sim: sim-close: use XCONCAT2 helper
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
a14ed312 1609static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
c906108c 1612
fae299cd
DC
1613static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
801e3a5b
JB
1617static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
a14ed312 1620static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1621 struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1624 struct type *, struct dwarf2_cu *);
c906108c 1625
a14ed312 1626static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1627 struct die_info *, struct type *,
e7c27a73 1628 struct dwarf2_cu *);
c906108c 1629
a14ed312 1630static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1631 struct type *,
1632 struct dwarf2_cu *);
c906108c 1633
134d01f1 1634static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1635
e7c27a73 1636static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1637
e7c27a73 1638static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1639
5d7cb8df
JK
1640static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
22cee43f
PMR
1642static struct using_direct **using_directives (enum language);
1643
27aa8d6a
SW
1644static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
74921315
KS
1646static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
f55ee35c
JK
1648static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
38d518c9 1651static const char *namespace_name (struct die_info *die,
e142c38c 1652 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1653
134d01f1 1654static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1655
e7c27a73 1656static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1657
6e70227d 1658static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1659 struct dwarf2_cu *);
1660
bf6af496 1661static struct die_info *read_die_and_siblings_1
d521ce57 1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1663 struct die_info *);
639d11d3 1664
dee91e82 1665static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
639d11d3
DC
1668 struct die_info *parent);
1669
d521ce57
TT
1670static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
3019eac3 1673
d521ce57
TT
1674static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
93311388 1677
e7c27a73 1678static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1679
15d034d0
TT
1680static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
71c25dea 1682
15d034d0 1683static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1684
15d034d0 1685static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
ca69b9e6
DE
1689static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
e142c38c 1692static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1693 struct dwarf2_cu **);
9219021c 1694
f39c6ffd 1695static const char *dwarf_tag_name (unsigned int);
c906108c 1696
f39c6ffd 1697static const char *dwarf_attr_name (unsigned int);
c906108c 1698
f39c6ffd 1699static const char *dwarf_form_name (unsigned int);
c906108c 1700
a14ed312 1701static char *dwarf_bool_name (unsigned int);
c906108c 1702
f39c6ffd 1703static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1704
f9aca02d 1705static struct die_info *sibling_die (struct die_info *);
c906108c 1706
d97bc12b
DE
1707static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709static void dump_die_for_error (struct die_info *);
1710
1711static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
c906108c 1713
d97bc12b 1714/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1715
51545339 1716static void store_in_ref_table (struct die_info *,
10b3939b 1717 struct dwarf2_cu *);
c906108c 1718
ff39bb5e 1719static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1720
ff39bb5e 1721static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1722
348e048f 1723static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1724 const struct attribute *,
348e048f
DE
1725 struct dwarf2_cu **);
1726
10b3939b 1727static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1728 const struct attribute *,
f2f0e013 1729 struct dwarf2_cu **);
c906108c 1730
348e048f 1731static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1732 const struct attribute *,
348e048f
DE
1733 struct dwarf2_cu **);
1734
ac9ec31b
DE
1735static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1739 const struct attribute *,
ac9ec31b
DE
1740 struct dwarf2_cu *);
1741
e5fe5e75 1742static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1743
52dc124a 1744static void read_signatured_type (struct signatured_type *);
348e048f 1745
63e43d3a
PMR
1746static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
c906108c
SS
1750/* memory allocation interface */
1751
7b5a2f43 1752static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1753
b60c80d6 1754static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1755
43f3e411 1756static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1757
6e5a29e1 1758static int attr_form_is_block (const struct attribute *);
8e19ed76 1759
6e5a29e1 1760static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1761
6e5a29e1 1762static int attr_form_is_constant (const struct attribute *);
3690dd37 1763
6e5a29e1 1764static int attr_form_is_ref (const struct attribute *);
7771576e 1765
8cf6f0b1
TT
1766static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
ff39bb5e 1768 const struct attribute *attr);
8cf6f0b1 1769
ff39bb5e 1770static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1771 struct symbol *sym,
f1e6e072
TT
1772 struct dwarf2_cu *cu,
1773 int is_block);
4c2df51b 1774
d521ce57
TT
1775static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
4bb7a0a7 1778
72bf9492
DJ
1779static void free_stack_comp_unit (void *);
1780
72bf9492
DJ
1781static hashval_t partial_die_hash (const void *item);
1782
1783static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
ae038cb0 1785static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1787
9816fde3 1788static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1789 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1790
1791static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
93311388 1794
68dc6402 1795static void free_heap_comp_unit (void *);
ae038cb0
DJ
1796
1797static void free_cached_comp_units (void *);
1798
1799static void age_cached_comp_units (void);
1800
dee91e82 1801static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1802
f792889a
DJ
1803static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1c379e20 1805
ae038cb0
DJ
1806static void create_all_comp_units (struct objfile *);
1807
0e50663e 1808static int create_all_type_units (struct objfile *);
1fd400ff 1809
95554aad
TT
1810static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
10b3939b 1812
95554aad
TT
1813static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
10b3939b 1815
f4dc4d17
DE
1816static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
10b3939b
DJ
1819static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
ae038cb0
DJ
1822static void dwarf2_mark (struct dwarf2_cu *);
1823
1824static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
b64f50a1 1826static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1827 struct dwarf2_per_cu_data *);
673bfd45 1828
f792889a 1829static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1830
9291a0cd
TT
1831static void dwarf2_release_queue (void *dummy);
1832
95554aad
TT
1833static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
a0f42c21 1836static void process_queue (void);
9291a0cd
TT
1837
1838static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
15d034d0 1840 const char **name, const char **comp_dir);
9291a0cd
TT
1841
1842static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
d521ce57 1845static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
d521ce57 1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1849 int is_debug_types_section);
1850
fd820528 1851static void init_cutu_and_read_dies
f4dc4d17
DE
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
3019eac3
DE
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
dee91e82
DE
1856static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1859
673bfd45 1860static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1861
3019eac3
DE
1862static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
57d63ce2
DE
1864static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1867
1868static struct dwp_file *get_dwp_file (void);
1869
3019eac3 1870static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1872
1873static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1874 (struct signatured_type *, const char *, const char *);
3019eac3 1875
89e63ee4
DE
1876static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
3019eac3
DE
1878static void free_dwo_file_cleanup (void *);
1879
95554aad
TT
1880static void process_cu_includes (void);
1881
1b80a9fa 1882static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1883
1884static void free_line_header_voidp (void *arg);
4390d890
DE
1885\f
1886/* Various complaints about symbol reading that don't abort the process. */
1887
1888static void
1889dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_file_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900}
1901
1902static void
1903dwarf2_debug_line_missing_end_sequence_complaint (void)
1904{
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908}
1909
1910static void
1911dwarf2_complex_location_expr_complaint (void)
1912{
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914}
1915
1916static void
1917dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919{
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923}
1924
1925static void
1926dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927{
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
a32a8923
DE
1931 get_section_name (section),
1932 get_section_file_name (section));
4390d890 1933}
1b80a9fa 1934
4390d890
DE
1935static void
1936dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937{
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942}
1943
1944static void
1945dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946{
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950}
527f3840
JK
1951
1952/* Hash function for line_header_hash. */
1953
1954static hashval_t
1955line_header_hash (const struct line_header *ofs)
1956{
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958}
1959
1960/* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962static hashval_t
1963line_header_hash_voidp (const void *item)
1964{
9a3c8263 1965 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1966
1967 return line_header_hash (ofs);
1968}
1969
1970/* Equality function for line_header_hash. */
1971
1972static int
1973line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974{
9a3c8263
SM
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980}
1981
4390d890 1982\f
9291a0cd
TT
1983#if WORDS_BIGENDIAN
1984
1985/* Convert VALUE between big- and little-endian. */
1986static offset_type
1987byte_swap (offset_type value)
1988{
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996}
1997
1998#define MAYBE_SWAP(V) byte_swap (V)
1999
2000#else
2001#define MAYBE_SWAP(V) (V)
2002#endif /* WORDS_BIGENDIAN */
2003
31aa7e4e
JB
2004/* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007static CORE_ADDR
2008attr_value_as_address (struct attribute *attr)
2009{
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032}
2033
9291a0cd
TT
2034/* The suffix for an index file. */
2035#define INDEX_SUFFIX ".gdb-index"
2036
c906108c 2037/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
c906108c
SS
2041
2042int
251d32d9
TG
2043dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
c906108c 2045{
9a3c8263
SM
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
8d749320 2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2053
be391dca
TT
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
6502dd73 2057
251d32d9
TG
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
be391dca
TT
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
73869dc2 2062 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2063 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2064 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2066}
2067
2068/* Return the containing section of virtual section SECTION. */
2069
2070static struct dwarf2_section_info *
2071get_containing_section (const struct dwarf2_section_info *section)
2072{
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
c906108c
SS
2075}
2076
a32a8923
DE
2077/* Return the bfd owner of SECTION. */
2078
2079static struct bfd *
2080get_section_bfd_owner (const struct dwarf2_section_info *section)
2081{
73869dc2
DE
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
049412e3 2087 return section->s.section->owner;
a32a8923
DE
2088}
2089
2090/* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093static asection *
2094get_section_bfd_section (const struct dwarf2_section_info *section)
2095{
73869dc2
DE
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
049412e3 2101 return section->s.section;
a32a8923
DE
2102}
2103
2104/* Return the name of SECTION. */
2105
2106static const char *
2107get_section_name (const struct dwarf2_section_info *section)
2108{
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113}
2114
2115/* Return the name of the file SECTION is in. */
2116
2117static const char *
2118get_section_file_name (const struct dwarf2_section_info *section)
2119{
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123}
2124
2125/* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128static int
2129get_section_id (const struct dwarf2_section_info *section)
2130{
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136}
2137
2138/* Return the flags of SECTION.
73869dc2 2139 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2140
2141static int
2142get_section_flags (const struct dwarf2_section_info *section)
2143{
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148}
2149
251d32d9
TG
2150/* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
233a11ab
CS
2152
2153static int
251d32d9
TG
2154section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
233a11ab 2156{
251d32d9
TG
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
233a11ab
CS
2164}
2165
c906108c
SS
2166/* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170static void
251d32d9 2171dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2172{
251d32d9 2173 const struct dwarf2_debug_sections *names;
dc7650b8 2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
dc7650b8
JK
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
c906108c 2185 {
049412e3 2186 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2188 }
251d32d9 2189 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2190 {
049412e3 2191 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2193 }
251d32d9 2194 else if (section_is_p (sectp->name, &names->line))
c906108c 2195 {
049412e3 2196 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2198 }
251d32d9 2199 else if (section_is_p (sectp->name, &names->loc))
c906108c 2200 {
049412e3 2201 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2203 }
251d32d9 2204 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2205 {
049412e3 2206 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2208 }
cf2c3c16
TT
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
049412e3 2211 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
251d32d9 2214 else if (section_is_p (sectp->name, &names->str))
c906108c 2215 {
049412e3 2216 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2218 }
3019eac3
DE
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
049412e3 2221 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
251d32d9 2224 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2225 {
049412e3 2226 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2228 }
251d32d9 2229 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2230 {
049412e3 2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2233 }
251d32d9 2234 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2235 {
049412e3 2236 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2238 }
251d32d9 2239 else if (section_is_p (sectp->name, &names->types))
348e048f 2240 {
8b70b953
TT
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
049412e3 2244 type_section.s.section = sectp;
8b70b953
TT
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
348e048f 2249 }
251d32d9 2250 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2251 {
049412e3 2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
dce234bc 2255
b4e1fd61 2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2259}
2260
fceca515
DE
2261/* A helper function that decides whether a section is empty,
2262 or not present. */
9e0ac564
TT
2263
2264static int
19ac8c2e 2265dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2266{
73869dc2
DE
2267 if (section->is_virtual)
2268 return section->size == 0;
049412e3 2269 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2270}
2271
3019eac3
DE
2272/* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
dce234bc 2276 If the section is compressed, uncompress it before returning. */
c906108c 2277
dce234bc
PP
2278static void
2279dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2280{
a32a8923 2281 asection *sectp;
3019eac3 2282 bfd *abfd;
dce234bc 2283 gdb_byte *buf, *retbuf;
c906108c 2284
be391dca
TT
2285 if (info->readin)
2286 return;
dce234bc 2287 info->buffer = NULL;
be391dca 2288 info->readin = 1;
188dd5d6 2289
9e0ac564 2290 if (dwarf2_section_empty_p (info))
dce234bc 2291 return;
c906108c 2292
a32a8923 2293 sectp = get_section_bfd_section (info);
3019eac3 2294
73869dc2
DE
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
4bf44c1c
TT
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2323 {
d521ce57 2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2325 return;
dce234bc 2326 }
dce234bc 2327
224c3ddb 2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2329 info->buffer = buf;
dce234bc
PP
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
ac8035ab 2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
a32a8923
DE
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
dce234bc
PP
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
dce234bc
PP
2352}
2353
9e0ac564
TT
2354/* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361static bfd_size_type
2362dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364{
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368}
2369
dce234bc 2370/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2371 SECTION_NAME. */
af34e669 2372
dce234bc 2373void
3017a003
TG
2374dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
d521ce57 2376 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2377 bfd_size_type *sizep)
2378{
2379 struct dwarf2_per_objfile *data
9a3c8263
SM
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
dce234bc 2382 struct dwarf2_section_info *info;
a3b2a86b
TT
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
3017a003
TG
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
dce234bc 2404
9e0ac564 2405 dwarf2_read_section (objfile, info);
dce234bc 2406
a32a8923 2407 *sectp = get_section_bfd_section (info);
dce234bc
PP
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410}
2411
36586728
TT
2412/* A helper function to find the sections for a .dwz file. */
2413
2414static void
2415locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416{
9a3c8263 2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
049412e3 2423 dwz_file->abbrev.s.section = sectp;
36586728
TT
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
049412e3 2428 dwz_file->info.s.section = sectp;
36586728
TT
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
049412e3 2433 dwz_file->str.s.section = sectp;
36586728
TT
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
049412e3 2438 dwz_file->line.s.section = sectp;
36586728
TT
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
049412e3 2443 dwz_file->macro.s.section = sectp;
36586728
TT
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2ec9a5e0
TT
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
049412e3 2448 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
36586728
TT
2451}
2452
4db1a1dc
TT
2453/* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
36586728
TT
2456
2457static struct dwz_file *
2458dwarf2_get_dwz_file (void)
2459{
4db1a1dc
TT
2460 bfd *dwz_bfd;
2461 char *data;
36586728
TT
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
acd13123 2465 bfd_size_type buildid_len_arg;
dc294be5
TT
2466 size_t buildid_len;
2467 bfd_byte *buildid;
36586728
TT
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
4db1a1dc
TT
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2474 &buildid_len_arg, &buildid);
4db1a1dc
TT
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
36586728 2482 cleanup = make_cleanup (xfree, data);
dc294be5 2483 make_cleanup (xfree, buildid);
36586728 2484
acd13123
TT
2485 buildid_len = (size_t) buildid_len_arg;
2486
f9d83a0b 2487 filename = (const char *) data;
36586728
TT
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
4262abfb 2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
dc294be5
TT
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
36586728 2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2505 if (dwz_bfd != NULL)
36586728 2506 {
dc294be5
TT
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
36586728
TT
2512 }
2513
dc294be5
TT
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
36586728
TT
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
13aaf454 2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2530 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2531 return result;
2532}
9291a0cd 2533\f
7b9f3c50
DE
2534/* DWARF quick_symbols_functions support. */
2535
2536/* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541struct quick_file_names
2542{
094b34ac
DE
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
7b9f3c50
DE
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556};
2557
2558/* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561struct dwarf2_per_cu_quick_data
2562{
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
43f3e411 2570 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579};
2580
094b34ac
DE
2581/* Utility hash function for a stmt_list_hash. */
2582
2583static hashval_t
2584hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585{
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592}
2593
2594/* Utility equality function for a stmt_list_hash. */
2595
2596static int
2597eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599{
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607}
2608
7b9f3c50
DE
2609/* Hash function for a quick_file_names. */
2610
2611static hashval_t
2612hash_file_name_entry (const void *e)
2613{
9a3c8263
SM
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
7b9f3c50 2616
094b34ac 2617 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2618}
2619
2620/* Equality function for a quick_file_names. */
2621
2622static int
2623eq_file_name_entry (const void *a, const void *b)
2624{
9a3c8263
SM
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2627
094b34ac 2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2629}
2630
2631/* Delete function for a quick_file_names. */
2632
2633static void
2634delete_file_name_entry (void *e)
2635{
9a3c8263 2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648}
2649
2650/* Create a quick_file_names hash table. */
2651
2652static htab_t
2653create_quick_file_names_table (unsigned int nr_initial_entries)
2654{
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658}
9291a0cd 2659
918dd910
JK
2660/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664static void
2665load_cu (struct dwarf2_per_cu_data *per_cu)
2666{
3019eac3 2667 if (per_cu->is_debug_types)
e5fe5e75 2668 load_full_type_unit (per_cu);
918dd910 2669 else
95554aad 2670 load_full_comp_unit (per_cu, language_minimal);
918dd910 2671
cc12ce38
DE
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2dc860c0
DE
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2676}
2677
a0f42c21 2678/* Read in the symbols for PER_CU. */
2fdf6df6 2679
9291a0cd 2680static void
a0f42c21 2681dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2682{
2683 struct cleanup *back_to;
2684
f4dc4d17
DE
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
9291a0cd
TT
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
95554aad 2692 if (dwarf2_per_objfile->using_index
43f3e411 2693 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
89e63ee4
DE
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
cc12ce38 2703 && per_cu->cu != NULL
89e63ee4
DE
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
95554aad 2710 }
9291a0cd 2711
a0f42c21 2712 process_queue ();
9291a0cd
TT
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719}
2720
2721/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2fdf6df6 2724
43f3e411 2725static struct compunit_symtab *
a0f42c21 2726dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2727{
95554aad 2728 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2729 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
a0f42c21 2733 dw2_do_instantiate_symtab (per_cu);
95554aad 2734 process_cu_includes ();
9291a0cd
TT
2735 do_cleanups (back_to);
2736 }
f194fefb 2737
43f3e411 2738 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2739}
2740
8832e7e3 2741/* Return the CU/TU given its index.
f4dc4d17
DE
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
8832e7e3 2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2749
2750 ...;
2751 }
2752*/
2fdf6df6 2753
1fd400ff 2754static struct dwarf2_per_cu_data *
8832e7e3 2755dw2_get_cutu (int index)
1fd400ff
TT
2756{
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
f4dc4d17 2759 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765}
2766
8832e7e3
DE
2767/* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
f4dc4d17
DE
2770
2771static struct dwarf2_per_cu_data *
8832e7e3 2772dw2_get_cu (int index)
f4dc4d17 2773{
8832e7e3 2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2775
1fd400ff
TT
2776 return dwarf2_per_objfile->all_comp_units[index];
2777}
2778
2ec9a5e0
TT
2779/* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2fdf6df6 2781
74a0d9f6 2782static void
2ec9a5e0
TT
2783create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
9291a0cd
TT
2788{
2789 offset_type i;
9291a0cd 2790
2ec9a5e0 2791 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
74a0d9f6
JK
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
b64f50a1 2803 the_cu->offset.sect_off = offset;
9291a0cd
TT
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
8a0459fd 2806 the_cu->section = section;
9291a0cd
TT
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2811 }
9291a0cd
TT
2812}
2813
2ec9a5e0 2814/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2815 the CU objects for this objfile. */
2ec9a5e0 2816
74a0d9f6 2817static void
2ec9a5e0
TT
2818create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821{
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2828
74a0d9f6
JK
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2831
2832 if (dwz_elements == 0)
74a0d9f6 2833 return;
2ec9a5e0
TT
2834
2835 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2ec9a5e0
TT
2838}
2839
1fd400ff 2840/* Create the signatured type hash table from the index. */
673bfd45 2841
74a0d9f6 2842static void
673bfd45 2843create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2844 struct dwarf2_section_info *section,
673bfd45
DE
2845 const gdb_byte *bytes,
2846 offset_type elements)
1fd400ff
TT
2847{
2848 offset_type i;
673bfd45 2849 htab_t sig_types_hash;
1fd400ff 2850
6aa5f3a6
DE
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
8d749320
SM
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2856
673bfd45 2857 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
52dc124a
DE
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2863 void **slot;
2864
74a0d9f6
JK
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
52dc124a 2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2873 struct signatured_type);
52dc124a 2874 sig_type->signature = signature;
3019eac3
DE
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2877 sig_type->per_cu.section = section;
52dc124a
DE
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
1fd400ff
TT
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
52dc124a
DE
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
1fd400ff 2886
b4dd5633 2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2888 }
2889
673bfd45 2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2891}
2892
9291a0cd
TT
2893/* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2895
9291a0cd
TT
2896static void
2897create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898{
3e29f34a 2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
f652bce2 2924
24a55014 2925 if (lo > hi)
f652bce2 2926 {
24a55014
DE
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2929 hex_string (lo), hex_string (hi));
24a55014 2930 continue;
f652bce2 2931 }
24a55014
DE
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
24a55014 2938 continue;
f652bce2 2939 }
24a55014 2940
3e29f34a
MR
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949}
2950
59d7bcaf
JK
2951/* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2958
9291a0cd 2959static hashval_t
559a7a62 2960mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2961{
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
559a7a62
JK
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
9291a0cd
TT
2972
2973 return r;
2974}
2975
2976/* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2979
9291a0cd
TT
2980static int
2981find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983{
0cf03b49
JK
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
9291a0cd 2986 offset_type slot, step;
559a7a62 2987 int (*cmp) (const char *, const char *);
9291a0cd 2988
0cf03b49
JK
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
45280282
IB
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
0cf03b49
JK
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
a8719064 2996
72998fb3 2997 if (strchr (name, '(') != NULL)
0cf03b49 2998 {
72998fb3 2999 char *without_params = cp_remove_params (name);
0cf03b49 3000
72998fb3
DE
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
0cf03b49
JK
3006 }
3007 }
3008
559a7a62 3009 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3010 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3876f04e
DE
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3876f04e 3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
9291a0cd 3031
3876f04e 3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3033 if (!cmp (name, str))
9291a0cd
TT
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3037 do_cleanups (back_to);
9291a0cd
TT
3038 return 1;
3039 }
3040
3876f04e 3041 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3042 }
3043}
3044
2ec9a5e0
TT
3045/* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3055
9291a0cd 3056static int
2ec9a5e0
TT
3057read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
9291a0cd 3066{
948f8e3d 3067 const gdb_byte *addr;
2ec9a5e0 3068 offset_type version;
b3b272e1 3069 offset_type *metadata;
1fd400ff 3070 int i;
9291a0cd 3071
2ec9a5e0 3072 if (dwarf2_section_empty_p (section))
9291a0cd 3073 return 0;
82430852
JK
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
a32a8923 3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3078 return 0;
3079
2ec9a5e0 3080 dwarf2_read_section (objfile, section);
9291a0cd 3081
2ec9a5e0 3082 addr = section->buffer;
9291a0cd 3083 /* Version check. */
1fd400ff 3084 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3086 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3087 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3088 indices. */
831adc1f 3089 if (version < 4)
481860b3
GB
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3095 filename);
481860b3
GB
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
2ec9a5e0 3108 if (version < 6 && !deprecated_ok)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
e615022a
DE
3113 warning (_("\
3114Skipping deprecated .gdb_index section in %s.\n\
3115Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116to use the section anyway."),
2ec9a5e0 3117 filename);
481860b3
GB
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
796a7ff8 3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3129
481860b3 3130 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3131 longer backward compatible. */
796a7ff8 3132 if (version > 8)
594e8718 3133 return 0;
9291a0cd 3134
559a7a62 3135 map->version = version;
2ec9a5e0 3136 map->total_size = section->size;
9291a0cd
TT
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3139
3140 i = 0;
2ec9a5e0
TT
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
1fd400ff
TT
3144 ++i;
3145
2ec9a5e0
TT
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
987d643c 3150 ++i;
1fd400ff
TT
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3876f04e
DE
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
1fd400ff 3161 ++i;
9291a0cd 3162
f9d83a0b 3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3164
2ec9a5e0
TT
3165 return 1;
3166}
3167
3168
3169/* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172static int
3173dwarf2_read_index (struct objfile *objfile)
3174{
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3178 struct dwz_file *dwz;
2ec9a5e0 3179
4262abfb 3180 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
0fefef59 3187 /* Don't use the index if it's empty. */
2ec9a5e0 3188 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3189 return 0;
3190
2ec9a5e0
TT
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
4db1a1dc
TT
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
2ec9a5e0 3195 {
2ec9a5e0
TT
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
74a0d9f6
JK
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
1fd400ff 3215
8b70b953
TT
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
74a0d9f6
JK
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
8b70b953 3230 }
9291a0cd 3231
2ec9a5e0
TT
3232 create_addrmap_from_index (objfile, &local_map);
3233
8d749320 3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3235 *map = local_map;
9291a0cd
TT
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3241
3242 return 1;
3243}
3244
3245/* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3247
9291a0cd
TT
3248static void
3249dw2_setup (struct objfile *objfile)
3250{
9a3c8263
SM
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3253 gdb_assert (dwarf2_per_objfile);
3254}
3255
dee91e82 3256/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3257
dee91e82
DE
3258static void
3259dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3260 const gdb_byte *info_ptr,
dee91e82
DE
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
9291a0cd 3264{
dee91e82
DE
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3268 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3269 struct line_header *lh;
9291a0cd 3270 struct attribute *attr;
dee91e82 3271 int i;
15d034d0 3272 const char *name, *comp_dir;
7b9f3c50
DE
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
9291a0cd 3276
0186c6a7
DE
3277 gdb_assert (! this_cu->is_debug_types);
3278
07261596
TT
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
0186c6a7 3287 lh_cu = this_cu;
7b9f3c50
DE
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
dee91e82
DE
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3293 if (attr)
3294 {
7b9f3c50
DE
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
094b34ac
DE
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
9a3c8263 3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3308 return;
7b9f3c50
DE
3309 }
3310
3019eac3 3311 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3312 }
3313 if (lh == NULL)
3314 {
094b34ac 3315 lh_cu->v.quick->no_file_data = 1;
dee91e82 3316 return;
9291a0cd
TT
3317 }
3318
8d749320 3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
9291a0cd 3324
dee91e82 3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3326
7b9f3c50 3327 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3330 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
9291a0cd 3333
7b9f3c50 3334 free_line_header (lh);
7b9f3c50 3335
094b34ac 3336 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3337}
3338
3339/* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342static struct quick_file_names *
e4a48d9d 3343dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3344{
0186c6a7
DE
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3349
dee91e82
DE
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
0186c6a7 3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
9291a0cd
TT
3361}
3362
3363/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3364 real path for a given file name from the line table. */
2fdf6df6 3365
9291a0cd 3366static const char *
7b9f3c50
DE
3367dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
9291a0cd 3369{
7b9f3c50
DE
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3372 qfn->num_file_names, const char *);
9291a0cd 3373
7b9f3c50
DE
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3376
7b9f3c50 3377 return qfn->real_names[index];
9291a0cd
TT
3378}
3379
3380static struct symtab *
3381dw2_find_last_source_symtab (struct objfile *objfile)
3382{
43f3e411 3383 struct compunit_symtab *cust;
9291a0cd 3384 int index;
ae2de4f8 3385
9291a0cd
TT
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
9291a0cd
TT
3392}
3393
7b9f3c50
DE
3394/* Traversal function for dw2_forget_cached_source_info. */
3395
3396static int
3397dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3398{
7b9f3c50 3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3400
7b9f3c50 3401 if (file_data->real_names)
9291a0cd 3402 {
7b9f3c50 3403 int i;
9291a0cd 3404
7b9f3c50 3405 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3406 {
7b9f3c50
DE
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
9291a0cd
TT
3409 }
3410 }
7b9f3c50
DE
3411
3412 return 1;
3413}
3414
3415static void
3416dw2_forget_cached_source_info (struct objfile *objfile)
3417{
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3422}
3423
f8eba3c6
TT
3424/* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427static int
3428dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3430 const char *name, const char *real_path,
f8eba3c6
TT
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433{
43f3e411 3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3435
3436 /* Don't visit already-expanded CUs. */
43f3e411 3437 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
a0f42c21 3442 dw2_instantiate_symtab (per_cu);
f8eba3c6 3443
f5b95b50 3444 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3445 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3446}
3447
3448/* Implementation of the map_symtabs_matching_filename method. */
3449
9291a0cd 3450static int
f8eba3c6 3451dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3452 const char *real_path,
f8eba3c6
TT
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
9291a0cd
TT
3455{
3456 int i;
c011a4f4 3457 const char *name_basename = lbasename (name);
9291a0cd
TT
3458
3459 dw2_setup (objfile);
ae2de4f8 3460
848e3e78
DE
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
f4dc4d17 3463
848e3e78 3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3465 {
3466 int j;
8832e7e3 3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3468 struct quick_file_names *file_data;
9291a0cd 3469
3d7bb9d9 3470 /* We only need to look at symtabs not already expanded. */
43f3e411 3471 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3472 continue;
3473
e4a48d9d 3474 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3475 if (file_data == NULL)
9291a0cd
TT
3476 continue;
3477
7b9f3c50 3478 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3479 {
7b9f3c50 3480 const char *this_name = file_data->file_names[j];
da235a7c 3481 const char *this_real_name;
9291a0cd 3482
af529f8f 3483 if (compare_filenames_for_search (this_name, name))
9291a0cd 3484 {
f5b95b50 3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3486 callback, data))
3487 return 1;
288e77a7 3488 continue;
4aac40c8 3489 }
9291a0cd 3490
c011a4f4
DE
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
da235a7c
JK
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3499 {
da235a7c
JK
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
288e77a7 3503 continue;
da235a7c 3504 }
9291a0cd 3505
da235a7c
JK
3506 if (real_path != NULL)
3507 {
af529f8f
JK
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3510 if (this_real_name != NULL
af529f8f 3511 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3512 {
f5b95b50 3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3514 callback, data))
3515 return 1;
288e77a7 3516 continue;
9291a0cd
TT
3517 }
3518 }
3519 }
3520 }
3521
9291a0cd
TT
3522 return 0;
3523}
3524
da51c347
DE
3525/* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527struct dw2_symtab_iterator
9291a0cd 3528{
da51c347
DE
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
8943b874
DE
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
da51c347 3550};
9291a0cd 3551
da51c347
DE
3552/* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3555
9291a0cd 3556static void
da51c347
DE
3557dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563{
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
8943b874 3569 iter->global_seen = 0;
da51c347
DE
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578}
3579
3580/* Return the next matching CU or NULL if there are no more. */
3581
3582static struct dwarf2_per_cu_data *
3583dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584{
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3590 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3190f0c6
DE
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
4262abfb
JK
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3612 continue;
3613 }
3614
8832e7e3 3615 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3616
da51c347 3617 /* Skip if already read in. */
43f3e411 3618 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3619 continue;
3620
8943b874
DE
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
da51c347
DE
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664}
3665
43f3e411 3666static struct compunit_symtab *
da51c347
DE
3667dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
9291a0cd 3669{
43f3e411 3670 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3671 struct mapped_index *index;
3672
9291a0cd
TT
3673 dw2_setup (objfile);
3674
156942c7
DE
3675 index = dwarf2_per_objfile->index_table;
3676
da51c347 3677 /* index is NULL if OBJF_READNOW. */
156942c7 3678 if (index)
9291a0cd 3679 {
da51c347
DE
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3684
da51c347 3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3686 {
b2e2f908 3687 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3691
b2e2f908
DE
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
da51c347
DE
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
da51c347 3699
b2e2f908
DE
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
da51c347
DE
3706
3707 /* Keep looking through other CUs. */
9291a0cd
TT
3708 }
3709 }
9291a0cd 3710
da51c347 3711 return stab_best;
9291a0cd
TT
3712}
3713
3714static void
3715dw2_print_stats (struct objfile *objfile)
3716{
e4a48d9d 3717 int i, total, count;
9291a0cd
TT
3718
3719 dw2_setup (objfile);
e4a48d9d 3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3721 count = 0;
e4a48d9d 3722 for (i = 0; i < total; ++i)
9291a0cd 3723 {
8832e7e3 3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3725
43f3e411 3726 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3727 ++count;
3728 }
e4a48d9d 3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731}
3732
779bd270
DE
3733/* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
9291a0cd
TT
3738static void
3739dw2_dump (struct objfile *objfile)
3740{
779bd270
DE
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
9291a0cd
TT
3752}
3753
3754static void
3189cb12
DE
3755dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
9291a0cd
TT
3758{
3759 /* There's nothing to relocate here. */
3760}
3761
3762static void
3763dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765{
da51c347
DE
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
9291a0cd
TT
3785}
3786
3787static void
3788dw2_expand_all_symtabs (struct objfile *objfile)
3789{
3790 int i;
3791
3792 dw2_setup (objfile);
1fd400ff
TT
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3795 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3796 {
8832e7e3 3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3798
a0f42c21 3799 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3800 }
3801}
3802
3803static void
652a8996
JK
3804dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
9291a0cd
TT
3806{
3807 int i;
3808
3809 dw2_setup (objfile);
d4637a04
DE
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3817 {
3818 int j;
8832e7e3 3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3820 struct quick_file_names *file_data;
9291a0cd 3821
3d7bb9d9 3822 /* We only need to look at symtabs not already expanded. */
43f3e411 3823 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3824 continue;
3825
e4a48d9d 3826 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3827 if (file_data == NULL)
9291a0cd
TT
3828 continue;
3829
7b9f3c50 3830 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3831 {
652a8996
JK
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3835 {
a0f42c21 3836 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3837 break;
3838 }
3839 }
3840 }
3841}
3842
9291a0cd 3843static void
ade7ed9e 3844dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3845 const char * name, domain_enum domain,
ade7ed9e 3846 int global,
40658b94
PH
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
2edb89d3
JK
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
9291a0cd 3851{
40658b94 3852 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3855}
3856
3857static void
f8eba3c6
TT
3858dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
206f2a57
DE
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3862 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3863 enum search_domain kind,
3864 void *data)
9291a0cd
TT
3865{
3866 int i;
3867 offset_type iter;
4b5246aa 3868 struct mapped_index *index;
9291a0cd
TT
3869
3870 dw2_setup (objfile);
ae2de4f8
DE
3871
3872 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
4b5246aa 3875 index = dwarf2_per_objfile->index_table;
9291a0cd 3876
7b08b9eb 3877 if (file_matcher != NULL)
24c79950
TT
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
848e3e78
DE
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3895 {
3896 int j;
8832e7e3 3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3898 struct quick_file_names *file_data;
3899 void **slot;
7b08b9eb 3900
61d96d7e
DE
3901 QUIT;
3902
24c79950 3903 per_cu->v.quick->mark = 0;
3d7bb9d9 3904
24c79950 3905 /* We only need to look at symtabs not already expanded. */
43f3e411 3906 if (per_cu->v.quick->compunit_symtab)
24c79950 3907 continue;
7b08b9eb 3908
e4a48d9d 3909 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3910 if (file_data == NULL)
3911 continue;
7b08b9eb 3912
24c79950
TT
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
da235a7c
JK
3923 const char *this_real_name;
3924
fbd9ab74 3925 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
da235a7c
JK
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
24c79950
TT
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
9291a0cd 3955
3876f04e 3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
8943b874 3961 int global_seen = 0;
9291a0cd 3962
61d96d7e
DE
3963 QUIT;
3964
3876f04e 3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3966 continue;
3967
3876f04e 3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3969
206f2a57 3970 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
4b5246aa 3975 vec = (offset_type *) (index->constant_pool
3876f04e 3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
e254ef6a 3980 struct dwarf2_per_cu_data *per_cu;
156942c7 3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
8943b874
DE
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
3190f0c6
DE
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
156942c7
DE
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
3190f0c6
DE
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4262abfb 4032 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4033 continue;
4034 }
4035
8832e7e3 4036 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4037 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
9291a0cd
TT
4052 }
4053 }
4054}
4055
43f3e411 4056/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4057 symtab. */
4058
43f3e411
DE
4059static struct compunit_symtab *
4060recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
9703b513
TT
4062{
4063 int i;
4064
43f3e411
DE
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
9703b513 4068
43f3e411 4069 if (cust->includes == NULL)
a3ec0bb1
DE
4070 return NULL;
4071
43f3e411 4072 for (i = 0; cust->includes[i]; ++i)
9703b513 4073 {
43f3e411 4074 struct compunit_symtab *s = cust->includes[i];
9703b513 4075
43f3e411 4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082}
4083
43f3e411
DE
4084static struct compunit_symtab *
4085dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
9291a0cd
TT
4090{
4091 struct dwarf2_per_cu_data *data;
43f3e411 4092 struct compunit_symtab *result;
9291a0cd
TT
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
9a3c8263
SM
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
9291a0cd
TT
4101 if (!data)
4102 return NULL;
4103
43f3e411 4104 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4106 paddress (get_objfile_arch (objfile), pc));
4107
43f3e411
DE
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
9703b513
TT
4111 gdb_assert (result != NULL);
4112 return result;
9291a0cd
TT
4113}
4114
9291a0cd 4115static void
44b13c5a 4116dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4117 void *data, int need_fullname)
9291a0cd
TT
4118{
4119 int i;
24c79950
TT
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
9291a0cd 4123
24c79950 4124 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4125 dw2_setup (objfile);
ae2de4f8 4126
848e3e78
DE
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4130
848e3e78 4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4132 {
8832e7e3 4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4134
43f3e411 4135 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
848e3e78 4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4145 {
4146 int j;
8832e7e3 4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4148 struct quick_file_names *file_data;
24c79950 4149 void **slot;
9291a0cd 4150
3d7bb9d9 4151 /* We only need to look at symtabs not already expanded. */
43f3e411 4152 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4153 continue;
4154
e4a48d9d 4155 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4156 if (file_data == NULL)
9291a0cd
TT
4157 continue;
4158
24c79950
TT
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
7b9f3c50 4167 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4168 {
74e2f255
DE
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
7b9f3c50 4175 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4176 }
4177 }
24c79950
TT
4178
4179 do_cleanups (cleanup);
9291a0cd
TT
4180}
4181
4182static int
4183dw2_has_symbols (struct objfile *objfile)
4184{
4185 return 1;
4186}
4187
4188const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189{
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
f8eba3c6 4193 dw2_map_symtabs_matching_filename,
9291a0cd 4194 dw2_lookup_symbol,
9291a0cd
TT
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
652a8996 4200 dw2_expand_symtabs_with_fullname,
40658b94 4201 dw2_map_matching_symbols,
9291a0cd 4202 dw2_expand_symtabs_matching,
43f3e411 4203 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4204 dw2_map_symbol_filenames
4205};
4206
4207/* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210int
4211dwarf2_initialize_objfile (struct objfile *objfile)
4212{
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
0e50663e 4223 create_all_type_units (objfile);
7b9f3c50
DE
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4226
1fd400ff 4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4228 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4229 {
8832e7e3 4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4231
e254ef6a
DE
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
9291a0cd
TT
4245 return 0;
4246}
4247
4248\f
4249
dce234bc
PP
4250/* Build a partial symbol table. */
4251
4252void
f29dff0a 4253dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4254{
c9bf0622 4255
f29dff0a 4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
492d29ea 4261 TRY
c9bf0622
TT
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
492d29ea
PA
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
c906108c 4276}
c906108c 4277
1ce1cefd
DE
4278/* Return the total length of the CU described by HEADER. */
4279
4280static unsigned int
4281get_cu_length (const struct comp_unit_head *header)
4282{
4283 return header->initial_length_size + header->length;
4284}
4285
45452591
DE
4286/* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288static inline int
b64f50a1 4289offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4290{
b64f50a1 4291 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4293
b64f50a1 4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4295}
4296
3b80fe9b
DE
4297/* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303static void
4304dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305{
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
31aa7e4e 4314 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
31aa7e4e 4322 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4323 cu->base_known = 1;
4324 }
4325 }
4326}
4327
93311388
DE
4328/* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
107d2387 4331
d521ce57 4332static const gdb_byte *
107d2387 4333read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4334 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4335{
4336 int signed_addr;
891d2f0b 4337 unsigned int bytes_read;
c764a876
DE
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4342 info_ptr += bytes_read;
107d2387
AC
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
b64f50a1
JK
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
613e1657 4347 info_ptr += bytes_read;
107d2387
AC
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
8e65ff28 4352 internal_error (__FILE__, __LINE__,
e2e0b3e5 4353 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4354 cu_header->signed_addr_p = signed_addr;
c764a876 4355
107d2387
AC
4356 return info_ptr;
4357}
4358
36586728
TT
4359/* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362static struct dwarf2_section_info *
4363get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364{
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373}
4374
9ff913ba
DE
4375/* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379static void
4380error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
9ff913ba 4383{
a32a8923
DE
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
9ff913ba
DE
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
b64f50a1 4392 if (header->abbrev_offset.sect_off
36586728 4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
1ce1cefd 4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4405 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4406 filename);
4407}
4408
4409/* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
adabb602 4412
d521ce57 4413static const gdb_byte *
9ff913ba
DE
4414read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4bdcc0c1 4416 struct dwarf2_section_info *abbrev_section,
d521ce57 4417 const gdb_byte *info_ptr,
9ff913ba 4418 int is_debug_types_section)
72bf9492 4419{
d521ce57 4420 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4421 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4422
b64f50a1 4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4424
72bf9492
DJ
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
460c1c54
CC
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
b0df02fd 4429 if (is_debug_types_section)
460c1c54
CC
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
b64f50a1 4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4433
4bdcc0c1 4434 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4435
4436 return info_ptr;
4437}
4438
348e048f
DE
4439/* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
d521ce57 4442static const gdb_byte *
9ff913ba
DE
4443read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4bdcc0c1 4445 struct dwarf2_section_info *abbrev_section,
d521ce57 4446 const gdb_byte *info_ptr,
dee91e82
DE
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
348e048f 4449{
d521ce57 4450 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4451 bfd *abfd = get_section_bfd_owner (section);
348e048f 4452
b64f50a1 4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4454
9ff913ba 4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4456
9ff913ba
DE
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
dee91e82
DE
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
9ff913ba
DE
4465 info_ptr += header->offset_size;
4466
b64f50a1 4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4468
4bdcc0c1 4469 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4470
4471 return info_ptr;
348e048f
DE
4472}
4473
f4dc4d17
DE
4474/* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476static sect_offset
4477read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479{
a32a8923 4480 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4481 const gdb_byte *info_ptr;
f4dc4d17
DE
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492}
4493
aaa75496
JB
4494/* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497static void
d521ce57 4498dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4499 struct objfile *objfile)
4500{
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
fbd9ab74
JK
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
aaa75496
JB
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
8d749320
SM
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
43f3e411 4521 subpst->compunit_symtab = NULL;
aaa75496
JB
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
10b3939b 4527 the regular ones. */
58a9656e 4528 subpst->read_symtab_private = NULL;
aaa75496
JB
4529}
4530
4531/* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
d85a05f0 4533 partial symtab for each of these included files. */
aaa75496
JB
4534
4535static void
4536dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4537 struct die_info *die,
4538 struct partial_symtab *pst)
aaa75496 4539{
d85a05f0
DJ
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
aaa75496 4542
d85a05f0
DJ
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
3019eac3 4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
c6da4cef 4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4551
4552 free_line_header (lh);
4553}
4554
348e048f 4555static hashval_t
52dc124a 4556hash_signatured_type (const void *item)
348e048f 4557{
9a3c8263
SM
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
9a619af0 4560
348e048f 4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4562 return sig_type->signature;
348e048f
DE
4563}
4564
4565static int
52dc124a 4566eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4567{
9a3c8263
SM
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4570
348e048f
DE
4571 return lhs->signature == rhs->signature;
4572}
4573
1fd400ff
TT
4574/* Allocate a hash table for signatured types. */
4575
4576static htab_t
673bfd45 4577allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4578{
4579 return htab_create_alloc_ex (41,
52dc124a
DE
4580 hash_signatured_type,
4581 eq_signatured_type,
1fd400ff
TT
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586}
4587
d467dd73 4588/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4589
4590static int
d467dd73 4591add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4592{
9a3c8263
SM
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4595
b4dd5633 4596 **datap = sigt;
1fd400ff
TT
4597 ++*datap;
4598
4599 return 1;
4600}
4601
c88ee1f0
DE
4602/* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
348e048f 4610
3019eac3
DE
4611static htab_t
4612create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
348e048f 4614{
3019eac3 4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4616 htab_t types_htab = NULL;
8b70b953
TT
4617 int ix;
4618 struct dwarf2_section_info *section;
4bdcc0c1 4619 struct dwarf2_section_info *abbrev_section;
348e048f 4620
3019eac3
DE
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
348e048f 4623
4bdcc0c1
DE
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
b4f54984 4628 if (dwarf_read_debug)
09406207
DE
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
a32a8923 4631 get_section_file_name (abbrev_section));
09406207 4632
8b70b953 4633 for (ix = 0;
3019eac3 4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4635 ++ix)
4636 {
3019eac3 4637 bfd *abfd;
d521ce57 4638 const gdb_byte *info_ptr, *end_ptr;
348e048f 4639
8b70b953
TT
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
348e048f 4642
8b70b953
TT
4643 if (info_ptr == NULL)
4644 continue;
348e048f 4645
3019eac3 4646 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
3019eac3 4649
dee91e82
DE
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
8b70b953
TT
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
b64f50a1 4657 sect_offset offset;
3019eac3 4658 cu_offset type_offset_in_tu;
8b70b953 4659 ULONGEST signature;
52dc124a 4660 struct signatured_type *sig_type;
3019eac3 4661 struct dwo_unit *dwo_tu;
8b70b953 4662 void **slot;
d521ce57 4663 const gdb_byte *ptr = info_ptr;
9ff913ba 4664 struct comp_unit_head header;
dee91e82 4665 unsigned int length;
348e048f 4666
b64f50a1 4667 offset.sect_off = ptr - section->buffer;
348e048f 4668
8b70b953 4669 /* We need to read the type's signature in order to build the hash
9ff913ba 4670 table, but we don't need anything else just yet. */
348e048f 4671
4bdcc0c1
DE
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
3019eac3 4674 &signature, &type_offset_in_tu);
6caca83c 4675
1ce1cefd 4676 length = get_cu_length (&header);
dee91e82 4677
6caca83c 4678 /* Skip dummy type units. */
dee91e82
DE
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4681 {
1ce1cefd 4682 info_ptr += length;
6caca83c
CC
4683 continue;
4684 }
8b70b953 4685
0349ea22
DE
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
3019eac3
DE
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4702 dwo_tu->section = section;
3019eac3
DE
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4717 sig_type->per_cu.section = section;
3019eac3
DE
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
8b70b953 4721
3019eac3
DE
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
8b70b953
TT
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
3019eac3
DE
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
9a3c8263
SM
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
3019eac3
DE
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
9a3c8263
SM
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
3019eac3
DE
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
b3c8eb43 4744
8b70b953 4745 complaint (&symfile_complaints,
c88ee1f0 4746 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4747 " the entry at offset 0x%x, signature %s"),
3019eac3 4748 offset.sect_off, dup_offset.sect_off,
4031ecc5 4749 hex_string (signature));
8b70b953 4750 }
3019eac3 4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4752
b4f54984 4753 if (dwarf_read_debug > 1)
4031ecc5 4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4755 offset.sect_off,
4031ecc5 4756 hex_string (signature));
348e048f 4757
dee91e82 4758 info_ptr += length;
8b70b953 4759 }
348e048f
DE
4760 }
4761
3019eac3
DE
4762 return types_htab;
4763}
4764
4765/* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770static int
4771create_all_type_units (struct objfile *objfile)
4772{
4773 htab_t types_htab;
b4dd5633 4774 struct signatured_type **iter;
3019eac3
DE
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
348e048f
DE
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
6aa5f3a6
DE
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
8d749320
SM
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
1fd400ff 4794
348e048f
DE
4795 return 1;
4796}
4797
6aa5f3a6
DE
4798/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802static struct signatured_type *
4803add_type_unit (ULONGEST sig, void **slot)
4804{
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845}
4846
a2ce51a0
DE
4847/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850static void
4851fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854{
7ee85ab1 4855 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877}
4878
4879/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
a2ce51a0
DE
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891static struct signatured_type *
4892lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893{
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4898 void **slot;
a2ce51a0
DE
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
6aa5f3a6
DE
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
a2ce51a0
DE
4909
4910 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
a2ce51a0 4915
a2ce51a0 4916 find_sig_entry.signature = sig;
6aa5f3a6
DE
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
9a3c8263 4919 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4920
4921 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4931 return sig_entry;
4932
6aa5f3a6
DE
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
a2ce51a0
DE
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
9a3c8263 4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
6aa5f3a6
DE
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
a2ce51a0 4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4950 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4951 return sig_entry;
4952}
4953
a2ce51a0
DE
4954/* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
a2ce51a0
DE
4958
4959static struct signatured_type *
4960lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961{
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4966 void **slot;
a2ce51a0
DE
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
6aa5f3a6
DE
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4974 {
6aa5f3a6
DE
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4977 }
4978
6aa5f3a6
DE
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
9a3c8263 4982 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
a2ce51a0
DE
4990 if (dwp_file->tus == NULL)
4991 return NULL;
57d63ce2
DE
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
6aa5f3a6 4997 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
a2ce51a0
DE
5000 return sig_entry;
5001}
5002
380bca97 5003/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
348e048f
DE
5006
5007static struct signatured_type *
a2ce51a0 5008lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5009{
a2ce51a0
DE
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
348e048f 5023
a2ce51a0
DE
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
9a3c8263
SM
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5029 return entry;
5030 }
348e048f 5031}
42e7ad6c
DE
5032\f
5033/* Low level DIE reading support. */
348e048f 5034
d85a05f0
DJ
5035/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037static void
5038init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5039 struct dwarf2_cu *cu,
3019eac3
DE
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
d85a05f0 5042{
fceca515 5043 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5044 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5045 reader->cu = cu;
3019eac3 5046 reader->dwo_file = dwo_file;
dee91e82
DE
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
f664829e 5049 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5050 reader->comp_dir = NULL;
d85a05f0
DJ
5051}
5052
b0c7bfa9
DE
5053/* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070static int
5071read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
a2ce51a0 5075 const char *stub_comp_dir,
b0c7bfa9 5076 struct die_reader_specs *result_reader,
d521ce57 5077 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080{
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
d521ce57 5085 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
b0aeadb3
DE
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5095
b0c7bfa9
DE
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
b0c7bfa9
DE
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
a2ce51a0
DE
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
b0c7bfa9
DE
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
a32a8923 5149 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
a2ce51a0
DE
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
b0c7bfa9
DE
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
02142a6c
DE
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5204 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5211 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
b4f54984 5241 if (dwarf_die_debug)
bf6af496
DE
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
a32a8923 5245 get_section_name (section),
bf6af496
DE
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
b4f54984 5248 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5249 }
5250
a2ce51a0
DE
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
b0c7bfa9
DE
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265}
5266
5267/* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5269 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5270
5271static struct dwo_unit *
5272lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274{
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
a2ce51a0
DE
5281 gdb_assert (cu != NULL);
5282
b0c7bfa9 5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
4262abfb 5305 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
b0c7bfa9
DE
5311 return dwo_unit;
5312}
5313
a2ce51a0 5314/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
a2ce51a0
DE
5322
5323static void
6aa5f3a6
DE
5324init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
a2ce51a0
DE
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328{
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
6aa5f3a6 5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
6aa5f3a6
DE
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
8d749320 5356 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
a2ce51a0
DE
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
6aa5f3a6 5381 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5385 if (free_cu_cleanup != NULL)
a2ce51a0 5386 {
6aa5f3a6
DE
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
a2ce51a0 5392
6aa5f3a6
DE
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
a2ce51a0 5396
6aa5f3a6
DE
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
a2ce51a0 5403 }
a2ce51a0
DE
5404
5405 do_cleanups (cleanups);
5406}
5407
fd820528 5408/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5409 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5410
f4dc4d17
DE
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
dee91e82
DE
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5422 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5423
70221824 5424static void
fd820528 5425init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5426 struct abbrev_table *abbrev_table,
fd820528
DE
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
c906108c 5430{
dee91e82 5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5432 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5433 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5434 struct dwarf2_cu *cu;
d521ce57 5435 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5436 struct die_reader_specs reader;
d85a05f0 5437 struct die_info *comp_unit_die;
dee91e82 5438 int has_children;
d85a05f0 5439 struct attribute *attr;
365156ad 5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5441 struct signatured_type *sig_type = NULL;
4bdcc0c1 5442 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5446 int rereading_dwo_cu = 0;
c906108c 5447
b4f54984 5448 if (dwarf_die_debug)
09406207
DE
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
dee91e82
DE
5453 if (use_existing_cu)
5454 gdb_assert (keep);
23745b47 5455
a2ce51a0
DE
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
a2ce51a0
DE
5465 return;
5466 }
5467
dee91e82
DE
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
42e7ad6c
DE
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
dee91e82
DE
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
8d749320 5493 cu = XNEW (struct dwarf2_cu);
dee91e82 5494 init_one_comp_unit (cu, this_cu);
dee91e82 5495 /* If an error occurs while loading, release our storage. */
365156ad 5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5497 }
dee91e82 5498
b0c7bfa9 5499 /* Get the header. */
42e7ad6c
DE
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
3019eac3 5507 if (this_cu->is_debug_types)
dee91e82
DE
5508 {
5509 ULONGEST signature;
42e7ad6c 5510 cu_offset type_offset_in_tu;
dee91e82 5511
4bdcc0c1
DE
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
42e7ad6c
DE
5514 &signature,
5515 &type_offset_in_tu);
dee91e82 5516
42e7ad6c
DE
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
dee91e82
DE
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
42e7ad6c
DE
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
1ce1cefd 5527 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5532 }
5533 else
5534 {
4bdcc0c1
DE
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
dee91e82
DE
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5541 }
5542 }
10b3939b 5543
6caca83c 5544 /* Skip dummy compilation units. */
dee91e82 5545 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
dee91e82 5548 do_cleanups (cleanups);
21b2bd31 5549 return;
6caca83c
CC
5550 }
5551
433df2d4
DE
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
f4dc4d17
DE
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
dee91e82 5565 {
4bdcc0c1 5566 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
42e7ad6c
DE
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
af703f96 5574
dee91e82 5575 /* Read the top level CU/TU die. */
3019eac3 5576 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5578
b0c7bfa9
DE
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
3019eac3 5586 struct dwo_unit *dwo_unit;
b0c7bfa9 5587 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5588
5589 if (has_children)
6a506a2d
DE
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
b0c7bfa9 5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5597 if (dwo_unit != NULL)
3019eac3 5598 {
6a506a2d
DE
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
a2ce51a0 5601 comp_unit_die, NULL,
6a506a2d
DE
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
3019eac3
DE
5618 }
5619 }
5620
b0c7bfa9 5621 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
b0c7bfa9 5624 /* Done, clean up. */
365156ad 5625 if (free_cu_cleanup != NULL)
348e048f 5626 {
365156ad
TT
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
dee91e82 5632
365156ad
TT
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
dee91e82 5636
365156ad
TT
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
348e048f 5643 }
365156ad
TT
5644
5645 do_cleanups (cleanups);
dee91e82
DE
5646}
5647
33e80786
DE
5648/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
dee91e82
DE
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5653 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
3019eac3
DE
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5663
5664static void
5665init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5666 struct dwo_file *dwo_file,
dee91e82
DE
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669{
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5671 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5672 bfd *abfd = get_section_bfd_owner (section);
33e80786 5673 struct dwarf2_section_info *abbrev_section;
dee91e82 5674 struct dwarf2_cu cu;
d521ce57 5675 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
b4f54984 5681 if (dwarf_die_debug)
09406207
DE
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
dee91e82
DE
5686 gdb_assert (this_cu->cu == NULL);
5687
33e80786
DE
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
dee91e82
DE
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
3019eac3 5702 this_cu->is_debug_types);
dee91e82 5703
1ce1cefd 5704 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5709 {
dee91e82 5710 do_cleanups (cleanups);
21b2bd31 5711 return;
93311388 5712 }
72bf9492 5713
dee91e82
DE
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
3019eac3 5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723}
5724
3019eac3
DE
5725/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
dee91e82
DE
5728
5729 THIS_CU->cu is always freed when done.
3019eac3
DE
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5733
5734static void
5735init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738{
33e80786 5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5740}
0018ea6f
DE
5741\f
5742/* Type Unit Groups.
