[] =
0e04a514 162{
c4f35dd8 163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
167
168 /* Frame Pointer Register RBP. */
90f90721 169 AMD64_RBP_REGNUM,
c4f35dd8
MK
170
171 /* Stack Pointer Register RSP. */
90f90721 172 AMD64_RSP_REGNUM,
c4f35dd8
MK
173
174 /* Extended Integer Registers 8 - 15. */
5b856f36
PM
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
c4f35dd8 183
59207364 184 /* Return Address RA. Mapped to RIP. */
90f90721 185 AMD64_RIP_REGNUM,
c4f35dd8
MK
186
187 /* SSE Registers 0 - 7. */
90f90721
MK
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
192
193 /* Extended SSE Registers 8 - 15. */
90f90721
MK
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
198
199 /* Floating Point Registers 0-7. */
90f90721
MK
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129 203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
f7ca3fcf
PM
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
c6f4c129
JB
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
c4f35dd8 238};
0e04a514 239
e53bef9f
MK
240static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 242
c4f35dd8
MK
243/* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
26abbdc4 245
c4f35dd8 246static int
d3f73121 247amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 248{
a055a187
L
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 251 int regnum = -1;
53e95fcf 252
16aff9a6 253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 254 regnum = amd64_dwarf_regmap[reg];
53e95fcf 255
0fde2c53 256 if (ymm0_regnum >= 0
a055a187
L
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
259
260 return regnum;
53e95fcf 261}
d532c08f 262
35669430
DE
263/* Map architectural register numbers to gdb register numbers. */
264
265static const int amd64_arch_regmap[16] =
266{
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283};
284
285static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288/* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291static int
292amd64_arch_reg_to_regnum (int reg)
293{
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297}
298
1ba53b71
L
299/* Register names for byte pseudo-registers. */
300
301static const char *amd64_byte_names[] =
302{
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
1ba53b71
L
306};
307
fe01d668
L
308/* Number of lower byte registers. */
309#define AMD64_NUM_LOWER_BYTE_REGS 16
310
1ba53b71
L
311/* Register names for word pseudo-registers. */
312
313static const char *amd64_word_names[] =
314{
9cad29ac 315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317};
318
319/* Register names for dword pseudo-registers. */
320
321static const char *amd64_dword_names[] =
322{
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
1ba53b71
L
326};
327
328/* Return the name of register REGNUM. */
329
330static const char *
331amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332{
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
01f9f808
MS
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
a055a187
L
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
1ba53b71
L
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348}
349
3543a589
TT
350static struct value *
351amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 352 readable_regcache *regcache,
3543a589 353 int regnum)
1ba53b71 354{
1ba53b71 355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3543a589 356
925047fe 357 value *result_value = allocate_value (register_type (gdbarch, regnum));
3543a589
TT
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
925047fe 360 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71
L
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
fe01d668
L
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
925047fe
SM
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
fe01d668 372 /* Special handling for AH, BH, CH, DH. */
925047fe 373 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
3543a589
TT
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
fe01d668
L
379 }
380 else
381 {
925047fe
SM
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
3543a589
TT
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
fe01d668 389 }
1ba53b71
L
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
925047fe 394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
1ba53b71 395 /* Extract (always little endian). */
925047fe 396 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
3543a589
TT
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
1ba53b71
L
402 }
403 else
3543a589
TT
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
1ba53b71
L
408}
409
410static void
411amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414{
1ba53b71
L
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
fe01d668
L
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
925047fe
SM
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
fe01d668 426 /* Read ... AH, BH, CH, DH. */
925047fe 427 regcache->raw_read (gpnum, raw_buf);
fe01d668
L
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
925047fe 431 regcache->raw_write (gpnum, raw_buf);
fe01d668
L
432 }
433 else
434 {
925047fe
SM
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
fe01d668 437 /* Read ... */
0b883586 438 regcache->raw_read (gpnum, raw_buf);
fe01d668
L
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
10eaee5f 442 regcache->raw_write (gpnum, raw_buf);
fe01d668 443 }
1ba53b71
L
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
925047fe 448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
1ba53b71
L
449
450 /* Read ... */
0b883586 451 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
10eaee5f 455 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459}
460
62e5fd57
MK
461/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463static int
464amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466{
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488}
489
53e95fcf
JS
490\f
491
bf4d6c1c
JB
492/* Register classes as defined in the psABI. */
493
494enum amd64_reg_class
495{
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504};
505
efb1c01c
MK
506/* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509static enum amd64_reg_class
510amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511{
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540}
541
fe978cb0 542static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
bf4d6c1c 543
4aa866af 544/* Return true if TYPE is a structure or union with unaligned fields. */
79b1ab3d 545
4aa866af
LS
546static bool
547amd64_has_unaligned_fields (struct type *type)
79b1ab3d 548{
4aa866af
LS
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
550 || TYPE_CODE (type) == TYPE_CODE_UNION)
551 {
552 for (int i = 0; i < TYPE_NFIELDS (type); i++)
553 {
554 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
555 int bitpos = TYPE_FIELD_BITPOS (type, i);
556 int align = type_align(subtype);
557
a59240a4
TT
558 /* Ignore static fields, empty fields (for example nested
559 empty structures), and bitfields (these are handled by
560 the caller). */
4aa866af
LS
561 if (field_is_static (&TYPE_FIELD (type, i))
562 || (TYPE_FIELD_BITSIZE (type, i) == 0
a59240a4
TT
563 && TYPE_LENGTH (subtype) == 0)
564 || TYPE_FIELD_PACKED (type, i))
4aa866af
LS
565 continue;
566
567 if (bitpos % 8 != 0)
568 return true;
569
570 int bytepos = bitpos / 8;
571 if (bytepos % align != 0)
572 return true;
573
a59240a4 574 if (amd64_has_unaligned_fields (subtype))
4aa866af
LS
575 return true;
576 }
577 }
79b1ab3d 578
4aa866af 579 return false;
79b1ab3d
MK
580}
581
efb1c01c
MK
582/* Classify TYPE according to the rules for aggregate (structures and
583 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
584
585static void
fe978cb0 586amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
53e95fcf 587{
4aa866af 588 /* 1. If the size of an object is larger than two eightbytes, or it has
efb1c01c 589 unaligned fields, it has class memory. */
4aa866af 590 if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
53e95fcf 591 {
fe978cb0 592 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 593 return;
53e95fcf 594 }
efb1c01c
MK
595
596 /* 2. Both eightbytes get initialized to class NO_CLASS. */
fe978cb0 597 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
598
599 /* 3. Each field of an object is classified recursively so that
600 always two fields are considered. The resulting class is
601 calculated according to the classes of the fields in the
602 eightbyte: */
603
604 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 605 {
efb1c01c
MK
606 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
607
608 /* All fields in an array have the same type. */
fe978cb0
PA
609 amd64_classify (subtype, theclass);
610 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
611 theclass[1] = theclass[0];
8ffd9b1b 612 }
53e95fcf
JS
613 else
614 {
efb1c01c 615 int i;
53e95fcf 616
efb1c01c
MK
617 /* Structure or union. */
618 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
619 || TYPE_CODE (type) == TYPE_CODE_UNION);
620
621 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 622 {
efb1c01c
MK
623 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
624 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
625 enum amd64_reg_class subclass[2];
e4e2711a
JB
626 int bitsize = TYPE_FIELD_BITSIZE (type, i);
627 int endpos;
628
629 if (bitsize == 0)
630 bitsize = TYPE_LENGTH (subtype) * 8;
631 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
efb1c01c 632
5dc43913
AB
633 /* Ignore static fields, or empty fields, for example nested
634 empty structures.*/
635 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
562c50c2
MK
636 continue;
637
efb1c01c
MK
638 gdb_assert (pos == 0 || pos == 1);
639
640 amd64_classify (subtype, subclass);
fe978cb0 641 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
e4e2711a
JB
642 if (bitsize <= 64 && pos == 0 && endpos == 1)
643 /* This is a bit of an odd case: We have a field that would
644 normally fit in one of the two eightbytes, except that
645 it is placed in a way that this field straddles them.
646 This has been seen with a structure containing an array.
647
648 The ABI is a bit unclear in this case, but we assume that
649 this field's class (stored in subclass[0]) must also be merged
650 into class[1]. In other words, our field has a piece stored
651 in the second eight-byte, and thus its class applies to
652 the second eight-byte as well.
653
654 In the case where the field length exceeds 8 bytes,
655 it should not be necessary to merge the field class
656 into class[1]. As LEN > 8, subclass[1] is necessarily
657 different from AMD64_NO_CLASS. If subclass[1] is equal
658 to subclass[0], then the normal class[1]/subclass[1]
659 merging will take care of everything. For subclass[1]
660 to be different from subclass[0], I can only see the case
661 where we have a SSE/SSEUP or X87/X87UP pair, which both
662 use up all 16 bytes of the aggregate, and are already
663 handled just fine (because each portion sits on its own
664 8-byte). */
fe978cb0 665 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
efb1c01c 666 if (pos == 0)
fe978cb0 667 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
53e95fcf 668 }
53e95fcf 669 }
efb1c01c
MK
670
671 /* 4. Then a post merger cleanup is done: */
672
673 /* Rule (a): If one of the classes is MEMORY, the whole argument is
674 passed in memory. */
fe978cb0
PA
675 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
676 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 677
177b42fe 678 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c 679 SSE. */
fe978cb0
PA
680 if (theclass[0] == AMD64_SSEUP)
681 theclass[0] = AMD64_SSE;
682 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
683 theclass[1] = AMD64_SSE;
efb1c01c
MK
684}
685
686/* Classify TYPE, and store the result in CLASS. */
687
bf4d6c1c 688static void
fe978cb0 689amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
efb1c01c
MK
690{
691 enum type_code code = TYPE_CODE (type);
692 int len = TYPE_LENGTH (type);
693
fe978cb0 694 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
695
696 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
697 long, long long, and pointers are in the INTEGER class. Similarly,
698 range types, used by languages such as Ada, are also in the INTEGER
699 class. */
efb1c01c 700 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 701 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 702 || code == TYPE_CODE_CHAR
aa006118 703 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
efb1c01c 704 && (len == 1 || len == 2 || len == 4 || len == 8))
fe978cb0 705 theclass[0] = AMD64_INTEGER;
efb1c01c 706
5daa78cc
TJB
707 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
708 are in class SSE. */
709 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
710 && (len == 4 || len == 8))
efb1c01c 711 /* FIXME: __m64 . */
fe978cb0 712 theclass[0] = AMD64_SSE;
efb1c01c 713
5daa78cc
TJB
714 /* Arguments of types __float128, _Decimal128 and __m128 are split into
715 two halves. The least significant ones belong to class SSE, the most
efb1c01c 716 significant one to class SSEUP. */
5daa78cc
TJB
717 else if (code == TYPE_CODE_DECFLOAT && len == 16)
718 /* FIXME: __float128, __m128. */
fe978cb0 719 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
efb1c01c
MK
720
721 /* The 64-bit mantissa of arguments of type long double belongs to
722 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
723 class X87UP. */
724 else if (code == TYPE_CODE_FLT && len == 16)
725 /* Class X87 and X87UP. */
fe978cb0 726 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
efb1c01c 727
7f7930dd
MK
728 /* Arguments of complex T where T is one of the types float or
729 double get treated as if they are implemented as:
730
731 struct complexT {
732 T real;
733 T imag;
5f52445b
YQ
734 };
735
736 */
7f7930dd 737 else if (code == TYPE_CODE_COMPLEX && len == 8)
fe978cb0 738 theclass[0] = AMD64_SSE;
7f7930dd 739 else if (code == TYPE_CODE_COMPLEX && len == 16)
fe978cb0 740 theclass[0] = theclass[1] = AMD64_SSE;
7f7930dd
MK
741
742 /* A variable of type complex long double is classified as type
743 COMPLEX_X87. */
744 else if (code == TYPE_CODE_COMPLEX && len == 32)
fe978cb0 745 theclass[0] = AMD64_COMPLEX_X87;
7f7930dd 746
efb1c01c
MK
747 /* Aggregates. */
748 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
749 || code == TYPE_CODE_UNION)
fe978cb0 750 amd64_classify_aggregate (type, theclass);
efb1c01c
MK
751}
752
753static enum return_value_convention
6a3a010b 754amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 755 struct type *type, struct regcache *regcache,
42835c2b 756 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c 757{
fe978cb0 758 enum amd64_reg_class theclass[2];
efb1c01c 759 int len = TYPE_LENGTH (type);
90f90721
MK
760 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
761 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
762 int integer_reg = 0;
763 int sse_reg = 0;
764 int i;
765
766 gdb_assert (!(readbuf && writebuf));
767
768 /* 1. Classify the return type with the classification algorithm. */
fe978cb0 769 amd64_classify (type, theclass);
efb1c01c
MK
770
771 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 772 for the return value and passes the address of this storage in
0963b4bd 773 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
774 this address becomes a hidden first argument.
