PR symtab/15885
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
4c2df51b 72
c906108c
SS
73#include <fcntl.h>
74#include "gdb_string.h"
4bdf3d34 75#include "gdb_assert.h"
c906108c 76#include <sys/types.h>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
45cfd468
DE
81/* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83static int dwarf2_read_debug = 0;
84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
dce234bc
PP
103struct dwarf2_section_info
104{
105 asection *asection;
d521ce57 106 const gdb_byte *buffer;
dce234bc 107 bfd_size_type size;
be391dca
TT
108 /* True if we have tried to read this section. */
109 int readin;
dce234bc
PP
110};
111
8b70b953
TT
112typedef struct dwarf2_section_info dwarf2_section_info_def;
113DEF_VEC_O (dwarf2_section_info_def);
114
9291a0cd
TT
115/* All offsets in the index are of this type. It must be
116 architecture-independent. */
117typedef uint32_t offset_type;
118
119DEF_VEC_I (offset_type);
120
156942c7
DE
121/* Ensure only legit values are used. */
122#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128/* Ensure only legit values are used. */
129#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136/* Ensure we don't use more than the alloted nuber of bits for the CU. */
137#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
9291a0cd
TT
143/* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145struct mapped_index
146{
559a7a62
JK
147 /* Index data format version. */
148 int version;
149
9291a0cd
TT
150 /* The total length of the buffer. */
151 off_t total_size;
b11b1f88 152
9291a0cd
TT
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
b11b1f88 155
9291a0cd
TT
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
b11b1f88 158
3876f04e
DE
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
b11b1f88 161
9291a0cd 162 /* Size in slots, each slot is 2 offset_types. */
3876f04e 163 offset_type symbol_table_slots;
b11b1f88 164
9291a0cd
TT
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167};
168
95554aad
TT
169typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170DEF_VEC_P (dwarf2_per_cu_ptr);
171
9cdd5dbd
DE
172/* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
6502dd73
DJ
175struct dwarf2_per_objfile
176{
dce234bc
PP
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
dce234bc
PP
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
cf2c3c16 182 struct dwarf2_section_info macro;
dce234bc
PP
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
3019eac3 185 struct dwarf2_section_info addr;
dce234bc
PP
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
9291a0cd 188 struct dwarf2_section_info gdb_index;
ae038cb0 189
8b70b953
TT
190 VEC (dwarf2_section_info_def) *types;
191
be391dca
TT
192 /* Back link. */
193 struct objfile *objfile;
194
d467dd73 195 /* Table of all the compilation units. This is used to locate
10b3939b 196 the target compilation unit of a particular reference. */
ae038cb0
DJ
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
1fd400ff 202 /* The number of .debug_types-related CUs. */
d467dd73 203 int n_type_units;
1fd400ff 204
a2ce51a0
DE
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
b4dd5633 207 struct signatured_type **all_type_units;
1fd400ff 208
f4dc4d17
DE
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
72dca2f5 219
348e048f
DE
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
f4dc4d17
DE
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
3019eac3
DE
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
80626a55
DE
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
36586728
TT
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
72dca2f5
FR
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
9291a0cd 255
ae2de4f8
DE
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
258 unsigned char using_index;
259
ae2de4f8 260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 261 struct mapped_index *index_table;
98bfdba5 262
7b9f3c50 263 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
7b9f3c50
DE
270 htab_t quick_file_names_table;
271
98bfdba5
PA
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
673bfd45 275
dee91e82 276 /* Table mapping type DIEs to their struct type *.
673bfd45 277 This is NULL if not allocated yet.
02142a6c 278 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 279 htab_t die_type_hash;
95554aad
TT
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
283};
284
285static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 286
251d32d9 287/* Default names of the debugging sections. */
c906108c 288
233a11ab
CS
289/* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
9cdd5dbd
DE
292static const struct dwarf2_debug_sections dwarf2_elf_names =
293{
251d32d9
TG
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 299 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
3019eac3 303 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
24d3216f
TT
306 { ".gdb_index", ".zgdb_index" },
307 23
251d32d9 308};
c906108c 309
80626a55 310/* List of DWO/DWP sections. */
3019eac3 311
80626a55 312static const struct dwop_section_names
3019eac3
DE
313{
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
09262596
DE
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
3019eac3
DE
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
80626a55
DE
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
3019eac3 325}
80626a55 326dwop_section_names =
3019eac3
DE
327{
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
339};
340
c906108c
SS
341/* local data types */
342
107d2387
AC
343/* The data in a compilation unit header, after target2host
344 translation, looks like this. */
c906108c 345struct comp_unit_head
a738430d 346{
c764a876 347 unsigned int length;
a738430d 348 short version;
a738430d
MK
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
b64f50a1 351 sect_offset abbrev_offset;
57349743 352
a738430d
MK
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
57349743 355
a738430d
MK
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
57349743 358
a738430d
MK
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
b64f50a1 361 sect_offset offset;
57349743 362
d00adf39
DE
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
b64f50a1 365 cu_offset first_die_offset;
a738430d 366};
c906108c 367
3da10d80
KS
368/* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370struct delayed_method_info
371{
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386};
387
388typedef struct delayed_method_info delayed_method_info;
389DEF_VEC_O (delayed_method_info);
390
e7c27a73
DJ
391/* Internal state when decoding a particular compilation unit. */
392struct dwarf2_cu
393{
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
d00adf39 397 /* The header of the compilation unit. */
e7c27a73 398 struct comp_unit_head header;
e142c38c 399
d00adf39
DE
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
e142c38c
DJ
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
b0f35d58
DL
410 const char *producer;
411
e142c38c
DJ
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
433df2d4
DE
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
72bf9492 427
b64f50a1
JK
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
ae038cb0
DJ
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
b64f50a1
JK
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
51545339 450 htab_t die_hash;
10b3939b
DJ
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
cb1df416
DJ
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
3da10d80
KS
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
96408a79
SA
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
034e5797
DE
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
3019eac3
DE
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
2e3cf129
DE
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
496 ULONGEST ranges_base;
497
ae038cb0
DJ
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
8be455d7
JK
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 505 unsigned int has_loclist : 1;
ba919b58 506
1b80a9fa
JK
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
ba919b58
TT
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 513 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 514 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
521};
522
10b3939b
DJ
523/* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
28dee7f5 525 read_symtab_private field of the psymtab. */
10b3939b 526
ae038cb0
DJ
527struct dwarf2_per_cu_data
528{
36586728 529 /* The start offset and length of this compilation unit.
45452591 530 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
b64f50a1 534 sect_offset offset;
36586728 535 unsigned int length;
ae038cb0
DJ
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
c764a876 539 unsigned int queued : 1;
ae038cb0 540
0d99eb77
DE
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
0186c6a7
DE
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
3019eac3
DE
550 unsigned int is_debug_types : 1;
551
36586728
TT
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
a2ce51a0
DE
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
7ee85ab1
DE
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
3019eac3
DE
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
8a0459fd 574 struct dwarf2_section_info *section;
348e048f 575
17ea53c3
JK
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
ae038cb0 578 struct dwarf2_cu *cu;
1c379e20 579
9cdd5dbd
DE
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
95554aad 590 or NULL for unread partial units. */
9291a0cd
TT
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
95554aad 596
796a7ff8
DE
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices. */
614 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
615};
616
348e048f
DE
617/* Entry in the signatured_types hash table. */
618
619struct signatured_type
620{
42e7ad6c 621 /* The "per_cu" object of this type.
ac9ec31b 622 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
623 N.B.: This is the first member so that it's easy to convert pointers
624 between them. */
625 struct dwarf2_per_cu_data per_cu;
626
3019eac3 627 /* The type's signature. */
348e048f
DE
628 ULONGEST signature;
629
3019eac3 630 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
631 If this TU is a DWO stub and the definition lives in a DWO file
632 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
633 cu_offset type_offset_in_tu;
634
635 /* Offset in the section of the type's DIE.
636 If the definition lives in a DWO file, this is the offset in the
637 .debug_types.dwo section.
638 The value is zero until the actual value is known.
639 Zero is otherwise not a valid section offset. */
640 sect_offset type_offset_in_section;
0186c6a7
DE
641
642 /* Type units are grouped by their DW_AT_stmt_list entry so that they
643 can share them. This points to the containing symtab. */
644 struct type_unit_group *type_unit_group;
ac9ec31b
DE
645
646 /* The type.
647 The first time we encounter this type we fully read it in and install it
648 in the symbol tables. Subsequent times we only need the type. */
649 struct type *type;
a2ce51a0
DE
650
651 /* Containing DWO unit.
652 This field is valid iff per_cu.reading_dwo_directly. */
653 struct dwo_unit *dwo_unit;
348e048f
DE
654};
655
0186c6a7
DE
656typedef struct signatured_type *sig_type_ptr;
657DEF_VEC_P (sig_type_ptr);
658
094b34ac
DE
659/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
660 This includes type_unit_group and quick_file_names. */
661
662struct stmt_list_hash
663{
664 /* The DWO unit this table is from or NULL if there is none. */
665 struct dwo_unit *dwo_unit;
666
667 /* Offset in .debug_line or .debug_line.dwo. */
668 sect_offset line_offset;
669};
670
f4dc4d17
DE
671/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
672 an object of this type. */
673
674struct type_unit_group
675{
0186c6a7 676 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
677 To simplify things we create an artificial CU that "includes" all the
678 type units using this stmt_list so that the rest of the code still has
679 a "per_cu" handle on the symtab.
680 This PER_CU is recognized by having no section. */
8a0459fd 681#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
682 struct dwarf2_per_cu_data per_cu;
683
0186c6a7
DE
684 /* The TUs that share this DW_AT_stmt_list entry.
685 This is added to while parsing type units to build partial symtabs,
686 and is deleted afterwards and not used again. */
687 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
688
689 /* The primary symtab.
094b34ac
DE
690 Type units in a group needn't all be defined in the same source file,
691 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
692 struct symtab *primary_symtab;
693
094b34ac
DE
694 /* The data used to construct the hash key. */
695 struct stmt_list_hash hash;
f4dc4d17
DE
696
697 /* The number of symtabs from the line header.
698 The value here must match line_header.num_file_names. */
699 unsigned int num_symtabs;
700
701 /* The symbol tables for this TU (obtained from the files listed in
702 DW_AT_stmt_list).
703 WARNING: The order of entries here must match the order of entries
704 in the line header. After the first TU using this type_unit_group, the
705 line header for the subsequent TUs is recreated from this. This is done
706 because we need to use the same symtabs for each TU using the same
707 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
708 there's no guarantee the line header doesn't have duplicate entries. */
709 struct symtab **symtabs;
710};
711
80626a55 712/* These sections are what may appear in a DWO file. */
3019eac3
DE
713
714struct dwo_sections
715{
716 struct dwarf2_section_info abbrev;
3019eac3
DE
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
09262596
DE
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
3019eac3
DE
721 struct dwarf2_section_info str;
722 struct dwarf2_section_info str_offsets;
80626a55
DE
723 /* In the case of a virtual DWO file, these two are unused. */
724 struct dwarf2_section_info info;
3019eac3
DE
725 VEC (dwarf2_section_info_def) *types;
726};
727
c88ee1f0 728/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
729
730struct dwo_unit
731{
732 /* Backlink to the containing struct dwo_file. */
733 struct dwo_file *dwo_file;
734
735 /* The "id" that distinguishes this CU/TU.
736 .debug_info calls this "dwo_id", .debug_types calls this "signature".
737 Since signatures came first, we stick with it for consistency. */
738 ULONGEST signature;
739
740 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 741 struct dwarf2_section_info *section;
3019eac3
DE
742
743 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
744 sect_offset offset;
745 unsigned int length;
746
747 /* For types, offset in the type's DIE of the type defined by this TU. */
748 cu_offset type_offset_in_tu;
749};
750
80626a55
DE
751/* Data for one DWO file.
752 This includes virtual DWO files that have been packaged into a
753 DWP file. */
3019eac3
DE
754
755struct dwo_file
756{
0ac5b59e 757 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
758 For virtual DWO files the name is constructed from the section offsets
759 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
760 from related CU+TUs. */
0ac5b59e
DE
761 const char *dwo_name;
762
763 /* The DW_AT_comp_dir attribute. */
764 const char *comp_dir;
3019eac3 765
80626a55
DE
766 /* The bfd, when the file is open. Otherwise this is NULL.
767 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
768 bfd *dbfd;
3019eac3
DE
769
770 /* Section info for this file. */
771 struct dwo_sections sections;
772
19c3d4c9
DE
773 /* The CU in the file.
774 We only support one because having more than one requires hacking the
775 dwo_name of each to match, which is highly unlikely to happen.
776 Doing this means all TUs can share comp_dir: We also assume that
777 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
778 struct dwo_unit *cu;
3019eac3
DE
779
780 /* Table of TUs in the file.
781 Each element is a struct dwo_unit. */
782 htab_t tus;
783};
784
80626a55
DE
785/* These sections are what may appear in a DWP file. */
786
787struct dwp_sections
788{
789 struct dwarf2_section_info str;
790 struct dwarf2_section_info cu_index;
791 struct dwarf2_section_info tu_index;
792 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
793 by section number. We don't need to record them here. */
794};
795
796/* These sections are what may appear in a virtual DWO file. */
797
798struct virtual_dwo_sections
799{
800 struct dwarf2_section_info abbrev;
801 struct dwarf2_section_info line;
802 struct dwarf2_section_info loc;
803 struct dwarf2_section_info macinfo;
804 struct dwarf2_section_info macro;
805 struct dwarf2_section_info str_offsets;
806 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 807 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
808 struct dwarf2_section_info info_or_types;
809};
810
811/* Contents of DWP hash tables. */
812
813struct dwp_hash_table
814{
815 uint32_t nr_units, nr_slots;
816 const gdb_byte *hash_table, *unit_table, *section_pool;
817};
818
819/* Data for one DWP file. */
820
821struct dwp_file
822{
823 /* Name of the file. */
824 const char *name;
825
93417882 826 /* The bfd. */
80626a55
DE
827 bfd *dbfd;
828
829 /* Section info for this file. */
830 struct dwp_sections sections;
831
832 /* Table of CUs in the file. */
833 const struct dwp_hash_table *cus;
834
835 /* Table of TUs in the file. */
836 const struct dwp_hash_table *tus;
837
838 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
839 htab_t loaded_cutus;
840
841 /* Table to map ELF section numbers to their sections. */
842 unsigned int num_sections;
843 asection **elf_sections;
844};
845
36586728
TT
846/* This represents a '.dwz' file. */
847
848struct dwz_file
849{
850 /* A dwz file can only contain a few sections. */
851 struct dwarf2_section_info abbrev;
852 struct dwarf2_section_info info;
853 struct dwarf2_section_info str;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info macro;
2ec9a5e0 856 struct dwarf2_section_info gdb_index;
36586728
TT
857
858 /* The dwz's BFD. */
859 bfd *dwz_bfd;
860};
861
0963b4bd
MS
862/* Struct used to pass misc. parameters to read_die_and_children, et
863 al. which are used for both .debug_info and .debug_types dies.
864 All parameters here are unchanging for the life of the call. This
dee91e82 865 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
866
867struct die_reader_specs
868{
dee91e82 869 /* die_section->asection->owner. */
93311388
DE
870 bfd* abfd;
871
872 /* The CU of the DIE we are parsing. */
873 struct dwarf2_cu *cu;
874
80626a55 875 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
876 struct dwo_file *dwo_file;
877
dee91e82 878 /* The section the die comes from.
3019eac3 879 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
880 struct dwarf2_section_info *die_section;
881
882 /* die_section->buffer. */
d521ce57 883 const gdb_byte *buffer;
f664829e
DE
884
885 /* The end of the buffer. */
886 const gdb_byte *buffer_end;
a2ce51a0
DE
887
888 /* The value of the DW_AT_comp_dir attribute. */
889 const char *comp_dir;
93311388
DE
890};
891
fd820528 892/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 893typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 894 const gdb_byte *info_ptr,
dee91e82
DE
895 struct die_info *comp_unit_die,
896 int has_children,
897 void *data);
898
debd256d
JB
899/* The line number information for a compilation unit (found in the
900 .debug_line section) begins with a "statement program header",
901 which contains the following information. */
902struct line_header
903{
904 unsigned int total_length;
905 unsigned short version;
906 unsigned int header_length;
907 unsigned char minimum_instruction_length;
2dc7f7b3 908 unsigned char maximum_ops_per_instruction;
debd256d
JB
909 unsigned char default_is_stmt;
910 int line_base;
911 unsigned char line_range;
912 unsigned char opcode_base;
913
914 /* standard_opcode_lengths[i] is the number of operands for the
915 standard opcode whose value is i. This means that
916 standard_opcode_lengths[0] is unused, and the last meaningful
917 element is standard_opcode_lengths[opcode_base - 1]. */
918 unsigned char *standard_opcode_lengths;
919
920 /* The include_directories table. NOTE! These strings are not
921 allocated with xmalloc; instead, they are pointers into
922 debug_line_buffer. If you try to free them, `free' will get
923 indigestion. */
924 unsigned int num_include_dirs, include_dirs_size;
d521ce57 925 const char **include_dirs;
debd256d
JB
926
927 /* The file_names table. NOTE! These strings are not allocated
928 with xmalloc; instead, they are pointers into debug_line_buffer.