dee91e82 5743
0018ea6f
DE
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
ff013f42 5749
f4dc4d17
DE
5750static hashval_t
5751hash_type_unit_group (const void *item)
5752{
9a3c8263
SM
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
f4dc4d17 5755
094b34ac 5756 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5757}
348e048f
DE
5758
5759static int
f4dc4d17 5760eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5761{
9a3c8263
SM
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5764
094b34ac 5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5766}
348e048f 5767
f4dc4d17
DE
5768/* Allocate a hash table for type unit groups. */
5769
5770static htab_t
5771allocate_type_unit_groups_table (void)
5772{
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780}
dee91e82 5781
f4dc4d17
DE
5782/* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5787
094b34ac 5788/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791static struct type_unit_group *
094b34ac 5792create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5793{
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5795 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5796 struct type_unit_group *tu_group;
f4dc4d17
DE
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
094b34ac 5800 per_cu = &tu_group->per_cu;
f4dc4d17 5801 per_cu->objfile = objfile;
f4dc4d17 5802
094b34ac
DE
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
f4dc4d17 5823
094b34ac
DE
5824 xfree (name);
5825 }
f4dc4d17 5826
094b34ac
DE
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5829
5830 return tu_group;
5831}
5832
094b34ac
DE
5833/* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5835
5836static struct type_unit_group *
ff39bb5e 5837get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5838{
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
094b34ac
DE
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
9a3c8263 5877 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
094b34ac 5885 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891}
0018ea6f
DE
5892\f
5893/* Partial symbol tables. */
5894
5895/* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900static struct partial_symtab *
5901create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902{
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
18a94d75 5906 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918}
5919
b93601f3
TT
5920/* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923struct process_psymtab_comp_unit_data
5924{
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933};
5934
0018ea6f
DE
5935/* die_reader_func for process_psymtab_comp_unit. */
5936
5937static void
5938process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5939 const gdb_byte *info_ptr,
0018ea6f
DE
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943{
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
3e29f34a 5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
9a3c8263
SM
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5955
b93601f3 5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
b93601f3 5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
0018ea6f 5968 filename = "";
0018ea6f
DE
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
0018ea6f
DE
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
3e29f34a
MR
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6024
8763cede 6025 end_psymtab_common (objfile, pst);
0018ea6f
DE
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
8d749320
SM
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
b4f54984 6051 if (dwarf_read_debug)
0018ea6f
DE
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064}
6065
6066/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069static void
6070process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6071 int want_partial_unit,
6072 enum language pretend_language)
0018ea6f 6073{
b93601f3
TT
6074 struct process_psymtab_comp_unit_data info;
6075
0018ea6f
DE
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
0018ea6f
DE
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
b93601f3 6089 &info);
0018ea6f
DE
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093}
f4dc4d17
DE
6094
6095/* Reader function for build_type_psymtabs. */
6096
6097static void
6098build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6099 const gdb_byte *info_ptr,
f4dc4d17
DE
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103{
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6107 struct signatured_type *sig_type;
f4dc4d17
DE
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
0186c6a7
DE
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6122 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6123
0186c6a7 6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
8763cede 6137 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6138}
6139
73051182
DE
6140/* Struct used to sort TUs by their abbreviation table offset. */
6141
6142struct tu_abbrev_offset
6143{
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146};
6147
6148/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150static int
6151sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152{
9a3c8263
SM
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161}
6162
6163/* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181static void
6182build_type_psymtabs_1 (void)
6183{
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
b4f54984 6218 if (dwarf_read_debug)
73051182
DE
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
73051182 6268 do_cleanups (cleanups);
6aa5f3a6 6269}
73051182 6270
6aa5f3a6
DE
6271/* Print collected type unit statistics. */
6272
6273static void
6274print_tu_stats (void)
6275{
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6291}
6292
f4dc4d17
DE
6293/* Traversal function for build_type_psymtabs. */
6294
6295static int
6296build_type_psymtab_dependencies (void **slot, void *info)
6297{
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6301 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
f4dc4d17
DE
6304 int i;
6305
6306 gdb_assert (len > 0);
0186c6a7 6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6308
6309 pst->number_of_dependencies = len;
8d749320
SM
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6312 for (i = 0;
0186c6a7 6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6314 ++i)
6315 {
0186c6a7
DE
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6318 iter->type_unit_group = tu_group;
f4dc4d17
DE
6319 }
6320
0186c6a7 6321 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6322
6323 return 1;
6324}
6325
6326/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329static void
6330build_type_psymtabs (struct objfile *objfile)
6331{
0e50663e 6332 if (! create_all_type_units (objfile))
348e048f
DE
6333 return;
6334
73051182 6335 build_type_psymtabs_1 ();
6aa5f3a6 6336}
f4dc4d17 6337
6aa5f3a6
DE
6338/* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341static int
6342process_skeletonless_type_unit (void **slot, void *info)
6343{
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6345 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375}
6376
6377/* Traversal function for process_skeletonless_type_units. */
6378
6379static int
6380process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381{
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391}
6392
6393/* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397static void
6398process_skeletonless_type_units (struct objfile *objfile)
6399{
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
348e048f
DE
6408}
6409
60606b2c
TT
6410/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412static void
6413psymtabs_addrmap_cleanup (void *o)
6414{
9a3c8263 6415 struct objfile *objfile = (struct objfile *) o;
ec61707d 6416
60606b2c
TT
6417 objfile->psymtabs_addrmap = NULL;
6418}
6419
95554aad
TT
6420/* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422static void
6423set_partial_user (struct objfile *objfile)
6424{
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
8832e7e3 6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
36586728
TT
6433 if (pst == NULL)
6434 continue;
6435
95554aad
TT
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443}
6444
93311388
DE
6445/* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
72bf9492 6447
93311388 6448static void
c67a9c90 6449dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6450{
60606b2c
TT
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
21b2bd31 6453 int i;
93311388 6454
b4f54984 6455 if (dwarf_read_debug)
45cfd468
DE
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6458 objfile_name (objfile));
45cfd468
DE
6459 }
6460
98bfdba5
PA
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
be391dca 6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6464
93311388
DE
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6468
348e048f
DE
6469 build_type_psymtabs (objfile);
6470
93311388 6471 create_all_comp_units (objfile);
c906108c 6472
60606b2c
TT
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6479
21b2bd31 6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6481 {
8832e7e3 6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6483
b93601f3 6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6485 }
ff013f42 6486
6aa5f3a6
DE
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
b4f54984 6497 if (dwarf_read_debug)
6aa5f3a6
DE
6498 print_tu_stats ();
6499
95554aad
TT
6500 set_partial_user (objfile);
6501
ff013f42
JK
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
60606b2c 6504 discard_cleanups (addrmap_cleanup);
ff013f42 6505
ae038cb0 6506 do_cleanups (back_to);
45cfd468 6507
b4f54984 6508 if (dwarf_read_debug)
45cfd468 6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6510 objfile_name (objfile));
ae038cb0
DJ
6511}
6512
3019eac3 6513/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6514
6515static void
dee91e82 6516load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6517 const gdb_byte *info_ptr,
dee91e82
DE
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
ae038cb0 6521{
dee91e82 6522 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6523
95554aad 6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6525
ae038cb0
DJ
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6528 If not, there's no more debug_info for this comp unit. */
d85a05f0 6529 if (has_children)
dee91e82
DE
6530 load_partial_dies (reader, info_ptr, 0);
6531}
98bfdba5 6532
dee91e82
DE
6533/* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6535
dee91e82
DE
6536static void
6537load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538{
f4dc4d17
DE
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6541}
6542
ae038cb0 6543static void
36586728
TT
6544read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6550{
d521ce57 6551 const gdb_byte *info_ptr;
a32a8923 6552 bfd *abfd = get_section_bfd_owner (section);
be391dca 6553
b4f54984 6554 if (dwarf_read_debug)
bf6af496 6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6556 get_section_name (section),
6557 get_section_file_name (section));
bf6af496 6558
36586728 6559 dwarf2_read_section (objfile, section);
ae038cb0 6560
36586728 6561 info_ptr = section->buffer;
6e70227d 6562
36586728 6563 while (info_ptr < section->buffer + section->size)
ae038cb0 6564 {
c764a876 6565 unsigned int length, initial_length_size;
ae038cb0 6566 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6567 sect_offset offset;
ae038cb0 6568
36586728 6569 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
36586728 6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6574
6575 /* Save the compilation unit for later lookup. */
8d749320 6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
c764a876 6579 this_cu->length = length + initial_length_size;
36586728 6580 this_cu->is_dwz = is_dwz;
9291a0cd 6581 this_cu->objfile = objfile;
8a0459fd 6582 this_cu->section = section;
ae038cb0 6583
36586728 6584 if (*n_comp_units == *n_allocated)
ae038cb0 6585 {
36586728 6586 *n_allocated *= 2;
224c3ddb
SM
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
ae038cb0 6589 }
36586728
TT
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
ae038cb0
DJ
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
36586728
TT
6595}
6596
6597/* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600static void
6601create_all_comp_units (struct objfile *objfile)
6602{
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6606 struct dwz_file *dwz;
36586728
TT
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
8d749320 6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
4db1a1dc
TT
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
ae038cb0 6620
8d749320
SM
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
ae038cb0
DJ
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6628}
6629
5734ee8b 6630/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6635
72bf9492
DJ
6636static void
6637scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
c906108c 6640{
72bf9492 6641 struct partial_die_info *pdi;
c906108c 6642
91c24f0a
DC
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
c906108c 6646
72bf9492 6647 pdi = first_die;
91c24f0a 6648
72bf9492
DJ
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
c906108c 6652
f55ee35c 6653 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
933c6fe4 6656
72bf9492 6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
c906108c 6660 {
72bf9492 6661 switch (pdi->tag)
c906108c
SS
6662 {
6663 case DW_TAG_subprogram:
cdc07690 6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6665 break;
72929c62 6666 case DW_TAG_constant:
c906108c
SS
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
91c24f0a 6669 case DW_TAG_union_type:
72bf9492 6670 if (!pdi->is_declaration)
63d06c5c 6671 {
72bf9492 6672 add_partial_symbol (pdi, cu);
63d06c5c
DC
6673 }
6674 break;
c906108c 6675 case DW_TAG_class_type:
680b30c7 6676 case DW_TAG_interface_type:
c906108c 6677 case DW_TAG_structure_type:
72bf9492 6678 if (!pdi->is_declaration)
c906108c 6679 {
72bf9492 6680 add_partial_symbol (pdi, cu);
c906108c
SS
6681 }
6682 break;
91c24f0a 6683 case DW_TAG_enumeration_type:
72bf9492
DJ
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
c906108c
SS
6686 break;
6687 case DW_TAG_base_type:
a02abb62 6688 case DW_TAG_subrange_type:
c906108c 6689 /* File scope base type definitions are added to the partial
c5aa993b 6690 symbol table. */
72bf9492 6691 add_partial_symbol (pdi, cu);
c906108c 6692 break;
d9fa45fe 6693 case DW_TAG_namespace:
cdc07690 6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6695 break;
5d7cb8df 6696 case DW_TAG_module:
cdc07690 6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6698 break;
95554aad
TT
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
f4dc4d17
DE
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
4262abfb 6708 objfile_name (cu->objfile));
f4dc4d17
DE
6709 }
6710
95554aad 6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6712 pdi->is_dwz,
95554aad
TT
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
b93601f3 6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6718
f4dc4d17 6719 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6720 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6721 }
6722 break;
74921315
KS
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
c906108c
SS
6726 default:
6727 break;
6728 }
6729 }
6730
72bf9492
DJ
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735}
6736
6737/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6738
72bf9492 6739 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
91c24f0a 6745
72bf9492
DJ
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757/* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
15d034d0 6761static const char *
72bf9492
DJ
6762partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764{
15d034d0 6765 const char *grandparent_scope;
72bf9492 6766 struct partial_die_info *parent, *real_pdi;
91c24f0a 6767
72bf9492
DJ
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
72bf9492 6772 while (real_pdi->has_specification)
36586728
TT
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
10b3939b 6785 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6786
acebe513
UW
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6e70227d 6791 && parent->tag == DW_TAG_namespace
acebe513
UW
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
9c6c53f7
SA
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
f55ee35c 6804 || parent->tag == DW_TAG_module
72bf9492
DJ
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
680b30c7 6807 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
3e43a32a
MS
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
f55ee35c 6816 parent->name, 0, cu);
72bf9492 6817 }
72bf9492
DJ
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
e2e0b3e5 6824 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6825 parent->tag, pdi->offset.sect_off);
72bf9492 6826 parent->scope = grandparent_scope;
c906108c
SS
6827 }
6828
72bf9492
DJ
6829 parent->scope_set = 1;
6830 return parent->scope;
6831}
6832
6833/* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
4568ecf9 6835
72bf9492
DJ
6836static char *
6837partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839{
15d034d0 6840 const char *parent_scope;
72bf9492 6841
98bfdba5
PA
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
b64f50a1 6856 /* DW_FORM_ref_addr is using section offset. */
b4069958 6857 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6858 attr.form = DW_FORM_ref_addr;
4568ecf9 6859 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
72bf9492
DJ
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
f55ee35c 6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6871}
6872
6873static void
72bf9492 6874add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6875{
e7c27a73 6876 struct objfile *objfile = cu->objfile;
3e29f34a 6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6878 CORE_ADDR addr = 0;
15d034d0 6879 const char *actual_name = NULL;
e142c38c 6880 CORE_ADDR baseaddr;
15d034d0 6881 char *built_actual_name;
e142c38c
DJ
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6884
15d034d0
TT
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
63d06c5c 6888
72bf9492
DJ
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
c906108c
SS
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
3e29f34a 6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6896 if (pdi->is_external || cu->language == language_ada)
c906108c 6897 {
2cfa0c8d
JB
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
f47fb265 6902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6903 built_actual_name != NULL,
f47fb265
MS
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
1762568f 6906 addr, cu->language, objfile);
c906108c
SS
6907 }
6908 else
6909 {
f47fb265 6910 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6911 built_actual_name != NULL,
f47fb265
MS
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
1762568f 6914 addr, cu->language, objfile);
c906108c
SS
6915 }
6916 break;
72929c62
JB
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
f47fb265 6925 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6927 list, 0, cu->language, objfile);
72929c62
JB
6928 }
6929 break;
c906108c 6930 case DW_TAG_variable:
95554aad
TT
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6933
95554aad 6934 if (pdi->d.locdesc
caac4577
JG
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
c906108c
SS
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
95554aad 6958 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6959 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6960 built_actual_name != NULL,
f47fb265
MS
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
1762568f 6963 addr + baseaddr,
f47fb265 6964 cu->language, objfile);
c906108c
SS
6965 }
6966 else
6967 {
ff908ebf
AW
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
decbce07 6973 {
15d034d0 6974 xfree (built_actual_name);
decbce07
MS
6975 return;
6976 }
ff908ebf 6977
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
ff908ebf 6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
a02abb62 6988 case DW_TAG_subrange_type:
38d518c9 6989 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6990 built_actual_name != NULL,
176620f1 6991 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6992 &objfile->static_psymbols,
1762568f 6993 0, cu->language, objfile);
c906108c 6994 break;
74921315 6995 case DW_TAG_imported_declaration:
72bf9492
DJ
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
72bf9492
DJ
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
1762568f 7001 0, cu->language, objfile);
72bf9492 7002 break;
530e8392
KB
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
1762568f 7008 0, cu->language, objfile);
530e8392 7009 break;
c906108c 7010 case DW_TAG_class_type:
680b30c7 7011 case DW_TAG_interface_type:
c906108c
SS
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
fa4028e9
JB
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7021 {
15d034d0 7022 xfree (built_actual_name);
decbce07
MS
7023 return;
7024 }
fa4028e9 7025
63d06c5c
DC
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
38d518c9 7028 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7029 built_actual_name != NULL,
176620f1 7030 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
63d06c5c
DC
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
1762568f 7035 0, cu->language, objfile);
c906108c 7036
c906108c
SS
7037 break;
7038 case DW_TAG_enumerator:
38d518c9 7039 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7040 built_actual_name != NULL,
176620f1 7041 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
f6fe98ef
DJ
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
1762568f 7046 0, cu->language, objfile);
c906108c
SS
7047 break;
7048 default:
7049 break;
7050 }
5c4e30ca 7051
15d034d0 7052 xfree (built_actual_name);
c906108c
SS
7053}
7054
5c4e30ca
DC
7055/* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
91c24f0a 7058
72bf9492
DJ
7059static void
7060add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7062 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7063{
72bf9492 7064 /* Add a symbol for the namespace. */
e7c27a73 7065
72bf9492 7066 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7067
7068 /* Now scan partial symbols in that namespace. */
7069
91c24f0a 7070 if (pdi->has_children)
cdc07690 7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7072}
7073
5d7cb8df
JK
7074/* Read a partial die corresponding to a Fortran module. */
7075
7076static void
7077add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7079{
530e8392
KB
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
f55ee35c 7084 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7085
7086 if (pdi->has_children)
cdc07690 7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7088}
7089
bc30ff58
JB
7090/* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
cdc07690 7093 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
6e70227d 7096
cdc07690
YQ
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102static void
7103add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7105 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7106{
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
cdc07690 7115 if (set_addrmap)
5734ee8b 7116 {
5734ee8b 7117 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
5734ee8b
DJ
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7130 cu->per_cu->v.psymtab);
5734ee8b 7131 }
481860b3
GB
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
bc30ff58 7136 if (!pdi->is_declaration)
e8d05480
JB
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
bc30ff58
JB
7142 }
7143 }
6e70227d 7144
bc30ff58
JB
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160}
7161
91c24f0a
DC
7162/* Read a partial die corresponding to an enumeration type. */
7163
72bf9492
DJ
7164static void
7165add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
91c24f0a 7167{
72bf9492 7168 struct partial_die_info *pdi;
91c24f0a
DC
7169
7170 if (enum_pdi->name != NULL)
72bf9492
DJ
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
91c24f0a 7175 {
72bf9492 7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7178 else
72bf9492
DJ
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
91c24f0a 7181 }
91c24f0a
DC
7182}
7183
6caca83c
CC
7184/* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186static unsigned int
d521ce57 7187peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7188{
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192}
7193
4bb7a0a7
DJ
7194/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199static struct abbrev_info *
d521ce57 7200peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7201 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7202{
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
433df2d4 7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7213 if (!abbrev)
7214 {
422b9917
DE
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7219 }
7220
7221 return abbrev;
7222}
7223
93311388
DE
7224/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
d521ce57
TT
7228static const gdb_byte *
7229skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7230{
dee91e82 7231 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
dee91e82 7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7242 }
7243}
7244
93311388
DE
7245/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
d521ce57
TT
7251static const gdb_byte *
7252skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7253 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7254{
7255 unsigned int bytes_read;
7256 struct attribute attr;
dee91e82
DE
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
d521ce57 7259 const gdb_byte *buffer = reader->buffer;
f664829e 7260 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7261 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
dee91e82 7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7270 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7273 else
b9502d3f
WN
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
22869d73
KS
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7283 else
7284 return sibling_ptr;
7285 }
4bb7a0a7
DJ
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
4bb7a0a7 7293 case DW_FORM_ref_addr:
ae411497
TT
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
36586728
TT
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
ae411497 7304 case DW_FORM_addr:
4bb7a0a7
DJ
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
2dc7f7b3
TT
7312 case DW_FORM_flag_present:
7313 break;
4bb7a0a7
DJ
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
55f1336d 7324 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
9b1c24c8 7328 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7329 info_ptr += bytes_read;
7330 break;
2dc7f7b3 7331 case DW_FORM_sec_offset:
4bb7a0a7 7332 case DW_FORM_strp:
36586728 7333 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7334 info_ptr += cu->header.offset_size;
7335 break;
2dc7f7b3 7336 case DW_FORM_exprloc:
4bb7a0a7
DJ
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
3019eac3
DE
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
d521ce57 7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
3e43a32a
MS
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
dee91e82 7373 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7374 else
7375 return info_ptr;
7376}
7377
93311388 7378/* Locate ORIG_PDI's sibling.
dee91e82 7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7380
d521ce57 7381static const gdb_byte *
dee91e82
DE
7382locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
d521ce57 7384 const gdb_byte *info_ptr)
91c24f0a
DC
7385{
7386 /* Do we know the sibling already? */
72bf9492 7387
91c24f0a
DC
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
4bb7a0a7 7396 /* Skip the children the long way. */
91c24f0a 7397
dee91e82 7398 return skip_children (reader, info_ptr);
91c24f0a
DC
7399}
7400
257e7a09 7401/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7402 not NULL. */
c906108c
SS
7403
7404static void
257e7a09
YQ
7405dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
c906108c 7407{
257e7a09 7408 if (self->readin)
c906108c 7409 {
442e4d9c 7410 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7411 self->filename);
442e4d9c
YQ
7412 }
7413 else
7414 {
7415 if (info_verbose)
c906108c 7416 {
442e4d9c 7417 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7418 self->filename);
442e4d9c 7419 gdb_flush (gdb_stdout);
c906108c 7420 }
c906108c 7421
442e4d9c 7422 /* Restore our global data. */
9a3c8263
SM
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
10b3939b 7426
442e4d9c
YQ
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
9a619af0 7437
442e4d9c
YQ
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
b2ab525c 7441
442e4d9c 7442 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7443
257e7a09 7444 psymtab_to_symtab_1 (self);
c906108c 7445
442e4d9c
YQ
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
c906108c 7449 }
95554aad
TT
7450
7451 process_cu_includes ();
c906108c 7452}
9cdd5dbd
DE
7453\f
7454/* Reading in full CUs. */
c906108c 7455
10b3939b
DJ
7456/* Add PER_CU to the queue. */
7457
7458static void
95554aad
TT
7459queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
10b3939b
DJ
7461{
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
8d749320 7465 item = XNEW (struct dwarf2_queue_item);
10b3939b 7466 item->per_cu = per_cu;
95554aad 7467 item->pretend_language = pretend_language;
10b3939b
DJ
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476}
7477
89e63ee4
DE
7478/* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
0907af0c 7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7486
7487static int
89e63ee4 7488maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491{
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
89e63ee4
DE
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523}
7524
10b3939b
DJ
7525/* Process the queue. */
7526
7527static void
a0f42c21 7528process_queue (void)
10b3939b
DJ
7529{
7530 struct dwarf2_queue_item *item, *next_item;
7531
b4f54984 7532 if (dwarf_read_debug)
45cfd468
DE
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7536 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7537 }
7538
03dd20cc
DJ
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
cc12ce38
DE
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
f4dc4d17
DE
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7550 unsigned int debug_print_threshold;
247f5c4f 7551 char buf[100];
f4dc4d17 7552
247f5c4f 7553 if (per_cu->is_debug_types)
f4dc4d17 7554 {
247f5c4f
DE
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
f4dc4d17 7564 }
247f5c4f 7565 else
73be47f5
DE
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
247f5c4f 7570
b4f54984 7571 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
b4f54984 7579 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7581 }
10b3939b
DJ
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
45cfd468 7589
b4f54984 7590 if (dwarf_read_debug)
45cfd468
DE
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7593 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7594 }
10b3939b
DJ
7595}
7596
7597/* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601static void
7602dwarf2_release_queue (void *dummy)
7603{
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
dee91e82 7614 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624}
7625
7626/* Read in full symbols for PST, and anything it depends on. */
7627
c906108c 7628static void
fba45db2 7629psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7630{
10b3939b 7631 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7632 int i;
7633
95554aad
TT
7634 if (pst->readin)
7635 return;
7636
aaa75496 7637 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
a3f17187 7644 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7650 wrap_here (""); /* Flush output. */
aaa75496
JB
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
9a3c8263 7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7657
7658 if (per_cu == NULL)
aaa75496
JB
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
c906108c 7665
a0f42c21 7666 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7667}
7668
dee91e82
DE
7669/* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
10b3939b 7671
dee91e82
DE
7672static hashval_t
7673die_hash (const void *item)
10b3939b 7674{
9a3c8263 7675 const struct die_info *die = (const struct die_info *) item;
6502dd73 7676
dee91e82
DE
7677 return die->offset.sect_off;
7678}
63d06c5c 7679
dee91e82
DE
7680/* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
98bfdba5 7682
dee91e82
DE
7683static int
7684die_eq (const void *item_lhs, const void *item_rhs)
7685{
9a3c8263
SM
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7688
dee91e82
DE
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690}
c906108c 7691
dee91e82
DE
7692/* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
c906108c 7695
dee91e82
DE
7696static void
7697load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7698 const gdb_byte *info_ptr,
dee91e82
DE
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702{
7703 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7704 enum language *language_ptr = (enum language *) data;
6caca83c 7705
dee91e82
DE
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
e142c38c 7715
dee91e82
DE
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7721
7722 /* We try not to read any attributes in this function, because not
9cdd5dbd 7723 all CUs needed for references have been loaded yet, and symbol
10b3939b 7724 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
95554aad 7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7729}
10b3939b 7730
dee91e82 7731/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7732
dee91e82 7733static void
95554aad
TT
7734load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
dee91e82 7736{
3019eac3 7737 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7738
f4dc4d17
DE
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7741}
7742
3da10d80
KS
7743/* Add a DIE to the delayed physname list. */
7744
7745static void
7746add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749{
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757}
7758
7759/* A cleanup for freeing the delayed method list. */
7760
7761static void
7762free_delayed_list (void *ptr)
7763{
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770}
7771
7772/* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778static void
7779compute_delayed_physnames (struct dwarf2_cu *cu)
7780{
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
1d06ead6 7785 const char *physname;
3da10d80
KS
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7788 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
3da10d80
KS
7791 }
7792}
7793
a766d390
DE
7794/* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805static void
7806fixup_go_packaging (struct dwarf2_cu *cu)
7807{
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
4262abfb 7835 : objfile_name (cu->objfile)),
a766d390
DE
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
34a68019 7846 const char *saved_package_name
224c3ddb
SM
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
a766d390 7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7851 saved_package_name, objfile);
a766d390
DE
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
e623cf5d 7856 sym = allocate_symbol (objfile);
f85f34ed 7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
a766d390
DE
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870}
7871
95554aad
TT
7872/* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
43f3e411
DE
7875static struct compunit_symtab *
7876get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7877{
7878 return (dwarf2_per_objfile->using_index
43f3e411
DE
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7881}
7882
7883/* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886static void
43f3e411 7887recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7888 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7889 struct dwarf2_per_cu_data *per_cu,
43f3e411 7890 struct compunit_symtab *immediate_parent)
95554aad
TT
7891{
7892 void **slot;
7893 int ix;
43f3e411 7894 struct compunit_symtab *cust;
95554aad
TT
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
ec94af83
DE
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
43f3e411 7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7914 if (*slot == NULL)
7915 {
43f3e411
DE
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
ec94af83
DE
7920 }
7921 }
7922 else
f9125b6c 7923 {
43f3e411
DE
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
f9125b6c 7927 }
ec94af83 7928 }
95554aad
TT
7929
7930 for (ix = 0;
796a7ff8 7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7932 ++ix)
ec94af83
DE
7933 {
7934 recursively_compute_inclusions (result, all_children,
43f3e411 7935 all_type_symtabs, iter, cust);
ec94af83 7936 }
95554aad
TT
7937}
7938
43f3e411 7939/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7940 PER_CU. */
7941
7942static void
43f3e411 7943compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7944{
f4dc4d17
DE
7945 gdb_assert (! per_cu->is_debug_types);
7946
796a7ff8 7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7948 {
7949 int ix, len;
ec94af83 7950 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7953 htab_t all_children, all_type_symtabs;
43f3e411 7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7955
7956 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7957 if (cust == NULL)
95554aad
TT
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
ec94af83
DE
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
95554aad
TT
7964
7965 for (ix = 0;
796a7ff8 7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7967 ix, per_cu_iter);
95554aad 7968 ++ix)
ec94af83
DE
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7971 all_type_symtabs, per_cu_iter,
43f3e411 7972 cust);
ec94af83 7973 }
95554aad 7974
ec94af83 7975 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
8d749320
SM
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
95554aad 7980 for (ix = 0;
43f3e411
DE
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
95554aad 7983 ++ix)
43f3e411
DE
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
95554aad 7986
43f3e411 7987 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7988 htab_delete (all_children);
ec94af83 7989 htab_delete (all_type_symtabs);
95554aad
TT
7990 }
7991}
7992
7993/* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996static void
7997process_cu_includes (void)
7998{
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
f4dc4d17
DE
8006 {
8007 if (! iter->is_debug_types)
43f3e411 8008 compute_compunit_symtab_includes (iter);
f4dc4d17 8009 }
95554aad
TT
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012}
8013
9cdd5dbd 8014/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8015 already been loaded into memory. */
8016
8017static void
95554aad
TT
8018process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
10b3939b 8020{
10b3939b 8021 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8022 struct objfile *objfile = per_cu->objfile;
3e29f34a 8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8024 CORE_ADDR lowpc, highpc;
43f3e411 8025 struct compunit_symtab *cust;
3da10d80 8026 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8027 CORE_ADDR baseaddr;
4359dff1 8028 struct block *static_block;
3e29f34a 8029 CORE_ADDR addr;
10b3939b
DJ
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
10b3939b
DJ
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8036
8037 cu->list_in_scope = &file_symbols;
c906108c 8038
95554aad
TT
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
c906108c 8042 /* Do line number decoding in read_file_scope () */
10b3939b 8043 process_die (cu->dies, cu);
c906108c 8044
a766d390
DE
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
3da10d80
KS
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
fae299cd
DC
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
10b3939b 8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8059
3e29f34a
MR
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
43f3e411
DE
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
c906108c 8072
43f3e411 8073 if (cust != NULL)
c906108c 8074 {
df15bd07 8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8076
8be455d7
JK
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
43f3e411 8080 if (!(cu->language == language_c
40e3ad0e 8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
ab260dad 8096 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8097 cust->locations_valid = 1;
e0d00bc7
JK
8098
8099 if (gcc_4_minor >= 5)
43f3e411 8100 cust->epilogue_unwind_valid = 1;
96408a79 8101
43f3e411 8102 cust->call_site_htab = cu->call_site_htab;
c906108c 8103 }
9291a0cd
TT
8104
8105 if (dwarf2_per_objfile->using_index)
43f3e411 8106 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8110 pst->compunit_symtab = cust;
9291a0cd
TT
8111 pst->readin = 1;
8112 }
c906108c 8113
95554aad
TT
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
c906108c 8117 do_cleanups (back_to);
f4dc4d17 8118}
45cfd468 8119
f4dc4d17
DE
8120/* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123static void
8124process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126{
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
43f3e411 8129 struct compunit_symtab *cust;
f4dc4d17 8130 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
43f3e411 8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8163 {
43f3e411
DE
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8166
43f3e411 8167 if (cust != NULL)
f4dc4d17
DE
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
43f3e411
DE
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8176 }
8177 }
8178 else
8179 {
0ab9ce85 8180 augment_type_symtab ();
43f3e411 8181 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
43f3e411 8185 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8189 pst->compunit_symtab = cust;
f4dc4d17 8190 pst->readin = 1;
45cfd468 8191 }
f4dc4d17
DE
8192
8193 do_cleanups (back_to);
c906108c
SS
8194}
8195
95554aad
TT
8196/* Process an imported unit DIE. */
8197
8198static void
8199process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200{
8201 struct attribute *attr;
8202
f4dc4d17
DE
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
4262abfb 8208 objfile_name (cu->objfile));
f4dc4d17
DE
8209 }
8210
95554aad
TT
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
36586728 8217 int is_dwz;
95554aad
TT
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8222
69d751e3 8223 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
796a7ff8 8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8228 per_cu);
8229 }
8230}
8231
adde2bff
DE
8232/* Reset the in_process bit of a die. */
8233
8234static void
8235reset_die_in_process (void *arg)
8236{
9a3c8263 8237 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8238
adde2bff
DE
8239 die->in_process = 0;
8240}
8241
c906108c
SS
8242/* Process a die and its children. */
8243
8244static void
e7c27a73 8245process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8246{
adde2bff
DE
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
c906108c
SS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
95554aad 8260 case DW_TAG_partial_unit:
e7c27a73 8261 read_file_scope (die, cu);
c906108c 8262 break;
348e048f
DE
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
c906108c 8266 case DW_TAG_subprogram:
c906108c 8267 case DW_TAG_inlined_subroutine:
edb3359d 8268 read_func_scope (die, cu);
c906108c
SS
8269 break;
8270 case DW_TAG_lexical_block:
14898363
L
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
e7c27a73 8273 read_lexical_block_scope (die, cu);
c906108c 8274 break;
96408a79
SA
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
c906108c 8278 case DW_TAG_class_type:
680b30c7 8279 case DW_TAG_interface_type:
c906108c
SS
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
134d01f1 8282 process_structure_scope (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_enumeration_type:
134d01f1 8285 process_enumeration_scope (die, cu);
c906108c 8286 break;
134d01f1 8287
f792889a
DJ
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
c906108c 8291 case DW_TAG_subroutine_type:
72019c9c 8292 case DW_TAG_set_type:
c906108c 8293 case DW_TAG_array_type:
c906108c 8294 case DW_TAG_pointer_type:
c906108c 8295 case DW_TAG_ptr_to_member_type:
c906108c 8296 case DW_TAG_reference_type:
c906108c 8297 case DW_TAG_string_type:
c906108c 8298 break;
134d01f1 8299
c906108c 8300 case DW_TAG_base_type:
a02abb62 8301 case DW_TAG_subrange_type:
cb249c71 8302 case DW_TAG_typedef:
134d01f1
DJ
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
f792889a 8305 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8306 break;
c906108c 8307 case DW_TAG_common_block:
e7c27a73 8308 read_common_block (die, cu);
c906108c
SS
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
d9fa45fe 8312 case DW_TAG_namespace:
4d4ec4e5 8313 cu->processing_has_namespace_info = 1;
e7c27a73 8314 read_namespace (die, cu);
d9fa45fe 8315 break;
5d7cb8df 8316 case DW_TAG_module:
4d4ec4e5 8317 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8318 read_module (die, cu);
8319 break;
d9fa45fe 8320 case DW_TAG_imported_declaration:
74921315
KS
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8325 case DW_TAG_imported_module:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
d9fa45fe 8332 break;
95554aad
TT
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
c906108c 8338 default:
e7c27a73 8339 new_symbol (die, NULL, cu);
c906108c
SS
8340 break;
8341 }
adde2bff
DE
8342
8343 do_cleanups (in_process);
c906108c 8344}
ca69b9e6
DE
8345\f
8346/* DWARF name computation. */
c906108c 8347
94af9270
KS
8348/* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352static int
8353die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354{
1c809c68
TT
8355 struct attribute *attr;
8356
94af9270
KS
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
08a76f8a 8368 case DW_TAG_inlined_subroutine:
94af9270 8369 case DW_TAG_member:
74921315 8370 case DW_TAG_imported_declaration:
94af9270
KS
8371 return 1;
8372
8373 case DW_TAG_variable:
c2b0a229 8374 case DW_TAG_constant:
94af9270
KS
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
9a619af0 8383
94af9270
KS
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
1c809c68 8388 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8399 return 0;
8400 return 1;
94af9270
KS
8401
8402 default:
8403 return 0;
8404 }
8405}
8406
98bfdba5
PA
8407/* Retrieve the last character from a mem_file. */
8408
8409static void
8410do_ui_file_peek_last (void *object, const char *buffer, long length)
8411{
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416}
8417
94af9270 8418/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
94af9270 8427
af6b7be1
JB
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
94af9270
KS
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433static const char *
15d034d0
TT
8434dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8436 int physname)
8437{
bb5ed363
DE
8438 struct objfile *objfile = cu->objfile;
8439
94af9270
KS
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
2ee7123e
DE
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
2ee7123e 8458 const char *linkage_name;
f55ee35c 8459
2ee7123e
DE
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
f55ee35c
JK
8465 }
8466
94af9270
KS
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
f55ee35c 8469 && (cu->language == language_cplus || cu->language == language_java
45280282 8470 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
0d5cff50 8475 const char *prefix;
94af9270 8476 struct ui_file *buf;
34a68019
TT
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
94af9270
KS
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
f55ee35c
JK
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
9a619af0 8486
94af9270
KS
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
62d5b8da 8491 fputs_unfiltered (name, buf);
94af9270 8492
98bfdba5
PA
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
12df843f 8525 LONGEST value;
d521ce57 8526 const gdb_byte *bytes;
98bfdba5
PA
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
79d43c61 8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
3e43a32a
MS
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
98bfdba5
PA
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
3e43a32a
MS
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
98bfdba5
PA
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
94af9270
KS
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
6e70227d 8621
94af9270
KS
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
79d43c61
TT
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
94af9270
KS
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
0963b4bd 8634 names. */
94af9270
KS
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8637 0, 0, &type_print_raw_options);
94af9270
KS
8638 }
8639 else if (cu->language == language_cplus)
8640 {
60430eff
DJ
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
94af9270
KS
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
94af9270
KS
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
34a68019 8655 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
34a68019
TT
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
34a68019
TT
8671 else
8672 name = canonical_name;
9a619af0 8673
34a68019 8674 xfree (intermediate_name);
94af9270
KS
8675 }
8676 }
8677
8678 return name;
8679}
8680
0114d602
DJ
8681/* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
34a68019 8683 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
0963b4bd 8687 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8688
8689static const char *
15d034d0 8690dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8691{
94af9270
KS
8692 return dwarf2_compute_name (name, die, cu, 0);
8693}
0114d602 8694
94af9270
KS
8695/* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
0114d602 8699
94af9270 8700 The output string will be canonicalized (if C++/Java). */
0114d602 8701
94af9270 8702static const char *
15d034d0 8703dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8704{
bb5ed363 8705 struct objfile *objfile = cu->objfile;
900e11f9
JK
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
7d45c7c3
KB
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
7d45c7c3 8724 if (mangled != NULL)
900e11f9
JK
8725 {
8726 char *demangled;
8727
900e11f9
JK
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
a766d390
DE
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8de20a37
TT
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
a766d390 8751 }
900e11f9
JK
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
900e11f9
JK
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
224c3ddb
SM
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
900e11f9
JK
8799
8800 do_cleanups (back_to);
8801 return retval;
0114d602
DJ
8802}
8803
74921315
KS
8804/* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809static int
8810read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811{
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862}
8863
22cee43f
PMR
8864/* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873static struct using_direct **
8874using_directives (enum language language)
8875{
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880}
8881
27aa8d6a
SW
8882/* Read the import statement specified by the given die and record it. */
8883
8884static void
8885read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886{
bb5ed363 8887 struct objfile *objfile = cu->objfile;
27aa8d6a 8888 struct attribute *import_attr;
32019081 8889 struct die_info *imported_die, *child_die;
de4affc9 8890 struct dwarf2_cu *imported_cu;
27aa8d6a 8891 const char *imported_name;
794684b6 8892 const char *imported_name_prefix;
13387711
SW
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
794684b6 8896 const char *import_prefix;
32019081
JK
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
13387711 8899
27aa8d6a
SW
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
de4affc9
CC
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
82856980
SW
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
27aa8d6a 8950
794684b6
SW
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
de4affc9 8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8957
f55ee35c
JK
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
794684b6 8960 {
13387711
SW
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
794684b6 8963 }
13387711 8964 else if (strlen (imported_name_prefix) > 0)
12aaed36 8965 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
13387711
SW
8969 else
8970 canonical_name = imported_name;
794684b6 8971
32019081
JK
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
4262abfb 8988 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9009 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
22cee43f
PMR
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
32019081
JK
9026
9027 do_cleanups (cleanups);
27aa8d6a
SW
9028}
9029
f4dc4d17 9030/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9031
cb1df416
DJ
9032static void
9033free_cu_line_header (void *arg)
9034{
9a3c8263 9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039}
9040
1b80a9fa
JK
9041/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045static int
9046producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047{
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052}
9053
9291a0cd
TT
9054static void
9055find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9056 const char **name, const char **comp_dir)
9291a0cd 9057{
9291a0cd
TT
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
7d45c7c3
KB
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9062
7d45c7c3
KB
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9066 {
15d034d0
TT
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9291a0cd
TT
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
e6a959d6 9077 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085}
9086
f4dc4d17
DE
9087/* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9091
9092static void
9093handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9095{
527f3840 9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9097 struct attribute *attr;
527f3840
JK
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
2ab95328 9104
f4dc4d17
DE
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
2ab95328 9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
2ab95328 9121 {
527f3840
JK
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
2ab95328 9130
527f3840
JK
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9144 {
527f3840 9145 gdb_assert (*slot != NULL);
9a3c8263 9146 cu->line_header = (struct line_header *) *slot;
527f3840 9147 return;
dee91e82 9148 }
2ab95328 9149 }
527f3840
JK
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
2ab95328
TT
9185}
9186
95554aad 9187/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9188
c906108c 9189static void
e7c27a73 9190read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9191{
dee91e82 9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
15d034d0
TT
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
c906108c
SS
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
e142c38c 9202 CORE_ADDR baseaddr;
6e70227d 9203
e142c38c 9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9205
fae299cd 9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
2acceee2 9210 if (lowpc == ((CORE_ADDR) -1))
c906108c 9211 lowpc = highpc;
3e29f34a 9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9213
9291a0cd 9214 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9215
95554aad 9216 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9217
f4b8a18d
KW
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
3019eac3
DE
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
f4dc4d17 9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
c3b7b696 9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
43f3e411 9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
43f3e411 9266 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271}
9272
f4dc4d17
DE
9273/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9278
9279static void
f4dc4d17 9280setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9281{
f4dc4d17
DE
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
3019eac3 9287 struct attribute *attr;
f4dc4d17 9288 unsigned int i, line_offset;
0186c6a7 9289 struct signatured_type *sig_type;
3019eac3 9290
f4dc4d17 9291 gdb_assert (per_cu->is_debug_types);
0186c6a7 9292 sig_type = (struct signatured_type *) per_cu;
3019eac3 9293
f4dc4d17 9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9295
f4dc4d17 9296 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9297 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
43f3e411 9306 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
3019eac3 9312 {
f4dc4d17
DE
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9323 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9324 }
f4dc4d17 9325 return;
3019eac3
DE
9326 }
9327
f4dc4d17
DE
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
3019eac3 9330
f4dc4d17
DE
9331 if (first_time)
9332 {
43f3e411 9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9334
1fd60fc0
DE
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
f4dc4d17
DE
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9342
f4dc4d17
DE
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
d521ce57 9345 const char *dir = NULL;
f4dc4d17 9346 struct file_entry *fe = &lh->file_names[i];
3019eac3 9347
afa6c9ab 9348 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9349 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9350 dwarf2_start_subfile (fe->name, dir);
3019eac3 9351
f4dc4d17
DE
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
43f3e411 9356 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9357 lh->file_names may contain dups. */
43f3e411
DE
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
3019eac3 9367 {
0ab9ce85 9368 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
3019eac3
DE
9376 }
9377
f4dc4d17
DE
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383}
3019eac3 9384
f4dc4d17
DE
9385/* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
3019eac3 9389
f4dc4d17
DE
9390static void
9391read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392{
9393 struct die_info *child_die;
3019eac3 9394
f4dc4d17
DE
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
3019eac3
DE
9411}
9412\f
80626a55
DE
9413/* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9421
9422static hashval_t
9423hash_dwo_file (const void *item)
9424{
9a3c8263 9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9426 hashval_t hash;
3019eac3 9427
a2ce51a0
DE
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
3019eac3
DE
9432}
9433
9434static int
9435eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436{
9a3c8263
SM
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9439
a2ce51a0
DE
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9445}
9446
9447/* Allocate a hash table for DWO files. */
9448
9449static htab_t
9450allocate_dwo_file_hash_table (void)
9451{
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461}
9462
80626a55
DE
9463/* Lookup DWO file DWO_NAME. */
9464
9465static void **
0ac5b59e 9466lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9467{
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
80626a55
DE
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480}
9481
3019eac3
DE
9482static hashval_t
9483hash_dwo_unit (const void *item)
9484{
9a3c8263 9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489}
9490
9491static int
9492eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493{
9a3c8263
SM
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502}
9503
9504/* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507static htab_t
9508allocate_dwo_unit_table (struct objfile *objfile)
9509{
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519}
9520
80626a55 9521/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9522
19c3d4c9 9523struct create_dwo_cu_data
3019eac3
DE
9524{
9525 struct dwo_file *dwo_file;
19c3d4c9 9526 struct dwo_unit dwo_unit;
3019eac3
DE
9527};
9528
19c3d4c9 9529/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9530
9531static void
19c3d4c9
DE
9532create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
3019eac3
DE
9537{
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
8a0459fd 9541 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9543 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9545 struct attribute *attr;
3019eac3
DE
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
19c3d4c9
DE
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9554 return;
9555 }
9556
3019eac3
DE
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9559 dwo_unit->section = section;
3019eac3
DE
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
b4f54984 9563 if (dwarf_read_debug)
4031ecc5
DE
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9566}
9567
19c3d4c9
DE
9568/* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
3019eac3 9570
19c3d4c9
DE
9571static struct dwo_unit *
9572create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9573{
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
d521ce57 9578 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
3019eac3
DE
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
a32a8923 9590 abfd = get_section_bfd_owner (section);
3019eac3 9591
b4f54984 9592 if (dwarf_read_debug)
19c3d4c9
DE
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9595 get_section_name (section),
9596 get_section_file_name (section));
19c3d4c9 9597 }
3019eac3 9598
19c3d4c9
DE
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
3019eac3
DE
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
19c3d4c9
DE
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9613 per_cu.section = section;
3019eac3 9614
33e80786 9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9628 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
3019eac3
DE
9635
9636 info_ptr += per_cu.length;
9637 }
9638
19c3d4c9 9639 return dwo_unit;
3019eac3
DE
9640}
9641
80626a55
DE
9642/* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
d2415c6c
DE
9645 DWP Version 1:
9646
80626a55
DE
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
d2415c6c
DE
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
80626a55 9659
d2415c6c 9660 Numbers are recorded using the byte order of the application binary.
80626a55 9661
d2415c6c
DE
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9666
d2415c6c
DE
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9673
73869dc2
DE
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
d2415c6c
DE
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
80626a55 9759
d2415c6c
DE
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
80626a55 9762
d2415c6c 9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9764
d2415c6c
DE
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
80626a55 9768
d2415c6c 9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9770
d2415c6c 9771 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9772 to stop at an unused slot or find the match. */
80626a55
DE
9773
9774/* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779static struct dwp_hash_table *
9780create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781{
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9784 const gdb_byte *index_ptr, *index_end;
80626a55 9785 struct dwarf2_section_info *index;
73869dc2 9786 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
80626a55
DE
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
73869dc2 9813 if (version != 1 && version != 2)
80626a55 9814 {
21aa081e 9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9816 " [in module %s]"),
21aa081e 9817 pulongest (version), dwp_file->name);
80626a55
DE
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
21aa081e 9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9822 " is not power of 2 [in module %s]"),
21aa081e 9823 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
80626a55
DE
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
80626a55
DE
9927
9928 return htab;
9929}
9930
9931/* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9935 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939static int
73869dc2
DE
9940locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9942{
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
049412e3 9948 if (sections->abbrev.s.section != NULL)
80626a55 9949 return 0;
049412e3 9950 sections->abbrev.s.section = sectp;
80626a55
DE
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
049412e3 9957 if (sections->info_or_types.s.section != NULL)
80626a55 9958 return 0;
049412e3 9959 sections->info_or_types.s.section = sectp;
80626a55
DE
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
049412e3 9965 if (sections->line.s.section != NULL)
80626a55 9966 return 0;
049412e3 9967 sections->line.s.section = sectp;
80626a55
DE
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
049412e3 9973 if (sections->loc.s.section != NULL)
80626a55 9974 return 0;
049412e3 9975 sections->loc.s.section = sectp;
80626a55
DE
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
049412e3 9981 if (sections->macinfo.s.section != NULL)
80626a55 9982 return 0;
049412e3 9983 sections->macinfo.s.section = sectp;
80626a55
DE
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
049412e3 9989 if (sections->macro.s.section != NULL)
80626a55 9990 return 0;
049412e3 9991 sections->macro.s.section = sectp;
80626a55
DE
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
049412e3 9997 if (sections->str_offsets.s.section != NULL)
80626a55 9998 return 0;
049412e3 9999 sections->str_offsets.s.section = sectp;
80626a55
DE
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009}
10010
73869dc2
DE
10011/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
80626a55
DE
10015
10016static struct dwo_unit *
73869dc2
DE
10017create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
80626a55
DE
10021{
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
73869dc2 10029 struct virtual_v1_dwo_sections sections;
80626a55
DE
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
73869dc2
DE
10036 gdb_assert (dwp_file->version == 1);
10037
b4f54984 10038 if (dwarf_read_debug)
80626a55 10039 {
73869dc2 10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10041 kind,
73869dc2 10042 pulongest (unit_index), hex_string (signature),
80626a55
DE
10043 dwp_file->name);
10044 }
10045
19ac8c2e 10046 /* Fetch the sections of this DWO unit.
80626a55
DE
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
73869dc2 10050#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
19ac8c2e 10056 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
73869dc2 10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
73869dc2
DE
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
a32a8923
DE
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
73869dc2 10096 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10107 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
2792b94d
PM
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
80626a55
DE
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
0ac5b59e 10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
b4f54984 10124 if (dwarf_read_debug)
80626a55
DE
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
0ac5b59e 10134 dwo_file->comp_dir = comp_dir;
80626a55
DE
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10143 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
80626a55
DE
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
b4f54984 10154 if (dwarf_read_debug)
80626a55
DE
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
9a3c8263 10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
8d749320
SM
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10168 *dwo_unit->section = sections.info_or_types;
57d63ce2 10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10170
10171 return dwo_unit;
10172}
10173
73869dc2
DE
10174/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179static struct dwarf2_section_info
10180create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182{
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215}
10216
10217/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222static struct dwo_unit *
10223create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227{
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
b4f54984 10244 if (dwarf_read_debug)
73869dc2
DE
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
b4f54984 10326 if (dwarf_read_debug)
73869dc2
DE
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
73869dc2
DE
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
b4f54984 10369 if (dwarf_read_debug)
73869dc2
DE
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
9a3c8263 10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
8d749320
SM
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391}
10392
57d63ce2
DE
10393/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
80626a55
DE
10395
10396static struct dwo_unit *
57d63ce2
DE
10397lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
80626a55 10399{
57d63ce2
DE
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10402 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10403 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
19ac8c2e
DE
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
80626a55
DE
10416
10417 if (*slot != NULL)
9a3c8263 10418 return (struct dwo_unit *) *slot;
80626a55
DE
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
57d63ce2 10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10427 if (signature_in_table == signature)
10428 {
57d63ce2
DE
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10432
73869dc2
DE
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
9a3c8263 10445 return (struct dwo_unit *) *slot;
80626a55
DE
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455}
10456
ab5088bf 10457/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
80626a55 10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
13aaf454
DE
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10466 If unable to find/open the file, return NULL.
3019eac3
DE
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469static bfd *
6ac97d4c 10470try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10471{
10472 bfd *sym_bfd;
80626a55 10473 int desc, flags;
3019eac3 10474 char *absolute_name;
9c02c129
DE
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
6ac97d4c
DE
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
9c02c129 10489 else
6ac97d4c 10490 search_path = xstrdup (debug_file_directory);
3019eac3 10491
492c0ab7 10492 flags = OPF_RETURN_REALPATH;
80626a55
DE
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10495 desc = openp (search_path, flags, file_name,
3019eac3 10496 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10497 xfree (search_path);
3019eac3
DE
10498 if (desc < 0)
10499 return NULL;
10500
bb397797 10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10502 xfree (absolute_name);
9c02c129
DE
10503 if (sym_bfd == NULL)
10504 return NULL;
3019eac3
DE
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
cbb099e8 10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10510 return NULL;
10511 }
10512
13aaf454
DE
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
3019eac3
DE
10519 return sym_bfd;
10520}
10521
ab5088bf 10522/* Try to open DWO file FILE_NAME.
3019eac3
DE
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529static bfd *
ab5088bf 10530open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10531{
10532 bfd *abfd;
3019eac3 10533
80626a55 10534 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
80626a55 10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
6ac97d4c 10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
6ac97d4c 10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10558}
10559
80626a55
DE
10560/* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563static void
10564dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565{
9a3c8263 10566 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
049412e3 10571 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
049412e3 10576 dwo_sections->info.s.section = sectp;
80626a55
DE
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
049412e3 10581 dwo_sections->line.s.section = sectp;
80626a55
DE
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
049412e3 10586 dwo_sections->loc.s.section = sectp;
80626a55
DE
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
049412e3 10591 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
049412e3 10596 dwo_sections->macro.s.section = sectp;
80626a55
DE
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
049412e3 10601 dwo_sections->str.s.section = sectp;
80626a55
DE
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
049412e3 10606 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
049412e3 10614 type_section.s.section = sectp;
80626a55
DE
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619}
10620
ab5088bf 10621/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10622 by PER_CU. This is for the non-DWP case.
80626a55 10623 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10624
10625static struct dwo_file *
0ac5b59e
DE
10626open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10628{
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
3019eac3
DE
10632 struct cleanup *cleanups;
10633
ab5088bf 10634 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10635 if (dbfd == NULL)
10636 {
b4f54984 10637 if (dwarf_read_debug)
80626a55
DE
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
80626a55 10644 dwo_file->dbfd = dbfd;
3019eac3
DE
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
80626a55 10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10649
19c3d4c9 10650 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
b4f54984 10657 if (dwarf_read_debug)
80626a55
DE
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
3019eac3
DE
10660 return dwo_file;
10661}
10662
80626a55 10663/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
3019eac3 10666
80626a55 10667static void
73869dc2
DE
10668dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
3019eac3 10670{
9a3c8263 10671 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10674
80626a55 10675 /* Record the ELF section number for later lookup: this is what the
73869dc2 10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10679
80626a55
DE
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
049412e3 10683 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
049412e3 10688 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
049412e3 10693 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696}
3019eac3 10697
73869dc2
DE
10698/* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703static void
10704dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705{
9a3c8263 10706 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
049412e3 10718 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
049412e3 10723 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
049412e3 10728 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
049412e3 10733 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
049412e3 10738 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
049412e3 10743 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
049412e3 10748 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
049412e3 10753 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756}
10757
80626a55 10758/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10759
80626a55
DE
10760static hashval_t
10761hash_dwp_loaded_cutus (const void *item)
10762{
9a3c8263 10763 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10764
80626a55
DE
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
3019eac3
DE
10767}
10768
80626a55 10769/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10770
80626a55
DE
10771static int
10772eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10773{
9a3c8263
SM
10774 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10775 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10776
80626a55
DE
10777 return dua->signature == dub->signature;
10778}
3019eac3 10779
80626a55 10780/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10781
80626a55
DE
10782static htab_t
10783allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784{
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792}
3019eac3 10793
ab5088bf
DE
10794/* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800static bfd *
10801open_dwp_file (const char *file_name)
10802{
6ac97d4c
DE
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
ab5088bf
DE
10827}
10828
80626a55
DE
10829/* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
a766d390 10832
80626a55 10833static struct dwp_file *
ab5088bf 10834open_and_init_dwp_file (void)
80626a55
DE
10835{
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
82bf32bc
JK
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
ab5088bf 10847 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
80626a55
DE
10857 if (dbfd == NULL)
10858 {
b4f54984 10859 if (dwarf_read_debug)
80626a55
DE
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
3019eac3 10863 }
80626a55 10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10865 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
c906108c 10868
80626a55
DE
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
73869dc2 10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
73869dc2
DE
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10885 pretty bizarre. We use pulongest here because that's the established
4d65956b 10886 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
19ac8c2e
DE
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10899
b4f54984 10900 if (dwarf_read_debug)
80626a55
DE
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10907 }
10908
10909 return dwp_file;
3019eac3 10910}
c906108c 10911
ab5088bf
DE
10912/* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914static struct dwp_file *
10915get_dwp_file (void)
10916{
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923}
10924
80626a55
DE
10925/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
1c658ad5 10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10940
3019eac3 10941static struct dwo_unit *
80626a55
DE
10942lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
3019eac3
DE
10945{
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
3019eac3 10949 struct dwo_file *dwo_file;
80626a55 10950 struct dwp_file *dwp_file;
cb1df416 10951
6a506a2d
DE
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
cf2c3c16 10956
ab5088bf 10957 dwp_file = get_dwp_file ();
80626a55 10958 if (dwp_file != NULL)
cf2c3c16 10959 {
80626a55
DE
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
80626a55
DE
10968
10969 if (dwo_cutu != NULL)
10970 {
b4f54984 10971 if (dwarf_read_debug)
80626a55
DE
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
6a506a2d 10982 else
80626a55 10983 {
6a506a2d 10984 /* No DWP file, look for the DWO file. */
80626a55 10985
6a506a2d
DE
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
80626a55 10988 {
6a506a2d
DE
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10991 }
6a506a2d 10992 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 10993 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 10994
6a506a2d 10995 if (dwo_file != NULL)
19c3d4c9 10996 {
6a506a2d
DE
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
9a3c8263
SM
11005 dwo_cutu
11006 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11007 }
11008 else if (!is_debug_types && dwo_file->cu)
80626a55 11009 {
6a506a2d
DE
11010 if (signature == dwo_file->cu->signature)
11011 dwo_cutu = dwo_file->cu;
11012 }
11013
11014 if (dwo_cutu != NULL)
11015 {
b4f54984 11016 if (dwarf_read_debug)
6a506a2d
DE
11017 {
11018 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11019 kind, dwo_name, hex_string (signature),
11020 host_address_to_string (dwo_cutu));
11021 }
11022 return dwo_cutu;
80626a55
DE
11023 }
11024 }
2e276125 11025 }
9cdd5dbd 11026
80626a55
DE
11027 /* We didn't find it. This could mean a dwo_id mismatch, or
11028 someone deleted the DWO/DWP file, or the search path isn't set up
11029 correctly to find the file. */
11030
b4f54984 11031 if (dwarf_read_debug)
80626a55
DE
11032 {
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11034 kind, dwo_name, hex_string (signature));
11035 }
3019eac3 11036
6656a72d
DE
11037 /* This is a warning and not a complaint because it can be caused by
11038 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11039 {
11040 /* Print the name of the DWP file if we looked there, helps the user
11041 better diagnose the problem. */
11042 char *dwp_text = NULL;
11043 struct cleanup *cleanups;
11044
11045 if (dwp_file != NULL)
11046 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11047 cleanups = make_cleanup (xfree, dwp_text);
11048
11049 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11050 " [in module %s]"),
11051 kind, dwo_name, hex_string (signature),
11052 dwp_text != NULL ? dwp_text : "",
11053 this_unit->is_debug_types ? "TU" : "CU",
11054 this_unit->offset.sect_off, objfile_name (objfile));
11055
11056 do_cleanups (cleanups);
11057 }
3019eac3 11058 return NULL;
5fb290d7
DJ
11059}
11060
80626a55
DE
11061/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11062 See lookup_dwo_cutu_unit for details. */
11063
11064static struct dwo_unit *
11065lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11066 const char *dwo_name, const char *comp_dir,
11067 ULONGEST signature)
11068{
11069 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11070}
11071
11072/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11073 See lookup_dwo_cutu_unit for details. */
11074
11075static struct dwo_unit *
11076lookup_dwo_type_unit (struct signatured_type *this_tu,
11077 const char *dwo_name, const char *comp_dir)
11078{
11079 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11080}
11081
89e63ee4
DE
11082/* Traversal function for queue_and_load_all_dwo_tus. */
11083
11084static int
11085queue_and_load_dwo_tu (void **slot, void *info)
11086{
11087 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11088 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11089 ULONGEST signature = dwo_unit->signature;
11090 struct signatured_type *sig_type =
11091 lookup_dwo_signatured_type (per_cu->cu, signature);
11092
11093 if (sig_type != NULL)
11094 {
11095 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11096
11097 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11098 a real dependency of PER_CU on SIG_TYPE. That is detected later
11099 while processing PER_CU. */
11100 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11101 load_full_type_unit (sig_cu);
11102 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11103 }
11104
11105 return 1;
11106}
11107
11108/* Queue all TUs contained in the DWO of PER_CU to be read in.
11109 The DWO may have the only definition of the type, though it may not be
11110 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11111 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11112
11113static void
11114queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11115{
11116 struct dwo_unit *dwo_unit;
11117 struct dwo_file *dwo_file;
11118
11119 gdb_assert (!per_cu->is_debug_types);
11120 gdb_assert (get_dwp_file () == NULL);
11121 gdb_assert (per_cu->cu != NULL);
11122
11123 dwo_unit = per_cu->cu->dwo_unit;
11124 gdb_assert (dwo_unit != NULL);
11125
11126 dwo_file = dwo_unit->dwo_file;
11127 if (dwo_file->tus != NULL)
11128 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11129}
11130
3019eac3
DE
11131/* Free all resources associated with DWO_FILE.
11132 Close the DWO file and munmap the sections.
11133 All memory should be on the objfile obstack. */
348e048f
DE
11134
11135static void
3019eac3 11136free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11137{
3019eac3
DE
11138 int ix;
11139 struct dwarf2_section_info *section;
348e048f 11140
5c6fa7ab 11141 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11142 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11143
3019eac3
DE
11144 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11145}
348e048f 11146
3019eac3 11147/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11148
3019eac3
DE
11149static void
11150free_dwo_file_cleanup (void *arg)
11151{
11152 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11154
3019eac3
DE
11155 free_dwo_file (dwo_file, objfile);
11156}
348e048f 11157
3019eac3 11158/* Traversal function for free_dwo_files. */
2ab95328 11159
3019eac3
DE
11160static int
11161free_dwo_file_from_slot (void **slot, void *info)
11162{
11163 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11164 struct objfile *objfile = (struct objfile *) info;
348e048f 11165
3019eac3 11166 free_dwo_file (dwo_file, objfile);
348e048f 11167
3019eac3
DE
11168 return 1;
11169}
348e048f 11170
3019eac3 11171/* Free all resources associated with DWO_FILES. */
348e048f 11172
3019eac3
DE
11173static void
11174free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11175{
11176 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11177}
3019eac3
DE
11178\f
11179/* Read in various DIEs. */
348e048f 11180
d389af10
JK
11181/* qsort helper for inherit_abstract_dies. */
11182
11183static int
11184unsigned_int_compar (const void *ap, const void *bp)
11185{
11186 unsigned int a = *(unsigned int *) ap;
11187 unsigned int b = *(unsigned int *) bp;
11188
11189 return (a > b) - (b > a);
11190}
11191
11192/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11193 Inherit only the children of the DW_AT_abstract_origin DIE not being
11194 already referenced by DW_AT_abstract_origin from the children of the
11195 current DIE. */
d389af10
JK
11196
11197static void
11198inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11199{
11200 struct die_info *child_die;
11201 unsigned die_children_count;
11202 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11203 sect_offset *offsets;
11204 sect_offset *offsets_end, *offsetp;
d389af10
JK
11205 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11206 struct die_info *origin_die;
11207 /* Iterator of the ORIGIN_DIE children. */
11208 struct die_info *origin_child_die;
11209 struct cleanup *cleanups;
11210 struct attribute *attr;
cd02d79d
PA
11211 struct dwarf2_cu *origin_cu;
11212 struct pending **origin_previous_list_in_scope;
d389af10
JK
11213
11214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11215 if (!attr)
11216 return;
11217
cd02d79d
PA
11218 /* Note that following die references may follow to a die in a
11219 different cu. */
11220
11221 origin_cu = cu;
11222 origin_die = follow_die_ref (die, attr, &origin_cu);
11223
11224 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11225 symbols in. */
11226 origin_previous_list_in_scope = origin_cu->list_in_scope;
11227 origin_cu->list_in_scope = cu->list_in_scope;
11228
edb3359d
DJ
11229 if (die->tag != origin_die->tag
11230 && !(die->tag == DW_TAG_inlined_subroutine
11231 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11232 complaint (&symfile_complaints,
11233 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11234 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11235
11236 child_die = die->child;
11237 die_children_count = 0;
11238 while (child_die && child_die->tag)
11239 {
11240 child_die = sibling_die (child_die);
11241 die_children_count++;
11242 }
8d749320 11243 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11244 cleanups = make_cleanup (xfree, offsets);
11245
11246 offsets_end = offsets;
3ea89b92
PMR
11247 for (child_die = die->child;
11248 child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 struct die_info *child_origin_die;
11252 struct dwarf2_cu *child_origin_cu;
11253
11254 /* We are trying to process concrete instance entries:
11255 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11256 it's not relevant to our analysis here. i.e. detecting DIEs that are
11257 present in the abstract instance but not referenced in the concrete
11258 one. */
11259 if (child_die->tag == DW_TAG_GNU_call_site)
11260 continue;
11261
c38f313d
DJ
11262 /* For each CHILD_DIE, find the corresponding child of
11263 ORIGIN_DIE. If there is more than one layer of
11264 DW_AT_abstract_origin, follow them all; there shouldn't be,
11265 but GCC versions at least through 4.4 generate this (GCC PR
11266 40573). */
3ea89b92
PMR
11267 child_origin_die = child_die;
11268 child_origin_cu = cu;
c38f313d
DJ
11269 while (1)
11270 {
cd02d79d
PA
11271 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11272 child_origin_cu);
c38f313d
DJ
11273 if (attr == NULL)
11274 break;
cd02d79d
PA
11275 child_origin_die = follow_die_ref (child_origin_die, attr,
11276 &child_origin_cu);
c38f313d
DJ
11277 }
11278
d389af10
JK
11279 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11280 counterpart may exist. */
c38f313d 11281 if (child_origin_die != child_die)
d389af10 11282 {
edb3359d
DJ
11283 if (child_die->tag != child_origin_die->tag
11284 && !(child_die->tag == DW_TAG_inlined_subroutine
11285 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11288 "different tags"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
c38f313d
DJ
11290 if (child_origin_die->parent != origin_die)
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11293 "different parents"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
c38f313d
DJ
11295 else
11296 *offsets_end++ = child_origin_die->offset;
d389af10 11297 }
d389af10
JK
11298 }
11299 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11300 unsigned_int_compar);
11301 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11302 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11303 complaint (&symfile_complaints,
11304 _("Multiple children of DIE 0x%x refer "
11305 "to DIE 0x%x as their abstract origin"),
b64f50a1 11306 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11307
11308 offsetp = offsets;
11309 origin_child_die = origin_die->child;
11310 while (origin_child_die && origin_child_die->tag)
11311 {
11312 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11313 while (offsetp < offsets_end
11314 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11315 offsetp++;
b64f50a1
JK
11316 if (offsetp >= offsets_end
11317 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11318 {
adde2bff
DE
11319 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11320 Check whether we're already processing ORIGIN_CHILD_DIE.
11321 This can happen with mutually referenced abstract_origins.
11322 PR 16581. */
11323 if (!origin_child_die->in_process)
11324 process_die (origin_child_die, origin_cu);
d389af10
JK
11325 }
11326 origin_child_die = sibling_die (origin_child_die);
11327 }
cd02d79d 11328 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11329
11330 do_cleanups (cleanups);
11331}
11332
c906108c 11333static void
e7c27a73 11334read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11335{
e7c27a73 11336 struct objfile *objfile = cu->objfile;
3e29f34a 11337 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11338 struct context_stack *newobj;
c906108c
SS
11339 CORE_ADDR lowpc;
11340 CORE_ADDR highpc;
11341 struct die_info *child_die;
edb3359d 11342 struct attribute *attr, *call_line, *call_file;
15d034d0 11343 const char *name;
e142c38c 11344 CORE_ADDR baseaddr;
801e3a5b 11345 struct block *block;
edb3359d 11346 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11347 VEC (symbolp) *template_args = NULL;
11348 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11349
11350 if (inlined_func)
11351 {
11352 /* If we do not have call site information, we can't show the
11353 caller of this inlined function. That's too confusing, so
11354 only use the scope for local variables. */
11355 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11356 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11357 if (call_line == NULL || call_file == NULL)
11358 {
11359 read_lexical_block_scope (die, cu);
11360 return;
11361 }
11362 }
c906108c 11363
e142c38c
DJ
11364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11365
94af9270 11366 name = dwarf2_name (die, cu);
c906108c 11367
e8d05480
JB
11368 /* Ignore functions with missing or empty names. These are actually
11369 illegal according to the DWARF standard. */
11370 if (name == NULL)
11371 {
11372 complaint (&symfile_complaints,
b64f50a1
JK
11373 _("missing name for subprogram DIE at %d"),
11374 die->offset.sect_off);
e8d05480
JB
11375 return;
11376 }
11377
11378 /* Ignore functions with missing or invalid low and high pc attributes. */
11379 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11380 {
ae4d0c03
PM
11381 attr = dwarf2_attr (die, DW_AT_external, cu);
11382 if (!attr || !DW_UNSND (attr))
11383 complaint (&symfile_complaints,
3e43a32a
MS
11384 _("cannot get low and high bounds "
11385 "for subprogram DIE at %d"),
b64f50a1 11386 die->offset.sect_off);
e8d05480
JB
11387 return;
11388 }
c906108c 11389
3e29f34a
MR
11390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11392
34eaf542
TT
11393 /* If we have any template arguments, then we must allocate a
11394 different sort of symbol. */
11395 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11396 {
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11399 {
e623cf5d 11400 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11401 templ_func->base.is_cplus_template_function = 1;
11402 break;
11403 }
11404 }
11405
fe978cb0
PA
11406 newobj = push_context (0, lowpc);
11407 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11408 (struct symbol *) templ_func);
4c2df51b 11409
4cecd739
DJ
11410 /* If there is a location expression for DW_AT_frame_base, record
11411 it. */
e142c38c 11412 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11413 if (attr)
fe978cb0 11414 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11415
63e43d3a
PMR
11416 /* If there is a location for the static link, record it. */
11417 newobj->static_link = NULL;
11418 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11419 if (attr)
11420 {
224c3ddb
SM
11421 newobj->static_link
11422 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11423 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11424 }
11425
e142c38c 11426 cu->list_in_scope = &local_symbols;
c906108c 11427
639d11d3 11428 if (die->child != NULL)
c906108c 11429 {
639d11d3 11430 child_die = die->child;
c906108c
SS
11431 while (child_die && child_die->tag)
11432 {
34eaf542
TT
11433 if (child_die->tag == DW_TAG_template_type_param
11434 || child_die->tag == DW_TAG_template_value_param)
11435 {
11436 struct symbol *arg = new_symbol (child_die, NULL, cu);
11437
f1078f66
DJ
11438 if (arg != NULL)
11439 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11440 }
11441 else
11442 process_die (child_die, cu);
c906108c
SS
11443 child_die = sibling_die (child_die);
11444 }
11445 }
11446
d389af10
JK
11447 inherit_abstract_dies (die, cu);
11448
4a811a97
UW
11449 /* If we have a DW_AT_specification, we might need to import using
11450 directives from the context of the specification DIE. See the
11451 comment in determine_prefix. */
11452 if (cu->language == language_cplus
11453 && dwarf2_attr (die, DW_AT_specification, cu))
11454 {
11455 struct dwarf2_cu *spec_cu = cu;
11456 struct die_info *spec_die = die_specification (die, &spec_cu);
11457
11458 while (spec_die)
11459 {
11460 child_die = spec_die->child;
11461 while (child_die && child_die->tag)
11462 {
11463 if (child_die->tag == DW_TAG_imported_module)
11464 process_die (child_die, spec_cu);
11465 child_die = sibling_die (child_die);
11466 }
11467
11468 /* In some cases, GCC generates specification DIEs that
11469 themselves contain DW_AT_specification attributes. */
11470 spec_die = die_specification (spec_die, &spec_cu);
11471 }
11472 }
11473
fe978cb0 11474 newobj = pop_context ();
c906108c 11475 /* Make a block for the local symbols within. */
fe978cb0 11476 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11477 newobj->static_link, lowpc, highpc);
801e3a5b 11478
df8a16a1 11479 /* For C++, set the block's scope. */
45280282
IB
11480 if ((cu->language == language_cplus
11481 || cu->language == language_fortran
11482 || cu->language == language_d)
4d4ec4e5 11483 && cu->processing_has_namespace_info)
195a3f6c
TT
11484 block_set_scope (block, determine_prefix (die, cu),
11485 &objfile->objfile_obstack);
df8a16a1 11486
801e3a5b
JB
11487 /* If we have address ranges, record them. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11489
fe978cb0 11490 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11491
34eaf542
TT
11492 /* Attach template arguments to function. */
11493 if (! VEC_empty (symbolp, template_args))
11494 {
11495 gdb_assert (templ_func != NULL);
11496
11497 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11498 templ_func->template_arguments
8d749320
SM
11499 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11500 templ_func->n_template_arguments);
34eaf542
TT
11501 memcpy (templ_func->template_arguments,
11502 VEC_address (symbolp, template_args),
11503 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11504 VEC_free (symbolp, template_args);
11505 }
11506
208d8187
JB
11507 /* In C++, we can have functions nested inside functions (e.g., when
11508 a function declares a class that has methods). This means that
11509 when we finish processing a function scope, we may need to go
11510 back to building a containing block's symbol lists. */
fe978cb0 11511 local_symbols = newobj->locals;
22cee43f 11512 local_using_directives = newobj->local_using_directives;
208d8187 11513
921e78cf
JB
11514 /* If we've finished processing a top-level function, subsequent
11515 symbols go in the file symbol list. */
11516 if (outermost_context_p ())
e142c38c 11517 cu->list_in_scope = &file_symbols;
c906108c
SS
11518}
11519
11520/* Process all the DIES contained within a lexical block scope. Start
11521 a new scope, process the dies, and then close the scope. */
11522
11523static void
e7c27a73 11524read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11525{
e7c27a73 11526 struct objfile *objfile = cu->objfile;
3e29f34a 11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11528 struct context_stack *newobj;
c906108c
SS
11529 CORE_ADDR lowpc, highpc;
11530 struct die_info *child_die;
e142c38c
DJ
11531 CORE_ADDR baseaddr;
11532
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11534
11535 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11536 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11537 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11538 be nasty. Might be easier to properly extend generic blocks to
af34e669 11539 describe ranges. */
d85a05f0 11540 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11541 return;
3e29f34a
MR
11542 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11543 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11544
11545 push_context (0, lowpc);
639d11d3 11546 if (die->child != NULL)
c906108c 11547 {
639d11d3 11548 child_die = die->child;
c906108c
SS
11549 while (child_die && child_die->tag)
11550 {
e7c27a73 11551 process_die (child_die, cu);
c906108c
SS
11552 child_die = sibling_die (child_die);
11553 }
11554 }
3ea89b92 11555 inherit_abstract_dies (die, cu);
fe978cb0 11556 newobj = pop_context ();
c906108c 11557
22cee43f 11558 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11559 {
801e3a5b 11560 struct block *block
63e43d3a 11561 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11562 newobj->start_addr, highpc);
801e3a5b
JB
11563
11564 /* Note that recording ranges after traversing children, as we
11565 do here, means that recording a parent's ranges entails
11566 walking across all its children's ranges as they appear in
11567 the address map, which is quadratic behavior.