775
776 On return %rax will contain the address that has been passed in
777 by the caller in %rdi. */
fe978cb0 778 if (theclass[0] == AMD64_MEMORY)
6fa57a7d
MK
779 {
780 /* As indicated by the comment above, the ABI guarantees that we
781 can always find the return value just after the function has
782 returned. */
783
784 if (readbuf)
785 {
786 ULONGEST addr;
787
788 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
789 read_memory (addr, readbuf, TYPE_LENGTH (type));
790 }
791
792 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
793 }
efb1c01c 794
7f7930dd
MK
795 /* 8. If the class is COMPLEX_X87, the real part of the value is
796 returned in %st0 and the imaginary part in %st1. */
fe978cb0 797 if (theclass[0] == AMD64_COMPLEX_X87)
7f7930dd
MK
798 {
799 if (readbuf)
800 {
0b883586
SM
801 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
802 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
7f7930dd
MK
803 }
804
805 if (writebuf)
806 {
807 i387_return_value (gdbarch, regcache);
10eaee5f
SM
808 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
809 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
7f7930dd
MK
810
811 /* Fix up the tag word such that both %st(0) and %st(1) are
812 marked as valid. */
813 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
814 }
815
816 return RETURN_VALUE_REGISTER_CONVENTION;
817 }
818
fe978cb0 819 gdb_assert (theclass[1] != AMD64_MEMORY);
bad43aa5 820 gdb_assert (len <= 16);
efb1c01c
MK
821
822 for (i = 0; len > 0; i++, len -= 8)
823 {
824 int regnum = -1;
825 int offset = 0;
826
fe978cb0 827 switch (theclass[i])
efb1c01c
MK
828 {
829 case AMD64_INTEGER:
830 /* 3. If the class is INTEGER, the next available register
831 of the sequence %rax, %rdx is used. */
832 regnum = integer_regnum[integer_reg++];
833 break;
834
835 case AMD64_SSE:
836 /* 4. If the class is SSE, the next available SSE register
837 of the sequence %xmm0, %xmm1 is used. */
838 regnum = sse_regnum[sse_reg++];
839 break;
840
841 case AMD64_SSEUP:
842 /* 5. If the class is SSEUP, the eightbyte is passed in the
843 upper half of the last used SSE register. */
844 gdb_assert (sse_reg > 0);
845 regnum = sse_regnum[sse_reg - 1];
846 offset = 8;
847 break;
848
849 case AMD64_X87:
850 /* 6. If the class is X87, the value is returned on the X87
851 stack in %st0 as 80-bit x87 number. */
90f90721 852 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
853 if (writebuf)
854 i387_return_value (gdbarch, regcache);
855 break;
856
857 case AMD64_X87UP:
858 /* 7. If the class is X87UP, the value is returned together
859 with the previous X87 value in %st0. */
fe978cb0 860 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
90f90721 861 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
862 offset = 8;
863 len = 2;
864 break;
865
866 case AMD64_NO_CLASS:
867 continue;
868
869 default:
870 gdb_assert (!"Unexpected register class.");
871 }
872
873 gdb_assert (regnum != -1);
874
875 if (readbuf)
502fe83e
SM
876 regcache->raw_read_part (regnum, offset, std::min (len, 8),
877 readbuf + i * 8);
efb1c01c 878 if (writebuf)
4f0420fd
SM
879 regcache->raw_write_part (regnum, offset, std::min (len, 8),
880 writebuf + i * 8);
efb1c01c
MK
881 }
882
883 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
884}
885\f
886
720aa428 887static CORE_ADDR
cf84fa6b
AH
888amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
889 CORE_ADDR sp, function_call_return_method return_method)
720aa428 890{
bf4d6c1c
JB
891 static int integer_regnum[] =
892 {
893 AMD64_RDI_REGNUM, /* %rdi */
894 AMD64_RSI_REGNUM, /* %rsi */
895 AMD64_RDX_REGNUM, /* %rdx */
896 AMD64_RCX_REGNUM, /* %rcx */
5b856f36
PM
897 AMD64_R8_REGNUM, /* %r8 */
898 AMD64_R9_REGNUM /* %r9 */
bf4d6c1c 899 };
720aa428
MK
900 static int sse_regnum[] =
901 {
902 /* %xmm0 ... %xmm7 */
90f90721
MK
903 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
904 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
905 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
906 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428 907 };
224c3ddb 908 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
720aa428
MK
909 int num_stack_args = 0;
910 int num_elements = 0;
911 int element = 0;
912 int integer_reg = 0;
913 int sse_reg = 0;
914 int i;
915
6470d250 916 /* Reserve a register for the "hidden" argument. */
cf84fa6b 917if (return_method == return_method_struct)
6470d250
MK
918 integer_reg++;
919
720aa428
MK
920 for (i = 0; i < nargs; i++)
921 {
4991999e 922 struct type *type = value_type (args[i]);
720aa428 923 int len = TYPE_LENGTH (type);
fe978cb0 924 enum amd64_reg_class theclass[2];
720aa428
MK
925 int needed_integer_regs = 0;
926 int needed_sse_regs = 0;
927 int j;
928
929 /* Classify argument. */
fe978cb0 930 amd64_classify (type, theclass);
720aa428
MK
931
932 /* Calculate the number of integer and SSE registers needed for
933 this argument. */
934 for (j = 0; j < 2; j++)
935 {
fe978cb0 936 if (theclass[j] == AMD64_INTEGER)
720aa428 937 needed_integer_regs++;
fe978cb0 938 else if (theclass[j] == AMD64_SSE)
720aa428
MK
939 needed_sse_regs++;
940 }
941
942 /* Check whether enough registers are available, and if the
943 argument should be passed in registers at all. */
bf4d6c1c 944 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
720aa428
MK
945 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
946 || (needed_integer_regs == 0 && needed_sse_regs == 0))
947 {
948 /* The argument will be passed on the stack. */
949 num_elements += ((len + 7) / 8);
849e9755 950 stack_args[num_stack_args++] = args[i];
720aa428
MK
951 }
952 else
953 {
954 /* The argument will be passed in registers. */
d8de1ef7
MK
955 const gdb_byte *valbuf = value_contents (args[i]);
956 gdb_byte buf[8];
720aa428
MK
957
958 gdb_assert (len <= 16);
959
960 for (j = 0; len > 0; j++, len -= 8)
961 {
962 int regnum = -1;
963 int offset = 0;
964
fe978cb0 965 switch (theclass[j])
720aa428
MK
966 {
967 case AMD64_INTEGER:
bf4d6c1c 968 regnum = integer_regnum[integer_reg++];
720aa428
MK
969 break;
970
971 case AMD64_SSE:
972 regnum = sse_regnum[sse_reg++];
973 break;
974
975 case AMD64_SSEUP:
976 gdb_assert (sse_reg > 0);
977 regnum = sse_regnum[sse_reg - 1];
978 offset = 8;
979 break;
980
981 default:
982 gdb_assert (!"Unexpected register class.");
983 }
984
985 gdb_assert (regnum != -1);
986 memset (buf, 0, sizeof buf);
325fac50 987 memcpy (buf, valbuf + j * 8, std::min (len, 8));
4f0420fd 988 regcache->raw_write_part (regnum, offset, 8, buf);
720aa428
MK
989 }
990 }
991 }
992
993 /* Allocate space for the arguments on the stack. */
994 sp -= num_elements * 8;
995
996 /* The psABI says that "The end of the input argument area shall be
997 aligned on a 16 byte boundary." */
998 sp &= ~0xf;
999
1000 /* Write out the arguments to the stack. */
1001 for (i = 0; i < num_stack_args; i++)
1002 {
4991999e 1003 struct type *type = value_type (stack_args[i]);
d8de1ef7 1004 const gdb_byte *valbuf = value_contents (stack_args[i]);
849e9755
JB
1005 int len = TYPE_LENGTH (type);
1006
1007 write_memory (sp + element * 8, valbuf, len);
1008 element += ((len + 7) / 8);
720aa428
MK
1009 }
1010
1011 /* The psABI says that "For calls that may call functions that use
1012 varargs or stdargs (prototype-less calls or calls to functions
1013 containing ellipsis (...) in the declaration) %al is used as
1014 hidden argument to specify the number of SSE registers used. */
90f90721 1015 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
1016 return sp;
1017}
1018
c4f35dd8 1019static CORE_ADDR
7d9b040b 1020amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
1021 struct regcache *regcache, CORE_ADDR bp_addr,
1022 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1023 function_call_return_method return_method,
1024 CORE_ADDR struct_addr)
53e95fcf 1025{
e17a4113 1026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 1027 gdb_byte buf[8];
c4f35dd8 1028
4a612d6f
WT
1029 /* BND registers can be in arbitrary values at the moment of the
1030 inferior call. This can cause boundary violations that are not
1031 due to a real bug or even desired by the user. The best to be done
1032 is set the BND registers to allow access to the whole memory, INIT
1033 state, before pushing the inferior call. */
1034 i387_reset_bnd_regs (gdbarch, regcache);
1035
c4f35dd8 1036 /* Pass arguments. */
cf84fa6b 1037 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
c4f35dd8
MK
1038
1039 /* Pass "hidden" argument". */
cf84fa6b 1040 if (return_method == return_method_struct)
c4f35dd8 1041 {
e17a4113 1042 store_unsigned_integer (buf, 8, byte_order, struct_addr);
b66f5587 1043 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
1044 }
1045
1046 /* Store return address. */
1047 sp -= 8;
e17a4113 1048 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
1049 write_memory (sp, buf, 8);
1050
1051 /* Finally, update the stack pointer... */
e17a4113 1052 store_unsigned_integer (buf, 8, byte_order, sp);
b66f5587 1053 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
1054
1055 /* ...and fake a frame pointer. */
b66f5587 1056 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
c4f35dd8 1057
3e210248 1058 return sp + 16;
53e95fcf 1059}
c4f35dd8 1060\f
35669430
DE
1061/* Displaced instruction handling. */
1062
1063/* A partially decoded instruction.