929 Don't try to free them directly. */
930 unsigned int num_file_names, file_names_size;
931 struct file_entry
c906108c 932 {
d521ce57 933 const char *name;
debd256d
JB
934 unsigned int dir_index;
935 unsigned int mod_time;
936 unsigned int length;
aaa75496 937 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 938 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
939 } *file_names;
940
941 /* The start and end of the statement program following this
6502dd73 942 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 943 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 944};
c906108c
SS
945
946/* When we construct a partial symbol table entry we only
0963b4bd 947 need this much information. */
c906108c
SS
948struct partial_die_info
949 {
72bf9492 950 /* Offset of this DIE. */
b64f50a1 951 sect_offset offset;
72bf9492
DJ
952
953 /* DWARF-2 tag for this DIE. */
954 ENUM_BITFIELD(dwarf_tag) tag : 16;
955
72bf9492
DJ
956 /* Assorted flags describing the data found in this DIE. */
957 unsigned int has_children : 1;
958 unsigned int is_external : 1;
959 unsigned int is_declaration : 1;
960 unsigned int has_type : 1;
961 unsigned int has_specification : 1;
962 unsigned int has_pc_info : 1;
481860b3 963 unsigned int may_be_inlined : 1;
72bf9492
DJ
964
965 /* Flag set if the SCOPE field of this structure has been
966 computed. */
967 unsigned int scope_set : 1;
968
fa4028e9
JB
969 /* Flag set if the DIE has a byte_size attribute. */
970 unsigned int has_byte_size : 1;
971
98bfdba5
PA
972 /* Flag set if any of the DIE's children are template arguments. */
973 unsigned int has_template_arguments : 1;
974
abc72ce4
DE
975 /* Flag set if fixup_partial_die has been called on this die. */
976 unsigned int fixup_called : 1;
977
36586728
TT
978 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
979 unsigned int is_dwz : 1;
980
981 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
982 unsigned int spec_is_dwz : 1;
983
72bf9492 984 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 985 sometimes a default name for unnamed DIEs. */
15d034d0 986 const char *name;
72bf9492 987
abc72ce4
DE
988 /* The linkage name, if present. */
989 const char *linkage_name;
990
72bf9492
DJ
991 /* The scope to prepend to our children. This is generally
992 allocated on the comp_unit_obstack, so will disappear
993 when this compilation unit leaves the cache. */
15d034d0 994 const char *scope;
72bf9492 995
95554aad
TT
996 /* Some data associated with the partial DIE. The tag determines
997 which field is live. */
998 union
999 {
1000 /* The location description associated with this DIE, if any. */
1001 struct dwarf_block *locdesc;
1002 /* The offset of an import, for DW_TAG_imported_unit. */
1003 sect_offset offset;
1004 } d;
72bf9492
DJ
1005
1006 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1007 CORE_ADDR lowpc;
1008 CORE_ADDR highpc;
72bf9492 1009
93311388 1010 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1011 DW_AT_sibling, if any. */
abc72ce4
DE
1012 /* NOTE: This member isn't strictly necessary, read_partial_die could
1013 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1014 const gdb_byte *sibling;
72bf9492
DJ
1015
1016 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1017 DW_AT_specification (or DW_AT_abstract_origin or
1018 DW_AT_extension). */
b64f50a1 1019 sect_offset spec_offset;
72bf9492
DJ
1020
1021 /* Pointers to this DIE's parent, first child, and next sibling,
1022 if any. */
1023 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1024 };
1025
0963b4bd 1026/* This data structure holds the information of an abbrev. */
c906108c
SS
1027struct abbrev_info
1028 {
1029 unsigned int number; /* number identifying abbrev */
1030 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1031 unsigned short has_children; /* boolean */
1032 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1033 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1034 struct abbrev_info *next; /* next in chain */
1035 };
1036
1037struct attr_abbrev
1038 {
9d25dd43
DE
1039 ENUM_BITFIELD(dwarf_attribute) name : 16;
1040 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1041 };
1042
433df2d4
DE
1043/* Size of abbrev_table.abbrev_hash_table. */
1044#define ABBREV_HASH_SIZE 121
1045
1046/* Top level data structure to contain an abbreviation table. */
1047
1048struct abbrev_table
1049{
f4dc4d17
DE
1050 /* Where the abbrev table came from.
1051 This is used as a sanity check when the table is used. */
433df2d4
DE
1052 sect_offset offset;
1053
1054 /* Storage for the abbrev table. */
1055 struct obstack abbrev_obstack;
1056
1057 /* Hash table of abbrevs.
1058 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1059 It could be statically allocated, but the previous code didn't so we
1060 don't either. */
1061 struct abbrev_info **abbrevs;
1062};
1063
0963b4bd 1064/* Attributes have a name and a value. */
b60c80d6
DJ
1065struct attribute
1066 {
9d25dd43 1067 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1068 ENUM_BITFIELD(dwarf_form) form : 15;
1069
1070 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1071 field should be in u.str (existing only for DW_STRING) but it is kept
1072 here for better struct attribute alignment. */
1073 unsigned int string_is_canonical : 1;
1074
b60c80d6
DJ
1075 union
1076 {
15d034d0 1077 const char *str;
b60c80d6 1078 struct dwarf_block *blk;
43bbcdc2
PH
1079 ULONGEST unsnd;
1080 LONGEST snd;
b60c80d6 1081 CORE_ADDR addr;
ac9ec31b 1082 ULONGEST signature;
b60c80d6
DJ
1083 }
1084 u;
1085 };
1086
0963b4bd 1087/* This data structure holds a complete die structure. */
c906108c
SS
1088struct die_info
1089 {
76815b17
DE
1090 /* DWARF-2 tag for this DIE. */
1091 ENUM_BITFIELD(dwarf_tag) tag : 16;
1092
1093 /* Number of attributes */
98bfdba5
PA
1094 unsigned char num_attrs;
1095
1096 /* True if we're presently building the full type name for the
1097 type derived from this DIE. */
1098 unsigned char building_fullname : 1;
76815b17
DE
1099
1100 /* Abbrev number */
1101 unsigned int abbrev;
1102
93311388 1103 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1104 sect_offset offset;
78ba4af6
JB
1105
1106 /* The dies in a compilation unit form an n-ary tree. PARENT
1107 points to this die's parent; CHILD points to the first child of
1108 this node; and all the children of a given node are chained
4950bc1c 1109 together via their SIBLING fields. */
639d11d3
DC
1110 struct die_info *child; /* Its first child, if any. */
1111 struct die_info *sibling; /* Its next sibling, if any. */
1112 struct die_info *parent; /* Its parent, if any. */
c906108c 1113
b60c80d6
DJ
1114 /* An array of attributes, with NUM_ATTRS elements. There may be
1115 zero, but it's not common and zero-sized arrays are not
1116 sufficiently portable C. */
1117 struct attribute attrs[1];
c906108c
SS
1118 };
1119
0963b4bd 1120/* Get at parts of an attribute structure. */
c906108c
SS
1121
1122#define DW_STRING(attr) ((attr)->u.str)
8285870a 1123#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1124#define DW_UNSND(attr) ((attr)->u.unsnd)
1125#define DW_BLOCK(attr) ((attr)->u.blk)
1126#define DW_SND(attr) ((attr)->u.snd)
1127#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1128#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1129
0963b4bd 1130/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1131struct dwarf_block
1132 {
56eb65bd 1133 size_t size;
1d6edc3c
JK
1134
1135 /* Valid only if SIZE is not zero. */
d521ce57 1136 const gdb_byte *data;
c906108c
SS
1137 };
1138
c906108c
SS
1139#ifndef ATTR_ALLOC_CHUNK
1140#define ATTR_ALLOC_CHUNK 4
1141#endif
1142
c906108c
SS
1143/* Allocate fields for structs, unions and enums in this size. */
1144#ifndef DW_FIELD_ALLOC_CHUNK
1145#define DW_FIELD_ALLOC_CHUNK 4
1146#endif
1147
c906108c
SS
1148/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1149 but this would require a corresponding change in unpack_field_as_long
1150 and friends. */
1151static int bits_per_byte = 8;
1152
1153/* The routines that read and process dies for a C struct or C++ class
1154 pass lists of data member fields and lists of member function fields
1155 in an instance of a field_info structure, as defined below. */
1156struct field_info
c5aa993b 1157 {
0963b4bd 1158 /* List of data member and baseclasses fields. */
c5aa993b
JM
1159 struct nextfield
1160 {
1161 struct nextfield *next;
1162 int accessibility;
1163 int virtuality;
1164 struct field field;
1165 }
7d0ccb61 1166 *fields, *baseclasses;
c906108c 1167
7d0ccb61 1168 /* Number of fields (including baseclasses). */
c5aa993b 1169 int nfields;
c906108c 1170
c5aa993b
JM
1171 /* Number of baseclasses. */
1172 int nbaseclasses;
c906108c 1173
c5aa993b
JM
1174 /* Set if the accesibility of one of the fields is not public. */
1175 int non_public_fields;
c906108c 1176
c5aa993b
JM
1177 /* Member function fields array, entries are allocated in the order they
1178 are encountered in the object file. */
1179 struct nextfnfield
1180 {
1181 struct nextfnfield *next;
1182 struct fn_field fnfield;
1183 }
1184 *fnfields;
c906108c 1185
c5aa993b
JM
1186 /* Member function fieldlist array, contains name of possibly overloaded
1187 member function, number of overloaded member functions and a pointer
1188 to the head of the member function field chain. */
1189 struct fnfieldlist
1190 {
15d034d0 1191 const char *name;
c5aa993b
JM
1192 int length;
1193 struct nextfnfield *head;
1194 }
1195 *fnfieldlists;
c906108c 1196
c5aa993b
JM
1197 /* Number of entries in the fnfieldlists array. */
1198 int nfnfields;
98751a41
JK
1199
1200 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1201 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1202 struct typedef_field_list
1203 {
1204 struct typedef_field field;
1205 struct typedef_field_list *next;
1206 }
1207 *typedef_field_list;
1208 unsigned typedef_field_list_count;
c5aa993b 1209 };
c906108c 1210
10b3939b
DJ
1211/* One item on the queue of compilation units to read in full symbols
1212 for. */
1213struct dwarf2_queue_item
1214{
1215 struct dwarf2_per_cu_data *per_cu;
95554aad 1216 enum language pretend_language;
10b3939b
DJ
1217 struct dwarf2_queue_item *next;
1218};
1219
1220/* The current queue. */
1221static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1222
ae038cb0
DJ
1223/* Loaded secondary compilation units are kept in memory until they
1224 have not been referenced for the processing of this many
1225 compilation units. Set this to zero to disable caching. Cache
1226 sizes of up to at least twenty will improve startup time for
1227 typical inter-CU-reference binaries, at an obvious memory cost. */
1228static int dwarf2_max_cache_age = 5;
920d2a44
AC
1229static void
1230show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1231 struct cmd_list_element *c, const char *value)
1232{
3e43a32a
MS
1233 fprintf_filtered (file, _("The upper bound on the age of cached "
1234 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1235 value);
1236}
1237
ae038cb0 1238
0963b4bd 1239/* Various complaints about symbol reading that don't abort the process. */
c906108c 1240
4d3c2250
KB
1241static void
1242dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1243{
4d3c2250 1244 complaint (&symfile_complaints,
e2e0b3e5 1245 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1246}
1247
25e43795
DJ
1248static void
1249dwarf2_debug_line_missing_file_complaint (void)
1250{
1251 complaint (&symfile_complaints,
1252 _(".debug_line section has line data without a file"));
1253}
1254
59205f5a
JB
1255static void
1256dwarf2_debug_line_missing_end_sequence_complaint (void)
1257{
1258 complaint (&symfile_complaints,
3e43a32a
MS
1259 _(".debug_line section has line "
1260 "program sequence without an end"));
59205f5a
JB
1261}
1262
4d3c2250
KB
1263static void
1264dwarf2_complex_location_expr_complaint (void)
2e276125 1265{
e2e0b3e5 1266 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1267}
1268
4d3c2250
KB
1269static void
1270dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1271 int arg3)
2e276125 1272{
4d3c2250 1273 complaint (&symfile_complaints,
3e43a32a
MS
1274 _("const value length mismatch for '%s', got %d, expected %d"),
1275 arg1, arg2, arg3);
4d3c2250
KB
1276}
1277
1278static void
f664829e 1279dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1280{
4d3c2250 1281 complaint (&symfile_complaints,
f664829e
DE
1282 _("debug info runs off end of %s section"
1283 " [in module %s]"),
1284 section->asection->name,
1285 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1286}
1287
1288static void
1289dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1290{
4d3c2250 1291 complaint (&symfile_complaints,
3e43a32a
MS
1292 _("macro debug info contains a "
1293 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1294 arg1);
1295}
1296
1297static void
1298dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1299{
4d3c2250 1300 complaint (&symfile_complaints,
3e43a32a
MS
1301 _("invalid attribute class or form for '%s' in '%s'"),
1302 arg1, arg2);
4d3c2250 1303}
c906108c 1304
c906108c
SS
1305/* local function prototypes */
1306
4efb68b1 1307static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1308
918dd910
JK
1309static void dwarf2_find_base_address (struct die_info *die,
1310 struct dwarf2_cu *cu);
1311
0018ea6f
DE
1312static struct partial_symtab *create_partial_symtab
1313 (struct dwarf2_per_cu_data *per_cu, const char *name);
1314
c67a9c90 1315static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1316
72bf9492
DJ
1317static void scan_partial_symbols (struct partial_die_info *,
1318 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1319 int, struct dwarf2_cu *);
c906108c 1320
72bf9492
DJ
1321static void add_partial_symbol (struct partial_die_info *,
1322 struct dwarf2_cu *);
63d06c5c 1323
72bf9492
DJ
1324static void add_partial_namespace (struct partial_die_info *pdi,
1325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1326 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1327
5d7cb8df
JK
1328static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1329 CORE_ADDR *highpc, int need_pc,
1330 struct dwarf2_cu *cu);
1331
72bf9492
DJ
1332static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1333 struct dwarf2_cu *cu);
91c24f0a 1334
bc30ff58
JB
1335static void add_partial_subprogram (struct partial_die_info *pdi,
1336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1337 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1338
257e7a09
YQ
1339static void dwarf2_read_symtab (struct partial_symtab *,
1340 struct objfile *);
c906108c 1341
a14ed312 1342static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1343
433df2d4
DE
1344static struct abbrev_info *abbrev_table_lookup_abbrev
1345 (const struct abbrev_table *, unsigned int);
1346
1347static struct abbrev_table *abbrev_table_read_table
1348 (struct dwarf2_section_info *, sect_offset);
1349
1350static void abbrev_table_free (struct abbrev_table *);
1351
f4dc4d17
DE
1352static void abbrev_table_free_cleanup (void *);
1353
dee91e82
DE
1354static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1355 struct dwarf2_section_info *);
c906108c 1356
f3dd6933 1357static void dwarf2_free_abbrev_table (void *);
c906108c 1358
d521ce57 1359static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1360
dee91e82 1361static struct partial_die_info *load_partial_dies
d521ce57 1362 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1363
d521ce57
TT
1364static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1365 struct partial_die_info *,
1366 struct abbrev_info *,
1367 unsigned int,
1368 const gdb_byte *);
c906108c 1369
36586728 1370static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1371 struct dwarf2_cu *);
72bf9492
DJ
1372
1373static void fixup_partial_die (struct partial_die_info *,
1374 struct dwarf2_cu *);
1375
d521ce57
TT
1376static const gdb_byte *read_attribute (const struct die_reader_specs *,
1377 struct attribute *, struct attr_abbrev *,
1378 const gdb_byte *);
a8329558 1379
a1855c1d 1380static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1381
a1855c1d 1382static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1383
a1855c1d 1384static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1385
a1855c1d 1386static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1387
a1855c1d 1388static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1389
d521ce57 1390static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1391 unsigned int *);
c906108c 1392
d521ce57 1393static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1394
1395static LONGEST read_checked_initial_length_and_offset
d521ce57 1396 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1397 unsigned int *, unsigned int *);
613e1657 1398
d521ce57
TT
1399static LONGEST read_offset (bfd *, const gdb_byte *,
1400 const struct comp_unit_head *,
c764a876
DE
1401 unsigned int *);
1402
d521ce57 1403static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1404
f4dc4d17
DE
1405static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1406 sect_offset);
1407
d521ce57 1408static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1409
d521ce57 1410static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1411
d521ce57
TT
1412static const char *read_indirect_string (bfd *, const gdb_byte *,
1413 const struct comp_unit_head *,
1414 unsigned int *);
4bdf3d34 1415
d521ce57 1416static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1417
d521ce57 1418static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1419
d521ce57 1420static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1421
d521ce57
TT
1422static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1423 const gdb_byte *,
3019eac3
DE
1424 unsigned int *);
1425
d521ce57
TT
1426static const char *read_str_index (const struct die_reader_specs *reader,
1427 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1428
e142c38c 1429static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1430
e142c38c
DJ
1431static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1432 struct dwarf2_cu *);
c906108c 1433
348e048f 1434static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1435 unsigned int);
348e048f 1436
05cf31d1
JB
1437static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1438 struct dwarf2_cu *cu);
1439
e142c38c 1440static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1441
e142c38c 1442static struct die_info *die_specification (struct die_info *die,
f2f0e013 1443 struct dwarf2_cu **);
63d06c5c 1444
debd256d
JB
1445static void free_line_header (struct line_header *lh);
1446
3019eac3
DE
1447static struct line_header *dwarf_decode_line_header (unsigned int offset,
1448 struct dwarf2_cu *cu);
debd256d 1449
f3f5162e
DE
1450static void dwarf_decode_lines (struct line_header *, const char *,
1451 struct dwarf2_cu *, struct partial_symtab *,
1452 int);
c906108c 1453
d521ce57 1454static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1455