11568
11569 It would be nicer to record the parent's ranges before
11570 traversing its children, simply overriding whatever you find
11571 there. But since we don't even decide whether to create a
11572 block until after we've traversed its children, that's hard
11573 to do. */
11574 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11575 }
fe978cb0 11576 local_symbols = newobj->locals;
22cee43f 11577 local_using_directives = newobj->local_using_directives;
c906108c
SS
11578}
11579
96408a79
SA
11580/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11581
11582static void
11583read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11584{
11585 struct objfile *objfile = cu->objfile;
11586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11587 CORE_ADDR pc, baseaddr;
11588 struct attribute *attr;
11589 struct call_site *call_site, call_site_local;
11590 void **slot;
11591 int nparams;
11592 struct die_info *child_die;
11593
11594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11595
11596 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11597 if (!attr)
11598 {
11599 complaint (&symfile_complaints,
11600 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11601 "DIE 0x%x [in module %s]"),
4262abfb 11602 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11603 return;
11604 }
31aa7e4e 11605 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11606 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11607
11608 if (cu->call_site_htab == NULL)
11609 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11610 NULL, &objfile->objfile_obstack,
11611 hashtab_obstack_allocate, NULL);
11612 call_site_local.pc = pc;
11613 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11614 if (*slot != NULL)
11615 {
11616 complaint (&symfile_complaints,
11617 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11618 "DIE 0x%x [in module %s]"),
4262abfb
JK
11619 paddress (gdbarch, pc), die->offset.sect_off,
11620 objfile_name (objfile));
96408a79
SA
11621 return;
11622 }
11623
11624 /* Count parameters at the caller. */
11625
11626 nparams = 0;
11627 for (child_die = die->child; child_die && child_die->tag;
11628 child_die = sibling_die (child_die))
11629 {
11630 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11631 {
11632 complaint (&symfile_complaints,
11633 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11634 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11635 child_die->tag, child_die->offset.sect_off,
11636 objfile_name (objfile));
96408a79
SA
11637 continue;
11638 }
11639
11640 nparams++;
11641 }
11642
224c3ddb
SM
11643 call_site
11644 = ((struct call_site *)
11645 obstack_alloc (&objfile->objfile_obstack,
11646 sizeof (*call_site)
11647 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11648 *slot = call_site;
11649 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11650 call_site->pc = pc;
11651
11652 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11653 {
11654 struct die_info *func_die;
11655
11656 /* Skip also over DW_TAG_inlined_subroutine. */
11657 for (func_die = die->parent;
11658 func_die && func_die->tag != DW_TAG_subprogram
11659 && func_die->tag != DW_TAG_subroutine_type;
11660 func_die = func_die->parent);
11661
11662 /* DW_AT_GNU_all_call_sites is a superset
11663 of DW_AT_GNU_all_tail_call_sites. */
11664 if (func_die
11665 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11667 {
11668 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11669 not complete. But keep CALL_SITE for look ups via call_site_htab,
11670 both the initial caller containing the real return address PC and
11671 the final callee containing the current PC of a chain of tail
11672 calls do not need to have the tail call list complete. But any
11673 function candidate for a virtual tail call frame searched via
11674 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11675 determined unambiguously. */
11676 }
11677 else
11678 {
11679 struct type *func_type = NULL;
11680
11681 if (func_die)
11682 func_type = get_die_type (func_die, cu);
11683 if (func_type != NULL)
11684 {
11685 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11686
11687 /* Enlist this call site to the function. */
11688 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11689 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11690 }
11691 else
11692 complaint (&symfile_complaints,
11693 _("Cannot find function owning DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
4262abfb 11695 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11696 }
11697 }
11698
11699 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11700 if (attr == NULL)
11701 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11702 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11703 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11704 /* Keep NULL DWARF_BLOCK. */;
11705 else if (attr_form_is_block (attr))
11706 {
11707 struct dwarf2_locexpr_baton *dlbaton;
11708
8d749320 11709 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11710 dlbaton->data = DW_BLOCK (attr)->data;
11711 dlbaton->size = DW_BLOCK (attr)->size;
11712 dlbaton->per_cu = cu->per_cu;
11713
11714 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11715 }
7771576e 11716 else if (attr_form_is_ref (attr))
96408a79 11717 {
96408a79
SA
11718 struct dwarf2_cu *target_cu = cu;
11719 struct die_info *target_die;
11720
ac9ec31b 11721 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11722 gdb_assert (target_cu->objfile == objfile);
11723 if (die_is_declaration (target_die, target_cu))
11724 {
7d45c7c3 11725 const char *target_physname;
9112db09
JK
11726
11727 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_linkage_name,
11730 target_cu);
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_string_attr (target_die,
11733 DW_AT_MIPS_linkage_name,
11734 target_cu);
11735 if (target_physname == NULL)
9112db09 11736 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11737 if (target_physname == NULL)
11738 complaint (&symfile_complaints,
11739 _("DW_AT_GNU_call_site_target target DIE has invalid "
11740 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11741 die->offset.sect_off, objfile_name (objfile));
96408a79 11742 else
7d455152 11743 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11744 }
11745 else
11746 {
11747 CORE_ADDR lowpc;
11748
11749 /* DW_AT_entry_pc should be preferred. */
11750 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11751 complaint (&symfile_complaints,
11752 _("DW_AT_GNU_call_site_target target DIE has invalid "
11753 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11754 die->offset.sect_off, objfile_name (objfile));
96408a79 11755 else
3e29f34a
MR
11756 {
11757 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11758 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11759 }
96408a79
SA
11760 }
11761 }
11762 else
11763 complaint (&symfile_complaints,
11764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11765 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11766 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11767
11768 call_site->per_cu = cu->per_cu;
11769
11770 for (child_die = die->child;
11771 child_die && child_die->tag;
11772 child_die = sibling_die (child_die))
11773 {
96408a79 11774 struct call_site_parameter *parameter;
1788b2d3 11775 struct attribute *loc, *origin;
96408a79
SA
11776
11777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11778 {
11779 /* Already printed the complaint above. */
11780 continue;
11781 }
11782
11783 gdb_assert (call_site->parameter_count < nparams);
11784 parameter = &call_site->parameter[call_site->parameter_count];
11785
1788b2d3
JK
11786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11788 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11789
24c5c679 11790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11792 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11793 {
11794 sect_offset offset;
11795
11796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11797 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11798 if (!offset_in_cu_p (&cu->header, offset))
11799 {
11800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11801 binding can be done only inside one CU. Such referenced DIE
11802 therefore cannot be even moved to DW_TAG_partial_unit. */
11803 complaint (&symfile_complaints,
11804 _("DW_AT_abstract_origin offset is not in CU for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x "
11806 "[in module %s]"),
4262abfb 11807 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11808 continue;
11809 }
1788b2d3
JK
11810 parameter->u.param_offset.cu_off = (offset.sect_off
11811 - cu->header.offset.sect_off);
11812 }
11813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11814 {
11815 complaint (&symfile_complaints,
11816 _("No DW_FORM_block* DW_AT_location for "
11817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11818 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11819 continue;
11820 }
24c5c679 11821 else
96408a79 11822 {
24c5c679
JK
11823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11825 if (parameter->u.dwarf_reg != -1)
11826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11829 &parameter->u.fb_offset))
11830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11831 else
11832 {
11833 complaint (&symfile_complaints,
11834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11835 "for DW_FORM_block* DW_AT_location is supported for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11837 "[in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11839 continue;
11840 }
96408a79
SA
11841 }
11842
11843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11844 if (!attr_form_is_block (attr))
11845 {
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11849 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11850 continue;
11851 }
11852 parameter->value = DW_BLOCK (attr)->data;
11853 parameter->value_size = DW_BLOCK (attr)->size;
11854
11855 /* Parameters are not pre-cleared by memset above. */
11856 parameter->data_value = NULL;
11857 parameter->data_value_size = 0;
11858 call_site->parameter_count++;
11859
11860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11861 if (attr)
11862 {
11863 if (!attr_form_is_block (attr))
11864 complaint (&symfile_complaints,
11865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11867 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11868 else
11869 {
11870 parameter->data_value = DW_BLOCK (attr)->data;
11871 parameter->data_value_size = DW_BLOCK (attr)->size;
11872 }
11873 }
11874 }
11875}
11876
43039443 11877/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11878 Return 1 if the attributes are present and valid, otherwise, return 0.
11879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11880
11881static int
11882dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11884 struct partial_symtab *ranges_pst)
43039443
JK
11885{
11886 struct objfile *objfile = cu->objfile;
3e29f34a 11887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11888 struct comp_unit_head *cu_header = &cu->header;
11889 bfd *obfd = objfile->obfd;
11890 unsigned int addr_size = cu_header->addr_size;
11891 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11892 /* Base address selection entry. */
11893 CORE_ADDR base;
11894 int found_base;
11895 unsigned int dummy;
d521ce57 11896 const gdb_byte *buffer;
43039443
JK
11897 CORE_ADDR marker;
11898 int low_set;
11899 CORE_ADDR low = 0;
11900 CORE_ADDR high = 0;
ff013f42 11901 CORE_ADDR baseaddr;
43039443 11902
d00adf39
DE
11903 found_base = cu->base_known;
11904 base = cu->base_address;
43039443 11905
be391dca 11906 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11907 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11908 {
11909 complaint (&symfile_complaints,
11910 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11911 offset);
11912 return 0;
11913 }
dce234bc 11914 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11915
11916 /* Read in the largest possible address. */
11917 marker = read_address (obfd, buffer, cu, &dummy);
11918 if ((marker & mask) == mask)
11919 {
11920 /* If we found the largest possible address, then
11921 read the base address. */
11922 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11923 buffer += 2 * addr_size;
11924 offset += 2 * addr_size;
11925 found_base = 1;
11926 }
11927
11928 low_set = 0;
11929
e7030f15 11930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11931
43039443
JK
11932 while (1)
11933 {
11934 CORE_ADDR range_beginning, range_end;
11935
11936 range_beginning = read_address (obfd, buffer, cu, &dummy);
11937 buffer += addr_size;
11938 range_end = read_address (obfd, buffer, cu, &dummy);
11939 buffer += addr_size;
11940 offset += 2 * addr_size;
11941
11942 /* An end of list marker is a pair of zero addresses. */
11943 if (range_beginning == 0 && range_end == 0)
11944 /* Found the end of list entry. */
11945 break;
11946
11947 /* Each base address selection entry is a pair of 2 values.
11948 The first is the largest possible address, the second is
11949 the base address. Check for a base address here. */
11950 if ((range_beginning & mask) == mask)
11951 {
11952 /* If we found the largest possible address, then
11953 read the base address. */
11954 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11955 found_base = 1;
11956 continue;
11957 }
11958
11959 if (!found_base)
11960 {
11961 /* We have no valid base address for the ranges
11962 data. */
11963 complaint (&symfile_complaints,
11964 _("Invalid .debug_ranges data (no base address)"));
11965 return 0;
11966 }
11967
9277c30c
UW
11968 if (range_beginning > range_end)
11969 {
11970 /* Inverted range entries are invalid. */
11971 complaint (&symfile_complaints,
11972 _("Invalid .debug_ranges data (inverted range)"));
11973 return 0;
11974 }
11975
11976 /* Empty range entries have no effect. */
11977 if (range_beginning == range_end)
11978 continue;
11979
43039443
JK
11980 range_beginning += base;
11981 range_end += base;
11982
01093045
DE
11983 /* A not-uncommon case of bad debug info.
11984 Don't pollute the addrmap with bad data. */
11985 if (range_beginning + baseaddr == 0
11986 && !dwarf2_per_objfile->has_section_at_zero)
11987 {
11988 complaint (&symfile_complaints,
11989 _(".debug_ranges entry has start address of zero"
4262abfb 11990 " [in module %s]"), objfile_name (objfile));
01093045
DE
11991 continue;
11992 }
11993
9277c30c 11994 if (ranges_pst != NULL)
3e29f34a
MR
11995 {
11996 CORE_ADDR lowpc;
11997 CORE_ADDR highpc;
11998
11999 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12000 range_beginning + baseaddr);
12001 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12002 range_end + baseaddr);
12003 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12004 ranges_pst);
12005 }
ff013f42 12006
43039443
JK
12007 /* FIXME: This is recording everything as a low-high
12008 segment of consecutive addresses. We should have a
12009 data structure for discontiguous block ranges
12010 instead. */
12011 if (! low_set)
12012 {
12013 low = range_beginning;
12014 high = range_end;
12015 low_set = 1;
12016 }
12017 else
12018 {
12019 if (range_beginning < low)
12020 low = range_beginning;
12021 if (range_end > high)
12022 high = range_end;
12023 }
12024 }
12025
12026 if (! low_set)
12027 /* If the first entry is an end-of-list marker, the range
12028 describes an empty scope, i.e. no instructions. */
12029 return 0;
12030
12031 if (low_return)
12032 *low_return = low;
12033 if (high_return)
12034 *high_return = high;
12035 return 1;
12036}
12037
af34e669
DJ
12038/* Get low and high pc attributes from a die. Return 1 if the attributes
12039 are present and valid, otherwise, return 0. Return -1 if the range is
12040 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12041
c906108c 12042static int
af34e669 12043dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12044 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12045 struct partial_symtab *pst)
c906108c
SS
12046{
12047 struct attribute *attr;
91da1414 12048 struct attribute *attr_high;
af34e669
DJ
12049 CORE_ADDR low = 0;
12050 CORE_ADDR high = 0;
12051 int ret = 0;
c906108c 12052
91da1414
MW
12053 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12054 if (attr_high)
af34e669 12055 {
e142c38c 12056 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12057 if (attr)
91da1414 12058 {
31aa7e4e
JB
12059 low = attr_value_as_address (attr);
12060 high = attr_value_as_address (attr_high);
12061 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12062 high += low;
91da1414 12063 }
af34e669
DJ
12064 else
12065 /* Found high w/o low attribute. */
12066 return 0;
12067
12068 /* Found consecutive range of addresses. */
12069 ret = 1;
12070 }
c906108c 12071 else
af34e669 12072 {
e142c38c 12073 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12074 if (attr != NULL)
12075 {
ab435259
DE
12076 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12077 We take advantage of the fact that DW_AT_ranges does not appear
12078 in DW_TAG_compile_unit of DWO files. */
12079 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12080 unsigned int ranges_offset = (DW_UNSND (attr)
12081 + (need_ranges_base
12082 ? cu->ranges_base
12083 : 0));
2e3cf129 12084
af34e669 12085 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12086 .debug_ranges section. */
2e3cf129 12087 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12088 return 0;
43039443 12089 /* Found discontinuous range of addresses. */
af34e669
DJ
12090 ret = -1;
12091 }
12092 }
c906108c 12093
9373cf26
JK
12094 /* read_partial_die has also the strict LOW < HIGH requirement. */
12095 if (high <= low)
c906108c
SS
12096 return 0;
12097
12098 /* When using the GNU linker, .gnu.linkonce. sections are used to
12099 eliminate duplicate copies of functions and vtables and such.
12100 The linker will arbitrarily choose one and discard the others.
12101 The AT_*_pc values for such functions refer to local labels in
12102 these sections. If the section from that file was discarded, the
12103 labels are not in the output, so the relocs get a value of 0.
12104 If this is a discarded function, mark the pc bounds as invalid,
12105 so that GDB will ignore it. */
72dca2f5 12106 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12107 return 0;
12108
12109 *lowpc = low;
96408a79
SA
12110 if (highpc)
12111 *highpc = high;
af34e669 12112 return ret;
c906108c
SS
12113}
12114
b084d499
JB
12115/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12116 its low and high PC addresses. Do nothing if these addresses could not
12117 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12118 and HIGHPC to the high address if greater than HIGHPC. */
12119
12120static void
12121dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12122 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12123 struct dwarf2_cu *cu)
12124{
12125 CORE_ADDR low, high;
12126 struct die_info *child = die->child;
12127
d85a05f0 12128 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12129 {
12130 *lowpc = min (*lowpc, low);
12131 *highpc = max (*highpc, high);
12132 }
12133
12134 /* If the language does not allow nested subprograms (either inside
12135 subprograms or lexical blocks), we're done. */
12136 if (cu->language != language_ada)
12137 return;
6e70227d 12138
b084d499
JB
12139 /* Check all the children of the given DIE. If it contains nested
12140 subprograms, then check their pc bounds. Likewise, we need to
12141 check lexical blocks as well, as they may also contain subprogram
12142 definitions. */
12143 while (child && child->tag)
12144 {
12145 if (child->tag == DW_TAG_subprogram
12146 || child->tag == DW_TAG_lexical_block)
12147 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12148 child = sibling_die (child);
12149 }
12150}
12151
fae299cd
DC
12152/* Get the low and high pc's represented by the scope DIE, and store
12153 them in *LOWPC and *HIGHPC. If the correct values can't be
12154 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12155
12156static void
12157get_scope_pc_bounds (struct die_info *die,
12158 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12159 struct dwarf2_cu *cu)
12160{
12161 CORE_ADDR best_low = (CORE_ADDR) -1;
12162 CORE_ADDR best_high = (CORE_ADDR) 0;
12163 CORE_ADDR current_low, current_high;
12164
d85a05f0 12165 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12166 {
12167 best_low = current_low;
12168 best_high = current_high;
12169 }
12170 else
12171 {
12172 struct die_info *child = die->child;
12173
12174 while (child && child->tag)
12175 {
12176 switch (child->tag) {
12177 case DW_TAG_subprogram:
b084d499 12178 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12179 break;
12180 case DW_TAG_namespace:
f55ee35c 12181 case DW_TAG_module:
fae299cd
DC
12182 /* FIXME: carlton/2004-01-16: Should we do this for
12183 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12184 that current GCC's always emit the DIEs corresponding
12185 to definitions of methods of classes as children of a
12186 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12187 the DIEs giving the declarations, which could be
12188 anywhere). But I don't see any reason why the
12189 standards says that they have to be there. */
12190 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12191
12192 if (current_low != ((CORE_ADDR) -1))
12193 {
12194 best_low = min (best_low, current_low);
12195 best_high = max (best_high, current_high);
12196 }
12197 break;
12198 default:
0963b4bd 12199 /* Ignore. */
fae299cd
DC
12200 break;
12201 }
12202
12203 child = sibling_die (child);
12204 }
12205 }
12206
12207 *lowpc = best_low;
12208 *highpc = best_high;
12209}
12210
801e3a5b
JB
12211/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12212 in DIE. */
380bca97 12213
801e3a5b
JB
12214static void
12215dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12216 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12217{
bb5ed363 12218 struct objfile *objfile = cu->objfile;
3e29f34a 12219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12220 struct attribute *attr;
91da1414 12221 struct attribute *attr_high;
801e3a5b 12222
91da1414
MW
12223 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12224 if (attr_high)
801e3a5b 12225 {
801e3a5b
JB
12226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12227 if (attr)
12228 {
31aa7e4e
JB
12229 CORE_ADDR low = attr_value_as_address (attr);
12230 CORE_ADDR high = attr_value_as_address (attr_high);
12231
12232 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12233 high += low;
9a619af0 12234
3e29f34a
MR
12235 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12236 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12237 record_block_range (block, low, high - 1);
801e3a5b
JB
12238 }
12239 }
12240
12241 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12242 if (attr)
12243 {
bb5ed363 12244 bfd *obfd = objfile->obfd;
ab435259
DE
12245 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12246 We take advantage of the fact that DW_AT_ranges does not appear
12247 in DW_TAG_compile_unit of DWO files. */
12248 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12249
12250 /* The value of the DW_AT_ranges attribute is the offset of the
12251 address range list in the .debug_ranges section. */
ab435259
DE
12252 unsigned long offset = (DW_UNSND (attr)
12253 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12254 const gdb_byte *buffer;
801e3a5b
JB
12255
12256 /* For some target architectures, but not others, the
12257 read_address function sign-extends the addresses it returns.
12258 To recognize base address selection entries, we need a
12259 mask. */
12260 unsigned int addr_size = cu->header.addr_size;
12261 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12262
12263 /* The base address, to which the next pair is relative. Note
12264 that this 'base' is a DWARF concept: most entries in a range
12265 list are relative, to reduce the number of relocs against the
12266 debugging information. This is separate from this function's
12267 'baseaddr' argument, which GDB uses to relocate debugging
12268 information from a shared library based on the address at
12269 which the library was loaded. */
d00adf39
DE
12270 CORE_ADDR base = cu->base_address;
12271 int base_known = cu->base_known;
801e3a5b 12272
d62bfeaf 12273 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12274 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12275 {
12276 complaint (&symfile_complaints,
12277 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12278 offset);
12279 return;
12280 }
d62bfeaf 12281 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12282
12283 for (;;)
12284 {
12285 unsigned int bytes_read;
12286 CORE_ADDR start, end;
12287
12288 start = read_address (obfd, buffer, cu, &bytes_read);
12289 buffer += bytes_read;
12290 end = read_address (obfd, buffer, cu, &bytes_read);
12291 buffer += bytes_read;
12292
12293 /* Did we find the end of the range list? */
12294 if (start == 0 && end == 0)
12295 break;
12296
12297 /* Did we find a base address selection entry? */
12298 else if ((start & base_select_mask) == base_select_mask)
12299 {
12300 base = end;
12301 base_known = 1;
12302 }
12303
12304 /* We found an ordinary address range. */
12305 else
12306 {
12307 if (!base_known)
12308 {
12309 complaint (&symfile_complaints,
3e43a32a
MS
12310 _("Invalid .debug_ranges data "
12311 "(no base address)"));
801e3a5b
JB
12312 return;
12313 }
12314
9277c30c
UW
12315 if (start > end)
12316 {
12317 /* Inverted range entries are invalid. */
12318 complaint (&symfile_complaints,
12319 _("Invalid .debug_ranges data "
12320 "(inverted range)"));
12321 return;
12322 }
12323
12324 /* Empty range entries have no effect. */
12325 if (start == end)
12326 continue;
12327
01093045
DE
12328 start += base + baseaddr;
12329 end += base + baseaddr;
12330
12331 /* A not-uncommon case of bad debug info.
12332 Don't pollute the addrmap with bad data. */
12333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12334 {
12335 complaint (&symfile_complaints,
12336 _(".debug_ranges entry has start address of zero"
4262abfb 12337 " [in module %s]"), objfile_name (objfile));
01093045
DE
12338 continue;
12339 }
12340
3e29f34a
MR
12341 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12342 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12343 record_block_range (block, start, end - 1);
801e3a5b
JB
12344 }
12345 }
12346 }
12347}
12348
685b1105
JK
12349/* Check whether the producer field indicates either of GCC < 4.6, or the
12350 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12351
685b1105
JK
12352static void
12353check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12354{
12355 const char *cs;
38360086 12356 int major, minor;
60d5a603
JK
12357
12358 if (cu->producer == NULL)
12359 {
12360 /* For unknown compilers expect their behavior is DWARF version
12361 compliant.
12362
12363 GCC started to support .debug_types sections by -gdwarf-4 since
12364 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12365 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12366 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12367 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12368 }
b1ffba5a 12369 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12370 {
38360086
MW
12371 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12372 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12373 }
61012eef 12374 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12375 cu->producer_is_icc = 1;
12376 else
12377 {
12378 /* For other non-GCC compilers, expect their behavior is DWARF version
12379 compliant. */
60d5a603
JK
12380 }
12381
ba919b58 12382 cu->checked_producer = 1;
685b1105 12383}
ba919b58 12384
685b1105
JK
12385/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12386 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12387 during 4.6.0 experimental. */
12388
12389static int
12390producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12391{
12392 if (!cu->checked_producer)
12393 check_producer (cu);
12394
12395 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12396}
12397
12398/* Return the default accessibility type if it is not overriden by
12399 DW_AT_accessibility. */
12400
12401static enum dwarf_access_attribute
12402dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12403{
12404 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12405 {
12406 /* The default DWARF 2 accessibility for members is public, the default
12407 accessibility for inheritance is private. */
12408
12409 if (die->tag != DW_TAG_inheritance)
12410 return DW_ACCESS_public;
12411 else
12412 return DW_ACCESS_private;
12413 }
12414 else
12415 {
12416 /* DWARF 3+ defines the default accessibility a different way. The same
12417 rules apply now for DW_TAG_inheritance as for the members and it only
12418 depends on the container kind. */
12419
12420 if (die->parent->tag == DW_TAG_class_type)
12421 return DW_ACCESS_private;
12422 else
12423 return DW_ACCESS_public;
12424 }
12425}
12426
74ac6d43
TT
12427/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12428 offset. If the attribute was not found return 0, otherwise return
12429 1. If it was found but could not properly be handled, set *OFFSET
12430 to 0. */
12431
12432static int
12433handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12434 LONGEST *offset)
12435{
12436 struct attribute *attr;
12437
12438 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12439 if (attr != NULL)
12440 {
12441 *offset = 0;
12442
12443 /* Note that we do not check for a section offset first here.
12444 This is because DW_AT_data_member_location is new in DWARF 4,
12445 so if we see it, we can assume that a constant form is really
12446 a constant and not a section offset. */
12447 if (attr_form_is_constant (attr))
12448 *offset = dwarf2_get_attr_constant_value (attr, 0);
12449 else if (attr_form_is_section_offset (attr))
12450 dwarf2_complex_location_expr_complaint ();
12451 else if (attr_form_is_block (attr))
12452 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12453 else
12454 dwarf2_complex_location_expr_complaint ();
12455
12456 return 1;
12457 }
12458
12459 return 0;
12460}
12461
c906108c
SS
12462/* Add an aggregate field to the field list. */
12463
12464static void
107d2387 12465dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12466 struct dwarf2_cu *cu)
6e70227d 12467{
e7c27a73 12468 struct objfile *objfile = cu->objfile;
5e2b427d 12469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12470 struct nextfield *new_field;
12471 struct attribute *attr;
12472 struct field *fp;
15d034d0 12473 const char *fieldname = "";
c906108c
SS
12474
12475 /* Allocate a new field list entry and link it in. */
8d749320 12476 new_field = XNEW (struct nextfield);
b8c9b27d 12477 make_cleanup (xfree, new_field);
c906108c 12478 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12479
12480 if (die->tag == DW_TAG_inheritance)
12481 {
12482 new_field->next = fip->baseclasses;
12483 fip->baseclasses = new_field;
12484 }
12485 else
12486 {
12487 new_field->next = fip->fields;
12488 fip->fields = new_field;
12489 }
c906108c
SS
12490 fip->nfields++;
12491
e142c38c 12492 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12493 if (attr)
12494 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12495 else
12496 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12497 if (new_field->accessibility != DW_ACCESS_public)
12498 fip->non_public_fields = 1;
60d5a603 12499
e142c38c 12500 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12501 if (attr)
12502 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12503 else
12504 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12505
12506 fp = &new_field->field;
a9a9bd0f 12507
e142c38c 12508 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12509 {
74ac6d43
TT
12510 LONGEST offset;
12511
a9a9bd0f 12512 /* Data member other than a C++ static data member. */
6e70227d 12513
c906108c 12514 /* Get type of field. */
e7c27a73 12515 fp->type = die_type (die, cu);
c906108c 12516
d6a843b5 12517 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12518
c906108c 12519 /* Get bit size of field (zero if none). */
e142c38c 12520 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12521 if (attr)
12522 {
12523 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12524 }
12525 else
12526 {
12527 FIELD_BITSIZE (*fp) = 0;
12528 }
12529
12530 /* Get bit offset of field. */
74ac6d43
TT
12531 if (handle_data_member_location (die, cu, &offset))
12532 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12533 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12534 if (attr)
12535 {
5e2b427d 12536 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12537 {
12538 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12539 additional bit offset from the MSB of the containing
12540 anonymous object to the MSB of the field. We don't
12541 have to do anything special since we don't need to
12542 know the size of the anonymous object. */
f41f5e61 12543 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12544 }
12545 else
12546 {
12547 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12548 MSB of the anonymous object, subtract off the number of
12549 bits from the MSB of the field to the MSB of the
12550 object, and then subtract off the number of bits of
12551 the field itself. The result is the bit offset of
12552 the LSB of the field. */
c906108c
SS
12553 int anonymous_size;
12554 int bit_offset = DW_UNSND (attr);
12555
e142c38c 12556 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12557 if (attr)
12558 {
12559 /* The size of the anonymous object containing
12560 the bit field is explicit, so use the
12561 indicated size (in bytes). */
12562 anonymous_size = DW_UNSND (attr);
12563 }
12564 else
12565 {
12566 /* The size of the anonymous object containing
12567 the bit field must be inferred from the type
12568 attribute of the data member containing the
12569 bit field. */
12570 anonymous_size = TYPE_LENGTH (fp->type);
12571 }
f41f5e61
PA
12572 SET_FIELD_BITPOS (*fp,
12573 (FIELD_BITPOS (*fp)
12574 + anonymous_size * bits_per_byte
12575 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12576 }
12577 }
12578
12579 /* Get name of field. */
39cbfefa
DJ
12580 fieldname = dwarf2_name (die, cu);
12581 if (fieldname == NULL)
12582 fieldname = "";
d8151005
DJ
12583
12584 /* The name is already allocated along with this objfile, so we don't
12585 need to duplicate it for the type. */
12586 fp->name = fieldname;
c906108c
SS
12587
12588 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12589 pointer or virtual base class pointer) to private. */
e142c38c 12590 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12591 {
d48cc9dd 12592 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12593 new_field->accessibility = DW_ACCESS_private;
12594 fip->non_public_fields = 1;
12595 }
12596 }
a9a9bd0f 12597 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12598 {
a9a9bd0f
DC
12599 /* C++ static member. */
12600
12601 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12602 is a declaration, but all versions of G++ as of this writing
12603 (so through at least 3.2.1) incorrectly generate
12604 DW_TAG_variable tags. */
6e70227d 12605
ff355380 12606 const char *physname;
c906108c 12607
a9a9bd0f 12608 /* Get name of field. */
39cbfefa
DJ
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
c906108c
SS
12611 return;
12612
254e6b9e 12613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12614 if (attr
12615 /* Only create a symbol if this is an external value.
12616 new_symbol checks this and puts the value in the global symbol
12617 table, which we want. If it is not external, new_symbol
12618 will try to put the value in cu->list_in_scope which is wrong. */
12619 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12620 {
12621 /* A static const member, not much different than an enum as far as
12622 we're concerned, except that we can support more types. */
12623 new_symbol (die, NULL, cu);
12624 }
12625
2df3850c 12626 /* Get physical name. */
ff355380 12627 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12628
d8151005
DJ
12629 /* The name is already allocated along with this objfile, so we don't
12630 need to duplicate it for the type. */
12631 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12632 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12633 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12634 }
12635 else if (die->tag == DW_TAG_inheritance)
12636 {
74ac6d43 12637 LONGEST offset;
d4b96c9a 12638
74ac6d43
TT
12639 /* C++ base class field. */
12640 if (handle_data_member_location (die, cu, &offset))
12641 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12642 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12643 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12644 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12645 fip->nbaseclasses++;
12646 }
12647}
12648
98751a41
JK
12649/* Add a typedef defined in the scope of the FIP's class. */
12650
12651static void
12652dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12653 struct dwarf2_cu *cu)
6e70227d 12654{
98751a41 12655 struct objfile *objfile = cu->objfile;
98751a41
JK
12656 struct typedef_field_list *new_field;
12657 struct attribute *attr;
12658 struct typedef_field *fp;
12659 char *fieldname = "";
12660
12661 /* Allocate a new field list entry and link it in. */
8d749320 12662 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12663 make_cleanup (xfree, new_field);
12664
12665 gdb_assert (die->tag == DW_TAG_typedef);
12666
12667 fp = &new_field->field;
12668
12669 /* Get name of field. */
12670 fp->name = dwarf2_name (die, cu);
12671 if (fp->name == NULL)
12672 return;
12673
12674 fp->type = read_type_die (die, cu);
12675
12676 new_field->next = fip->typedef_field_list;
12677 fip->typedef_field_list = new_field;
12678 fip->typedef_field_list_count++;
12679}
12680
c906108c
SS
12681/* Create the vector of fields, and attach it to the type. */
12682
12683static void
fba45db2 12684dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12685 struct dwarf2_cu *cu)
c906108c
SS
12686{
12687 int nfields = fip->nfields;
12688
12689 /* Record the field count, allocate space for the array of fields,
12690 and create blank accessibility bitfields if necessary. */
12691 TYPE_NFIELDS (type) = nfields;
12692 TYPE_FIELDS (type) = (struct field *)
12693 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12694 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12695
b4ba55a1 12696 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12697 {
12698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12699
12700 TYPE_FIELD_PRIVATE_BITS (type) =
12701 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12702 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12703
12704 TYPE_FIELD_PROTECTED_BITS (type) =
12705 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12706 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12707
774b6a14
TT
12708 TYPE_FIELD_IGNORE_BITS (type) =
12709 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12710 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12711 }
12712
12713 /* If the type has baseclasses, allocate and clear a bit vector for
12714 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12715 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12716 {
12717 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12718 unsigned char *pointer;
c906108c
SS
12719
12720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12721 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12722 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12723 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12724 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12725 }
12726
3e43a32a
MS
12727 /* Copy the saved-up fields into the field vector. Start from the head of
12728 the list, adding to the tail of the field array, so that they end up in
12729 the same order in the array in which they were added to the list. */
c906108c
SS
12730 while (nfields-- > 0)
12731 {
7d0ccb61
DJ
12732 struct nextfield *fieldp;
12733
12734 if (fip->fields)
12735 {
12736 fieldp = fip->fields;
12737 fip->fields = fieldp->next;
12738 }
12739 else
12740 {
12741 fieldp = fip->baseclasses;
12742 fip->baseclasses = fieldp->next;
12743 }
12744
12745 TYPE_FIELD (type, nfields) = fieldp->field;
12746 switch (fieldp->accessibility)
c906108c 12747 {
c5aa993b 12748 case DW_ACCESS_private:
b4ba55a1
JB
12749 if (cu->language != language_ada)
12750 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12751 break;
c906108c 12752
c5aa993b 12753 case DW_ACCESS_protected:
b4ba55a1
JB
12754 if (cu->language != language_ada)
12755 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12756 break;
c906108c 12757
c5aa993b
JM
12758 case DW_ACCESS_public:
12759 break;
c906108c 12760
c5aa993b
JM
12761 default:
12762 /* Unknown accessibility. Complain and treat it as public. */
12763 {
e2e0b3e5 12764 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12765 fieldp->accessibility);
c5aa993b
JM
12766 }
12767 break;
c906108c
SS
12768 }
12769 if (nfields < fip->nbaseclasses)
12770 {
7d0ccb61 12771 switch (fieldp->virtuality)
c906108c 12772 {
c5aa993b
JM
12773 case DW_VIRTUALITY_virtual:
12774 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12775 if (cu->language == language_ada)
a73c6dcd 12776 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12777 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12778 break;
c906108c
SS
12779 }
12780 }
c906108c
SS
12781 }
12782}
12783
7d27a96d
TT
12784/* Return true if this member function is a constructor, false
12785 otherwise. */
12786
12787static int
12788dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12789{
12790 const char *fieldname;
fe978cb0 12791 const char *type_name;
7d27a96d
TT
12792 int len;
12793
12794 if (die->parent == NULL)
12795 return 0;
12796
12797 if (die->parent->tag != DW_TAG_structure_type
12798 && die->parent->tag != DW_TAG_union_type
12799 && die->parent->tag != DW_TAG_class_type)
12800 return 0;
12801
12802 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12803 type_name = dwarf2_name (die->parent, cu);
12804 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12805 return 0;
12806
12807 len = strlen (fieldname);
fe978cb0
PA
12808 return (strncmp (fieldname, type_name, len) == 0
12809 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12810}
12811
c906108c
SS
12812/* Add a member function to the proper fieldlist. */
12813
12814static void
107d2387 12815dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12816 struct type *type, struct dwarf2_cu *cu)
c906108c 12817{
e7c27a73 12818 struct objfile *objfile = cu->objfile;
c906108c
SS
12819 struct attribute *attr;
12820 struct fnfieldlist *flp;
12821 int i;
12822 struct fn_field *fnp;
15d034d0 12823 const char *fieldname;
c906108c 12824 struct nextfnfield *new_fnfield;
f792889a 12825 struct type *this_type;
60d5a603 12826 enum dwarf_access_attribute accessibility;
c906108c 12827
b4ba55a1 12828 if (cu->language == language_ada)
a73c6dcd 12829 error (_("unexpected member function in Ada type"));
b4ba55a1 12830
2df3850c 12831 /* Get name of member function. */
39cbfefa
DJ
12832 fieldname = dwarf2_name (die, cu);
12833 if (fieldname == NULL)
2df3850c 12834 return;
c906108c 12835
c906108c
SS
12836 /* Look up member function name in fieldlist. */
12837 for (i = 0; i < fip->nfnfields; i++)
12838 {
27bfe10e 12839 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12840 break;
12841 }
12842
12843 /* Create new list element if necessary. */
12844 if (i < fip->nfnfields)
12845 flp = &fip->fnfieldlists[i];
12846 else
12847 {
12848 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12849 {
12850 fip->fnfieldlists = (struct fnfieldlist *)
12851 xrealloc (fip->fnfieldlists,
12852 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12853 * sizeof (struct fnfieldlist));
c906108c 12854 if (fip->nfnfields == 0)
c13c43fd 12855 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12856 }
12857 flp = &fip->fnfieldlists[fip->nfnfields];
12858 flp->name = fieldname;
12859 flp->length = 0;
12860 flp->head = NULL;
3da10d80 12861 i = fip->nfnfields++;
c906108c
SS
12862 }
12863
12864 /* Create a new member function field and chain it to the field list
0963b4bd 12865 entry. */
8d749320 12866 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12867 make_cleanup (xfree, new_fnfield);
c906108c
SS
12868 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12869 new_fnfield->next = flp->head;
12870 flp->head = new_fnfield;
12871 flp->length++;
12872
12873 /* Fill in the member function field info. */
12874 fnp = &new_fnfield->fnfield;
3da10d80
KS
12875
12876 /* Delay processing of the physname until later. */
12877 if (cu->language == language_cplus || cu->language == language_java)
12878 {
12879 add_to_method_list (type, i, flp->length - 1, fieldname,
12880 die, cu);
12881 }
12882 else
12883 {
1d06ead6 12884 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12885 fnp->physname = physname ? physname : "";
12886 }
12887
c906108c 12888 fnp->type = alloc_type (objfile);
f792889a
DJ
12889 this_type = read_type_die (die, cu);
12890 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12891 {
f792889a 12892 int nparams = TYPE_NFIELDS (this_type);
c906108c 12893
f792889a 12894 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12895 of the method itself (TYPE_CODE_METHOD). */
12896 smash_to_method_type (fnp->type, type,
f792889a
DJ
12897 TYPE_TARGET_TYPE (this_type),
12898 TYPE_FIELDS (this_type),
12899 TYPE_NFIELDS (this_type),
12900 TYPE_VARARGS (this_type));
c906108c
SS
12901
12902 /* Handle static member functions.
c5aa993b 12903 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12904 member functions. G++ helps GDB by marking the first
12905 parameter for non-static member functions (which is the this
12906 pointer) as artificial. We obtain this information from
12907 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12908 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12909 fnp->voffset = VOFFSET_STATIC;
12910 }
12911 else
e2e0b3e5 12912 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12913 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12914
12915 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12916 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12917 fnp->fcontext = die_containing_type (die, cu);
c906108c 12918
3e43a32a
MS
12919 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12920 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12921
12922 /* Get accessibility. */
e142c38c 12923 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12924 if (attr)
aead7601 12925 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12926 else
12927 accessibility = dwarf2_default_access_attribute (die, cu);
12928 switch (accessibility)
c906108c 12929 {
60d5a603
JK
12930 case DW_ACCESS_private:
12931 fnp->is_private = 1;
12932 break;
12933 case DW_ACCESS_protected:
12934 fnp->is_protected = 1;
12935 break;
c906108c
SS
12936 }
12937
b02dede2 12938 /* Check for artificial methods. */
e142c38c 12939 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12940 if (attr && DW_UNSND (attr) != 0)
12941 fnp->is_artificial = 1;
12942
7d27a96d
TT
12943 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12944
0d564a31 12945 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12946 function. For older versions of GCC, this is an offset in the
12947 appropriate virtual table, as specified by DW_AT_containing_type.
12948 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12949 to the object address. */
12950
e142c38c 12951 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12952 if (attr)
8e19ed76 12953 {
aec5aa8b 12954 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12955 {
aec5aa8b
TT
12956 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12957 {
12958 /* Old-style GCC. */
12959 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12960 }
12961 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12962 || (DW_BLOCK (attr)->size > 1
12963 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12964 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12965 {
12966 struct dwarf_block blk;
12967 int offset;
12968
12969 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12970 ? 1 : 2);
12971 blk.size = DW_BLOCK (attr)->size - offset;
12972 blk.data = DW_BLOCK (attr)->data + offset;
12973 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12974 if ((fnp->voffset % cu->header.addr_size) != 0)
12975 dwarf2_complex_location_expr_complaint ();
12976 else
12977 fnp->voffset /= cu->header.addr_size;
12978 fnp->voffset += 2;
12979 }
12980 else
12981 dwarf2_complex_location_expr_complaint ();
12982
12983 if (!fnp->fcontext)
7e993ebf
KS
12984 {
12985 /* If there is no `this' field and no DW_AT_containing_type,
12986 we cannot actually find a base class context for the
12987 vtable! */
12988 if (TYPE_NFIELDS (this_type) == 0
12989 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12990 {
12991 complaint (&symfile_complaints,
12992 _("cannot determine context for virtual member "
12993 "function \"%s\" (offset %d)"),
12994 fieldname, die->offset.sect_off);
12995 }
12996 else
12997 {
12998 fnp->fcontext
12999 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13000 }
13001 }
aec5aa8b 13002 }
3690dd37 13003 else if (attr_form_is_section_offset (attr))
8e19ed76 13004 {
4d3c2250 13005 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13006 }
13007 else
13008 {
4d3c2250
KB
13009 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13010 fieldname);
8e19ed76 13011 }
0d564a31 13012 }
d48cc9dd
DJ
13013 else
13014 {
13015 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13016 if (attr && DW_UNSND (attr))
13017 {
13018 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13019 complaint (&symfile_complaints,
3e43a32a
MS
13020 _("Member function \"%s\" (offset %d) is virtual "
13021 "but the vtable offset is not specified"),
b64f50a1 13022 fieldname, die->offset.sect_off);
9655fd1a 13023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13024 TYPE_CPLUS_DYNAMIC (type) = 1;
13025 }
13026 }
c906108c
SS
13027}
13028
13029/* Create the vector of member function fields, and attach it to the type. */
13030
13031static void
fba45db2 13032dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13033 struct dwarf2_cu *cu)
c906108c
SS
13034{
13035 struct fnfieldlist *flp;
c906108c
SS
13036 int i;
13037
b4ba55a1 13038 if (cu->language == language_ada)
a73c6dcd 13039 error (_("unexpected member functions in Ada type"));
b4ba55a1 13040
c906108c
SS
13041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13042 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13043 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13044
13045 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13046 {
13047 struct nextfnfield *nfp = flp->head;
13048 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13049 int k;
13050
13051 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13052 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13053 fn_flp->fn_fields = (struct fn_field *)
13054 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13055 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13056 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13057 }
13058
13059 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13060}
13061
1168df01
JB
13062/* Returns non-zero if NAME is the name of a vtable member in CU's
13063 language, zero otherwise. */
13064static int
13065is_vtable_name (const char *name, struct dwarf2_cu *cu)
13066{
13067 static const char vptr[] = "_vptr";
987504bb 13068 static const char vtable[] = "vtable";
1168df01 13069
987504bb
JJ
13070 /* Look for the C++ and Java forms of the vtable. */
13071 if ((cu->language == language_java
61012eef
GB
13072 && startswith (name, vtable))
13073 || (startswith (name, vptr)
987504bb 13074 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13075 return 1;
13076
13077 return 0;
13078}
13079
c0dd20ea 13080/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13081 functions, with the ABI-specified layout. If TYPE describes
13082 such a structure, smash it into a member function type.
61049d3b
DJ
13083
13084 GCC shouldn't do this; it should just output pointer to member DIEs.
13085 This is GCC PR debug/28767. */
c0dd20ea 13086
0b92b5bb
TT
13087static void
13088quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13089{
09e2d7c7 13090 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13091
13092 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13093 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13094 return;
c0dd20ea
DJ
13095
13096 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13097 if (TYPE_FIELD_NAME (type, 0) == NULL
13098 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13099 || TYPE_FIELD_NAME (type, 1) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13101 return;
c0dd20ea
DJ
13102
13103 /* Find the type of the method. */
0b92b5bb 13104 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13105 if (pfn_type == NULL
13106 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13107 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13108 return;
c0dd20ea
DJ
13109
13110 /* Look for the "this" argument. */
13111 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13112 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13113 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13114 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13115 return;
c0dd20ea 13116
09e2d7c7 13117 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13118 new_type = alloc_type (objfile);
09e2d7c7 13119 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13120 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13121 TYPE_VARARGS (pfn_type));
0b92b5bb 13122 smash_to_methodptr_type (type, new_type);
c0dd20ea 13123}
1168df01 13124
685b1105
JK
13125/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13126 (icc). */
13127
13128static int
13129producer_is_icc (struct dwarf2_cu *cu)
13130{
13131 if (!cu->checked_producer)
13132 check_producer (cu);
13133
13134 return cu->producer_is_icc;
13135}
13136
c906108c 13137/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13138 (definition) to create a type for the structure or union. Fill in
13139 the type's name and general properties; the members will not be
83655187
DE
13140 processed until process_structure_scope. A symbol table entry for
13141 the type will also not be done until process_structure_scope (assuming
13142 the type has a name).
c906108c 13143
c767944b
DJ
13144 NOTE: we need to call these functions regardless of whether or not the
13145 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13146 structure or union. This gets the type entered into our set of
83655187 13147 user defined types. */
c906108c 13148
f792889a 13149static struct type *
134d01f1 13150read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13151{
e7c27a73 13152 struct objfile *objfile = cu->objfile;
c906108c
SS
13153 struct type *type;
13154 struct attribute *attr;
15d034d0 13155 const char *name;
c906108c 13156
348e048f
DE
13157 /* If the definition of this type lives in .debug_types, read that type.
13158 Don't follow DW_AT_specification though, that will take us back up
13159 the chain and we want to go down. */
45e58e77 13160 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13161 if (attr)
13162 {
ac9ec31b 13163 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13164
ac9ec31b 13165 /* The type's CU may not be the same as CU.
02142a6c 13166 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13167 return set_die_type (die, type, cu);
13168 }
13169
c0dd20ea 13170 type = alloc_type (objfile);
c906108c 13171 INIT_CPLUS_SPECIFIC (type);
93311388 13172
39cbfefa
DJ
13173 name = dwarf2_name (die, cu);
13174 if (name != NULL)
c906108c 13175 {
987504bb 13176 if (cu->language == language_cplus
45280282
IB
13177 || cu->language == language_java
13178 || cu->language == language_d)
63d06c5c 13179 {
15d034d0 13180 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13181
13182 /* dwarf2_full_name might have already finished building the DIE's
13183 type. If so, there is no need to continue. */
13184 if (get_die_type (die, cu) != NULL)
13185 return get_die_type (die, cu);
13186
13187 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13188 if (die->tag == DW_TAG_structure_type
13189 || die->tag == DW_TAG_class_type)
13190 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13191 }
13192 else
13193 {
d8151005
DJ
13194 /* The name is already allocated along with this objfile, so
13195 we don't need to duplicate it for the type. */
7d455152 13196 TYPE_TAG_NAME (type) = name;
94af9270
KS
13197 if (die->tag == DW_TAG_class_type)
13198 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13199 }
c906108c
SS
13200 }
13201
13202 if (die->tag == DW_TAG_structure_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13205 }
13206 else if (die->tag == DW_TAG_union_type)
13207 {
13208 TYPE_CODE (type) = TYPE_CODE_UNION;
13209 }
13210 else
13211 {
4753d33b 13212 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13213 }
13214
0cc2414c
TT
13215 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13216 TYPE_DECLARED_CLASS (type) = 1;
13217
e142c38c 13218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13219 if (attr)
13220 {
13221 TYPE_LENGTH (type) = DW_UNSND (attr);
13222 }
13223 else
13224 {
13225 TYPE_LENGTH (type) = 0;
13226 }
13227
422b1cb0 13228 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13229 {
13230 /* ICC does not output the required DW_AT_declaration
13231 on incomplete types, but gives them a size of zero. */
422b1cb0 13232 TYPE_STUB (type) = 1;
685b1105
JK
13233 }
13234 else
13235 TYPE_STUB_SUPPORTED (type) = 1;
13236
dc718098 13237 if (die_is_declaration (die, cu))
876cecd0 13238 TYPE_STUB (type) = 1;
a6c727b2
DJ
13239 else if (attr == NULL && die->child == NULL
13240 && producer_is_realview (cu->producer))
13241 /* RealView does not output the required DW_AT_declaration
13242 on incomplete types. */
13243 TYPE_STUB (type) = 1;
dc718098 13244
c906108c
SS
13245 /* We need to add the type field to the die immediately so we don't
13246 infinitely recurse when dealing with pointers to the structure
0963b4bd 13247 type within the structure itself. */
1c379e20 13248 set_die_type (die, type, cu);
c906108c 13249
7e314c57
JK
13250 /* set_die_type should be already done. */
13251 set_descriptive_type (type, die, cu);
13252
c767944b
DJ
13253 return type;
13254}
13255
13256/* Finish creating a structure or union type, including filling in
13257 its members and creating a symbol for it. */
13258
13259static void
13260process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13261{
13262 struct objfile *objfile = cu->objfile;
ca040673 13263 struct die_info *child_die;
c767944b
DJ
13264 struct type *type;
13265
13266 type = get_die_type (die, cu);
13267 if (type == NULL)
13268 type = read_structure_type (die, cu);
13269
e142c38c 13270 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13271 {
13272 struct field_info fi;
34eaf542 13273 VEC (symbolp) *template_args = NULL;
c767944b 13274 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13275
13276 memset (&fi, 0, sizeof (struct field_info));
13277
639d11d3 13278 child_die = die->child;
c906108c
SS
13279
13280 while (child_die && child_die->tag)
13281 {
a9a9bd0f
DC
13282 if (child_die->tag == DW_TAG_member
13283 || child_die->tag == DW_TAG_variable)
c906108c 13284 {
a9a9bd0f
DC
13285 /* NOTE: carlton/2002-11-05: A C++ static data member
13286 should be a DW_TAG_member that is a declaration, but
13287 all versions of G++ as of this writing (so through at
13288 least 3.2.1) incorrectly generate DW_TAG_variable
13289 tags for them instead. */
e7c27a73 13290 dwarf2_add_field (&fi, child_die, cu);
c906108c 13291 }
8713b1b1 13292 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13293 {
0963b4bd 13294 /* C++ member function. */
e7c27a73 13295 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13296 }
13297 else if (child_die->tag == DW_TAG_inheritance)
13298 {
13299 /* C++ base class field. */
e7c27a73 13300 dwarf2_add_field (&fi, child_die, cu);
c906108c 13301 }
98751a41
JK
13302 else if (child_die->tag == DW_TAG_typedef)
13303 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13304 else if (child_die->tag == DW_TAG_template_type_param
13305 || child_die->tag == DW_TAG_template_value_param)
13306 {
13307 struct symbol *arg = new_symbol (child_die, NULL, cu);
13308
f1078f66
DJ
13309 if (arg != NULL)
13310 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13311 }
13312
c906108c
SS
13313 child_die = sibling_die (child_die);
13314 }
13315
34eaf542
TT
13316 /* Attach template arguments to type. */
13317 if (! VEC_empty (symbolp, template_args))
13318 {
13319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13320 TYPE_N_TEMPLATE_ARGUMENTS (type)
13321 = VEC_length (symbolp, template_args);
13322 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13323 = XOBNEWVEC (&objfile->objfile_obstack,
13324 struct symbol *,
13325 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13326 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13327 VEC_address (symbolp, template_args),
13328 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13329 * sizeof (struct symbol *)));
13330 VEC_free (symbolp, template_args);
13331 }
13332
c906108c
SS
13333 /* Attach fields and member functions to the type. */
13334 if (fi.nfields)
e7c27a73 13335 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13336 if (fi.nfnfields)
13337 {
e7c27a73 13338 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13339
c5aa993b 13340 /* Get the type which refers to the base class (possibly this
c906108c 13341 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13342 class from the DW_AT_containing_type attribute. This use of
13343 DW_AT_containing_type is a GNU extension. */
c906108c 13344
e142c38c 13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13346 {
e7c27a73 13347 struct type *t = die_containing_type (die, cu);
c906108c 13348
ae6ae975 13349 set_type_vptr_basetype (type, t);
c906108c
SS
13350 if (type == t)
13351 {
c906108c
SS
13352 int i;
13353
13354 /* Our own class provides vtbl ptr. */
13355 for (i = TYPE_NFIELDS (t) - 1;
13356 i >= TYPE_N_BASECLASSES (t);
13357 --i)
13358 {
0d5cff50 13359 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13360
1168df01 13361 if (is_vtable_name (fieldname, cu))
c906108c 13362 {
ae6ae975 13363 set_type_vptr_fieldno (type, i);
c906108c
SS
13364 break;
13365 }
13366 }
13367
13368 /* Complain if virtual function table field not found. */
13369 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13370 complaint (&symfile_complaints,
3e43a32a
MS
13371 _("virtual function table pointer "
13372 "not found when defining class '%s'"),
4d3c2250
KB
13373 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13374 "");
c906108c
SS
13375 }
13376 else
13377 {
ae6ae975 13378 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13379 }
13380 }
f6235d4c 13381 else if (cu->producer
61012eef 13382 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13383 {
13384 /* The IBM XLC compiler does not provide direct indication
13385 of the containing type, but the vtable pointer is
13386 always named __vfp. */
13387
13388 int i;
13389
13390 for (i = TYPE_NFIELDS (type) - 1;
13391 i >= TYPE_N_BASECLASSES (type);
13392 --i)
13393 {
13394 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13395 {
ae6ae975
DE
13396 set_type_vptr_fieldno (type, i);
13397 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13398 break;
13399 }
13400 }
13401 }
c906108c 13402 }
98751a41
JK
13403
13404 /* Copy fi.typedef_field_list linked list elements content into the
13405 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13406 if (fi.typedef_field_list)
13407 {
13408 int i = fi.typedef_field_list_count;
13409
a0d7a4ff 13410 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13411 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13412 = ((struct typedef_field *)
13413 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13414 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13415
13416 /* Reverse the list order to keep the debug info elements order. */
13417 while (--i >= 0)
13418 {
13419 struct typedef_field *dest, *src;
6e70227d 13420
98751a41
JK
13421 dest = &TYPE_TYPEDEF_FIELD (type, i);
13422 src = &fi.typedef_field_list->field;
13423 fi.typedef_field_list = fi.typedef_field_list->next;
13424 *dest = *src;
13425 }
13426 }
c767944b
DJ
13427
13428 do_cleanups (back_to);
eb2a6f42
TT
13429
13430 if (HAVE_CPLUS_STRUCT (type))
13431 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13432 }
63d06c5c 13433
bb5ed363 13434 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13435
90aeadfc
DC
13436 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13437 snapshots) has been known to create a die giving a declaration
13438 for a class that has, as a child, a die giving a definition for a
13439 nested class. So we have to process our children even if the
13440 current die is a declaration. Normally, of course, a declaration
13441 won't have any children at all. */
134d01f1 13442
ca040673
DE
13443 child_die = die->child;
13444
90aeadfc
DC
13445 while (child_die != NULL && child_die->tag)
13446 {
13447 if (child_die->tag == DW_TAG_member
13448 || child_die->tag == DW_TAG_variable
34eaf542
TT
13449 || child_die->tag == DW_TAG_inheritance
13450 || child_die->tag == DW_TAG_template_value_param
13451 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13452 {
90aeadfc 13453 /* Do nothing. */
134d01f1 13454 }
90aeadfc
DC
13455 else
13456 process_die (child_die, cu);
134d01f1 13457
90aeadfc 13458 child_die = sibling_die (child_die);
134d01f1
DJ
13459 }
13460
fa4028e9
JB
13461 /* Do not consider external references. According to the DWARF standard,
13462 these DIEs are identified by the fact that they have no byte_size
13463 attribute, and a declaration attribute. */
13464 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13465 || !die_is_declaration (die, cu))
c767944b 13466 new_symbol (die, type, cu);
134d01f1
DJ
13467}
13468
55426c9d
JB
13469/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13470 update TYPE using some information only available in DIE's children. */
13471
13472static void
13473update_enumeration_type_from_children (struct die_info *die,
13474 struct type *type,
13475 struct dwarf2_cu *cu)
13476{
13477 struct obstack obstack;
60f7655a 13478 struct die_info *child_die;
55426c9d
JB
13479 int unsigned_enum = 1;
13480 int flag_enum = 1;
13481 ULONGEST mask = 0;
13482 struct cleanup *old_chain;
13483
13484 obstack_init (&obstack);
13485 old_chain = make_cleanup_obstack_free (&obstack);
13486
60f7655a
DE
13487 for (child_die = die->child;
13488 child_die != NULL && child_die->tag;
13489 child_die = sibling_die (child_die))
55426c9d
JB
13490 {
13491 struct attribute *attr;
13492 LONGEST value;
13493 const gdb_byte *bytes;
13494 struct dwarf2_locexpr_baton *baton;
13495 const char *name;
60f7655a 13496
55426c9d
JB
13497 if (child_die->tag != DW_TAG_enumerator)
13498 continue;
13499
13500 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13501 if (attr == NULL)
13502 continue;
13503
13504 name = dwarf2_name (child_die, cu);
13505 if (name == NULL)
13506 name = "<anonymous enumerator>";
13507
13508 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13509 &value, &bytes, &baton);
13510 if (value < 0)
13511 {
13512 unsigned_enum = 0;
13513 flag_enum = 0;
13514 }
13515 else if ((mask & value) != 0)
13516 flag_enum = 0;
13517 else
13518 mask |= value;
13519
13520 /* If we already know that the enum type is neither unsigned, nor
13521 a flag type, no need to look at the rest of the enumerates. */
13522 if (!unsigned_enum && !flag_enum)
13523 break;
55426c9d
JB
13524 }
13525
13526 if (unsigned_enum)
13527 TYPE_UNSIGNED (type) = 1;
13528 if (flag_enum)
13529 TYPE_FLAG_ENUM (type) = 1;
13530
13531 do_cleanups (old_chain);
13532}
13533
134d01f1
DJ
13534/* Given a DW_AT_enumeration_type die, set its type. We do not
13535 complete the type's fields yet, or create any symbols. */
c906108c 13536
f792889a 13537static struct type *
134d01f1 13538read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13539{
e7c27a73 13540 struct objfile *objfile = cu->objfile;
c906108c 13541 struct type *type;
c906108c 13542 struct attribute *attr;
0114d602 13543 const char *name;
134d01f1 13544
348e048f
DE
13545 /* If the definition of this type lives in .debug_types, read that type.
13546 Don't follow DW_AT_specification though, that will take us back up
13547 the chain and we want to go down. */
45e58e77 13548 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13549 if (attr)
13550 {
ac9ec31b 13551 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13552
ac9ec31b 13553 /* The type's CU may not be the same as CU.
02142a6c 13554 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13555 return set_die_type (die, type, cu);
13556 }
13557
c906108c
SS
13558 type = alloc_type (objfile);
13559
13560 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13561 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13562 if (name != NULL)
7d455152 13563 TYPE_TAG_NAME (type) = name;
c906108c 13564
0626fc76
TT
13565 attr = dwarf2_attr (die, DW_AT_type, cu);
13566 if (attr != NULL)
13567 {
13568 struct type *underlying_type = die_type (die, cu);
13569
13570 TYPE_TARGET_TYPE (type) = underlying_type;
13571 }
13572
e142c38c 13573 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13574 if (attr)
13575 {
13576 TYPE_LENGTH (type) = DW_UNSND (attr);
13577 }
13578 else
13579 {
13580 TYPE_LENGTH (type) = 0;
13581 }
13582
137033e9
JB
13583 /* The enumeration DIE can be incomplete. In Ada, any type can be
13584 declared as private in the package spec, and then defined only
13585 inside the package body. Such types are known as Taft Amendment
13586 Types. When another package uses such a type, an incomplete DIE
13587 may be generated by the compiler. */
02eb380e 13588 if (die_is_declaration (die, cu))
876cecd0 13589 TYPE_STUB (type) = 1;
02eb380e 13590
0626fc76
TT
13591 /* Finish the creation of this type by using the enum's children.
13592 We must call this even when the underlying type has been provided
13593 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13594 update_enumeration_type_from_children (die, type, cu);
13595
0626fc76
TT
13596 /* If this type has an underlying type that is not a stub, then we
13597 may use its attributes. We always use the "unsigned" attribute
13598 in this situation, because ordinarily we guess whether the type
13599 is unsigned -- but the guess can be wrong and the underlying type
13600 can tell us the reality. However, we defer to a local size
13601 attribute if one exists, because this lets the compiler override
13602 the underlying type if needed. */
13603 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13604 {
13605 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13606 if (TYPE_LENGTH (type) == 0)
13607 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13608 }
13609
3d567982
TT
13610 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13611
f792889a 13612 return set_die_type (die, type, cu);
134d01f1
DJ
13613}
13614
13615/* Given a pointer to a die which begins an enumeration, process all
13616 the dies that define the members of the enumeration, and create the
13617 symbol for the enumeration type.