1064 This contains enough details for displaced stepping purposes. */
1065
1066struct amd64_insn
1067{
1068 /* The number of opcode bytes. */
1069 int opcode_len;
50a1fdd5
PA
1070 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1071 not present. */
1072 int enc_prefix_offset;
35669430
DE
1073 /* The offset to the first opcode byte. */
1074 int opcode_offset;
1075 /* The offset to the modrm byte or -1 if not present. */
1076 int modrm_offset;
1077
1078 /* The raw instruction. */
1079 gdb_byte *raw_insn;
1080};
1081
cfba9872 1082struct amd64_displaced_step_closure : public displaced_step_closure
35669430 1083{
cfba9872
SM
1084 amd64_displaced_step_closure (int insn_buf_len)
1085 : insn_buf (insn_buf_len, 0)
1086 {}
1087
35669430 1088 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
cfba9872 1089 int tmp_used = 0;
35669430
DE
1090 int tmp_regno;
1091 ULONGEST tmp_save;
1092
1093 /* Details of the instruction. */
1094 struct amd64_insn insn_details;
1095
cfba9872
SM
1096 /* The possibly modified insn. */
1097 gdb::byte_vector insn_buf;
35669430
DE
1098};
1099
1100/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1101 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1102 at which point delete these in favor of libopcodes' versions). */
1103
1104static const unsigned char onebyte_has_modrm[256] = {
1105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1106 /* ------------------------------- */
1107 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1108 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1109 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1110 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1111 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1112 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1113 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1114 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1115 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1116 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1117 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1118 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1119 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1120 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1121 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1122 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1123 /* ------------------------------- */
1124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1125};
1126
1127static const unsigned char twobyte_has_modrm[256] = {
1128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1129 /* ------------------------------- */
1130 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1131 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1132 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1133 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1134 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1135 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1136 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1137 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1138 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1139 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1140 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1141 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1142 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1143 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1144 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1145 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1146 /* ------------------------------- */
1147 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1148};
1149
1150static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1151
1152static int
1153rex_prefix_p (gdb_byte pfx)
1154{
1155 return REX_PREFIX_P (pfx);
1156}
1157
50a1fdd5
PA
1158/* True if PFX is the start of the 2-byte VEX prefix. */
1159
1160static bool
1161vex2_prefix_p (gdb_byte pfx)
1162{
1163 return pfx == 0xc5;
1164}
1165
1166/* True if PFX is the start of the 3-byte VEX prefix. */
1167
1168static bool
1169vex3_prefix_p (gdb_byte pfx)
1170{
1171 return pfx == 0xc4;
1172}
1173
35669430
DE
1174/* Skip the legacy instruction prefixes in INSN.
1175 We assume INSN is properly sentineled so we don't have to worry
1176 about falling off the end of the buffer. */
1177
1178static gdb_byte *
1903f0e6 1179amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1180{
1181 while (1)
1182 {
1183 switch (*insn)
1184 {
1185 case DATA_PREFIX_OPCODE:
1186 case ADDR_PREFIX_OPCODE:
1187 case CS_PREFIX_OPCODE:
1188 case DS_PREFIX_OPCODE:
1189 case ES_PREFIX_OPCODE:
1190 case FS_PREFIX_OPCODE:
1191 case GS_PREFIX_OPCODE:
1192 case SS_PREFIX_OPCODE:
1193 case LOCK_PREFIX_OPCODE:
1194 case REPE_PREFIX_OPCODE:
1195 case REPNE_PREFIX_OPCODE:
1196 ++insn;
1197 continue;
1198 default:
1199 break;
1200 }
1201 break;
1202 }
1203
1204 return insn;
1205}
1206
35669430
DE
1207/* Return an integer register (other than RSP) that is unused as an input
1208 operand in INSN.
1209 In order to not require adding a rex prefix if the insn doesn't already
1210 have one, the result is restricted to RAX ... RDI, sans RSP.
1211 The register numbering of the result follows architecture ordering,
1212 e.g. RDI = 7. */
1213
1214static int
1215amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1216{
1217 /* 1 bit for each reg */
1218 int used_regs_mask = 0;
1219
1220 /* There can be at most 3 int regs used as inputs in an insn, and we have
1221 7 to choose from (RAX ... RDI, sans RSP).
1222 This allows us to take a conservative approach and keep things simple.
1223 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1224 that implicitly specify RAX. */
1225
1226 /* Avoid RAX. */
1227 used_regs_mask |= 1 << EAX_REG_NUM;
1228 /* Similarily avoid RDX, implicit operand in divides. */
1229 used_regs_mask |= 1 << EDX_REG_NUM;
1230 /* Avoid RSP. */
1231 used_regs_mask |= 1 << ESP_REG_NUM;
1232
1233 /* If the opcode is one byte long and there's no ModRM byte,
1234 assume the opcode specifies a register. */
1235 if (details->opcode_len == 1 && details->modrm_offset == -1)
1236 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1237
1238 /* Mark used regs in the modrm/sib bytes. */
1239 if (details->modrm_offset != -1)
1240 {
1241 int modrm = details->raw_insn[details->modrm_offset];
1242 int mod = MODRM_MOD_FIELD (modrm);
1243 int reg = MODRM_REG_FIELD (modrm);
1244 int rm = MODRM_RM_FIELD (modrm);
1245 int have_sib = mod != 3 && rm == 4;
1246
1247 /* Assume the reg field of the modrm byte specifies a register. */
1248 used_regs_mask |= 1 << reg;
1249
1250 if (have_sib)
1251 {
1252 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1253 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1254 used_regs_mask |= 1 << base;
d48ebb5b 1255 used_regs_mask |= 1 << idx;
35669430
DE
1256 }
1257 else
1258 {
1259 used_regs_mask |= 1 << rm;
1260 }
1261 }
1262
1263 gdb_assert (used_regs_mask < 256);
1264 gdb_assert (used_regs_mask != 255);
1265
1266 /* Finally, find a free reg. */
1267 {
1268 int i;
1269
1270 for (i = 0; i < 8; ++i)
1271 {
1272 if (! (used_regs_mask & (1 << i)))
1273 return i;
1274 }
1275
1276 /* We shouldn't get here. */
1277 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1278 }
1279}
1280
1281/* Extract the details of INSN that we need. */
1282
1283static void
1284amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1285{
1286 gdb_byte *start = insn;
1287 int need_modrm;
1288
1289 details->raw_insn = insn;
1290
1291 details->opcode_len = -1;
50a1fdd5 1292 details->enc_prefix_offset = -1;
35669430
DE
1293 details->opcode_offset = -1;
1294 details->modrm_offset = -1;
1295
1296 /* Skip legacy instruction prefixes. */
1903f0e6 1297 insn = amd64_skip_prefixes (insn);
35669430 1298
50a1fdd5 1299 /* Skip REX/VEX instruction encoding prefixes. */
35669430
DE
1300 if (rex_prefix_p (*insn))
1301 {
50a1fdd5 1302 details->enc_prefix_offset = insn - start;
35669430
DE
1303 ++insn;
1304 }
50a1fdd5
PA
1305 else if (vex2_prefix_p (*insn))
1306 {
1307 /* Don't record the offset in this case because this prefix has
1308 no REX.B equivalent. */
1309 insn += 2;
1310 }
1311 else if (vex3_prefix_p (*insn))
1312 {
1313 details->enc_prefix_offset = insn - start;
1314 insn += 3;
1315 }
35669430
DE
1316
1317 details->opcode_offset = insn - start;
1318
1319 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1320 {
1321 /* Two or three-byte opcode. */
1322 ++insn;
1323 need_modrm = twobyte_has_modrm[*insn];
1324
1325 /* Check for three-byte opcode. */
1903f0e6 1326 switch (*insn)
35669430 1327 {
1903f0e6
DE
1328 case 0x24:
1329 case 0x25:
1330 case 0x38:
1331 case 0x3a:
1332 case 0x7a:
1333 case 0x7b:
35669430
DE
1334 ++insn;
1335 details->opcode_len = 3;
1903f0e6
DE
1336 break;
1337 default:
1338 details->opcode_len = 2;
1339 break;
35669430 1340 }
35669430
DE
1341 }
1342 else
1343 {
1344 /* One-byte opcode. */
1345 need_modrm = onebyte_has_modrm[*insn];
1346 details->opcode_len = 1;
1347 }
1348
1349 if (need_modrm)
1350 {
1351 ++insn;
1352 details->modrm_offset = insn - start;
1353 }
1354}
1355
1356/* Update %rip-relative addressing in INSN.
1357
1358 %rip-relative addressing only uses a 32-bit displacement.
1359 32 bits is not enough to be guaranteed to cover the distance between where
1360 the real instruction is and where its copy is.
1361 Convert the insn to use base+disp addressing.
1362 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1363
35669430 1364static void
cfba9872 1365fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
35669430
DE
1366 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1367{
1368 const struct amd64_insn *insn_details = &dsc->insn_details;
1369 int modrm_offset = insn_details->modrm_offset;
1370 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1371 CORE_ADDR rip_base;
35669430
DE
1372 int insn_length;
1373 int arch_tmp_regno, tmp_regno;
1374 ULONGEST orig_value;
1375
1376 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1377 ++insn;
1378
1379 /* Compute the rip-relative address. */
cfba9872
SM
1380 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1381 dsc->insn_buf.size (), from);
35669430
DE
1382 rip_base = from + insn_length;
1383
1384 /* We need a register to hold the address.
1385 Pick one not used in the insn.
1386 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1387 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1388 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1389
50a1fdd5
PA
1390 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1391 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1392
1393 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1394 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1395 is not r8-r15. */
1396 if (insn_details->enc_prefix_offset != -1)
1397 {
1398 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1399 if (rex_prefix_p (pfx[0]))
1400 pfx[0] &= ~REX_B;
1401 else if (vex3_prefix_p (pfx[0]))
1402 pfx[1] |= VEX3_NOT_B;
1403 else
1404 gdb_assert_not_reached ("unhandled prefix");
1405 }
35669430
DE
1406
1407 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1408 dsc->tmp_regno = tmp_regno;
1409 dsc->tmp_save = orig_value;
1410 dsc->tmp_used = 1;
1411
1412 /* Convert the ModRM field to be base+disp. */
1413 dsc->insn_buf[modrm_offset] &= ~0xc7;
1414 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1415
1416 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1417
1418 if (debug_displaced)
1419 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
5af949e3
UW
1420 "displaced: using temp reg %d, old value %s, new value %s\n",
1421 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1422 paddress (gdbarch, rip_base));
35669430
DE
1423}
1424
1425static void
1426fixup_displaced_copy (struct gdbarch *gdbarch,
cfba9872 1427 amd64_displaced_step_closure *dsc,
35669430
DE
1428 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1429{
1430 const struct amd64_insn *details = &dsc->insn_details;
1431
1432 if (details->modrm_offset != -1)
1433 {
1434 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1435
1436 if ((modrm & 0xc7) == 0x05)
1437 {
1438 /* The insn uses rip-relative addressing.
1439 Deal with it. */
1440 fixup_riprel (gdbarch, dsc, from, to, regs);
1441 }
1442 }
1443}
1444
1445struct displaced_step_closure *
1446amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1447 CORE_ADDR from, CORE_ADDR to,
1448 struct regcache *regs)
1449{
1450 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1451 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1452 continually watch for running off the end of the buffer. */
1453 int fixup_sentinel_space = len;
cfba9872
SM
1454 amd64_displaced_step_closure *dsc
1455 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
35669430
DE
1456 gdb_byte *buf = &dsc->insn_buf[0];
1457 struct amd64_insn *details = &dsc->insn_details;
1458
35669430
DE
1459 read_memory (from, buf, len);
1460
1461 /* Set up the sentinel space so we don't have to worry about running
1462 off the end of the buffer. An excessive number of leading prefixes
1463 could otherwise cause this. */
1464 memset (buf + len, 0, fixup_sentinel_space);
1465
1466 amd64_get_insn_details (buf, details);
1467
1468 /* GDB may get control back after the insn after the syscall.
1469 Presumably this is a kernel bug.
1470 If this is a syscall, make sure there's a nop afterwards. */
1471 {
1472 int syscall_length;
1473
1474 if (amd64_syscall_p (details, &syscall_length))
1475 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1476 }
1477
1478 /* Modify the insn to cope with the address where it will be executed from.