f4dc4d17 1456static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1457 const char *, const char *, CORE_ADDR);
f4dc4d17 1458
a14ed312 1459static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1460 struct dwarf2_cu *);
c906108c 1461
34eaf542
TT
1462static struct symbol *new_symbol_full (struct die_info *, struct type *,
1463 struct dwarf2_cu *, struct symbol *);
1464
ff39bb5e 1465static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1466 struct dwarf2_cu *);
c906108c 1467
ff39bb5e 1468static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1469 struct type *type,
1470 const char *name,
1471 struct obstack *obstack,
12df843f 1472 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1473 const gdb_byte **bytes,
98bfdba5 1474 struct dwarf2_locexpr_baton **baton);
2df3850c 1475
e7c27a73 1476static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1477
b4ba55a1
JB
1478static int need_gnat_info (struct dwarf2_cu *);
1479
3e43a32a
MS
1480static struct type *die_descriptive_type (struct die_info *,
1481 struct dwarf2_cu *);
b4ba55a1
JB
1482
1483static void set_descriptive_type (struct type *, struct die_info *,
1484 struct dwarf2_cu *);
1485
e7c27a73
DJ
1486static struct type *die_containing_type (struct die_info *,
1487 struct dwarf2_cu *);
c906108c 1488
ff39bb5e 1489static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1490 struct dwarf2_cu *);
c906108c 1491
f792889a 1492static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1493
673bfd45
DE
1494static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1495
0d5cff50 1496static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1497
6e70227d 1498static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1499 const char *suffix, int physname,
1500 struct dwarf2_cu *cu);
63d06c5c 1501
e7c27a73 1502static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1503
348e048f
DE
1504static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1505
e7c27a73 1506static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1507
e7c27a73 1508static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1509
96408a79
SA
1510static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1511
ff013f42
JK
1512static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1513 struct dwarf2_cu *, struct partial_symtab *);
1514
a14ed312 1515static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1516 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1517 struct partial_symtab *);
c906108c 1518
fae299cd
DC
1519static void get_scope_pc_bounds (struct die_info *,
1520 CORE_ADDR *, CORE_ADDR *,
1521 struct dwarf2_cu *);
1522
801e3a5b
JB
1523static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1524 CORE_ADDR, struct dwarf2_cu *);
1525
a14ed312 1526static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1527 struct dwarf2_cu *);
c906108c 1528
a14ed312 1529static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1530 struct type *, struct dwarf2_cu *);
c906108c 1531
a14ed312 1532static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1533 struct die_info *, struct type *,
e7c27a73 1534 struct dwarf2_cu *);
c906108c 1535
a14ed312 1536static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1537 struct type *,
1538 struct dwarf2_cu *);
c906108c 1539
134d01f1 1540static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1541
e7c27a73 1542static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1543
e7c27a73 1544static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1545
5d7cb8df
JK
1546static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1547
27aa8d6a
SW
1548static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1549
f55ee35c
JK
1550static struct type *read_module_type (struct die_info *die,
1551 struct dwarf2_cu *cu);
1552
38d518c9 1553static const char *namespace_name (struct die_info *die,
e142c38c 1554 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1555
134d01f1 1556static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1557
e7c27a73 1558static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1559
6e70227d 1560static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1561 struct dwarf2_cu *);
1562
bf6af496 1563static struct die_info *read_die_and_siblings_1
d521ce57 1564 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1565 struct die_info *);
639d11d3 1566
dee91e82 1567static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1568 const gdb_byte *info_ptr,
1569 const gdb_byte **new_info_ptr,
639d11d3
DC
1570 struct die_info *parent);
1571
d521ce57
TT
1572static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1573 struct die_info **, const gdb_byte *,
1574 int *, int);
3019eac3 1575
d521ce57
TT
1576static const gdb_byte *read_full_die (const struct die_reader_specs *,
1577 struct die_info **, const gdb_byte *,
1578 int *);
93311388 1579
e7c27a73 1580static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1581
15d034d0
TT
1582static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1583 struct obstack *);
71c25dea 1584
15d034d0 1585static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1586
15d034d0 1587static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1588 struct die_info *die,
1589 struct dwarf2_cu *cu);
1590
ca69b9e6
DE
1591static const char *dwarf2_physname (const char *name, struct die_info *die,
1592 struct dwarf2_cu *cu);
1593
e142c38c 1594static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1595 struct dwarf2_cu **);
9219021c 1596
f39c6ffd 1597static const char *dwarf_tag_name (unsigned int);
c906108c 1598
f39c6ffd 1599static const char *dwarf_attr_name (unsigned int);
c906108c 1600
f39c6ffd 1601static const char *dwarf_form_name (unsigned int);
c906108c 1602
a14ed312 1603static char *dwarf_bool_name (unsigned int);
c906108c 1604
f39c6ffd 1605static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1606
f9aca02d 1607static struct die_info *sibling_die (struct die_info *);
c906108c 1608
d97bc12b
DE
1609static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1610
1611static void dump_die_for_error (struct die_info *);
1612
1613static void dump_die_1 (struct ui_file *, int level, int max_level,
1614 struct die_info *);
c906108c 1615
d97bc12b 1616/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1617
51545339 1618static void store_in_ref_table (struct die_info *,
10b3939b 1619 struct dwarf2_cu *);
c906108c 1620
ff39bb5e 1621static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1622
ff39bb5e 1623static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1624
348e048f 1625static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1626 const struct attribute *,
348e048f
DE
1627 struct dwarf2_cu **);
1628
10b3939b 1629static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1630 const struct attribute *,
f2f0e013 1631 struct dwarf2_cu **);
c906108c 1632
348e048f 1633static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1634 const struct attribute *,
348e048f
DE
1635 struct dwarf2_cu **);
1636
ac9ec31b
DE
1637static struct type *get_signatured_type (struct die_info *, ULONGEST,
1638 struct dwarf2_cu *);
1639
1640static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1641 const struct attribute *,
ac9ec31b
DE
1642 struct dwarf2_cu *);
1643
e5fe5e75 1644static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1645
52dc124a 1646static void read_signatured_type (struct signatured_type *);
348e048f 1647
f4dc4d17 1648static struct type_unit_group *get_type_unit_group
ff39bb5e 1649 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1650
1651static void build_type_unit_groups (die_reader_func_ftype *, void *);
1652
c906108c
SS
1653/* memory allocation interface */
1654
7b5a2f43 1655static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1656
b60c80d6 1657static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1658
09262596 1659static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1660 const char *, int);
2e276125 1661
6e5a29e1 1662static int attr_form_is_block (const struct attribute *);
8e19ed76 1663
6e5a29e1 1664static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1665
6e5a29e1 1666static int attr_form_is_constant (const struct attribute *);
3690dd37 1667
6e5a29e1 1668static int attr_form_is_ref (const struct attribute *);
7771576e 1669
8cf6f0b1
TT
1670static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1671 struct dwarf2_loclist_baton *baton,
ff39bb5e 1672 const struct attribute *attr);
8cf6f0b1 1673
ff39bb5e 1674static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1675 struct symbol *sym,
f1e6e072
TT
1676 struct dwarf2_cu *cu,
1677 int is_block);
4c2df51b 1678
d521ce57
TT
1679static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1680 const gdb_byte *info_ptr,
1681 struct abbrev_info *abbrev);
4bb7a0a7 1682
72bf9492
DJ
1683static void free_stack_comp_unit (void *);
1684
72bf9492
DJ
1685static hashval_t partial_die_hash (const void *item);
1686
1687static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1688
ae038cb0 1689static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1690 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1691
9816fde3 1692static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1693 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1694
1695static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1696 struct die_info *comp_unit_die,
1697 enum language pretend_language);
93311388 1698
68dc6402 1699static void free_heap_comp_unit (void *);
ae038cb0
DJ
1700
1701static void free_cached_comp_units (void *);
1702
1703static void age_cached_comp_units (void);
1704
dee91e82 1705static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1706
f792889a
DJ
1707static struct type *set_die_type (struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1c379e20 1709
ae038cb0
DJ
1710static void create_all_comp_units (struct objfile *);
1711
0e50663e 1712static int create_all_type_units (struct objfile *);
1fd400ff 1713
95554aad
TT
1714static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1715 enum language);
10b3939b 1716
95554aad
TT
1717static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1718 enum language);
10b3939b 1719
f4dc4d17
DE
1720static void process_full_type_unit (struct dwarf2_per_cu_data *,
1721 enum language);
1722
10b3939b
DJ
1723static void dwarf2_add_dependence (struct dwarf2_cu *,
1724 struct dwarf2_per_cu_data *);
1725
ae038cb0
DJ
1726static void dwarf2_mark (struct dwarf2_cu *);
1727
1728static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1729
b64f50a1 1730static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1731 struct dwarf2_per_cu_data *);
673bfd45 1732
f792889a 1733static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1734
9291a0cd
TT
1735static void dwarf2_release_queue (void *dummy);
1736
95554aad
TT
1737static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1738 enum language pretend_language);
1739
1740static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1741 struct dwarf2_per_cu_data *per_cu,
1742 enum language pretend_language);
9291a0cd 1743
a0f42c21 1744static void process_queue (void);
9291a0cd
TT
1745
1746static void find_file_and_directory (struct die_info *die,
1747 struct dwarf2_cu *cu,
15d034d0 1748 const char **name, const char **comp_dir);
9291a0cd
TT
1749
1750static char *file_full_name (int file, struct line_header *lh,
1751 const char *comp_dir);
1752
d521ce57 1753static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1754 (struct comp_unit_head *header,
1755 struct dwarf2_section_info *section,
d521ce57 1756 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1757 int is_debug_types_section);
1758
fd820528 1759static void init_cutu_and_read_dies
f4dc4d17
DE
1760 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1761 int use_existing_cu, int keep,
3019eac3
DE
1762 die_reader_func_ftype *die_reader_func, void *data);
1763
dee91e82
DE
1764static void init_cutu_and_read_dies_simple
1765 (struct dwarf2_per_cu_data *this_cu,
1766 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1767
673bfd45 1768static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1769
3019eac3
DE
1770static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1771
a2ce51a0
DE
1772static struct dwo_unit *lookup_dwo_in_dwp
1773 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1774 const char *comp_dir, ULONGEST signature, int is_debug_types);
1775
1776static struct dwp_file *get_dwp_file (void);
1777
3019eac3 1778static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1779 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1780
1781static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1782 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1783
1784static void free_dwo_file_cleanup (void *);
1785
95554aad
TT
1786static void process_cu_includes (void);
1787
1b80a9fa
JK
1788static void check_producer (struct dwarf2_cu *cu);
1789
9291a0cd
TT
1790#if WORDS_BIGENDIAN
1791
1792/* Convert VALUE between big- and little-endian. */
1793static offset_type
1794byte_swap (offset_type value)
1795{
1796 offset_type result;
1797
1798 result = (value & 0xff) << 24;
1799 result |= (value & 0xff00) << 8;
1800 result |= (value & 0xff0000) >> 8;
1801 result |= (value & 0xff000000) >> 24;
1802 return result;
1803}
1804
1805#define MAYBE_SWAP(V) byte_swap (V)
1806
1807#else
1808#define MAYBE_SWAP(V) (V)
1809#endif /* WORDS_BIGENDIAN */
1810
1811/* The suffix for an index file. */
1812#define INDEX_SUFFIX ".gdb-index"
1813
c906108c 1814/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1815 information and return true if we have enough to do something.
1816 NAMES points to the dwarf2 section names, or is NULL if the standard
1817 ELF names are used. */
c906108c
SS
1818
1819int
251d32d9
TG
1820dwarf2_has_info (struct objfile *objfile,
1821 const struct dwarf2_debug_sections *names)
c906108c 1822{
be391dca
TT
1823 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1824 if (!dwarf2_per_objfile)
1825 {
1826 /* Initialize per-objfile state. */
1827 struct dwarf2_per_objfile *data
1828 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1829
be391dca
TT
1830 memset (data, 0, sizeof (*data));
1831 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1832 dwarf2_per_objfile = data;
6502dd73 1833
251d32d9
TG
1834 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1835 (void *) names);
be391dca
TT
1836 dwarf2_per_objfile->objfile = objfile;
1837 }
1838 return (dwarf2_per_objfile->info.asection != NULL
1839 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1840}
1841
251d32d9
TG
1842/* When loading sections, we look either for uncompressed section or for
1843 compressed section names. */
233a11ab
CS
1844
1845static int
251d32d9
TG
1846section_is_p (const char *section_name,
1847 const struct dwarf2_section_names *names)
233a11ab 1848{
251d32d9
TG
1849 if (names->normal != NULL
1850 && strcmp (section_name, names->normal) == 0)
1851 return 1;
1852 if (names->compressed != NULL
1853 && strcmp (section_name, names->compressed) == 0)
1854 return 1;
1855 return 0;
233a11ab
CS
1856}
1857
c906108c
SS
1858/* This function is mapped across the sections and remembers the
1859 offset and size of each of the debugging sections we are interested
1860 in. */
1861
1862static void
251d32d9 1863dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1864{
251d32d9 1865 const struct dwarf2_debug_sections *names;
dc7650b8 1866 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1867
1868 if (vnames == NULL)
1869 names = &dwarf2_elf_names;
1870 else
1871 names = (const struct dwarf2_debug_sections *) vnames;
1872
dc7650b8
JK
1873 if ((aflag & SEC_HAS_CONTENTS) == 0)
1874 {
1875 }
1876 else if (section_is_p (sectp->name, &names->info))
c906108c 1877 {
dce234bc
PP
1878 dwarf2_per_objfile->info.asection = sectp;
1879 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1880 }
251d32d9 1881 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1882 {
dce234bc
PP
1883 dwarf2_per_objfile->abbrev.asection = sectp;
1884 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1885 }
251d32d9 1886 else if (section_is_p (sectp->name, &names->line))
c906108c 1887 {
dce234bc
PP
1888 dwarf2_per_objfile->line.asection = sectp;
1889 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1890 }
251d32d9 1891 else if (section_is_p (sectp->name, &names->loc))
c906108c 1892 {
dce234bc
PP
1893 dwarf2_per_objfile->loc.asection = sectp;
1894 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1895 }
251d32d9 1896 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1897 {
dce234bc
PP
1898 dwarf2_per_objfile->macinfo.asection = sectp;
1899 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1900 }
cf2c3c16
TT
1901 else if (section_is_p (sectp->name, &names->macro))
1902 {
1903 dwarf2_per_objfile->macro.asection = sectp;
1904 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1905 }
251d32d9 1906 else if (section_is_p (sectp->name, &names->str))
c906108c 1907 {
dce234bc
PP
1908 dwarf2_per_objfile->str.asection = sectp;
1909 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1910 }
3019eac3
DE
1911 else if (section_is_p (sectp->name, &names->addr))
1912 {
1913 dwarf2_per_objfile->addr.asection = sectp;
1914 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1915 }
251d32d9 1916 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1917 {
dce234bc
PP
1918 dwarf2_per_objfile->frame.asection = sectp;
1919 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1920 }
251d32d9 1921 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1922 {
dc7650b8
JK
1923 dwarf2_per_objfile->eh_frame.asection = sectp;
1924 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1925 }
251d32d9 1926 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1927 {
dce234bc
PP
1928 dwarf2_per_objfile->ranges.asection = sectp;
1929 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1930 }
251d32d9 1931 else if (section_is_p (sectp->name, &names->types))
348e048f 1932 {
8b70b953
TT
1933 struct dwarf2_section_info type_section;
1934
1935 memset (&type_section, 0, sizeof (type_section));
1936 type_section.asection = sectp;
1937 type_section.size = bfd_get_section_size (sectp);
1938
1939 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1940 &type_section);
348e048f 1941 }
251d32d9 1942 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1943 {
1944 dwarf2_per_objfile->gdb_index.asection = sectp;
1945 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1946 }
dce234bc 1947
72dca2f5
FR
1948 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1949 && bfd_section_vma (abfd, sectp) == 0)
1950 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1951}
1952
fceca515
DE
1953/* A helper function that decides whether a section is empty,
1954 or not present. */
9e0ac564
TT
1955
1956static int
1957dwarf2_section_empty_p (struct dwarf2_section_info *info)
1958{
1959 return info->asection == NULL || info->size == 0;
1960}
1961
3019eac3
DE
1962/* Read the contents of the section INFO.