13618
13619 NOTE: We reverse the order of the element list. */
13620
13621static void
13622process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13623{
f792889a 13624 struct type *this_type;
134d01f1 13625
f792889a
DJ
13626 this_type = get_die_type (die, cu);
13627 if (this_type == NULL)
13628 this_type = read_enumeration_type (die, cu);
9dc481d3 13629
639d11d3 13630 if (die->child != NULL)
c906108c 13631 {
9dc481d3
DE
13632 struct die_info *child_die;
13633 struct symbol *sym;
13634 struct field *fields = NULL;
13635 int num_fields = 0;
15d034d0 13636 const char *name;
9dc481d3 13637
639d11d3 13638 child_die = die->child;
c906108c
SS
13639 while (child_die && child_die->tag)
13640 {
13641 if (child_die->tag != DW_TAG_enumerator)
13642 {
e7c27a73 13643 process_die (child_die, cu);
c906108c
SS
13644 }
13645 else
13646 {
39cbfefa
DJ
13647 name = dwarf2_name (child_die, cu);
13648 if (name)
c906108c 13649 {
f792889a 13650 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13651
13652 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13653 {
13654 fields = (struct field *)
13655 xrealloc (fields,
13656 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13657 * sizeof (struct field));
c906108c
SS
13658 }
13659
3567439c 13660 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13661 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13662 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13663 FIELD_BITSIZE (fields[num_fields]) = 0;
13664
13665 num_fields++;
13666 }
13667 }
13668
13669 child_die = sibling_die (child_die);
13670 }
13671
13672 if (num_fields)
13673 {
f792889a
DJ
13674 TYPE_NFIELDS (this_type) = num_fields;
13675 TYPE_FIELDS (this_type) = (struct field *)
13676 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13677 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13678 sizeof (struct field) * num_fields);
b8c9b27d 13679 xfree (fields);
c906108c 13680 }
c906108c 13681 }
134d01f1 13682
6c83ed52
TT
13683 /* If we are reading an enum from a .debug_types unit, and the enum
13684 is a declaration, and the enum is not the signatured type in the
13685 unit, then we do not want to add a symbol for it. Adding a
13686 symbol would in some cases obscure the true definition of the
13687 enum, giving users an incomplete type when the definition is
13688 actually available. Note that we do not want to do this for all
13689 enums which are just declarations, because C++0x allows forward
13690 enum declarations. */
3019eac3 13691 if (cu->per_cu->is_debug_types
6c83ed52
TT
13692 && die_is_declaration (die, cu))
13693 {
52dc124a 13694 struct signatured_type *sig_type;
6c83ed52 13695
c0f78cd4 13696 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13697 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13698 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13699 return;
13700 }
13701
f792889a 13702 new_symbol (die, this_type, cu);
c906108c
SS
13703}
13704
13705/* Extract all information from a DW_TAG_array_type DIE and put it in
13706 the DIE's type field. For now, this only handles one dimensional
13707 arrays. */
13708
f792889a 13709static struct type *
e7c27a73 13710read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13711{
e7c27a73 13712 struct objfile *objfile = cu->objfile;
c906108c 13713 struct die_info *child_die;
7e314c57 13714 struct type *type;
c906108c
SS
13715 struct type *element_type, *range_type, *index_type;
13716 struct type **range_types = NULL;
13717 struct attribute *attr;
13718 int ndim = 0;
13719 struct cleanup *back_to;
15d034d0 13720 const char *name;
dc53a7ad 13721 unsigned int bit_stride = 0;
c906108c 13722
e7c27a73 13723 element_type = die_type (die, cu);
c906108c 13724
7e314c57
JK
13725 /* The die_type call above may have already set the type for this DIE. */
13726 type = get_die_type (die, cu);
13727 if (type)
13728 return type;
13729
dc53a7ad
JB
13730 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13731 if (attr != NULL)
13732 bit_stride = DW_UNSND (attr) * 8;
13733
13734 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13735 if (attr != NULL)
13736 bit_stride = DW_UNSND (attr);
13737
c906108c
SS
13738 /* Irix 6.2 native cc creates array types without children for
13739 arrays with unspecified length. */
639d11d3 13740 if (die->child == NULL)
c906108c 13741 {
46bf5051 13742 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13743 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13744 type = create_array_type_with_stride (NULL, element_type, range_type,
13745 bit_stride);
f792889a 13746 return set_die_type (die, type, cu);
c906108c
SS
13747 }
13748
13749 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13750 child_die = die->child;
c906108c
SS
13751 while (child_die && child_die->tag)
13752 {
13753 if (child_die->tag == DW_TAG_subrange_type)
13754 {
f792889a 13755 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13756
f792889a 13757 if (child_type != NULL)
a02abb62 13758 {
0963b4bd
MS
13759 /* The range type was succesfully read. Save it for the
13760 array type creation. */
a02abb62
JB
13761 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13762 {
13763 range_types = (struct type **)
13764 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13765 * sizeof (struct type *));
13766 if (ndim == 0)
13767 make_cleanup (free_current_contents, &range_types);
13768 }
f792889a 13769 range_types[ndim++] = child_type;
a02abb62 13770 }
c906108c
SS
13771 }
13772 child_die = sibling_die (child_die);
13773 }
13774
13775 /* Dwarf2 dimensions are output from left to right, create the
13776 necessary array types in backwards order. */
7ca2d3a3 13777
c906108c 13778 type = element_type;
7ca2d3a3
DL
13779
13780 if (read_array_order (die, cu) == DW_ORD_col_major)
13781 {
13782 int i = 0;
9a619af0 13783
7ca2d3a3 13784 while (i < ndim)
dc53a7ad
JB
13785 type = create_array_type_with_stride (NULL, type, range_types[i++],
13786 bit_stride);
7ca2d3a3
DL
13787 }
13788 else
13789 {
13790 while (ndim-- > 0)
dc53a7ad
JB
13791 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13792 bit_stride);
7ca2d3a3 13793 }
c906108c 13794
f5f8a009
EZ
13795 /* Understand Dwarf2 support for vector types (like they occur on
13796 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13797 array type. This is not part of the Dwarf2/3 standard yet, but a
13798 custom vendor extension. The main difference between a regular
13799 array and the vector variant is that vectors are passed by value
13800 to functions. */
e142c38c 13801 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13802 if (attr)
ea37ba09 13803 make_vector_type (type);
f5f8a009 13804
dbc98a8b
KW
13805 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13806 implementation may choose to implement triple vectors using this
13807 attribute. */
13808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13809 if (attr)
13810 {
13811 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13812 TYPE_LENGTH (type) = DW_UNSND (attr);
13813 else
3e43a32a
MS
13814 complaint (&symfile_complaints,
13815 _("DW_AT_byte_size for array type smaller "
13816 "than the total size of elements"));
dbc98a8b
KW
13817 }
13818
39cbfefa
DJ
13819 name = dwarf2_name (die, cu);
13820 if (name)
13821 TYPE_NAME (type) = name;
6e70227d 13822
0963b4bd 13823 /* Install the type in the die. */
7e314c57
JK
13824 set_die_type (die, type, cu);
13825
13826 /* set_die_type should be already done. */
b4ba55a1
JB
13827 set_descriptive_type (type, die, cu);
13828
c906108c
SS
13829 do_cleanups (back_to);
13830
7e314c57 13831 return type;
c906108c
SS
13832}
13833
7ca2d3a3 13834static enum dwarf_array_dim_ordering
6e70227d 13835read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13836{
13837 struct attribute *attr;
13838
13839 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13840
aead7601
SM
13841 if (attr)
13842 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13843
0963b4bd
MS
13844 /* GNU F77 is a special case, as at 08/2004 array type info is the
13845 opposite order to the dwarf2 specification, but data is still
13846 laid out as per normal fortran.
7ca2d3a3 13847
0963b4bd
MS
13848 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13849 version checking. */
7ca2d3a3 13850
905e0470
PM
13851 if (cu->language == language_fortran
13852 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13853 {
13854 return DW_ORD_row_major;
13855 }
13856
6e70227d 13857 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13858 {
13859 case array_column_major:
13860 return DW_ORD_col_major;
13861 case array_row_major:
13862 default:
13863 return DW_ORD_row_major;
13864 };
13865}
13866
72019c9c 13867/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13868 the DIE's type field. */
72019c9c 13869
f792889a 13870static struct type *
72019c9c
GM
13871read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13872{
7e314c57
JK
13873 struct type *domain_type, *set_type;
13874 struct attribute *attr;
f792889a 13875
7e314c57
JK
13876 domain_type = die_type (die, cu);
13877
13878 /* The die_type call above may have already set the type for this DIE. */
13879 set_type = get_die_type (die, cu);
13880 if (set_type)
13881 return set_type;
13882
13883 set_type = create_set_type (NULL, domain_type);
13884
13885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13886 if (attr)
13887 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13888
f792889a 13889 return set_die_type (die, set_type, cu);
72019c9c 13890}
7ca2d3a3 13891
0971de02
TT
13892/* A helper for read_common_block that creates a locexpr baton.
13893 SYM is the symbol which we are marking as computed.
13894 COMMON_DIE is the DIE for the common block.
13895 COMMON_LOC is the location expression attribute for the common
13896 block itself.
13897 MEMBER_LOC is the location expression attribute for the particular
13898 member of the common block that we are processing.
13899 CU is the CU from which the above come. */
13900
13901static void
13902mark_common_block_symbol_computed (struct symbol *sym,
13903 struct die_info *common_die,
13904 struct attribute *common_loc,
13905 struct attribute *member_loc,
13906 struct dwarf2_cu *cu)
13907{
13908 struct objfile *objfile = dwarf2_per_objfile->objfile;
13909 struct dwarf2_locexpr_baton *baton;
13910 gdb_byte *ptr;
13911 unsigned int cu_off;
13912 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13913 LONGEST offset = 0;
13914
13915 gdb_assert (common_loc && member_loc);
13916 gdb_assert (attr_form_is_block (common_loc));
13917 gdb_assert (attr_form_is_block (member_loc)
13918 || attr_form_is_constant (member_loc));
13919
8d749320 13920 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13921 baton->per_cu = cu->per_cu;
13922 gdb_assert (baton->per_cu);
13923
13924 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13925
13926 if (attr_form_is_constant (member_loc))
13927 {
13928 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13929 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13930 }
13931 else
13932 baton->size += DW_BLOCK (member_loc)->size;
13933
224c3ddb 13934 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13935 baton->data = ptr;
13936
13937 *ptr++ = DW_OP_call4;
13938 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13939 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13940 ptr += 4;
13941
13942 if (attr_form_is_constant (member_loc))
13943 {
13944 *ptr++ = DW_OP_addr;
13945 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13946 ptr += cu->header.addr_size;
13947 }
13948 else
13949 {
13950 /* We have to copy the data here, because DW_OP_call4 will only
13951 use a DW_AT_location attribute. */
13952 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13953 ptr += DW_BLOCK (member_loc)->size;
13954 }
13955
13956 *ptr++ = DW_OP_plus;
13957 gdb_assert (ptr - baton->data == baton->size);
13958
0971de02 13959 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13960 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13961}
13962
4357ac6c
TT
13963/* Create appropriate locally-scoped variables for all the
13964 DW_TAG_common_block entries. Also create a struct common_block
13965 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13966 is used to sepate the common blocks name namespace from regular
13967 variable names. */
c906108c
SS
13968
13969static void
e7c27a73 13970read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13971{
0971de02
TT
13972 struct attribute *attr;
13973
13974 attr = dwarf2_attr (die, DW_AT_location, cu);
13975 if (attr)
13976 {
13977 /* Support the .debug_loc offsets. */
13978 if (attr_form_is_block (attr))
13979 {
13980 /* Ok. */
13981 }
13982 else if (attr_form_is_section_offset (attr))
13983 {
13984 dwarf2_complex_location_expr_complaint ();
13985 attr = NULL;
13986 }
13987 else
13988 {
13989 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13990 "common block member");
13991 attr = NULL;
13992 }
13993 }
13994
639d11d3 13995 if (die->child != NULL)
c906108c 13996 {
4357ac6c
TT
13997 struct objfile *objfile = cu->objfile;
13998 struct die_info *child_die;
13999 size_t n_entries = 0, size;
14000 struct common_block *common_block;
14001 struct symbol *sym;
74ac6d43 14002
4357ac6c
TT
14003 for (child_die = die->child;
14004 child_die && child_die->tag;
14005 child_die = sibling_die (child_die))
14006 ++n_entries;
14007
14008 size = (sizeof (struct common_block)
14009 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14010 common_block
14011 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14012 size);
4357ac6c
TT
14013 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14014 common_block->n_entries = 0;
14015
14016 for (child_die = die->child;
14017 child_die && child_die->tag;
14018 child_die = sibling_die (child_die))
14019 {
14020 /* Create the symbol in the DW_TAG_common_block block in the current
14021 symbol scope. */
e7c27a73 14022 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14023 if (sym != NULL)
14024 {
14025 struct attribute *member_loc;
14026
14027 common_block->contents[common_block->n_entries++] = sym;
14028
14029 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14030 cu);
14031 if (member_loc)
14032 {
14033 /* GDB has handled this for a long time, but it is
14034 not specified by DWARF. It seems to have been
14035 emitted by gfortran at least as recently as:
14036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14037 complaint (&symfile_complaints,
14038 _("Variable in common block has "
14039 "DW_AT_data_member_location "
14040 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14041 child_die->offset.sect_off,
14042 objfile_name (cu->objfile));
0971de02
TT
14043
14044 if (attr_form_is_section_offset (member_loc))
14045 dwarf2_complex_location_expr_complaint ();
14046 else if (attr_form_is_constant (member_loc)
14047 || attr_form_is_block (member_loc))
14048 {
14049 if (attr)
14050 mark_common_block_symbol_computed (sym, die, attr,
14051 member_loc, cu);
14052 }
14053 else
14054 dwarf2_complex_location_expr_complaint ();
14055 }
14056 }
c906108c 14057 }
4357ac6c
TT
14058
14059 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14060 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14061 }
14062}
14063
0114d602 14064/* Create a type for a C++ namespace. */
d9fa45fe 14065
0114d602
DJ
14066static struct type *
14067read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14068{
e7c27a73 14069 struct objfile *objfile = cu->objfile;
0114d602 14070 const char *previous_prefix, *name;
9219021c 14071 int is_anonymous;
0114d602
DJ
14072 struct type *type;
14073
14074 /* For extensions, reuse the type of the original namespace. */
14075 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14076 {
14077 struct die_info *ext_die;
14078 struct dwarf2_cu *ext_cu = cu;
9a619af0 14079
0114d602
DJ
14080 ext_die = dwarf2_extension (die, &ext_cu);
14081 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14082
14083 /* EXT_CU may not be the same as CU.
02142a6c 14084 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14085 return set_die_type (die, type, cu);
14086 }
9219021c 14087
e142c38c 14088 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14089
14090 /* Now build the name of the current namespace. */
14091
0114d602
DJ
14092 previous_prefix = determine_prefix (die, cu);
14093 if (previous_prefix[0] != '\0')
14094 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14095 previous_prefix, name, 0, cu);
0114d602
DJ
14096
14097 /* Create the type. */
14098 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14099 objfile);
abee88f2 14100 TYPE_NAME (type) = name;
0114d602
DJ
14101 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14102
60531b24 14103 return set_die_type (die, type, cu);
0114d602
DJ
14104}
14105
22cee43f 14106/* Read a namespace scope. */
0114d602
DJ
14107
14108static void
14109read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14110{
14111 struct objfile *objfile = cu->objfile;
0114d602 14112 int is_anonymous;
9219021c 14113
5c4e30ca
DC
14114 /* Add a symbol associated to this if we haven't seen the namespace
14115 before. Also, add a using directive if it's an anonymous
14116 namespace. */
9219021c 14117
f2f0e013 14118 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14119 {
14120 struct type *type;
14121
0114d602 14122 type = read_type_die (die, cu);
e7c27a73 14123 new_symbol (die, type, cu);
5c4e30ca 14124
e8e80198 14125 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14126 if (is_anonymous)
0114d602
DJ
14127 {
14128 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14129
22cee43f
PMR
14130 add_using_directive (using_directives (cu->language),
14131 previous_prefix, TYPE_NAME (type), NULL,
14132 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14133 }
5c4e30ca 14134 }
9219021c 14135
639d11d3 14136 if (die->child != NULL)
d9fa45fe 14137 {
639d11d3 14138 struct die_info *child_die = die->child;
6e70227d 14139
d9fa45fe
DC
14140 while (child_die && child_die->tag)
14141 {
e7c27a73 14142 process_die (child_die, cu);
d9fa45fe
DC
14143 child_die = sibling_die (child_die);
14144 }
14145 }
38d518c9
EZ
14146}
14147
f55ee35c
JK
14148/* Read a Fortran module as type. This DIE can be only a declaration used for
14149 imported module. Still we need that type as local Fortran "use ... only"
14150 declaration imports depend on the created type in determine_prefix. */
14151
14152static struct type *
14153read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14154{
14155 struct objfile *objfile = cu->objfile;
15d034d0 14156 const char *module_name;
f55ee35c
JK
14157 struct type *type;
14158
14159 module_name = dwarf2_name (die, cu);
14160 if (!module_name)
3e43a32a
MS
14161 complaint (&symfile_complaints,
14162 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14163 die->offset.sect_off);
f55ee35c
JK
14164 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14165
14166 /* determine_prefix uses TYPE_TAG_NAME. */
14167 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14168
14169 return set_die_type (die, type, cu);
14170}
14171
5d7cb8df
JK
14172/* Read a Fortran module. */
14173
14174static void
14175read_module (struct die_info *die, struct dwarf2_cu *cu)
14176{
14177 struct die_info *child_die = die->child;
530e8392
KB
14178 struct type *type;
14179
14180 type = read_type_die (die, cu);
14181 new_symbol (die, type, cu);
5d7cb8df 14182
5d7cb8df
JK
14183 while (child_die && child_die->tag)
14184 {
14185 process_die (child_die, cu);
14186 child_die = sibling_die (child_die);
14187 }
14188}
14189
38d518c9
EZ
14190/* Return the name of the namespace represented by DIE. Set
14191 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14192 namespace. */
14193
14194static const char *
e142c38c 14195namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14196{
14197 struct die_info *current_die;
14198 const char *name = NULL;
14199
14200 /* Loop through the extensions until we find a name. */
14201
14202 for (current_die = die;
14203 current_die != NULL;
f2f0e013 14204 current_die = dwarf2_extension (die, &cu))
38d518c9 14205 {
96553a0c
DE
14206 /* We don't use dwarf2_name here so that we can detect the absence
14207 of a name -> anonymous namespace. */
7d45c7c3 14208 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14209
38d518c9
EZ
14210 if (name != NULL)
14211 break;
14212 }
14213
14214 /* Is it an anonymous namespace? */
14215
14216 *is_anonymous = (name == NULL);
14217 if (*is_anonymous)
2b1dbab0 14218 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14219
14220 return name;
d9fa45fe
DC
14221}
14222
c906108c
SS
14223/* Extract all information from a DW_TAG_pointer_type DIE and add to
14224 the user defined type vector. */
14225
f792889a 14226static struct type *
e7c27a73 14227read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14228{
5e2b427d 14229 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14230 struct comp_unit_head *cu_header = &cu->header;
c906108c 14231 struct type *type;
8b2dbe47
KB
14232 struct attribute *attr_byte_size;
14233 struct attribute *attr_address_class;
14234 int byte_size, addr_class;
7e314c57
JK
14235 struct type *target_type;
14236
14237 target_type = die_type (die, cu);
c906108c 14238
7e314c57
JK
14239 /* The die_type call above may have already set the type for this DIE. */
14240 type = get_die_type (die, cu);
14241 if (type)
14242 return type;
14243
14244 type = lookup_pointer_type (target_type);
8b2dbe47 14245
e142c38c 14246 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14247 if (attr_byte_size)
14248 byte_size = DW_UNSND (attr_byte_size);
c906108c 14249 else
8b2dbe47
KB
14250 byte_size = cu_header->addr_size;
14251
e142c38c 14252 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14253 if (attr_address_class)
14254 addr_class = DW_UNSND (attr_address_class);
14255 else
14256 addr_class = DW_ADDR_none;
14257
14258 /* If the pointer size or address class is different than the
14259 default, create a type variant marked as such and set the
14260 length accordingly. */
14261 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14262 {
5e2b427d 14263 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14264 {
14265 int type_flags;
14266
849957d9 14267 type_flags = gdbarch_address_class_type_flags
5e2b427d 14268 (gdbarch, byte_size, addr_class);
876cecd0
TT
14269 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14270 == 0);
8b2dbe47
KB
14271 type = make_type_with_address_space (type, type_flags);
14272 }
14273 else if (TYPE_LENGTH (type) != byte_size)
14274 {
3e43a32a
MS
14275 complaint (&symfile_complaints,
14276 _("invalid pointer size %d"), byte_size);
8b2dbe47 14277 }
6e70227d 14278 else
9a619af0
MS
14279 {
14280 /* Should we also complain about unhandled address classes? */
14281 }
c906108c 14282 }
8b2dbe47
KB
14283
14284 TYPE_LENGTH (type) = byte_size;
f792889a 14285 return set_die_type (die, type, cu);
c906108c
SS
14286}
14287
14288/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14289 the user defined type vector. */
14290
f792889a 14291static struct type *
e7c27a73 14292read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14293{
14294 struct type *type;
14295 struct type *to_type;
14296 struct type *domain;
14297
e7c27a73
DJ
14298 to_type = die_type (die, cu);
14299 domain = die_containing_type (die, cu);
0d5de010 14300
7e314c57
JK
14301 /* The calls above may have already set the type for this DIE. */
14302 type = get_die_type (die, cu);
14303 if (type)
14304 return type;
14305
0d5de010
DJ
14306 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14307 type = lookup_methodptr_type (to_type);
7078baeb
TT
14308 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14309 {
14310 struct type *new_type = alloc_type (cu->objfile);
14311
14312 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14313 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14314 TYPE_VARARGS (to_type));
14315 type = lookup_methodptr_type (new_type);
14316 }
0d5de010
DJ
14317 else
14318 type = lookup_memberptr_type (to_type, domain);
c906108c 14319
f792889a 14320 return set_die_type (die, type, cu);
c906108c
SS
14321}
14322
14323/* Extract all information from a DW_TAG_reference_type DIE and add to
14324 the user defined type vector. */
14325
f792889a 14326static struct type *
e7c27a73 14327read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14328{
e7c27a73 14329 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14330 struct type *type, *target_type;
c906108c
SS
14331 struct attribute *attr;
14332
7e314c57
JK
14333 target_type = die_type (die, cu);
14334
14335 /* The die_type call above may have already set the type for this DIE. */
14336 type = get_die_type (die, cu);
14337 if (type)
14338 return type;
14339
14340 type = lookup_reference_type (target_type);
e142c38c 14341 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14342 if (attr)
14343 {
14344 TYPE_LENGTH (type) = DW_UNSND (attr);
14345 }
14346 else
14347 {
107d2387 14348 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14349 }
f792889a 14350 return set_die_type (die, type, cu);
c906108c
SS
14351}
14352
cf363f18
MW
14353/* Add the given cv-qualifiers to the element type of the array. GCC
14354 outputs DWARF type qualifiers that apply to an array, not the
14355 element type. But GDB relies on the array element type to carry
14356 the cv-qualifiers. This mimics section 6.7.3 of the C99
14357 specification. */
14358
14359static struct type *
14360add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14361 struct type *base_type, int cnst, int voltl)
14362{
14363 struct type *el_type, *inner_array;
14364
14365 base_type = copy_type (base_type);
14366 inner_array = base_type;
14367
14368 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14369 {
14370 TYPE_TARGET_TYPE (inner_array) =
14371 copy_type (TYPE_TARGET_TYPE (inner_array));
14372 inner_array = TYPE_TARGET_TYPE (inner_array);
14373 }
14374
14375 el_type = TYPE_TARGET_TYPE (inner_array);
14376 cnst |= TYPE_CONST (el_type);
14377 voltl |= TYPE_VOLATILE (el_type);
14378 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14379
14380 return set_die_type (die, base_type, cu);
14381}
14382
f792889a 14383static struct type *
e7c27a73 14384read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14385{
f792889a 14386 struct type *base_type, *cv_type;
c906108c 14387
e7c27a73 14388 base_type = die_type (die, cu);
7e314c57
JK
14389
14390 /* The die_type call above may have already set the type for this DIE. */
14391 cv_type = get_die_type (die, cu);
14392 if (cv_type)
14393 return cv_type;
14394
2f608a3a
KW
14395 /* In case the const qualifier is applied to an array type, the element type
14396 is so qualified, not the array type (section 6.7.3 of C99). */
14397 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14398 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14399
f792889a
DJ
14400 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14401 return set_die_type (die, cv_type, cu);
c906108c
SS
14402}
14403
f792889a 14404static struct type *
e7c27a73 14405read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14406{
f792889a 14407 struct type *base_type, *cv_type;
c906108c 14408
e7c27a73 14409 base_type = die_type (die, cu);
7e314c57
JK
14410
14411 /* The die_type call above may have already set the type for this DIE. */
14412 cv_type = get_die_type (die, cu);
14413 if (cv_type)
14414 return cv_type;
14415
cf363f18
MW
14416 /* In case the volatile qualifier is applied to an array type, the
14417 element type is so qualified, not the array type (section 6.7.3
14418 of C99). */
14419 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14420 return add_array_cv_type (die, cu, base_type, 0, 1);
14421
f792889a
DJ
14422 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14423 return set_die_type (die, cv_type, cu);
c906108c
SS
14424}
14425
06d66ee9
TT
14426/* Handle DW_TAG_restrict_type. */
14427
14428static struct type *
14429read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14430{
14431 struct type *base_type, *cv_type;
14432
14433 base_type = die_type (die, cu);
14434
14435 /* The die_type call above may have already set the type for this DIE. */
14436 cv_type = get_die_type (die, cu);
14437 if (cv_type)
14438 return cv_type;
14439
14440 cv_type = make_restrict_type (base_type);
14441 return set_die_type (die, cv_type, cu);
14442}
14443
a2c2acaf
MW
14444/* Handle DW_TAG_atomic_type. */
14445
14446static struct type *
14447read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14448{
14449 struct type *base_type, *cv_type;
14450
14451 base_type = die_type (die, cu);
14452
14453 /* The die_type call above may have already set the type for this DIE. */
14454 cv_type = get_die_type (die, cu);
14455 if (cv_type)
14456 return cv_type;
14457
14458 cv_type = make_atomic_type (base_type);
14459 return set_die_type (die, cv_type, cu);
14460}
14461
c906108c
SS
14462/* Extract all information from a DW_TAG_string_type DIE and add to
14463 the user defined type vector. It isn't really a user defined type,
14464 but it behaves like one, with other DIE's using an AT_user_def_type
14465 attribute to reference it. */
14466
f792889a 14467static struct type *
e7c27a73 14468read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14469{
e7c27a73 14470 struct objfile *objfile = cu->objfile;
3b7538c0 14471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14472 struct type *type, *range_type, *index_type, *char_type;
14473 struct attribute *attr;
14474 unsigned int length;
14475
e142c38c 14476 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14477 if (attr)
14478 {
14479 length = DW_UNSND (attr);
14480 }
14481 else
14482 {
0963b4bd 14483 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14485 if (attr)
14486 {
14487 length = DW_UNSND (attr);
14488 }
14489 else
14490 {
14491 length = 1;
14492 }
c906108c 14493 }
6ccb9162 14494
46bf5051 14495 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14496 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14497 char_type = language_string_char_type (cu->language_defn, gdbarch);
14498 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14499
f792889a 14500 return set_die_type (die, type, cu);
c906108c
SS
14501}
14502
4d804846
JB
14503/* Assuming that DIE corresponds to a function, returns nonzero
14504 if the function is prototyped. */
14505
14506static int
14507prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14508{
14509 struct attribute *attr;
14510
14511 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14512 if (attr && (DW_UNSND (attr) != 0))
14513 return 1;
14514
14515 /* The DWARF standard implies that the DW_AT_prototyped attribute
14516 is only meaninful for C, but the concept also extends to other
14517 languages that allow unprototyped functions (Eg: Objective C).
14518 For all other languages, assume that functions are always
14519 prototyped. */
14520 if (cu->language != language_c
14521 && cu->language != language_objc
14522 && cu->language != language_opencl)
14523 return 1;
14524
14525 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14526 prototyped and unprototyped functions; default to prototyped,
14527 since that is more common in modern code (and RealView warns
14528 about unprototyped functions). */
14529 if (producer_is_realview (cu->producer))
14530 return 1;
14531
14532 return 0;
14533}
14534
c906108c
SS
14535/* Handle DIES due to C code like:
14536
14537 struct foo
c5aa993b
JM
14538 {
14539 int (*funcp)(int a, long l);
14540 int b;
14541 };
c906108c 14542
0963b4bd 14543 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14544
f792889a 14545static struct type *
e7c27a73 14546read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14547{
bb5ed363 14548 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14549 struct type *type; /* Type that this function returns. */
14550 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14551 struct attribute *attr;
14552
e7c27a73 14553 type = die_type (die, cu);
7e314c57
JK
14554
14555 /* The die_type call above may have already set the type for this DIE. */
14556 ftype = get_die_type (die, cu);
14557 if (ftype)
14558 return ftype;
14559
0c8b41f1 14560 ftype = lookup_function_type (type);
c906108c 14561
4d804846 14562 if (prototyped_function_p (die, cu))
a6c727b2 14563 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14564
c055b101
CV
14565 /* Store the calling convention in the type if it's available in
14566 the subroutine die. Otherwise set the calling convention to
14567 the default value DW_CC_normal. */
14568 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14569 if (attr)
14570 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14571 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14572 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14573 else
14574 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14575
743649fd
MW
14576 /* Record whether the function returns normally to its caller or not
14577 if the DWARF producer set that information. */
14578 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14579 if (attr && (DW_UNSND (attr) != 0))
14580 TYPE_NO_RETURN (ftype) = 1;
14581
76c10ea2
GM
14582 /* We need to add the subroutine type to the die immediately so
14583 we don't infinitely recurse when dealing with parameters
0963b4bd 14584 declared as the same subroutine type. */
76c10ea2 14585 set_die_type (die, ftype, cu);
6e70227d 14586
639d11d3 14587 if (die->child != NULL)
c906108c 14588 {
bb5ed363 14589 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14590 struct die_info *child_die;
8072405b 14591 int nparams, iparams;
c906108c
SS
14592
14593 /* Count the number of parameters.
14594 FIXME: GDB currently ignores vararg functions, but knows about
14595 vararg member functions. */
8072405b 14596 nparams = 0;
639d11d3 14597 child_die = die->child;
c906108c
SS
14598 while (child_die && child_die->tag)
14599 {
14600 if (child_die->tag == DW_TAG_formal_parameter)
14601 nparams++;
14602 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14603 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14604 child_die = sibling_die (child_die);
14605 }
14606
14607 /* Allocate storage for parameters and fill them in. */
14608 TYPE_NFIELDS (ftype) = nparams;
14609 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14610 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14611
8072405b
JK
14612 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14613 even if we error out during the parameters reading below. */
14614 for (iparams = 0; iparams < nparams; iparams++)
14615 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14616
14617 iparams = 0;
639d11d3 14618 child_die = die->child;
c906108c
SS
14619 while (child_die && child_die->tag)
14620 {
14621 if (child_die->tag == DW_TAG_formal_parameter)
14622 {
3ce3b1ba
PA
14623 struct type *arg_type;
14624
14625 /* DWARF version 2 has no clean way to discern C++
14626 static and non-static member functions. G++ helps
14627 GDB by marking the first parameter for non-static
14628 member functions (which is the this pointer) as
14629 artificial. We pass this information to
14630 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14631
14632 DWARF version 3 added DW_AT_object_pointer, which GCC
14633 4.5 does not yet generate. */
e142c38c 14634 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14635 if (attr)
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14637 else
418835cc
KS
14638 {
14639 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14640
14641 /* GCC/43521: In java, the formal parameter
14642 "this" is sometimes not marked with DW_AT_artificial. */
14643 if (cu->language == language_java)
14644 {
14645 const char *name = dwarf2_name (child_die, cu);
9a619af0 14646
418835cc
KS
14647 if (name && !strcmp (name, "this"))
14648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14649 }
14650 }
3ce3b1ba
PA
14651 arg_type = die_type (child_die, cu);
14652
14653 /* RealView does not mark THIS as const, which the testsuite
14654 expects. GCC marks THIS as const in method definitions,
14655 but not in the class specifications (GCC PR 43053). */
14656 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14657 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14658 {
14659 int is_this = 0;
14660 struct dwarf2_cu *arg_cu = cu;
14661 const char *name = dwarf2_name (child_die, cu);
14662
14663 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14664 if (attr)
14665 {
14666 /* If the compiler emits this, use it. */
14667 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14668 is_this = 1;
14669 }
14670 else if (name && strcmp (name, "this") == 0)
14671 /* Function definitions will have the argument names. */
14672 is_this = 1;
14673 else if (name == NULL && iparams == 0)
14674 /* Declarations may not have the names, so like
14675 elsewhere in GDB, assume an artificial first
14676 argument is "this". */
14677 is_this = 1;
14678
14679 if (is_this)
14680 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14681 arg_type, 0);
14682 }
14683
14684 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14685 iparams++;
14686 }
14687 child_die = sibling_die (child_die);
14688 }
14689 }
14690
76c10ea2 14691 return ftype;
c906108c
SS
14692}
14693
f792889a 14694static struct type *
e7c27a73 14695read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14696{
e7c27a73 14697 struct objfile *objfile = cu->objfile;
0114d602 14698 const char *name = NULL;
3c8e0968 14699 struct type *this_type, *target_type;
c906108c 14700
94af9270 14701 name = dwarf2_full_name (NULL, die, cu);
f792889a 14702 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14703 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14704 TYPE_NAME (this_type) = name;
f792889a 14705 set_die_type (die, this_type, cu);
3c8e0968
DE
14706 target_type = die_type (die, cu);
14707 if (target_type != this_type)
14708 TYPE_TARGET_TYPE (this_type) = target_type;
14709 else
14710 {
14711 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14712 spec and cause infinite loops in GDB. */
14713 complaint (&symfile_complaints,
14714 _("Self-referential DW_TAG_typedef "
14715 "- DIE at 0x%x [in module %s]"),
4262abfb 14716 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14717 TYPE_TARGET_TYPE (this_type) = NULL;
14718 }
f792889a 14719 return this_type;
c906108c
SS
14720}
14721
14722/* Find a representation of a given base type and install
14723 it in the TYPE field of the die. */
14724
f792889a 14725static struct type *
e7c27a73 14726read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14727{
e7c27a73 14728 struct objfile *objfile = cu->objfile;
c906108c
SS
14729 struct type *type;
14730 struct attribute *attr;
14731 int encoding = 0, size = 0;
15d034d0 14732 const char *name;
6ccb9162
UW
14733 enum type_code code = TYPE_CODE_INT;
14734 int type_flags = 0;
14735 struct type *target_type = NULL;
c906108c 14736
e142c38c 14737 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14738 if (attr)
14739 {
14740 encoding = DW_UNSND (attr);
14741 }
e142c38c 14742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14743 if (attr)
14744 {
14745 size = DW_UNSND (attr);
14746 }
39cbfefa 14747 name = dwarf2_name (die, cu);
6ccb9162 14748 if (!name)
c906108c 14749 {
6ccb9162
UW
14750 complaint (&symfile_complaints,
14751 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14752 }
6ccb9162
UW
14753
14754 switch (encoding)
c906108c 14755 {
6ccb9162
UW
14756 case DW_ATE_address:
14757 /* Turn DW_ATE_address into a void * pointer. */
14758 code = TYPE_CODE_PTR;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14761 break;
14762 case DW_ATE_boolean:
14763 code = TYPE_CODE_BOOL;
14764 type_flags |= TYPE_FLAG_UNSIGNED;
14765 break;
14766 case DW_ATE_complex_float:
14767 code = TYPE_CODE_COMPLEX;
14768 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14769 break;
14770 case DW_ATE_decimal_float:
14771 code = TYPE_CODE_DECFLOAT;
14772 break;
14773 case DW_ATE_float:
14774 code = TYPE_CODE_FLT;
14775 break;
14776 case DW_ATE_signed:
14777 break;
14778 case DW_ATE_unsigned:
14779 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14780 if (cu->language == language_fortran
14781 && name
61012eef 14782 && startswith (name, "character("))
3b2b8fea 14783 code = TYPE_CODE_CHAR;
6ccb9162
UW
14784 break;
14785 case DW_ATE_signed_char:
6e70227d 14786 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14787 || cu->language == language_pascal
14788 || cu->language == language_fortran)
6ccb9162
UW
14789 code = TYPE_CODE_CHAR;
14790 break;
14791 case DW_ATE_unsigned_char:
868a0084 14792 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14793 || cu->language == language_pascal
14794 || cu->language == language_fortran)
6ccb9162
UW
14795 code = TYPE_CODE_CHAR;
14796 type_flags |= TYPE_FLAG_UNSIGNED;
14797 break;
75079b2b
TT
14798 case DW_ATE_UTF:
14799 /* We just treat this as an integer and then recognize the
14800 type by name elsewhere. */
14801 break;
14802
6ccb9162
UW
14803 default:
14804 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14805 dwarf_type_encoding_name (encoding));
14806 break;
c906108c 14807 }
6ccb9162 14808
0114d602
DJ
14809 type = init_type (code, size, type_flags, NULL, objfile);
14810 TYPE_NAME (type) = name;
6ccb9162
UW
14811 TYPE_TARGET_TYPE (type) = target_type;
14812
0114d602 14813 if (name && strcmp (name, "char") == 0)
876cecd0 14814 TYPE_NOSIGN (type) = 1;
0114d602 14815
f792889a 14816 return set_die_type (die, type, cu);
c906108c
SS
14817}
14818
80180f79
SA
14819/* Parse dwarf attribute if it's a block, reference or constant and put the
14820 resulting value of the attribute into struct bound_prop.
14821 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14822
14823static int
14824attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14825 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14826{
14827 struct dwarf2_property_baton *baton;
14828 struct obstack *obstack = &cu->objfile->objfile_obstack;
14829
14830 if (attr == NULL || prop == NULL)
14831 return 0;
14832
14833 if (attr_form_is_block (attr))
14834 {
8d749320 14835 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14836 baton->referenced_type = NULL;
14837 baton->locexpr.per_cu = cu->per_cu;
14838 baton->locexpr.size = DW_BLOCK (attr)->size;
14839 baton->locexpr.data = DW_BLOCK (attr)->data;
14840 prop->data.baton = baton;
14841 prop->kind = PROP_LOCEXPR;
14842 gdb_assert (prop->data.baton != NULL);
14843 }
14844 else if (attr_form_is_ref (attr))
14845 {
14846 struct dwarf2_cu *target_cu = cu;
14847 struct die_info *target_die;
14848 struct attribute *target_attr;
14849
14850 target_die = follow_die_ref (die, attr, &target_cu);
14851 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14852 if (target_attr == NULL)
14853 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14854 target_cu);
80180f79
SA
14855 if (target_attr == NULL)
14856 return 0;
14857
df25ebbd 14858 switch (target_attr->name)
80180f79 14859 {
df25ebbd
JB
14860 case DW_AT_location:
14861 if (attr_form_is_section_offset (target_attr))
14862 {
8d749320 14863 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14864 baton->referenced_type = die_type (target_die, target_cu);
14865 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCLIST;
14868 gdb_assert (prop->data.baton != NULL);
14869 }
14870 else if (attr_form_is_block (target_attr))
14871 {
8d749320 14872 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14873 baton->referenced_type = die_type (target_die, target_cu);
14874 baton->locexpr.per_cu = cu->per_cu;
14875 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14876 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14877 prop->data.baton = baton;
14878 prop->kind = PROP_LOCEXPR;
14879 gdb_assert (prop->data.baton != NULL);
14880 }
14881 else
14882 {
14883 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14884 "dynamic property");
14885 return 0;
14886 }
14887 break;
14888 case DW_AT_data_member_location:
14889 {
14890 LONGEST offset;
14891
14892 if (!handle_data_member_location (target_die, target_cu,
14893 &offset))
14894 return 0;
14895
8d749320 14896 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14897 baton->referenced_type = read_type_die (target_die->parent,
14898 target_cu);
df25ebbd
JB
14899 baton->offset_info.offset = offset;
14900 baton->offset_info.type = die_type (target_die, target_cu);
14901 prop->data.baton = baton;
14902 prop->kind = PROP_ADDR_OFFSET;
14903 break;
14904 }
80180f79
SA
14905 }
14906 }
14907 else if (attr_form_is_constant (attr))
14908 {
14909 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14910 prop->kind = PROP_CONST;
14911 }
14912 else
14913 {
14914 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14915 dwarf2_name (die, cu));
14916 return 0;
14917 }
14918
14919 return 1;
14920}
14921
a02abb62
JB
14922/* Read the given DW_AT_subrange DIE. */
14923
f792889a 14924static struct type *
a02abb62
JB
14925read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14926{
4c9ad8c2 14927 struct type *base_type, *orig_base_type;
a02abb62
JB
14928 struct type *range_type;
14929 struct attribute *attr;
729efb13 14930 struct dynamic_prop low, high;
4fae6e18 14931 int low_default_is_valid;
c451ebe5 14932 int high_bound_is_count = 0;
15d034d0 14933 const char *name;
43bbcdc2 14934 LONGEST negative_mask;
e77813c8 14935
4c9ad8c2
TT
14936 orig_base_type = die_type (die, cu);
14937 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14938 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14939 creating the range type, but we use the result of check_typedef
14940 when examining properties of the type. */
14941 base_type = check_typedef (orig_base_type);
a02abb62 14942
7e314c57
JK
14943 /* The die_type call above may have already set the type for this DIE. */
14944 range_type = get_die_type (die, cu);
14945 if (range_type)
14946 return range_type;
14947
729efb13
SA
14948 low.kind = PROP_CONST;
14949 high.kind = PROP_CONST;
14950 high.data.const_val = 0;
14951
4fae6e18
JK
14952 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14953 omitting DW_AT_lower_bound. */
14954 switch (cu->language)
6e70227d 14955 {
4fae6e18
JK
14956 case language_c:
14957 case language_cplus:
729efb13 14958 low.data.const_val = 0;
4fae6e18
JK
14959 low_default_is_valid = 1;
14960 break;
14961 case language_fortran:
729efb13 14962 low.data.const_val = 1;
4fae6e18
JK
14963 low_default_is_valid = 1;
14964 break;
14965 case language_d:
14966 case language_java:
14967 case language_objc:
729efb13 14968 low.data.const_val = 0;
4fae6e18
JK
14969 low_default_is_valid = (cu->header.version >= 4);
14970 break;
14971 case language_ada:
14972 case language_m2:
14973 case language_pascal:
729efb13 14974 low.data.const_val = 1;
4fae6e18
JK
14975 low_default_is_valid = (cu->header.version >= 4);
14976 break;
14977 default:
729efb13 14978 low.data.const_val = 0;
4fae6e18
JK
14979 low_default_is_valid = 0;
14980 break;
a02abb62
JB
14981 }
14982
e142c38c 14983 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14984 if (attr)
11c1ba78 14985 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14986 else if (!low_default_is_valid)
14987 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14988 "- DIE at 0x%x [in module %s]"),
4262abfb 14989 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14990
e142c38c 14991 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14992 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14993 {
14994 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14995 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14996 {
c451ebe5
SA
14997 /* If bounds are constant do the final calculation here. */
14998 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14999 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15000 else
15001 high_bound_is_count = 1;
c2ff108b 15002 }
e77813c8
PM
15003 }
15004
15005 /* Dwarf-2 specifications explicitly allows to create subrange types
15006 without specifying a base type.
15007 In that case, the base type must be set to the type of
15008 the lower bound, upper bound or count, in that order, if any of these
15009 three attributes references an object that has a type.
15010 If no base type is found, the Dwarf-2 specifications say that
15011 a signed integer type of size equal to the size of an address should
15012 be used.
15013 For the following C code: `extern char gdb_int [];'
15014 GCC produces an empty range DIE.
15015 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15016 high bound or count are not yet handled by this code. */
e77813c8
PM
15017 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15018 {
15019 struct objfile *objfile = cu->objfile;
15020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15021 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15022 struct type *int_type = objfile_type (objfile)->builtin_int;
15023
15024 /* Test "int", "long int", and "long long int" objfile types,
15025 and select the first one having a size above or equal to the
15026 architecture address size. */
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15029 else
15030 {
15031 int_type = objfile_type (objfile)->builtin_long;
15032 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15033 base_type = int_type;
15034 else
15035 {
15036 int_type = objfile_type (objfile)->builtin_long_long;
15037 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15038 base_type = int_type;
15039 }
15040 }
15041 }
a02abb62 15042
dbb9c2b1
JB
15043 /* Normally, the DWARF producers are expected to use a signed
15044 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15045 But this is unfortunately not always the case, as witnessed
15046 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15047 is used instead. To work around that ambiguity, we treat
15048 the bounds as signed, and thus sign-extend their values, when
15049 the base type is signed. */
6e70227d 15050 negative_mask =
43bbcdc2 15051 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15052 if (low.kind == PROP_CONST
15053 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15054 low.data.const_val |= negative_mask;
15055 if (high.kind == PROP_CONST
15056 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15057 high.data.const_val |= negative_mask;
43bbcdc2 15058
729efb13 15059 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15060
c451ebe5
SA
15061 if (high_bound_is_count)
15062 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15063
c2ff108b
JK
15064 /* Ada expects an empty array on no boundary attributes. */
15065 if (attr == NULL && cu->language != language_ada)
729efb13 15066 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15067
39cbfefa
DJ
15068 name = dwarf2_name (die, cu);
15069 if (name)
15070 TYPE_NAME (range_type) = name;
6e70227d 15071
e142c38c 15072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15073 if (attr)
15074 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15075
7e314c57
JK
15076 set_die_type (die, range_type, cu);
15077
15078 /* set_die_type should be already done. */
b4ba55a1
JB
15079 set_descriptive_type (range_type, die, cu);
15080
7e314c57 15081 return range_type;
a02abb62 15082}
6e70227d 15083
f792889a 15084static struct type *
81a17f79
JB
15085read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15086{
15087 struct type *type;
81a17f79 15088
81a17f79
JB
15089 /* For now, we only support the C meaning of an unspecified type: void. */
15090
0114d602
DJ
15091 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15092 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15093
f792889a 15094 return set_die_type (die, type, cu);
81a17f79 15095}
a02abb62 15096
639d11d3
DC
15097/* Read a single die and all its descendents. Set the die's sibling
15098 field to NULL; set other fields in the die correctly, and set all
15099 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15100 location of the info_ptr after reading all of those dies. PARENT
15101 is the parent of the die in question. */
15102
15103static struct die_info *
dee91e82 15104read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15105 const gdb_byte *info_ptr,
15106 const gdb_byte **new_info_ptr,
dee91e82 15107 struct die_info *parent)
639d11d3
DC
15108{
15109 struct die_info *die;
d521ce57 15110 const gdb_byte *cur_ptr;
639d11d3
DC
15111 int has_children;
15112
bf6af496 15113 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15114 if (die == NULL)
15115 {
15116 *new_info_ptr = cur_ptr;
15117 return NULL;
15118 }
93311388 15119 store_in_ref_table (die, reader->cu);
639d11d3
DC
15120
15121 if (has_children)
bf6af496 15122 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15123 else
15124 {
15125 die->child = NULL;
15126 *new_info_ptr = cur_ptr;
15127 }
15128
15129 die->sibling = NULL;
15130 die->parent = parent;
15131 return die;
15132}
15133
15134/* Read a die, all of its descendents, and all of its siblings; set
15135 all of the fields of all of the dies correctly. Arguments are as
15136 in read_die_and_children. */
15137
15138static struct die_info *
bf6af496 15139read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15140 const gdb_byte *info_ptr,
15141 const gdb_byte **new_info_ptr,
bf6af496 15142 struct die_info *parent)
639d11d3
DC
15143{
15144 struct die_info *first_die, *last_sibling;
d521ce57 15145 const gdb_byte *cur_ptr;
639d11d3 15146
c906108c 15147 cur_ptr = info_ptr;
639d11d3
DC
15148 first_die = last_sibling = NULL;
15149
15150 while (1)
c906108c 15151 {
639d11d3 15152 struct die_info *die
dee91e82 15153 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15154
1d325ec1 15155 if (die == NULL)
c906108c 15156 {
639d11d3
DC
15157 *new_info_ptr = cur_ptr;
15158 return first_die;
c906108c 15159 }
1d325ec1
DJ
15160
15161 if (!first_die)
15162 first_die = die;
c906108c 15163 else
1d325ec1
DJ
15164 last_sibling->sibling = die;
15165
15166 last_sibling = die;
c906108c 15167 }
c906108c
SS
15168}
15169
bf6af496
DE
15170/* Read a die, all of its descendents, and all of its siblings; set
15171 all of the fields of all of the dies correctly. Arguments are as
15172 in read_die_and_children.
15173 This the main entry point for reading a DIE and all its children. */
15174
15175static struct die_info *
15176read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15177 const gdb_byte *info_ptr,
15178 const gdb_byte **new_info_ptr,
bf6af496
DE
15179 struct die_info *parent)
15180{
15181 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15182 new_info_ptr, parent);
15183
b4f54984 15184 if (dwarf_die_debug)
bf6af496
DE
15185 {
15186 fprintf_unfiltered (gdb_stdlog,
15187 "Read die from %s@0x%x of %s:\n",
a32a8923 15188 get_section_name (reader->die_section),
bf6af496
DE
15189 (unsigned) (info_ptr - reader->die_section->buffer),
15190 bfd_get_filename (reader->abfd));
b4f54984 15191 dump_die (die, dwarf_die_debug);
bf6af496
DE
15192 }
15193
15194 return die;
15195}
15196
3019eac3
DE
15197/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15198 attributes.
15199 The caller is responsible for filling in the extra attributes
15200 and updating (*DIEP)->num_attrs.
15201 Set DIEP to point to a newly allocated die with its information,
15202 except for its child, sibling, and parent fields.
15203 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15204
d521ce57 15205static const gdb_byte *
3019eac3 15206read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15207 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15208 int *has_children, int num_extra_attrs)
93311388 15209{
b64f50a1
JK
15210 unsigned int abbrev_number, bytes_read, i;
15211 sect_offset offset;
93311388
DE
15212 struct abbrev_info *abbrev;
15213 struct die_info *die;
15214 struct dwarf2_cu *cu = reader->cu;
15215 bfd *abfd = reader->abfd;
15216
b64f50a1 15217 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15218 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15219 info_ptr += bytes_read;
15220 if (!abbrev_number)
15221 {
15222 *diep = NULL;
15223 *has_children = 0;
15224 return info_ptr;
15225 }
15226
433df2d4 15227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15228 if (!abbrev)
348e048f
DE
15229 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15230 abbrev_number,
15231 bfd_get_filename (abfd));
15232
3019eac3 15233 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15234 die->offset = offset;
15235 die->tag = abbrev->tag;
15236 die->abbrev = abbrev_number;
15237
3019eac3
DE
15238 /* Make the result usable.
15239 The caller needs to update num_attrs after adding the extra
15240 attributes. */
93311388
DE
15241 die->num_attrs = abbrev->num_attrs;
15242
15243 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15244 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15245 info_ptr);
93311388
DE
15246
15247 *diep = die;
15248 *has_children = abbrev->has_children;
15249 return info_ptr;
15250}
15251
3019eac3
DE
15252/* Read a die and all its attributes.
15253 Set DIEP to point to a newly allocated die with its information,
15254 except for its child, sibling, and parent fields.
15255 Set HAS_CHILDREN to tell whether the die has children or not. */
15256
d521ce57 15257static const gdb_byte *
3019eac3 15258read_full_die (const struct die_reader_specs *reader,
d521ce57 15259 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15260 int *has_children)
15261{
d521ce57 15262 const gdb_byte *result;
bf6af496
DE
15263
15264 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15265
b4f54984 15266 if (dwarf_die_debug)
bf6af496
DE
15267 {
15268 fprintf_unfiltered (gdb_stdlog,
15269 "Read die from %s@0x%x of %s:\n",
a32a8923 15270 get_section_name (reader->die_section),
bf6af496
DE
15271 (unsigned) (info_ptr - reader->die_section->buffer),
15272 bfd_get_filename (reader->abfd));
b4f54984 15273 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15274 }
15275
15276 return result;
3019eac3 15277}
433df2d4
DE
15278\f
15279/* Abbreviation tables.
3019eac3 15280
433df2d4 15281 In DWARF version 2, the description of the debugging information is
c906108c
SS
15282 stored in a separate .debug_abbrev section. Before we read any
15283 dies from a section we read in all abbreviations and install them
433df2d4
DE
15284 in a hash table. */
15285
15286/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15287
15288static struct abbrev_info *
15289abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15290{
15291 struct abbrev_info *abbrev;
15292
8d749320 15293 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15294 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15295
433df2d4
DE
15296 return abbrev;
15297}
15298
15299/* Add an abbreviation to the table. */
c906108c
SS
15300
15301static void
433df2d4
DE
15302abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15303 unsigned int abbrev_number,
15304 struct abbrev_info *abbrev)
15305{
15306 unsigned int hash_number;
15307
15308 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15309 abbrev->next = abbrev_table->abbrevs[hash_number];
15310 abbrev_table->abbrevs[hash_number] = abbrev;
15311}
dee91e82 15312
433df2d4
DE
15313/* Look up an abbrev in the table.
15314 Returns NULL if the abbrev is not found. */
15315
15316static struct abbrev_info *
15317abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15318 unsigned int abbrev_number)
c906108c 15319{
433df2d4
DE
15320 unsigned int hash_number;
15321 struct abbrev_info *abbrev;
15322
15323 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15324 abbrev = abbrev_table->abbrevs[hash_number];
15325
15326 while (abbrev)
15327 {
15328 if (abbrev->number == abbrev_number)
15329 return abbrev;
15330 abbrev = abbrev->next;
15331 }
15332 return NULL;
15333}
15334
15335/* Read in an abbrev table. */
15336
15337static struct abbrev_table *
15338abbrev_table_read_table (struct dwarf2_section_info *section,
15339 sect_offset offset)
15340{
15341 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15342 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15343 struct abbrev_table *abbrev_table;
d521ce57 15344 const gdb_byte *abbrev_ptr;
c906108c
SS
15345 struct abbrev_info *cur_abbrev;
15346 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15347 unsigned int abbrev_form;
f3dd6933
DJ
15348 struct attr_abbrev *cur_attrs;
15349 unsigned int allocated_attrs;
c906108c 15350
70ba0933 15351 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15352 abbrev_table->offset = offset;
433df2d4 15353 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15354 abbrev_table->abbrevs =
15355 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15356 ABBREV_HASH_SIZE);
433df2d4
DE
15357 memset (abbrev_table->abbrevs, 0,
15358 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15359
433df2d4
DE
15360 dwarf2_read_section (objfile, section);
15361 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15364
f3dd6933 15365 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15366 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15367
0963b4bd 15368 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15369 while (abbrev_number)
15370 {
433df2d4 15371 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15372
15373 /* read in abbrev header */
15374 cur_abbrev->number = abbrev_number;
aead7601
SM
15375 cur_abbrev->tag
15376 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15377 abbrev_ptr += bytes_read;
15378 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15379 abbrev_ptr += 1;
15380
15381 /* now read in declarations */
15382 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15385 abbrev_ptr += bytes_read;
15386 while (abbrev_name)
15387 {
f3dd6933 15388 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15389 {
f3dd6933
DJ
15390 allocated_attrs += ATTR_ALLOC_CHUNK;
15391 cur_attrs
224c3ddb 15392 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15393 }
ae038cb0 15394
aead7601
SM
15395 cur_attrs[cur_abbrev->num_attrs].name
15396 = (enum dwarf_attribute) abbrev_name;
15397 cur_attrs[cur_abbrev->num_attrs++].form
15398 = (enum dwarf_form) abbrev_form;
c906108c
SS
15399 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15402 abbrev_ptr += bytes_read;
15403 }
15404
8d749320
SM
15405 cur_abbrev->attrs =
15406 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15407 cur_abbrev->num_attrs);
f3dd6933
DJ
15408 memcpy (cur_abbrev->attrs, cur_attrs,
15409 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15410
433df2d4 15411 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15412
15413 /* Get next abbreviation.
15414 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15415 always properly terminated with an abbrev number of 0.
15416 Exit loop if we encounter an abbreviation which we have
15417 already read (which means we are about to read the abbreviations
15418 for the next compile unit) or if the end of the abbreviation
15419 table is reached. */
433df2d4 15420 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15421 break;
15422 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
433df2d4 15424 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15425 break;
15426 }
f3dd6933
DJ
15427
15428 xfree (cur_attrs);
433df2d4 15429 return abbrev_table;
c906108c
SS
15430}
15431
433df2d4 15432/* Free the resources held by ABBREV_TABLE. */
c906108c 15433
c906108c 15434static void
433df2d4 15435abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15436{
433df2d4
DE
15437 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15438 xfree (abbrev_table);
c906108c
SS
15439}
15440
f4dc4d17
DE
15441/* Same as abbrev_table_free but as a cleanup.
15442 We pass in a pointer to the pointer to the table so that we can
15443 set the pointer to NULL when we're done. It also simplifies
73051182 15444 build_type_psymtabs_1. */
f4dc4d17
DE
15445
15446static void
15447abbrev_table_free_cleanup (void *table_ptr)
15448{
9a3c8263 15449 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15450
15451 if (*abbrev_table_ptr != NULL)
15452 abbrev_table_free (*abbrev_table_ptr);
15453 *abbrev_table_ptr = NULL;
15454}
15455
433df2d4
DE
15456/* Read the abbrev table for CU from ABBREV_SECTION. */
15457
15458static void
15459dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15460 struct dwarf2_section_info *abbrev_section)
c906108c 15461{
433df2d4
DE
15462 cu->abbrev_table =
15463 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15464}
c906108c 15465
433df2d4 15466/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15467
433df2d4
DE
15468static void
15469dwarf2_free_abbrev_table (void *ptr_to_cu)
15470{
9a3c8263 15471 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15472
a2ce51a0
DE
15473 if (cu->abbrev_table != NULL)
15474 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15475 /* Set this to NULL so that we SEGV if we try to read it later,
15476 and also because free_comp_unit verifies this is NULL. */
15477 cu->abbrev_table = NULL;
15478}
15479\f
72bf9492
DJ
15480/* Returns nonzero if TAG represents a type that we might generate a partial
15481 symbol for. */
15482
15483static int
15484is_type_tag_for_partial (int tag)
15485{
15486 switch (tag)
15487 {
15488#if 0
15489 /* Some types that would be reasonable to generate partial symbols for,
15490 that we don't at present. */
15491 case DW_TAG_array_type:
15492 case DW_TAG_file_type:
15493 case DW_TAG_ptr_to_member_type:
15494 case DW_TAG_set_type:
15495 case DW_TAG_string_type:
15496 case DW_TAG_subroutine_type:
15497#endif
15498 case DW_TAG_base_type:
15499 case DW_TAG_class_type:
680b30c7 15500 case DW_TAG_interface_type:
72bf9492
DJ
15501 case DW_TAG_enumeration_type:
15502 case DW_TAG_structure_type:
15503 case DW_TAG_subrange_type:
15504 case DW_TAG_typedef:
15505 case DW_TAG_union_type:
15506 return 1;
15507 default:
15508 return 0;
15509 }
15510}
15511
15512/* Load all DIEs that are interesting for partial symbols into memory. */
15513
15514static struct partial_die_info *
dee91e82 15515load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15516 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15517{
dee91e82 15518 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15519 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15520 struct partial_die_info *part_die;
15521 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15522 struct abbrev_info *abbrev;
15523 unsigned int bytes_read;
5afb4e99 15524 unsigned int load_all = 0;
72bf9492
DJ
15525 int nesting_level = 1;
15526
15527 parent_die = NULL;
15528 last_die = NULL;
15529
7adf1e79
DE
15530 gdb_assert (cu->per_cu != NULL);
15531 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15532 load_all = 1;
15533
72bf9492
DJ
15534 cu->partial_dies
15535 = htab_create_alloc_ex (cu->header.length / 12,
15536 partial_die_hash,
15537 partial_die_eq,
15538 NULL,
15539 &cu->comp_unit_obstack,
15540 hashtab_obstack_allocate,
15541 dummy_obstack_deallocate);
15542
8d749320 15543 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15544
15545 while (1)
15546 {
15547 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15548
15549 /* A NULL abbrev means the end of a series of children. */
15550 if (abbrev == NULL)
15551 {
15552 if (--nesting_level == 0)
15553 {
15554 /* PART_DIE was probably the last thing allocated on the
15555 comp_unit_obstack, so we could call obstack_free
15556 here. We don't do that because the waste is small,
15557 and will be cleaned up when we're done with this
15558 compilation unit. This way, we're also more robust
15559 against other users of the comp_unit_obstack. */
15560 return first_die;
15561 }
15562 info_ptr += bytes_read;
15563 last_die = parent_die;
15564 parent_die = parent_die->die_parent;
15565 continue;
15566 }
15567
98bfdba5
PA
15568 /* Check for template arguments. We never save these; if
15569 they're seen, we just mark the parent, and go on our way. */
15570 if (parent_die != NULL
15571 && cu->language == language_cplus
15572 && (abbrev->tag == DW_TAG_template_type_param
15573 || abbrev->tag == DW_TAG_template_value_param))
15574 {
15575 parent_die->has_template_arguments = 1;
15576
15577 if (!load_all)
15578 {
15579 /* We don't need a partial DIE for the template argument. */
dee91e82 15580 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15581 continue;
15582 }
15583 }
15584
0d99eb77 15585 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15586 Skip their other children. */
15587 if (!load_all
15588 && cu->language == language_cplus
15589 && parent_die != NULL
15590 && parent_die->tag == DW_TAG_subprogram)
15591 {
dee91e82 15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15593 continue;
15594 }
15595
5afb4e99
DJ
15596 /* Check whether this DIE is interesting enough to save. Normally
15597 we would not be interested in members here, but there may be
15598 later variables referencing them via DW_AT_specification (for
15599 static members). */
15600 if (!load_all
15601 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15602 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15603 && abbrev->tag != DW_TAG_enumerator
15604 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15605 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15606 && abbrev->tag != DW_TAG_variable
5afb4e99 15607 && abbrev->tag != DW_TAG_namespace
f55ee35c 15608 && abbrev->tag != DW_TAG_module
95554aad 15609 && abbrev->tag != DW_TAG_member
74921315
KS
15610 && abbrev->tag != DW_TAG_imported_unit
15611 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15612 {
15613 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15614 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15615 continue;
15616 }
15617
dee91e82
DE
15618 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15619 info_ptr);
72bf9492
DJ
15620
15621 /* This two-pass algorithm for processing partial symbols has a
15622 high cost in cache pressure. Thus, handle some simple cases
15623 here which cover the majority of C partial symbols. DIEs
15624 which neither have specification tags in them, nor could have
15625 specification tags elsewhere pointing at them, can simply be
15626 processed and discarded.
15627
15628 This segment is also optional; scan_partial_symbols and
15629 add_partial_symbol will handle these DIEs if we chain
15630 them in normally. When compilers which do not emit large
15631 quantities of duplicate debug information are more common,
15632 this code can probably be removed. */
15633
15634 /* Any complete simple types at the top level (pretty much all
15635 of them, for a language without namespaces), can be processed
15636 directly. */
15637 if (parent_die == NULL
15638 && part_die->has_specification == 0
15639 && part_die->is_declaration == 0
d8228535 15640 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15641 || part_die->tag == DW_TAG_base_type
15642 || part_die->tag == DW_TAG_subrange_type))
15643 {
15644 if (building_psymtab && part_die->name != NULL)
04a679b8 15645 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15646 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15647 &objfile->static_psymbols,
1762568f 15648 0, cu->language, objfile);
dee91e82 15649 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15650 continue;
15651 }
15652
d8228535
JK
15653 /* The exception for DW_TAG_typedef with has_children above is
15654 a workaround of GCC PR debug/47510. In the case of this complaint
15655 type_name_no_tag_or_error will error on such types later.