1479 In particular, handle any rip-relative addressing. */
1480 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1481
1482 write_memory (to, buf, len);
1483
1484 if (debug_displaced)
1485 {
5af949e3
UW
1486 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1487 paddress (gdbarch, from), paddress (gdbarch, to));
35669430
DE
1488 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1489 }
1490
1491 return dsc;
1492}
1493
1494static int
1495amd64_absolute_jmp_p (const struct amd64_insn *details)
1496{
1497 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1498
1499 if (insn[0] == 0xff)
1500 {
1501 /* jump near, absolute indirect (/4) */
1502 if ((insn[1] & 0x38) == 0x20)
1503 return 1;
1504
1505 /* jump far, absolute indirect (/5) */
1506 if ((insn[1] & 0x38) == 0x28)
1507 return 1;
1508 }
1509
1510 return 0;
1511}
1512
c2170eef
MM
1513/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1514
1515static int
1516amd64_jmp_p (const struct amd64_insn *details)
1517{
1518 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1519
1520 /* jump short, relative. */
1521 if (insn[0] == 0xeb)
1522 return 1;
1523
1524 /* jump near, relative. */
1525 if (insn[0] == 0xe9)
1526 return 1;
1527
1528 return amd64_absolute_jmp_p (details);
1529}
1530
35669430
DE
1531static int
1532amd64_absolute_call_p (const struct amd64_insn *details)
1533{
1534 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1535
1536 if (insn[0] == 0xff)
1537 {
1538 /* Call near, absolute indirect (/2) */
1539 if ((insn[1] & 0x38) == 0x10)
1540 return 1;
1541
1542 /* Call far, absolute indirect (/3) */
1543 if ((insn[1] & 0x38) == 0x18)
1544 return 1;
1545 }
1546
1547 return 0;
1548}
1549
1550static int
1551amd64_ret_p (const struct amd64_insn *details)
1552{
1553 /* NOTE: gcc can emit "repz ; ret". */
1554 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1555
1556 switch (insn[0])
1557 {
1558 case 0xc2: /* ret near, pop N bytes */
1559 case 0xc3: /* ret near */
1560 case 0xca: /* ret far, pop N bytes */
1561 case 0xcb: /* ret far */
1562 case 0xcf: /* iret */
1563 return 1;
1564
1565 default:
1566 return 0;
1567 }
1568}
1569
1570static int
1571amd64_call_p (const struct amd64_insn *details)
1572{
1573 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1574
1575 if (amd64_absolute_call_p (details))
1576 return 1;
1577
1578 /* call near, relative */
1579 if (insn[0] == 0xe8)
1580 return 1;
1581
1582 return 0;
1583}
1584
35669430
DE
1585/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1586 length in bytes. Otherwise, return zero. */
1587
1588static int
1589amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1590{
1591 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1592
1593 if (insn[0] == 0x0f && insn[1] == 0x05)
1594 {
1595 *lengthp = 2;
1596 return 1;
1597 }
1598
1599 return 0;
1600}
1601
c2170eef
MM
1602/* Classify the instruction at ADDR using PRED.
1603 Throw an error if the memory can't be read. */
1604
1605static int
1606amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1607 int (*pred) (const struct amd64_insn *))
1608{
1609 struct amd64_insn details;
1610 gdb_byte *buf;
1611 int len, classification;
1612
1613 len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1614 buf = (gdb_byte *) alloca (len);
c2170eef
MM
1615
1616 read_code (addr, buf, len);
1617 amd64_get_insn_details (buf, &details);
1618
1619 classification = pred (&details);
1620
1621 return classification;
1622}
1623
1624/* The gdbarch insn_is_call method. */
1625
1626static int
1627amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1628{
1629 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1630}
1631
1632/* The gdbarch insn_is_ret method. */
1633
1634static int
1635amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1636{
1637 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1638}
1639
1640/* The gdbarch insn_is_jump method. */
1641
1642static int
1643amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1644{
1645 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1646}
1647
35669430
DE
1648/* Fix up the state of registers and memory after having single-stepped
1649 a displaced instruction. */
1650
1651void
1652amd64_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 1653 struct displaced_step_closure *dsc_,
35669430
DE
1654 CORE_ADDR from, CORE_ADDR to,
1655 struct regcache *regs)
1656{
cfba9872 1657 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
e17a4113 1658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1659 /* The offset we applied to the instruction's address. */
1660 ULONGEST insn_offset = to - from;
cfba9872 1661 gdb_byte *insn = dsc->insn_buf.data ();
35669430
DE
1662 const struct amd64_insn *insn_details = &dsc->insn_details;
1663
1664 if (debug_displaced)
1665 fprintf_unfiltered (gdb_stdlog,
5af949e3 1666 "displaced: fixup (%s, %s), "
35669430 1667 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
1668 paddress (gdbarch, from), paddress (gdbarch, to),
1669 insn[0], insn[1]);
35669430
DE
1670
1671 /* If we used a tmp reg, restore it. */
1672
1673 if (dsc->tmp_used)
1674 {
1675 if (debug_displaced)
5af949e3
UW
1676 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1677 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1678 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1679 }
1680
1681 /* The list of issues to contend with here is taken from
1682 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1683 Yay for Free Software! */
1684
1685 /* Relocate the %rip back to the program's instruction stream,
1686 if necessary. */
1687
1688 /* Except in the case of absolute or indirect jump or call
1689 instructions, or a return instruction, the new rip is relative to
1690 the displaced instruction; make it relative to the original insn.
1691 Well, signal handler returns don't need relocation either, but we use the
1692 value of %rip to recognize those; see below. */
1693 if (! amd64_absolute_jmp_p (insn_details)
1694 && ! amd64_absolute_call_p (insn_details)
1695 && ! amd64_ret_p (insn_details))
1696 {
1697 ULONGEST orig_rip;
1698 int insn_len;
1699
1700 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1701
1702 /* A signal trampoline system call changes the %rip, resuming
1703 execution of the main program after the signal handler has
1704 returned. That makes them like 'return' instructions; we
1705 shouldn't relocate %rip.
1706
1707 But most system calls don't, and we do need to relocate %rip.
1708
1709 Our heuristic for distinguishing these cases: if stepping
1710 over the system call instruction left control directly after
1711 the instruction, the we relocate --- control almost certainly
1712 doesn't belong in the displaced copy. Otherwise, we assume
1713 the instruction has put control where it belongs, and leave
1714 it unrelocated. Goodness help us if there are PC-relative
1715 system calls. */
1716 if (amd64_syscall_p (insn_details, &insn_len)
1717 && orig_rip != to + insn_len
1718 /* GDB can get control back after the insn after the syscall.
1719 Presumably this is a kernel bug.
1720 Fixup ensures its a nop, we add one to the length for it. */
1721 && orig_rip != to + insn_len + 1)
1722 {
1723 if (debug_displaced)
1724 fprintf_unfiltered (gdb_stdlog,
1725 "displaced: syscall changed %%rip; "
1726 "not relocating\n");
1727 }
1728 else
1729 {
1730 ULONGEST rip = orig_rip - insn_offset;
1731
1903f0e6
DE
1732 /* If we just stepped over a breakpoint insn, we don't backup
1733 the pc on purpose; this is to match behaviour without
1734 stepping. */
35669430
DE
1735
1736 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1737
1738 if (debug_displaced)
1739 fprintf_unfiltered (gdb_stdlog,
1740 "displaced: "
5af949e3
UW
1741 "relocated %%rip from %s to %s\n",
1742 paddress (gdbarch, orig_rip),
1743 paddress (gdbarch, rip));
35669430
DE
1744 }
1745 }
1746
1747 /* If the instruction was PUSHFL, then the TF bit will be set in the
1748 pushed value, and should be cleared. We'll leave this for later,
1749 since GDB already messes up the TF flag when stepping over a
1750 pushfl. */
1751
1752 /* If the instruction was a call, the return address now atop the
1753 stack is the address following the copied instruction. We need
1754 to make it the address following the original instruction. */
1755 if (amd64_call_p (insn_details))
1756 {
1757 ULONGEST rsp;
1758 ULONGEST retaddr;
1759 const ULONGEST retaddr_len = 8;
1760
1761 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1762 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
4dafcdeb 1763 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
e17a4113 1764 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430
DE
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1768 "displaced: relocated return addr at %s "
1769 "to %s\n",
1770 paddress (gdbarch, rsp),
1771 paddress (gdbarch, retaddr));
35669430
DE
1772 }
1773}
dde08ee1
PA
1774
1775/* If the instruction INSN uses RIP-relative addressing, return the
1776 offset into the raw INSN where the displacement to be adjusted is
1777 found. Returns 0 if the instruction doesn't use RIP-relative
1778 addressing. */
1779
1780static int
1781rip_relative_offset (struct amd64_insn *insn)
1782{
1783 if (insn->modrm_offset != -1)
1784 {
1785 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1786
1787 if ((modrm & 0xc7) == 0x05)
1788 {
1789 /* The displacement is found right after the ModRM byte. */
1790 return insn->modrm_offset + 1;
1791 }
1792 }
1793
1794 return 0;
1795}
1796
1797static void
1798append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1799{
1800 target_write_memory (*to, buf, len);
1801 *to += len;
1802}
1803
60965737 1804static void
dde08ee1
PA
1805amd64_relocate_instruction (struct gdbarch *gdbarch,
1806 CORE_ADDR *to, CORE_ADDR oldloc)
1807{
1808 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1809 int len = gdbarch_max_insn_length (gdbarch);
1810 /* Extra space for sentinels. */
1811 int fixup_sentinel_space = len;
224c3ddb 1812 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
dde08ee1
PA
1813 struct amd64_insn insn_details;
1814 int offset = 0;
1815 LONGEST rel32, newrel;
1816 gdb_byte *insn;
1817 int insn_length;
1818
1819 read_memory (oldloc, buf, len);
1820
1821 /* Set up the sentinel space so we don't have to worry about running
1822 off the end of the buffer. An excessive number of leading prefixes
1823 could otherwise cause this. */
1824 memset (buf + len, 0, fixup_sentinel_space);
1825
1826 insn = buf;
1827 amd64_get_insn_details (insn, &insn_details);
1828
1829 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1830
1831 /* Skip legacy instruction prefixes. */
1832 insn = amd64_skip_prefixes (insn);
1833
1834 /* Adjust calls with 32-bit relative addresses as push/jump, with
1835 the address pushed being the location where the original call in
1836 the user program would return to. */
1837 if (insn[0] == 0xe8)
1838 {
f077e978
PA
1839 gdb_byte push_buf[32];
1840 CORE_ADDR ret_addr;
1841 int i = 0;
dde08ee1
PA
1842
1843 /* Where "ret" in the original code will return to. */
1844 ret_addr = oldloc + insn_length;
f077e978
PA
1845
1846 /* If pushing an address higher than or equal to 0x80000000,
1847 avoid 'pushq', as that sign extends its 32-bit operand, which
1848 would be incorrect. */
1849 if (ret_addr <= 0x7fffffff)
1850 {
1851 push_buf[0] = 0x68; /* pushq $... */
1852 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1853 i = 5;
1854 }
1855 else
1856 {
1857 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1858 push_buf[i++] = 0x83;
1859 push_buf[i++] = 0xec;
1860 push_buf[i++] = 0x08;
1861
1862 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1863 push_buf[i++] = 0x04;
1864 push_buf[i++] = 0x24;
1865 store_unsigned_integer (&push_buf[i], 4, byte_order,
1866 ret_addr & 0xffffffff);
1867 i += 4;
1868
1869 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1870 push_buf[i++] = 0x44;
1871 push_buf[i++] = 0x24;
1872 push_buf[i++] = 0x04;
1873 store_unsigned_integer (&push_buf[i], 4, byte_order,
1874 ret_addr >> 32);
1875 i += 4;
1876 }
1877 gdb_assert (i <= sizeof (push_buf));
dde08ee1 1878 /* Push the push. */
f077e978 1879 append_insns (to, i, push_buf);
dde08ee1
PA
1880
1881 /* Convert the relative call to a relative jump. */
1882 insn[0] = 0xe9;
1883
1884 /* Adjust the destination offset. */
1885 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1886 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1887 store_signed_integer (insn + 1, 4, byte_order, newrel);
1888
1889 if (debug_displaced)
1890 fprintf_unfiltered (gdb_stdlog,
1891 "Adjusted insn rel32=%s at %s to"
1892 " rel32=%s at %s\n",
1893 hex_string (rel32), paddress (gdbarch, oldloc),
1894 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1895
1896 /* Write the adjusted jump into its displaced location. */
1897 append_insns (to, 5, insn);
1898 return;
1899 }
1900
1901 offset = rip_relative_offset (&insn_details);
1902 if (!offset)
1903 {
1904 /* Adjust jumps with 32-bit relative addresses. Calls are
1905 already handled above. */
1906 if (insn[0] == 0xe9)
1907 offset = 1;
1908 /* Adjust conditional jumps. */
1909 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1910 offset = 2;
1911 }
1912
1913 if (offset)
1914 {
1915 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1916 newrel = (oldloc - *to) + rel32;
f4a1794a 1917 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1918 if (debug_displaced)
1919 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1920 "Adjusted insn rel32=%s at %s to"
1921 " rel32=%s at %s\n",
dde08ee1
PA
1922 hex_string (rel32), paddress (gdbarch, oldloc),
1923 hex_string (newrel), paddress (gdbarch, *to));
1924 }
1925
1926 /* Write the adjusted instruction into its displaced location. */
1927 append_insns (to, insn_length, buf);
1928}
1929
35669430 1930\f
c4f35dd8 1931/* The maximum number of saved registers. This should include %rip. */
90f90721 1932#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1933
e53bef9f 1934struct amd64_frame_cache
c4f35dd8
MK
1935{
1936 /* Base address. */
1937 CORE_ADDR base;
8fbca658 1938 int base_p;
c4f35dd8
MK
1939 CORE_ADDR sp_offset;
1940 CORE_ADDR pc;
1941
1942 /* Saved registers. */
e53bef9f 1943 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1944 CORE_ADDR saved_sp;
e0c62198 1945 int saved_sp_reg;
c4f35dd8
MK
1946
1947 /* Do we have a frame? */
1948 int frameless_p;
1949};
8dda9770 1950
d2449ee8 1951/* Initialize a frame cache. */
c4f35dd8 1952
d2449ee8
DJ
1953static void
1954amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1955{
c4f35dd8
MK
1956 int i;
1957
c4f35dd8
MK
1958 /* Base address. */
1959 cache->base = 0;
8fbca658 1960 cache->base_p = 0;
c4f35dd8
MK
1961 cache->sp_offset = -8;
1962 cache->pc = 0;
1963
1964 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1965 offset (that's where %rbp is supposed to be stored).