1963 OBJFILE is the main object file, but not necessarily the file where
1964 the section comes from. E.g., for DWO files INFO->asection->owner
1965 is the bfd of the DWO file.
dce234bc 1966 If the section is compressed, uncompress it before returning. */
c906108c 1967
dce234bc
PP
1968static void
1969dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1970{
dce234bc 1971 asection *sectp = info->asection;
3019eac3 1972 bfd *abfd;
dce234bc
PP
1973 gdb_byte *buf, *retbuf;
1974 unsigned char header[4];
c906108c 1975
be391dca
TT
1976 if (info->readin)
1977 return;
dce234bc 1978 info->buffer = NULL;
be391dca 1979 info->readin = 1;
188dd5d6 1980
9e0ac564 1981 if (dwarf2_section_empty_p (info))
dce234bc 1982 return;
c906108c 1983
3019eac3
DE
1984 abfd = sectp->owner;
1985
4bf44c1c
TT
1986 /* If the section has relocations, we must read it ourselves.
1987 Otherwise we attach it to the BFD. */
1988 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1989 {
d521ce57 1990 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 1991 return;
dce234bc 1992 }
dce234bc 1993
4bf44c1c
TT
1994 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1995 info->buffer = buf;
dce234bc
PP
1996
1997 /* When debugging .o files, we may need to apply relocations; see
1998 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1999 We never compress sections in .o files, so we only need to
2000 try this when the section is not compressed. */
ac8035ab 2001 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2002 if (retbuf != NULL)
2003 {
2004 info->buffer = retbuf;
2005 return;
2006 }
2007
2008 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2009 || bfd_bread (buf, info->size, abfd) != info->size)
2010 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2011 bfd_get_filename (abfd));
2012}
2013
9e0ac564
TT
2014/* A helper function that returns the size of a section in a safe way.
2015 If you are positive that the section has been read before using the
2016 size, then it is safe to refer to the dwarf2_section_info object's
2017 "size" field directly. In other cases, you must call this
2018 function, because for compressed sections the size field is not set
2019 correctly until the section has been read. */
2020
2021static bfd_size_type
2022dwarf2_section_size (struct objfile *objfile,
2023 struct dwarf2_section_info *info)
2024{
2025 if (!info->readin)
2026 dwarf2_read_section (objfile, info);
2027 return info->size;
2028}
2029
dce234bc 2030/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2031 SECTION_NAME. */
af34e669 2032
dce234bc 2033void
3017a003
TG
2034dwarf2_get_section_info (struct objfile *objfile,
2035 enum dwarf2_section_enum sect,
d521ce57 2036 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2037 bfd_size_type *sizep)
2038{
2039 struct dwarf2_per_objfile *data
2040 = objfile_data (objfile, dwarf2_objfile_data_key);
2041 struct dwarf2_section_info *info;
a3b2a86b
TT
2042
2043 /* We may see an objfile without any DWARF, in which case we just
2044 return nothing. */
2045 if (data == NULL)
2046 {
2047 *sectp = NULL;
2048 *bufp = NULL;
2049 *sizep = 0;
2050 return;
2051 }
3017a003
TG
2052 switch (sect)
2053 {
2054 case DWARF2_DEBUG_FRAME:
2055 info = &data->frame;
2056 break;
2057 case DWARF2_EH_FRAME:
2058 info = &data->eh_frame;
2059 break;
2060 default:
2061 gdb_assert_not_reached ("unexpected section");
2062 }
dce234bc 2063
9e0ac564 2064 dwarf2_read_section (objfile, info);
dce234bc
PP
2065
2066 *sectp = info->asection;
2067 *bufp = info->buffer;
2068 *sizep = info->size;
2069}
2070
36586728
TT
2071/* A helper function to find the sections for a .dwz file. */
2072
2073static void
2074locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2075{
2076 struct dwz_file *dwz_file = arg;
2077
2078 /* Note that we only support the standard ELF names, because .dwz
2079 is ELF-only (at the time of writing). */
2080 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2081 {
2082 dwz_file->abbrev.asection = sectp;
2083 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2086 {
2087 dwz_file->info.asection = sectp;
2088 dwz_file->info.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2091 {
2092 dwz_file->str.asection = sectp;
2093 dwz_file->str.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2096 {
2097 dwz_file->line.asection = sectp;
2098 dwz_file->line.size = bfd_get_section_size (sectp);
2099 }
2100 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2101 {
2102 dwz_file->macro.asection = sectp;
2103 dwz_file->macro.size = bfd_get_section_size (sectp);
2104 }
2ec9a5e0
TT
2105 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2106 {
2107 dwz_file->gdb_index.asection = sectp;
2108 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2109 }
36586728
TT
2110}
2111
4db1a1dc
TT
2112/* Open the separate '.dwz' debug file, if needed. Return NULL if
2113 there is no .gnu_debugaltlink section in the file. Error if there
2114 is such a section but the file cannot be found. */
36586728
TT
2115
2116static struct dwz_file *
2117dwarf2_get_dwz_file (void)
2118{
4db1a1dc
TT
2119 bfd *dwz_bfd;
2120 char *data;
36586728
TT
2121 struct cleanup *cleanup;
2122 const char *filename;
2123 struct dwz_file *result;
4db1a1dc 2124 unsigned long buildid;
36586728
TT
2125
2126 if (dwarf2_per_objfile->dwz_file != NULL)
2127 return dwarf2_per_objfile->dwz_file;
2128
4db1a1dc
TT
2129 bfd_set_error (bfd_error_no_error);
2130 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2131 &buildid);
2132 if (data == NULL)
2133 {
2134 if (bfd_get_error () == bfd_error_no_error)
2135 return NULL;
2136 error (_("could not read '.gnu_debugaltlink' section: %s"),
2137 bfd_errmsg (bfd_get_error ()));
2138 }
36586728
TT
2139 cleanup = make_cleanup (xfree, data);
2140
f9d83a0b 2141 filename = (const char *) data;
36586728
TT
2142 if (!IS_ABSOLUTE_PATH (filename))
2143 {
2144 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2145 char *rel;
2146
2147 make_cleanup (xfree, abs);
2148 abs = ldirname (abs);
2149 make_cleanup (xfree, abs);
2150
2151 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2152 make_cleanup (xfree, rel);
2153 filename = rel;
2154 }
2155
2156 /* The format is just a NUL-terminated file name, followed by the
2157 build-id. For now, though, we ignore the build-id. */
2158 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2159 if (dwz_bfd == NULL)
2160 error (_("could not read '%s': %s"), filename,
2161 bfd_errmsg (bfd_get_error ()));
2162
2163 if (!bfd_check_format (dwz_bfd, bfd_object))
2164 {
2165 gdb_bfd_unref (dwz_bfd);
2166 error (_("file '%s' was not usable: %s"), filename,
2167 bfd_errmsg (bfd_get_error ()));
2168 }
2169
2170 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2171 struct dwz_file);
2172 result->dwz_bfd = dwz_bfd;
2173
2174 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2175
2176 do_cleanups (cleanup);
2177
8d2cc612 2178 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2179 return result;
2180}
9291a0cd 2181\f
7b9f3c50
DE
2182/* DWARF quick_symbols_functions support. */
2183
2184/* TUs can share .debug_line entries, and there can be a lot more TUs than
2185 unique line tables, so we maintain a separate table of all .debug_line
2186 derived entries to support the sharing.
2187 All the quick functions need is the list of file names. We discard the
2188 line_header when we're done and don't need to record it here. */
2189struct quick_file_names
2190{
094b34ac
DE
2191 /* The data used to construct the hash key. */
2192 struct stmt_list_hash hash;
7b9f3c50
DE
2193
2194 /* The number of entries in file_names, real_names. */
2195 unsigned int num_file_names;
2196
2197 /* The file names from the line table, after being run through
2198 file_full_name. */
2199 const char **file_names;
2200
2201 /* The file names from the line table after being run through
2202 gdb_realpath. These are computed lazily. */
2203 const char **real_names;
2204};
2205
2206/* When using the index (and thus not using psymtabs), each CU has an
2207 object of this type. This is used to hold information needed by
2208 the various "quick" methods. */
2209struct dwarf2_per_cu_quick_data
2210{
2211 /* The file table. This can be NULL if there was no file table
2212 or it's currently not read in.
2213 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2214 struct quick_file_names *file_names;
2215
2216 /* The corresponding symbol table. This is NULL if symbols for this
2217 CU have not yet been read. */
2218 struct symtab *symtab;
2219
2220 /* A temporary mark bit used when iterating over all CUs in
2221 expand_symtabs_matching. */
2222 unsigned int mark : 1;
2223
2224 /* True if we've tried to read the file table and found there isn't one.
2225 There will be no point in trying to read it again next time. */
2226 unsigned int no_file_data : 1;
2227};
2228
094b34ac
DE
2229/* Utility hash function for a stmt_list_hash. */
2230
2231static hashval_t
2232hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2233{
2234 hashval_t v = 0;
2235
2236 if (stmt_list_hash->dwo_unit != NULL)
2237 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2238 v += stmt_list_hash->line_offset.sect_off;
2239 return v;
2240}
2241
2242/* Utility equality function for a stmt_list_hash. */
2243
2244static int
2245eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2246 const struct stmt_list_hash *rhs)
2247{
2248 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2249 return 0;
2250 if (lhs->dwo_unit != NULL
2251 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2252 return 0;
2253
2254 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2255}
2256
7b9f3c50
DE
2257/* Hash function for a quick_file_names. */
2258
2259static hashval_t
2260hash_file_name_entry (const void *e)
2261{
2262 const struct quick_file_names *file_data = e;
2263
094b34ac 2264 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2265}
2266
2267/* Equality function for a quick_file_names. */
2268
2269static int
2270eq_file_name_entry (const void *a, const void *b)
2271{
2272 const struct quick_file_names *ea = a;
2273 const struct quick_file_names *eb = b;
2274
094b34ac 2275 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2276}
2277
2278/* Delete function for a quick_file_names. */
2279
2280static void
2281delete_file_name_entry (void *e)
2282{
2283 struct quick_file_names *file_data = e;
2284 int i;
2285
2286 for (i = 0; i < file_data->num_file_names; ++i)
2287 {
2288 xfree ((void*) file_data->file_names[i]);
2289 if (file_data->real_names)
2290 xfree ((void*) file_data->real_names[i]);
2291 }
2292
2293 /* The space for the struct itself lives on objfile_obstack,
2294 so we don't free it here. */
2295}
2296
2297/* Create a quick_file_names hash table. */
2298
2299static htab_t
2300create_quick_file_names_table (unsigned int nr_initial_entries)
2301{
2302 return htab_create_alloc (nr_initial_entries,
2303 hash_file_name_entry, eq_file_name_entry,
2304 delete_file_name_entry, xcalloc, xfree);
2305}
9291a0cd 2306
918dd910
JK
2307/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2308 have to be created afterwards. You should call age_cached_comp_units after
2309 processing PER_CU->CU. dw2_setup must have been already called. */
2310
2311static void
2312load_cu (struct dwarf2_per_cu_data *per_cu)
2313{
3019eac3 2314 if (per_cu->is_debug_types)
e5fe5e75 2315 load_full_type_unit (per_cu);
918dd910 2316 else
95554aad 2317 load_full_comp_unit (per_cu, language_minimal);
918dd910 2318
918dd910 2319 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2320
2321 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2322}
2323
a0f42c21 2324/* Read in the symbols for PER_CU. */
2fdf6df6 2325
9291a0cd 2326static void
a0f42c21 2327dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2328{
2329 struct cleanup *back_to;
2330
f4dc4d17
DE
2331 /* Skip type_unit_groups, reading the type units they contain
2332 is handled elsewhere. */
2333 if (IS_TYPE_UNIT_GROUP (per_cu))
2334 return;
2335
9291a0cd
TT
2336 back_to = make_cleanup (dwarf2_release_queue, NULL);
2337
95554aad
TT
2338 if (dwarf2_per_objfile->using_index
2339 ? per_cu->v.quick->symtab == NULL
2340 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2341 {
2342 queue_comp_unit (per_cu, language_minimal);
2343 load_cu (per_cu);
2344 }
9291a0cd 2345
a0f42c21 2346 process_queue ();
9291a0cd
TT
2347
2348 /* Age the cache, releasing compilation units that have not
2349 been used recently. */
2350 age_cached_comp_units ();
2351
2352 do_cleanups (back_to);
2353}
2354
2355/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2fdf6df6 2358
9291a0cd 2359static struct symtab *
a0f42c21 2360dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2361{
95554aad 2362 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2363 if (!per_cu->v.quick->symtab)
2364 {
2365 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2366 increment_reading_symtab ();
a0f42c21 2367 dw2_do_instantiate_symtab (per_cu);
95554aad 2368 process_cu_includes ();
9291a0cd
TT
2369 do_cleanups (back_to);
2370 }
2371 return per_cu->v.quick->symtab;
2372}
2373
f4dc4d17
DE
2374/* Return the CU given its index.
2375
2376 This is intended for loops like:
2377
2378 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2379 + dwarf2_per_objfile->n_type_units); ++i)
2380 {
2381 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2382
2383 ...;
2384 }
2385*/
2fdf6df6 2386
1fd400ff
TT
2387static struct dwarf2_per_cu_data *
2388dw2_get_cu (int index)
2389{
2390 if (index >= dwarf2_per_objfile->n_comp_units)
2391 {
f4dc4d17 2392 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2393 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2394 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2395 }
2396
2397 return dwarf2_per_objfile->all_comp_units[index];
2398}
2399
2400/* Return the primary CU given its index.
2401 The difference between this function and dw2_get_cu is in the handling
2402 of type units (TUs). Here we return the type_unit_group object.
2403
2404 This is intended for loops like:
2405
2406 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2407 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2408 {
2409 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2410
2411 ...;
2412 }
2413*/
2414
2415static struct dwarf2_per_cu_data *
2416dw2_get_primary_cu (int index)
2417{
2418 if (index >= dwarf2_per_objfile->n_comp_units)
2419 {
1fd400ff 2420 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2421 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2422 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2423 }
f4dc4d17 2424
1fd400ff
TT
2425 return dwarf2_per_objfile->all_comp_units[index];
2426}
2427
2ec9a5e0
TT
2428/* A helper for create_cus_from_index that handles a given list of
2429 CUs. */
2fdf6df6 2430
74a0d9f6 2431static void
2ec9a5e0
TT
2432create_cus_from_index_list (struct objfile *objfile,
2433 const gdb_byte *cu_list, offset_type n_elements,
2434 struct dwarf2_section_info *section,
2435 int is_dwz,
2436 int base_offset)
9291a0cd
TT
2437{
2438 offset_type i;
9291a0cd 2439
2ec9a5e0 2440 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2441 {
2442 struct dwarf2_per_cu_data *the_cu;
2443 ULONGEST offset, length;
2444
74a0d9f6
JK
2445 gdb_static_assert (sizeof (ULONGEST) >= 8);
2446 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2447 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2448 cu_list += 2 * 8;
2449
2450 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2451 struct dwarf2_per_cu_data);
b64f50a1 2452 the_cu->offset.sect_off = offset;
9291a0cd
TT
2453 the_cu->length = length;
2454 the_cu->objfile = objfile;
8a0459fd 2455 the_cu->section = section;
9291a0cd
TT
2456 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2457 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2458 the_cu->is_dwz = is_dwz;
2459 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2460 }
9291a0cd
TT
2461}
2462
2ec9a5e0 2463/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2464 the CU objects for this objfile. */
2ec9a5e0 2465
74a0d9f6 2466static void
2ec9a5e0
TT
2467create_cus_from_index (struct objfile *objfile,
2468 const gdb_byte *cu_list, offset_type cu_list_elements,
2469 const gdb_byte *dwz_list, offset_type dwz_elements)
2470{
2471 struct dwz_file *dwz;
2472
2473 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2474 dwarf2_per_objfile->all_comp_units
2475 = obstack_alloc (&objfile->objfile_obstack,
2476 dwarf2_per_objfile->n_comp_units
2477 * sizeof (struct dwarf2_per_cu_data *));
2478
74a0d9f6
JK
2479 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2480 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2481
2482 if (dwz_elements == 0)
74a0d9f6 2483 return;
2ec9a5e0
TT
2484
2485 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2486 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2487 cu_list_elements / 2);
2ec9a5e0
TT
2488}
2489
1fd400ff 2490/* Create the signatured type hash table from the index. */
673bfd45 2491
74a0d9f6 2492static void
673bfd45 2493create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2494 struct dwarf2_section_info *section,
673bfd45
DE
2495 const gdb_byte *bytes,
2496 offset_type elements)
1fd400ff
TT
2497{
2498 offset_type i;
673bfd45 2499 htab_t sig_types_hash;
1fd400ff 2500
d467dd73
DE
2501 dwarf2_per_objfile->n_type_units = elements / 3;
2502 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2503 = xmalloc (dwarf2_per_objfile->n_type_units
2504 * sizeof (struct signatured_type *));
1fd400ff 2505
673bfd45 2506 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2507
2508 for (i = 0; i < elements; i += 3)
2509 {
52dc124a
DE
2510 struct signatured_type *sig_type;
2511 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2512 void **slot;
2513
74a0d9f6
JK
2514 gdb_static_assert (sizeof (ULONGEST) >= 8);
2515 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2516 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2517 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2518 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2519 bytes += 3 * 8;
2520
52dc124a 2521 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2522 struct signatured_type);
52dc124a 2523 sig_type->signature = signature;
3019eac3
DE
2524 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2525 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2526 sig_type->per_cu.section = section;
52dc124a
DE
2527 sig_type->per_cu.offset.sect_off = offset;
2528 sig_type->per_cu.objfile = objfile;
2529 sig_type->per_cu.v.quick
1fd400ff
TT
2530 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2531 struct dwarf2_per_cu_quick_data);
2532
52dc124a
DE
2533 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2534 *slot = sig_type;
1fd400ff 2535
b4dd5633 2536 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2537 }
2538
673bfd45 2539 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2540}
2541
9291a0cd
TT
2542/* Read the address map data from the mapped index, and use it to
2543 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2544
9291a0cd
TT
2545static void
2546create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2547{
2548 const gdb_byte *iter, *end;
2549 struct obstack temp_obstack;
2550 struct addrmap *mutable_map;
2551 struct cleanup *cleanup;
2552 CORE_ADDR baseaddr;
2553
2554 obstack_init (&temp_obstack);
2555 cleanup = make_cleanup_obstack_free (&temp_obstack);
2556 mutable_map = addrmap_create_mutable (&temp_obstack);
2557
2558 iter = index->address_table;
2559 end = iter + index->address_table_size;
2560
2561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2562
2563 while (iter < end)
2564 {
2565 ULONGEST hi, lo, cu_index;
2566 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2567 iter += 8;
2568 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2569 iter += 8;
2570 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2571 iter += 4;
f652bce2 2572
24a55014 2573 if (lo > hi)
f652bce2 2574 {
24a55014
DE
2575 complaint (&symfile_complaints,
2576 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2577 hex_string (lo), hex_string (hi));
24a55014 2578 continue;
f652bce2 2579 }
24a55014
DE
2580
2581 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2582 {
2583 complaint (&symfile_complaints,
2584 _(".gdb_index address table has invalid CU number %u"),
2585 (unsigned) cu_index);
24a55014 2586 continue;
f652bce2 2587 }
24a55014
DE
2588
2589 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2590 dw2_get_cu (cu_index));
9291a0cd
TT
2591 }
2592
2593 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2594 &objfile->objfile_obstack);
2595 do_cleanups (cleanup);
2596}
2597
59d7bcaf
JK
2598/* The hash function for strings in the mapped index. This is the same as
2599 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2600 implementation. This is necessary because the hash function is tied to the
2601 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2602 SYMBOL_HASH_NEXT.