15656
15657 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15658 it could not find the child DIEs referenced later, this is checked
15659 above. In correct DWARF DW_TAG_typedef should have no children. */
15660
15661 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15662 complaint (&symfile_complaints,
15663 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15664 "- DIE at 0x%x [in module %s]"),
4262abfb 15665 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15666
72bf9492
DJ
15667 /* If we're at the second level, and we're an enumerator, and
15668 our parent has no specification (meaning possibly lives in a
15669 namespace elsewhere), then we can add the partial symbol now
15670 instead of queueing it. */
15671 if (part_die->tag == DW_TAG_enumerator
15672 && parent_die != NULL
15673 && parent_die->die_parent == NULL
15674 && parent_die->tag == DW_TAG_enumeration_type
15675 && parent_die->has_specification == 0)
15676 {
15677 if (part_die->name == NULL)
3e43a32a
MS
15678 complaint (&symfile_complaints,
15679 _("malformed enumerator DIE ignored"));
72bf9492 15680 else if (building_psymtab)
04a679b8 15681 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15682 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15683 (cu->language == language_cplus
15684 || cu->language == language_java)
bb5ed363
DE
15685 ? &objfile->global_psymbols
15686 : &objfile->static_psymbols,
1762568f 15687 0, cu->language, objfile);
72bf9492 15688
dee91e82 15689 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15690 continue;
15691 }
15692
15693 /* We'll save this DIE so link it in. */
15694 part_die->die_parent = parent_die;
15695 part_die->die_sibling = NULL;
15696 part_die->die_child = NULL;
15697
15698 if (last_die && last_die == parent_die)
15699 last_die->die_child = part_die;
15700 else if (last_die)
15701 last_die->die_sibling = part_die;
15702
15703 last_die = part_die;
15704
15705 if (first_die == NULL)
15706 first_die = part_die;
15707
15708 /* Maybe add the DIE to the hash table. Not all DIEs that we
15709 find interesting need to be in the hash table, because we
15710 also have the parent/sibling/child chains; only those that we
15711 might refer to by offset later during partial symbol reading.
15712
15713 For now this means things that might have be the target of a
15714 DW_AT_specification, DW_AT_abstract_origin, or
15715 DW_AT_extension. DW_AT_extension will refer only to
15716 namespaces; DW_AT_abstract_origin refers to functions (and
15717 many things under the function DIE, but we do not recurse
15718 into function DIEs during partial symbol reading) and
15719 possibly variables as well; DW_AT_specification refers to
15720 declarations. Declarations ought to have the DW_AT_declaration
15721 flag. It happens that GCC forgets to put it in sometimes, but
15722 only for functions, not for types.
15723
15724 Adding more things than necessary to the hash table is harmless
15725 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15726 wasted time in find_partial_die, when we reread the compilation
15727 unit with load_all_dies set. */
72bf9492 15728
5afb4e99 15729 if (load_all
72929c62 15730 || abbrev->tag == DW_TAG_constant
5afb4e99 15731 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15732 || abbrev->tag == DW_TAG_variable
15733 || abbrev->tag == DW_TAG_namespace
15734 || part_die->is_declaration)
15735 {
15736 void **slot;
15737
15738 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15739 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15740 *slot = part_die;
15741 }
15742
8d749320 15743 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15744
15745 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15746 we have no reason to follow the children of structures; for other
98bfdba5
PA
15747 languages we have to, so that we can get at method physnames
15748 to infer fully qualified class names, for DW_AT_specification,
15749 and for C++ template arguments. For C++, we also look one level
15750 inside functions to find template arguments (if the name of the
15751 function does not already contain the template arguments).
bc30ff58
JB
15752
15753 For Ada, we need to scan the children of subprograms and lexical
15754 blocks as well because Ada allows the definition of nested
15755 entities that could be interesting for the debugger, such as
15756 nested subprograms for instance. */
72bf9492 15757 if (last_die->has_children
5afb4e99
DJ
15758 && (load_all
15759 || last_die->tag == DW_TAG_namespace
f55ee35c 15760 || last_die->tag == DW_TAG_module
72bf9492 15761 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15762 || (cu->language == language_cplus
15763 && last_die->tag == DW_TAG_subprogram
15764 && (last_die->name == NULL
15765 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15766 || (cu->language != language_c
15767 && (last_die->tag == DW_TAG_class_type
680b30c7 15768 || last_die->tag == DW_TAG_interface_type
72bf9492 15769 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15770 || last_die->tag == DW_TAG_union_type))
15771 || (cu->language == language_ada
15772 && (last_die->tag == DW_TAG_subprogram
15773 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15774 {
15775 nesting_level++;
15776 parent_die = last_die;
15777 continue;
15778 }
15779
15780 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15781 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15782
15783 /* Back to the top, do it again. */
15784 }
15785}
15786
c906108c
SS
15787/* Read a minimal amount of information into the minimal die structure. */
15788
d521ce57 15789static const gdb_byte *
dee91e82
DE
15790read_partial_die (const struct die_reader_specs *reader,
15791 struct partial_die_info *part_die,
15792 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15793 const gdb_byte *info_ptr)
c906108c 15794{
dee91e82 15795 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15796 struct objfile *objfile = cu->objfile;
d521ce57 15797 const gdb_byte *buffer = reader->buffer;
fa238c03 15798 unsigned int i;
c906108c 15799 struct attribute attr;
c5aa993b 15800 int has_low_pc_attr = 0;
c906108c 15801 int has_high_pc_attr = 0;
91da1414 15802 int high_pc_relative = 0;
c906108c 15803
72bf9492 15804 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15805
b64f50a1 15806 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15807
15808 info_ptr += abbrev_len;
15809
15810 if (abbrev == NULL)
15811 return info_ptr;
15812
c906108c
SS
15813 part_die->tag = abbrev->tag;
15814 part_die->has_children = abbrev->has_children;
c906108c
SS
15815
15816 for (i = 0; i < abbrev->num_attrs; ++i)
15817 {
dee91e82 15818 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15819
15820 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15821 partial symbol table. */
c906108c
SS
15822 switch (attr.name)
15823 {
15824 case DW_AT_name:
71c25dea
TT
15825 switch (part_die->tag)
15826 {
15827 case DW_TAG_compile_unit:
95554aad 15828 case DW_TAG_partial_unit:
348e048f 15829 case DW_TAG_type_unit:
71c25dea
TT
15830 /* Compilation units have a DW_AT_name that is a filename, not
15831 a source language identifier. */
15832 case DW_TAG_enumeration_type:
15833 case DW_TAG_enumerator:
15834 /* These tags always have simple identifiers already; no need
15835 to canonicalize them. */
15836 part_die->name = DW_STRING (&attr);
15837 break;
15838 default:
15839 part_die->name
15840 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15841 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15842 break;
15843 }
c906108c 15844 break;
31ef98ae 15845 case DW_AT_linkage_name:
c906108c 15846 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15847 /* Note that both forms of linkage name might appear. We
15848 assume they will be the same, and we only store the last
15849 one we see. */
94af9270
KS
15850 if (cu->language == language_ada)
15851 part_die->name = DW_STRING (&attr);
abc72ce4 15852 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15853 break;
15854 case DW_AT_low_pc:
15855 has_low_pc_attr = 1;
31aa7e4e 15856 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15857 break;
15858 case DW_AT_high_pc:
15859 has_high_pc_attr = 1;
31aa7e4e
JB
15860 part_die->highpc = attr_value_as_address (&attr);
15861 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15862 high_pc_relative = 1;
c906108c
SS
15863 break;
15864 case DW_AT_location:
0963b4bd 15865 /* Support the .debug_loc offsets. */
8e19ed76
PS
15866 if (attr_form_is_block (&attr))
15867 {
95554aad 15868 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15869 }
3690dd37 15870 else if (attr_form_is_section_offset (&attr))
8e19ed76 15871 {
4d3c2250 15872 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15873 }
15874 else
15875 {
4d3c2250
KB
15876 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15877 "partial symbol information");
8e19ed76 15878 }
c906108c 15879 break;
c906108c
SS
15880 case DW_AT_external:
15881 part_die->is_external = DW_UNSND (&attr);
15882 break;
15883 case DW_AT_declaration:
15884 part_die->is_declaration = DW_UNSND (&attr);
15885 break;
15886 case DW_AT_type:
15887 part_die->has_type = 1;
15888 break;
15889 case DW_AT_abstract_origin:
15890 case DW_AT_specification:
72bf9492
DJ
15891 case DW_AT_extension:
15892 part_die->has_specification = 1;
c764a876 15893 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15894 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15895 || cu->per_cu->is_dwz);
c906108c
SS
15896 break;
15897 case DW_AT_sibling:
15898 /* Ignore absolute siblings, they might point outside of
15899 the current compile unit. */
15900 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15901 complaint (&symfile_complaints,
15902 _("ignoring absolute DW_AT_sibling"));
c906108c 15903 else
b9502d3f
WN
15904 {
15905 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15906 const gdb_byte *sibling_ptr = buffer + off;
15907
15908 if (sibling_ptr < info_ptr)
15909 complaint (&symfile_complaints,
15910 _("DW_AT_sibling points backwards"));
22869d73
KS
15911 else if (sibling_ptr > reader->buffer_end)
15912 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15913 else
15914 part_die->sibling = sibling_ptr;
15915 }
c906108c 15916 break;
fa4028e9
JB
15917 case DW_AT_byte_size:
15918 part_die->has_byte_size = 1;
15919 break;
ff908ebf
AW
15920 case DW_AT_const_value:
15921 part_die->has_const_value = 1;
15922 break;
68511cec
CES
15923 case DW_AT_calling_convention:
15924 /* DWARF doesn't provide a way to identify a program's source-level
15925 entry point. DW_AT_calling_convention attributes are only meant
15926 to describe functions' calling conventions.
15927
15928 However, because it's a necessary piece of information in
15929 Fortran, and because DW_CC_program is the only piece of debugging
15930 information whose definition refers to a 'main program' at all,
15931 several compilers have begun marking Fortran main programs with
15932 DW_CC_program --- even when those functions use the standard
15933 calling conventions.
15934
15935 So until DWARF specifies a way to provide this information and
15936 compilers pick up the new representation, we'll support this
15937 practice. */
15938 if (DW_UNSND (&attr) == DW_CC_program
15939 && cu->language == language_fortran)
3d548a53 15940 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15941 break;
481860b3
GB
15942 case DW_AT_inline:
15943 if (DW_UNSND (&attr) == DW_INL_inlined
15944 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15945 part_die->may_be_inlined = 1;
15946 break;
95554aad
TT
15947
15948 case DW_AT_import:
15949 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15950 {
15951 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15952 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15953 || cu->per_cu->is_dwz);
15954 }
95554aad
TT
15955 break;
15956
c906108c
SS
15957 default:
15958 break;
15959 }
15960 }
15961
91da1414
MW
15962 if (high_pc_relative)
15963 part_die->highpc += part_die->lowpc;
15964
9373cf26
JK
15965 if (has_low_pc_attr && has_high_pc_attr)
15966 {
15967 /* When using the GNU linker, .gnu.linkonce. sections are used to
15968 eliminate duplicate copies of functions and vtables and such.
15969 The linker will arbitrarily choose one and discard the others.
15970 The AT_*_pc values for such functions refer to local labels in
15971 these sections. If the section from that file was discarded, the
15972 labels are not in the output, so the relocs get a value of 0.
15973 If this is a discarded function, mark the pc bounds as invalid,
15974 so that GDB will ignore it. */
15975 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15976 {
bb5ed363 15977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15978
15979 complaint (&symfile_complaints,
15980 _("DW_AT_low_pc %s is zero "
15981 "for DIE at 0x%x [in module %s]"),
15982 paddress (gdbarch, part_die->lowpc),
4262abfb 15983 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15984 }
15985 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15986 else if (part_die->lowpc >= part_die->highpc)
15987 {
bb5ed363 15988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15989
15990 complaint (&symfile_complaints,
15991 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15992 "for DIE at 0x%x [in module %s]"),
15993 paddress (gdbarch, part_die->lowpc),
15994 paddress (gdbarch, part_die->highpc),
4262abfb 15995 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15996 }
15997 else
15998 part_die->has_pc_info = 1;
15999 }
85cbf3d3 16000
c906108c
SS
16001 return info_ptr;
16002}
16003
72bf9492
DJ
16004/* Find a cached partial DIE at OFFSET in CU. */
16005
16006static struct partial_die_info *
b64f50a1 16007find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16008{
16009 struct partial_die_info *lookup_die = NULL;
16010 struct partial_die_info part_die;
16011
16012 part_die.offset = offset;
9a3c8263
SM
16013 lookup_die = ((struct partial_die_info *)
16014 htab_find_with_hash (cu->partial_dies, &part_die,
16015 offset.sect_off));
72bf9492 16016
72bf9492
DJ
16017 return lookup_die;
16018}
16019
348e048f
DE
16020/* Find a partial DIE at OFFSET, which may or may not be in CU,
16021 except in the case of .debug_types DIEs which do not reference
16022 outside their CU (they do however referencing other types via
55f1336d 16023 DW_FORM_ref_sig8). */
72bf9492
DJ
16024
16025static struct partial_die_info *
36586728 16026find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16027{
bb5ed363 16028 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16029 struct dwarf2_per_cu_data *per_cu = NULL;
16030 struct partial_die_info *pd = NULL;
72bf9492 16031
36586728
TT
16032 if (offset_in_dwz == cu->per_cu->is_dwz
16033 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16034 {
16035 pd = find_partial_die_in_comp_unit (offset, cu);
16036 if (pd != NULL)
16037 return pd;
0d99eb77
DE
16038 /* We missed recording what we needed.
16039 Load all dies and try again. */
16040 per_cu = cu->per_cu;
5afb4e99 16041 }
0d99eb77
DE
16042 else
16043 {
16044 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16045 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16046 {
16047 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16048 " external reference to offset 0x%lx [in module %s].\n"),
16049 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16050 bfd_get_filename (objfile->obfd));
16051 }
36586728
TT
16052 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16053 objfile);
72bf9492 16054
0d99eb77
DE
16055 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16056 load_partial_comp_unit (per_cu);
ae038cb0 16057
0d99eb77
DE
16058 per_cu->cu->last_used = 0;
16059 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16060 }
5afb4e99 16061
dee91e82
DE
16062 /* If we didn't find it, and not all dies have been loaded,
16063 load them all and try again. */
16064
5afb4e99
DJ
16065 if (pd == NULL && per_cu->load_all_dies == 0)
16066 {
5afb4e99 16067 per_cu->load_all_dies = 1;
fd820528
DE
16068
16069 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16070 THIS_CU->cu may already be in use. So we can't just free it and
16071 replace its DIEs with the ones we read in. Instead, we leave those
16072 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16073 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16074 set. */
dee91e82 16075 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16076
16077 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16078 }
16079
16080 if (pd == NULL)
16081 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16082 _("could not find partial DIE 0x%x "
16083 "in cache [from module %s]\n"),
b64f50a1 16084 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16085 return pd;
72bf9492
DJ
16086}
16087
abc72ce4
DE
16088/* See if we can figure out if the class lives in a namespace. We do
16089 this by looking for a member function; its demangled name will
16090 contain namespace info, if there is any. */
16091
16092static void
16093guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16094 struct dwarf2_cu *cu)
16095{
16096 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16097 what template types look like, because the demangler
16098 frequently doesn't give the same name as the debug info. We
16099 could fix this by only using the demangled name to get the
16100 prefix (but see comment in read_structure_type). */
16101
16102 struct partial_die_info *real_pdi;
16103 struct partial_die_info *child_pdi;
16104
16105 /* If this DIE (this DIE's specification, if any) has a parent, then
16106 we should not do this. We'll prepend the parent's fully qualified
16107 name when we create the partial symbol. */
16108
16109 real_pdi = struct_pdi;
16110 while (real_pdi->has_specification)
36586728
TT
16111 real_pdi = find_partial_die (real_pdi->spec_offset,
16112 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16113
16114 if (real_pdi->die_parent != NULL)
16115 return;
16116
16117 for (child_pdi = struct_pdi->die_child;
16118 child_pdi != NULL;
16119 child_pdi = child_pdi->die_sibling)
16120 {
16121 if (child_pdi->tag == DW_TAG_subprogram
16122 && child_pdi->linkage_name != NULL)
16123 {
16124 char *actual_class_name
16125 = language_class_name_from_physname (cu->language_defn,
16126 child_pdi->linkage_name);
16127 if (actual_class_name != NULL)
16128 {
16129 struct_pdi->name
224c3ddb
SM
16130 = ((const char *)
16131 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16132 actual_class_name,
16133 strlen (actual_class_name)));
abc72ce4
DE
16134 xfree (actual_class_name);
16135 }
16136 break;
16137 }
16138 }
16139}
16140
72bf9492
DJ
16141/* Adjust PART_DIE before generating a symbol for it. This function
16142 may set the is_external flag or change the DIE's name. */
16143
16144static void
16145fixup_partial_die (struct partial_die_info *part_die,
16146 struct dwarf2_cu *cu)
16147{
abc72ce4
DE
16148 /* Once we've fixed up a die, there's no point in doing so again.
16149 This also avoids a memory leak if we were to call
16150 guess_partial_die_structure_name multiple times. */
16151 if (part_die->fixup_called)
16152 return;
16153
72bf9492
DJ
16154 /* If we found a reference attribute and the DIE has no name, try
16155 to find a name in the referred to DIE. */
16156
16157 if (part_die->name == NULL && part_die->has_specification)
16158 {
16159 struct partial_die_info *spec_die;
72bf9492 16160
36586728
TT
16161 spec_die = find_partial_die (part_die->spec_offset,
16162 part_die->spec_is_dwz, cu);
72bf9492 16163
10b3939b 16164 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16165
16166 if (spec_die->name)
16167 {
16168 part_die->name = spec_die->name;
16169
16170 /* Copy DW_AT_external attribute if it is set. */
16171 if (spec_die->is_external)
16172 part_die->is_external = spec_die->is_external;
16173 }
16174 }
16175
16176 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16177
16178 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16179 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16180
abc72ce4
DE
16181 /* If there is no parent die to provide a namespace, and there are
16182 children, see if we can determine the namespace from their linkage
122d1940 16183 name. */
abc72ce4 16184 if (cu->language == language_cplus
8b70b953 16185 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16186 && part_die->die_parent == NULL
16187 && part_die->has_children
16188 && (part_die->tag == DW_TAG_class_type
16189 || part_die->tag == DW_TAG_structure_type
16190 || part_die->tag == DW_TAG_union_type))
16191 guess_partial_die_structure_name (part_die, cu);
16192
53832f31
TT
16193 /* GCC might emit a nameless struct or union that has a linkage
16194 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16195 if (part_die->name == NULL
96408a79
SA
16196 && (part_die->tag == DW_TAG_class_type
16197 || part_die->tag == DW_TAG_interface_type
16198 || part_die->tag == DW_TAG_structure_type
16199 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16200 && part_die->linkage_name != NULL)
16201 {
16202 char *demangled;
16203
8de20a37 16204 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16205 if (demangled)
16206 {
96408a79
SA
16207 const char *base;
16208
16209 /* Strip any leading namespaces/classes, keep only the base name.
16210 DW_AT_name for named DIEs does not contain the prefixes. */
16211 base = strrchr (demangled, ':');
16212 if (base && base > demangled && base[-1] == ':')
16213 base++;
16214 else
16215 base = demangled;
16216
34a68019 16217 part_die->name
224c3ddb
SM
16218 = ((const char *)
16219 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16220 base, strlen (base)));
53832f31
TT
16221 xfree (demangled);
16222 }
16223 }
16224
abc72ce4 16225 part_die->fixup_called = 1;
72bf9492
DJ
16226}
16227
a8329558 16228/* Read an attribute value described by an attribute form. */
c906108c 16229
d521ce57 16230static const gdb_byte *
dee91e82
DE
16231read_attribute_value (const struct die_reader_specs *reader,
16232 struct attribute *attr, unsigned form,
d521ce57 16233 const gdb_byte *info_ptr)
c906108c 16234{
dee91e82 16235 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16236 struct objfile *objfile = cu->objfile;
16237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16238 bfd *abfd = reader->abfd;
e7c27a73 16239 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16240 unsigned int bytes_read;
16241 struct dwarf_block *blk;
16242
aead7601 16243 attr->form = (enum dwarf_form) form;
a8329558 16244 switch (form)
c906108c 16245 {
c906108c 16246 case DW_FORM_ref_addr:
ae411497 16247 if (cu->header.version == 2)
4568ecf9 16248 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16249 else
4568ecf9
DE
16250 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16251 &cu->header, &bytes_read);
ae411497
TT
16252 info_ptr += bytes_read;
16253 break;
36586728
TT
16254 case DW_FORM_GNU_ref_alt:
16255 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16256 info_ptr += bytes_read;
16257 break;
ae411497 16258 case DW_FORM_addr:
e7c27a73 16259 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16260 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16261 info_ptr += bytes_read;
c906108c
SS
16262 break;
16263 case DW_FORM_block2:
7b5a2f43 16264 blk = dwarf_alloc_block (cu);
c906108c
SS
16265 blk->size = read_2_bytes (abfd, info_ptr);
16266 info_ptr += 2;
16267 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16268 info_ptr += blk->size;
16269 DW_BLOCK (attr) = blk;
16270 break;
16271 case DW_FORM_block4:
7b5a2f43 16272 blk = dwarf_alloc_block (cu);
c906108c
SS
16273 blk->size = read_4_bytes (abfd, info_ptr);
16274 info_ptr += 4;
16275 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16276 info_ptr += blk->size;
16277 DW_BLOCK (attr) = blk;
16278 break;
16279 case DW_FORM_data2:
16280 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16281 info_ptr += 2;
16282 break;
16283 case DW_FORM_data4:
16284 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16285 info_ptr += 4;
16286 break;
16287 case DW_FORM_data8:
16288 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16289 info_ptr += 8;
16290 break;
2dc7f7b3
TT
16291 case DW_FORM_sec_offset:
16292 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16293 info_ptr += bytes_read;
16294 break;
c906108c 16295 case DW_FORM_string:
9b1c24c8 16296 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16297 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16298 info_ptr += bytes_read;
16299 break;
4bdf3d34 16300 case DW_FORM_strp:
36586728
TT
16301 if (!cu->per_cu->is_dwz)
16302 {
16303 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16304 &bytes_read);
16305 DW_STRING_IS_CANONICAL (attr) = 0;
16306 info_ptr += bytes_read;
16307 break;
16308 }
16309 /* FALLTHROUGH */
16310 case DW_FORM_GNU_strp_alt:
16311 {
16312 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16313 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16314 &bytes_read);
16315
16316 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16317 DW_STRING_IS_CANONICAL (attr) = 0;
16318 info_ptr += bytes_read;
16319 }
4bdf3d34 16320 break;
2dc7f7b3 16321 case DW_FORM_exprloc:
c906108c 16322 case DW_FORM_block:
7b5a2f43 16323 blk = dwarf_alloc_block (cu);
c906108c
SS
16324 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16325 info_ptr += bytes_read;
16326 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16327 info_ptr += blk->size;
16328 DW_BLOCK (attr) = blk;
16329 break;
16330 case DW_FORM_block1:
7b5a2f43 16331 blk = dwarf_alloc_block (cu);
c906108c
SS
16332 blk->size = read_1_byte (abfd, info_ptr);
16333 info_ptr += 1;
16334 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16335 info_ptr += blk->size;
16336 DW_BLOCK (attr) = blk;
16337 break;
16338 case DW_FORM_data1:
16339 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16340 info_ptr += 1;
16341 break;
16342 case DW_FORM_flag:
16343 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16344 info_ptr += 1;
16345 break;
2dc7f7b3
TT
16346 case DW_FORM_flag_present:
16347 DW_UNSND (attr) = 1;
16348 break;
c906108c
SS
16349 case DW_FORM_sdata:
16350 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16351 info_ptr += bytes_read;
16352 break;
16353 case DW_FORM_udata:
16354 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16355 info_ptr += bytes_read;
16356 break;
16357 case DW_FORM_ref1:
4568ecf9
DE
16358 DW_UNSND (attr) = (cu->header.offset.sect_off
16359 + read_1_byte (abfd, info_ptr));
c906108c
SS
16360 info_ptr += 1;
16361 break;
16362 case DW_FORM_ref2:
4568ecf9
DE
16363 DW_UNSND (attr) = (cu->header.offset.sect_off
16364 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16365 info_ptr += 2;
16366 break;
16367 case DW_FORM_ref4:
4568ecf9
DE
16368 DW_UNSND (attr) = (cu->header.offset.sect_off
16369 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16370 info_ptr += 4;
16371 break;
613e1657 16372 case DW_FORM_ref8:
4568ecf9
DE
16373 DW_UNSND (attr) = (cu->header.offset.sect_off
16374 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16375 info_ptr += 8;
16376 break;
55f1336d 16377 case DW_FORM_ref_sig8:
ac9ec31b 16378 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16379 info_ptr += 8;
16380 break;
c906108c 16381 case DW_FORM_ref_udata:
4568ecf9
DE
16382 DW_UNSND (attr) = (cu->header.offset.sect_off
16383 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16384 info_ptr += bytes_read;
16385 break;
c906108c 16386 case DW_FORM_indirect:
a8329558
KW
16387 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16388 info_ptr += bytes_read;
dee91e82 16389 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16390 break;
3019eac3
DE
16391 case DW_FORM_GNU_addr_index:
16392 if (reader->dwo_file == NULL)
16393 {
16394 /* For now flag a hard error.
16395 Later we can turn this into a complaint. */
16396 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16397 dwarf_form_name (form),
16398 bfd_get_filename (abfd));
16399 }
16400 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16401 info_ptr += bytes_read;
16402 break;
16403 case DW_FORM_GNU_str_index:
16404 if (reader->dwo_file == NULL)
16405 {
16406 /* For now flag a hard error.
16407 Later we can turn this into a complaint if warranted. */
16408 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16409 dwarf_form_name (form),
16410 bfd_get_filename (abfd));
16411 }
16412 {
16413 ULONGEST str_index =
16414 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16415
342587c4 16416 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16417 DW_STRING_IS_CANONICAL (attr) = 0;
16418 info_ptr += bytes_read;
16419 }
16420 break;
c906108c 16421 default:
8a3fe4f8 16422 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16423 dwarf_form_name (form),
16424 bfd_get_filename (abfd));
c906108c 16425 }
28e94949 16426
36586728 16427 /* Super hack. */
7771576e 16428 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16429 attr->form = DW_FORM_GNU_ref_alt;
16430
28e94949
JB
16431 /* We have seen instances where the compiler tried to emit a byte
16432 size attribute of -1 which ended up being encoded as an unsigned
16433 0xffffffff. Although 0xffffffff is technically a valid size value,
16434 an object of this size seems pretty unlikely so we can relatively
16435 safely treat these cases as if the size attribute was invalid and
16436 treat them as zero by default. */
16437 if (attr->name == DW_AT_byte_size
16438 && form == DW_FORM_data4
16439 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16440 {
16441 complaint
16442 (&symfile_complaints,
43bbcdc2
PH
16443 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16444 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16445 DW_UNSND (attr) = 0;
16446 }
28e94949 16447
c906108c
SS
16448 return info_ptr;
16449}
16450
a8329558
KW
16451/* Read an attribute described by an abbreviated attribute. */
16452
d521ce57 16453static const gdb_byte *
dee91e82
DE
16454read_attribute (const struct die_reader_specs *reader,
16455 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16456 const gdb_byte *info_ptr)
a8329558
KW
16457{
16458 attr->name = abbrev->name;
dee91e82 16459 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16460}
16461
0963b4bd 16462/* Read dwarf information from a buffer. */
c906108c
SS
16463
16464static unsigned int
a1855c1d 16465read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16466{
fe1b8b76 16467 return bfd_get_8 (abfd, buf);
c906108c
SS
16468}
16469
16470static int
a1855c1d 16471read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16472{
fe1b8b76 16473 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16474}
16475
16476static unsigned int
a1855c1d 16477read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16478{
fe1b8b76 16479 return bfd_get_16 (abfd, buf);
c906108c
SS
16480}
16481
21ae7a4d 16482static int
a1855c1d 16483read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16484{
16485 return bfd_get_signed_16 (abfd, buf);
16486}
16487
c906108c 16488static unsigned int
a1855c1d 16489read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16490{
fe1b8b76 16491 return bfd_get_32 (abfd, buf);
c906108c
SS
16492}
16493
21ae7a4d 16494static int
a1855c1d 16495read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16496{
16497 return bfd_get_signed_32 (abfd, buf);
16498}
16499
93311388 16500static ULONGEST
a1855c1d 16501read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16502{
fe1b8b76 16503 return bfd_get_64 (abfd, buf);
c906108c
SS
16504}
16505
16506static CORE_ADDR
d521ce57 16507read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16508 unsigned int *bytes_read)
c906108c 16509{
e7c27a73 16510 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16511 CORE_ADDR retval = 0;
16512
107d2387 16513 if (cu_header->signed_addr_p)
c906108c 16514 {
107d2387
AC
16515 switch (cu_header->addr_size)
16516 {
16517 case 2:
fe1b8b76 16518 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16519 break;
16520 case 4:
fe1b8b76 16521 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16522 break;
16523 case 8:
fe1b8b76 16524 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16525 break;
16526 default:
8e65ff28 16527 internal_error (__FILE__, __LINE__,
e2e0b3e5 16528 _("read_address: bad switch, signed [in module %s]"),
659b0389 16529 bfd_get_filename (abfd));
107d2387
AC
16530 }
16531 }
16532 else
16533 {
16534 switch (cu_header->addr_size)
16535 {
16536 case 2:
fe1b8b76 16537 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16538 break;
16539 case 4:
fe1b8b76 16540 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16541 break;
16542 case 8:
fe1b8b76 16543 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16544 break;
16545 default:
8e65ff28 16546 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16547 _("read_address: bad switch, "
16548 "unsigned [in module %s]"),
659b0389 16549 bfd_get_filename (abfd));
107d2387 16550 }
c906108c 16551 }
64367e0a 16552
107d2387
AC
16553 *bytes_read = cu_header->addr_size;
16554 return retval;
c906108c
SS
16555}
16556
f7ef9339 16557/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16558 specification allows the initial length to take up either 4 bytes
16559 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16560 bytes describe the length and all offsets will be 8 bytes in length
16561 instead of 4.
16562
f7ef9339
KB
16563 An older, non-standard 64-bit format is also handled by this
16564 function. The older format in question stores the initial length
16565 as an 8-byte quantity without an escape value. Lengths greater
16566 than 2^32 aren't very common which means that the initial 4 bytes
16567 is almost always zero. Since a length value of zero doesn't make
16568 sense for the 32-bit format, this initial zero can be considered to
16569 be an escape value which indicates the presence of the older 64-bit
16570 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16571 greater than 4GB. If it becomes necessary to handle lengths
16572 somewhat larger than 4GB, we could allow other small values (such
16573 as the non-sensical values of 1, 2, and 3) to also be used as
16574 escape values indicating the presence of the old format.
f7ef9339 16575
917c78fc
MK
16576 The value returned via bytes_read should be used to increment the
16577 relevant pointer after calling read_initial_length().
c764a876 16578
613e1657
KB
16579 [ Note: read_initial_length() and read_offset() are based on the
16580 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16581 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16582 from:
16583
f7ef9339 16584 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16585
613e1657
KB
16586 This document is only a draft and is subject to change. (So beware.)
16587
f7ef9339 16588 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16589 determined empirically by examining 64-bit ELF files produced by
16590 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16591
16592 - Kevin, July 16, 2002
613e1657
KB
16593 ] */
16594
16595static LONGEST
d521ce57 16596read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16597{
fe1b8b76 16598 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16599
dd373385 16600 if (length == 0xffffffff)
613e1657 16601 {
fe1b8b76 16602 length = bfd_get_64 (abfd, buf + 4);
613e1657 16603 *bytes_read = 12;
613e1657 16604 }
dd373385 16605 else if (length == 0)
f7ef9339 16606 {
dd373385 16607 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16608 length = bfd_get_64 (abfd, buf);
f7ef9339 16609 *bytes_read = 8;
f7ef9339 16610 }
613e1657
KB
16611 else
16612 {
16613 *bytes_read = 4;
613e1657
KB
16614 }
16615
c764a876
DE
16616 return length;
16617}
dd373385 16618
c764a876
DE
16619/* Cover function for read_initial_length.
16620 Returns the length of the object at BUF, and stores the size of the
16621 initial length in *BYTES_READ and stores the size that offsets will be in
16622 *OFFSET_SIZE.
16623 If the initial length size is not equivalent to that specified in
16624 CU_HEADER then issue a complaint.
16625 This is useful when reading non-comp-unit headers. */
dd373385 16626
c764a876 16627static LONGEST
d521ce57 16628read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16629 const struct comp_unit_head *cu_header,
16630 unsigned int *bytes_read,
16631 unsigned int *offset_size)
16632{
16633 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16634
16635 gdb_assert (cu_header->initial_length_size == 4
16636 || cu_header->initial_length_size == 8
16637 || cu_header->initial_length_size == 12);
16638
16639 if (cu_header->initial_length_size != *bytes_read)
16640 complaint (&symfile_complaints,
16641 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16642
c764a876 16643 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16644 return length;
613e1657
KB
16645}
16646
16647/* Read an offset from the data stream. The size of the offset is
917c78fc 16648 given by cu_header->offset_size. */
613e1657
KB
16649
16650static LONGEST
d521ce57
TT
16651read_offset (bfd *abfd, const gdb_byte *buf,
16652 const struct comp_unit_head *cu_header,
891d2f0b 16653 unsigned int *bytes_read)
c764a876
DE
16654{
16655 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16656
c764a876
DE
16657 *bytes_read = cu_header->offset_size;
16658 return offset;
16659}
16660
16661/* Read an offset from the data stream. */
16662
16663static LONGEST
d521ce57 16664read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16665{
16666 LONGEST retval = 0;
16667
c764a876 16668 switch (offset_size)
613e1657
KB
16669 {
16670 case 4:
fe1b8b76 16671 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16672 break;
16673 case 8:
fe1b8b76 16674 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16675 break;
16676 default:
8e65ff28 16677 internal_error (__FILE__, __LINE__,
c764a876 16678 _("read_offset_1: bad switch [in module %s]"),
659b0389 16679 bfd_get_filename (abfd));
613e1657
KB
16680 }
16681
917c78fc 16682 return retval;
613e1657
KB
16683}
16684
d521ce57
TT
16685static const gdb_byte *
16686read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16687{
16688 /* If the size of a host char is 8 bits, we can return a pointer
16689 to the buffer, otherwise we have to copy the data to a buffer
16690 allocated on the temporary obstack. */
4bdf3d34 16691 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16692 return buf;
c906108c
SS
16693}
16694
d521ce57
TT
16695static const char *
16696read_direct_string (bfd *abfd, const gdb_byte *buf,
16697 unsigned int *bytes_read_ptr)
c906108c
SS
16698{
16699 /* If the size of a host char is 8 bits, we can return a pointer
16700 to the string, otherwise we have to copy the string to a buffer
16701 allocated on the temporary obstack. */
4bdf3d34 16702 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16703 if (*buf == '\0')
16704 {
16705 *bytes_read_ptr = 1;
16706 return NULL;
16707 }
d521ce57
TT
16708 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16709 return (const char *) buf;
4bdf3d34
JJ
16710}
16711
d521ce57 16712static const char *
cf2c3c16 16713read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16714{
be391dca 16715 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16716 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16717 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16718 bfd_get_filename (abfd));
dce234bc 16719 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16720 error (_("DW_FORM_strp pointing outside of "
16721 ".debug_str section [in module %s]"),
16722 bfd_get_filename (abfd));
4bdf3d34 16723 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16724 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16725 return NULL;
d521ce57 16726 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16727}
16728
36586728
TT
16729/* Read a string at offset STR_OFFSET in the .debug_str section from
16730 the .dwz file DWZ. Throw an error if the offset is too large. If
16731 the string consists of a single NUL byte, return NULL; otherwise
16732 return a pointer to the string. */
16733
d521ce57 16734static const char *
36586728
TT
16735read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16736{
16737 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16738
16739 if (dwz->str.buffer == NULL)
16740 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16741 "section [in module %s]"),
16742 bfd_get_filename (dwz->dwz_bfd));
16743 if (str_offset >= dwz->str.size)
16744 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16745 ".debug_str section [in module %s]"),
16746 bfd_get_filename (dwz->dwz_bfd));
16747 gdb_assert (HOST_CHAR_BIT == 8);
16748 if (dwz->str.buffer[str_offset] == '\0')
16749 return NULL;
d521ce57 16750 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16751}
16752
d521ce57
TT
16753static const char *
16754read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16755 const struct comp_unit_head *cu_header,
16756 unsigned int *bytes_read_ptr)
16757{
16758 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16759
16760 return read_indirect_string_at_offset (abfd, str_offset);
16761}
16762
12df843f 16763static ULONGEST
d521ce57
TT
16764read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16765 unsigned int *bytes_read_ptr)
c906108c 16766{
12df843f 16767 ULONGEST result;
ce5d95e1 16768 unsigned int num_read;
c906108c
SS
16769 int i, shift;
16770 unsigned char byte;
16771
16772 result = 0;
16773 shift = 0;
16774 num_read = 0;
16775 i = 0;
16776 while (1)
16777 {
fe1b8b76 16778 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16779 buf++;
16780 num_read++;
12df843f 16781 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16782 if ((byte & 128) == 0)
16783 {
16784 break;
16785 }
16786 shift += 7;
16787 }
16788 *bytes_read_ptr = num_read;
16789 return result;
16790}
16791
12df843f 16792static LONGEST
d521ce57
TT
16793read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16794 unsigned int *bytes_read_ptr)
c906108c 16795{
12df843f 16796 LONGEST result;
77e0b926 16797 int i, shift, num_read;
c906108c
SS
16798 unsigned char byte;
16799
16800 result = 0;
16801 shift = 0;
c906108c
SS
16802 num_read = 0;
16803 i = 0;
16804 while (1)
16805 {
fe1b8b76 16806 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16807 buf++;
16808 num_read++;
12df843f 16809 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16810 shift += 7;
16811 if ((byte & 128) == 0)
16812 {
16813 break;
16814 }
16815 }
77e0b926 16816 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16817 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16818 *bytes_read_ptr = num_read;
16819 return result;
16820}
16821
3019eac3
DE
16822/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16823 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16824 ADDR_SIZE is the size of addresses from the CU header. */
16825
16826static CORE_ADDR
16827read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16828{
16829 struct objfile *objfile = dwarf2_per_objfile->objfile;
16830 bfd *abfd = objfile->obfd;
16831 const gdb_byte *info_ptr;
16832
16833 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16834 if (dwarf2_per_objfile->addr.buffer == NULL)
16835 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16836 objfile_name (objfile));
3019eac3
DE
16837 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16838 error (_("DW_FORM_addr_index pointing outside of "
16839 ".debug_addr section [in module %s]"),
4262abfb 16840 objfile_name (objfile));
3019eac3
DE
16841 info_ptr = (dwarf2_per_objfile->addr.buffer
16842 + addr_base + addr_index * addr_size);
16843 if (addr_size == 4)
16844 return bfd_get_32 (abfd, info_ptr);
16845 else
16846 return bfd_get_64 (abfd, info_ptr);
16847}
16848
16849/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16850
16851static CORE_ADDR
16852read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16853{
16854 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16855}
16856
16857/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16858
16859static CORE_ADDR
d521ce57 16860read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16861 unsigned int *bytes_read)
16862{
16863 bfd *abfd = cu->objfile->obfd;
16864 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16865
16866 return read_addr_index (cu, addr_index);
16867}
16868
16869/* Data structure to pass results from dwarf2_read_addr_index_reader
16870 back to dwarf2_read_addr_index. */
16871
16872struct dwarf2_read_addr_index_data
16873{
16874 ULONGEST addr_base;
16875 int addr_size;
16876};
16877
16878/* die_reader_func for dwarf2_read_addr_index. */
16879
16880static void
16881dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16882 const gdb_byte *info_ptr,
3019eac3
DE
16883 struct die_info *comp_unit_die,
16884 int has_children,
16885 void *data)
16886{
16887 struct dwarf2_cu *cu = reader->cu;
16888 struct dwarf2_read_addr_index_data *aidata =
16889 (struct dwarf2_read_addr_index_data *) data;
16890
16891 aidata->addr_base = cu->addr_base;
16892 aidata->addr_size = cu->header.addr_size;
16893}
16894
16895/* Given an index in .debug_addr, fetch the value.
16896 NOTE: This can be called during dwarf expression evaluation,
16897 long after the debug information has been read, and thus per_cu->cu
16898 may no longer exist. */
16899
16900CORE_ADDR
16901dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16902 unsigned int addr_index)
16903{
16904 struct objfile *objfile = per_cu->objfile;
16905 struct dwarf2_cu *cu = per_cu->cu;
16906 ULONGEST addr_base;
16907 int addr_size;
16908
16909 /* This is intended to be called from outside this file. */
16910 dw2_setup (objfile);
16911
16912 /* We need addr_base and addr_size.
16913 If we don't have PER_CU->cu, we have to get it.
16914 Nasty, but the alternative is storing the needed info in PER_CU,
16915 which at this point doesn't seem justified: it's not clear how frequently
16916 it would get used and it would increase the size of every PER_CU.
16917 Entry points like dwarf2_per_cu_addr_size do a similar thing
16918 so we're not in uncharted territory here.
16919 Alas we need to be a bit more complicated as addr_base is contained
16920 in the DIE.
16921
16922 We don't need to read the entire CU(/TU).
16923 We just need the header and top level die.
a1b64ce1 16924
3019eac3 16925 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16926 For now we skip this optimization. */
3019eac3
DE
16927
16928 if (cu != NULL)
16929 {
16930 addr_base = cu->addr_base;
16931 addr_size = cu->header.addr_size;
16932 }
16933 else
16934 {
16935 struct dwarf2_read_addr_index_data aidata;
16936
a1b64ce1
DE
16937 /* Note: We can't use init_cutu_and_read_dies_simple here,
16938 we need addr_base. */
16939 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16940 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16941 addr_base = aidata.addr_base;
16942 addr_size = aidata.addr_size;
16943 }
16944
16945 return read_addr_index_1 (addr_index, addr_base, addr_size);
16946}
16947
57d63ce2
DE
16948/* Given a DW_FORM_GNU_str_index, fetch the string.
16949 This is only used by the Fission support. */
3019eac3 16950
d521ce57 16951static const char *
342587c4 16952read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16953{
16954 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16955 const char *objf_name = objfile_name (objfile);
3019eac3 16956 bfd *abfd = objfile->obfd;
342587c4 16957 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16958 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16959 struct dwarf2_section_info *str_offsets_section =
16960 &reader->dwo_file->sections.str_offsets;
d521ce57 16961 const gdb_byte *info_ptr;
3019eac3 16962 ULONGEST str_offset;
57d63ce2 16963 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16964
73869dc2
DE
16965 dwarf2_read_section (objfile, str_section);
16966 dwarf2_read_section (objfile, str_offsets_section);
16967 if (str_section->buffer == NULL)
57d63ce2 16968 error (_("%s used without .debug_str.dwo section"
3019eac3 16969 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16970 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16971 if (str_offsets_section->buffer == NULL)
57d63ce2 16972 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16973 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16974 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16975 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16976 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16977 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16978 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16979 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16980 + str_index * cu->header.offset_size);
16981 if (cu->header.offset_size == 4)
16982 str_offset = bfd_get_32 (abfd, info_ptr);
16983 else
16984 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16985 if (str_offset >= str_section->size)
57d63ce2 16986 error (_("Offset from %s pointing outside of"
3019eac3 16987 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16988 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16989 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16990}
16991
3019eac3
DE
16992/* Return the length of an LEB128 number in BUF. */
16993
16994static int
16995leb128_size (const gdb_byte *buf)
16996{
16997 const gdb_byte *begin = buf;
16998 gdb_byte byte;
16999
17000 while (1)
17001 {
17002 byte = *buf++;
17003 if ((byte & 128) == 0)
17004 return buf - begin;
17005 }
17006}
17007
c906108c 17008static void
e142c38c 17009set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17010{
17011 switch (lang)
17012 {
17013 case DW_LANG_C89:
76bee0cc 17014 case DW_LANG_C99:
0cfd832f 17015 case DW_LANG_C11:
c906108c 17016 case DW_LANG_C:
d1be3247 17017 case DW_LANG_UPC:
e142c38c 17018 cu->language = language_c;
c906108c
SS
17019 break;
17020 case DW_LANG_C_plus_plus:
0cfd832f
MW
17021 case DW_LANG_C_plus_plus_11:
17022 case DW_LANG_C_plus_plus_14:
e142c38c 17023 cu->language = language_cplus;
c906108c 17024 break;
6aecb9c2
JB
17025 case DW_LANG_D:
17026 cu->language = language_d;
17027 break;
c906108c
SS
17028 case DW_LANG_Fortran77:
17029 case DW_LANG_Fortran90:
b21b22e0 17030 case DW_LANG_Fortran95:
f7de9aab
MW
17031 case DW_LANG_Fortran03:
17032 case DW_LANG_Fortran08:
e142c38c 17033 cu->language = language_fortran;
c906108c 17034 break;
a766d390
DE
17035 case DW_LANG_Go:
17036 cu->language = language_go;
17037 break;
c906108c 17038 case DW_LANG_Mips_Assembler:
e142c38c 17039 cu->language = language_asm;
c906108c 17040 break;
bebd888e 17041 case DW_LANG_Java:
e142c38c 17042 cu->language = language_java;
bebd888e 17043 break;
c906108c 17044 case DW_LANG_Ada83:
8aaf0b47 17045 case DW_LANG_Ada95:
bc5f45f8
JB
17046 cu->language = language_ada;
17047 break;
72019c9c
GM
17048 case DW_LANG_Modula2:
17049 cu->language = language_m2;
17050 break;
fe8e67fd
PM
17051 case DW_LANG_Pascal83:
17052 cu->language = language_pascal;
17053 break;
22566fbd
DJ
17054 case DW_LANG_ObjC:
17055 cu->language = language_objc;
17056 break;
c906108c
SS
17057 case DW_LANG_Cobol74:
17058 case DW_LANG_Cobol85:
c906108c 17059 default:
e142c38c 17060 cu->language = language_minimal;
c906108c
SS
17061 break;
17062 }
e142c38c 17063 cu->language_defn = language_def (cu->language);
c906108c
SS
17064}
17065
17066/* Return the named attribute or NULL if not there. */
17067
17068static struct attribute *
e142c38c 17069dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17070{
a48e046c 17071 for (;;)
c906108c 17072 {
a48e046c
TT
17073 unsigned int i;
17074 struct attribute *spec = NULL;
17075
17076 for (i = 0; i < die->num_attrs; ++i)
17077 {
17078 if (die->attrs[i].name == name)
17079 return &die->attrs[i];
17080 if (die->attrs[i].name == DW_AT_specification
17081 || die->attrs[i].name == DW_AT_abstract_origin)
17082 spec = &die->attrs[i];
17083 }
17084
17085 if (!spec)
17086 break;
c906108c 17087
f2f0e013 17088 die = follow_die_ref (die, spec, &cu);
f2f0e013 17089 }
c5aa993b 17090
c906108c
SS
17091 return NULL;
17092}
17093
348e048f
DE
17094/* Return the named attribute or NULL if not there,
17095 but do not follow DW_AT_specification, etc.
17096 This is for use in contexts where we're reading .debug_types dies.
17097 Following DW_AT_specification, DW_AT_abstract_origin will take us
17098 back up the chain, and we want to go down. */
17099
17100static struct attribute *
45e58e77 17101dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17102{
17103 unsigned int i;
17104
17105 for (i = 0; i < die->num_attrs; ++i)
17106 if (die->attrs[i].name == name)
17107 return &die->attrs[i];
17108
17109 return NULL;
17110}
17111
7d45c7c3
KB
17112/* Return the string associated with a string-typed attribute, or NULL if it
17113 is either not found or is of an incorrect type. */
17114
17115static const char *
17116dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17117{
17118 struct attribute *attr;
17119 const char *str = NULL;
17120
17121 attr = dwarf2_attr (die, name, cu);
17122
17123 if (attr != NULL)
17124 {
17125 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17126 || attr->form == DW_FORM_GNU_strp_alt)
17127 str = DW_STRING (attr);
17128 else
17129 complaint (&symfile_complaints,
17130 _("string type expected for attribute %s for "
17131 "DIE at 0x%x in module %s"),
17132 dwarf_attr_name (name), die->offset.sect_off,
17133 objfile_name (cu->objfile));
17134 }
17135
17136 return str;
17137}
17138
05cf31d1
JB
17139/* Return non-zero iff the attribute NAME is defined for the given DIE,
17140 and holds a non-zero value. This function should only be used for
2dc7f7b3 17141 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17142
17143static int
17144dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17145{
17146 struct attribute *attr = dwarf2_attr (die, name, cu);
17147
17148 return (attr && DW_UNSND (attr));
17149}
17150
3ca72b44 17151static int
e142c38c 17152die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17153{
05cf31d1
JB
17154 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17155 which value is non-zero. However, we have to be careful with
17156 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17157 (via dwarf2_flag_true_p) follows this attribute. So we may
17158 end up accidently finding a declaration attribute that belongs
17159 to a different DIE referenced by the specification attribute,
17160 even though the given DIE does not have a declaration attribute. */
17161 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17162 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17163}
17164
63d06c5c 17165/* Return the die giving the specification for DIE, if there is
f2f0e013 17166 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17167 containing the return value on output. If there is no
17168 specification, but there is an abstract origin, that is
17169 returned. */
63d06c5c
DC
17170
17171static struct die_info *
f2f0e013 17172die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17173{
f2f0e013
DJ
17174 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17175 *spec_cu);
63d06c5c 17176
edb3359d
DJ
17177 if (spec_attr == NULL)
17178 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17179
63d06c5c
DC
17180 if (spec_attr == NULL)
17181 return NULL;
17182 else
f2f0e013 17183 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17184}
c906108c 17185
debd256d 17186/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17187 refers to.
17188 NOTE: This is also used as a "cleanup" function. */
17189
debd256d
JB
17190static void
17191free_line_header (struct line_header *lh)
17192{
17193 if (lh->standard_opcode_lengths)
a8bc7b56 17194 xfree (lh->standard_opcode_lengths);
debd256d
JB
17195
17196 /* Remember that all the lh->file_names[i].name pointers are
17197 pointers into debug_line_buffer, and don't need to be freed. */
17198 if (lh->file_names)
a8bc7b56 17199 xfree (lh->file_names);
debd256d
JB
17200
17201 /* Similarly for the include directory names. */
17202 if (lh->include_dirs)
a8bc7b56 17203 xfree (lh->include_dirs);
debd256d 17204
a8bc7b56 17205 xfree (lh);
debd256d
JB
17206}
17207
527f3840
JK
17208/* Stub for free_line_header to match void * callback types. */
17209
17210static void
17211free_line_header_voidp (void *arg)
17212{
9a3c8263 17213 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17214
17215 free_line_header (lh);
17216}
17217
debd256d 17218/* Add an entry to LH's include directory table. */
ae2de4f8 17219
debd256d 17220static void
d521ce57 17221add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17222{
27e0867f
DE
17223 if (dwarf_line_debug >= 2)
17224 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17225 lh->num_include_dirs + 1, include_dir);
17226
debd256d
JB
17227 /* Grow the array if necessary. */
17228 if (lh->include_dirs_size == 0)
c5aa993b 17229 {
debd256d 17230 lh->include_dirs_size = 1; /* for testing */
8d749320 17231 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17232 }
17233 else if (lh->num_include_dirs >= lh->include_dirs_size)
17234 {
17235 lh->include_dirs_size *= 2;
8d749320
SM
17236 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17237 lh->include_dirs_size);
c5aa993b 17238 }
c906108c 17239
debd256d
JB
17240 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17241}
6e70227d 17242
debd256d 17243/* Add an entry to LH's file name table. */
ae2de4f8 17244
debd256d
JB
17245static void
17246add_file_name (struct line_header *lh,
d521ce57 17247 const char *name,
debd256d
JB
17248 unsigned int dir_index,
17249 unsigned int mod_time,
17250 unsigned int length)
17251{
17252 struct file_entry *fe;
17253
27e0867f
DE
17254 if (dwarf_line_debug >= 2)
17255 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17256 lh->num_file_names + 1, name);
17257
debd256d
JB
17258 /* Grow the array if necessary. */
17259 if (lh->file_names_size == 0)
17260 {
17261 lh->file_names_size = 1; /* for testing */
8d749320 17262 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17263 }
17264 else if (lh->num_file_names >= lh->file_names_size)
17265 {
17266 lh->file_names_size *= 2;
224c3ddb
SM
17267 lh->file_names
17268 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17269 }
17270
17271 fe = &lh->file_names[lh->num_file_names++];
17272 fe->name = name;
17273 fe->dir_index = dir_index;
17274 fe->mod_time = mod_time;
17275 fe->length = length;
aaa75496 17276 fe->included_p = 0;
cb1df416 17277 fe->symtab = NULL;
debd256d 17278}
6e70227d 17279
83769d0b 17280/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17281
17282static struct dwarf2_section_info *
17283get_debug_line_section (struct dwarf2_cu *cu)
17284{
17285 struct dwarf2_section_info *section;
17286
17287 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17288 DWO file. */
17289 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17290 section = &cu->dwo_unit->dwo_file->sections.line;
17291 else if (cu->per_cu->is_dwz)
17292 {
17293 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17294
17295 section = &dwz->line;
17296 }
17297 else
17298 section = &dwarf2_per_objfile->line;
17299
17300 return section;
17301}
17302
debd256d 17303/* Read the statement program header starting at OFFSET in
3019eac3 17304 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17305 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17306 Returns NULL if there is a problem reading the header, e.g., if it
17307 has a version we don't understand.
debd256d
JB
17308
17309 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17310 the returned object point into the dwarf line section buffer,
17311 and must not be freed. */
ae2de4f8 17312
debd256d 17313static struct line_header *
3019eac3 17314dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17315{
17316 struct cleanup *back_to;
17317 struct line_header *lh;
d521ce57 17318 const gdb_byte *line_ptr;
c764a876 17319 unsigned int bytes_read, offset_size;
debd256d 17320 int i;
d521ce57 17321 const char *cur_dir, *cur_file;
3019eac3
DE
17322 struct dwarf2_section_info *section;
17323 bfd *abfd;
17324
36586728 17325 section = get_debug_line_section (cu);
3019eac3
DE
17326 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17327 if (section->buffer == NULL)
debd256d 17328 {
3019eac3
DE
17329 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17330 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17331 else
17332 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17333 return 0;
17334 }
17335
fceca515
DE
17336 /* We can't do this until we know the section is non-empty.
17337 Only then do we know we have such a section. */
a32a8923 17338 abfd = get_section_bfd_owner (section);
fceca515 17339
a738430d
MK
17340 /* Make sure that at least there's room for the total_length field.
17341 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17342 if (offset + 4 >= section->size)
debd256d 17343 {
4d3c2250 17344 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17345 return 0;
17346 }
17347
8d749320 17348 lh = XNEW (struct line_header);
debd256d
JB
17349 memset (lh, 0, sizeof (*lh));
17350 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17351 (void *) lh);
17352
527f3840
JK
17353 lh->offset.sect_off = offset;
17354 lh->offset_in_dwz = cu->per_cu->is_dwz;
17355
3019eac3 17356 line_ptr = section->buffer + offset;
debd256d 17357
a738430d 17358 /* Read in the header. */
6e70227d 17359 lh->total_length =
c764a876
DE
17360 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17361 &bytes_read, &offset_size);
debd256d 17362 line_ptr += bytes_read;
3019eac3 17363 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17364 {
4d3c2250 17365 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17366 do_cleanups (back_to);
debd256d
JB
17367 return 0;
17368 }
17369 lh->statement_program_end = line_ptr + lh->total_length;
17370 lh->version = read_2_bytes (abfd, line_ptr);
17371 line_ptr += 2;
cd366ee8
DE
17372 if (lh->version > 4)
17373 {
17374 /* This is a version we don't understand. The format could have
17375 changed in ways we don't handle properly so just punt. */
17376 complaint (&symfile_complaints,
17377 _("unsupported version in .debug_line section"));
17378 return NULL;
17379 }
c764a876
DE
17380 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17381 line_ptr += offset_size;
debd256d
JB
17382 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17383 line_ptr += 1;
2dc7f7b3
TT
17384 if (lh->version >= 4)
17385 {
17386 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17387 line_ptr += 1;
17388 }
17389 else
17390 lh->maximum_ops_per_instruction = 1;
17391
17392 if (lh->maximum_ops_per_instruction == 0)
17393 {
17394 lh->maximum_ops_per_instruction = 1;
17395 complaint (&symfile_complaints,
3e43a32a
MS
17396 _("invalid maximum_ops_per_instruction "
17397 "in `.debug_line' section"));
2dc7f7b3
TT
17398 }
17399
debd256d
JB
17400 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17401 line_ptr += 1;
17402 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17403 line_ptr += 1;
17404 lh->line_range = read_1_byte (abfd, line_ptr);
17405 line_ptr += 1;
17406 lh->opcode_base = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
8d749320 17408 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17409
17410 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17411 for (i = 1; i < lh->opcode_base; ++i)
17412 {
17413 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17414 line_ptr += 1;
17415 }
17416
a738430d 17417 /* Read directory table. */
9b1c24c8 17418 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17419 {
17420 line_ptr += bytes_read;
17421 add_include_dir (lh, cur_dir);
17422 }
17423 line_ptr += bytes_read;
17424
a738430d 17425 /* Read file name table. */
9b1c24c8 17426 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17427 {
17428 unsigned int dir_index, mod_time, length;
17429
17430 line_ptr += bytes_read;
17431 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17432 line_ptr += bytes_read;
17433 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17434 line_ptr += bytes_read;
17435 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17436 line_ptr += bytes_read;
17437
17438 add_file_name (lh, cur_file, dir_index, mod_time, length);
17439 }
17440 line_ptr += bytes_read;
6e70227d 17441 lh->statement_program_start = line_ptr;
debd256d 17442
3019eac3 17443 if (line_ptr > (section->buffer + section->size))
4d3c2250 17444 complaint (&symfile_complaints,
3e43a32a
MS
17445 _("line number info header doesn't "
17446 "fit in `.debug_line' section"));
debd256d
JB
17447
17448 discard_cleanups (back_to);
17449 return lh;
17450}
c906108c 17451
c6da4cef
DE
17452/* Subroutine of dwarf_decode_lines to simplify it.
17453 Return the file name of the psymtab for included file FILE_INDEX
17454 in line header LH of PST.
17455 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17456 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17457 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17458
17459 The function creates dangling cleanup registration. */
c6da4cef 17460
d521ce57 17461static const char *
c6da4cef
DE
17462psymtab_include_file_name (const struct line_header *lh, int file_index,
17463 const struct partial_symtab *pst,
17464 const char *comp_dir)
17465{
17466 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17467 const char *include_name = fe.name;
17468 const char *include_name_to_compare = include_name;
17469 const char *dir_name = NULL;
72b9f47f
TT
17470 const char *pst_filename;
17471 char *copied_name = NULL;
c6da4cef
DE
17472 int file_is_pst;
17473
afa6c9ab 17474 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17475 dir_name = lh->include_dirs[fe.dir_index - 1];
17476
17477 if (!IS_ABSOLUTE_PATH (include_name)
17478 && (dir_name != NULL || comp_dir != NULL))
17479 {
17480 /* Avoid creating a duplicate psymtab for PST.
17481 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17482 Before we do the comparison, however, we need to account
17483 for DIR_NAME and COMP_DIR.
17484 First prepend dir_name (if non-NULL). If we still don't
17485 have an absolute path prepend comp_dir (if non-NULL).
17486 However, the directory we record in the include-file's
17487 psymtab does not contain COMP_DIR (to match the
17488 corresponding symtab(s)).
17489
17490 Example:
17491
17492 bash$ cd /tmp
17493 bash$ gcc -g ./hello.c
17494 include_name = "hello.c"
17495 dir_name = "."
17496 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17497 DW_AT_name = "./hello.c"
17498
17499 */
c6da4cef
DE
17500
17501 if (dir_name != NULL)
17502 {
d521ce57
TT
17503 char *tem = concat (dir_name, SLASH_STRING,
17504 include_name, (char *)NULL);
17505
17506 make_cleanup (xfree, tem);
17507 include_name = tem;
c6da4cef 17508 include_name_to_compare = include_name;
c6da4cef
DE
17509 }
17510 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17511 {
d521ce57
TT
17512 char *tem = concat (comp_dir, SLASH_STRING,
17513 include_name, (char *)NULL);
17514
17515 make_cleanup (xfree, tem);
17516 include_name_to_compare = tem;
c6da4cef
DE
17517 }
17518 }
17519
17520 pst_filename = pst->filename;
17521 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17522 {
72b9f47f
TT
17523 copied_name = concat (pst->dirname, SLASH_STRING,
17524 pst_filename, (char *)NULL);
17525 pst_filename = copied_name;
c6da4cef
DE
17526 }
17527
1e3fad37 17528 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17529
72b9f47f
TT
17530 if (copied_name != NULL)
17531 xfree (copied_name);
c6da4cef
DE
17532
17533 if (file_is_pst)
17534 return NULL;
17535 return include_name;
17536}
17537
d9b3de22
DE
17538/* State machine to track the state of the line number program. */
17539
17540typedef struct
17541{
17542 /* These are part of the standard DWARF line number state machine. */
17543
17544 unsigned char op_index;
17545 unsigned int file;
17546 unsigned int line;
17547 CORE_ADDR address;
17548 int is_stmt;
17549 unsigned int discriminator;
17550
17551 /* Additional bits of state we need to track. */
17552
17553 /* The last file that we called dwarf2_start_subfile for.
17554 This is only used for TLLs. */
17555 unsigned int last_file;
17556 /* The last file a line number was recorded for. */
17557 struct subfile *last_subfile;
17558
17559 /* The function to call to record a line. */
17560 record_line_ftype *record_line;
17561
17562 /* The last line number that was recorded, used to coalesce
17563 consecutive entries for the same line. This can happen, for
17564 example, when discriminators are present. PR 17276. */
17565 unsigned int last_line;
17566 int line_has_non_zero_discriminator;
17567} lnp_state_machine;
17568
17569/* There's a lot of static state to pass to dwarf_record_line.
17570 This keeps it all together. */
17571
17572typedef struct
17573{
17574 /* The gdbarch. */
17575 struct gdbarch *gdbarch;
17576
17577 /* The line number header. */
17578 struct line_header *line_header;
17579
17580 /* Non-zero if we're recording lines.
17581 Otherwise we're building partial symtabs and are just interested in
17582 finding include files mentioned by the line number program. */
17583 int record_lines_p;
17584} lnp_reader_state;
17585
c91513d8
PP
17586/* Ignore this record_line request. */
17587
17588static void
17589noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17590{
17591 return;
17592}
17593
a05a36a5
DE
17594/* Return non-zero if we should add LINE to the line number table.
17595 LINE is the line to add, LAST_LINE is the last line that was added,
17596 LAST_SUBFILE is the subfile for LAST_LINE.
17597 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17598 had a non-zero discriminator.
17599
17600 We have to be careful in the presence of discriminators.
17601 E.g., for this line:
17602
17603 for (i = 0; i < 100000; i++);
17604
17605 clang can emit four line number entries for that one line,
17606 each with a different discriminator.
17607 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17608
17609 However, we want gdb to coalesce all four entries into one.
17610 Otherwise the user could stepi into the middle of the line and
17611 gdb would get confused about whether the pc really was in the
17612 middle of the line.
17613
17614 Things are further complicated by the fact that two consecutive
17615 line number entries for the same line is a heuristic used by gcc
17616 to denote the end of the prologue. So we can't just discard duplicate
17617 entries, we have to be selective about it. The heuristic we use is
17618 that we only collapse consecutive entries for the same line if at least
17619 one of those entries has a non-zero discriminator. PR 17276.
17620
17621 Note: Addresses in the line number state machine can never go backwards
17622 within one sequence, thus this coalescing is ok. */
17623
17624static int
17625dwarf_record_line_p (unsigned int line, unsigned int last_line,
17626 int line_has_non_zero_discriminator,
17627 struct subfile *last_subfile)
17628{
17629 if (current_subfile != last_subfile)
17630 return 1;
17631 if (line != last_line)
17632 return 1;
17633 /* Same line for the same file that we've seen already.