1966 The values start out as being offsets, and are later converted to
1967 addresses (at which point -1 is interpreted as an address, still meaning
1968 "invalid"). */
e53bef9f 1969 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1970 cache->saved_regs[i] = -1;
1971 cache->saved_sp = 0;
e0c62198 1972 cache->saved_sp_reg = -1;
c4f35dd8
MK
1973
1974 /* Frameless until proven otherwise. */
1975 cache->frameless_p = 1;
d2449ee8 1976}
c4f35dd8 1977
d2449ee8
DJ
1978/* Allocate and initialize a frame cache. */
1979
1980static struct amd64_frame_cache *
1981amd64_alloc_frame_cache (void)
1982{
1983 struct amd64_frame_cache *cache;
1984
1985 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1986 amd64_init_frame_cache (cache);
c4f35dd8 1987 return cache;
8dda9770 1988}
53e95fcf 1989
e0c62198
L
1990/* GCC 4.4 and later, can put code in the prologue to realign the
1991 stack pointer. Check whether PC points to such code, and update
1992 CACHE accordingly. Return the first instruction after the code
1993 sequence or CURRENT_PC, whichever is smaller. If we don't
1994 recognize the code, return PC. */
1995
1996static CORE_ADDR
1997amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1998 struct amd64_frame_cache *cache)
1999{
2000 /* There are 2 code sequences to re-align stack before the frame
2001 gets set up:
2002
2003 1. Use a caller-saved saved register:
2004
2005 leaq 8(%rsp), %reg
2006 andq $-XXX, %rsp
2007 pushq -8(%reg)
2008
2009 2. Use a callee-saved saved register:
2010
2011 pushq %reg
2012 leaq 16(%rsp), %reg
2013 andq $-XXX, %rsp
2014 pushq -8(%reg)
2015
2016 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2017
2018 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2019 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2020 */
2021
2022 gdb_byte buf[18];
2023 int reg, r;
2024 int offset, offset_and;
e0c62198 2025
bae8a07a 2026 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
2027 return pc;
2028
2029 /* Check caller-saved saved register. The first instruction has
2030 to be "leaq 8(%rsp), %reg". */
2031 if ((buf[0] & 0xfb) == 0x48
2032 && buf[1] == 0x8d
2033 && buf[3] == 0x24
2034 && buf[4] == 0x8)
2035 {
2036 /* MOD must be binary 10 and R/M must be binary 100. */
2037 if ((buf[2] & 0xc7) != 0x44)
2038 return pc;
2039
2040 /* REG has register number. */
2041 reg = (buf[2] >> 3) & 7;
2042
2043 /* Check the REX.R bit. */
2044 if (buf[0] == 0x4c)
2045 reg += 8;
2046
2047 offset = 5;
2048 }
2049 else
2050 {
2051 /* Check callee-saved saved register. The first instruction
2052 has to be "pushq %reg". */
2053 reg = 0;
2054 if ((buf[0] & 0xf8) == 0x50)
2055 offset = 0;
2056 else if ((buf[0] & 0xf6) == 0x40
2057 && (buf[1] & 0xf8) == 0x50)
2058 {
2059 /* Check the REX.B bit. */
2060 if ((buf[0] & 1) != 0)
2061 reg = 8;
2062
2063 offset = 1;
2064 }
2065 else
2066 return pc;
2067
2068 /* Get register. */
2069 reg += buf[offset] & 0x7;
2070
2071 offset++;
2072
2073 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2074 if ((buf[offset] & 0xfb) != 0x48
2075 || buf[offset + 1] != 0x8d
2076 || buf[offset + 3] != 0x24
2077 || buf[offset + 4] != 0x10)
2078 return pc;
2079
2080 /* MOD must be binary 10 and R/M must be binary 100. */
2081 if ((buf[offset + 2] & 0xc7) != 0x44)
2082 return pc;
2083
2084 /* REG has register number. */
2085 r = (buf[offset + 2] >> 3) & 7;
2086
2087 /* Check the REX.R bit. */
2088 if (buf[offset] == 0x4c)
2089 r += 8;
2090
2091 /* Registers in pushq and leaq have to be the same. */
2092 if (reg != r)
2093 return pc;
2094
2095 offset += 5;
2096 }
2097
2098 /* Rigister can't be %rsp nor %rbp. */
2099 if (reg == 4 || reg == 5)
2100 return pc;
2101
2102 /* The next instruction has to be "andq $-XXX, %rsp". */
2103 if (buf[offset] != 0x48
2104 || buf[offset + 2] != 0xe4
2105 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2106 return pc;
2107
2108 offset_and = offset;
2109 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2110
2111 /* The next instruction has to be "pushq -8(%reg)". */
2112 r = 0;
2113 if (buf[offset] == 0xff)
2114 offset++;
2115 else if ((buf[offset] & 0xf6) == 0x40
2116 && buf[offset + 1] == 0xff)
2117 {
2118 /* Check the REX.B bit. */
2119 if ((buf[offset] & 0x1) != 0)
2120 r = 8;
2121 offset += 2;
2122 }
2123 else
2124 return pc;
2125
2126 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2127 01. */
2128 if (buf[offset + 1] != 0xf8
2129 || (buf[offset] & 0xf8) != 0x70)
2130 return pc;
2131
2132 /* R/M has register. */
2133 r += buf[offset] & 7;
2134
2135 /* Registers in leaq and pushq have to be the same. */
2136 if (reg != r)
2137 return pc;
2138
2139 if (current_pc > pc + offset_and)
35669430 2140 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198 2141
325fac50 2142 return std::min (pc + offset + 2, current_pc);
e0c62198
L
2143}
2144
ac142d96
L
2145/* Similar to amd64_analyze_stack_align for x32. */
2146
2147static CORE_ADDR
2148amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2149 struct amd64_frame_cache *cache)
2150{
2151 /* There are 2 code sequences to re-align stack before the frame
2152 gets set up:
2153
2154 1. Use a caller-saved saved register:
2155
2156 leaq 8(%rsp), %reg
2157 andq $-XXX, %rsp
2158 pushq -8(%reg)
2159
2160 or
2161
2162 [addr32] leal 8(%rsp), %reg
2163 andl $-XXX, %esp
2164 [addr32] pushq -8(%reg)
2165
2166 2. Use a callee-saved saved register:
2167
2168 pushq %reg
2169 leaq 16(%rsp), %reg
2170 andq $-XXX, %rsp
2171 pushq -8(%reg)
2172
2173 or
2174
2175 pushq %reg
2176 [addr32] leal 16(%rsp), %reg
2177 andl $-XXX, %esp
2178 [addr32] pushq -8(%reg)
2179
2180 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2181
2182 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2183 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2184
2185 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2186
2187 0x83 0xe4 0xf0 andl $-16, %esp
2188 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2189 */
2190
2191 gdb_byte buf[19];
2192 int reg, r;
2193 int offset, offset_and;
2194
2195 if (target_read_memory (pc, buf, sizeof buf))
2196 return pc;
2197
2198 /* Skip optional addr32 prefix. */
2199 offset = buf[0] == 0x67 ? 1 : 0;
2200
2201 /* Check caller-saved saved register. The first instruction has
2202 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2203 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2204 && buf[offset + 1] == 0x8d
2205 && buf[offset + 3] == 0x24
2206 && buf[offset + 4] == 0x8)
2207 {
2208 /* MOD must be binary 10 and R/M must be binary 100. */
2209 if ((buf[offset + 2] & 0xc7) != 0x44)
2210 return pc;
2211
2212 /* REG has register number. */
2213 reg = (buf[offset + 2] >> 3) & 7;
2214
2215 /* Check the REX.R bit. */
2216 if ((buf[offset] & 0x4) != 0)
2217 reg += 8;
2218
2219 offset += 5;
2220 }
2221 else
2222 {
2223 /* Check callee-saved saved register. The first instruction
2224 has to be "pushq %reg". */
2225 reg = 0;
2226 if ((buf[offset] & 0xf6) == 0x40
2227 && (buf[offset + 1] & 0xf8) == 0x50)
2228 {
2229 /* Check the REX.B bit. */
2230 if ((buf[offset] & 1) != 0)
2231 reg = 8;
2232
2233 offset += 1;
2234 }
2235 else if ((buf[offset] & 0xf8) != 0x50)
2236 return pc;
2237
2238 /* Get register. */
2239 reg += buf[offset] & 0x7;
2240
2241 offset++;
2242
2243 /* Skip optional addr32 prefix. */
2244 if (buf[offset] == 0x67)
2245 offset++;
2246
2247 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2248 "leal 16(%rsp), %reg". */
2249 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2250 || buf[offset + 1] != 0x8d
2251 || buf[offset + 3] != 0x24
2252 || buf[offset + 4] != 0x10)
2253 return pc;
2254
2255 /* MOD must be binary 10 and R/M must be binary 100. */
2256 if ((buf[offset + 2] & 0xc7) != 0x44)
2257 return pc;
2258
2259 /* REG has register number. */
2260 r = (buf[offset + 2] >> 3) & 7;
2261
2262 /* Check the REX.R bit. */
2263 if ((buf[offset] & 0x4) != 0)
2264 r += 8;
2265
2266 /* Registers in pushq and leaq have to be the same. */
2267 if (reg != r)
2268 return pc;
2269
2270 offset += 5;
2271 }
2272
2273 /* Rigister can't be %rsp nor %rbp. */
2274 if (reg == 4 || reg == 5)
2275 return pc;
2276
2277 /* The next instruction may be "andq $-XXX, %rsp" or
2278 "andl $-XXX, %esp". */
2279 if (buf[offset] != 0x48)
2280 offset--;
2281
2282 if (buf[offset + 2] != 0xe4
2283 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2284 return pc;
2285
2286 offset_and = offset;
2287 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2288
2289 /* Skip optional addr32 prefix. */
2290 if (buf[offset] == 0x67)
2291 offset++;
2292
2293 /* The next instruction has to be "pushq -8(%reg)". */
2294 r = 0;
2295 if (buf[offset] == 0xff)
2296 offset++;
2297 else if ((buf[offset] & 0xf6) == 0x40
2298 && buf[offset + 1] == 0xff)
2299 {
2300 /* Check the REX.B bit. */
2301 if ((buf[offset] & 0x1) != 0)
2302 r = 8;
2303 offset += 2;
2304 }
2305 else
2306 return pc;
2307
2308 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2309 01. */
2310 if (buf[offset + 1] != 0xf8
2311 || (buf[offset] & 0xf8) != 0x70)
2312 return pc;
2313
2314 /* R/M has register. */
2315 r += buf[offset] & 7;
2316
2317 /* Registers in leaq and pushq have to be the same. */
2318 if (reg != r)
2319 return pc;
2320
2321 if (current_pc > pc + offset_and)
2322 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2323
325fac50 2324 return std::min (pc + offset + 2, current_pc);
ac142d96
L
2325}
2326
c4f35dd8
MK
2327/* Do a limited analysis of the prologue at PC and update CACHE
2328 accordingly. Bail out early if CURRENT_PC is reached. Return the
2329 address where the analysis stopped.