2603
2604 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2605
9291a0cd 2606static hashval_t
559a7a62 2607mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2608{
2609 const unsigned char *str = (const unsigned char *) p;
2610 hashval_t r = 0;
2611 unsigned char c;
2612
2613 while ((c = *str++) != 0)
559a7a62
JK
2614 {
2615 if (index_version >= 5)
2616 c = tolower (c);
2617 r = r * 67 + c - 113;
2618 }
9291a0cd
TT
2619
2620 return r;
2621}
2622
2623/* Find a slot in the mapped index INDEX for the object named NAME.
2624 If NAME is found, set *VEC_OUT to point to the CU vector in the
2625 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2626
9291a0cd
TT
2627static int
2628find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2629 offset_type **vec_out)
2630{
0cf03b49
JK
2631 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2632 offset_type hash;
9291a0cd 2633 offset_type slot, step;
559a7a62 2634 int (*cmp) (const char *, const char *);
9291a0cd 2635
0cf03b49
JK
2636 if (current_language->la_language == language_cplus
2637 || current_language->la_language == language_java
2638 || current_language->la_language == language_fortran)
2639 {
2640 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2641 not contain any. */
2642 const char *paren = strchr (name, '(');
2643
2644 if (paren)
2645 {
2646 char *dup;
2647
2648 dup = xmalloc (paren - name + 1);
2649 memcpy (dup, name, paren - name);
2650 dup[paren - name] = 0;
2651
2652 make_cleanup (xfree, dup);
2653 name = dup;
2654 }
2655 }
2656
559a7a62 2657 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2658 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2659 simulate our NAME being searched is also lowercased. */
2660 hash = mapped_index_string_hash ((index->version == 4
2661 && case_sensitivity == case_sensitive_off
2662 ? 5 : index->version),
2663 name);
2664
3876f04e
DE
2665 slot = hash & (index->symbol_table_slots - 1);
2666 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2667 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2668
2669 for (;;)
2670 {
2671 /* Convert a slot number to an offset into the table. */
2672 offset_type i = 2 * slot;
2673 const char *str;
3876f04e 2674 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2675 {
2676 do_cleanups (back_to);
2677 return 0;
2678 }
9291a0cd 2679
3876f04e 2680 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2681 if (!cmp (name, str))
9291a0cd
TT
2682 {
2683 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2684 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2685 do_cleanups (back_to);
9291a0cd
TT
2686 return 1;
2687 }
2688
3876f04e 2689 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2690 }
2691}
2692
2ec9a5e0
TT
2693/* A helper function that reads the .gdb_index from SECTION and fills
2694 in MAP. FILENAME is the name of the file containing the section;
2695 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2696 ok to use deprecated sections.
2697
2698 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2699 out parameters that are filled in with information about the CU and
2700 TU lists in the section.
2701
2702 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2703
9291a0cd 2704static int
2ec9a5e0
TT
2705read_index_from_section (struct objfile *objfile,
2706 const char *filename,
2707 int deprecated_ok,
2708 struct dwarf2_section_info *section,
2709 struct mapped_index *map,
2710 const gdb_byte **cu_list,
2711 offset_type *cu_list_elements,
2712 const gdb_byte **types_list,
2713 offset_type *types_list_elements)
9291a0cd 2714{
948f8e3d 2715 const gdb_byte *addr;
2ec9a5e0 2716 offset_type version;
b3b272e1 2717 offset_type *metadata;
1fd400ff 2718 int i;
9291a0cd 2719
2ec9a5e0 2720 if (dwarf2_section_empty_p (section))
9291a0cd 2721 return 0;
82430852
JK
2722
2723 /* Older elfutils strip versions could keep the section in the main
2724 executable while splitting it for the separate debug info file. */
2ec9a5e0 2725 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2726 return 0;
2727
2ec9a5e0 2728 dwarf2_read_section (objfile, section);
9291a0cd 2729
2ec9a5e0 2730 addr = section->buffer;
9291a0cd 2731 /* Version check. */
1fd400ff 2732 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2733 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2734 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2735 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2736 indices. */
831adc1f 2737 if (version < 4)
481860b3
GB
2738 {
2739 static int warning_printed = 0;
2740 if (!warning_printed)
2741 {
2742 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2743 filename);
481860b3
GB
2744 warning_printed = 1;
2745 }
2746 return 0;
2747 }
2748 /* Index version 4 uses a different hash function than index version
2749 5 and later.
2750
2751 Versions earlier than 6 did not emit psymbols for inlined
2752 functions. Using these files will cause GDB not to be able to
2753 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2754 indices unless the user has done
2755 "set use-deprecated-index-sections on". */
2ec9a5e0 2756 if (version < 6 && !deprecated_ok)
481860b3
GB
2757 {
2758 static int warning_printed = 0;
2759 if (!warning_printed)
2760 {
e615022a
DE
2761 warning (_("\
2762Skipping deprecated .gdb_index section in %s.\n\
2763Do \"set use-deprecated-index-sections on\" before the file is read\n\
2764to use the section anyway."),
2ec9a5e0 2765 filename);
481860b3
GB
2766 warning_printed = 1;
2767 }
2768 return 0;
2769 }
796a7ff8
DE
2770 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2771 of the TU (for symbols coming from TUs). It's just a performance bug, and
2772 we can't distinguish gdb-generated indices from gold-generated ones, so
2773 nothing to do here. */
2774
481860b3 2775 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2776 longer backward compatible. */
796a7ff8 2777 if (version > 8)
594e8718 2778 return 0;
9291a0cd 2779
559a7a62 2780 map->version = version;
2ec9a5e0 2781 map->total_size = section->size;
9291a0cd
TT
2782
2783 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2784
2785 i = 0;
2ec9a5e0
TT
2786 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2787 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2788 / 8);
1fd400ff
TT
2789 ++i;
2790
2ec9a5e0
TT
2791 *types_list = addr + MAYBE_SWAP (metadata[i]);
2792 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2793 - MAYBE_SWAP (metadata[i]))
2794 / 8);
987d643c 2795 ++i;
1fd400ff
TT
2796
2797 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2798 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2799 - MAYBE_SWAP (metadata[i]));
2800 ++i;
2801
3876f04e
DE
2802 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2803 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2804 - MAYBE_SWAP (metadata[i]))
2805 / (2 * sizeof (offset_type)));
1fd400ff 2806 ++i;
9291a0cd 2807
f9d83a0b 2808 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 2809
2ec9a5e0
TT
2810 return 1;
2811}
2812
2813
2814/* Read the index file. If everything went ok, initialize the "quick"
2815 elements of all the CUs and return 1. Otherwise, return 0. */
2816
2817static int
2818dwarf2_read_index (struct objfile *objfile)
2819{
2820 struct mapped_index local_map, *map;
2821 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2822 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 2823 struct dwz_file *dwz;
2ec9a5e0
TT
2824
2825 if (!read_index_from_section (objfile, objfile->name,
2826 use_deprecated_index_sections,
2827 &dwarf2_per_objfile->gdb_index, &local_map,
2828 &cu_list, &cu_list_elements,
2829 &types_list, &types_list_elements))
2830 return 0;
2831
0fefef59 2832 /* Don't use the index if it's empty. */
2ec9a5e0 2833 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2834 return 0;
2835
2ec9a5e0
TT
2836 /* If there is a .dwz file, read it so we can get its CU list as
2837 well. */
4db1a1dc
TT
2838 dwz = dwarf2_get_dwz_file ();
2839 if (dwz != NULL)
2ec9a5e0 2840 {
2ec9a5e0
TT
2841 struct mapped_index dwz_map;
2842 const gdb_byte *dwz_types_ignore;
2843 offset_type dwz_types_elements_ignore;
2844
2845 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2846 1,
2847 &dwz->gdb_index, &dwz_map,
2848 &dwz_list, &dwz_list_elements,
2849 &dwz_types_ignore,
2850 &dwz_types_elements_ignore))
2851 {
2852 warning (_("could not read '.gdb_index' section from %s; skipping"),
2853 bfd_get_filename (dwz->dwz_bfd));
2854 return 0;
2855 }
2856 }
2857
74a0d9f6
JK
2858 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2859 dwz_list_elements);
1fd400ff 2860
8b70b953
TT
2861 if (types_list_elements)
2862 {
2863 struct dwarf2_section_info *section;
2864
2865 /* We can only handle a single .debug_types when we have an
2866 index. */
2867 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2868 return 0;
2869
2870 section = VEC_index (dwarf2_section_info_def,
2871 dwarf2_per_objfile->types, 0);
2872
74a0d9f6
JK
2873 create_signatured_type_table_from_index (objfile, section, types_list,
2874 types_list_elements);
8b70b953 2875 }
9291a0cd 2876
2ec9a5e0
TT
2877 create_addrmap_from_index (objfile, &local_map);
2878
2879 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2880 *map = local_map;
9291a0cd
TT
2881
2882 dwarf2_per_objfile->index_table = map;
2883 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2884 dwarf2_per_objfile->quick_file_names_table =
2885 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2886
2887 return 1;
2888}
2889
2890/* A helper for the "quick" functions which sets the global
2891 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2892
9291a0cd
TT
2893static void
2894dw2_setup (struct objfile *objfile)
2895{
2896 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2897 gdb_assert (dwarf2_per_objfile);
2898}
2899
dee91e82 2900/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2901
dee91e82
DE
2902static void
2903dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 2904 const gdb_byte *info_ptr,
dee91e82
DE
2905 struct die_info *comp_unit_die,
2906 int has_children,
2907 void *data)
9291a0cd 2908{
dee91e82
DE
2909 struct dwarf2_cu *cu = reader->cu;
2910 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2911 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2912 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2913 struct line_header *lh;
9291a0cd 2914 struct attribute *attr;
dee91e82 2915 int i;
15d034d0 2916 const char *name, *comp_dir;
7b9f3c50
DE
2917 void **slot;
2918 struct quick_file_names *qfn;
2919 unsigned int line_offset;
9291a0cd 2920
0186c6a7
DE
2921 gdb_assert (! this_cu->is_debug_types);
2922
07261596
TT
2923 /* Our callers never want to match partial units -- instead they
2924 will match the enclosing full CU. */
2925 if (comp_unit_die->tag == DW_TAG_partial_unit)
2926 {
2927 this_cu->v.quick->no_file_data = 1;
2928 return;
2929 }
2930
0186c6a7 2931 lh_cu = this_cu;
7b9f3c50
DE
2932 lh = NULL;
2933 slot = NULL;
2934 line_offset = 0;
dee91e82
DE
2935
2936 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2937 if (attr)
2938 {
7b9f3c50
DE
2939 struct quick_file_names find_entry;
2940
2941 line_offset = DW_UNSND (attr);
2942
2943 /* We may have already read in this line header (TU line header sharing).