17634 As a last check, for pr 17276, only record the line if the line
17635 has never had a non-zero discriminator. */
17636 if (!line_has_non_zero_discriminator)
17637 return 1;
17638 return 0;
17639}
17640
252a6764
DE
17641/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17642 in the line table of subfile SUBFILE. */
17643
17644static void
d9b3de22
DE
17645dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17646 unsigned int line, CORE_ADDR address,
17647 record_line_ftype p_record_line)
252a6764
DE
17648{
17649 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17650
27e0867f
DE
17651 if (dwarf_line_debug)
17652 {
17653 fprintf_unfiltered (gdb_stdlog,
17654 "Recording line %u, file %s, address %s\n",
17655 line, lbasename (subfile->name),
17656 paddress (gdbarch, address));
17657 }
17658
d5962de5 17659 (*p_record_line) (subfile, line, addr);
252a6764
DE
17660}
17661
17662/* Subroutine of dwarf_decode_lines_1 to simplify it.
17663 Mark the end of a set of line number records.
d9b3de22 17664 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17665 If SUBFILE is NULL the request is ignored. */
17666
17667static void
17668dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17669 CORE_ADDR address, record_line_ftype p_record_line)
17670{
27e0867f
DE
17671 if (subfile == NULL)
17672 return;
17673
17674 if (dwarf_line_debug)
17675 {
17676 fprintf_unfiltered (gdb_stdlog,
17677 "Finishing current line, file %s, address %s\n",
17678 lbasename (subfile->name),
17679 paddress (gdbarch, address));
17680 }
17681
d9b3de22
DE
17682 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17683}
17684
17685/* Record the line in STATE.
17686 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17687
17688static void
17689dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17690 int end_sequence)
17691{
17692 const struct line_header *lh = reader->line_header;
17693 unsigned int file, line, discriminator;
17694 int is_stmt;
17695
17696 file = state->file;
17697 line = state->line;
17698 is_stmt = state->is_stmt;
17699 discriminator = state->discriminator;
17700
17701 if (dwarf_line_debug)
17702 {
17703 fprintf_unfiltered (gdb_stdlog,
17704 "Processing actual line %u: file %u,"
17705 " address %s, is_stmt %u, discrim %u\n",
17706 line, file,
17707 paddress (reader->gdbarch, state->address),
17708 is_stmt, discriminator);
17709 }
17710
17711 if (file == 0 || file - 1 >= lh->num_file_names)
17712 dwarf2_debug_line_missing_file_complaint ();
17713 /* For now we ignore lines not starting on an instruction boundary.
17714 But not when processing end_sequence for compatibility with the
17715 previous version of the code. */
17716 else if (state->op_index == 0 || end_sequence)
17717 {
17718 lh->file_names[file - 1].included_p = 1;
17719 if (reader->record_lines_p && is_stmt)
17720 {
e815d2d2 17721 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17722 {
17723 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17724 state->address, state->record_line);
17725 }
17726
17727 if (!end_sequence)
17728 {
17729 if (dwarf_record_line_p (line, state->last_line,
17730 state->line_has_non_zero_discriminator,
17731 state->last_subfile))
17732 {
17733 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17734 line, state->address,
17735 state->record_line);
17736 }
17737 state->last_subfile = current_subfile;
17738 state->last_line = line;
17739 }
17740 }
17741 }
17742}
17743
17744/* Initialize STATE for the start of a line number program. */
17745
17746static void
17747init_lnp_state_machine (lnp_state_machine *state,
17748 const lnp_reader_state *reader)
17749{
17750 memset (state, 0, sizeof (*state));
17751
17752 /* Just starting, there is no "last file". */
17753 state->last_file = 0;
17754 state->last_subfile = NULL;
17755
17756 state->record_line = record_line;
17757
17758 state->last_line = 0;
17759 state->line_has_non_zero_discriminator = 0;
17760
17761 /* Initialize these according to the DWARF spec. */
17762 state->op_index = 0;
17763 state->file = 1;
17764 state->line = 1;
17765 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17766 was a line entry for it so that the backend has a chance to adjust it
17767 and also record it in case it needs it. This is currently used by MIPS
17768 code, cf. `mips_adjust_dwarf2_line'. */
17769 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17770 state->is_stmt = reader->line_header->default_is_stmt;
17771 state->discriminator = 0;
252a6764
DE
17772}
17773
924c2928
DE
17774/* Check address and if invalid nop-out the rest of the lines in this
17775 sequence. */
17776
17777static void
d9b3de22 17778check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17779 const gdb_byte *line_ptr,
17780 CORE_ADDR lowpc, CORE_ADDR address)
17781{
17782 /* If address < lowpc then it's not a usable value, it's outside the
17783 pc range of the CU. However, we restrict the test to only address
17784 values of zero to preserve GDB's previous behaviour which is to
17785 handle the specific case of a function being GC'd by the linker. */
17786
17787 if (address == 0 && address < lowpc)
17788 {
17789 /* This line table is for a function which has been
17790 GCd by the linker. Ignore it. PR gdb/12528 */
17791
17792 struct objfile *objfile = cu->objfile;
17793 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17794
17795 complaint (&symfile_complaints,
17796 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17797 line_offset, objfile_name (objfile));
d9b3de22
DE
17798 state->record_line = noop_record_line;
17799 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17800 until we see DW_LNE_end_sequence. */
17801 }
17802}
17803
f3f5162e 17804/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17805 Process the line number information in LH.
17806 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17807 program in order to set included_p for every referenced header. */
debd256d 17808
c906108c 17809static void
43f3e411
DE
17810dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17811 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17812{
d521ce57
TT
17813 const gdb_byte *line_ptr, *extended_end;
17814 const gdb_byte *line_end;
a8c50c1f 17815 unsigned int bytes_read, extended_len;
699ca60a 17816 unsigned char op_code, extended_op;
e142c38c
DJ
17817 CORE_ADDR baseaddr;
17818 struct objfile *objfile = cu->objfile;
f3f5162e 17819 bfd *abfd = objfile->obfd;
fbf65064 17820 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17821 /* Non-zero if we're recording line info (as opposed to building partial
17822 symtabs). */
17823 int record_lines_p = !decode_for_pst_p;
17824 /* A collection of things we need to pass to dwarf_record_line. */
17825 lnp_reader_state reader_state;
e142c38c
DJ
17826
17827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17828
debd256d
JB
17829 line_ptr = lh->statement_program_start;
17830 line_end = lh->statement_program_end;
c906108c 17831
d9b3de22
DE
17832 reader_state.gdbarch = gdbarch;
17833 reader_state.line_header = lh;
17834 reader_state.record_lines_p = record_lines_p;
17835
c906108c
SS
17836 /* Read the statement sequences until there's nothing left. */
17837 while (line_ptr < line_end)
17838 {
d9b3de22
DE
17839 /* The DWARF line number program state machine. */
17840 lnp_state_machine state_machine;
c906108c 17841 int end_sequence = 0;
d9b3de22
DE
17842
17843 /* Reset the state machine at the start of each sequence. */
17844 init_lnp_state_machine (&state_machine, &reader_state);
17845
17846 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17847 {
aaa75496 17848 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17849 /* lh->include_dirs and lh->file_names are 0-based, but the
17850 directory and file name numbers in the statement program
17851 are 1-based. */
d9b3de22 17852 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17853 const char *dir = NULL;
a738430d 17854
afa6c9ab 17855 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17856 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17857
4d663531 17858 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17859 }
17860
a738430d 17861 /* Decode the table. */
d9b3de22 17862 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17863 {
17864 op_code = read_1_byte (abfd, line_ptr);
17865 line_ptr += 1;
9aa1fe7e 17866
debd256d 17867 if (op_code >= lh->opcode_base)
6e70227d 17868 {
8e07a239 17869 /* Special opcode. */
699ca60a 17870 unsigned char adj_opcode;
3e29f34a 17871 CORE_ADDR addr_adj;
a05a36a5 17872 int line_delta;
8e07a239 17873
debd256d 17874 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17875 addr_adj = (((state_machine.op_index
17876 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17877 / lh->maximum_ops_per_instruction)
17878 * lh->minimum_instruction_length);
d9b3de22
DE
17879 state_machine.address
17880 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17881 state_machine.op_index = ((state_machine.op_index
17882 + (adj_opcode / lh->line_range))
17883 % lh->maximum_ops_per_instruction);
a05a36a5 17884 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17885 state_machine.line += line_delta;
a05a36a5 17886 if (line_delta != 0)
d9b3de22
DE
17887 state_machine.line_has_non_zero_discriminator
17888 = state_machine.discriminator != 0;
17889
17890 dwarf_record_line (&reader_state, &state_machine, 0);
17891 state_machine.discriminator = 0;
9aa1fe7e
GK
17892 }
17893 else switch (op_code)
c906108c
SS
17894 {
17895 case DW_LNS_extended_op:
3e43a32a
MS
17896 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17897 &bytes_read);
473b7be6 17898 line_ptr += bytes_read;
a8c50c1f 17899 extended_end = line_ptr + extended_len;
c906108c
SS
17900 extended_op = read_1_byte (abfd, line_ptr);
17901 line_ptr += 1;
17902 switch (extended_op)
17903 {
17904 case DW_LNE_end_sequence:
d9b3de22 17905 state_machine.record_line = record_line;
c906108c 17906 end_sequence = 1;
c906108c
SS
17907 break;
17908 case DW_LNE_set_address:
d9b3de22
DE
17909 {
17910 CORE_ADDR address
17911 = read_address (abfd, line_ptr, cu, &bytes_read);
17912
17913 line_ptr += bytes_read;
17914 check_line_address (cu, &state_machine, line_ptr,
17915 lowpc, address);
17916 state_machine.op_index = 0;
17917 address += baseaddr;
17918 state_machine.address
17919 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17920 }
c906108c
SS
17921 break;
17922 case DW_LNE_define_file:
debd256d 17923 {
d521ce57 17924 const char *cur_file;
debd256d 17925 unsigned int dir_index, mod_time, length;
6e70227d 17926
3e43a32a
MS
17927 cur_file = read_direct_string (abfd, line_ptr,
17928 &bytes_read);
debd256d
JB
17929 line_ptr += bytes_read;
17930 dir_index =
17931 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17932 line_ptr += bytes_read;
17933 mod_time =
17934 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17935 line_ptr += bytes_read;
17936 length =
17937 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17938 line_ptr += bytes_read;
17939 add_file_name (lh, cur_file, dir_index, mod_time, length);
17940 }
c906108c 17941 break;
d0c6ba3d
CC
17942 case DW_LNE_set_discriminator:
17943 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17944 just ignore it. We still need to check its value though:
17945 if there are consecutive entries for the same
17946 (non-prologue) line we want to coalesce them.
17947 PR 17276. */
d9b3de22
DE
17948 state_machine.discriminator
17949 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17950 state_machine.line_has_non_zero_discriminator
17951 |= state_machine.discriminator != 0;
a05a36a5 17952 line_ptr += bytes_read;
d0c6ba3d 17953 break;
c906108c 17954 default:
4d3c2250 17955 complaint (&symfile_complaints,
e2e0b3e5 17956 _("mangled .debug_line section"));
debd256d 17957 return;
c906108c 17958 }
a8c50c1f
DJ
17959 /* Make sure that we parsed the extended op correctly. If e.g.
17960 we expected a different address size than the producer used,
17961 we may have read the wrong number of bytes. */
17962 if (line_ptr != extended_end)
17963 {
17964 complaint (&symfile_complaints,
17965 _("mangled .debug_line section"));
17966 return;
17967 }
c906108c
SS
17968 break;
17969 case DW_LNS_copy:
d9b3de22
DE
17970 dwarf_record_line (&reader_state, &state_machine, 0);
17971 state_machine.discriminator = 0;
c906108c
SS
17972 break;
17973 case DW_LNS_advance_pc:
2dc7f7b3
TT
17974 {
17975 CORE_ADDR adjust
17976 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17977 CORE_ADDR addr_adj;
2dc7f7b3 17978
d9b3de22 17979 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17980 / lh->maximum_ops_per_instruction)
17981 * lh->minimum_instruction_length);
d9b3de22
DE
17982 state_machine.address
17983 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17984 state_machine.op_index = ((state_machine.op_index + adjust)
17985 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17986 line_ptr += bytes_read;
17987 }
c906108c
SS
17988 break;
17989 case DW_LNS_advance_line:
a05a36a5
DE
17990 {
17991 int line_delta
17992 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17993
d9b3de22 17994 state_machine.line += line_delta;
a05a36a5 17995 if (line_delta != 0)
d9b3de22
DE
17996 state_machine.line_has_non_zero_discriminator
17997 = state_machine.discriminator != 0;
a05a36a5
DE
17998 line_ptr += bytes_read;
17999 }
c906108c
SS
18000 break;
18001 case DW_LNS_set_file:
d9b3de22
DE
18002 {
18003 /* The arrays lh->include_dirs and lh->file_names are
18004 0-based, but the directory and file name numbers in
18005 the statement program are 1-based. */
18006 struct file_entry *fe;
18007 const char *dir = NULL;
18008
18009 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18010 &bytes_read);
18011 line_ptr += bytes_read;
18012 if (state_machine.file == 0
18013 || state_machine.file - 1 >= lh->num_file_names)
18014 dwarf2_debug_line_missing_file_complaint ();
18015 else
18016 {
18017 fe = &lh->file_names[state_machine.file - 1];
18018 if (fe->dir_index && lh->include_dirs != NULL)
18019 dir = lh->include_dirs[fe->dir_index - 1];
18020 if (record_lines_p)
18021 {
18022 state_machine.last_subfile = current_subfile;
18023 state_machine.line_has_non_zero_discriminator
18024 = state_machine.discriminator != 0;
18025 dwarf2_start_subfile (fe->name, dir);
18026 }
18027 }
18028 }
c906108c
SS
18029 break;
18030 case DW_LNS_set_column:
0ad93d4f 18031 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18032 line_ptr += bytes_read;
18033 break;
18034 case DW_LNS_negate_stmt:
d9b3de22 18035 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18036 break;
18037 case DW_LNS_set_basic_block:
c906108c 18038 break;
c2c6d25f
JM
18039 /* Add to the address register of the state machine the
18040 address increment value corresponding to special opcode
a738430d
MK
18041 255. I.e., this value is scaled by the minimum
18042 instruction length since special opcode 255 would have
b021a221 18043 scaled the increment. */
c906108c 18044 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18045 {
18046 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18047 CORE_ADDR addr_adj;
2dc7f7b3 18048
d9b3de22 18049 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18050 / lh->maximum_ops_per_instruction)
18051 * lh->minimum_instruction_length);
d9b3de22
DE
18052 state_machine.address
18053 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18054 state_machine.op_index = ((state_machine.op_index + adjust)
18055 % lh->maximum_ops_per_instruction);
2dc7f7b3 18056 }
c906108c
SS
18057 break;
18058 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18059 {
18060 CORE_ADDR addr_adj;
18061
18062 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18063 state_machine.address
18064 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18065 state_machine.op_index = 0;
3e29f34a
MR
18066 line_ptr += 2;
18067 }
c906108c 18068 break;
9aa1fe7e 18069 default:
a738430d
MK
18070 {
18071 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18072 int i;
a738430d 18073
debd256d 18074 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18075 {
18076 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18077 line_ptr += bytes_read;
18078 }
18079 }
c906108c
SS
18080 }
18081 }
d9b3de22
DE
18082
18083 if (!end_sequence)
18084 dwarf2_debug_line_missing_end_sequence_complaint ();
18085
18086 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18087 in which case we still finish recording the last line). */
18088 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18089 }
f3f5162e
DE
18090}
18091
18092/* Decode the Line Number Program (LNP) for the given line_header
18093 structure and CU. The actual information extracted and the type
18094 of structures created from the LNP depends on the value of PST.
18095
18096 1. If PST is NULL, then this procedure uses the data from the program
18097 to create all necessary symbol tables, and their linetables.
18098
18099 2. If PST is not NULL, this procedure reads the program to determine
18100 the list of files included by the unit represented by PST, and
18101 builds all the associated partial symbol tables.
18102
18103 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18104 It is used for relative paths in the line table.
18105 NOTE: When processing partial symtabs (pst != NULL),
18106 comp_dir == pst->dirname.
18107
18108 NOTE: It is important that psymtabs have the same file name (via strcmp)
18109 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18110 symtab we don't use it in the name of the psymtabs we create.
18111 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18112 A good testcase for this is mb-inline.exp.
18113
527f3840
JK
18114 LOWPC is the lowest address in CU (or 0 if not known).
18115
18116 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18117 for its PC<->lines mapping information. Otherwise only the filename
18118 table is read in. */
f3f5162e
DE
18119
18120static void
18121dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18122 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18123 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18124{
18125 struct objfile *objfile = cu->objfile;
18126 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18127
527f3840
JK
18128 if (decode_mapping)
18129 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18130
18131 if (decode_for_pst_p)
18132 {
18133 int file_index;
18134
18135 /* Now that we're done scanning the Line Header Program, we can
18136 create the psymtab of each included file. */
18137 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18138 if (lh->file_names[file_index].included_p == 1)
18139 {
d521ce57 18140 const char *include_name =
c6da4cef
DE
18141 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18142 if (include_name != NULL)
aaa75496
JB
18143 dwarf2_create_include_psymtab (include_name, pst, objfile);
18144 }
18145 }
cb1df416
DJ
18146 else
18147 {
18148 /* Make sure a symtab is created for every file, even files
18149 which contain only variables (i.e. no code with associated
18150 line numbers). */
43f3e411 18151 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18152 int i;
cb1df416
DJ
18153
18154 for (i = 0; i < lh->num_file_names; i++)
18155 {
d521ce57 18156 const char *dir = NULL;
f3f5162e 18157 struct file_entry *fe;
9a619af0 18158
cb1df416 18159 fe = &lh->file_names[i];
afa6c9ab 18160 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18161 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18162 dwarf2_start_subfile (fe->name, dir);
cb1df416 18163
cb1df416 18164 if (current_subfile->symtab == NULL)
43f3e411
DE
18165 {
18166 current_subfile->symtab
18167 = allocate_symtab (cust, current_subfile->name);
18168 }
cb1df416
DJ
18169 fe->symtab = current_subfile->symtab;
18170 }
18171 }
c906108c
SS
18172}
18173
18174/* Start a subfile for DWARF. FILENAME is the name of the file and
18175 DIRNAME the name of the source directory which contains FILENAME
4d663531 18176 or NULL if not known.
c906108c
SS
18177 This routine tries to keep line numbers from identical absolute and
18178 relative file names in a common subfile.
18179
18180 Using the `list' example from the GDB testsuite, which resides in
18181 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18182 of /srcdir/list0.c yields the following debugging information for list0.c:
18183
c5aa993b 18184 DW_AT_name: /srcdir/list0.c
4d663531 18185 DW_AT_comp_dir: /compdir
357e46e7 18186 files.files[0].name: list0.h
c5aa993b 18187 files.files[0].dir: /srcdir
357e46e7 18188 files.files[1].name: list0.c
c5aa993b 18189 files.files[1].dir: /srcdir
c906108c
SS
18190
18191 The line number information for list0.c has to end up in a single
4f1520fb
FR
18192 subfile, so that `break /srcdir/list0.c:1' works as expected.
18193 start_subfile will ensure that this happens provided that we pass the
18194 concatenation of files.files[1].dir and files.files[1].name as the
18195 subfile's name. */
c906108c
SS
18196
18197static void
4d663531 18198dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18199{
d521ce57 18200 char *copy = NULL;
4f1520fb 18201
4d663531 18202 /* In order not to lose the line information directory,
4f1520fb
FR
18203 we concatenate it to the filename when it makes sense.
18204 Note that the Dwarf3 standard says (speaking of filenames in line
18205 information): ``The directory index is ignored for file names
18206 that represent full path names''. Thus ignoring dirname in the
18207 `else' branch below isn't an issue. */
c906108c 18208
d5166ae1 18209 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18210 {
18211 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18212 filename = copy;
18213 }
c906108c 18214
4d663531 18215 start_subfile (filename);
4f1520fb 18216
d521ce57
TT
18217 if (copy != NULL)
18218 xfree (copy);
c906108c
SS
18219}
18220
f4dc4d17
DE
18221/* Start a symtab for DWARF.
18222 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18223
43f3e411 18224static struct compunit_symtab *
f4dc4d17 18225dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18226 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18227{
43f3e411
DE
18228 struct compunit_symtab *cust
18229 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18230
f4dc4d17
DE
18231 record_debugformat ("DWARF 2");
18232 record_producer (cu->producer);
18233
18234 /* We assume that we're processing GCC output. */
18235 processing_gcc_compilation = 2;
18236
4d4ec4e5 18237 cu->processing_has_namespace_info = 0;
43f3e411
DE
18238
18239 return cust;
f4dc4d17
DE
18240}
18241
4c2df51b
DJ
18242static void
18243var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18244 struct dwarf2_cu *cu)
4c2df51b 18245{
e7c27a73
DJ
18246 struct objfile *objfile = cu->objfile;
18247 struct comp_unit_head *cu_header = &cu->header;
18248
4c2df51b
DJ
18249 /* NOTE drow/2003-01-30: There used to be a comment and some special
18250 code here to turn a symbol with DW_AT_external and a
18251 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18252 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18253 with some versions of binutils) where shared libraries could have
18254 relocations against symbols in their debug information - the
18255 minimal symbol would have the right address, but the debug info
18256 would not. It's no longer necessary, because we will explicitly
18257 apply relocations when we read in the debug information now. */
18258
18259 /* A DW_AT_location attribute with no contents indicates that a
18260 variable has been optimized away. */
18261 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18262 {
f1e6e072 18263 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18264 return;
18265 }
18266
18267 /* Handle one degenerate form of location expression specially, to
18268 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18269 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18270 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18271
18272 if (attr_form_is_block (attr)
3019eac3
DE
18273 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18274 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18275 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18276 && (DW_BLOCK (attr)->size
18277 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18278 {
891d2f0b 18279 unsigned int dummy;
4c2df51b 18280
3019eac3
DE
18281 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18282 SYMBOL_VALUE_ADDRESS (sym) =
18283 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18284 else
18285 SYMBOL_VALUE_ADDRESS (sym) =
18286 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18287 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18288 fixup_symbol_section (sym, objfile);
18289 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18290 SYMBOL_SECTION (sym));
4c2df51b
DJ
18291 return;
18292 }
18293
18294 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18295 expression evaluator, and use LOC_COMPUTED only when necessary
18296 (i.e. when the value of a register or memory location is
18297 referenced, or a thread-local block, etc.). Then again, it might
18298 not be worthwhile. I'm assuming that it isn't unless performance
18299 or memory numbers show me otherwise. */
18300
f1e6e072 18301 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18302
f1e6e072 18303 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18304 cu->has_loclist = 1;
4c2df51b
DJ
18305}
18306
c906108c
SS
18307/* Given a pointer to a DWARF information entry, figure out if we need
18308 to make a symbol table entry for it, and if so, create a new entry
18309 and return a pointer to it.
18310 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18311 used the passed type.
18312 If SPACE is not NULL, use it to hold the new symbol. If it is
18313 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18314
18315static struct symbol *
34eaf542
TT
18316new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18317 struct symbol *space)
c906108c 18318{
e7c27a73 18319 struct objfile *objfile = cu->objfile;
3e29f34a 18320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18321 struct symbol *sym = NULL;
15d034d0 18322 const char *name;
c906108c
SS
18323 struct attribute *attr = NULL;
18324 struct attribute *attr2 = NULL;
e142c38c 18325 CORE_ADDR baseaddr;
e37fd15a
SW
18326 struct pending **list_to_add = NULL;
18327
edb3359d 18328 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18329
18330 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18331
94af9270 18332 name = dwarf2_name (die, cu);
c906108c
SS
18333 if (name)
18334 {
94af9270 18335 const char *linkagename;
34eaf542 18336 int suppress_add = 0;
94af9270 18337
34eaf542
TT
18338 if (space)
18339 sym = space;
18340 else
e623cf5d 18341 sym = allocate_symbol (objfile);
c906108c 18342 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18343
18344 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18345 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18346 linkagename = dwarf2_physname (name, die, cu);
18347 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18348
f55ee35c
JK
18349 /* Fortran does not have mangling standard and the mangling does differ
18350 between gfortran, iFort etc. */
18351 if (cu->language == language_fortran
b250c185 18352 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18353 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18354 dwarf2_full_name (name, die, cu),
29df156d 18355 NULL);
f55ee35c 18356
c906108c 18357 /* Default assumptions.
c5aa993b 18358 Use the passed type or decode it from the die. */
176620f1 18359 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18360 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18361 if (type != NULL)
18362 SYMBOL_TYPE (sym) = type;
18363 else
e7c27a73 18364 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18365 attr = dwarf2_attr (die,
18366 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18367 cu);
c906108c
SS
18368 if (attr)
18369 {
18370 SYMBOL_LINE (sym) = DW_UNSND (attr);
18371 }
cb1df416 18372
edb3359d
DJ
18373 attr = dwarf2_attr (die,
18374 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18375 cu);
cb1df416
DJ
18376 if (attr)
18377 {
18378 int file_index = DW_UNSND (attr);
9a619af0 18379
cb1df416
DJ
18380 if (cu->line_header == NULL
18381 || file_index > cu->line_header->num_file_names)
18382 complaint (&symfile_complaints,
18383 _("file index out of range"));
1c3d648d 18384 else if (file_index > 0)
cb1df416
DJ
18385 {
18386 struct file_entry *fe;
9a619af0 18387
cb1df416 18388 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18389 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18390 }
18391 }
18392
c906108c
SS
18393 switch (die->tag)
18394 {
18395 case DW_TAG_label:
e142c38c 18396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18397 if (attr)
3e29f34a
MR
18398 {
18399 CORE_ADDR addr;
18400
18401 addr = attr_value_as_address (attr);
18402 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18403 SYMBOL_VALUE_ADDRESS (sym) = addr;
18404 }
0f5238ed
TT
18405 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18406 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18407 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18408 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18409 break;
18410 case DW_TAG_subprogram:
18411 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18412 finish_block. */
f1e6e072 18413 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18414 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18415 if ((attr2 && (DW_UNSND (attr2) != 0))
18416 || cu->language == language_ada)
c906108c 18417 {
2cfa0c8d
JB
18418 /* Subprograms marked external are stored as a global symbol.
18419 Ada subprograms, whether marked external or not, are always
18420 stored as a global symbol, because we want to be able to
18421 access them globally. For instance, we want to be able
18422 to break on a nested subprogram without having to
18423 specify the context. */
e37fd15a 18424 list_to_add = &global_symbols;
c906108c
SS
18425 }
18426 else
18427 {
e37fd15a 18428 list_to_add = cu->list_in_scope;
c906108c
SS
18429 }
18430 break;
edb3359d
DJ
18431 case DW_TAG_inlined_subroutine:
18432 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18433 finish_block. */
f1e6e072 18434 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18435 SYMBOL_INLINED (sym) = 1;
481860b3 18436 list_to_add = cu->list_in_scope;
edb3359d 18437 break;
34eaf542
TT
18438 case DW_TAG_template_value_param:
18439 suppress_add = 1;
18440 /* Fall through. */
72929c62 18441 case DW_TAG_constant:
c906108c 18442 case DW_TAG_variable:
254e6b9e 18443 case DW_TAG_member:
0963b4bd
MS
18444 /* Compilation with minimal debug info may result in
18445 variables with missing type entries. Change the
18446 misleading `void' type to something sensible. */
c906108c 18447 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18448 SYMBOL_TYPE (sym)
46bf5051 18449 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18450
e142c38c 18451 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18452 /* In the case of DW_TAG_member, we should only be called for
18453 static const members. */
18454 if (die->tag == DW_TAG_member)
18455 {
3863f96c
DE
18456 /* dwarf2_add_field uses die_is_declaration,
18457 so we do the same. */
254e6b9e
DE
18458 gdb_assert (die_is_declaration (die, cu));
18459 gdb_assert (attr);
18460 }
c906108c
SS
18461 if (attr)
18462 {
e7c27a73 18463 dwarf2_const_value (attr, sym, cu);
e142c38c 18464 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18465 if (!suppress_add)
34eaf542
TT
18466 {
18467 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18468 list_to_add = &global_symbols;
34eaf542 18469 else
e37fd15a 18470 list_to_add = cu->list_in_scope;
34eaf542 18471 }
c906108c
SS
18472 break;
18473 }
e142c38c 18474 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18475 if (attr)
18476 {
e7c27a73 18477 var_decode_location (attr, sym, cu);
e142c38c 18478 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18479
18480 /* Fortran explicitly imports any global symbols to the local
18481 scope by DW_TAG_common_block. */
18482 if (cu->language == language_fortran && die->parent
18483 && die->parent->tag == DW_TAG_common_block)
18484 attr2 = NULL;
18485
caac4577
JG
18486 if (SYMBOL_CLASS (sym) == LOC_STATIC
18487 && SYMBOL_VALUE_ADDRESS (sym) == 0
18488 && !dwarf2_per_objfile->has_section_at_zero)
18489 {
18490 /* When a static variable is eliminated by the linker,
18491 the corresponding debug information is not stripped
18492 out, but the variable address is set to null;
18493 do not add such variables into symbol table. */
18494 }
18495 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18496 {
f55ee35c
JK
18497 /* Workaround gfortran PR debug/40040 - it uses
18498 DW_AT_location for variables in -fPIC libraries which may
18499 get overriden by other libraries/executable and get
18500 a different address. Resolve it by the minimal symbol
18501 which may come from inferior's executable using copy
18502 relocation. Make this workaround only for gfortran as for
18503 other compilers GDB cannot guess the minimal symbol
18504 Fortran mangling kind. */
18505 if (cu->language == language_fortran && die->parent
18506 && die->parent->tag == DW_TAG_module
18507 && cu->producer
61012eef 18508 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18509 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18510
1c809c68
TT
18511 /* A variable with DW_AT_external is never static,
18512 but it may be block-scoped. */
18513 list_to_add = (cu->list_in_scope == &file_symbols
18514 ? &global_symbols : cu->list_in_scope);
1c809c68 18515 }
c906108c 18516 else
e37fd15a 18517 list_to_add = cu->list_in_scope;
c906108c
SS
18518 }
18519 else
18520 {
18521 /* We do not know the address of this symbol.
c5aa993b
JM
18522 If it is an external symbol and we have type information
18523 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18524 The address of the variable will then be determined from
18525 the minimal symbol table whenever the variable is
18526 referenced. */
e142c38c 18527 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18528
18529 /* Fortran explicitly imports any global symbols to the local
18530 scope by DW_TAG_common_block. */
18531 if (cu->language == language_fortran && die->parent
18532 && die->parent->tag == DW_TAG_common_block)
18533 {
18534 /* SYMBOL_CLASS doesn't matter here because
18535 read_common_block is going to reset it. */
18536 if (!suppress_add)
18537 list_to_add = cu->list_in_scope;
18538 }
18539 else if (attr2 && (DW_UNSND (attr2) != 0)
18540 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18541 {
0fe7935b
DJ
18542 /* A variable with DW_AT_external is never static, but it
18543 may be block-scoped. */
18544 list_to_add = (cu->list_in_scope == &file_symbols
18545 ? &global_symbols : cu->list_in_scope);
18546
f1e6e072 18547 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18548 }
442ddf59
JK
18549 else if (!die_is_declaration (die, cu))
18550 {
18551 /* Use the default LOC_OPTIMIZED_OUT class. */
18552 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18553 if (!suppress_add)
18554 list_to_add = cu->list_in_scope;
442ddf59 18555 }
c906108c
SS
18556 }
18557 break;
18558 case DW_TAG_formal_parameter:
edb3359d
DJ
18559 /* If we are inside a function, mark this as an argument. If
18560 not, we might be looking at an argument to an inlined function
18561 when we do not have enough information to show inlined frames;
18562 pretend it's a local variable in that case so that the user can
18563 still see it. */
18564 if (context_stack_depth > 0
18565 && context_stack[context_stack_depth - 1].name != NULL)
18566 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18567 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18568 if (attr)
18569 {
e7c27a73 18570 var_decode_location (attr, sym, cu);
c906108c 18571 }
e142c38c 18572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18573 if (attr)
18574 {
e7c27a73 18575 dwarf2_const_value (attr, sym, cu);
c906108c 18576 }
f346a30d 18577
e37fd15a 18578 list_to_add = cu->list_in_scope;
c906108c
SS
18579 break;
18580 case DW_TAG_unspecified_parameters:
18581 /* From varargs functions; gdb doesn't seem to have any
18582 interest in this information, so just ignore it for now.
18583 (FIXME?) */
18584 break;
34eaf542
TT
18585 case DW_TAG_template_type_param:
18586 suppress_add = 1;
18587 /* Fall through. */
c906108c 18588 case DW_TAG_class_type:
680b30c7 18589 case DW_TAG_interface_type:
c906108c
SS
18590 case DW_TAG_structure_type:
18591 case DW_TAG_union_type:
72019c9c 18592 case DW_TAG_set_type:
c906108c 18593 case DW_TAG_enumeration_type:
f1e6e072 18594 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18595 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18596
63d06c5c 18597 {
987504bb 18598 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18599 really ever be static objects: otherwise, if you try
18600 to, say, break of a class's method and you're in a file
18601 which doesn't mention that class, it won't work unless
18602 the check for all static symbols in lookup_symbol_aux
18603 saves you. See the OtherFileClass tests in
18604 gdb.c++/namespace.exp. */
18605
e37fd15a 18606 if (!suppress_add)
34eaf542 18607 {
34eaf542
TT
18608 list_to_add = (cu->list_in_scope == &file_symbols
18609 && (cu->language == language_cplus
18610 || cu->language == language_java)
18611 ? &global_symbols : cu->list_in_scope);
63d06c5c 18612
64382290
TT
18613 /* The semantics of C++ state that "struct foo {
18614 ... }" also defines a typedef for "foo". A Java
18615 class declaration also defines a typedef for the
18616 class. */
18617 if (cu->language == language_cplus
18618 || cu->language == language_java
45280282
IB
18619 || cu->language == language_ada
18620 || cu->language == language_d)
64382290
TT
18621 {
18622 /* The symbol's name is already allocated along
18623 with this objfile, so we don't need to
18624 duplicate it for the type. */
18625 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18626 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18627 }
63d06c5c
DC
18628 }
18629 }
c906108c
SS
18630 break;
18631 case DW_TAG_typedef:
f1e6e072 18632 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18633 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18634 list_to_add = cu->list_in_scope;
63d06c5c 18635 break;
c906108c 18636 case DW_TAG_base_type:
a02abb62 18637 case DW_TAG_subrange_type:
f1e6e072 18638 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18639 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18640 list_to_add = cu->list_in_scope;
c906108c
SS
18641 break;
18642 case DW_TAG_enumerator:
e142c38c 18643 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18644 if (attr)
18645 {
e7c27a73 18646 dwarf2_const_value (attr, sym, cu);
c906108c 18647 }
63d06c5c
DC
18648 {
18649 /* NOTE: carlton/2003-11-10: See comment above in the
18650 DW_TAG_class_type, etc. block. */
18651
e142c38c 18652 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18653 && (cu->language == language_cplus
18654 || cu->language == language_java)
e142c38c 18655 ? &global_symbols : cu->list_in_scope);
63d06c5c 18656 }
c906108c 18657 break;
74921315 18658 case DW_TAG_imported_declaration:
5c4e30ca 18659 case DW_TAG_namespace:
f1e6e072 18660 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18661 list_to_add = &global_symbols;
5c4e30ca 18662 break;
530e8392
KB
18663 case DW_TAG_module:
18664 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18665 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18666 list_to_add = &global_symbols;
18667 break;
4357ac6c 18668 case DW_TAG_common_block:
f1e6e072 18669 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18670 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18671 add_symbol_to_list (sym, cu->list_in_scope);
18672 break;
c906108c
SS
18673 default:
18674 /* Not a tag we recognize. Hopefully we aren't processing
18675 trash data, but since we must specifically ignore things
18676 we don't recognize, there is nothing else we should do at
0963b4bd 18677 this point. */
e2e0b3e5 18678 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18679 dwarf_tag_name (die->tag));
c906108c
SS
18680 break;
18681 }
df8a16a1 18682
e37fd15a
SW
18683 if (suppress_add)
18684 {
18685 sym->hash_next = objfile->template_symbols;
18686 objfile->template_symbols = sym;
18687 list_to_add = NULL;
18688 }
18689
18690 if (list_to_add != NULL)
18691 add_symbol_to_list (sym, list_to_add);
18692
df8a16a1
DJ
18693 /* For the benefit of old versions of GCC, check for anonymous
18694 namespaces based on the demangled name. */
4d4ec4e5 18695 if (!cu->processing_has_namespace_info
94af9270 18696 && cu->language == language_cplus)
a10964d1 18697 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18698 }
18699 return (sym);
18700}
18701
34eaf542
TT
18702/* A wrapper for new_symbol_full that always allocates a new symbol. */
18703
18704static struct symbol *
18705new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18706{
18707 return new_symbol_full (die, type, cu, NULL);
18708}
18709
98bfdba5
PA
18710/* Given an attr with a DW_FORM_dataN value in host byte order,
18711 zero-extend it as appropriate for the symbol's type. The DWARF
18712 standard (v4) is not entirely clear about the meaning of using
18713 DW_FORM_dataN for a constant with a signed type, where the type is
18714 wider than the data. The conclusion of a discussion on the DWARF
18715 list was that this is unspecified. We choose to always zero-extend
18716 because that is the interpretation long in use by GCC. */
c906108c 18717
98bfdba5 18718static gdb_byte *
ff39bb5e 18719dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18720 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18721{
e7c27a73 18722 struct objfile *objfile = cu->objfile;
e17a4113
UW
18723 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18724 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18725 LONGEST l = DW_UNSND (attr);
18726
18727 if (bits < sizeof (*value) * 8)
18728 {
18729 l &= ((LONGEST) 1 << bits) - 1;
18730 *value = l;
18731 }
18732 else if (bits == sizeof (*value) * 8)
18733 *value = l;
18734 else
18735 {
224c3ddb 18736 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18737 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18738 return bytes;
18739 }
18740
18741 return NULL;
18742}
18743
18744/* Read a constant value from an attribute. Either set *VALUE, or if
18745 the value does not fit in *VALUE, set *BYTES - either already
18746 allocated on the objfile obstack, or newly allocated on OBSTACK,
18747 or, set *BATON, if we translated the constant to a location
18748 expression. */
18749
18750static void
ff39bb5e 18751dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18752 const char *name, struct obstack *obstack,
18753 struct dwarf2_cu *cu,
d521ce57 18754 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18755 struct dwarf2_locexpr_baton **baton)
18756{
18757 struct objfile *objfile = cu->objfile;
18758 struct comp_unit_head *cu_header = &cu->header;
c906108c 18759 struct dwarf_block *blk;
98bfdba5
PA
18760 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18761 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18762
18763 *value = 0;
18764 *bytes = NULL;
18765 *baton = NULL;
c906108c
SS
18766
18767 switch (attr->form)
18768 {
18769 case DW_FORM_addr:
3019eac3 18770 case DW_FORM_GNU_addr_index:
ac56253d 18771 {
ac56253d
TT
18772 gdb_byte *data;
18773
98bfdba5
PA
18774 if (TYPE_LENGTH (type) != cu_header->addr_size)
18775 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18776 cu_header->addr_size,
98bfdba5 18777 TYPE_LENGTH (type));
ac56253d
TT
18778 /* Symbols of this form are reasonably rare, so we just
18779 piggyback on the existing location code rather than writing
18780 a new implementation of symbol_computed_ops. */
8d749320 18781 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18782 (*baton)->per_cu = cu->per_cu;
18783 gdb_assert ((*baton)->per_cu);
ac56253d 18784
98bfdba5 18785 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18786 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18787 (*baton)->data = data;
ac56253d
TT
18788
18789 data[0] = DW_OP_addr;
18790 store_unsigned_integer (&data[1], cu_header->addr_size,
18791 byte_order, DW_ADDR (attr));
18792 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18793 }
c906108c 18794 break;
4ac36638 18795 case DW_FORM_string:
93b5768b 18796 case DW_FORM_strp:
3019eac3 18797 case DW_FORM_GNU_str_index:
36586728 18798 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18799 /* DW_STRING is already allocated on the objfile obstack, point
18800 directly to it. */
d521ce57 18801 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18802 break;
c906108c
SS
18803 case DW_FORM_block1:
18804 case DW_FORM_block2:
18805 case DW_FORM_block4:
18806 case DW_FORM_block:
2dc7f7b3 18807 case DW_FORM_exprloc:
c906108c 18808 blk = DW_BLOCK (attr);
98bfdba5
PA
18809 if (TYPE_LENGTH (type) != blk->size)
18810 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18811 TYPE_LENGTH (type));
18812 *bytes = blk->data;
c906108c 18813 break;
2df3850c
JM
18814
18815 /* The DW_AT_const_value attributes are supposed to carry the
18816 symbol's value "represented as it would be on the target
18817 architecture." By the time we get here, it's already been
18818 converted to host endianness, so we just need to sign- or
18819 zero-extend it as appropriate. */
18820 case DW_FORM_data1:
3aef2284 18821 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18822 break;
c906108c 18823 case DW_FORM_data2:
3aef2284 18824 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18825 break;
c906108c 18826 case DW_FORM_data4:
3aef2284 18827 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18828 break;
c906108c 18829 case DW_FORM_data8:
3aef2284 18830 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18831 break;
18832
c906108c 18833 case DW_FORM_sdata:
98bfdba5 18834 *value = DW_SND (attr);
2df3850c
JM
18835 break;
18836
c906108c 18837 case DW_FORM_udata:
98bfdba5 18838 *value = DW_UNSND (attr);
c906108c 18839 break;
2df3850c 18840
c906108c 18841 default:
4d3c2250 18842 complaint (&symfile_complaints,
e2e0b3e5 18843 _("unsupported const value attribute form: '%s'"),
4d3c2250 18844 dwarf_form_name (attr->form));
98bfdba5 18845 *value = 0;
c906108c
SS
18846 break;
18847 }
18848}
18849
2df3850c 18850
98bfdba5
PA
18851/* Copy constant value from an attribute to a symbol. */
18852
2df3850c 18853static void
ff39bb5e 18854dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18855 struct dwarf2_cu *cu)
2df3850c 18856{
98bfdba5
PA
18857 struct objfile *objfile = cu->objfile;
18858 struct comp_unit_head *cu_header = &cu->header;
12df843f 18859 LONGEST value;
d521ce57 18860 const gdb_byte *bytes;
98bfdba5 18861 struct dwarf2_locexpr_baton *baton;
2df3850c 18862
98bfdba5
PA
18863 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18864 SYMBOL_PRINT_NAME (sym),
18865 &objfile->objfile_obstack, cu,
18866 &value, &bytes, &baton);
2df3850c 18867
98bfdba5
PA
18868 if (baton != NULL)
18869 {
98bfdba5 18870 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18871 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18872 }
18873 else if (bytes != NULL)
18874 {
18875 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18877 }
18878 else
18879 {
18880 SYMBOL_VALUE (sym) = value;
f1e6e072 18881 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18882 }
2df3850c
JM
18883}
18884
c906108c
SS
18885/* Return the type of the die in question using its DW_AT_type attribute. */
18886
18887static struct type *
e7c27a73 18888die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18889{
c906108c 18890 struct attribute *type_attr;
c906108c 18891
e142c38c 18892 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18893 if (!type_attr)
18894 {
18895 /* A missing DW_AT_type represents a void type. */
46bf5051 18896 return objfile_type (cu->objfile)->builtin_void;
c906108c 18897 }
348e048f 18898
673bfd45 18899 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18900}
18901
b4ba55a1
JB
18902/* True iff CU's producer generates GNAT Ada auxiliary information
18903 that allows to find parallel types through that information instead
18904 of having to do expensive parallel lookups by type name. */
18905
18906static int
18907need_gnat_info (struct dwarf2_cu *cu)
18908{
18909 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18910 of GNAT produces this auxiliary information, without any indication
18911 that it is produced. Part of enhancing the FSF version of GNAT
18912 to produce that information will be to put in place an indicator
18913 that we can use in order to determine whether the descriptive type
18914 info is available or not. One suggestion that has been made is
18915 to use a new attribute, attached to the CU die. For now, assume
18916 that the descriptive type info is not available. */
18917 return 0;
18918}
18919
b4ba55a1
JB
18920/* Return the auxiliary type of the die in question using its
18921 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18922 attribute is not present. */
18923
18924static struct type *
18925die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18926{
b4ba55a1 18927 struct attribute *type_attr;
b4ba55a1
JB
18928
18929 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18930 if (!type_attr)
18931 return NULL;
18932
673bfd45 18933 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18934}
18935
18936/* If DIE has a descriptive_type attribute, then set the TYPE's
18937 descriptive type accordingly. */
18938
18939static void
18940set_descriptive_type (struct type *type, struct die_info *die,
18941 struct dwarf2_cu *cu)
18942{
18943 struct type *descriptive_type = die_descriptive_type (die, cu);
18944
18945 if (descriptive_type)
18946 {
18947 ALLOCATE_GNAT_AUX_TYPE (type);
18948 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18949 }
18950}
18951
c906108c
SS
18952/* Return the containing type of the die in question using its
18953 DW_AT_containing_type attribute. */
18954
18955static struct type *
e7c27a73 18956die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18957{
c906108c 18958 struct attribute *type_attr;
c906108c 18959
e142c38c 18960 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18961 if (!type_attr)
18962 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18963 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18964
673bfd45 18965 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18966}
18967
ac9ec31b
DE
18968/* Return an error marker type to use for the ill formed type in DIE/CU. */
18969
18970static struct type *
18971build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18972{
18973 struct objfile *objfile = dwarf2_per_objfile->objfile;
18974 char *message, *saved;
18975
18976 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18977 objfile_name (objfile),
ac9ec31b
DE
18978 cu->header.offset.sect_off,
18979 die->offset.sect_off);
224c3ddb
SM
18980 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18981 message, strlen (message));
ac9ec31b
DE
18982 xfree (message);
18983
18984 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18985}
18986
673bfd45 18987/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18988 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18989 DW_AT_containing_type.
673bfd45
DE
18990 If there is no type substitute an error marker. */
18991
c906108c 18992static struct type *
ff39bb5e 18993lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18994 struct dwarf2_cu *cu)
c906108c 18995{
bb5ed363 18996 struct objfile *objfile = cu->objfile;
f792889a
DJ
18997 struct type *this_type;
18998
ac9ec31b
DE
18999 gdb_assert (attr->name == DW_AT_type
19000 || attr->name == DW_AT_GNAT_descriptive_type
19001 || attr->name == DW_AT_containing_type);
19002
673bfd45
DE
19003 /* First see if we have it cached. */
19004
36586728
TT
19005 if (attr->form == DW_FORM_GNU_ref_alt)
19006 {
19007 struct dwarf2_per_cu_data *per_cu;
19008 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19009
19010 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19011 this_type = get_die_type_at_offset (offset, per_cu);
19012 }
7771576e 19013 else if (attr_form_is_ref (attr))
673bfd45 19014 {
b64f50a1 19015 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19016
19017 this_type = get_die_type_at_offset (offset, cu->per_cu);
19018 }
55f1336d 19019 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19020 {
ac9ec31b 19021 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19022
ac9ec31b 19023 return get_signatured_type (die, signature, cu);
673bfd45
DE
19024 }
19025 else
19026 {
ac9ec31b
DE
19027 complaint (&symfile_complaints,
19028 _("Dwarf Error: Bad type attribute %s in DIE"
19029 " at 0x%x [in module %s]"),
19030 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19031 objfile_name (objfile));
ac9ec31b 19032 return build_error_marker_type (cu, die);
673bfd45
DE
19033 }
19034
19035 /* If not cached we need to read it in. */
19036
19037 if (this_type == NULL)
19038 {
ac9ec31b 19039 struct die_info *type_die = NULL;
673bfd45
DE
19040 struct dwarf2_cu *type_cu = cu;
19041
7771576e 19042 if (attr_form_is_ref (attr))
ac9ec31b
DE
19043 type_die = follow_die_ref (die, attr, &type_cu);
19044 if (type_die == NULL)
19045 return build_error_marker_type (cu, die);
19046 /* If we find the type now, it's probably because the type came
3019eac3
DE
19047 from an inter-CU reference and the type's CU got expanded before
19048 ours. */
ac9ec31b 19049 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19050 }
19051
19052 /* If we still don't have a type use an error marker. */
19053
19054 if (this_type == NULL)
ac9ec31b 19055 return build_error_marker_type (cu, die);
673bfd45 19056
f792889a 19057 return this_type;
c906108c
SS
19058}
19059
673bfd45
DE
19060/* Return the type in DIE, CU.
19061 Returns NULL for invalid types.
19062
02142a6c 19063 This first does a lookup in die_type_hash,
673bfd45
DE
19064 and only reads the die in if necessary.
19065
19066 NOTE: This can be called when reading in partial or full symbols. */
19067
f792889a 19068static struct type *
e7c27a73 19069read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19070{
f792889a
DJ
19071 struct type *this_type;
19072
19073 this_type = get_die_type (die, cu);
19074 if (this_type)
19075 return this_type;
19076
673bfd45
DE
19077 return read_type_die_1 (die, cu);
19078}
19079
19080/* Read the type in DIE, CU.
19081 Returns NULL for invalid types. */
19082
19083static struct type *
19084read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19085{
19086 struct type *this_type = NULL;
19087
c906108c
SS
19088 switch (die->tag)
19089 {
19090 case DW_TAG_class_type:
680b30c7 19091 case DW_TAG_interface_type:
c906108c
SS
19092 case DW_TAG_structure_type:
19093 case DW_TAG_union_type:
f792889a 19094 this_type = read_structure_type (die, cu);
c906108c
SS
19095 break;
19096 case DW_TAG_enumeration_type:
f792889a 19097 this_type = read_enumeration_type (die, cu);
c906108c
SS
19098 break;
19099 case DW_TAG_subprogram:
19100 case DW_TAG_subroutine_type:
edb3359d 19101 case DW_TAG_inlined_subroutine:
f792889a 19102 this_type = read_subroutine_type (die, cu);
c906108c
SS
19103 break;
19104 case DW_TAG_array_type:
f792889a 19105 this_type = read_array_type (die, cu);
c906108c 19106 break;
72019c9c 19107 case DW_TAG_set_type:
f792889a 19108 this_type = read_set_type (die, cu);
72019c9c 19109 break;
c906108c 19110 case DW_TAG_pointer_type:
f792889a 19111 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19112 break;
19113 case DW_TAG_ptr_to_member_type:
f792889a 19114 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19115 break;
19116 case DW_TAG_reference_type:
f792889a 19117 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19118 break;
19119 case DW_TAG_const_type:
f792889a 19120 this_type = read_tag_const_type (die, cu);
c906108c
SS
19121 break;
19122 case DW_TAG_volatile_type:
f792889a 19123 this_type = read_tag_volatile_type (die, cu);
c906108c 19124 break;
06d66ee9
TT
19125 case DW_TAG_restrict_type:
19126 this_type = read_tag_restrict_type (die, cu);
19127 break;
c906108c 19128 case DW_TAG_string_type:
f792889a 19129 this_type = read_tag_string_type (die, cu);
c906108c
SS
19130 break;
19131 case DW_TAG_typedef:
f792889a 19132 this_type = read_typedef (die, cu);
c906108c 19133 break;
a02abb62 19134 case DW_TAG_subrange_type:
f792889a 19135 this_type = read_subrange_type (die, cu);
a02abb62 19136 break;
c906108c 19137 case DW_TAG_base_type:
f792889a 19138 this_type = read_base_type (die, cu);
c906108c 19139 break;
81a17f79 19140 case DW_TAG_unspecified_type:
f792889a 19141 this_type = read_unspecified_type (die, cu);
81a17f79 19142 break;
0114d602
DJ
19143 case DW_TAG_namespace:
19144 this_type = read_namespace_type (die, cu);
19145 break;
f55ee35c
JK
19146 case DW_TAG_module:
19147 this_type = read_module_type (die, cu);
19148 break;
a2c2acaf
MW
19149 case DW_TAG_atomic_type:
19150 this_type = read_tag_atomic_type (die, cu);
19151 break;
c906108c 19152 default:
3e43a32a
MS
19153 complaint (&symfile_complaints,
19154 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19155 dwarf_tag_name (die->tag));
c906108c
SS
19156 break;
19157 }
63d06c5c 19158
f792889a 19159 return this_type;
63d06c5c
DC
19160}
19161
abc72ce4
DE
19162/* See if we can figure out if the class lives in a namespace. We do
19163 this by looking for a member function; its demangled name will
19164 contain namespace info, if there is any.
19165 Return the computed name or NULL.
19166 Space for the result is allocated on the objfile's obstack.
19167 This is the full-die version of guess_partial_die_structure_name.
19168 In this case we know DIE has no useful parent. */
19169
19170static char *
19171guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19172{
19173 struct die_info *spec_die;
19174 struct dwarf2_cu *spec_cu;
19175 struct die_info *child;
19176
19177 spec_cu = cu;
19178 spec_die = die_specification (die, &spec_cu);
19179 if (spec_die != NULL)
19180 {
19181 die = spec_die;
19182 cu = spec_cu;
19183 }
19184
19185 for (child = die->child;
19186 child != NULL;
19187 child = child->sibling)
19188 {
19189 if (child->tag == DW_TAG_subprogram)
19190 {
7d45c7c3 19191 const char *linkage_name;
abc72ce4 19192
7d45c7c3
KB
19193 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19194 if (linkage_name == NULL)
19195 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19196 cu);
19197 if (linkage_name != NULL)
abc72ce4
DE
19198 {
19199 char *actual_name
19200 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19201 linkage_name);
abc72ce4
DE
19202 char *name = NULL;
19203
19204 if (actual_name != NULL)
19205 {
15d034d0 19206 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19207
19208 if (die_name != NULL
19209 && strcmp (die_name, actual_name) != 0)
19210 {
19211 /* Strip off the class name from the full name.
19212 We want the prefix. */
19213 int die_name_len = strlen (die_name);
19214 int actual_name_len = strlen (actual_name);
19215
19216 /* Test for '::' as a sanity check. */
19217 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19218 && actual_name[actual_name_len
19219 - die_name_len - 1] == ':')
224c3ddb
SM
19220 name = (char *) obstack_copy0 (
19221 &cu->objfile->per_bfd->storage_obstack,
19222 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19223 }
19224 }
19225 xfree (actual_name);
19226 return name;
19227 }
19228 }
19229 }
19230
19231 return NULL;
19232}
19233
96408a79
SA
19234/* GCC might emit a nameless typedef that has a linkage name. Determine the
19235 prefix part in such case. See
19236 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19237
19238static char *
19239anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19240{
19241 struct attribute *attr;
e6a959d6 19242 const char *base;
96408a79
SA
19243
19244 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19245 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19246 return NULL;
19247
7d45c7c3 19248 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19249 return NULL;
19250
19251 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19252 if (attr == NULL)
19253 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19254 if (attr == NULL || DW_STRING (attr) == NULL)
19255 return NULL;
19256
19257 /* dwarf2_name had to be already called. */
19258 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19259
19260 /* Strip the base name, keep any leading namespaces/classes. */
19261 base = strrchr (DW_STRING (attr), ':');
19262 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19263 return "";
19264
224c3ddb
SM
19265 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19266 DW_STRING (attr),
19267 &base[-1] - DW_STRING (attr));
96408a79
SA
19268}
19269
fdde2d81 19270/* Return the name of the namespace/class that DIE is defined within,
0114d602 19271 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19272
0114d602
DJ
19273 For example, if we're within the method foo() in the following
19274 code:
19275
19276 namespace N {
19277 class C {
19278 void foo () {
19279 }
19280 };
19281 }
19282
19283 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19284
0d5cff50 19285static const char *
e142c38c 19286determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19287{
0114d602
DJ
19288 struct die_info *parent, *spec_die;
19289 struct dwarf2_cu *spec_cu;
19290 struct type *parent_type;
96408a79 19291 char *retval;
63d06c5c 19292
f55ee35c 19293 if (cu->language != language_cplus && cu->language != language_java
45280282 19294 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19295 return "";
19296
96408a79
SA
19297 retval = anonymous_struct_prefix (die, cu);
19298 if (retval)
19299 return retval;
19300
0114d602
DJ
19301 /* We have to be careful in the presence of DW_AT_specification.
19302 For example, with GCC 3.4, given the code
19303
19304 namespace N {
19305 void foo() {
19306 // Definition of N::foo.
19307 }
19308 }
19309
19310 then we'll have a tree of DIEs like this:
19311
19312 1: DW_TAG_compile_unit
19313 2: DW_TAG_namespace // N
19314 3: DW_TAG_subprogram // declaration of N::foo
19315 4: DW_TAG_subprogram // definition of N::foo
19316 DW_AT_specification // refers to die #3
19317
19318 Thus, when processing die #4, we have to pretend that we're in
19319 the context of its DW_AT_specification, namely the contex of die
19320 #3. */
19321 spec_cu = cu;
19322 spec_die = die_specification (die, &spec_cu);
19323 if (spec_die == NULL)
19324 parent = die->parent;
19325 else
63d06c5c 19326 {
0114d602
DJ
19327 parent = spec_die->parent;
19328 cu = spec_cu;
63d06c5c 19329 }
0114d602
DJ
19330
19331 if (parent == NULL)
19332 return "";
98bfdba5
PA
19333 else if (parent->building_fullname)
19334 {
19335 const char *name;
19336 const char *parent_name;
19337
19338 /* It has been seen on RealView 2.2 built binaries,
19339 DW_TAG_template_type_param types actually _defined_ as
19340 children of the parent class:
19341
19342 enum E {};
19343 template class <class Enum> Class{};
19344 Class<enum E> class_e;
19345
19346 1: DW_TAG_class_type (Class)
19347 2: DW_TAG_enumeration_type (E)
19348 3: DW_TAG_enumerator (enum1:0)
19349 3: DW_TAG_enumerator (enum2:1)
19350 ...
19351 2: DW_TAG_template_type_param
19352 DW_AT_type DW_FORM_ref_udata (E)
19353
19354 Besides being broken debug info, it can put GDB into an
19355 infinite loop. Consider:
19356
19357 When we're building the full name for Class<E>, we'll start
19358 at Class, and go look over its template type parameters,
19359 finding E. We'll then try to build the full name of E, and
19360 reach here. We're now trying to build the full name of E,
19361 and look over the parent DIE for containing scope. In the
19362 broken case, if we followed the parent DIE of E, we'd again
19363 find Class, and once again go look at its template type
19364 arguments, etc., etc. Simply don't consider such parent die
19365 as source-level parent of this die (it can't be, the language
19366 doesn't allow it), and break the loop here. */
19367 name = dwarf2_name (die, cu);
19368 parent_name = dwarf2_name (parent, cu);
19369 complaint (&symfile_complaints,
19370 _("template param type '%s' defined within parent '%s'"),
19371 name ? name : "<unknown>",
19372 parent_name ? parent_name : "<unknown>");
19373 return "";
19374 }
63d06c5c 19375 else
0114d602
DJ
19376 switch (parent->tag)
19377 {
63d06c5c 19378 case DW_TAG_namespace:
0114d602 19379 parent_type = read_type_die (parent, cu);
acebe513
UW
19380 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19381 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19382 Work around this problem here. */
19383 if (cu->language == language_cplus
19384 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19385 return "";
0114d602
DJ
19386 /* We give a name to even anonymous namespaces. */
19387 return TYPE_TAG_NAME (parent_type);
63d06c5c 19388 case DW_TAG_class_type:
680b30c7 19389 case DW_TAG_interface_type:
63d06c5c 19390 case DW_TAG_structure_type:
0114d602 19391 case DW_TAG_union_type:
f55ee35c 19392 case DW_TAG_module:
0114d602
DJ
19393 parent_type = read_type_die (parent, cu);
19394 if (TYPE_TAG_NAME (parent_type) != NULL)
19395 return TYPE_TAG_NAME (parent_type);
19396 else
19397 /* An anonymous structure is only allowed non-static data
19398 members; no typedefs, no member functions, et cetera.
19399 So it does not need a prefix. */
19400 return "";
abc72ce4 19401 case DW_TAG_compile_unit:
95554aad 19402 case DW_TAG_partial_unit:
abc72ce4
DE
19403 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19404 if (cu->language == language_cplus
8b70b953 19405 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19406 && die->child != NULL
19407 && (die->tag == DW_TAG_class_type
19408 || die->tag == DW_TAG_structure_type
19409 || die->tag == DW_TAG_union_type))
19410 {
19411 char *name = guess_full_die_structure_name (die, cu);
19412 if (name != NULL)
19413 return name;
19414 }
19415 return "";
3d567982
TT
19416 case DW_TAG_enumeration_type:
19417 parent_type = read_type_die (parent, cu);
19418 if (TYPE_DECLARED_CLASS (parent_type))
19419 {
19420 if (TYPE_TAG_NAME (parent_type) != NULL)
19421 return TYPE_TAG_NAME (parent_type);
19422 return "";
19423 }
19424 /* Fall through. */
63d06c5c 19425 default:
8176b9b8 19426 return determine_prefix (parent, cu);
63d06c5c 19427 }
63d06c5c
DC
19428}
19429
3e43a32a
MS
19430/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19431 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19432 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19433 an obconcat, otherwise allocate storage for the result. The CU argument is
19434 used to determine the language and hence, the appropriate separator. */
987504bb 19435
f55ee35c 19436#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19437
19438static char *
f55ee35c
JK
19439typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19440 int physname, struct dwarf2_cu *cu)
63d06c5c 19441{
f55ee35c 19442 const char *lead = "";
5c315b68 19443 const char *sep;
63d06c5c 19444
3e43a32a
MS
19445 if (suffix == NULL || suffix[0] == '\0'
19446 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19447 sep = "";
19448 else if (cu->language == language_java)
19449 sep = ".";
45280282
IB
19450 else if (cu->language == language_d)
19451 {
19452 /* For D, the 'main' function could be defined in any module, but it
19453 should never be prefixed. */
19454 if (strcmp (suffix, "D main") == 0)
19455 {
19456 prefix = "";
19457 sep = "";
19458 }
19459 else
19460 sep = ".";
19461 }
f55ee35c
JK
19462 else if (cu->language == language_fortran && physname)
19463 {
19464 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19465 DW_AT_MIPS_linkage_name is preferred and used instead. */
19466
19467 lead = "__";
19468 sep = "_MOD_";
19469 }
987504bb
JJ
19470 else
19471 sep = "::";
63d06c5c 19472
6dd47d34
DE
19473 if (prefix == NULL)
19474 prefix = "";
19475 if (suffix == NULL)
19476 suffix = "";
19477
987504bb
JJ
19478 if (obs == NULL)
19479 {
3e43a32a 19480 char *retval
224c3ddb
SM
19481 = ((char *)
19482 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19483
f55ee35c
JK
19484 strcpy (retval, lead);
19485 strcat (retval, prefix);
6dd47d34
DE
19486 strcat (retval, sep);
19487 strcat (retval, suffix);
63d06c5c
DC
19488 return retval;
19489 }
987504bb
JJ
19490 else
19491 {
19492 /* We have an obstack. */
f55ee35c 19493 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19494 }
63d06c5c
DC
19495}
19496
c906108c
SS
19497/* Return sibling of die, NULL if no sibling. */
19498
f9aca02d 19499static struct die_info *
fba45db2 19500sibling_die (struct die_info *die)
c906108c 19501{
639d11d3 19502 return die->sibling;
c906108c
SS
19503}
19504
71c25dea
TT
19505/* Get name of a die, return NULL if not found. */
19506
15d034d0
TT
19507static const char *
19508dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19509 struct obstack *obstack)
19510{
19511 if (name && cu->language == language_cplus)
19512 {
19513 char *canon_name = cp_canonicalize_string (name);
19514
19515 if (canon_name != NULL)
19516 {
19517 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19518 name = (const char *) obstack_copy0 (obstack, canon_name,
19519 strlen (canon_name));
71c25dea
TT
19520 xfree (canon_name);
19521 }
19522 }
19523
19524 return name;
c906108c
SS
19525}
19526
96553a0c
DE
19527/* Get name of a die, return NULL if not found.