2330
2331 We will handle only functions beginning with:
2332
2333 pushq %rbp 0x55
50f1ae7b 2334 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2335
649e6d92
MK
2336 or (for the X32 ABI):
2337
2338 pushq %rbp 0x55
2339 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2340
2341 Any function that doesn't start with one of these sequences will be
2342 assumed to have no prologue and thus no valid frame pointer in
2343 %rbp. */
c4f35dd8
MK
2344
2345static CORE_ADDR
e17a4113
UW
2346amd64_analyze_prologue (struct gdbarch *gdbarch,
2347 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2348 struct amd64_frame_cache *cache)
53e95fcf 2349{
e17a4113 2350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
50f1ae7b
DE
2351 /* There are two variations of movq %rsp, %rbp. */
2352 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2353 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2354 /* Ditto for movl %esp, %ebp. */
2355 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2356 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2357
d8de1ef7
MK
2358 gdb_byte buf[3];
2359 gdb_byte op;
c4f35dd8
MK
2360
2361 if (current_pc <= pc)
2362 return current_pc;
2363
ac142d96
L
2364 if (gdbarch_ptr_bit (gdbarch) == 32)
2365 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2366 else
2367 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2368
bae8a07a 2369 op = read_code_unsigned_integer (pc, 1, byte_order);
c4f35dd8
MK
2370
2371 if (op == 0x55) /* pushq %rbp */
2372 {
2373 /* Take into account that we've executed the `pushq %rbp' that
2374 starts this instruction sequence. */
90f90721 2375 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2376 cache->sp_offset += 8;
2377
2378 /* If that's all, return now. */
2379 if (current_pc <= pc + 1)
2380 return current_pc;
2381
bae8a07a 2382 read_code (pc + 1, buf, 3);
c4f35dd8 2383
649e6d92
MK
2384 /* Check for `movq %rsp, %rbp'. */
2385 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2386 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2387 {
2388 /* OK, we actually have a frame. */
2389 cache->frameless_p = 0;
2390 return pc + 4;
2391 }
2392
2393 /* For X32, also check for `movq %esp, %ebp'. */
2394 if (gdbarch_ptr_bit (gdbarch) == 32)
2395 {
2396 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2397 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2398 {
2399 /* OK, we actually have a frame. */
2400 cache->frameless_p = 0;
2401 return pc + 3;
2402 }
2403 }
2404
2405 return pc + 1;
c4f35dd8
MK
2406 }
2407
2408 return pc;
53e95fcf
JS
2409}
2410
df15bd07
JK
2411/* Work around false termination of prologue - GCC PR debug/48827.
2412
2413 START_PC is the first instruction of a function, PC is its minimal already
2414 determined advanced address. Function returns PC if it has nothing to do.
2415
2416 84 c0 test %al,%al
2417 74 23 je after
2418 <-- here is 0 lines advance - the false prologue end marker.
2419 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2420 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2421 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2422 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2423 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2424 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2425 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2426 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2427 after: */
c4f35dd8
MK
2428
2429static CORE_ADDR
df15bd07 2430amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2431{
08711b9a
JK
2432 struct symtab_and_line start_pc_sal, next_sal;
2433 gdb_byte buf[4 + 8 * 7];
2434 int offset, xmmreg;
c4f35dd8 2435
08711b9a
JK
2436 if (pc == start_pc)
2437 return pc;
2438
2439 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2440 if (start_pc_sal.symtab == NULL
43f3e411
DE
2441 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2442 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
08711b9a
JK
2443 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2444 return pc;
2445
2446 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2447 if (next_sal.line != start_pc_sal.line)
2448 return pc;
2449
2450 /* START_PC can be from overlayed memory, ignored here. */
bae8a07a 2451 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
08711b9a
JK
2452 return pc;
2453
2454 /* test %al,%al */
2455 if (buf[0] != 0x84 || buf[1] != 0xc0)
2456 return pc;
2457 /* je AFTER */
2458 if (buf[2] != 0x74)
2459 return pc;
2460
2461 offset = 4;
2462 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2463 {
bede5f5f 2464 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2465 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
bede5f5f 2466 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2467 return pc;
2468
bede5f5f
JK
2469 /* 0b01?????? */
2470 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2471 {
2472 /* 8-bit displacement. */
2473 offset += 4;
2474 }
bede5f5f
JK
2475 /* 0b10?????? */
2476 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2477 {
2478 /* 32-bit displacement. */
2479 offset += 7;
2480 }
2481 else
2482 return pc;
2483 }
2484
2485 /* je AFTER */
2486 if (offset - 4 != buf[3])
2487 return pc;
2488
2489 return next_sal.end;
53e95fcf 2490}
df15bd07
JK
2491
2492/* Return PC of first real instruction. */
2493
2494static CORE_ADDR
2495amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2496{
2497 struct amd64_frame_cache cache;
2498 CORE_ADDR pc;
56bf0743
KB
2499 CORE_ADDR func_addr;
2500
2501 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2502 {
2503 CORE_ADDR post_prologue_pc
2504 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 2505 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
2506
2507 /* Clang always emits a line note before the prologue and another
2508 one after. We trust clang to emit usable line notes. */
2509 if (post_prologue_pc
43f3e411
DE
2510 && (cust != NULL
2511 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 2512 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 2513 return std::max (start_pc, post_prologue_pc);
56bf0743 2514 }
df15bd07
JK
2515
2516 amd64_init_frame_cache (&cache);
2517 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2518 &cache);
2519 if (cache.frameless_p)
2520 return start_pc;
2521
2522 return amd64_skip_xmm_prologue (pc, start_pc);
2523}
c4f35dd8 2524\f
53e95fcf 2525
c4f35dd8
MK
2526/* Normal frames. */
2527
8fbca658
PA
2528static void
2529amd64_frame_cache_1 (struct frame_info *this_frame,
2530 struct amd64_frame_cache *cache)
6d686a84 2531{
e17a4113
UW
2532 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2534 gdb_byte buf[8];
6d686a84 2535 int i;
6d686a84 2536
10458914 2537 cache->pc = get_frame_func (this_frame);
c4f35dd8 2538 if (cache->pc != 0)
e17a4113
UW
2539 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2540 cache);
c4f35dd8
MK
2541
2542 if (cache->frameless_p)
2543 {
4a28816e
MK
2544 /* We didn't find a valid frame. If we're at the start of a
2545 function, or somewhere half-way its prologue, the function's
2546 frame probably hasn't been fully setup yet. Try to
2547 reconstruct the base address for the stack frame by looking
2548 at the stack pointer. For truly "frameless" functions this
2549 might work too. */
c4f35dd8 2550
e0c62198
L
2551 if (cache->saved_sp_reg != -1)
2552 {
8fbca658
PA
2553 /* Stack pointer has been saved. */
2554 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2555 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2556
e0c62198
L
2557 /* We're halfway aligning the stack. */
2558 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2559 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2560
2561 /* This will be added back below. */
2562 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2563 }
2564 else
2565 {
2566 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2567 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2568 + cache->sp_offset;
e0c62198 2569 }
c4f35dd8 2570 }
35883a3f
MK
2571 else
2572 {
10458914 2573 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2574 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2575 }
c4f35dd8
MK
2576
2577 /* Now that we have the base address for the stack frame we can
2578 calculate the value of %rsp in the calling frame. */
2579 cache->saved_sp = cache->base + 16;
2580
35883a3f
MK
2581 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2582 frame we find it at the same offset from the reconstructed base
e0c62198
L
2583 address. If we're halfway aligning the stack, %rip is handled
2584 differently (see above). */
2585 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2586 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2587
c4f35dd8
MK
2588 /* Adjust all the saved registers such that they contain addresses
2589 instead of offsets. */
e53bef9f 2590 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2591 if (cache->saved_regs[i] != -1)
2592 cache->saved_regs[i] += cache->base;
2593
8fbca658
PA
2594 cache->base_p = 1;
2595}
2596
2597static struct amd64_frame_cache *
2598amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2599{
8fbca658
PA
2600 struct amd64_frame_cache *cache;
2601
2602 if (*this_cache)
9a3c8263 2603 return (struct amd64_frame_cache *) *this_cache;
8fbca658
PA
2604
2605 cache = amd64_alloc_frame_cache ();
2606 *this_cache = cache;
2607
a70b8144 2608 try
8fbca658
PA
2609 {
2610 amd64_frame_cache_1 (this_frame, cache);
2611 }
230d2906 2612 catch (const gdb_exception_error &ex)
7556d4a4
PA
2613 {
2614 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2615 throw;
7556d4a4 2616 }
8fbca658 2617
c4f35dd8 2618 return cache;
6d686a84
ML
2619}
2620
8fbca658
PA
2621static enum unwind_stop_reason
2622amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2623 void **this_cache)
2624{
2625 struct amd64_frame_cache *cache =
2626 amd64_frame_cache (this_frame, this_cache);
2627
2628 if (!cache->base_p)
2629 return UNWIND_UNAVAILABLE;
2630
2631 /* This marks the outermost frame. */
2632 if (cache->base == 0)
2633 return UNWIND_OUTERMOST;
2634
2635 return UNWIND_NO_REASON;
2636}
2637
c4f35dd8 2638static void
10458914 2639amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
e53bef9f 2640 struct frame_id *this_id)
c4f35dd8 2641{
e53bef9f 2642 struct amd64_frame_cache *cache =
10458914 2643 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2644
8fbca658 2645 if (!cache->base_p)
5ce0145d
PA
2646 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2647 else if (cache->base == 0)
2648 {
2649 /* This marks the outermost frame. */
2650 return;
2651 }
2652 else
2653 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
c4f35dd8 2654}
e76e1718 2655
10458914
DJ
2656static struct value *
2657amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2658 int regnum)
53e95fcf 2659{
10458914 2660 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2661 struct amd64_frame_cache *cache =
10458914 2662 amd64_frame_cache (this_frame, this_cache);
e76e1718 2663
c4f35dd8 2664 gdb_assert (regnum >= 0);
b1ab997b 2665
2ae02b47 2666 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2667 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2668
e53bef9f 2669 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2670 return frame_unwind_got_memory (this_frame, regnum,
2671 cache->saved_regs[regnum]);
e76e1718 2672
10458914 2673 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2674}
e76e1718 2675
e53bef9f 2676static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
2677{
2678 NORMAL_FRAME,
8fbca658 2679 amd64_frame_unwind_stop_reason,
e53bef9f 2680 amd64_frame_this_id,
10458914
DJ
2681 amd64_frame_prev_register,
2682 NULL,
2683 default_frame_sniffer
c4f35dd8 2684};
c4f35dd8 2685\f
6710bf39
SS
2686/* Generate a bytecode expression to get the value of the saved PC. */
2687
2688static void
2689amd64_gen_return_address (struct gdbarch *gdbarch,
2690 struct agent_expr *ax, struct axs_value *value,
2691 CORE_ADDR scope)
2692{
2693 /* The following sequence assumes the traditional use of the base
2694 register. */
2695 ax_reg (ax, AMD64_RBP_REGNUM);
2696 ax_const_l (ax, 8);
2697 ax_simple (ax, aop_add);
2698 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2699 value->kind = axs_lvalue_memory;
2700}
2701\f
e76e1718 2702
c4f35dd8
MK
2703/* Signal trampolines. */
2704
2705/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2706 64-bit variants. This would require using identical frame caches
2707 on both platforms. */
2708
e53bef9f 2709static struct amd64_frame_cache *
10458914 2710amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2711{
e17a4113
UW
2712 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2714 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e53bef9f 2715 struct amd64_frame_cache *cache;
c4f35dd8 2716 CORE_ADDR addr;
d8de1ef7 2717 gdb_byte buf[8];