2944 If we have we're done. */
094b34ac
DE
2945 find_entry.hash.dwo_unit = cu->dwo_unit;
2946 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2947 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2948 &find_entry, INSERT);
2949 if (*slot != NULL)
2950 {
094b34ac 2951 lh_cu->v.quick->file_names = *slot;
dee91e82 2952 return;
7b9f3c50
DE
2953 }
2954
3019eac3 2955 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2956 }
2957 if (lh == NULL)
2958 {
094b34ac 2959 lh_cu->v.quick->no_file_data = 1;
dee91e82 2960 return;
9291a0cd
TT
2961 }
2962
7b9f3c50 2963 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2964 qfn->hash.dwo_unit = cu->dwo_unit;
2965 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2966 gdb_assert (slot != NULL);
2967 *slot = qfn;
9291a0cd 2968
dee91e82 2969 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2970
7b9f3c50
DE
2971 qfn->num_file_names = lh->num_file_names;
2972 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2973 lh->num_file_names * sizeof (char *));
9291a0cd 2974 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2975 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2976 qfn->real_names = NULL;
9291a0cd 2977
7b9f3c50 2978 free_line_header (lh);
7b9f3c50 2979
094b34ac 2980 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2981}
2982
2983/* A helper for the "quick" functions which attempts to read the line
2984 table for THIS_CU. */
2985
2986static struct quick_file_names *
e4a48d9d 2987dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 2988{
0186c6a7
DE
2989 /* This should never be called for TUs. */
2990 gdb_assert (! this_cu->is_debug_types);
2991 /* Nor type unit groups. */
2992 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 2993
dee91e82
DE
2994 if (this_cu->v.quick->file_names != NULL)
2995 return this_cu->v.quick->file_names;
2996 /* If we know there is no line data, no point in looking again. */
2997 if (this_cu->v.quick->no_file_data)
2998 return NULL;
2999
0186c6a7 3000 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3001
3002 if (this_cu->v.quick->no_file_data)
3003 return NULL;
3004 return this_cu->v.quick->file_names;
9291a0cd
TT
3005}
3006
3007/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3008 real path for a given file name from the line table. */
2fdf6df6 3009
9291a0cd 3010static const char *
7b9f3c50
DE
3011dw2_get_real_path (struct objfile *objfile,
3012 struct quick_file_names *qfn, int index)
9291a0cd 3013{
7b9f3c50
DE
3014 if (qfn->real_names == NULL)
3015 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3016 qfn->num_file_names, sizeof (char *));
9291a0cd 3017
7b9f3c50
DE
3018 if (qfn->real_names[index] == NULL)
3019 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3020
7b9f3c50 3021 return qfn->real_names[index];
9291a0cd
TT
3022}
3023
3024static struct symtab *
3025dw2_find_last_source_symtab (struct objfile *objfile)
3026{
3027 int index;
ae2de4f8 3028
9291a0cd
TT
3029 dw2_setup (objfile);
3030 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3031 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3032}
3033
7b9f3c50
DE
3034/* Traversal function for dw2_forget_cached_source_info. */
3035
3036static int
3037dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3038{
7b9f3c50 3039 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3040
7b9f3c50 3041 if (file_data->real_names)
9291a0cd 3042 {
7b9f3c50 3043 int i;
9291a0cd 3044
7b9f3c50 3045 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3046 {
7b9f3c50
DE
3047 xfree ((void*) file_data->real_names[i]);
3048 file_data->real_names[i] = NULL;
9291a0cd
TT
3049 }
3050 }
7b9f3c50
DE
3051
3052 return 1;
3053}
3054
3055static void
3056dw2_forget_cached_source_info (struct objfile *objfile)
3057{
3058 dw2_setup (objfile);
3059
3060 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3061 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3062}
3063
f8eba3c6
TT
3064/* Helper function for dw2_map_symtabs_matching_filename that expands
3065 the symtabs and calls the iterator. */
3066
3067static int
3068dw2_map_expand_apply (struct objfile *objfile,
3069 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3070 const char *name, const char *real_path,
f8eba3c6
TT
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
3073{
3074 struct symtab *last_made = objfile->symtabs;
3075
3076 /* Don't visit already-expanded CUs. */
3077 if (per_cu->v.quick->symtab)
3078 return 0;
3079
3080 /* This may expand more than one symtab, and we want to iterate over
3081 all of them. */
a0f42c21 3082 dw2_instantiate_symtab (per_cu);
f8eba3c6 3083
f5b95b50 3084 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3085 objfile->symtabs, last_made);
3086}
3087
3088/* Implementation of the map_symtabs_matching_filename method. */
3089
9291a0cd 3090static int
f8eba3c6 3091dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3092 const char *real_path,
f8eba3c6
TT
3093 int (*callback) (struct symtab *, void *),
3094 void *data)
9291a0cd
TT
3095{
3096 int i;
c011a4f4 3097 const char *name_basename = lbasename (name);
9291a0cd
TT
3098
3099 dw2_setup (objfile);
ae2de4f8 3100
848e3e78
DE
3101 /* The rule is CUs specify all the files, including those used by
3102 any TU, so there's no need to scan TUs here. */
f4dc4d17 3103
848e3e78 3104 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3105 {
3106 int j;
f4dc4d17 3107 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3108 struct quick_file_names *file_data;
9291a0cd 3109
3d7bb9d9 3110 /* We only need to look at symtabs not already expanded. */
e254ef6a 3111 if (per_cu->v.quick->symtab)
9291a0cd
TT
3112 continue;
3113
e4a48d9d 3114 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3115 if (file_data == NULL)
9291a0cd
TT
3116 continue;
3117
7b9f3c50 3118 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3119 {
7b9f3c50 3120 const char *this_name = file_data->file_names[j];
da235a7c 3121 const char *this_real_name;
9291a0cd 3122
af529f8f 3123 if (compare_filenames_for_search (this_name, name))
9291a0cd 3124 {
f5b95b50 3125 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3126 callback, data))
3127 return 1;
288e77a7 3128 continue;
4aac40c8 3129 }
9291a0cd 3130
c011a4f4
DE
3131 /* Before we invoke realpath, which can get expensive when many
3132 files are involved, do a quick comparison of the basenames. */
3133 if (! basenames_may_differ
3134 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3135 continue;
3136
da235a7c
JK
3137 this_real_name = dw2_get_real_path (objfile, file_data, j);
3138 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3139 {
da235a7c
JK
3140 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3141 callback, data))
3142 return 1;
288e77a7 3143 continue;
da235a7c 3144 }
9291a0cd 3145
da235a7c
JK
3146 if (real_path != NULL)
3147 {
af529f8f
JK
3148 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3149 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3150 if (this_real_name != NULL
af529f8f 3151 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3152 {
f5b95b50 3153 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3154 callback, data))
3155 return 1;
288e77a7 3156 continue;
9291a0cd
TT
3157 }
3158 }
3159 }
3160 }
3161
9291a0cd
TT
3162 return 0;
3163}
3164
da51c347
DE
3165/* Struct used to manage iterating over all CUs looking for a symbol. */
3166
3167struct dw2_symtab_iterator
9291a0cd 3168{
da51c347
DE
3169 /* The internalized form of .gdb_index. */
3170 struct mapped_index *index;
3171 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3172 int want_specific_block;
3173 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3174 Unused if !WANT_SPECIFIC_BLOCK. */
3175 int block_index;
3176 /* The kind of symbol we're looking for. */
3177 domain_enum domain;
3178 /* The list of CUs from the index entry of the symbol,
3179 or NULL if not found. */
3180 offset_type *vec;
3181 /* The next element in VEC to look at. */
3182 int next;
3183 /* The number of elements in VEC, or zero if there is no match. */
3184 int length;
3185};
9291a0cd 3186
da51c347
DE
3187/* Initialize the index symtab iterator ITER.
3188 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3189 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3190
9291a0cd 3191static void
da51c347
DE
3192dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3193 struct mapped_index *index,
3194 int want_specific_block,
3195 int block_index,
3196 domain_enum domain,
3197 const char *name)
3198{
3199 iter->index = index;
3200 iter->want_specific_block = want_specific_block;
3201 iter->block_index = block_index;
3202 iter->domain = domain;
3203 iter->next = 0;
3204
3205 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3206 iter->length = MAYBE_SWAP (*iter->vec);
3207 else
3208 {
3209 iter->vec = NULL;
3210 iter->length = 0;
3211 }
3212}
3213
3214/* Return the next matching CU or NULL if there are no more. */
3215
3216static struct dwarf2_per_cu_data *
3217dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3218{
3219 for ( ; iter->next < iter->length; ++iter->next)
3220 {
3221 offset_type cu_index_and_attrs =
3222 MAYBE_SWAP (iter->vec[iter->next + 1]);
3223 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3224 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3225 int want_static = iter->block_index != GLOBAL_BLOCK;
3226 /* This value is only valid for index versions >= 7. */
3227 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3228 gdb_index_symbol_kind symbol_kind =
3229 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3230 /* Only check the symbol attributes if they're present.
3231 Indices prior to version 7 don't record them,
3232 and indices >= 7 may elide them for certain symbols
3233 (gold does this). */
3234 int attrs_valid =
3235 (iter->index->version >= 7
3236 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3237
3190f0c6
DE
3238 /* Don't crash on bad data. */
3239 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3240 + dwarf2_per_objfile->n_type_units))
3241 {
3242 complaint (&symfile_complaints,
3243 _(".gdb_index entry has bad CU index"
3244 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3245 continue;
3246 }
3247
3248 per_cu = dw2_get_cu (cu_index);
3249
da51c347
DE
3250 /* Skip if already read in. */
3251 if (per_cu->v.quick->symtab)
3252 continue;
3253
3254 if (attrs_valid
3255 && iter->want_specific_block
3256 && want_static != is_static)
3257 continue;
3258
3259 /* Only check the symbol's kind if it has one. */
3260 if (attrs_valid)
3261 {
3262 switch (iter->domain)
3263 {
3264 case VAR_DOMAIN:
3265 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3266 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3267 /* Some types are also in VAR_DOMAIN. */
3268 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3269 continue;
3270 break;
3271 case STRUCT_DOMAIN:
3272 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3273 continue;
3274 break;
3275 case LABEL_DOMAIN:
3276 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3277 continue;
3278 break;
3279 default:
3280 break;
3281 }
3282 }
3283
3284 ++iter->next;
3285 return per_cu;
3286 }
3287
3288 return NULL;
3289}
3290
3291static struct symtab *
3292dw2_lookup_symbol (struct objfile *objfile, int block_index,
3293 const char *name, domain_enum domain)
9291a0cd 3294{
da51c347 3295 struct symtab *stab_best = NULL;
156942c7
DE
3296 struct mapped_index *index;
3297
9291a0cd
TT
3298 dw2_setup (objfile);
3299
156942c7
DE
3300 index = dwarf2_per_objfile->index_table;
3301
da51c347 3302 /* index is NULL if OBJF_READNOW. */
156942c7 3303 if (index)
9291a0cd 3304 {
da51c347
DE
3305 struct dw2_symtab_iterator iter;
3306 struct dwarf2_per_cu_data *per_cu;
3307
3308 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3309
da51c347 3310 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3311 {
da51c347
DE
3312 struct symbol *sym = NULL;
3313 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3314
3315 /* Some caution must be observed with overloaded functions
3316 and methods, since the index will not contain any overload
3317 information (but NAME might contain it). */
3318 if (stab->primary)
9291a0cd 3319 {
da51c347
DE
3320 struct blockvector *bv = BLOCKVECTOR (stab);
3321 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3322
da51c347
DE
3323 sym = lookup_block_symbol (block, name, domain);
3324 }
1fd400ff 3325
da51c347
DE
3326 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3327 {
3328 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3329 return stab;
3330
3331 stab_best = stab;
9291a0cd 3332 }
da51c347
DE
3333
3334 /* Keep looking through other CUs. */
9291a0cd
TT
3335 }
3336 }
9291a0cd 3337
da51c347 3338 return stab_best;
9291a0cd
TT
3339}
3340
3341static void
3342dw2_print_stats (struct objfile *objfile)
3343{
e4a48d9d 3344 int i, total, count;
9291a0cd
TT
3345
3346 dw2_setup (objfile);
e4a48d9d 3347 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3348 count = 0;
e4a48d9d 3349 for (i = 0; i < total; ++i)
9291a0cd 3350 {
e254ef6a 3351 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3352
e254ef6a 3353 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3354 ++count;
3355 }
e4a48d9d 3356 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3357 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3358}
3359
779bd270
DE
3360/* This dumps minimal information about the index.
3361 It is called via "mt print objfiles".
3362 One use is to verify .gdb_index has been loaded by the
3363 gdb.dwarf2/gdb-index.exp testcase. */
3364
9291a0cd
TT
3365static void
3366dw2_dump (struct objfile *objfile)
3367{
779bd270
DE
3368 dw2_setup (objfile);
3369 gdb_assert (dwarf2_per_objfile->using_index);
3370 printf_filtered (".gdb_index:");
3371 if (dwarf2_per_objfile->index_table != NULL)
3372 {
3373 printf_filtered (" version %d\n",
3374 dwarf2_per_objfile->index_table->version);
3375 }
3376 else
3377 printf_filtered (" faked for \"readnow\"\n");
3378 printf_filtered ("\n");
9291a0cd
TT
3379}
3380
3381static void
3189cb12
DE
3382dw2_relocate (struct objfile *objfile,
3383 const struct section_offsets *new_offsets,
3384 const struct section_offsets *delta)
9291a0cd
TT
3385{
3386 /* There's nothing to relocate here. */
3387}
3388
3389static void
3390dw2_expand_symtabs_for_function (struct objfile *objfile,
3391 const char *func_name)
3392{
da51c347
DE
3393 struct mapped_index *index;
3394
3395 dw2_setup (objfile);
3396
3397 index = dwarf2_per_objfile->index_table;
3398
3399 /* index is NULL if OBJF_READNOW. */
3400 if (index)
3401 {
3402 struct dw2_symtab_iterator iter;
3403 struct dwarf2_per_cu_data *per_cu;
3404
3405 /* Note: It doesn't matter what we pass for block_index here. */
3406 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3407 func_name);
3408
3409 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3410 dw2_instantiate_symtab (per_cu);
3411 }
9291a0cd
TT
3412}
3413
3414static void
3415dw2_expand_all_symtabs (struct objfile *objfile)
3416{
3417 int i;
3418
3419 dw2_setup (objfile);
1fd400ff
TT
3420
3421 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3422 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3423 {
e254ef6a 3424 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3425
a0f42c21 3426 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3427 }
3428}
3429
3430static void
652a8996
JK
3431dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3432 const char *fullname)
9291a0cd
TT
3433{
3434 int i;
3435
3436 dw2_setup (objfile);
d4637a04
DE
3437
3438 /* We don't need to consider type units here.
3439 This is only called for examining code, e.g. expand_line_sal.
3440 There can be an order of magnitude (or more) more type units
3441 than comp units, and we avoid them if we can. */
3442
3443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3444 {
3445 int j;
e254ef6a 3446 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3447 struct quick_file_names *file_data;
9291a0cd 3448
3d7bb9d9 3449 /* We only need to look at symtabs not already expanded. */
e254ef6a 3450 if (per_cu->v.quick->symtab)
9291a0cd
TT
3451 continue;
3452
e4a48d9d 3453 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3454 if (file_data == NULL)
9291a0cd
TT
3455 continue;
3456
7b9f3c50 3457 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3458 {
652a8996
JK
3459 const char *this_fullname = file_data->file_names[j];
3460
3461 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3462 {
a0f42c21 3463 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3464 break;
3465 }
3466 }
3467 }
3468}
3469
9291a0cd 3470static void
40658b94
PH
3471dw2_map_matching_symbols (const char * name, domain_enum namespace,
3472 struct objfile *objfile, int global,
3473 int (*callback) (struct block *,
3474 struct symbol *, void *),
2edb89d3
JK
3475 void *data, symbol_compare_ftype *match,
3476 symbol_compare_ftype *ordered_compare)
9291a0cd 3477{
40658b94 3478 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3479 current language is Ada for a non-Ada objfile using GNU index. As Ada
3480 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3481}
3482
3483static void
f8eba3c6
TT
3484dw2_expand_symtabs_matching
3485 (struct objfile *objfile,
fbd9ab74 3486 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3487 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3488 enum search_domain kind,
3489 void *data)
9291a0cd
TT
3490{
3491 int i;
3492 offset_type iter;
4b5246aa 3493 struct mapped_index *index;
9291a0cd
TT
3494
3495 dw2_setup (objfile);
ae2de4f8
DE
3496
3497 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3498 if (!dwarf2_per_objfile->index_table)
3499 return;
4b5246aa 3500 index = dwarf2_per_objfile->index_table;
9291a0cd 3501
7b08b9eb 3502 if (file_matcher != NULL)
24c79950
TT
3503 {
3504 struct cleanup *cleanup;
3505 htab_t visited_found, visited_not_found;
3506
3507 visited_found = htab_create_alloc (10,
3508 htab_hash_pointer, htab_eq_pointer,
3509 NULL, xcalloc, xfree);
3510 cleanup = make_cleanup_htab_delete (visited_found);
3511 visited_not_found = htab_create_alloc (10,
3512 htab_hash_pointer, htab_eq_pointer,
3513 NULL, xcalloc, xfree);
3514 make_cleanup_htab_delete (visited_not_found);
3515
848e3e78
DE
3516 /* The rule is CUs specify all the files, including those used by
3517 any TU, so there's no need to scan TUs here. */
3518
3519 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3520 {
3521 int j;
f4dc4d17 3522 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3523 struct quick_file_names *file_data;
3524 void **slot;
7b08b9eb 3525
24c79950 3526 per_cu->v.quick->mark = 0;
3d7bb9d9 3527
24c79950
TT
3528 /* We only need to look at symtabs not already expanded. */
3529 if (per_cu->v.quick->symtab)
3530 continue;
7b08b9eb 3531
e4a48d9d 3532 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3533 if (file_data == NULL)
3534 continue;
7b08b9eb 3535
24c79950
TT
3536 if (htab_find (visited_not_found, file_data) != NULL)
3537 continue;
3538 else if (htab_find (visited_found, file_data) != NULL)
3539 {
3540 per_cu->v.quick->mark = 1;
3541 continue;
3542 }
3543
3544 for (j = 0; j < file_data->num_file_names; ++j)
3545 {
da235a7c
JK
3546 const char *this_real_name;
3547
fbd9ab74 3548 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3549 {
3550 per_cu->v.quick->mark = 1;
3551 break;
3552 }
da235a7c
JK
3553
3554 /* Before we invoke realpath, which can get expensive when many
3555 files are involved, do a quick comparison of the basenames. */
3556 if (!basenames_may_differ
3557 && !file_matcher (lbasename (file_data->file_names[j]),
3558 data, 1))
3559 continue;
3560
3561 this_real_name = dw2_get_real_path (objfile, file_data, j);
3562 if (file_matcher (this_real_name, data, 0))
3563 {
3564 per_cu->v.quick->mark = 1;
3565 break;
3566 }
24c79950
TT
3567 }
3568
3569 slot = htab_find_slot (per_cu->v.quick->mark
3570 ? visited_found
3571 : visited_not_found,
3572 file_data, INSERT);
3573 *slot = file_data;
3574 }
3575
3576 do_cleanups (cleanup);
3577 }
9291a0cd 3578
3876f04e 3579 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3580 {
3581 offset_type idx = 2 * iter;
3582 const char *name;
3583 offset_type *vec, vec_len, vec_idx;
3584
3876f04e 3585 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3586 continue;
3587
3876f04e 3588 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3589
e078317b 3590 if (! (*name_matcher) (name, data))
9291a0cd
TT
3591 continue;
3592
3593 /* The name was matched, now expand corresponding CUs that were
3594 marked. */
4b5246aa 3595 vec = (offset_type *) (index->constant_pool
3876f04e 3596 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3597 vec_len = MAYBE_SWAP (vec[0]);
3598 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3599 {
e254ef6a 3600 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3601 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3602 gdb_index_symbol_kind symbol_kind =
3603 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3604 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3605 /* Only check the symbol attributes if they're present.