19528 Anonymous namespaces are converted to their magic string. */
9219021c 19529
15d034d0 19530static const char *
e142c38c 19531dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19532{
19533 struct attribute *attr;
19534
e142c38c 19535 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19536 if ((!attr || !DW_STRING (attr))
96553a0c 19537 && die->tag != DW_TAG_namespace
53832f31
TT
19538 && die->tag != DW_TAG_class_type
19539 && die->tag != DW_TAG_interface_type
19540 && die->tag != DW_TAG_structure_type
19541 && die->tag != DW_TAG_union_type)
71c25dea
TT
19542 return NULL;
19543
19544 switch (die->tag)
19545 {
19546 case DW_TAG_compile_unit:
95554aad 19547 case DW_TAG_partial_unit:
71c25dea
TT
19548 /* Compilation units have a DW_AT_name that is a filename, not
19549 a source language identifier. */
19550 case DW_TAG_enumeration_type:
19551 case DW_TAG_enumerator:
19552 /* These tags always have simple identifiers already; no need
19553 to canonicalize them. */
19554 return DW_STRING (attr);
907af001 19555
96553a0c
DE
19556 case DW_TAG_namespace:
19557 if (attr != NULL && DW_STRING (attr) != NULL)
19558 return DW_STRING (attr);
19559 return CP_ANONYMOUS_NAMESPACE_STR;
19560
418835cc
KS
19561 case DW_TAG_subprogram:
19562 /* Java constructors will all be named "<init>", so return
19563 the class name when we see this special case. */
19564 if (cu->language == language_java
19565 && DW_STRING (attr) != NULL
19566 && strcmp (DW_STRING (attr), "<init>") == 0)
19567 {
19568 struct dwarf2_cu *spec_cu = cu;
19569 struct die_info *spec_die;
19570
19571 /* GCJ will output '<init>' for Java constructor names.
19572 For this special case, return the name of the parent class. */
19573
cdc07690 19574 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19575 If so, use the name of the specified DIE. */
19576 spec_die = die_specification (die, &spec_cu);
19577 if (spec_die != NULL)
19578 return dwarf2_name (spec_die, spec_cu);
19579
19580 do
19581 {
19582 die = die->parent;
19583 if (die->tag == DW_TAG_class_type)
19584 return dwarf2_name (die, cu);
19585 }
95554aad
TT
19586 while (die->tag != DW_TAG_compile_unit
19587 && die->tag != DW_TAG_partial_unit);
418835cc 19588 }
907af001
UW
19589 break;
19590
19591 case DW_TAG_class_type:
19592 case DW_TAG_interface_type:
19593 case DW_TAG_structure_type:
19594 case DW_TAG_union_type:
19595 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19596 structures or unions. These were of the form "._%d" in GCC 4.1,
19597 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19598 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19599 if (attr && DW_STRING (attr)
61012eef
GB
19600 && (startswith (DW_STRING (attr), "._")
19601 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19602 return NULL;
53832f31
TT
19603
19604 /* GCC might emit a nameless typedef that has a linkage name. See
19605 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19606 if (!attr || DW_STRING (attr) == NULL)
19607 {
df5c6c50 19608 char *demangled = NULL;
53832f31
TT
19609
19610 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19611 if (attr == NULL)
19612 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19613
19614 if (attr == NULL || DW_STRING (attr) == NULL)
19615 return NULL;
19616
df5c6c50
JK
19617 /* Avoid demangling DW_STRING (attr) the second time on a second
19618 call for the same DIE. */
19619 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19620 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19621
19622 if (demangled)
19623 {
e6a959d6 19624 const char *base;
96408a79 19625
53832f31 19626 /* FIXME: we already did this for the partial symbol... */
34a68019 19627 DW_STRING (attr)
224c3ddb
SM
19628 = ((const char *)
19629 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19630 demangled, strlen (demangled)));
53832f31
TT
19631 DW_STRING_IS_CANONICAL (attr) = 1;
19632 xfree (demangled);
96408a79
SA
19633
19634 /* Strip any leading namespaces/classes, keep only the base name.
19635 DW_AT_name for named DIEs does not contain the prefixes. */
19636 base = strrchr (DW_STRING (attr), ':');
19637 if (base && base > DW_STRING (attr) && base[-1] == ':')
19638 return &base[1];
19639 else
19640 return DW_STRING (attr);
53832f31
TT
19641 }
19642 }
907af001
UW
19643 break;
19644
71c25dea 19645 default:
907af001
UW
19646 break;
19647 }
19648
19649 if (!DW_STRING_IS_CANONICAL (attr))
19650 {
19651 DW_STRING (attr)
19652 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19653 &cu->objfile->per_bfd->storage_obstack);
907af001 19654 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19655 }
907af001 19656 return DW_STRING (attr);
9219021c
DC
19657}
19658
19659/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19660 is none. *EXT_CU is the CU containing DIE on input, and the CU
19661 containing the return value on output. */
9219021c
DC
19662
19663static struct die_info *
f2f0e013 19664dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19665{
19666 struct attribute *attr;
9219021c 19667
f2f0e013 19668 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19669 if (attr == NULL)
19670 return NULL;
19671
f2f0e013 19672 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19673}
19674
c906108c
SS
19675/* Convert a DIE tag into its string name. */
19676
f39c6ffd 19677static const char *
aa1ee363 19678dwarf_tag_name (unsigned tag)
c906108c 19679{
f39c6ffd
TT
19680 const char *name = get_DW_TAG_name (tag);
19681
19682 if (name == NULL)
19683 return "DW_TAG_<unknown>";
19684
19685 return name;
c906108c
SS
19686}
19687
19688/* Convert a DWARF attribute code into its string name. */
19689
f39c6ffd 19690static const char *
aa1ee363 19691dwarf_attr_name (unsigned attr)
c906108c 19692{
f39c6ffd
TT
19693 const char *name;
19694
c764a876 19695#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19696 if (attr == DW_AT_MIPS_fde)
19697 return "DW_AT_MIPS_fde";
19698#else
19699 if (attr == DW_AT_HP_block_index)
19700 return "DW_AT_HP_block_index";
c764a876 19701#endif
f39c6ffd
TT
19702
19703 name = get_DW_AT_name (attr);
19704
19705 if (name == NULL)
19706 return "DW_AT_<unknown>";
19707
19708 return name;
c906108c
SS
19709}
19710
19711/* Convert a DWARF value form code into its string name. */
19712
f39c6ffd 19713static const char *
aa1ee363 19714dwarf_form_name (unsigned form)
c906108c 19715{
f39c6ffd
TT
19716 const char *name = get_DW_FORM_name (form);
19717
19718 if (name == NULL)
19719 return "DW_FORM_<unknown>";
19720
19721 return name;
c906108c
SS
19722}
19723
19724static char *
fba45db2 19725dwarf_bool_name (unsigned mybool)
c906108c
SS
19726{
19727 if (mybool)
19728 return "TRUE";
19729 else
19730 return "FALSE";
19731}
19732
19733/* Convert a DWARF type code into its string name. */
19734
f39c6ffd 19735static const char *
aa1ee363 19736dwarf_type_encoding_name (unsigned enc)
c906108c 19737{
f39c6ffd 19738 const char *name = get_DW_ATE_name (enc);
c906108c 19739
f39c6ffd
TT
19740 if (name == NULL)
19741 return "DW_ATE_<unknown>";
c906108c 19742
f39c6ffd 19743 return name;
c906108c 19744}
c906108c 19745
f9aca02d 19746static void
d97bc12b 19747dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19748{
19749 unsigned int i;
19750
d97bc12b
DE
19751 print_spaces (indent, f);
19752 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19753 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19754
19755 if (die->parent != NULL)
19756 {
19757 print_spaces (indent, f);
19758 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19759 die->parent->offset.sect_off);
d97bc12b
DE
19760 }
19761
19762 print_spaces (indent, f);
19763 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19764 dwarf_bool_name (die->child != NULL));
c906108c 19765
d97bc12b
DE
19766 print_spaces (indent, f);
19767 fprintf_unfiltered (f, " attributes:\n");
19768
c906108c
SS
19769 for (i = 0; i < die->num_attrs; ++i)
19770 {
d97bc12b
DE
19771 print_spaces (indent, f);
19772 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19773 dwarf_attr_name (die->attrs[i].name),
19774 dwarf_form_name (die->attrs[i].form));
d97bc12b 19775
c906108c
SS
19776 switch (die->attrs[i].form)
19777 {
c906108c 19778 case DW_FORM_addr:
3019eac3 19779 case DW_FORM_GNU_addr_index:
d97bc12b 19780 fprintf_unfiltered (f, "address: ");
5af949e3 19781 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19782 break;
19783 case DW_FORM_block2:
19784 case DW_FORM_block4:
19785 case DW_FORM_block:
19786 case DW_FORM_block1:
56eb65bd
SP
19787 fprintf_unfiltered (f, "block: size %s",
19788 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19789 break;
2dc7f7b3 19790 case DW_FORM_exprloc:
56eb65bd
SP
19791 fprintf_unfiltered (f, "expression: size %s",
19792 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19793 break;
4568ecf9
DE
19794 case DW_FORM_ref_addr:
19795 fprintf_unfiltered (f, "ref address: ");
19796 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19797 break;
36586728
TT
19798 case DW_FORM_GNU_ref_alt:
19799 fprintf_unfiltered (f, "alt ref address: ");
19800 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19801 break;
10b3939b
DJ
19802 case DW_FORM_ref1:
19803 case DW_FORM_ref2:
19804 case DW_FORM_ref4:
4568ecf9
DE
19805 case DW_FORM_ref8:
19806 case DW_FORM_ref_udata:
d97bc12b 19807 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19808 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19809 break;
c906108c
SS
19810 case DW_FORM_data1:
19811 case DW_FORM_data2:
19812 case DW_FORM_data4:
ce5d95e1 19813 case DW_FORM_data8:
c906108c
SS
19814 case DW_FORM_udata:
19815 case DW_FORM_sdata:
43bbcdc2
PH
19816 fprintf_unfiltered (f, "constant: %s",
19817 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19818 break;
2dc7f7b3
TT
19819 case DW_FORM_sec_offset:
19820 fprintf_unfiltered (f, "section offset: %s",
19821 pulongest (DW_UNSND (&die->attrs[i])));
19822 break;
55f1336d 19823 case DW_FORM_ref_sig8:
ac9ec31b
DE
19824 fprintf_unfiltered (f, "signature: %s",
19825 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19826 break;
c906108c 19827 case DW_FORM_string:
4bdf3d34 19828 case DW_FORM_strp:
3019eac3 19829 case DW_FORM_GNU_str_index:
36586728 19830 case DW_FORM_GNU_strp_alt:
8285870a 19831 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19832 DW_STRING (&die->attrs[i])
8285870a
JK
19833 ? DW_STRING (&die->attrs[i]) : "",
19834 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19835 break;
19836 case DW_FORM_flag:
19837 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19838 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19839 else
d97bc12b 19840 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19841 break;
2dc7f7b3
TT
19842 case DW_FORM_flag_present:
19843 fprintf_unfiltered (f, "flag: TRUE");
19844 break;
a8329558 19845 case DW_FORM_indirect:
0963b4bd
MS
19846 /* The reader will have reduced the indirect form to
19847 the "base form" so this form should not occur. */
3e43a32a
MS
19848 fprintf_unfiltered (f,
19849 "unexpected attribute form: DW_FORM_indirect");
a8329558 19850 break;
c906108c 19851 default:
d97bc12b 19852 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19853 die->attrs[i].form);
d97bc12b 19854 break;
c906108c 19855 }
d97bc12b 19856 fprintf_unfiltered (f, "\n");
c906108c
SS
19857 }
19858}
19859
f9aca02d 19860static void
d97bc12b 19861dump_die_for_error (struct die_info *die)
c906108c 19862{
d97bc12b
DE
19863 dump_die_shallow (gdb_stderr, 0, die);
19864}
19865
19866static void
19867dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19868{
19869 int indent = level * 4;
19870
19871 gdb_assert (die != NULL);
19872
19873 if (level >= max_level)
19874 return;
19875
19876 dump_die_shallow (f, indent, die);
19877
19878 if (die->child != NULL)
c906108c 19879 {
d97bc12b
DE
19880 print_spaces (indent, f);
19881 fprintf_unfiltered (f, " Children:");
19882 if (level + 1 < max_level)
19883 {
19884 fprintf_unfiltered (f, "\n");
19885 dump_die_1 (f, level + 1, max_level, die->child);
19886 }
19887 else
19888 {
3e43a32a
MS
19889 fprintf_unfiltered (f,
19890 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19891 }
19892 }
19893
19894 if (die->sibling != NULL && level > 0)
19895 {
19896 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19897 }
19898}
19899
d97bc12b
DE
19900/* This is called from the pdie macro in gdbinit.in.
19901 It's not static so gcc will keep a copy callable from gdb. */
19902
19903void
19904dump_die (struct die_info *die, int max_level)
19905{
19906 dump_die_1 (gdb_stdlog, 0, max_level, die);
19907}
19908
f9aca02d 19909static void
51545339 19910store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19911{
51545339 19912 void **slot;
c906108c 19913
b64f50a1
JK
19914 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19915 INSERT);
51545339
DJ
19916
19917 *slot = die;
c906108c
SS
19918}
19919
b64f50a1
JK
19920/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19921 required kind. */
19922
19923static sect_offset
ff39bb5e 19924dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19925{
4568ecf9 19926 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19927
7771576e 19928 if (attr_form_is_ref (attr))
b64f50a1 19929 return retval;
93311388 19930
b64f50a1 19931 retval.sect_off = 0;
93311388
DE
19932 complaint (&symfile_complaints,
19933 _("unsupported die ref attribute form: '%s'"),
19934 dwarf_form_name (attr->form));
b64f50a1 19935 return retval;
c906108c
SS
19936}
19937
43bbcdc2
PH
19938/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19939 * the value held by the attribute is not constant. */
a02abb62 19940
43bbcdc2 19941static LONGEST
ff39bb5e 19942dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19943{
19944 if (attr->form == DW_FORM_sdata)
19945 return DW_SND (attr);
19946 else if (attr->form == DW_FORM_udata
19947 || attr->form == DW_FORM_data1
19948 || attr->form == DW_FORM_data2
19949 || attr->form == DW_FORM_data4
19950 || attr->form == DW_FORM_data8)
19951 return DW_UNSND (attr);
19952 else
19953 {
3e43a32a
MS
19954 complaint (&symfile_complaints,
19955 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19956 dwarf_form_name (attr->form));
19957 return default_value;
19958 }
19959}
19960
348e048f
DE
19961/* Follow reference or signature attribute ATTR of SRC_DIE.
19962 On entry *REF_CU is the CU of SRC_DIE.
19963 On exit *REF_CU is the CU of the result. */
19964
19965static struct die_info *
ff39bb5e 19966follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19967 struct dwarf2_cu **ref_cu)
19968{
19969 struct die_info *die;
19970
7771576e 19971 if (attr_form_is_ref (attr))
348e048f 19972 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19973 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19974 die = follow_die_sig (src_die, attr, ref_cu);
19975 else
19976 {
19977 dump_die_for_error (src_die);
19978 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19979 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19980 }
19981
19982 return die;
03dd20cc
DJ
19983}
19984
5c631832 19985/* Follow reference OFFSET.
673bfd45
DE
19986 On entry *REF_CU is the CU of the source die referencing OFFSET.
19987 On exit *REF_CU is the CU of the result.
19988 Returns NULL if OFFSET is invalid. */
f504f079 19989
f9aca02d 19990static struct die_info *
36586728
TT
19991follow_die_offset (sect_offset offset, int offset_in_dwz,
19992 struct dwarf2_cu **ref_cu)
c906108c 19993{
10b3939b 19994 struct die_info temp_die;
f2f0e013 19995 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19996
348e048f
DE
19997 gdb_assert (cu->per_cu != NULL);
19998
98bfdba5
PA
19999 target_cu = cu;
20000
3019eac3 20001 if (cu->per_cu->is_debug_types)
348e048f
DE
20002 {
20003 /* .debug_types CUs cannot reference anything outside their CU.
20004 If they need to, they have to reference a signatured type via
55f1336d 20005 DW_FORM_ref_sig8. */
348e048f 20006 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20007 return NULL;
348e048f 20008 }
36586728
TT
20009 else if (offset_in_dwz != cu->per_cu->is_dwz
20010 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20011 {
20012 struct dwarf2_per_cu_data *per_cu;
9a619af0 20013
36586728
TT
20014 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20015 cu->objfile);
03dd20cc
DJ
20016
20017 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20018 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20019 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20020
10b3939b
DJ
20021 target_cu = per_cu->cu;
20022 }
98bfdba5
PA
20023 else if (cu->dies == NULL)
20024 {
20025 /* We're loading full DIEs during partial symbol reading. */
20026 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20027 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20028 }
c906108c 20029
f2f0e013 20030 *ref_cu = target_cu;
51545339 20031 temp_die.offset = offset;
9a3c8263
SM
20032 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20033 &temp_die, offset.sect_off);
5c631832 20034}
10b3939b 20035
5c631832
JK
20036/* Follow reference attribute ATTR of SRC_DIE.
20037 On entry *REF_CU is the CU of SRC_DIE.
20038 On exit *REF_CU is the CU of the result. */
20039
20040static struct die_info *
ff39bb5e 20041follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20042 struct dwarf2_cu **ref_cu)
20043{
b64f50a1 20044 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20045 struct dwarf2_cu *cu = *ref_cu;
20046 struct die_info *die;
20047
36586728
TT
20048 die = follow_die_offset (offset,
20049 (attr->form == DW_FORM_GNU_ref_alt
20050 || cu->per_cu->is_dwz),
20051 ref_cu);
5c631832
JK
20052 if (!die)
20053 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20054 "at 0x%x [in module %s]"),
4262abfb
JK
20055 offset.sect_off, src_die->offset.sect_off,
20056 objfile_name (cu->objfile));
348e048f 20057
5c631832
JK
20058 return die;
20059}
20060
d83e736b
JK
20061/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20062 Returned value is intended for DW_OP_call*. Returned
20063 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20064
20065struct dwarf2_locexpr_baton
8b9737bf
TT
20066dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20067 struct dwarf2_per_cu_data *per_cu,
20068 CORE_ADDR (*get_frame_pc) (void *baton),
20069 void *baton)
5c631832 20070{
918dd910 20071 struct dwarf2_cu *cu;
5c631832
JK
20072 struct die_info *die;
20073 struct attribute *attr;
20074 struct dwarf2_locexpr_baton retval;
20075
8cf6f0b1
TT
20076 dw2_setup (per_cu->objfile);
20077
918dd910
JK
20078 if (per_cu->cu == NULL)
20079 load_cu (per_cu);
20080 cu = per_cu->cu;
cc12ce38
DE
20081 if (cu == NULL)
20082 {
20083 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20084 Instead just throw an error, not much else we can do. */
20085 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20086 offset.sect_off, objfile_name (per_cu->objfile));
20087 }
918dd910 20088
36586728 20089 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20090 if (!die)
20091 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20092 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20093
20094 attr = dwarf2_attr (die, DW_AT_location, cu);
20095 if (!attr)
20096 {
e103e986
JK
20097 /* DWARF: "If there is no such attribute, then there is no effect.".
20098 DATA is ignored if SIZE is 0. */
5c631832 20099
e103e986 20100 retval.data = NULL;
5c631832
JK
20101 retval.size = 0;
20102 }
8cf6f0b1
TT
20103 else if (attr_form_is_section_offset (attr))
20104 {
20105 struct dwarf2_loclist_baton loclist_baton;
20106 CORE_ADDR pc = (*get_frame_pc) (baton);
20107 size_t size;
20108
20109 fill_in_loclist_baton (cu, &loclist_baton, attr);
20110
20111 retval.data = dwarf2_find_location_expression (&loclist_baton,
20112 &size, pc);
20113 retval.size = size;
20114 }
5c631832
JK
20115 else
20116 {
20117 if (!attr_form_is_block (attr))
20118 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20119 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20120 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20121
20122 retval.data = DW_BLOCK (attr)->data;
20123 retval.size = DW_BLOCK (attr)->size;
20124 }
20125 retval.per_cu = cu->per_cu;
918dd910 20126
918dd910
JK
20127 age_cached_comp_units ();
20128
5c631832 20129 return retval;
348e048f
DE
20130}
20131
8b9737bf
TT
20132/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20133 offset. */
20134
20135struct dwarf2_locexpr_baton
20136dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20137 struct dwarf2_per_cu_data *per_cu,
20138 CORE_ADDR (*get_frame_pc) (void *baton),
20139 void *baton)
20140{
20141 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20142
20143 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20144}
20145
b6807d98
TT
20146/* Write a constant of a given type as target-ordered bytes into
20147 OBSTACK. */
20148
20149static const gdb_byte *
20150write_constant_as_bytes (struct obstack *obstack,
20151 enum bfd_endian byte_order,
20152 struct type *type,
20153 ULONGEST value,
20154 LONGEST *len)
20155{
20156 gdb_byte *result;
20157
20158 *len = TYPE_LENGTH (type);
224c3ddb 20159 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20160 store_unsigned_integer (result, *len, byte_order, value);
20161
20162 return result;
20163}
20164
20165/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20166 pointer to the constant bytes and set LEN to the length of the
20167 data. If memory is needed, allocate it on OBSTACK. If the DIE
20168 does not have a DW_AT_const_value, return NULL. */
20169
20170const gdb_byte *
20171dwarf2_fetch_constant_bytes (sect_offset offset,
20172 struct dwarf2_per_cu_data *per_cu,
20173 struct obstack *obstack,
20174 LONGEST *len)
20175{
20176 struct dwarf2_cu *cu;
20177 struct die_info *die;
20178 struct attribute *attr;
20179 const gdb_byte *result = NULL;
20180 struct type *type;
20181 LONGEST value;
20182 enum bfd_endian byte_order;
20183
20184 dw2_setup (per_cu->objfile);
20185
20186 if (per_cu->cu == NULL)
20187 load_cu (per_cu);
20188 cu = per_cu->cu;
cc12ce38
DE
20189 if (cu == NULL)
20190 {
20191 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20192 Instead just throw an error, not much else we can do. */
20193 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20194 offset.sect_off, objfile_name (per_cu->objfile));
20195 }
b6807d98
TT
20196
20197 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20198 if (!die)
20199 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20200 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20201
20202
20203 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20204 if (attr == NULL)
20205 return NULL;
20206
20207 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20208 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20209
20210 switch (attr->form)
20211 {
20212 case DW_FORM_addr:
20213 case DW_FORM_GNU_addr_index:
20214 {
20215 gdb_byte *tem;
20216
20217 *len = cu->header.addr_size;
224c3ddb 20218 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20219 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20220 result = tem;
20221 }
20222 break;
20223 case DW_FORM_string:
20224 case DW_FORM_strp:
20225 case DW_FORM_GNU_str_index:
20226 case DW_FORM_GNU_strp_alt:
20227 /* DW_STRING is already allocated on the objfile obstack, point
20228 directly to it. */
20229 result = (const gdb_byte *) DW_STRING (attr);
20230 *len = strlen (DW_STRING (attr));
20231 break;
20232 case DW_FORM_block1:
20233 case DW_FORM_block2:
20234 case DW_FORM_block4:
20235 case DW_FORM_block:
20236 case DW_FORM_exprloc:
20237 result = DW_BLOCK (attr)->data;
20238 *len = DW_BLOCK (attr)->size;
20239 break;
20240
20241 /* The DW_AT_const_value attributes are supposed to carry the
20242 symbol's value "represented as it would be on the target
20243 architecture." By the time we get here, it's already been
20244 converted to host endianness, so we just need to sign- or
20245 zero-extend it as appropriate. */
20246 case DW_FORM_data1:
20247 type = die_type (die, cu);
20248 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20249 if (result == NULL)
20250 result = write_constant_as_bytes (obstack, byte_order,
20251 type, value, len);
20252 break;
20253 case DW_FORM_data2:
20254 type = die_type (die, cu);
20255 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20256 if (result == NULL)
20257 result = write_constant_as_bytes (obstack, byte_order,
20258 type, value, len);
20259 break;
20260 case DW_FORM_data4:
20261 type = die_type (die, cu);
20262 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20263 if (result == NULL)
20264 result = write_constant_as_bytes (obstack, byte_order,
20265 type, value, len);
20266 break;
20267 case DW_FORM_data8:
20268 type = die_type (die, cu);
20269 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20270 if (result == NULL)
20271 result = write_constant_as_bytes (obstack, byte_order,
20272 type, value, len);
20273 break;
20274
20275 case DW_FORM_sdata:
20276 type = die_type (die, cu);
20277 result = write_constant_as_bytes (obstack, byte_order,
20278 type, DW_SND (attr), len);
20279 break;
20280
20281 case DW_FORM_udata:
20282 type = die_type (die, cu);
20283 result = write_constant_as_bytes (obstack, byte_order,
20284 type, DW_UNSND (attr), len);
20285 break;
20286
20287 default:
20288 complaint (&symfile_complaints,
20289 _("unsupported const value attribute form: '%s'"),
20290 dwarf_form_name (attr->form));
20291 break;
20292 }
20293
20294 return result;
20295}
20296
8a9b8146
TT
20297/* Return the type of the DIE at DIE_OFFSET in the CU named by
20298 PER_CU. */
20299
20300struct type *
b64f50a1 20301dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20302 struct dwarf2_per_cu_data *per_cu)
20303{
b64f50a1
JK
20304 sect_offset die_offset_sect;
20305
8a9b8146 20306 dw2_setup (per_cu->objfile);
b64f50a1
JK
20307
20308 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20309 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20310}
20311
ac9ec31b 20312/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20313 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20314 On exit *REF_CU is the CU of the result.
20315 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20316
20317static struct die_info *
ac9ec31b
DE
20318follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20319 struct dwarf2_cu **ref_cu)
348e048f
DE
20320{
20321 struct objfile *objfile = (*ref_cu)->objfile;
20322 struct die_info temp_die;
348e048f
DE
20323 struct dwarf2_cu *sig_cu;
20324 struct die_info *die;
20325
ac9ec31b
DE
20326 /* While it might be nice to assert sig_type->type == NULL here,
20327 we can get here for DW_AT_imported_declaration where we need
20328 the DIE not the type. */
348e048f
DE
20329
20330 /* If necessary, add it to the queue and load its DIEs. */
20331
95554aad 20332 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20333 read_signatured_type (sig_type);
348e048f 20334
348e048f 20335 sig_cu = sig_type->per_cu.cu;
69d751e3 20336 gdb_assert (sig_cu != NULL);
3019eac3
DE
20337 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20338 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20339 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20340 temp_die.offset.sect_off);
348e048f
DE
20341 if (die)
20342 {
796a7ff8
DE
20343 /* For .gdb_index version 7 keep track of included TUs.
20344 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20345 if (dwarf2_per_objfile->index_table != NULL
20346 && dwarf2_per_objfile->index_table->version <= 7)
20347 {
20348 VEC_safe_push (dwarf2_per_cu_ptr,
20349 (*ref_cu)->per_cu->imported_symtabs,
20350 sig_cu->per_cu);
20351 }
20352
348e048f
DE
20353 *ref_cu = sig_cu;
20354 return die;
20355 }
20356
ac9ec31b
DE
20357 return NULL;
20358}
20359
20360/* Follow signatured type referenced by ATTR in SRC_DIE.
20361 On entry *REF_CU is the CU of SRC_DIE.
20362 On exit *REF_CU is the CU of the result.
20363 The result is the DIE of the type.
20364 If the referenced type cannot be found an error is thrown. */
20365
20366static struct die_info *
ff39bb5e 20367follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20368 struct dwarf2_cu **ref_cu)
20369{
20370 ULONGEST signature = DW_SIGNATURE (attr);
20371 struct signatured_type *sig_type;
20372 struct die_info *die;
20373
20374 gdb_assert (attr->form == DW_FORM_ref_sig8);
20375
a2ce51a0 20376 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20377 /* sig_type will be NULL if the signatured type is missing from
20378 the debug info. */
20379 if (sig_type == NULL)
20380 {
20381 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20382 " from DIE at 0x%x [in module %s]"),
20383 hex_string (signature), src_die->offset.sect_off,
4262abfb 20384 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20385 }
20386
20387 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20388 if (die == NULL)
20389 {
20390 dump_die_for_error (src_die);
20391 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20392 " from DIE at 0x%x [in module %s]"),
20393 hex_string (signature), src_die->offset.sect_off,
4262abfb 20394 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20395 }
20396
20397 return die;
20398}
20399
20400/* Get the type specified by SIGNATURE referenced in DIE/CU,
20401 reading in and processing the type unit if necessary. */
20402
20403static struct type *
20404get_signatured_type (struct die_info *die, ULONGEST signature,
20405 struct dwarf2_cu *cu)
20406{
20407 struct signatured_type *sig_type;
20408 struct dwarf2_cu *type_cu;
20409 struct die_info *type_die;
20410 struct type *type;
20411
a2ce51a0 20412 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20413 /* sig_type will be NULL if the signatured type is missing from
20414 the debug info. */
20415 if (sig_type == NULL)
20416 {
20417 complaint (&symfile_complaints,
20418 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20419 " from DIE at 0x%x [in module %s]"),
20420 hex_string (signature), die->offset.sect_off,
4262abfb 20421 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20422 return build_error_marker_type (cu, die);
20423 }
20424
20425 /* If we already know the type we're done. */
20426 if (sig_type->type != NULL)
20427 return sig_type->type;
20428
20429 type_cu = cu;
20430 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20431 if (type_die != NULL)
20432 {
20433 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20434 is created. This is important, for example, because for c++ classes
20435 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20436 type = read_type_die (type_die, type_cu);
20437 if (type == NULL)
20438 {
20439 complaint (&symfile_complaints,
20440 _("Dwarf Error: Cannot build signatured type %s"
20441 " referenced from DIE at 0x%x [in module %s]"),
20442 hex_string (signature), die->offset.sect_off,
4262abfb 20443 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20444 type = build_error_marker_type (cu, die);
20445 }
20446 }
20447 else
20448 {
20449 complaint (&symfile_complaints,
20450 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20451 " from DIE at 0x%x [in module %s]"),
20452 hex_string (signature), die->offset.sect_off,
4262abfb 20453 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20454 type = build_error_marker_type (cu, die);
20455 }
20456 sig_type->type = type;
20457
20458 return type;
20459}
20460
20461/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20462 reading in and processing the type unit if necessary. */
20463
20464static struct type *
ff39bb5e 20465get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20466 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20467{
20468 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20469 if (attr_form_is_ref (attr))
ac9ec31b
DE
20470 {
20471 struct dwarf2_cu *type_cu = cu;
20472 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20473
20474 return read_type_die (type_die, type_cu);
20475 }
20476 else if (attr->form == DW_FORM_ref_sig8)
20477 {
20478 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20479 }
20480 else
20481 {
20482 complaint (&symfile_complaints,
20483 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20484 " at 0x%x [in module %s]"),
20485 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20486 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20487 return build_error_marker_type (cu, die);
20488 }
348e048f
DE
20489}
20490
e5fe5e75 20491/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20492
20493static void
e5fe5e75 20494load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20495{
52dc124a 20496 struct signatured_type *sig_type;
348e048f 20497
f4dc4d17
DE
20498 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20499 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20500
6721b2ec
DE
20501 /* We have the per_cu, but we need the signatured_type.
20502 Fortunately this is an easy translation. */
20503 gdb_assert (per_cu->is_debug_types);
20504 sig_type = (struct signatured_type *) per_cu;
348e048f 20505
6721b2ec 20506 gdb_assert (per_cu->cu == NULL);
348e048f 20507
52dc124a 20508 read_signatured_type (sig_type);
348e048f 20509
6721b2ec 20510 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20511}
20512
dee91e82
DE
20513/* die_reader_func for read_signatured_type.
20514 This is identical to load_full_comp_unit_reader,
20515 but is kept separate for now. */
348e048f
DE
20516
20517static void
dee91e82 20518read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20519 const gdb_byte *info_ptr,
dee91e82
DE
20520 struct die_info *comp_unit_die,
20521 int has_children,
20522 void *data)
348e048f 20523{
dee91e82 20524 struct dwarf2_cu *cu = reader->cu;
348e048f 20525
dee91e82
DE
20526 gdb_assert (cu->die_hash == NULL);
20527 cu->die_hash =
20528 htab_create_alloc_ex (cu->header.length / 12,
20529 die_hash,
20530 die_eq,
20531 NULL,
20532 &cu->comp_unit_obstack,
20533 hashtab_obstack_allocate,
20534 dummy_obstack_deallocate);
348e048f 20535
dee91e82
DE
20536 if (has_children)
20537 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20538 &info_ptr, comp_unit_die);
20539 cu->dies = comp_unit_die;
20540 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20541
20542 /* We try not to read any attributes in this function, because not
9cdd5dbd 20543 all CUs needed for references have been loaded yet, and symbol
348e048f 20544 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20545 or we won't be able to build types correctly.
20546 Similarly, if we do not read the producer, we can not apply
20547 producer-specific interpretation. */
95554aad 20548 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20549}
348e048f 20550
3019eac3
DE
20551/* Read in a signatured type and build its CU and DIEs.
20552 If the type is a stub for the real type in a DWO file,
20553 read in the real type from the DWO file as well. */
dee91e82
DE
20554
20555static void
20556read_signatured_type (struct signatured_type *sig_type)
20557{
20558 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20559
3019eac3 20560 gdb_assert (per_cu->is_debug_types);
dee91e82 20561 gdb_assert (per_cu->cu == NULL);
348e048f 20562
f4dc4d17
DE
20563 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20564 read_signatured_type_reader, NULL);
7ee85ab1 20565 sig_type->per_cu.tu_read = 1;
c906108c
SS
20566}
20567
c906108c
SS
20568/* Decode simple location descriptions.
20569 Given a pointer to a dwarf block that defines a location, compute
20570 the location and return the value.
20571
4cecd739
DJ
20572 NOTE drow/2003-11-18: This function is called in two situations
20573 now: for the address of static or global variables (partial symbols
20574 only) and for offsets into structures which are expected to be
20575 (more or less) constant. The partial symbol case should go away,
20576 and only the constant case should remain. That will let this
20577 function complain more accurately. A few special modes are allowed
20578 without complaint for global variables (for instance, global
20579 register values and thread-local values).
c906108c
SS
20580
20581 A location description containing no operations indicates that the
4cecd739 20582 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20583 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20584 callers will only want a very basic result and this can become a
21ae7a4d
JK
20585 complaint.
20586
20587 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20588
20589static CORE_ADDR
e7c27a73 20590decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20591{
e7c27a73 20592 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20593 size_t i;
20594 size_t size = blk->size;
d521ce57 20595 const gdb_byte *data = blk->data;
21ae7a4d
JK
20596 CORE_ADDR stack[64];
20597 int stacki;
20598 unsigned int bytes_read, unsnd;
20599 gdb_byte op;
c906108c 20600
21ae7a4d
JK
20601 i = 0;
20602 stacki = 0;
20603 stack[stacki] = 0;
20604 stack[++stacki] = 0;
20605
20606 while (i < size)
20607 {
20608 op = data[i++];
20609 switch (op)
20610 {
20611 case DW_OP_lit0:
20612 case DW_OP_lit1:
20613 case DW_OP_lit2:
20614 case DW_OP_lit3:
20615 case DW_OP_lit4:
20616 case DW_OP_lit5:
20617 case DW_OP_lit6:
20618 case DW_OP_lit7:
20619 case DW_OP_lit8:
20620 case DW_OP_lit9:
20621 case DW_OP_lit10:
20622 case DW_OP_lit11:
20623 case DW_OP_lit12:
20624 case DW_OP_lit13:
20625 case DW_OP_lit14:
20626 case DW_OP_lit15:
20627 case DW_OP_lit16:
20628 case DW_OP_lit17:
20629 case DW_OP_lit18:
20630 case DW_OP_lit19:
20631 case DW_OP_lit20:
20632 case DW_OP_lit21:
20633 case DW_OP_lit22:
20634 case DW_OP_lit23:
20635 case DW_OP_lit24:
20636 case DW_OP_lit25:
20637 case DW_OP_lit26:
20638 case DW_OP_lit27:
20639 case DW_OP_lit28:
20640 case DW_OP_lit29:
20641 case DW_OP_lit30:
20642 case DW_OP_lit31:
20643 stack[++stacki] = op - DW_OP_lit0;
20644 break;
f1bea926 20645
21ae7a4d
JK
20646 case DW_OP_reg0:
20647 case DW_OP_reg1:
20648 case DW_OP_reg2:
20649 case DW_OP_reg3:
20650 case DW_OP_reg4:
20651 case DW_OP_reg5:
20652 case DW_OP_reg6:
20653 case DW_OP_reg7:
20654 case DW_OP_reg8:
20655 case DW_OP_reg9:
20656 case DW_OP_reg10:
20657 case DW_OP_reg11:
20658 case DW_OP_reg12:
20659 case DW_OP_reg13:
20660 case DW_OP_reg14:
20661 case DW_OP_reg15:
20662 case DW_OP_reg16:
20663 case DW_OP_reg17:
20664 case DW_OP_reg18:
20665 case DW_OP_reg19:
20666 case DW_OP_reg20:
20667 case DW_OP_reg21:
20668 case DW_OP_reg22:
20669 case DW_OP_reg23:
20670 case DW_OP_reg24:
20671 case DW_OP_reg25:
20672 case DW_OP_reg26:
20673 case DW_OP_reg27:
20674 case DW_OP_reg28:
20675 case DW_OP_reg29:
20676 case DW_OP_reg30:
20677 case DW_OP_reg31:
20678 stack[++stacki] = op - DW_OP_reg0;
20679 if (i < size)
20680 dwarf2_complex_location_expr_complaint ();
20681 break;
c906108c 20682
21ae7a4d
JK
20683 case DW_OP_regx:
20684 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20685 i += bytes_read;
20686 stack[++stacki] = unsnd;
20687 if (i < size)
20688 dwarf2_complex_location_expr_complaint ();
20689 break;
c906108c 20690
21ae7a4d
JK
20691 case DW_OP_addr:
20692 stack[++stacki] = read_address (objfile->obfd, &data[i],
20693 cu, &bytes_read);
20694 i += bytes_read;
20695 break;
d53d4ac5 20696
21ae7a4d
JK
20697 case DW_OP_const1u:
20698 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20699 i += 1;
20700 break;
20701
20702 case DW_OP_const1s:
20703 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20704 i += 1;
20705 break;
20706
20707 case DW_OP_const2u:
20708 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20709 i += 2;
20710 break;
20711
20712 case DW_OP_const2s:
20713 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20714 i += 2;
20715 break;
d53d4ac5 20716
21ae7a4d
JK
20717 case DW_OP_const4u:
20718 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20719 i += 4;
20720 break;
20721
20722 case DW_OP_const4s:
20723 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20724 i += 4;
20725 break;
20726
585861ea
JK
20727 case DW_OP_const8u:
20728 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20729 i += 8;
20730 break;
20731
21ae7a4d
JK
20732 case DW_OP_constu:
20733 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20734 &bytes_read);
20735 i += bytes_read;
20736 break;
20737
20738 case DW_OP_consts:
20739 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20740 i += bytes_read;
20741 break;
20742
20743 case DW_OP_dup:
20744 stack[stacki + 1] = stack[stacki];
20745 stacki++;
20746 break;
20747
20748 case DW_OP_plus:
20749 stack[stacki - 1] += stack[stacki];
20750 stacki--;
20751 break;
20752
20753 case DW_OP_plus_uconst:
20754 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20755 &bytes_read);
20756 i += bytes_read;
20757 break;
20758
20759 case DW_OP_minus:
20760 stack[stacki - 1] -= stack[stacki];
20761 stacki--;
20762 break;
20763
20764 case DW_OP_deref:
20765 /* If we're not the last op, then we definitely can't encode
20766 this using GDB's address_class enum. This is valid for partial
20767 global symbols, although the variable's address will be bogus
20768 in the psymtab. */
20769 if (i < size)
20770 dwarf2_complex_location_expr_complaint ();
20771 break;
20772
20773 case DW_OP_GNU_push_tls_address:
20774 /* The top of the stack has the offset from the beginning
20775 of the thread control block at which the variable is located. */
20776 /* Nothing should follow this operator, so the top of stack would
20777 be returned. */
20778 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20779 address will be bogus in the psymtab. Make it always at least
20780 non-zero to not look as a variable garbage collected by linker
20781 which have DW_OP_addr 0. */
21ae7a4d
JK
20782 if (i < size)
20783 dwarf2_complex_location_expr_complaint ();
585861ea 20784 stack[stacki]++;
21ae7a4d
JK
20785 break;
20786
20787 case DW_OP_GNU_uninit:
20788 break;
20789
3019eac3 20790 case DW_OP_GNU_addr_index:
49f6c839 20791 case DW_OP_GNU_const_index:
3019eac3
DE
20792 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20793 &bytes_read);
20794 i += bytes_read;
20795 break;
20796
21ae7a4d
JK
20797 default:
20798 {
f39c6ffd 20799 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20800
20801 if (name)
20802 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20803 name);
20804 else
20805 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20806 op);
20807 }
20808
20809 return (stack[stacki]);
d53d4ac5 20810 }
3c6e0cb3 20811
21ae7a4d
JK
20812 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20813 outside of the allocated space. Also enforce minimum>0. */
20814 if (stacki >= ARRAY_SIZE (stack) - 1)
20815 {
20816 complaint (&symfile_complaints,
20817 _("location description stack overflow"));
20818 return 0;
20819 }
20820
20821 if (stacki <= 0)
20822 {
20823 complaint (&symfile_complaints,
20824 _("location description stack underflow"));
20825 return 0;
20826 }
20827 }
20828 return (stack[stacki]);
c906108c
SS
20829}
20830
20831/* memory allocation interface */
20832
c906108c 20833static struct dwarf_block *
7b5a2f43 20834dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20835{
8d749320 20836 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20837}
20838
c906108c 20839static struct die_info *
b60c80d6 20840dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20841{
20842 struct die_info *die;
b60c80d6
DJ
20843 size_t size = sizeof (struct die_info);
20844
20845 if (num_attrs > 1)
20846 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20847
b60c80d6 20848 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20849 memset (die, 0, sizeof (struct die_info));
20850 return (die);
20851}
2e276125
JB
20852
20853\f
20854/* Macro support. */
20855
233d95b5
JK
20856/* Return file name relative to the compilation directory of file number I in
20857 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20858 responsible for freeing it. */
233d95b5 20859
2e276125 20860static char *
233d95b5 20861file_file_name (int file, struct line_header *lh)
2e276125 20862{
6a83a1e6
EZ
20863 /* Is the file number a valid index into the line header's file name
20864 table? Remember that file numbers start with one, not zero. */
20865 if (1 <= file && file <= lh->num_file_names)
20866 {
20867 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20868
afa6c9ab
SL
20869 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20870 || lh->include_dirs == NULL)
6a83a1e6 20871 return xstrdup (fe->name);
233d95b5
JK
20872 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20873 fe->name, NULL);
6a83a1e6 20874 }
2e276125
JB
20875 else
20876 {
6a83a1e6
EZ
20877 /* The compiler produced a bogus file number. We can at least
20878 record the macro definitions made in the file, even if we
20879 won't be able to find the file by name. */
20880 char fake_name[80];
9a619af0 20881
8c042590
PM
20882 xsnprintf (fake_name, sizeof (fake_name),
20883 "<bad macro file number %d>", file);
2e276125 20884
6e70227d 20885 complaint (&symfile_complaints,
6a83a1e6
EZ
20886 _("bad file number in macro information (%d)"),
20887 file);
2e276125 20888
6a83a1e6 20889 return xstrdup (fake_name);
2e276125
JB
20890 }
20891}
20892
233d95b5
JK
20893/* Return the full name of file number I in *LH's file name table.
20894 Use COMP_DIR as the name of the current directory of the
20895 compilation. The result is allocated using xmalloc; the caller is
20896 responsible for freeing it. */
20897static char *
20898file_full_name (int file, struct line_header *lh, const char *comp_dir)
20899{
20900 /* Is the file number a valid index into the line header's file name
20901 table? Remember that file numbers start with one, not zero. */
20902 if (1 <= file && file <= lh->num_file_names)
20903 {
20904 char *relative = file_file_name (file, lh);
20905
20906 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20907 return relative;
20908 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20909 }
20910 else
20911 return file_file_name (file, lh);
20912}
20913
2e276125
JB
20914
20915static struct macro_source_file *
20916macro_start_file (int file, int line,
20917 struct macro_source_file *current_file,
43f3e411 20918 struct line_header *lh)
2e276125 20919{
233d95b5
JK
20920 /* File name relative to the compilation directory of this source file. */
20921 char *file_name = file_file_name (file, lh);
2e276125 20922
2e276125 20923 if (! current_file)
abc9d0dc 20924 {
fc474241
DE
20925 /* Note: We don't create a macro table for this compilation unit
20926 at all until we actually get a filename. */
43f3e411 20927 struct macro_table *macro_table = get_macro_table ();
fc474241 20928
abc9d0dc
TT
20929 /* If we have no current file, then this must be the start_file
20930 directive for the compilation unit's main source file. */
fc474241
DE
20931 current_file = macro_set_main (macro_table, file_name);
20932 macro_define_special (macro_table);
abc9d0dc 20933 }
2e276125 20934 else
233d95b5 20935 current_file = macro_include (current_file, line, file_name);
2e276125 20936
233d95b5 20937 xfree (file_name);
6e70227d 20938
2e276125
JB
20939 return current_file;
20940}
20941
20942
20943/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20944 followed by a null byte. */
20945static char *
20946copy_string (const char *buf, int len)
20947{
224c3ddb 20948 char *s = (char *) xmalloc (len + 1);
9a619af0 20949
2e276125
JB
20950 memcpy (s, buf, len);
20951 s[len] = '\0';
2e276125
JB
20952 return s;
20953}
20954
20955
20956static const char *
20957consume_improper_spaces (const char *p, const char *body)
20958{
20959 if (*p == ' ')
20960 {
4d3c2250 20961 complaint (&symfile_complaints,
3e43a32a
MS
20962 _("macro definition contains spaces "
20963 "in formal argument list:\n`%s'"),
4d3c2250 20964 body);
2e276125
JB
20965
20966 while (*p == ' ')
20967 p++;
20968 }
20969
20970 return p;
20971}
20972
20973
20974static void
20975parse_macro_definition (struct macro_source_file *file, int line,
20976 const char *body)
20977{
20978 const char *p;
20979
20980 /* The body string takes one of two forms. For object-like macro
20981 definitions, it should be:
20982
20983 <macro name> " " <definition>
20984
20985 For function-like macro definitions, it should be:
20986
20987 <macro name> "() " <definition>
20988 or
20989 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20990
20991 Spaces may appear only where explicitly indicated, and in the
20992 <definition>.
20993
20994 The Dwarf 2 spec says that an object-like macro's name is always
20995 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20996 the space when the macro's definition is the empty string.
2e276125
JB
20997
20998 The Dwarf 2 spec says that there should be no spaces between the
20999 formal arguments in a function-like macro's formal argument list,
21000 but versions of GCC around March 2002 include spaces after the
21001 commas. */
21002
21003
21004 /* Find the extent of the macro name. The macro name is terminated
21005 by either a space or null character (for an object-like macro) or
21006 an opening paren (for a function-like macro). */
21007 for (p = body; *p; p++)
21008 if (*p == ' ' || *p == '(')
21009 break;
21010
21011 if (*p == ' ' || *p == '\0')
21012 {
21013 /* It's an object-like macro. */
21014 int name_len = p - body;
21015 char *name = copy_string (body, name_len);
21016 const char *replacement;
21017
21018 if (*p == ' ')
21019 replacement = body + name_len + 1;
21020 else
21021 {
4d3c2250 21022 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21023 replacement = body + name_len;
21024 }
6e70227d 21025
2e276125
JB
21026 macro_define_object (file, line, name, replacement);
21027
21028 xfree (name);
21029 }
21030 else if (*p == '(')
21031 {
21032 /* It's a function-like macro. */
21033 char *name = copy_string (body, p - body);
21034 int argc = 0;
21035 int argv_size = 1;
8d749320 21036 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21037
21038 p++;
21039
21040 p = consume_improper_spaces (p, body);
21041
21042 /* Parse the formal argument list. */
21043 while (*p && *p != ')')
21044 {
21045 /* Find the extent of the current argument name. */
21046 const char *arg_start = p;
21047
21048 while (*p && *p != ',' && *p != ')' && *p != ' ')
21049 p++;
21050
21051 if (! *p || p == arg_start)
4d3c2250 21052 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21053 else
21054 {
21055 /* Make sure argv has room for the new argument. */
21056 if (argc >= argv_size)
21057 {
21058 argv_size *= 2;
224c3ddb 21059 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21060 }
21061
21062 argv[argc++] = copy_string (arg_start, p - arg_start);
21063 }
21064
21065 p = consume_improper_spaces (p, body);
21066
21067 /* Consume the comma, if present. */
21068 if (*p == ',')
21069 {
21070 p++;
21071
21072 p = consume_improper_spaces (p, body);
21073 }
21074 }
21075
21076 if (*p == ')')
21077 {
21078 p++;
21079
21080 if (*p == ' ')
21081 /* Perfectly formed definition, no complaints. */
21082 macro_define_function (file, line, name,
6e70227d 21083 argc, (const char **) argv,
2e276125
JB
21084 p + 1);
21085 else if (*p == '\0')
21086 {
21087 /* Complain, but do define it. */
4d3c2250 21088 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21089 macro_define_function (file, line, name,
6e70227d 21090 argc, (const char **) argv,
2e276125
JB
21091 p);
21092 }
21093 else
21094 /* Just complain. */
4d3c2250 21095 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21096 }
21097 else
21098 /* Just complain. */
4d3c2250 21099 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21100
21101 xfree (name);
21102 {
21103 int i;
21104
21105 for (i = 0; i < argc; i++)
21106 xfree (argv[i]);
21107 }
21108 xfree (argv);
21109 }
21110 else
4d3c2250 21111 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21112}
21113
cf2c3c16
TT
21114/* Skip some bytes from BYTES according to the form given in FORM.
21115 Returns the new pointer. */
2e276125 21116
d521ce57
TT
21117static const gdb_byte *
21118skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21119 enum dwarf_form form,
21120 unsigned int offset_size,
21121 struct dwarf2_section_info *section)
2e276125 21122{
cf2c3c16 21123 unsigned int bytes_read;
2e276125 21124
cf2c3c16 21125 switch (form)
2e276125 21126 {
cf2c3c16
TT
21127 case DW_FORM_data1:
21128 case DW_FORM_flag:
21129 ++bytes;
21130 break;
21131
21132 case DW_FORM_data2:
21133 bytes += 2;
21134 break;
21135
21136 case DW_FORM_data4:
21137 bytes += 4;
21138 break;
21139
21140 case DW_FORM_data8:
21141 bytes += 8;
21142 break;
21143
21144 case DW_FORM_string:
21145 read_direct_string (abfd, bytes, &bytes_read);
21146 bytes += bytes_read;
21147 break;
21148
21149 case DW_FORM_sec_offset:
21150 case DW_FORM_strp:
36586728 21151 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21152 bytes += offset_size;
21153 break;
21154
21155 case DW_FORM_block:
21156 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21157 bytes += bytes_read;
21158 break;
21159
21160 case DW_FORM_block1:
21161 bytes += 1 + read_1_byte (abfd, bytes);
21162 break;
21163 case DW_FORM_block2:
21164 bytes += 2 + read_2_bytes (abfd, bytes);
21165 break;
21166 case DW_FORM_block4:
21167 bytes += 4 + read_4_bytes (abfd, bytes);
21168 break;
21169
21170 case DW_FORM_sdata:
21171 case DW_FORM_udata:
3019eac3
DE
21172 case DW_FORM_GNU_addr_index:
21173 case DW_FORM_GNU_str_index:
d521ce57 21174 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21175 if (bytes == NULL)
21176 {
21177 dwarf2_section_buffer_overflow_complaint (section);
21178 return NULL;
21179 }
cf2c3c16
TT
21180 break;
21181
21182 default:
21183 {
21184 complain:
21185 complaint (&symfile_complaints,
21186 _("invalid form 0x%x in `%s'"),
a32a8923 21187 form, get_section_name (section));
cf2c3c16
TT
21188 return NULL;
21189 }
2e276125
JB
21190 }
21191
cf2c3c16
TT
21192 return bytes;
21193}
757a13d0 21194
cf2c3c16
TT
21195/* A helper for dwarf_decode_macros that handles skipping an unknown
21196 opcode. Returns an updated pointer to the macro data buffer; or,
21197 on error, issues a complaint and returns NULL. */
757a13d0 21198
d521ce57 21199static const gdb_byte *
cf2c3c16 21200skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21201 const gdb_byte **opcode_definitions,
21202 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21203 bfd *abfd,
21204 unsigned int offset_size,
21205 struct dwarf2_section_info *section)
21206{
21207 unsigned int bytes_read, i;
21208 unsigned long arg;
d521ce57 21209 const gdb_byte *defn;
2e276125 21210
cf2c3c16 21211 if (opcode_definitions[opcode] == NULL)
2e276125 21212 {
cf2c3c16
TT
21213 complaint (&symfile_complaints,
21214 _("unrecognized DW_MACFINO opcode 0x%x"),
21215 opcode);
21216 return NULL;
21217 }
2e276125 21218
cf2c3c16
TT
21219 defn = opcode_definitions[opcode];
21220 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21221 defn += bytes_read;
2e276125 21222
cf2c3c16
TT
21223 for (i = 0; i < arg; ++i)
21224 {
aead7601
SM
21225 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21226 (enum dwarf_form) defn[i], offset_size,
f664829e 21227 section);
cf2c3c16
TT
21228 if (mac_ptr == NULL)
21229 {
21230 /* skip_form_bytes already issued the complaint. */
21231 return NULL;
21232 }
21233 }
757a13d0 21234
cf2c3c16
TT
21235 return mac_ptr;
21236}
757a13d0 21237
cf2c3c16
TT
21238/* A helper function which parses the header of a macro section.
21239 If the macro section is the extended (for now called "GNU") type,
21240 then this updates *OFFSET_SIZE. Returns a pointer to just after
21241 the header, or issues a complaint and returns NULL on error. */
757a13d0 21242
d521ce57
TT
21243static const gdb_byte *
21244dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21245 bfd *abfd,
d521ce57 21246 const gdb_byte *mac_ptr,
cf2c3c16
TT
21247 unsigned int *offset_size,
21248 int section_is_gnu)
21249{
21250 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21251
cf2c3c16
TT
21252 if (section_is_gnu)
21253 {
21254 unsigned int version, flags;
757a13d0 21255
cf2c3c16
TT
21256 version = read_2_bytes (abfd, mac_ptr);
21257 if (version != 4)
21258 {
21259 complaint (&symfile_complaints,
21260 _("unrecognized version `%d' in .debug_macro section"),
21261 version);
21262 return NULL;
21263 }
21264 mac_ptr += 2;
757a13d0 21265
cf2c3c16
TT
21266 flags = read_1_byte (abfd, mac_ptr);
21267 ++mac_ptr;
21268 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21269
cf2c3c16
TT
21270 if ((flags & 2) != 0)
21271 /* We don't need the line table offset. */
21272 mac_ptr += *offset_size;
757a13d0 21273
cf2c3c16
TT
21274 /* Vendor opcode descriptions. */
21275 if ((flags & 4) != 0)
21276 {
21277 unsigned int i, count;
757a13d0 21278
cf2c3c16
TT
21279 count = read_1_byte (abfd, mac_ptr);
21280 ++mac_ptr;
21281 for (i = 0; i < count; ++i)
21282 {
21283 unsigned int opcode, bytes_read;
21284 unsigned long arg;
21285
21286 opcode = read_1_byte (abfd, mac_ptr);
21287 ++mac_ptr;
21288 opcode_definitions[opcode] = mac_ptr;
21289 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21290 mac_ptr += bytes_read;
21291 mac_ptr += arg;
21292 }
757a13d0 21293 }
cf2c3c16 21294 }
757a13d0 21295
cf2c3c16
TT
21296 return mac_ptr;
21297}
757a13d0 21298
cf2c3c16 21299/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21300 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21301
21302static void
d521ce57
TT
21303dwarf_decode_macro_bytes (bfd *abfd,
21304 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21305 struct macro_source_file *current_file,
43f3e411 21306 struct line_header *lh,
cf2c3c16 21307 struct dwarf2_section_info *section,
36586728 21308 int section_is_gnu, int section_is_dwz,
cf2c3c16 21309 unsigned int offset_size,
8fc3fc34 21310 htab_t include_hash)
cf2c3c16 21311{
4d663531 21312 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21313 enum dwarf_macro_record_type macinfo_type;
21314 int at_commandline;
d521ce57 21315 const gdb_byte *opcode_definitions[256];
757a13d0 21316
cf2c3c16
TT
21317 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21318 &offset_size, section_is_gnu);
21319 if (mac_ptr == NULL)
21320 {
21321 /* We already issued a complaint. */
21322 return;
21323 }
757a13d0
JK
21324
21325 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21326 GDB is still reading the definitions from command line. First
21327 DW_MACINFO_start_file will need to be ignored as it was already executed
21328 to create CURRENT_FILE for the main source holding also the command line
21329 definitions. On first met DW_MACINFO_start_file this flag is reset to
21330 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21331
21332 at_commandline = 1;
21333
21334 do
21335 {
21336 /* Do we at least have room for a macinfo type byte? */
21337 if (mac_ptr >= mac_end)
21338 {
f664829e 21339 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21340 break;
21341 }
21342
aead7601 21343 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21344 mac_ptr++;
21345
cf2c3c16
TT
21346 /* Note that we rely on the fact that the corresponding GNU and
21347 DWARF constants are the same. */
757a13d0
JK
21348 switch (macinfo_type)
21349 {
21350 /* A zero macinfo type indicates the end of the macro
21351 information. */
21352 case 0:
21353 break;
2e276125 21354
cf2c3c16
TT
21355 case DW_MACRO_GNU_define:
21356 case DW_MACRO_GNU_undef:
21357 case DW_MACRO_GNU_define_indirect:
21358 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21359 case DW_MACRO_GNU_define_indirect_alt:
21360 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21361 {
891d2f0b 21362 unsigned int bytes_read;
2e276125 21363 int line;
d521ce57 21364 const char *body;
cf2c3c16 21365 int is_define;
2e276125 21366
cf2c3c16
TT
21367 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21368 mac_ptr += bytes_read;
21369
21370 if (macinfo_type == DW_MACRO_GNU_define
21371 || macinfo_type == DW_MACRO_GNU_undef)
21372 {
21373 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21374 mac_ptr += bytes_read;
21375 }
21376 else
21377 {
21378 LONGEST str_offset;
21379
21380 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21381 mac_ptr += offset_size;
2e276125 21382
36586728 21383 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21384 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21385 || section_is_dwz)
36586728
TT
21386 {
21387 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21388
21389 body = read_indirect_string_from_dwz (dwz, str_offset);
21390 }
21391 else
21392 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21393 }
21394
21395 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21396 || macinfo_type == DW_MACRO_GNU_define_indirect
21397 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21398 if (! current_file)
757a13d0
JK
21399 {
21400 /* DWARF violation as no main source is present. */
21401 complaint (&symfile_complaints,
21402 _("debug info with no main source gives macro %s "
21403 "on line %d: %s"),
cf2c3c16
TT
21404 is_define ? _("definition") : _("undefinition"),
21405 line, body);
757a13d0
JK
21406 break;
21407 }
3e43a32a
MS
21408 if ((line == 0 && !at_commandline)
21409 || (line != 0 && at_commandline))
4d3c2250 21410 complaint (&symfile_complaints,
757a13d0
JK
21411 _("debug info gives %s macro %s with %s line %d: %s"),
21412 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21413 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21414 line == 0 ? _("zero") : _("non-zero"), line, body);
21415
cf2c3c16 21416 if (is_define)
757a13d0 21417 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21418 else
21419 {
21420 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21421 || macinfo_type == DW_MACRO_GNU_undef_indirect
21422 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21423 macro_undef (current_file, line, body);
21424 }
2e276125
JB
21425 }
21426 break;
21427
cf2c3c16 21428 case DW_MACRO_GNU_start_file:
2e276125 21429 {
891d2f0b 21430 unsigned int bytes_read;
2e276125
JB
21431 int line, file;
21432
21433 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21434 mac_ptr += bytes_read;
21435 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21436 mac_ptr += bytes_read;
21437
3e43a32a
MS
21438 if ((line == 0 && !at_commandline)
21439 || (line != 0 && at_commandline))
757a13d0
JK
21440 complaint (&symfile_complaints,
21441 _("debug info gives source %d included "
21442 "from %s at %s line %d"),
21443 file, at_commandline ? _("command-line") : _("file"),
21444 line == 0 ? _("zero") : _("non-zero"), line);
21445
21446 if (at_commandline)
21447 {
cf2c3c16
TT
21448 /* This DW_MACRO_GNU_start_file was executed in the
21449 pass one. */
757a13d0
JK
21450 at_commandline = 0;
21451 }
21452 else
43f3e411 21453 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21454 }
21455 break;
21456
cf2c3c16 21457 case DW_MACRO_GNU_end_file:
2e276125 21458 if (! current_file)
4d3c2250 21459 complaint (&symfile_complaints,
3e43a32a
MS
21460 _("macro debug info has an unmatched "
21461 "`close_file' directive"));
2e276125
JB
21462 else
21463 {
21464 current_file = current_file->included_by;
21465 if (! current_file)
21466 {
cf2c3c16 21467 enum dwarf_macro_record_type next_type;
2e276125
JB
21468
21469 /* GCC circa March 2002 doesn't produce the zero
21470 type byte marking the end of the compilation
21471 unit. Complain if it's not there, but exit no
21472 matter what. */
21473
21474 /* Do we at least have room for a macinfo type byte? */
21475 if (mac_ptr >= mac_end)
21476 {
f664829e 21477 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21478 return;
21479 }
21480
21481 /* We don't increment mac_ptr here, so this is just
21482 a look-ahead. */
aead7601
SM
21483 next_type
21484 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21485 mac_ptr);
2e276125 21486 if (next_type != 0)
4d3c2250 21487 complaint (&symfile_complaints,
3e43a32a
MS
21488 _("no terminating 0-type entry for "
21489 "macros in `.debug_macinfo' section"));
2e276125
JB
21490
21491 return;
21492 }
21493 }
21494 break;
21495
cf2c3c16 21496 case DW_MACRO_GNU_transparent_include:
36586728 21497 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21498 {
21499 LONGEST offset;
8fc3fc34 21500 void **slot;
a036ba48
TT
21501 bfd *include_bfd = abfd;
21502 struct dwarf2_section_info *include_section = section;
21503 struct dwarf2_section_info alt_section;
d521ce57 21504 const gdb_byte *include_mac_end = mac_end;
a036ba48 21505 int is_dwz = section_is_dwz;
d521ce57 21506 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21507
21508 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21509 mac_ptr += offset_size;
21510
a036ba48
TT
21511 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21512 {
21513 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21514
4d663531 21515 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21516
a036ba48 21517 include_section = &dwz->macro;
a32a8923 21518 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21519 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21520 is_dwz = 1;
21521 }
21522
21523 new_mac_ptr = include_section->buffer + offset;
21524 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21525
8fc3fc34
TT
21526 if (*slot != NULL)
21527 {
21528 /* This has actually happened; see
21529 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21530 complaint (&symfile_complaints,
21531 _("recursive DW_MACRO_GNU_transparent_include in "
21532 ".debug_macro section"));
21533 }
21534 else
21535 {
d521ce57 21536 *slot = (void *) new_mac_ptr;
36586728 21537
a036ba48 21538 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21539 include_mac_end, current_file, lh,
36586728 21540 section, section_is_gnu, is_dwz,
4d663531 21541 offset_size, include_hash);
8fc3fc34 21542
d521ce57 21543 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21544 }
cf2c3c16
TT
21545 }
21546 break;
21547
2e276125 21548 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21549 if (!section_is_gnu)
21550 {
21551 unsigned int bytes_read;
21552 int constant;
2e276125 21553
cf2c3c16
TT
21554 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21555 mac_ptr += bytes_read;
21556 read_direct_string (abfd, mac_ptr, &bytes_read);
21557 mac_ptr += bytes_read;
2e276125 21558
cf2c3c16
TT
21559 /* We don't recognize any vendor extensions. */
21560 break;
21561 }
21562 /* FALLTHROUGH */
21563
21564 default:
21565 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21566 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21567 section);
21568 if (mac_ptr == NULL)
21569 return;
21570 break;
2e276125 21571 }
757a13d0 21572 } while (macinfo_type != 0);
2e276125 21573}
8e19ed76 21574
cf2c3c16 21575static void
09262596 21576dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21577 int section_is_gnu)
cf2c3c16 21578{
bb5ed363 21579 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21580 struct line_header *lh = cu->line_header;
21581 bfd *abfd;
d521ce57 21582 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21583 struct macro_source_file *current_file = 0;
21584 enum dwarf_macro_record_type macinfo_type;
21585 unsigned int offset_size = cu->header.offset_size;
d521ce57 21586 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21587 struct cleanup *cleanup;
21588 htab_t include_hash;
21589 void **slot;
09262596
DE
21590 struct dwarf2_section_info *section;
21591 const char *section_name;
21592
21593 if (cu->dwo_unit != NULL)
21594 {
21595 if (section_is_gnu)
21596 {
21597 section = &cu->dwo_unit->dwo_file->sections.macro;
21598 section_name = ".debug_macro.dwo";
21599 }
21600 else
21601 {
21602 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21603 section_name = ".debug_macinfo.dwo";
21604 }
21605 }
21606 else
21607 {
21608 if (section_is_gnu)
21609 {
21610 section = &dwarf2_per_objfile->macro;
21611 section_name = ".debug_macro";
21612 }
21613 else
21614 {
21615 section = &dwarf2_per_objfile->macinfo;
21616 section_name = ".debug_macinfo";
21617 }
21618 }
cf2c3c16 21619
bb5ed363 21620 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21621 if (section->buffer == NULL)
21622 {
fceca515 21623 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21624 return;
21625 }
a32a8923 21626 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21627
21628 /* First pass: Find the name of the base filename.