2b5e0749 2718 int i;
c4f35dd8
MK
2719
2720 if (*this_cache)
9a3c8263 2721 return (struct amd64_frame_cache *) *this_cache;
c4f35dd8 2722
e53bef9f 2723 cache = amd64_alloc_frame_cache ();
c4f35dd8 2724
a70b8144 2725 try
8fbca658
PA
2726 {
2727 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2728 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2729
2730 addr = tdep->sigcontext_addr (this_frame);
2731 gdb_assert (tdep->sc_reg_offset);
2732 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2733 for (i = 0; i < tdep->sc_num_regs; i++)
2734 if (tdep->sc_reg_offset[i] != -1)
2735 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2736
8fbca658
PA
2737 cache->base_p = 1;
2738 }
230d2906 2739 catch (const gdb_exception_error &ex)
7556d4a4
PA
2740 {
2741 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2742 throw;
7556d4a4 2743 }
c4f35dd8
MK
2744
2745 *this_cache = cache;
2746 return cache;
53e95fcf
JS
2747}
2748
8fbca658
PA
2749static enum unwind_stop_reason
2750amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2751 void **this_cache)
2752{
2753 struct amd64_frame_cache *cache =
2754 amd64_sigtramp_frame_cache (this_frame, this_cache);
2755
2756 if (!cache->base_p)
2757 return UNWIND_UNAVAILABLE;
2758
2759 return UNWIND_NO_REASON;
2760}
2761
c4f35dd8 2762static void
10458914 2763amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
e53bef9f 2764 void **this_cache, struct frame_id *this_id)
c4f35dd8 2765{
e53bef9f 2766 struct amd64_frame_cache *cache =
10458914 2767 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2768
8fbca658 2769 if (!cache->base_p)
5ce0145d
PA
2770 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2771 else if (cache->base == 0)
2772 {
2773 /* This marks the outermost frame. */
2774 return;
2775 }
2776 else
2777 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2778}
2779
10458914
DJ
2780static struct value *
2781amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2782 void **this_cache, int regnum)
c4f35dd8
MK
2783{
2784 /* Make sure we've initialized the cache. */
10458914 2785 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2786
10458914 2787 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2788}
2789
10458914
DJ
2790static int
2791amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2792 struct frame_info *this_frame,
2793 void **this_cache)
c4f35dd8 2794{
10458914 2795 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
911bc6ee
MK
2796
2797 /* We shouldn't even bother if we don't have a sigcontext_addr
2798 handler. */
2799 if (tdep->sigcontext_addr == NULL)
10458914 2800 return 0;
911bc6ee
MK
2801
2802 if (tdep->sigtramp_p != NULL)
2803 {
10458914
DJ
2804 if (tdep->sigtramp_p (this_frame))
2805 return 1;
911bc6ee 2806 }
c4f35dd8 2807
911bc6ee 2808 if (tdep->sigtramp_start != 0)
1c3545ae 2809 {
10458914 2810 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2811
911bc6ee
MK
2812 gdb_assert (tdep->sigtramp_end != 0);
2813 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2814 return 1;
1c3545ae 2815 }
c4f35dd8 2816
10458914 2817 return 0;
c4f35dd8 2818}
10458914
DJ
2819
2820static const struct frame_unwind amd64_sigtramp_frame_unwind =
2821{
2822 SIGTRAMP_FRAME,
8fbca658 2823 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2824 amd64_sigtramp_frame_this_id,
2825 amd64_sigtramp_frame_prev_register,
2826 NULL,
2827 amd64_sigtramp_frame_sniffer
2828};
c4f35dd8
MK
2829\f
2830
2831static CORE_ADDR
10458914 2832amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2833{
e53bef9f 2834 struct amd64_frame_cache *cache =
10458914 2835 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2836
2837 return cache->base;
2838}
2839
e53bef9f 2840static const struct frame_base amd64_frame_base =
c4f35dd8 2841{
e53bef9f
MK
2842 &amd64_frame_unwind,
2843 amd64_frame_base_address,
2844 amd64_frame_base_address,
2845 amd64_frame_base_address
c4f35dd8
MK
2846};
2847
872761f4
MS
2848/* Normal frames, but in a function epilogue. */
2849
c9cf6e20
MG
2850/* Implement the stack_frame_destroyed_p gdbarch method.
2851
2852 The epilogue is defined here as the 'ret' instruction, which will
872761f4
MS
2853 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2854 the function's stack frame. */
2855
2856static int
c9cf6e20 2857amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872761f4
MS
2858{
2859 gdb_byte insn;
43f3e411 2860 struct compunit_symtab *cust;
e0d00bc7 2861
43f3e411
DE
2862 cust = find_pc_compunit_symtab (pc);
2863 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2864 return 0;
872761f4
MS
2865
2866 if (target_read_memory (pc, &insn, 1))
2867 return 0; /* Can't read memory at pc. */
2868
2869 if (insn != 0xc3) /* 'ret' instruction. */
2870 return 0;
2871
2872 return 1;
2873}
2874
2875static int
2876amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2877 struct frame_info *this_frame,
2878 void **this_prologue_cache)
2879{
2880 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2881 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2882 get_frame_pc (this_frame));
872761f4
MS
2883 else
2884 return 0;
2885}
2886
2887static struct amd64_frame_cache *
2888amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2889{
2890 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2892 struct amd64_frame_cache *cache;
6c10c06b 2893 gdb_byte buf[8];
872761f4
MS
2894
2895 if (*this_cache)
9a3c8263 2896 return (struct amd64_frame_cache *) *this_cache;
872761f4
MS
2897
2898 cache = amd64_alloc_frame_cache ();
2899 *this_cache = cache;
2900
a70b8144 2901 try
8fbca658
PA
2902 {
2903 /* Cache base will be %esp plus cache->sp_offset (-8). */
2904 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2905 cache->base = extract_unsigned_integer (buf, 8,
2906 byte_order) + cache->sp_offset;
2907
2908 /* Cache pc will be the frame func. */
2909 cache->pc = get_frame_pc (this_frame);
872761f4 2910
8fbca658
PA
2911 /* The saved %esp will be at cache->base plus 16. */
2912 cache->saved_sp = cache->base + 16;
872761f4 2913
8fbca658
PA
2914 /* The saved %eip will be at cache->base plus 8. */
2915 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2916
8fbca658
PA
2917 cache->base_p = 1;
2918 }
230d2906 2919 catch (const gdb_exception_error &ex)
7556d4a4
PA
2920 {
2921 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2922 throw;
7556d4a4 2923 }
872761f4
MS
2924
2925 return cache;
2926}
2927
8fbca658
PA
2928static enum unwind_stop_reason
2929amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2930 void **this_cache)
2931{
2932 struct amd64_frame_cache *cache
2933 = amd64_epilogue_frame_cache (this_frame, this_cache);
2934
2935 if (!cache->base_p)
2936 return UNWIND_UNAVAILABLE;
2937
2938 return UNWIND_NO_REASON;
2939}
2940
872761f4
MS
2941static void
2942amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2943 void **this_cache,
2944 struct frame_id *this_id)
2945{
2946 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2947 this_cache);
2948
8fbca658 2949 if (!cache->base_p)
5ce0145d
PA
2950 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2951 else
2952 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
872761f4
MS
2953}
2954
2955static const struct frame_unwind amd64_epilogue_frame_unwind =
2956{
2957 NORMAL_FRAME,
8fbca658 2958 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
2959 amd64_epilogue_frame_this_id,
2960 amd64_frame_prev_register,
2961 NULL,
2962 amd64_epilogue_frame_sniffer
2963};
2964
166f4c7b 2965static struct frame_id
10458914 2966amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
166f4c7b 2967{
c4f35dd8
MK
2968 CORE_ADDR fp;
2969
10458914 2970 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 2971
10458914 2972 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
2973}
2974
8b148df9
AC
2975/* 16 byte align the SP per frame requirements. */
2976
2977static CORE_ADDR
e53bef9f 2978amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
2979{
2980 return sp & -(CORE_ADDR)16;
2981}
473f17b0
MK
2982\f
2983
593adc23
MK
2984/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2985 in the floating-point register set REGSET to register cache
2986 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2987
2988static void
e53bef9f
MK
2989amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2990 int regnum, const void *fpregs, size_t len)
473f17b0 2991{
ac7936df 2992 struct gdbarch *gdbarch = regcache->arch ();
09424cff 2993 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 2994
1528345d 2995 gdb_assert (len >= tdep->sizeof_fpregset);
90f90721 2996 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 2997}
8b148df9 2998
593adc23
MK
2999/* Collect register REGNUM from the register cache REGCACHE and store
3000 it in the buffer specified by FPREGS and LEN as described by the
3001 floating-point register set REGSET. If REGNUM is -1, do this for
3002 all registers in REGSET. */
3003
3004static void
3005amd64_collect_fpregset (const struct regset *regset,
3006 const struct regcache *regcache,
3007 int regnum, void *fpregs, size_t len)
3008{
ac7936df 3009 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3010 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
593adc23 3011
1528345d 3012 gdb_assert (len >= tdep->sizeof_fpregset);
593adc23
MK
3013 amd64_collect_fxsave (regcache, regnum, fpregs);
3014}
3015
8f0435f7 3016const struct regset amd64_fpregset =
ecc37a5a
AA
3017 {
3018 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3019 };
c6b33596
MK
3020\f
3021
436675d3
PA
3022/* Figure out where the longjmp will land. Slurp the jmp_buf out of
3023 %rdi. We expect its value to be a pointer to the jmp_buf structure
3024 from which we extract the address that we will land at. This
3025 address is copied into PC. This routine returns non-zero on
3026 success. */
3027
3028static int
3029amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3030{
3031 gdb_byte buf[8];
3032 CORE_ADDR jb_addr;
3033 struct gdbarch *gdbarch = get_frame_arch (frame);
3034 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
0dfff4cb 3035 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
3036
3037 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3038 longjmp will land. */
3039 if (jb_pc_offset == -1)
3040 return 0;
3041
3042 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
3043 jb_addr= extract_typed_address
3044 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
3045 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3046 return 0;
3047
0dfff4cb 3048 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
3049
3050 return 1;
3051}
3052
cf648174
HZ
3053static const int amd64_record_regmap[] =
3054{
3055 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3056 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3057 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3058 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3059 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3060 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3061};
3062
1d509aa6
MM
3063/* Implement the "in_indirect_branch_thunk" gdbarch function. */
3064
3065static bool
3066amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3067{
3068 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3069 AMD64_RAX_REGNUM,
3070 AMD64_RIP_REGNUM);
3071}
3072
2213a65d 3073void
c55a47e7 3074amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3075 const target_desc *default_tdesc)
53e95fcf 3076{
0c1a73d6 3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 3078 const struct target_desc *tdesc = info.target_desc;
05c0465e
SDJ
3079 static const char *const stap_integer_prefixes[] = { "$", NULL };
3080 static const char *const stap_register_prefixes[] = { "%", NULL };
3081 static const char *const stap_register_indirection_prefixes[] = { "(",
3082 NULL };
3083 static const char *const stap_register_indirection_suffixes[] = { ")",
3084 NULL };
53e95fcf 3085
473f17b0
MK
3086 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3087 floating-point registers. */
3088 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
8f0435f7 3089 tdep->fpregset = &amd64_fpregset;
473f17b0 3090
90884b2b 3091 if (! tdesc_has_registers (tdesc))
c55a47e7 3092 tdesc = default_tdesc;
90884b2b
L
3093 tdep->tdesc = tdesc;
3094
3095 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3096 tdep->register_names = amd64_register_names;
3097
01f9f808
MS
3098 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3099 {
3100 tdep->zmmh_register_names = amd64_zmmh_names;
3101 tdep->k_register_names = amd64_k_names;
3102 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3103 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3104
3105 tdep->num_zmm_regs = 32;
3106 tdep->num_xmm_avx512_regs = 16;
3107 tdep->num_ymm_avx512_regs = 16;
3108