3606 Indices prior to version 7 don't record them,
3607 and indices >= 7 may elide them for certain symbols
3608 (gold does this). */
3609 int attrs_valid =
3610 (index->version >= 7
3611 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3612
3613 /* Only check the symbol's kind if it has one. */
3614 if (attrs_valid)
156942c7
DE
3615 {
3616 switch (kind)
3617 {
3618 case VARIABLES_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3620 continue;
3621 break;
3622 case FUNCTIONS_DOMAIN:
3623 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3624 continue;
3625 break;
3626 case TYPES_DOMAIN:
3627 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3628 continue;
3629 break;
3630 default:
3631 break;
3632 }
3633 }
3634
3190f0c6
DE
3635 /* Don't crash on bad data. */
3636 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3637 + dwarf2_per_objfile->n_type_units))
3638 {
3639 complaint (&symfile_complaints,
3640 _(".gdb_index entry has bad CU index"
3641 " [in module %s]"), objfile->name);
3642 continue;
3643 }
3644
156942c7 3645 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3646 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3647 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3648 }
3649 }
3650}
3651
9703b513
TT
3652/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3653 symtab. */
3654
3655static struct symtab *
3656recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3657{
3658 int i;
3659
3660 if (BLOCKVECTOR (symtab) != NULL
3661 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3662 return symtab;
3663
a3ec0bb1
DE
3664 if (symtab->includes == NULL)
3665 return NULL;
3666
9703b513
TT
3667 for (i = 0; symtab->includes[i]; ++i)
3668 {
a3ec0bb1 3669 struct symtab *s = symtab->includes[i];
9703b513
TT
3670
3671 s = recursively_find_pc_sect_symtab (s, pc);
3672 if (s != NULL)
3673 return s;
3674 }
3675
3676 return NULL;
3677}
3678
9291a0cd
TT
3679static struct symtab *
3680dw2_find_pc_sect_symtab (struct objfile *objfile,
3681 struct minimal_symbol *msymbol,
3682 CORE_ADDR pc,
3683 struct obj_section *section,
3684 int warn_if_readin)
3685{
3686 struct dwarf2_per_cu_data *data;
9703b513 3687 struct symtab *result;
9291a0cd
TT
3688
3689 dw2_setup (objfile);
3690
3691 if (!objfile->psymtabs_addrmap)
3692 return NULL;
3693
3694 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3695 if (!data)
3696 return NULL;
3697
3698 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3699 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3700 paddress (get_objfile_arch (objfile), pc));
3701
9703b513
TT
3702 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3703 gdb_assert (result != NULL);
3704 return result;
9291a0cd
TT
3705}
3706
9291a0cd 3707static void
44b13c5a 3708dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3709 void *data, int need_fullname)
9291a0cd
TT
3710{
3711 int i;
24c79950
TT
3712 struct cleanup *cleanup;
3713 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3714 NULL, xcalloc, xfree);
9291a0cd 3715
24c79950 3716 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3717 dw2_setup (objfile);
ae2de4f8 3718
848e3e78
DE
3719 /* The rule is CUs specify all the files, including those used by
3720 any TU, so there's no need to scan TUs here.
3721 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 3722
848e3e78 3723 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3724 {
3725 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3726
3727 if (per_cu->v.quick->symtab)
3728 {
3729 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3730 INSERT);
3731
3732 *slot = per_cu->v.quick->file_names;
3733 }
3734 }
3735
848e3e78 3736 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3737 {
3738 int j;
f4dc4d17 3739 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3740 struct quick_file_names *file_data;
24c79950 3741 void **slot;
9291a0cd 3742
3d7bb9d9 3743 /* We only need to look at symtabs not already expanded. */
e254ef6a 3744 if (per_cu->v.quick->symtab)
9291a0cd
TT
3745 continue;
3746
e4a48d9d 3747 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3748 if (file_data == NULL)
9291a0cd
TT
3749 continue;
3750
24c79950
TT
3751 slot = htab_find_slot (visited, file_data, INSERT);
3752 if (*slot)
3753 {
3754 /* Already visited. */
3755 continue;
3756 }
3757 *slot = file_data;
3758
7b9f3c50 3759 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3760 {
74e2f255
DE
3761 const char *this_real_name;
3762
3763 if (need_fullname)
3764 this_real_name = dw2_get_real_path (objfile, file_data, j);
3765 else
3766 this_real_name = NULL;
7b9f3c50 3767 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3768 }
3769 }
24c79950
TT
3770
3771 do_cleanups (cleanup);
9291a0cd
TT
3772}
3773
3774static int
3775dw2_has_symbols (struct objfile *objfile)
3776{
3777 return 1;
3778}
3779
3780const struct quick_symbol_functions dwarf2_gdb_index_functions =
3781{
3782 dw2_has_symbols,
3783 dw2_find_last_source_symtab,
3784 dw2_forget_cached_source_info,
f8eba3c6 3785 dw2_map_symtabs_matching_filename,
9291a0cd 3786 dw2_lookup_symbol,
9291a0cd
TT
3787 dw2_print_stats,
3788 dw2_dump,
3789 dw2_relocate,
3790 dw2_expand_symtabs_for_function,
3791 dw2_expand_all_symtabs,
652a8996 3792 dw2_expand_symtabs_with_fullname,
40658b94 3793 dw2_map_matching_symbols,
9291a0cd
TT
3794 dw2_expand_symtabs_matching,
3795 dw2_find_pc_sect_symtab,
9291a0cd
TT
3796 dw2_map_symbol_filenames
3797};
3798
3799/* Initialize for reading DWARF for this objfile. Return 0 if this
3800 file will use psymtabs, or 1 if using the GNU index. */
3801
3802int
3803dwarf2_initialize_objfile (struct objfile *objfile)
3804{
3805 /* If we're about to read full symbols, don't bother with the
3806 indices. In this case we also don't care if some other debug
3807 format is making psymtabs, because they are all about to be
3808 expanded anyway. */
3809 if ((objfile->flags & OBJF_READNOW))
3810 {
3811 int i;
3812
3813 dwarf2_per_objfile->using_index = 1;
3814 create_all_comp_units (objfile);
0e50663e 3815 create_all_type_units (objfile);
7b9f3c50
DE
3816 dwarf2_per_objfile->quick_file_names_table =
3817 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3818
1fd400ff 3819 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3820 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3821 {
e254ef6a 3822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3823
e254ef6a
DE
3824 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3825 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3826 }
3827
3828 /* Return 1 so that gdb sees the "quick" functions. However,
3829 these functions will be no-ops because we will have expanded
3830 all symtabs. */
3831 return 1;
3832 }
3833
3834 if (dwarf2_read_index (objfile))
3835 return 1;
3836
9291a0cd
TT
3837 return 0;
3838}
3839
3840\f
3841
dce234bc
PP
3842/* Build a partial symbol table. */
3843
3844void
f29dff0a 3845dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3846{
c9bf0622
TT
3847 volatile struct gdb_exception except;
3848
f29dff0a 3849 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3850 {
3851 init_psymbol_list (objfile, 1024);
3852 }
3853
c9bf0622
TT
3854 TRY_CATCH (except, RETURN_MASK_ERROR)
3855 {
3856 /* This isn't really ideal: all the data we allocate on the
3857 objfile's obstack is still uselessly kept around. However,
3858 freeing it seems unsafe. */
3859 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3860
3861 dwarf2_build_psymtabs_hard (objfile);
3862 discard_cleanups (cleanups);
3863 }
3864 if (except.reason < 0)
3865 exception_print (gdb_stderr, except);
c906108c 3866}
c906108c 3867
1ce1cefd
DE
3868/* Return the total length of the CU described by HEADER. */
3869
3870static unsigned int
3871get_cu_length (const struct comp_unit_head *header)
3872{
3873 return header->initial_length_size + header->length;
3874}
3875
45452591
DE
3876/* Return TRUE if OFFSET is within CU_HEADER. */
3877
3878static inline int
b64f50a1 3879offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3880{
b64f50a1 3881 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3882 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3883
b64f50a1 3884 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3885}
3886
3b80fe9b
DE
3887/* Find the base address of the compilation unit for range lists and
3888 location lists. It will normally be specified by DW_AT_low_pc.
3889 In DWARF-3 draft 4, the base address could be overridden by
3890 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3891 compilation units with discontinuous ranges. */
3892
3893static void
3894dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3895{
3896 struct attribute *attr;
3897
3898 cu->base_known = 0;
3899 cu->base_address = 0;
3900
3901 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3902 if (attr)
3903 {
3904 cu->base_address = DW_ADDR (attr);
3905 cu->base_known = 1;
3906 }
3907 else
3908 {
3909 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3910 if (attr)
3911 {
3912 cu->base_address = DW_ADDR (attr);
3913 cu->base_known = 1;
3914 }
3915 }
3916}
3917
93311388
DE
3918/* Read in the comp unit header information from the debug_info at info_ptr.
3919 NOTE: This leaves members offset, first_die_offset to be filled in
3920 by the caller. */
107d2387 3921
d521ce57 3922static const gdb_byte *
107d2387 3923read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 3924 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3925{
3926 int signed_addr;
891d2f0b 3927 unsigned int bytes_read;
c764a876
DE
3928
3929 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3930 cu_header->initial_length_size = bytes_read;
3931 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3932 info_ptr += bytes_read;
107d2387
AC
3933 cu_header->version = read_2_bytes (abfd, info_ptr);
3934 info_ptr += 2;
b64f50a1
JK
3935 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3936 &bytes_read);
613e1657 3937 info_ptr += bytes_read;
107d2387
AC
3938 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3939 info_ptr += 1;
3940 signed_addr = bfd_get_sign_extend_vma (abfd);
3941 if (signed_addr < 0)
8e65ff28 3942 internal_error (__FILE__, __LINE__,
e2e0b3e5 3943 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3944 cu_header->signed_addr_p = signed_addr;
c764a876 3945
107d2387
AC
3946 return info_ptr;
3947}
3948
36586728
TT
3949/* Helper function that returns the proper abbrev section for
3950 THIS_CU. */
3951
3952static struct dwarf2_section_info *
3953get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3954{
3955 struct dwarf2_section_info *abbrev;
3956
3957 if (this_cu->is_dwz)
3958 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3959 else
3960 abbrev = &dwarf2_per_objfile->abbrev;
3961
3962 return abbrev;
3963}
3964
9ff913ba
DE
3965/* Subroutine of read_and_check_comp_unit_head and
3966 read_and_check_type_unit_head to simplify them.
3967 Perform various error checking on the header. */
3968
3969static void
3970error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
3971 struct dwarf2_section_info *section,
3972 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
3973{
3974 bfd *abfd = section->asection->owner;
3975 const char *filename = bfd_get_filename (abfd);
3976
3977 if (header->version != 2 && header->version != 3 && header->version != 4)
3978 error (_("Dwarf Error: wrong version in compilation unit header "
3979 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3980 filename);
3981
b64f50a1 3982 if (header->abbrev_offset.sect_off
36586728 3983 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
3984 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3985 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 3986 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
3987 filename);
3988
3989 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3990 avoid potential 32-bit overflow. */
1ce1cefd 3991 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
3992 > section->size)
3993 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3994 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 3995 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
3996 filename);
3997}
3998
3999/* Read in a CU/TU header and perform some basic error checking.
4000 The contents of the header are stored in HEADER.
4001 The result is a pointer to the start of the first DIE. */
adabb602 4002
d521ce57 4003static const gdb_byte *
9ff913ba
DE
4004read_and_check_comp_unit_head (struct comp_unit_head *header,
4005 struct dwarf2_section_info *section,
4bdcc0c1 4006 struct dwarf2_section_info *abbrev_section,
d521ce57 4007 const gdb_byte *info_ptr,
9ff913ba 4008 int is_debug_types_section)
72bf9492 4009{
d521ce57 4010 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4011 bfd *abfd = section->asection->owner;
72bf9492 4012
b64f50a1 4013 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4014
72bf9492
DJ
4015 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4016
460c1c54
CC
4017 /* If we're reading a type unit, skip over the signature and
4018 type_offset fields. */
b0df02fd 4019 if (is_debug_types_section)
460c1c54
CC
4020 info_ptr += 8 /*signature*/ + header->offset_size;
4021
b64f50a1 4022 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4023
4bdcc0c1 4024 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4025
4026 return info_ptr;
4027}
4028
348e048f
DE
4029/* Read in the types comp unit header information from .debug_types entry at
4030 types_ptr. The result is a pointer to one past the end of the header. */
4031
d521ce57 4032static const gdb_byte *
9ff913ba
DE
4033read_and_check_type_unit_head (struct comp_unit_head *header,
4034 struct dwarf2_section_info *section,
4bdcc0c1 4035 struct dwarf2_section_info *abbrev_section,
d521ce57 4036 const gdb_byte *info_ptr,
dee91e82
DE
4037 ULONGEST *signature,
4038 cu_offset *type_offset_in_tu)
348e048f 4039{
d521ce57 4040 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4041 bfd *abfd = section->asection->owner;
348e048f 4042
b64f50a1 4043 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4044
9ff913ba 4045 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4046
9ff913ba
DE
4047 /* If we're reading a type unit, skip over the signature and
4048 type_offset fields. */
4049 if (signature != NULL)
4050 *signature = read_8_bytes (abfd, info_ptr);
4051 info_ptr += 8;
dee91e82
DE
4052 if (type_offset_in_tu != NULL)
4053 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4054 header->offset_size);
9ff913ba
DE
4055 info_ptr += header->offset_size;
4056
b64f50a1 4057 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4058
4bdcc0c1 4059 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4060
4061 return info_ptr;
348e048f
DE
4062}
4063
f4dc4d17
DE
4064/* Fetch the abbreviation table offset from a comp or type unit header. */
4065
4066static sect_offset
4067read_abbrev_offset (struct dwarf2_section_info *section,
4068 sect_offset offset)
4069{
4070 bfd *abfd = section->asection->owner;
d521ce57 4071 const gdb_byte *info_ptr;
f4dc4d17
DE
4072 unsigned int length, initial_length_size, offset_size;
4073 sect_offset abbrev_offset;
4074
4075 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4076 info_ptr = section->buffer + offset.sect_off;
4077 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4078 offset_size = initial_length_size == 4 ? 4 : 8;
4079 info_ptr += initial_length_size + 2 /*version*/;
4080 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4081 return abbrev_offset;
4082}
4083
aaa75496
JB
4084/* Allocate a new partial symtab for file named NAME and mark this new
4085 partial symtab as being an include of PST. */
4086
4087static void
d521ce57 4088dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4089 struct objfile *objfile)
4090{
4091 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4092
fbd9ab74
JK
4093 if (!IS_ABSOLUTE_PATH (subpst->filename))
4094 {
4095 /* It shares objfile->objfile_obstack. */
4096 subpst->dirname = pst->dirname;
4097 }
4098
aaa75496
JB
4099 subpst->section_offsets = pst->section_offsets;
4100 subpst->textlow = 0;
4101 subpst->texthigh = 0;
4102
4103 subpst->dependencies = (struct partial_symtab **)
4104 obstack_alloc (&objfile->objfile_obstack,
4105 sizeof (struct partial_symtab *));
4106 subpst->dependencies[0] = pst;
4107 subpst->number_of_dependencies = 1;
4108
4109 subpst->globals_offset = 0;
4110 subpst->n_global_syms = 0;
4111 subpst->statics_offset = 0;
4112 subpst->n_static_syms = 0;
4113 subpst->symtab = NULL;
4114 subpst->read_symtab = pst->read_symtab;
4115 subpst->readin = 0;
4116
4117 /* No private part is necessary for include psymtabs. This property
4118 can be used to differentiate between such include psymtabs and
10b3939b 4119 the regular ones. */
58a9656e 4120 subpst->read_symtab_private = NULL;
aaa75496
JB
4121}
4122
4123/* Read the Line Number Program data and extract the list of files
4124 included by the source file represented by PST. Build an include
d85a05f0 4125 partial symtab for each of these included files. */
aaa75496
JB
4126
4127static void
4128dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4129 struct die_info *die,
4130 struct partial_symtab *pst)
aaa75496 4131{
d85a05f0
DJ
4132 struct line_header *lh = NULL;
4133 struct attribute *attr;
aaa75496 4134
d85a05f0
DJ
4135 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4136 if (attr)
3019eac3 4137 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4138 if (lh == NULL)
4139 return; /* No linetable, so no includes. */
4140
c6da4cef 4141 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4142 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4143
4144 free_line_header (lh);
4145}
4146
348e048f 4147static hashval_t
52dc124a 4148hash_signatured_type (const void *item)
348e048f 4149{
52dc124a 4150 const struct signatured_type *sig_type = item;
9a619af0 4151
348e048f 4152 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4153 return sig_type->signature;
348e048f
DE
4154}
4155
4156static int
52dc124a 4157eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4158{
4159 const struct signatured_type *lhs = item_lhs;
4160 const struct signatured_type *rhs = item_rhs;
9a619af0 4161
348e048f
DE
4162 return lhs->signature == rhs->signature;
4163}
4164
1fd400ff
TT
4165/* Allocate a hash table for signatured types. */
4166
4167static htab_t
673bfd45 4168allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4169{
4170 return htab_create_alloc_ex (41,
52dc124a
DE
4171 hash_signatured_type,
4172 eq_signatured_type,
1fd400ff
TT
4173 NULL,
4174 &objfile->objfile_obstack,
4175 hashtab_obstack_allocate,
4176 dummy_obstack_deallocate);
4177}
4178
d467dd73 4179/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4180
4181static int
d467dd73 4182add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4183{
4184 struct signatured_type *sigt = *slot;
b4dd5633 4185 struct signatured_type ***datap = datum;
1fd400ff 4186
b4dd5633 4187 **datap = sigt;
1fd400ff
TT
4188 ++*datap;
4189
4190 return 1;
4191}
4192
c88ee1f0
DE
4193/* Create the hash table of all entries in the .debug_types
4194 (or .debug_types.dwo) section(s).