21629 This filename is needed in order to process all macros whose definition
21630 (or undefinition) comes from the command line. These macros are defined
21631 before the first DW_MACINFO_start_file entry, and yet still need to be
21632 associated to the base file.
21633
21634 To determine the base file name, we scan the macro definitions until we
21635 reach the first DW_MACINFO_start_file entry. We then initialize
21636 CURRENT_FILE accordingly so that any macro definition found before the
21637 first DW_MACINFO_start_file can still be associated to the base file. */
21638
21639 mac_ptr = section->buffer + offset;
21640 mac_end = section->buffer + section->size;
21641
21642 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21643 &offset_size, section_is_gnu);
21644 if (mac_ptr == NULL)
21645 {
21646 /* We already issued a complaint. */
21647 return;
21648 }
21649
21650 do
21651 {
21652 /* Do we at least have room for a macinfo type byte? */
21653 if (mac_ptr >= mac_end)
21654 {
21655 /* Complaint is printed during the second pass as GDB will probably
21656 stop the first pass earlier upon finding
21657 DW_MACINFO_start_file. */
21658 break;
21659 }
21660
aead7601 21661 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21662 mac_ptr++;
21663
21664 /* Note that we rely on the fact that the corresponding GNU and
21665 DWARF constants are the same. */
21666 switch (macinfo_type)
21667 {
21668 /* A zero macinfo type indicates the end of the macro
21669 information. */
21670 case 0:
21671 break;
21672
21673 case DW_MACRO_GNU_define:
21674 case DW_MACRO_GNU_undef:
21675 /* Only skip the data by MAC_PTR. */
21676 {
21677 unsigned int bytes_read;
21678
21679 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21680 mac_ptr += bytes_read;
21681 read_direct_string (abfd, mac_ptr, &bytes_read);
21682 mac_ptr += bytes_read;
21683 }
21684 break;
21685
21686 case DW_MACRO_GNU_start_file:
21687 {
21688 unsigned int bytes_read;
21689 int line, file;
21690
21691 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21692 mac_ptr += bytes_read;
21693 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21694 mac_ptr += bytes_read;
21695
43f3e411 21696 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21697 }
21698 break;
21699
21700 case DW_MACRO_GNU_end_file:
21701 /* No data to skip by MAC_PTR. */
21702 break;
21703
21704 case DW_MACRO_GNU_define_indirect:
21705 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21706 case DW_MACRO_GNU_define_indirect_alt:
21707 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21708 {
21709 unsigned int bytes_read;
21710
21711 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21712 mac_ptr += bytes_read;
21713 mac_ptr += offset_size;
21714 }
21715 break;
21716
21717 case DW_MACRO_GNU_transparent_include:
f7a35f02 21718 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21719 /* Note that, according to the spec, a transparent include
21720 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21721 skip this opcode. */
21722 mac_ptr += offset_size;
21723 break;
21724
21725 case DW_MACINFO_vendor_ext:
21726 /* Only skip the data by MAC_PTR. */
21727 if (!section_is_gnu)
21728 {
21729 unsigned int bytes_read;
21730
21731 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21732 mac_ptr += bytes_read;
21733 read_direct_string (abfd, mac_ptr, &bytes_read);
21734 mac_ptr += bytes_read;
21735 }
21736 /* FALLTHROUGH */
21737
21738 default:
21739 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21740 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21741 section);
21742 if (mac_ptr == NULL)
21743 return;
21744 break;
21745 }
21746 } while (macinfo_type != 0 && current_file == NULL);
21747
21748 /* Second pass: Process all entries.
21749
21750 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21751 command-line macro definitions/undefinitions. This flag is unset when we
21752 reach the first DW_MACINFO_start_file entry. */
21753
8fc3fc34
TT
21754 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21755 NULL, xcalloc, xfree);
21756 cleanup = make_cleanup_htab_delete (include_hash);
21757 mac_ptr = section->buffer + offset;
21758 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21759 *slot = (void *) mac_ptr;
8fc3fc34 21760 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21761 current_file, lh, section,
4d663531 21762 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21763 do_cleanups (cleanup);
cf2c3c16
TT
21764}
21765
8e19ed76 21766/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21767 if so return true else false. */
380bca97 21768
8e19ed76 21769static int
6e5a29e1 21770attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21771{
21772 return (attr == NULL ? 0 :
21773 attr->form == DW_FORM_block1
21774 || attr->form == DW_FORM_block2
21775 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21776 || attr->form == DW_FORM_block
21777 || attr->form == DW_FORM_exprloc);
8e19ed76 21778}
4c2df51b 21779
c6a0999f
JB
21780/* Return non-zero if ATTR's value is a section offset --- classes
21781 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21782 You may use DW_UNSND (attr) to retrieve such offsets.
21783
21784 Section 7.5.4, "Attribute Encodings", explains that no attribute
21785 may have a value that belongs to more than one of these classes; it
21786 would be ambiguous if we did, because we use the same forms for all
21787 of them. */
380bca97 21788
3690dd37 21789static int
6e5a29e1 21790attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21791{
21792 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21793 || attr->form == DW_FORM_data8
21794 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21795}
21796
3690dd37
JB
21797/* Return non-zero if ATTR's value falls in the 'constant' class, or
21798 zero otherwise. When this function returns true, you can apply
21799 dwarf2_get_attr_constant_value to it.
21800
21801 However, note that for some attributes you must check
21802 attr_form_is_section_offset before using this test. DW_FORM_data4
21803 and DW_FORM_data8 are members of both the constant class, and of
21804 the classes that contain offsets into other debug sections
21805 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21806 that, if an attribute's can be either a constant or one of the
21807 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21808 taken as section offsets, not constants. */
380bca97 21809
3690dd37 21810static int
6e5a29e1 21811attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21812{
21813 switch (attr->form)
21814 {
21815 case DW_FORM_sdata:
21816 case DW_FORM_udata:
21817 case DW_FORM_data1:
21818 case DW_FORM_data2:
21819 case DW_FORM_data4:
21820 case DW_FORM_data8:
21821 return 1;
21822 default:
21823 return 0;
21824 }
21825}
21826
7771576e
SA
21827
21828/* DW_ADDR is always stored already as sect_offset; despite for the forms
21829 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21830
21831static int
6e5a29e1 21832attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21833{
21834 switch (attr->form)
21835 {
21836 case DW_FORM_ref_addr:
21837 case DW_FORM_ref1:
21838 case DW_FORM_ref2:
21839 case DW_FORM_ref4:
21840 case DW_FORM_ref8:
21841 case DW_FORM_ref_udata:
21842 case DW_FORM_GNU_ref_alt:
21843 return 1;
21844 default:
21845 return 0;
21846 }
21847}
21848
3019eac3
DE
21849/* Return the .debug_loc section to use for CU.
21850 For DWO files use .debug_loc.dwo. */
21851
21852static struct dwarf2_section_info *
21853cu_debug_loc_section (struct dwarf2_cu *cu)
21854{
21855 if (cu->dwo_unit)
21856 return &cu->dwo_unit->dwo_file->sections.loc;
21857 return &dwarf2_per_objfile->loc;
21858}
21859
8cf6f0b1
TT
21860/* A helper function that fills in a dwarf2_loclist_baton. */
21861
21862static void
21863fill_in_loclist_baton (struct dwarf2_cu *cu,
21864 struct dwarf2_loclist_baton *baton,
ff39bb5e 21865 const struct attribute *attr)
8cf6f0b1 21866{
3019eac3
DE
21867 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21868
21869 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21870
21871 baton->per_cu = cu->per_cu;
21872 gdb_assert (baton->per_cu);
21873 /* We don't know how long the location list is, but make sure we
21874 don't run off the edge of the section. */
3019eac3
DE
21875 baton->size = section->size - DW_UNSND (attr);
21876 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21877 baton->base_address = cu->base_address;
f664829e 21878 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21879}
21880
4c2df51b 21881static void
ff39bb5e 21882dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21883 struct dwarf2_cu *cu, int is_block)
4c2df51b 21884{
bb5ed363 21885 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21886 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21887
3690dd37 21888 if (attr_form_is_section_offset (attr)
3019eac3 21889 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21890 the section. If so, fall through to the complaint in the
21891 other branch. */
3019eac3 21892 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21893 {
0d53c4c4 21894 struct dwarf2_loclist_baton *baton;
4c2df51b 21895
8d749320 21896 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21897
8cf6f0b1 21898 fill_in_loclist_baton (cu, baton, attr);
be391dca 21899
d00adf39 21900 if (cu->base_known == 0)
0d53c4c4 21901 complaint (&symfile_complaints,
3e43a32a
MS
21902 _("Location list used without "
21903 "specifying the CU base address."));
4c2df51b 21904
f1e6e072
TT
21905 SYMBOL_ACLASS_INDEX (sym) = (is_block
21906 ? dwarf2_loclist_block_index
21907 : dwarf2_loclist_index);
0d53c4c4
DJ
21908 SYMBOL_LOCATION_BATON (sym) = baton;
21909 }
21910 else
21911 {
21912 struct dwarf2_locexpr_baton *baton;
21913
8d749320 21914 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21915 baton->per_cu = cu->per_cu;
21916 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21917
21918 if (attr_form_is_block (attr))
21919 {
21920 /* Note that we're just copying the block's data pointer
21921 here, not the actual data. We're still pointing into the
6502dd73
DJ
21922 info_buffer for SYM's objfile; right now we never release
21923 that buffer, but when we do clean up properly this may
21924 need to change. */
0d53c4c4
DJ
21925 baton->size = DW_BLOCK (attr)->size;
21926 baton->data = DW_BLOCK (attr)->data;
21927 }
21928 else
21929 {
21930 dwarf2_invalid_attrib_class_complaint ("location description",
21931 SYMBOL_NATURAL_NAME (sym));
21932 baton->size = 0;
0d53c4c4 21933 }
6e70227d 21934
f1e6e072
TT
21935 SYMBOL_ACLASS_INDEX (sym) = (is_block
21936 ? dwarf2_locexpr_block_index
21937 : dwarf2_locexpr_index);
0d53c4c4
DJ
21938 SYMBOL_LOCATION_BATON (sym) = baton;
21939 }
4c2df51b 21940}
6502dd73 21941
9aa1f1e3
TT
21942/* Return the OBJFILE associated with the compilation unit CU. If CU
21943 came from a separate debuginfo file, then the master objfile is
21944 returned. */
ae0d2f24
UW
21945
21946struct objfile *
21947dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21948{
9291a0cd 21949 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21950
21951 /* Return the master objfile, so that we can report and look up the
21952 correct file containing this variable. */
21953 if (objfile->separate_debug_objfile_backlink)
21954 objfile = objfile->separate_debug_objfile_backlink;
21955
21956 return objfile;
21957}
21958
96408a79
SA
21959/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21960 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21961 CU_HEADERP first. */
21962
21963static const struct comp_unit_head *
21964per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21965 struct dwarf2_per_cu_data *per_cu)
21966{
d521ce57 21967 const gdb_byte *info_ptr;
96408a79
SA
21968
21969 if (per_cu->cu)
21970 return &per_cu->cu->header;
21971
8a0459fd 21972 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21973
21974 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21975 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21976
21977 return cu_headerp;
21978}
21979
ae0d2f24
UW
21980/* Return the address size given in the compilation unit header for CU. */
21981
98714339 21982int
ae0d2f24
UW
21983dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21984{
96408a79
SA
21985 struct comp_unit_head cu_header_local;
21986 const struct comp_unit_head *cu_headerp;
c471e790 21987
96408a79
SA
21988 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21989
21990 return cu_headerp->addr_size;
ae0d2f24
UW
21991}
21992
9eae7c52
TT
21993/* Return the offset size given in the compilation unit header for CU. */
21994
21995int
21996dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21997{
96408a79
SA
21998 struct comp_unit_head cu_header_local;
21999 const struct comp_unit_head *cu_headerp;
9c6c53f7 22000
96408a79
SA
22001 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22002
22003 return cu_headerp->offset_size;
22004}
22005
22006/* See its dwarf2loc.h declaration. */
22007
22008int
22009dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22010{
22011 struct comp_unit_head cu_header_local;
22012 const struct comp_unit_head *cu_headerp;
22013
22014 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22015
22016 if (cu_headerp->version == 2)
22017 return cu_headerp->addr_size;
22018 else
22019 return cu_headerp->offset_size;
181cebd4
JK
22020}
22021
9aa1f1e3
TT
22022/* Return the text offset of the CU. The returned offset comes from
22023 this CU's objfile. If this objfile came from a separate debuginfo
22024 file, then the offset may be different from the corresponding
22025 offset in the parent objfile. */
22026
22027CORE_ADDR
22028dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22029{
bb3fa9d0 22030 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22031
22032 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22033}
22034
348e048f
DE
22035/* Locate the .debug_info compilation unit from CU's objfile which contains
22036 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22037
22038static struct dwarf2_per_cu_data *
b64f50a1 22039dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22040 unsigned int offset_in_dwz,
ae038cb0
DJ
22041 struct objfile *objfile)
22042{
22043 struct dwarf2_per_cu_data *this_cu;
22044 int low, high;
36586728 22045 const sect_offset *cu_off;
ae038cb0 22046
ae038cb0
DJ
22047 low = 0;
22048 high = dwarf2_per_objfile->n_comp_units - 1;
22049 while (high > low)
22050 {
36586728 22051 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22052 int mid = low + (high - low) / 2;
9a619af0 22053
36586728
TT
22054 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22055 cu_off = &mid_cu->offset;
22056 if (mid_cu->is_dwz > offset_in_dwz
22057 || (mid_cu->is_dwz == offset_in_dwz
22058 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22059 high = mid;
22060 else
22061 low = mid + 1;
22062 }
22063 gdb_assert (low == high);
36586728
TT
22064 this_cu = dwarf2_per_objfile->all_comp_units[low];
22065 cu_off = &this_cu->offset;
22066 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22067 {
36586728 22068 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22069 error (_("Dwarf Error: could not find partial DIE containing "
22070 "offset 0x%lx [in module %s]"),
b64f50a1 22071 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22072
b64f50a1
JK
22073 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22074 <= offset.sect_off);
ae038cb0
DJ
22075 return dwarf2_per_objfile->all_comp_units[low-1];
22076 }
22077 else
22078 {
22079 this_cu = dwarf2_per_objfile->all_comp_units[low];
22080 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22081 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22082 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22083 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22084 return this_cu;
22085 }
22086}
22087
23745b47 22088/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22089
9816fde3 22090static void
23745b47 22091init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22092{
9816fde3 22093 memset (cu, 0, sizeof (*cu));
23745b47
DE
22094 per_cu->cu = cu;
22095 cu->per_cu = per_cu;
22096 cu->objfile = per_cu->objfile;
93311388 22097 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22098}
22099
22100/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22101
22102static void
95554aad
TT
22103prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22104 enum language pretend_language)
9816fde3
JK
22105{
22106 struct attribute *attr;
22107
22108 /* Set the language we're debugging. */
22109 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22110 if (attr)
22111 set_cu_language (DW_UNSND (attr), cu);
22112 else
9cded63f 22113 {
95554aad 22114 cu->language = pretend_language;
9cded63f
TT
22115 cu->language_defn = language_def (cu->language);
22116 }
dee91e82 22117
7d45c7c3 22118 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22119}
22120
ae038cb0
DJ
22121/* Release one cached compilation unit, CU. We unlink it from the tree
22122 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22123 the caller is responsible for that.
22124 NOTE: DATA is a void * because this function is also used as a
22125 cleanup routine. */
ae038cb0
DJ
22126
22127static void
68dc6402 22128free_heap_comp_unit (void *data)
ae038cb0 22129{
9a3c8263 22130 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22131
23745b47
DE
22132 gdb_assert (cu->per_cu != NULL);
22133 cu->per_cu->cu = NULL;
ae038cb0
DJ
22134 cu->per_cu = NULL;
22135
22136 obstack_free (&cu->comp_unit_obstack, NULL);
22137
22138 xfree (cu);
22139}
22140
72bf9492 22141/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22142 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22143 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22144
22145static void
22146free_stack_comp_unit (void *data)
22147{
9a3c8263 22148 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22149
23745b47
DE
22150 gdb_assert (cu->per_cu != NULL);
22151 cu->per_cu->cu = NULL;
22152 cu->per_cu = NULL;
22153
72bf9492
DJ
22154 obstack_free (&cu->comp_unit_obstack, NULL);
22155 cu->partial_dies = NULL;
ae038cb0
DJ
22156}
22157
22158/* Free all cached compilation units. */
22159
22160static void
22161free_cached_comp_units (void *data)
22162{
22163 struct dwarf2_per_cu_data *per_cu, **last_chain;
22164
22165 per_cu = dwarf2_per_objfile->read_in_chain;
22166 last_chain = &dwarf2_per_objfile->read_in_chain;
22167 while (per_cu != NULL)
22168 {
22169 struct dwarf2_per_cu_data *next_cu;
22170
22171 next_cu = per_cu->cu->read_in_chain;
22172
68dc6402 22173 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22174 *last_chain = next_cu;
22175
22176 per_cu = next_cu;
22177 }
22178}
22179
22180/* Increase the age counter on each cached compilation unit, and free
22181 any that are too old. */
22182
22183static void
22184age_cached_comp_units (void)
22185{
22186 struct dwarf2_per_cu_data *per_cu, **last_chain;
22187
22188 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22189 per_cu = dwarf2_per_objfile->read_in_chain;
22190 while (per_cu != NULL)
22191 {
22192 per_cu->cu->last_used ++;
b4f54984 22193 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22194 dwarf2_mark (per_cu->cu);
22195 per_cu = per_cu->cu->read_in_chain;
22196 }
22197
22198 per_cu = dwarf2_per_objfile->read_in_chain;
22199 last_chain = &dwarf2_per_objfile->read_in_chain;
22200 while (per_cu != NULL)
22201 {
22202 struct dwarf2_per_cu_data *next_cu;
22203
22204 next_cu = per_cu->cu->read_in_chain;
22205
22206 if (!per_cu->cu->mark)
22207 {
68dc6402 22208 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22209 *last_chain = next_cu;
22210 }
22211 else
22212 last_chain = &per_cu->cu->read_in_chain;
22213
22214 per_cu = next_cu;
22215 }
22216}
22217
22218/* Remove a single compilation unit from the cache. */
22219
22220static void
dee91e82 22221free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22222{
22223 struct dwarf2_per_cu_data *per_cu, **last_chain;
22224
22225 per_cu = dwarf2_per_objfile->read_in_chain;
22226 last_chain = &dwarf2_per_objfile->read_in_chain;
22227 while (per_cu != NULL)
22228 {
22229 struct dwarf2_per_cu_data *next_cu;
22230
22231 next_cu = per_cu->cu->read_in_chain;
22232
dee91e82 22233 if (per_cu == target_per_cu)
ae038cb0 22234 {
68dc6402 22235 free_heap_comp_unit (per_cu->cu);
dee91e82 22236 per_cu->cu = NULL;
ae038cb0
DJ
22237 *last_chain = next_cu;
22238 break;
22239 }
22240 else
22241 last_chain = &per_cu->cu->read_in_chain;
22242
22243 per_cu = next_cu;
22244 }
22245}
22246
fe3e1990
DJ
22247/* Release all extra memory associated with OBJFILE. */
22248
22249void
22250dwarf2_free_objfile (struct objfile *objfile)
22251{
9a3c8263
SM
22252 dwarf2_per_objfile
22253 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22254 dwarf2_objfile_data_key);
fe3e1990
DJ
22255
22256 if (dwarf2_per_objfile == NULL)
22257 return;
22258
22259 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22260 free_cached_comp_units (NULL);
22261
7b9f3c50
DE
22262 if (dwarf2_per_objfile->quick_file_names_table)
22263 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22264
527f3840
JK
22265 if (dwarf2_per_objfile->line_header_hash)
22266 htab_delete (dwarf2_per_objfile->line_header_hash);
22267
fe3e1990
DJ
22268 /* Everything else should be on the objfile obstack. */
22269}
22270
dee91e82
DE
22271/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22272 We store these in a hash table separate from the DIEs, and preserve them
22273 when the DIEs are flushed out of cache.
22274
22275 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22276 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22277 or the type may come from a DWO file. Furthermore, while it's more logical
22278 to use per_cu->section+offset, with Fission the section with the data is in
22279 the DWO file but we don't know that section at the point we need it.
22280 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22281 because we can enter the lookup routine, get_die_type_at_offset, from
22282 outside this file, and thus won't necessarily have PER_CU->cu.
22283 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22284
dee91e82 22285struct dwarf2_per_cu_offset_and_type
1c379e20 22286{
dee91e82 22287 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22288 sect_offset offset;
1c379e20
DJ
22289 struct type *type;
22290};
22291
dee91e82 22292/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22293
22294static hashval_t
dee91e82 22295per_cu_offset_and_type_hash (const void *item)
1c379e20 22296{
9a3c8263
SM
22297 const struct dwarf2_per_cu_offset_and_type *ofs
22298 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22299
dee91e82 22300 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22301}
22302
dee91e82 22303/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22304
22305static int
dee91e82 22306per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22307{
9a3c8263
SM
22308 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22309 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22310 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22311 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22312
dee91e82
DE
22313 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22314 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22315}
22316
22317/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22318 table if necessary. For convenience, return TYPE.
22319
22320 The DIEs reading must have careful ordering to:
22321 * Not cause infite loops trying to read in DIEs as a prerequisite for
22322 reading current DIE.
22323 * Not trying to dereference contents of still incompletely read in types
22324 while reading in other DIEs.
22325 * Enable referencing still incompletely read in types just by a pointer to
22326 the type without accessing its fields.
22327
22328 Therefore caller should follow these rules:
22329 * Try to fetch any prerequisite types we may need to build this DIE type
22330 before building the type and calling set_die_type.
e71ec853 22331 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22332 possible before fetching more types to complete the current type.
22333 * Make the type as complete as possible before fetching more types. */
1c379e20 22334
f792889a 22335static struct type *
1c379e20
DJ
22336set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22337{
dee91e82 22338 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22339 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22340 struct attribute *attr;
22341 struct dynamic_prop prop;
1c379e20 22342
b4ba55a1
JB
22343 /* For Ada types, make sure that the gnat-specific data is always
22344 initialized (if not already set). There are a few types where
22345 we should not be doing so, because the type-specific area is
22346 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22347 where the type-specific area is used to store the floatformat).
22348 But this is not a problem, because the gnat-specific information
22349 is actually not needed for these types. */
22350 if (need_gnat_info (cu)
22351 && TYPE_CODE (type) != TYPE_CODE_FUNC
22352 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22353 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22354 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22355 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22356 && !HAVE_GNAT_AUX_INFO (type))
22357 INIT_GNAT_SPECIFIC (type);
22358
3f2f83dd
KB
22359 /* Read DW_AT_allocated and set in type. */
22360 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22361 if (attr_form_is_block (attr))
22362 {
22363 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22364 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22365 }
22366 else if (attr != NULL)
22367 {
22368 complaint (&symfile_complaints,
22369 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22370 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22371 die->offset.sect_off);
22372 }
22373
22374 /* Read DW_AT_associated and set in type. */
22375 attr = dwarf2_attr (die, DW_AT_associated, cu);
22376 if (attr_form_is_block (attr))
22377 {
22378 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22379 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22380 }
22381 else if (attr != NULL)
22382 {
22383 complaint (&symfile_complaints,
22384 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22385 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22386 die->offset.sect_off);
22387 }
22388
3cdcd0ce
JB
22389 /* Read DW_AT_data_location and set in type. */
22390 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22391 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22392 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22393
dee91e82 22394 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22395 {
dee91e82
DE
22396 dwarf2_per_objfile->die_type_hash =
22397 htab_create_alloc_ex (127,
22398 per_cu_offset_and_type_hash,
22399 per_cu_offset_and_type_eq,
22400 NULL,
22401 &objfile->objfile_obstack,
22402 hashtab_obstack_allocate,
22403 dummy_obstack_deallocate);
f792889a 22404 }
1c379e20 22405
dee91e82 22406 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22407 ofs.offset = die->offset;
22408 ofs.type = type;
dee91e82
DE
22409 slot = (struct dwarf2_per_cu_offset_and_type **)
22410 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22411 if (*slot)
22412 complaint (&symfile_complaints,
22413 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22414 die->offset.sect_off);
8d749320
SM
22415 *slot = XOBNEW (&objfile->objfile_obstack,
22416 struct dwarf2_per_cu_offset_and_type);
1c379e20 22417 **slot = ofs;
f792889a 22418 return type;
1c379e20
DJ
22419}
22420
02142a6c
DE
22421/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22422 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22423
22424static struct type *
b64f50a1 22425get_die_type_at_offset (sect_offset offset,
673bfd45 22426 struct dwarf2_per_cu_data *per_cu)
1c379e20 22427{
dee91e82 22428 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22429
dee91e82 22430 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22431 return NULL;
1c379e20 22432
dee91e82 22433 ofs.per_cu = per_cu;
673bfd45 22434 ofs.offset = offset;
9a3c8263
SM
22435 slot = ((struct dwarf2_per_cu_offset_and_type *)
22436 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22437 if (slot)
22438 return slot->type;
22439 else
22440 return NULL;
22441}
22442
02142a6c 22443/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22444 or return NULL if DIE does not have a saved type. */
22445
22446static struct type *
22447get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22448{
22449 return get_die_type_at_offset (die->offset, cu->per_cu);
22450}
22451
10b3939b
DJ
22452/* Add a dependence relationship from CU to REF_PER_CU. */
22453
22454static void
22455dwarf2_add_dependence (struct dwarf2_cu *cu,
22456 struct dwarf2_per_cu_data *ref_per_cu)
22457{
22458 void **slot;
22459
22460 if (cu->dependencies == NULL)
22461 cu->dependencies
22462 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22463 NULL, &cu->comp_unit_obstack,
22464 hashtab_obstack_allocate,
22465 dummy_obstack_deallocate);
22466
22467 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22468 if (*slot == NULL)
22469 *slot = ref_per_cu;
22470}
1c379e20 22471
f504f079
DE
22472/* Subroutine of dwarf2_mark to pass to htab_traverse.
22473 Set the mark field in every compilation unit in the
ae038cb0
DJ
22474 cache that we must keep because we are keeping CU. */
22475
10b3939b
DJ
22476static int
22477dwarf2_mark_helper (void **slot, void *data)
22478{
22479 struct dwarf2_per_cu_data *per_cu;
22480
22481 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22482
22483 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22484 reading of the chain. As such dependencies remain valid it is not much
22485 useful to track and undo them during QUIT cleanups. */
22486 if (per_cu->cu == NULL)
22487 return 1;
22488
10b3939b
DJ
22489 if (per_cu->cu->mark)
22490 return 1;
22491 per_cu->cu->mark = 1;
22492
22493 if (per_cu->cu->dependencies != NULL)
22494 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22495
22496 return 1;
22497}
22498
f504f079
DE
22499/* Set the mark field in CU and in every other compilation unit in the
22500 cache that we must keep because we are keeping CU. */
22501
ae038cb0
DJ
22502static void
22503dwarf2_mark (struct dwarf2_cu *cu)
22504{
22505 if (cu->mark)
22506 return;
22507 cu->mark = 1;
10b3939b
DJ
22508 if (cu->dependencies != NULL)
22509 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22510}
22511
22512static void
22513dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22514{
22515 while (per_cu)
22516 {
22517 per_cu->cu->mark = 0;
22518 per_cu = per_cu->cu->read_in_chain;
22519 }
72bf9492
DJ
22520}
22521
72bf9492
DJ
22522/* Trivial hash function for partial_die_info: the hash value of a DIE
22523 is its offset in .debug_info for this objfile. */
22524
22525static hashval_t
22526partial_die_hash (const void *item)
22527{
9a3c8263
SM
22528 const struct partial_die_info *part_die
22529 = (const struct partial_die_info *) item;
9a619af0 22530
b64f50a1 22531 return part_die->offset.sect_off;
72bf9492
DJ
22532}
22533
22534/* Trivial comparison function for partial_die_info structures: two DIEs
22535 are equal if they have the same offset. */
22536
22537static int
22538partial_die_eq (const void *item_lhs, const void *item_rhs)
22539{
9a3c8263
SM
22540 const struct partial_die_info *part_die_lhs
22541 = (const struct partial_die_info *) item_lhs;
22542 const struct partial_die_info *part_die_rhs
22543 = (const struct partial_die_info *) item_rhs;
9a619af0 22544
b64f50a1 22545 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22546}
22547
b4f54984
DE
22548static struct cmd_list_element *set_dwarf_cmdlist;
22549static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22550
22551static void
b4f54984 22552set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22553{
b4f54984 22554 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22555 gdb_stdout);
ae038cb0
DJ
22556}
22557
22558static void
b4f54984 22559show_dwarf_cmd (char *args, int from_tty)
6e70227d 22560{
b4f54984 22561 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22562}
22563
4bf44c1c 22564/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22565
22566static void
c1bd65d0 22567dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22568{
9a3c8263 22569 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22570 int ix;
8b70b953 22571
626f2d1c
TT
22572 /* Make sure we don't accidentally use dwarf2_per_objfile while
22573 cleaning up. */
22574 dwarf2_per_objfile = NULL;
22575
59b0c7c1
JB
22576 for (ix = 0; ix < data->n_comp_units; ++ix)
22577 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22578
59b0c7c1 22579 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22580 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22581 data->all_type_units[ix]->per_cu.imported_symtabs);
22582 xfree (data->all_type_units);
95554aad 22583
8b70b953 22584 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22585
22586 if (data->dwo_files)
22587 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22588 if (data->dwp_file)
22589 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22590
22591 if (data->dwz_file && data->dwz_file->dwz_bfd)
22592 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22593}
22594
22595\f
ae2de4f8 22596/* The "save gdb-index" command. */
9291a0cd
TT
22597
22598/* The contents of the hash table we create when building the string
22599 table. */
22600struct strtab_entry
22601{
22602 offset_type offset;
22603 const char *str;
22604};
22605
559a7a62
JK
22606/* Hash function for a strtab_entry.
22607
22608 Function is used only during write_hash_table so no index format backward
22609 compatibility is needed. */
b89be57b 22610
9291a0cd
TT
22611static hashval_t
22612hash_strtab_entry (const void *e)
22613{
9a3c8263 22614 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22615 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22616}
22617
22618/* Equality function for a strtab_entry. */
b89be57b 22619
9291a0cd
TT
22620static int
22621eq_strtab_entry (const void *a, const void *b)
22622{
9a3c8263
SM
22623 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22624 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22625 return !strcmp (ea->str, eb->str);
22626}
22627
22628/* Create a strtab_entry hash table. */
b89be57b 22629
9291a0cd
TT
22630static htab_t
22631create_strtab (void)
22632{
22633 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22634 xfree, xcalloc, xfree);
22635}
22636
22637/* Add a string to the constant pool. Return the string's offset in
22638 host order. */
b89be57b 22639
9291a0cd
TT
22640static offset_type
22641add_string (htab_t table, struct obstack *cpool, const char *str)
22642{
22643 void **slot;
22644 struct strtab_entry entry;
22645 struct strtab_entry *result;
22646
22647 entry.str = str;
22648 slot = htab_find_slot (table, &entry, INSERT);
22649 if (*slot)
9a3c8263 22650 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22651 else
22652 {
22653 result = XNEW (struct strtab_entry);
22654 result->offset = obstack_object_size (cpool);
22655 result->str = str;
22656 obstack_grow_str0 (cpool, str);
22657 *slot = result;
22658 }
22659 return result->offset;
22660}
22661
22662/* An entry in the symbol table. */
22663struct symtab_index_entry
22664{
22665 /* The name of the symbol. */
22666 const char *name;
22667 /* The offset of the name in the constant pool. */
22668 offset_type index_offset;
22669 /* A sorted vector of the indices of all the CUs that hold an object
22670 of this name. */
22671 VEC (offset_type) *cu_indices;
22672};
22673
22674/* The symbol table. This is a power-of-2-sized hash table. */
22675struct mapped_symtab
22676{
22677 offset_type n_elements;
22678 offset_type size;
22679 struct symtab_index_entry **data;
22680};
22681
22682/* Hash function for a symtab_index_entry. */
b89be57b 22683
9291a0cd
TT
22684static hashval_t
22685hash_symtab_entry (const void *e)
22686{
9a3c8263
SM
22687 const struct symtab_index_entry *entry
22688 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22689 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22690 sizeof (offset_type) * VEC_length (offset_type,
22691 entry->cu_indices),
22692 0);
22693}
22694
22695/* Equality function for a symtab_index_entry. */
b89be57b 22696
9291a0cd
TT
22697static int
22698eq_symtab_entry (const void *a, const void *b)
22699{
9a3c8263
SM
22700 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22701 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22702 int len = VEC_length (offset_type, ea->cu_indices);
22703 if (len != VEC_length (offset_type, eb->cu_indices))
22704 return 0;
22705 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22706 VEC_address (offset_type, eb->cu_indices),
22707 sizeof (offset_type) * len);
22708}
22709
22710/* Destroy a symtab_index_entry. */
b89be57b 22711
9291a0cd
TT
22712static void
22713delete_symtab_entry (void *p)
22714{
9a3c8263 22715 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22716 VEC_free (offset_type, entry->cu_indices);
22717 xfree (entry);
22718}
22719
22720/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22721
9291a0cd 22722static htab_t
3876f04e 22723create_symbol_hash_table (void)
9291a0cd
TT
22724{
22725 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22726 delete_symtab_entry, xcalloc, xfree);
22727}
22728
22729/* Create a new mapped symtab object. */
b89be57b 22730
9291a0cd
TT
22731static struct mapped_symtab *
22732create_mapped_symtab (void)
22733{
22734 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22735 symtab->n_elements = 0;
22736 symtab->size = 1024;
22737 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22738 return symtab;
22739}
22740
22741/* Destroy a mapped_symtab. */
b89be57b 22742
9291a0cd
TT
22743static void
22744cleanup_mapped_symtab (void *p)
22745{
9a3c8263 22746 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22747 /* The contents of the array are freed when the other hash table is
22748 destroyed. */
22749 xfree (symtab->data);
22750 xfree (symtab);
22751}
22752
22753/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22754 the slot.
22755
22756 Function is used only during write_hash_table so no index format backward
22757 compatibility is needed. */
b89be57b 22758
9291a0cd
TT
22759static struct symtab_index_entry **
22760find_slot (struct mapped_symtab *symtab, const char *name)
22761{
559a7a62 22762 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22763
22764 index = hash & (symtab->size - 1);
22765 step = ((hash * 17) & (symtab->size - 1)) | 1;
22766
22767 for (;;)
22768 {
22769 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22770 return &symtab->data[index];
22771 index = (index + step) & (symtab->size - 1);
22772 }
22773}
22774
22775/* Expand SYMTAB's hash table. */
b89be57b 22776
9291a0cd
TT
22777static void
22778hash_expand (struct mapped_symtab *symtab)
22779{
22780 offset_type old_size = symtab->size;
22781 offset_type i;
22782 struct symtab_index_entry **old_entries = symtab->data;
22783
22784 symtab->size *= 2;
22785 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22786
22787 for (i = 0; i < old_size; ++i)
22788 {
22789 if (old_entries[i])
22790 {
22791 struct symtab_index_entry **slot = find_slot (symtab,
22792 old_entries[i]->name);
22793 *slot = old_entries[i];
22794 }
22795 }
22796
22797 xfree (old_entries);
22798}
22799
156942c7
DE
22800/* Add an entry to SYMTAB. NAME is the name of the symbol.
22801 CU_INDEX is the index of the CU in which the symbol appears.
22802 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22803
9291a0cd
TT
22804static void
22805add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22806 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22807 offset_type cu_index)
22808{
22809 struct symtab_index_entry **slot;
156942c7 22810 offset_type cu_index_and_attrs;
9291a0cd
TT
22811
22812 ++symtab->n_elements;
22813 if (4 * symtab->n_elements / 3 >= symtab->size)
22814 hash_expand (symtab);
22815
22816 slot = find_slot (symtab, name);
22817 if (!*slot)
22818 {
22819 *slot = XNEW (struct symtab_index_entry);
22820 (*slot)->name = name;
156942c7 22821 /* index_offset is set later. */
9291a0cd
TT
22822 (*slot)->cu_indices = NULL;
22823 }
156942c7
DE
22824
22825 cu_index_and_attrs = 0;
22826 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22827 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22828 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22829
22830 /* We don't want to record an index value twice as we want to avoid the
22831 duplication.
22832 We process all global symbols and then all static symbols
22833 (which would allow us to avoid the duplication by only having to check
22834 the last entry pushed), but a symbol could have multiple kinds in one CU.
22835 To keep things simple we don't worry about the duplication here and
22836 sort and uniqufy the list after we've processed all symbols. */
22837 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22838}
22839
22840/* qsort helper routine for uniquify_cu_indices. */
22841
22842static int
22843offset_type_compare (const void *ap, const void *bp)
22844{
22845 offset_type a = *(offset_type *) ap;
22846 offset_type b = *(offset_type *) bp;
22847
22848 return (a > b) - (b > a);
22849}
22850
22851/* Sort and remove duplicates of all symbols' cu_indices lists. */
22852
22853static void
22854uniquify_cu_indices (struct mapped_symtab *symtab)
22855{
22856 int i;
22857
22858 for (i = 0; i < symtab->size; ++i)
22859 {
22860 struct symtab_index_entry *entry = symtab->data[i];
22861
22862 if (entry
22863 && entry->cu_indices != NULL)
22864 {
22865 unsigned int next_to_insert, next_to_check;
22866 offset_type last_value;
22867
22868 qsort (VEC_address (offset_type, entry->cu_indices),
22869 VEC_length (offset_type, entry->cu_indices),
22870 sizeof (offset_type), offset_type_compare);
22871
22872 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22873 next_to_insert = 1;
22874 for (next_to_check = 1;
22875 next_to_check < VEC_length (offset_type, entry->cu_indices);
22876 ++next_to_check)
22877 {
22878 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22879 != last_value)
22880 {
22881 last_value = VEC_index (offset_type, entry->cu_indices,
22882 next_to_check);
22883 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22884 last_value);
22885 ++next_to_insert;
22886 }
22887 }
22888 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22889 }
22890 }
9291a0cd
TT
22891}
22892
22893/* Add a vector of indices to the constant pool. */
b89be57b 22894
9291a0cd 22895static offset_type
3876f04e 22896add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22897 struct symtab_index_entry *entry)
22898{
22899 void **slot;
22900
3876f04e 22901 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22902 if (!*slot)
22903 {
22904 offset_type len = VEC_length (offset_type, entry->cu_indices);
22905 offset_type val = MAYBE_SWAP (len);
22906 offset_type iter;
22907 int i;
22908
22909 *slot = entry;
22910 entry->index_offset = obstack_object_size (cpool);
22911
22912 obstack_grow (cpool, &val, sizeof (val));
22913 for (i = 0;
22914 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22915 ++i)
22916 {
22917 val = MAYBE_SWAP (iter);
22918 obstack_grow (cpool, &val, sizeof (val));
22919 }
22920 }
22921 else
22922 {
9a3c8263
SM
22923 struct symtab_index_entry *old_entry
22924 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22925 entry->index_offset = old_entry->index_offset;
22926 entry = old_entry;
22927 }
22928 return entry->index_offset;
22929}
22930
22931/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22932 constant pool entries going into the obstack CPOOL. */
b89be57b 22933
9291a0cd
TT
22934static void
22935write_hash_table (struct mapped_symtab *symtab,
22936 struct obstack *output, struct obstack *cpool)
22937{
22938 offset_type i;
3876f04e 22939 htab_t symbol_hash_table;
9291a0cd
TT
22940 htab_t str_table;
22941
3876f04e 22942 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22943 str_table = create_strtab ();
3876f04e 22944
9291a0cd
TT
22945 /* We add all the index vectors to the constant pool first, to
22946 ensure alignment is ok. */
22947 for (i = 0; i < symtab->size; ++i)
22948 {
22949 if (symtab->data[i])
3876f04e 22950 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22951 }
22952
22953 /* Now write out the hash table. */
22954 for (i = 0; i < symtab->size; ++i)
22955 {
22956 offset_type str_off, vec_off;
22957
22958 if (symtab->data[i])
22959 {
22960 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22961 vec_off = symtab->data[i]->index_offset;
22962 }
22963 else
22964 {
22965 /* While 0 is a valid constant pool index, it is not valid
22966 to have 0 for both offsets. */
22967 str_off = 0;
22968 vec_off = 0;
22969 }
22970
22971 str_off = MAYBE_SWAP (str_off);
22972 vec_off = MAYBE_SWAP (vec_off);
22973
22974 obstack_grow (output, &str_off, sizeof (str_off));
22975 obstack_grow (output, &vec_off, sizeof (vec_off));
22976 }
22977
22978 htab_delete (str_table);
3876f04e 22979 htab_delete (symbol_hash_table);
9291a0cd
TT
22980}
22981
0a5429f6
DE
22982/* Struct to map psymtab to CU index in the index file. */
22983struct psymtab_cu_index_map
22984{
22985 struct partial_symtab *psymtab;
22986 unsigned int cu_index;
22987};
22988
22989static hashval_t
22990hash_psymtab_cu_index (const void *item)
22991{
9a3c8263
SM
22992 const struct psymtab_cu_index_map *map
22993 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
22994
22995 return htab_hash_pointer (map->psymtab);
22996}
22997
22998static int
22999eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23000{
9a3c8263
SM
23001 const struct psymtab_cu_index_map *lhs
23002 = (const struct psymtab_cu_index_map *) item_lhs;
23003 const struct psymtab_cu_index_map *rhs
23004 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23005
23006 return lhs->psymtab == rhs->psymtab;
23007}
23008
23009/* Helper struct for building the address table. */
23010struct addrmap_index_data
23011{
23012 struct objfile *objfile;
23013 struct obstack *addr_obstack;
23014 htab_t cu_index_htab;
23015
23016 /* Non-zero if the previous_* fields are valid.
23017 We can't write an entry until we see the next entry (since it is only then
23018 that we know the end of the entry). */
23019 int previous_valid;
23020 /* Index of the CU in the table of all CUs in the index file. */
23021 unsigned int previous_cu_index;
0963b4bd 23022 /* Start address of the CU. */
0a5429f6
DE
23023 CORE_ADDR previous_cu_start;
23024};
23025
23026/* Write an address entry to OBSTACK. */
b89be57b 23027
9291a0cd 23028static void
0a5429f6
DE
23029add_address_entry (struct objfile *objfile, struct obstack *obstack,
23030 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23031{
0a5429f6 23032 offset_type cu_index_to_write;
948f8e3d 23033 gdb_byte addr[8];
9291a0cd
TT
23034 CORE_ADDR baseaddr;
23035
23036 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23037
0a5429f6
DE
23038 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23039 obstack_grow (obstack, addr, 8);
23040 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23041 obstack_grow (obstack, addr, 8);
23042 cu_index_to_write = MAYBE_SWAP (cu_index);
23043 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23044}
23045
23046/* Worker function for traversing an addrmap to build the address table. */
23047
23048static int
23049add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23050{
9a3c8263
SM
23051 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23052 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23053
23054 if (data->previous_valid)
23055 add_address_entry (data->objfile, data->addr_obstack,
23056 data->previous_cu_start, start_addr,
23057 data->previous_cu_index);
23058
23059 data->previous_cu_start = start_addr;
23060 if (pst != NULL)
23061 {
23062 struct psymtab_cu_index_map find_map, *map;
23063 find_map.psymtab = pst;
9a3c8263
SM
23064 map = ((struct psymtab_cu_index_map *)
23065 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23066 gdb_assert (map != NULL);
23067 data->previous_cu_index = map->cu_index;
23068 data->previous_valid = 1;
23069 }
23070 else
23071 data->previous_valid = 0;
23072
23073 return 0;
23074}
23075
23076/* Write OBJFILE's address map to OBSTACK.
23077 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23078 in the index file. */
23079
23080static void
23081write_address_map (struct objfile *objfile, struct obstack *obstack,
23082 htab_t cu_index_htab)
23083{
23084 struct addrmap_index_data addrmap_index_data;
23085
23086 /* When writing the address table, we have to cope with the fact that
23087 the addrmap iterator only provides the start of a region; we have to
23088 wait until the next invocation to get the start of the next region. */
23089
23090 addrmap_index_data.objfile = objfile;
23091 addrmap_index_data.addr_obstack = obstack;
23092 addrmap_index_data.cu_index_htab = cu_index_htab;
23093 addrmap_index_data.previous_valid = 0;
23094
23095 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23096 &addrmap_index_data);
23097
23098 /* It's highly unlikely the last entry (end address = 0xff...ff)
23099 is valid, but we should still handle it.
23100 The end address is recorded as the start of the next region, but that
23101 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23102 anyway. */
23103 if (addrmap_index_data.previous_valid)
23104 add_address_entry (objfile, obstack,
23105 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23106 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23107}
23108
156942c7
DE
23109/* Return the symbol kind of PSYM. */
23110
23111static gdb_index_symbol_kind
23112symbol_kind (struct partial_symbol *psym)
23113{
23114 domain_enum domain = PSYMBOL_DOMAIN (psym);
23115 enum address_class aclass = PSYMBOL_CLASS (psym);
23116
23117 switch (domain)
23118 {
23119 case VAR_DOMAIN:
23120 switch (aclass)
23121 {
23122 case LOC_BLOCK:
23123 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23124 case LOC_TYPEDEF:
23125 return GDB_INDEX_SYMBOL_KIND_TYPE;
23126 case LOC_COMPUTED:
23127 case LOC_CONST_BYTES:
23128 case LOC_OPTIMIZED_OUT:
23129 case LOC_STATIC:
23130 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23131 case LOC_CONST:
23132 /* Note: It's currently impossible to recognize psyms as enum values
23133 short of reading the type info. For now punt. */
23134 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23135 default:
23136 /* There are other LOC_FOO values that one might want to classify
23137 as variables, but dwarf2read.c doesn't currently use them. */
23138 return GDB_INDEX_SYMBOL_KIND_OTHER;
23139 }
23140 case STRUCT_DOMAIN:
23141 return GDB_INDEX_SYMBOL_KIND_TYPE;
23142 default:
23143 return GDB_INDEX_SYMBOL_KIND_OTHER;
23144 }
23145}
23146
9291a0cd 23147/* Add a list of partial symbols to SYMTAB. */
b89be57b 23148
9291a0cd
TT
23149static void
23150write_psymbols (struct mapped_symtab *symtab,
987d643c 23151 htab_t psyms_seen,
9291a0cd
TT
23152 struct partial_symbol **psymp,
23153 int count,
987d643c
TT
23154 offset_type cu_index,
23155 int is_static)
9291a0cd
TT
23156{
23157 for (; count-- > 0; ++psymp)
23158 {
156942c7
DE
23159 struct partial_symbol *psym = *psymp;
23160 void **slot;
987d643c 23161
156942c7 23162 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23163 error (_("Ada is not currently supported by the index"));
987d643c 23164
987d643c 23165 /* Only add a given psymbol once. */
156942c7 23166 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23167 if (!*slot)
23168 {
156942c7
DE
23169 gdb_index_symbol_kind kind = symbol_kind (psym);
23170
23171 *slot = psym;
23172 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23173 is_static, kind, cu_index);
987d643c 23174 }
9291a0cd
TT
23175 }
23176}
23177
23178/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23179 exception if there is an error. */
b89be57b 23180
9291a0cd
TT
23181static void
23182write_obstack (FILE *file, struct obstack *obstack)
23183{
23184 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23185 file)
23186 != obstack_object_size (obstack))
23187 error (_("couldn't data write to file"));
23188}
23189
23190/* Unlink a file if the argument is not NULL. */
b89be57b 23191
9291a0cd
TT
23192static void
23193unlink_if_set (void *p)
23194{
9a3c8263 23195 char **filename = (char **) p;
9291a0cd
TT
23196 if (*filename)
23197 unlink (*filename);
23198}
23199
1fd400ff
TT
23200/* A helper struct used when iterating over debug_types. */
23201struct signatured_type_index_data
23202{
23203 struct objfile *objfile;
23204 struct mapped_symtab *symtab;
23205 struct obstack *types_list;
987d643c 23206 htab_t psyms_seen;
1fd400ff
TT
23207 int cu_index;
23208};
23209
23210/* A helper function that writes a single signatured_type to an
23211 obstack. */
b89be57b 23212
1fd400ff
TT
23213static int
23214write_one_signatured_type (void **slot, void *d)
23215{
9a3c8263
SM
23216 struct signatured_type_index_data *info
23217 = (struct signatured_type_index_data *) d;
1fd400ff 23218 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23219 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23220 gdb_byte val[8];
23221
23222 write_psymbols (info->symtab,
987d643c 23223 info->psyms_seen,
3e43a32a
MS
23224 info->objfile->global_psymbols.list
23225 + psymtab->globals_offset,
987d643c
TT
23226 psymtab->n_global_syms, info->cu_index,
23227 0);
1fd400ff 23228 write_psymbols (info->symtab,
987d643c 23229 info->psyms_seen,
3e43a32a
MS
23230 info->objfile->static_psymbols.list
23231 + psymtab->statics_offset,
987d643c
TT
23232 psymtab->n_static_syms, info->cu_index,
23233 1);
1fd400ff 23234
b64f50a1
JK
23235 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23236 entry->per_cu.offset.sect_off);
1fd400ff 23237 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23238 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23239 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23240 obstack_grow (info->types_list, val, 8);
23241 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23242 obstack_grow (info->types_list, val, 8);
23243
23244 ++info->cu_index;
23245
23246 return 1;
23247}
23248
95554aad
TT
23249/* Recurse into all "included" dependencies and write their symbols as
23250 if they appeared in this psymtab. */
23251
23252static void
23253recursively_write_psymbols (struct objfile *objfile,
23254 struct partial_symtab *psymtab,
23255 struct mapped_symtab *symtab,
23256 htab_t psyms_seen,
23257 offset_type cu_index)
23258{
23259 int i;
23260
23261 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23262 if (psymtab->dependencies[i]->user != NULL)
23263 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23264 symtab, psyms_seen, cu_index);
23265
23266 write_psymbols (symtab,
23267 psyms_seen,
23268 objfile->global_psymbols.list + psymtab->globals_offset,
23269 psymtab->n_global_syms, cu_index,
23270 0);
23271 write_psymbols (symtab,
23272 psyms_seen,
23273 objfile->static_psymbols.list + psymtab->statics_offset,
23274 psymtab->n_static_syms, cu_index,
23275 1);
23276}
23277
9291a0cd 23278/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23279
9291a0cd
TT
23280static void
23281write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23282{
23283 struct cleanup *cleanup;
23284 char *filename, *cleanup_filename;
1fd400ff
TT
23285 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23286 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23287 int i;
23288 FILE *out_file;
23289 struct mapped_symtab *symtab;
23290 offset_type val, size_of_contents, total_len;
23291 struct stat st;
987d643c 23292 htab_t psyms_seen;
0a5429f6
DE
23293 htab_t cu_index_htab;
23294 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23295
9291a0cd
TT
23296 if (dwarf2_per_objfile->using_index)
23297 error (_("Cannot use an index to create the index"));
23298
8b70b953
TT
23299 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23300 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23301
260b681b
DE
23302 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23303 return;
23304
4262abfb
JK
23305 if (stat (objfile_name (objfile), &st) < 0)
23306 perror_with_name (objfile_name (objfile));
9291a0cd 23307
4262abfb 23308 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23309 INDEX_SUFFIX, (char *) NULL);
23310 cleanup = make_cleanup (xfree, filename);
23311
614c279d 23312 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23313 if (!out_file)
23314 error (_("Can't open `%s' for writing"), filename);
23315
23316 cleanup_filename = filename;
23317 make_cleanup (unlink_if_set, &cleanup_filename);
23318
23319 symtab = create_mapped_symtab ();
23320 make_cleanup (cleanup_mapped_symtab, symtab);
23321
23322 obstack_init (&addr_obstack);
23323 make_cleanup_obstack_free (&addr_obstack);
23324
23325 obstack_init (&cu_list);
23326 make_cleanup_obstack_free (&cu_list);
23327
1fd400ff
TT
23328 obstack_init (&types_cu_list);
23329 make_cleanup_obstack_free (&types_cu_list);
23330
987d643c
TT
23331 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23332 NULL, xcalloc, xfree);
96408a79 23333 make_cleanup_htab_delete (psyms_seen);
987d643c 23334
0a5429f6
DE
23335 /* While we're scanning CU's create a table that maps a psymtab pointer
23336 (which is what addrmap records) to its index (which is what is recorded
23337 in the index file). This will later be needed to write the address
23338 table. */
23339 cu_index_htab = htab_create_alloc (100,
23340 hash_psymtab_cu_index,
23341 eq_psymtab_cu_index,
23342 NULL, xcalloc, xfree);
96408a79 23343 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23344 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23345 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23346 make_cleanup (xfree, psymtab_cu_index_map);
23347
23348 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23349 work here. Also, the debug_types entries do not appear in
23350 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23351 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23352 {
3e43a32a
MS
23353 struct dwarf2_per_cu_data *per_cu
23354 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23355 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23356 gdb_byte val[8];
0a5429f6
DE
23357 struct psymtab_cu_index_map *map;
23358 void **slot;
9291a0cd 23359
92fac807
JK
23360 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23361 It may be referenced from a local scope but in such case it does not
23362 need to be present in .gdb_index. */
23363 if (psymtab == NULL)
23364 continue;
23365
95554aad
TT
23366 if (psymtab->user == NULL)
23367 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23368
0a5429f6
DE
23369 map = &psymtab_cu_index_map[i];
23370 map->psymtab = psymtab;
23371 map->cu_index = i;
23372 slot = htab_find_slot (cu_index_htab, map, INSERT);
23373 gdb_assert (slot != NULL);
23374 gdb_assert (*slot == NULL);
23375 *slot = map;
9291a0cd 23376
b64f50a1
JK
23377 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23378 per_cu->offset.sect_off);
9291a0cd 23379 obstack_grow (&cu_list, val, 8);
e254ef6a 23380 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23381 obstack_grow (&cu_list, val, 8);
23382 }
23383
0a5429f6
DE
23384 /* Dump the address map. */
23385 write_address_map (objfile, &addr_obstack, cu_index_htab);
23386
1fd400ff
TT
23387 /* Write out the .debug_type entries, if any. */
23388 if (dwarf2_per_objfile->signatured_types)
23389 {
23390 struct signatured_type_index_data sig_data;
23391
23392 sig_data.objfile = objfile;
23393 sig_data.symtab = symtab;
23394 sig_data.types_list = &types_cu_list;
987d643c 23395 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23396 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23397 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23398 write_one_signatured_type, &sig_data);
23399 }
23400
156942c7
DE
23401 /* Now that we've processed all symbols we can shrink their cu_indices
23402 lists. */
23403 uniquify_cu_indices (symtab);
23404
9291a0cd
TT
23405 obstack_init (&constant_pool);
23406 make_cleanup_obstack_free (&constant_pool);
23407 obstack_init (&symtab_obstack);
23408 make_cleanup_obstack_free (&symtab_obstack);
23409 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23410
23411 obstack_init (&contents);
23412 make_cleanup_obstack_free (&contents);
1fd400ff 23413 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23414 total_len = size_of_contents;
23415
23416 /* The version number. */
796a7ff8 23417 val = MAYBE_SWAP (8);
9291a0cd
TT
23418 obstack_grow (&contents, &val, sizeof (val));
23419
23420 /* The offset of the CU list from the start of the file. */
23421 val = MAYBE_SWAP (total_len);
23422 obstack_grow (&contents, &val, sizeof (val));
23423 total_len += obstack_object_size (&cu_list);
23424
1fd400ff
TT
23425 /* The offset of the types CU list from the start of the file. */
23426 val = MAYBE_SWAP (total_len);
23427 obstack_grow (&contents, &val, sizeof (val));
23428 total_len += obstack_object_size (&types_cu_list);
23429
9291a0cd
TT
23430 /* The offset of the address table from the start of the file. */
23431 val = MAYBE_SWAP (total_len);
23432 obstack_grow (&contents, &val, sizeof (val));
23433 total_len += obstack_object_size (&addr_obstack);
23434
23435 /* The offset of the symbol table from the start of the file. */
23436 val = MAYBE_SWAP (total_len);
23437 obstack_grow (&contents, &val, sizeof (val));
23438 total_len += obstack_object_size (&symtab_obstack);
23439
23440 /* The offset of the constant pool from the start of the file. */
23441 val = MAYBE_SWAP (total_len);
23442 obstack_grow (&contents, &val, sizeof (val));
23443 total_len += obstack_object_size (&constant_pool);
23444
23445 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23446
23447 write_obstack (out_file, &contents);
23448 write_obstack (out_file, &cu_list);
1fd400ff 23449 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23450 write_obstack (out_file, &addr_obstack);
23451 write_obstack (out_file, &symtab_obstack);
23452 write_obstack (out_file, &constant_pool);
23453
23454 fclose (out_file);
23455
23456 /* We want to keep the file, so we set cleanup_filename to NULL
23457 here. See unlink_if_set. */
23458 cleanup_filename = NULL;
23459
23460 do_cleanups (cleanup);
23461}
23462
90476074
TT
23463/* Implementation of the `save gdb-index' command.
23464
23465 Note that the file format used by this command is documented in the
23466 GDB manual. Any changes here must be documented there. */
11570e71 23467
9291a0cd
TT
23468static void
23469save_gdb_index_command (char *arg, int from_tty)
23470{
23471 struct objfile *objfile;
23472
23473 if (!arg || !*arg)
96d19272 23474 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23475
23476 ALL_OBJFILES (objfile)
23477 {
23478 struct stat st;
23479
23480 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23481 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23482 continue;
23483
9a3c8263
SM
23484 dwarf2_per_objfile
23485 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23486 dwarf2_objfile_data_key);
9291a0cd
TT
23487 if (dwarf2_per_objfile)
23488 {
9291a0cd 23489
492d29ea 23490 TRY
9291a0cd
TT
23491 {
23492 write_psymtabs_to_index (objfile, arg);
23493 }
492d29ea
PA
23494 CATCH (except, RETURN_MASK_ERROR)
23495 {
23496 exception_fprintf (gdb_stderr, except,
23497 _("Error while writing index for `%s': "),
23498 objfile_name (objfile));
23499 }
23500 END_CATCH
9291a0cd
TT
23501 }
23502 }
dce234bc
PP
23503}
23504
9291a0cd
TT
23505\f
23506
b4f54984 23507int dwarf_always_disassemble;
9eae7c52
TT
23508
23509static void
b4f54984
DE
23510show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23511 struct cmd_list_element *c, const char *value)
9eae7c52 23512{
3e43a32a
MS
23513 fprintf_filtered (file,
23514 _("Whether to always disassemble "
23515 "DWARF expressions is %s.\n"),
9eae7c52
TT
23516 value);
23517}
23518
900e11f9
JK
23519static void
23520show_check_physname (struct ui_file *file, int from_tty,
23521 struct cmd_list_element *c, const char *value)
23522{
23523 fprintf_filtered (file,
23524 _("Whether to check \"physname\" is %s.\n"),
23525 value);
23526}
23527
6502dd73
DJ
23528void _initialize_dwarf2_read (void);
23529
23530void
23531_initialize_dwarf2_read (void)
23532{
96d19272
JK
23533 struct cmd_list_element *c;
23534
dce234bc 23535 dwarf2_objfile_data_key
c1bd65d0 23536 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23537
b4f54984
DE
23538 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23539Set DWARF specific variables.\n\
23540Configure DWARF variables such as the cache size"),
23541 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23542 0/*allow-unknown*/, &maintenance_set_cmdlist);
23543
b4f54984
DE
23544 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23545Show DWARF specific variables\n\
23546Show DWARF variables such as the cache size"),
23547 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23548 0/*allow-unknown*/, &maintenance_show_cmdlist);
23549
23550 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23551 &dwarf_max_cache_age, _("\
23552Set the upper bound on the age of cached DWARF compilation units."), _("\
23553Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23554A higher limit means that cached compilation units will be stored\n\
23555in memory longer, and more total memory will be used. Zero disables\n\
23556caching, which can slow down startup."),
2c5b56ce 23557 NULL,
b4f54984
DE
23558 show_dwarf_max_cache_age,
23559 &set_dwarf_cmdlist,
23560 &show_dwarf_cmdlist);
d97bc12b 23561
9eae7c52 23562 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23563 &dwarf_always_disassemble, _("\
9eae7c52
TT
23564Set whether `info address' always disassembles DWARF expressions."), _("\
23565Show whether `info address' always disassembles DWARF expressions."), _("\
23566When enabled, DWARF expressions are always printed in an assembly-like\n\
23567syntax. When disabled, expressions will be printed in a more\n\
23568conversational style, when possible."),
23569 NULL,
b4f54984
DE
23570 show_dwarf_always_disassemble,
23571 &set_dwarf_cmdlist,
23572 &show_dwarf_cmdlist);
23573
23574 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23575Set debugging of the DWARF reader."), _("\
23576Show debugging of the DWARF reader."), _("\
23577When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23578reading and symtab expansion. A value of 1 (one) provides basic\n\
23579information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23580 NULL,
23581 NULL,
23582 &setdebuglist, &showdebuglist);
23583
b4f54984
DE
23584 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23585Set debugging of the DWARF DIE reader."), _("\
23586Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23587When enabled (non-zero), DIEs are dumped after they are read in.\n\
23588The value is the maximum depth to print."),
ccce17b0
YQ
23589 NULL,
23590 NULL,
23591 &setdebuglist, &showdebuglist);
9291a0cd 23592
27e0867f
DE
23593 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23594Set debugging of the dwarf line reader."), _("\
23595Show debugging of the dwarf line reader."), _("\
23596When enabled (non-zero), line number entries are dumped as they are read in.\n\
23597A value of 1 (one) provides basic information.\n\
23598A value greater than 1 provides more verbose information."),
23599 NULL,
23600 NULL,
23601 &setdebuglist, &showdebuglist);
23602
900e11f9
JK
23603 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23604Set cross-checking of \"physname\" code against demangler."), _("\
23605Show cross-checking of \"physname\" code against demangler."), _("\
23606When enabled, GDB's internal \"physname\" code is checked against\n\
23607the demangler."),
23608 NULL, show_check_physname,
23609 &setdebuglist, &showdebuglist);
23610
e615022a
DE
23611 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23612 no_class, &use_deprecated_index_sections, _("\
23613Set whether to use deprecated gdb_index sections."), _("\
23614Show whether to use deprecated gdb_index sections."), _("\
23615When enabled, deprecated .gdb_index sections are used anyway.\n\
23616Normally they are ignored either because of a missing feature or\n\
23617performance issue.\n\
23618Warning: This option must be enabled before gdb reads the file."),
23619 NULL,
23620 NULL,
23621 &setlist, &showlist);
23622
96d19272 23623 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23624 _("\
fc1a9d6e 23625Save a gdb-index file.\n\
11570e71 23626Usage: save gdb-index DIRECTORY"),
96d19272
JK
23627 &save_cmdlist);
23628 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23629
23630 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23631 &dwarf2_locexpr_funcs);
23632 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23633 &dwarf2_loclist_funcs);
23634
23635 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23636 &dwarf2_block_frame_base_locexpr_funcs);
23637 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23638 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23639}
This page took 3.494319 seconds and 4 git commands to generate.