3109 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3110 tdep->k0_regnum = AMD64_K0_REGNUM;
3111 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3112 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3113 }
3114
a055a187
L
3115 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3116 {
3117 tdep->ymmh_register_names = amd64_ymmh_names;
3118 tdep->num_ymm_regs = 16;
3119 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3120 }
3121
e43e105e
WT
3122 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3123 {
3124 tdep->mpx_register_names = amd64_mpx_names;
3125 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3126 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3127 }
3128
2735833d
WT
3129 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3130 {
1163a4b7 3131 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
2735833d
WT
3132 }
3133
51547df6
MS
3134 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3135 {
3136 tdep->pkeys_register_names = amd64_pkeys_names;
3137 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3138 tdep->num_pkeys_regs = 1;
3139 }
3140
fe01d668 3141 tdep->num_byte_regs = 20;
1ba53b71
L
3142 tdep->num_word_regs = 16;
3143 tdep->num_dword_regs = 16;
3144 /* Avoid wiring in the MMX registers for now. */
3145 tdep->num_mmx_regs = 0;
3146
3543a589
TT
3147 set_gdbarch_pseudo_register_read_value (gdbarch,
3148 amd64_pseudo_register_read_value);
1ba53b71
L
3149 set_gdbarch_pseudo_register_write (gdbarch,
3150 amd64_pseudo_register_write);
62e5fd57
MK
3151 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3152 amd64_ax_pseudo_register_collect);
1ba53b71
L
3153
3154 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3155
5716833c 3156 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 3157 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 3158 tdep->num_xmm_regs = 16;
53e95fcf 3159
0c1a73d6 3160 /* This is what all the fuss is about. */
53e95fcf
JS
3161 set_gdbarch_long_bit (gdbarch, 64);
3162 set_gdbarch_long_long_bit (gdbarch, 64);
3163 set_gdbarch_ptr_bit (gdbarch, 64);
3164
e53bef9f
MK
3165 /* In contrast to the i386, on AMD64 a `long double' actually takes
3166 up 128 bits, even though it's still based on the i387 extended
3167 floating-point format which has only 80 significant bits. */
b83b026c
MK
3168 set_gdbarch_long_double_bit (gdbarch, 128);
3169
e53bef9f 3170 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
3171
3172 /* Register numbers of various important registers. */
90f90721
MK
3173 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3174 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3175 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3176 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 3177
e53bef9f
MK
3178 /* The "default" register numbering scheme for AMD64 is referred to
3179 as the "DWARF Register Number Mapping" in the System V psABI.
3180 The preferred debugging format for all known AMD64 targets is
3181 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3182 DWARF-1), but we provide the same mapping just in case. This
3183 mapping is also used for stabs, which GCC does support. */
3184 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 3185 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 3186
c4f35dd8 3187 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 3188 be in use on any of the supported AMD64 targets. */
53e95fcf 3189
c4f35dd8 3190 /* Call dummy code. */
e53bef9f
MK
3191 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3192 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 3193 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 3194
83acabca 3195 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
3196 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3197 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3198
efb1c01c 3199 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 3200
e53bef9f 3201 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 3202
cf648174
HZ
3203 tdep->record_regmap = amd64_record_regmap;
3204
10458914 3205 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 3206
872761f4
MS
3207 /* Hook the function epilogue frame unwinder. This unwinder is
3208 appended to the list first, so that it supercedes the other
3209 unwinders in function epilogues. */
3210 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3211
3212 /* Hook the prologue-based frame unwinders. */
10458914
DJ
3213 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3214 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 3215 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596 3216
436675d3 3217 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
3218
3219 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
3220
3221 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
3222
3223 /* SystemTap variables and functions. */
05c0465e
SDJ
3224 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3225 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3226 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3227 stap_register_indirection_prefixes);
3228 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3229 stap_register_indirection_suffixes);
55aa24fb
SDJ
3230 set_gdbarch_stap_is_single_operand (gdbarch,
3231 i386_stap_is_single_operand);
3232 set_gdbarch_stap_parse_special_token (gdbarch,
3233 i386_stap_parse_special_token);
c2170eef
MM
3234 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3235 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3236 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
1d509aa6
MM
3237
3238 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3239 amd64_in_indirect_branch_thunk);
c4f35dd8 3240}
c912f608
SM
3241
3242/* Initialize ARCH for x86-64, no osabi. */
3243
3244static void
3245amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3246{
de52b960
PA
3247 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3248 true));
c912f608 3249}
fff4548b
MK
3250
3251static struct type *
3252amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3253{
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3255
3256 switch (regnum - tdep->eax_regnum)
3257 {
3258 case AMD64_RBP_REGNUM: /* %ebp */
3259 case AMD64_RSP_REGNUM: /* %esp */
3260 return builtin_type (gdbarch)->builtin_data_ptr;
3261 case AMD64_RIP_REGNUM: /* %eip */
3262 return builtin_type (gdbarch)->builtin_func_ptr;
3263 }
3264
3265 return i386_pseudo_register_type (gdbarch, regnum);
3266}
3267
3268void
c55a47e7 3269amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3270 const target_desc *default_tdesc)
fff4548b
MK
3271{
3272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fff4548b 3273
c55a47e7 3274 amd64_init_abi (info, gdbarch, default_tdesc);
fff4548b
MK
3275
3276 tdep->num_dword_regs = 17;
3277 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3278
3279 set_gdbarch_long_bit (gdbarch, 32);
3280 set_gdbarch_ptr_bit (gdbarch, 32);
3281}
90884b2b 3282
c912f608
SM
3283/* Initialize ARCH for x64-32, no osabi. */
3284
3285static void
3286amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3287{
3288 amd64_x32_init_abi (info, arch,
de52b960 3289 amd64_target_description (X86_XSTATE_SSE_MASK, true));
c912f608
SM
3290}
3291
97de3545
JB
3292/* Return the target description for a specified XSAVE feature mask. */
3293
3294const struct target_desc *
de52b960 3295amd64_target_description (uint64_t xcr0, bool segments)
97de3545 3296{
22916b07 3297 static target_desc *amd64_tdescs \
de52b960 3298 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
3299 target_desc **tdesc;
3300
3301 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3302 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3303 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
de52b960
PA
3304 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3305 [segments ? 1 : 0];
22916b07
YQ
3306
3307 if (*tdesc == NULL)
de52b960
PA
3308 *tdesc = amd64_create_target_description (xcr0, false, false,
3309 segments);
22916b07
YQ
3310
3311 return *tdesc;
97de3545
JB
3312}
3313
90884b2b
L
3314void
3315_initialize_amd64_tdep (void)
3316{
c912f608
SM
3317 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3318 amd64_none_init_abi);
3319 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3320 amd64_x32_none_init_abi);
90884b2b 3321}
c4f35dd8
MK
3322\f
3323
41d041d6
MK
3324/* The 64-bit FXSAVE format differs from the 32-bit format in the
3325 sense that the instruction pointer and data pointer are simply
3326 64-bit offsets into the code segment and the data segment instead
3327 of a selector offset pair. The functions below store the upper 32
3328 bits of these pointers (instead of just the 16-bits of the segment
3329 selector). */
3330
3331/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
3332 floating-point or SSE register value from *FXSAVE. If REGNUM is
3333 -1, do this for all registers. This function masks off any of the
3334 reserved bits in *FXSAVE. */
c4f35dd8
MK
3335
3336void
90f90721 3337amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 3338 const void *fxsave)
c4f35dd8 3339{
ac7936df 3340 struct gdbarch *gdbarch = regcache->arch ();
20a6ec49
MD
3341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3342
41d041d6 3343 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 3344
233dfcf0
L
3345 if (fxsave
3346 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 3347 {
9a3c8263 3348 const gdb_byte *regs = (const gdb_byte *) fxsave;
41d041d6 3349
20a6ec49 3350 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
73e1c03f 3351 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
20a6ec49 3352 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
73e1c03f 3353 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 3354 }
0c1a73d6
MK
3355}
3356
a055a187
L
3357/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3358
3359void
3360amd64_supply_xsave (struct regcache *regcache, int regnum,
3361 const void *xsave)
3362{
ac7936df 3363 struct gdbarch *gdbarch = regcache->arch ();
a055a187
L
3364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3365
3366 i387_supply_xsave (regcache, regnum, xsave);
3367
233dfcf0
L
3368 if (xsave
3369 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187 3370 {
9a3c8263 3371 const gdb_byte *regs = (const gdb_byte *) xsave;
8ee22052 3372 ULONGEST clear_bv;
a055a187 3373
8ee22052
AB
3374 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3375
3376 /* If the FISEG and FOSEG registers have not been initialised yet
3377 (their CLEAR_BV bit is set) then their default values of zero will
3378 have already been setup by I387_SUPPLY_XSAVE. */
3379 if (!(clear_bv & X86_XSTATE_X87))
3380 {
3381 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
73e1c03f 3382 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
8ee22052 3383 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
73e1c03f 3384 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
8ee22052 3385 }
a055a187
L
3386 }
3387}
3388
3c017e40
MK
3389/* Fill register REGNUM (if it is a floating-point or SSE register) in
3390 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3391 all registers. This function doesn't touch any of the reserved
3392 bits in *FXSAVE. */
3393
3394void
3395amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3396 void *fxsave)
3397{
ac7936df 3398 struct gdbarch *gdbarch = regcache->arch ();
20a6ec49 3399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3400 gdb_byte *regs = (gdb_byte *) fxsave;
3c017e40
MK
3401
3402 i387_collect_fxsave (regcache, regnum, fxsave);
3403
233dfcf0 3404 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3405 {
20a6ec49 3406 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
34a79281 3407 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
20a6ec49 3408 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
34a79281 3409 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3410 }
3c017e40 3411}
a055a187 3412
7a9dd1b2 3413/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3414
3415void
3416amd64_collect_xsave (const struct regcache *regcache, int regnum,
3417 void *xsave, int gcore)
3418{
ac7936df 3419 struct gdbarch *gdbarch = regcache->arch ();
a055a187 3420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3421 gdb_byte *regs = (gdb_byte *) xsave;
a055a187
L
3422
3423 i387_collect_xsave (regcache, regnum, xsave, gcore);
3424
233dfcf0 3425 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3426 {
3427 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
34a79281 3428 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
a055a187
L
3429 regs + 12);
3430 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
34a79281 3431 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
a055a187
L
3432 regs + 20);
3433 }
3434}
This page took 1.540772 seconds and 4 git commands to generate.