4195 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4196 otherwise it is NULL.
4197
4198 The result is a pointer to the hash table or NULL if there are no types.
4199
4200 Note: This function processes DWO files only, not DWP files. */
348e048f 4201
3019eac3
DE
4202static htab_t
4203create_debug_types_hash_table (struct dwo_file *dwo_file,
4204 VEC (dwarf2_section_info_def) *types)
348e048f 4205{
3019eac3 4206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4207 htab_t types_htab = NULL;
8b70b953
TT
4208 int ix;
4209 struct dwarf2_section_info *section;
4bdcc0c1 4210 struct dwarf2_section_info *abbrev_section;
348e048f 4211
3019eac3
DE
4212 if (VEC_empty (dwarf2_section_info_def, types))
4213 return NULL;
348e048f 4214
4bdcc0c1
DE
4215 abbrev_section = (dwo_file != NULL
4216 ? &dwo_file->sections.abbrev
4217 : &dwarf2_per_objfile->abbrev);
4218
09406207
DE
4219 if (dwarf2_read_debug)
4220 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4221 dwo_file ? ".dwo" : "",
4222 bfd_get_filename (abbrev_section->asection->owner));
4223
8b70b953 4224 for (ix = 0;
3019eac3 4225 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4226 ++ix)
4227 {
3019eac3 4228 bfd *abfd;
d521ce57 4229 const gdb_byte *info_ptr, *end_ptr;
36586728 4230 struct dwarf2_section_info *abbrev_section;
348e048f 4231
8b70b953
TT
4232 dwarf2_read_section (objfile, section);
4233 info_ptr = section->buffer;
348e048f 4234
8b70b953
TT
4235 if (info_ptr == NULL)
4236 continue;
348e048f 4237
3019eac3
DE
4238 /* We can't set abfd until now because the section may be empty or
4239 not present, in which case section->asection will be NULL. */
4240 abfd = section->asection->owner;
4241
36586728
TT
4242 if (dwo_file)
4243 abbrev_section = &dwo_file->sections.abbrev;
4244 else
4245 abbrev_section = &dwarf2_per_objfile->abbrev;
4246
dee91e82
DE
4247 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4248 because we don't need to read any dies: the signature is in the
4249 header. */
8b70b953
TT
4250
4251 end_ptr = info_ptr + section->size;
4252 while (info_ptr < end_ptr)
4253 {
b64f50a1 4254 sect_offset offset;
3019eac3 4255 cu_offset type_offset_in_tu;
8b70b953 4256 ULONGEST signature;
52dc124a 4257 struct signatured_type *sig_type;
3019eac3 4258 struct dwo_unit *dwo_tu;
8b70b953 4259 void **slot;
d521ce57 4260 const gdb_byte *ptr = info_ptr;
9ff913ba 4261 struct comp_unit_head header;
dee91e82 4262 unsigned int length;
348e048f 4263
b64f50a1 4264 offset.sect_off = ptr - section->buffer;
348e048f 4265
8b70b953 4266 /* We need to read the type's signature in order to build the hash
9ff913ba 4267 table, but we don't need anything else just yet. */
348e048f 4268
4bdcc0c1
DE
4269 ptr = read_and_check_type_unit_head (&header, section,
4270 abbrev_section, ptr,
3019eac3 4271 &signature, &type_offset_in_tu);
6caca83c 4272
1ce1cefd 4273 length = get_cu_length (&header);
dee91e82 4274
6caca83c 4275 /* Skip dummy type units. */
dee91e82
DE
4276 if (ptr >= info_ptr + length
4277 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4278 {
1ce1cefd 4279 info_ptr += length;
6caca83c
CC
4280 continue;
4281 }
8b70b953 4282
0349ea22
DE
4283 if (types_htab == NULL)
4284 {
4285 if (dwo_file)
4286 types_htab = allocate_dwo_unit_table (objfile);
4287 else
4288 types_htab = allocate_signatured_type_table (objfile);
4289 }
4290
3019eac3
DE
4291 if (dwo_file)
4292 {
4293 sig_type = NULL;
4294 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4295 struct dwo_unit);
4296 dwo_tu->dwo_file = dwo_file;
4297 dwo_tu->signature = signature;
4298 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4299 dwo_tu->section = section;
3019eac3
DE
4300 dwo_tu->offset = offset;
4301 dwo_tu->length = length;
4302 }
4303 else
4304 {
4305 /* N.B.: type_offset is not usable if this type uses a DWO file.
4306 The real type_offset is in the DWO file. */
4307 dwo_tu = NULL;
4308 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4309 struct signatured_type);
4310 sig_type->signature = signature;
4311 sig_type->type_offset_in_tu = type_offset_in_tu;
4312 sig_type->per_cu.objfile = objfile;
4313 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4314 sig_type->per_cu.section = section;
3019eac3
DE
4315 sig_type->per_cu.offset = offset;
4316 sig_type->per_cu.length = length;
4317 }
8b70b953 4318
3019eac3
DE
4319 slot = htab_find_slot (types_htab,
4320 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4321 INSERT);
8b70b953
TT
4322 gdb_assert (slot != NULL);
4323 if (*slot != NULL)
4324 {
3019eac3
DE
4325 sect_offset dup_offset;
4326
4327 if (dwo_file)
4328 {
4329 const struct dwo_unit *dup_tu = *slot;
4330
4331 dup_offset = dup_tu->offset;
4332 }
4333 else
4334 {
4335 const struct signatured_type *dup_tu = *slot;
4336
4337 dup_offset = dup_tu->per_cu.offset;
4338 }
b3c8eb43 4339
8b70b953 4340 complaint (&symfile_complaints,
c88ee1f0 4341 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4342 " the entry at offset 0x%x, signature %s"),
3019eac3 4343 offset.sect_off, dup_offset.sect_off,
4031ecc5 4344 hex_string (signature));
8b70b953 4345 }
3019eac3 4346 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4347
09406207 4348 if (dwarf2_read_debug)
4031ecc5 4349 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4350 offset.sect_off,
4031ecc5 4351 hex_string (signature));
348e048f 4352
dee91e82 4353 info_ptr += length;
8b70b953 4354 }
348e048f
DE
4355 }
4356
3019eac3
DE
4357 return types_htab;
4358}
4359
4360/* Create the hash table of all entries in the .debug_types section,
4361 and initialize all_type_units.
4362 The result is zero if there is an error (e.g. missing .debug_types section),
4363 otherwise non-zero. */
4364
4365static int
4366create_all_type_units (struct objfile *objfile)
4367{
4368 htab_t types_htab;
b4dd5633 4369 struct signatured_type **iter;
3019eac3
DE
4370
4371 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4372 if (types_htab == NULL)
4373 {
4374 dwarf2_per_objfile->signatured_types = NULL;
4375 return 0;
4376 }
4377
348e048f
DE
4378 dwarf2_per_objfile->signatured_types = types_htab;
4379
d467dd73
DE
4380 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4381 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4382 = xmalloc (dwarf2_per_objfile->n_type_units
4383 * sizeof (struct signatured_type *));
d467dd73
DE
4384 iter = &dwarf2_per_objfile->all_type_units[0];
4385 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4386 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4387 == dwarf2_per_objfile->n_type_units);
1fd400ff 4388
348e048f
DE
4389 return 1;
4390}
4391
a2ce51a0
DE
4392/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4393 Fill in SIG_ENTRY with DWO_ENTRY. */
4394
4395static void
4396fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4397 struct signatured_type *sig_entry,
4398 struct dwo_unit *dwo_entry)
4399{
7ee85ab1 4400 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4401 gdb_assert (! sig_entry->per_cu.queued);
4402 gdb_assert (sig_entry->per_cu.cu == NULL);
4403 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4404 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4405 gdb_assert (sig_entry->signature == dwo_entry->signature);
4406 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4407 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4408 gdb_assert (sig_entry->dwo_unit == NULL);
4409
4410 sig_entry->per_cu.section = dwo_entry->section;
4411 sig_entry->per_cu.offset = dwo_entry->offset;
4412 sig_entry->per_cu.length = dwo_entry->length;
4413 sig_entry->per_cu.reading_dwo_directly = 1;
4414 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4415 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4416 sig_entry->dwo_unit = dwo_entry;
4417}
4418
4419/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4420 If we haven't read the TU yet, create the signatured_type data structure
4421 for a TU to be read in directly from a DWO file, bypassing the stub.
4422 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4423 using .gdb_index, then when reading a CU we want to stay in the DWO file
4424 containing that CU. Otherwise we could end up reading several other DWO
4425 files (due to comdat folding) to process the transitive closure of all the
4426 mentioned TUs, and that can be slow. The current DWO file will have every
4427 type signature that it needs.
a2ce51a0
DE
4428 We only do this for .gdb_index because in the psymtab case we already have
4429 to read all the DWOs to build the type unit groups. */
4430
4431static struct signatured_type *
4432lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4433{
4434 struct objfile *objfile = dwarf2_per_objfile->objfile;
4435 struct dwo_file *dwo_file;
4436 struct dwo_unit find_dwo_entry, *dwo_entry;
4437 struct signatured_type find_sig_entry, *sig_entry;
4438
4439 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4440
4441 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4442 dwo_unit of the TU itself. */
4443 dwo_file = cu->dwo_unit->dwo_file;
4444
4445 /* We only ever need to read in one copy of a signatured type.
4446 Just use the global signatured_types array. If this is the first time
4447 we're reading this type, replace the recorded data from .gdb_index with
4448 this TU. */
4449
4450 if (dwarf2_per_objfile->signatured_types == NULL)
4451 return NULL;
4452 find_sig_entry.signature = sig;
4453 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4454 if (sig_entry == NULL)
4455 return NULL;
7ee85ab1
DE
4456
4457 /* We can get here with the TU already read, *or* in the process of being
4458 read. Don't reassign it if that's the case. Also note that if the TU is
4459 already being read, it may not have come from a DWO, the program may be
4460 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4461 /* Have we already tried to read this TU? */
7ee85ab1 4462 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4463 return sig_entry;
4464
4465 /* Ok, this is the first time we're reading this TU. */
4466 if (dwo_file->tus == NULL)
4467 return NULL;
4468 find_dwo_entry.signature = sig;
4469 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4470 if (dwo_entry == NULL)
4471 return NULL;
4472
4473 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4474 return sig_entry;
4475}
4476
4477/* Subroutine of lookup_dwp_signatured_type.
4478 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4479
4480static struct signatured_type *
4481add_type_unit (ULONGEST sig)
4482{
4483 struct objfile *objfile = dwarf2_per_objfile->objfile;
4484 int n_type_units = dwarf2_per_objfile->n_type_units;
4485 struct signatured_type *sig_type;
4486 void **slot;
4487
4488 ++n_type_units;
4489 dwarf2_per_objfile->all_type_units =
4490 xrealloc (dwarf2_per_objfile->all_type_units,
4491 n_type_units * sizeof (struct signatured_type *));
4492 dwarf2_per_objfile->n_type_units = n_type_units;
4493 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4494 struct signatured_type);
4495 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4496 sig_type->signature = sig;
4497 sig_type->per_cu.is_debug_types = 1;
4498 sig_type->per_cu.v.quick =
4499 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4500 struct dwarf2_per_cu_quick_data);
4501 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4502 sig_type, INSERT);
4503 gdb_assert (*slot == NULL);
4504 *slot = sig_type;
4505 /* The rest of sig_type must be filled in by the caller. */
4506 return sig_type;
4507}
4508
4509/* Subroutine of lookup_signatured_type.
4510 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4511 then try the DWP file.
4512 Normally this "can't happen", but if there's a bug in signature
4513 generation and/or the DWP file is built incorrectly, it can happen.
4514 Using the type directly from the DWP file means we don't have the stub
4515 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4516 not critical. [Eventually the stub may go away for type units anyway.] */
4517
4518static struct signatured_type *
4519lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4520{
4521 struct objfile *objfile = dwarf2_per_objfile->objfile;
4522 struct dwp_file *dwp_file = get_dwp_file ();
4523 struct dwo_unit *dwo_entry;
4524 struct signatured_type find_sig_entry, *sig_entry;
4525
4526 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4527 gdb_assert (dwp_file != NULL);
4528
4529 if (dwarf2_per_objfile->signatured_types != NULL)
4530 {
4531 find_sig_entry.signature = sig;
4532 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4533 &find_sig_entry);
4534 if (sig_entry != NULL)
4535 return sig_entry;
4536 }
4537
4538 /* This is the "shouldn't happen" case.
4539 Try the DWP file and hope for the best. */
4540 if (dwp_file->tus == NULL)
4541 return NULL;
4542 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4543 sig, 1 /* is_debug_types */);
4544 if (dwo_entry == NULL)
4545 return NULL;
4546
4547 sig_entry = add_type_unit (sig);
4548 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4549
4550 /* The caller will signal a complaint if we return NULL.
4551 Here we don't return NULL but we still want to complain. */
4552 complaint (&symfile_complaints,
4553 _("Bad type signature %s referenced by %s at 0x%x,"
4554 " coping by using copy in DWP [in module %s]"),
4555 hex_string (sig),
4556 cu->per_cu->is_debug_types ? "TU" : "CU",
4557 cu->per_cu->offset.sect_off,
4558 objfile->name);
4559
4560 return sig_entry;
4561}
4562
380bca97 4563/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4564 Returns NULL if signature SIG is not present in the table.
4565 It is up to the caller to complain about this. */
348e048f
DE
4566
4567static struct signatured_type *
a2ce51a0 4568lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4569{
a2ce51a0
DE
4570 if (cu->dwo_unit
4571 && dwarf2_per_objfile->using_index)
4572 {
4573 /* We're in a DWO/DWP file, and we're using .gdb_index.
4574 These cases require special processing. */
4575 if (get_dwp_file () == NULL)
4576 return lookup_dwo_signatured_type (cu, sig);
4577 else
4578 return lookup_dwp_signatured_type (cu, sig);
4579 }
4580 else
4581 {
4582 struct signatured_type find_entry, *entry;
348e048f 4583
a2ce51a0
DE
4584 if (dwarf2_per_objfile->signatured_types == NULL)
4585 return NULL;
4586 find_entry.signature = sig;
4587 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4588 return entry;
4589 }
348e048f 4590}
42e7ad6c
DE
4591\f
4592/* Low level DIE reading support. */
348e048f 4593
d85a05f0
DJ
4594/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4595
4596static void
4597init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4598 struct dwarf2_cu *cu,
3019eac3
DE
4599 struct dwarf2_section_info *section,
4600 struct dwo_file *dwo_file)
d85a05f0 4601{
fceca515 4602 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4603 reader->abfd = section->asection->owner;
d85a05f0 4604 reader->cu = cu;
3019eac3 4605 reader->dwo_file = dwo_file;
dee91e82
DE
4606 reader->die_section = section;
4607 reader->buffer = section->buffer;
f664829e 4608 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4609 reader->comp_dir = NULL;
d85a05f0
DJ
4610}
4611
b0c7bfa9
DE
4612/* Subroutine of init_cutu_and_read_dies to simplify it.
4613 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4614 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4615 already.
4616
4617 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4618 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4619 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4620 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4621 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4622 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4623 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4624 are filled in with the info of the DIE from the DWO file.
4625 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4626 provided an abbrev table to use.
4627 The result is non-zero if a valid (non-dummy) DIE was found. */
4628
4629static int
4630read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4631 struct dwo_unit *dwo_unit,
4632 int abbrev_table_provided,
4633 struct die_info *stub_comp_unit_die,
a2ce51a0 4634 const char *stub_comp_dir,
b0c7bfa9 4635 struct die_reader_specs *result_reader,
d521ce57 4636 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4637 struct die_info **result_comp_unit_die,
4638 int *result_has_children)
4639{
4640 struct objfile *objfile = dwarf2_per_objfile->objfile;
4641 struct dwarf2_cu *cu = this_cu->cu;
4642 struct dwarf2_section_info *section;
4643 bfd *abfd;
d521ce57 4644 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4645 const char *comp_dir_string;
4646 ULONGEST signature; /* Or dwo_id. */
4647 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4648 int i,num_extra_attrs;
4649 struct dwarf2_section_info *dwo_abbrev_section;
4650 struct attribute *attr;
a2ce51a0 4651 struct attribute comp_dir_attr;
b0c7bfa9
DE
4652 struct die_info *comp_unit_die;
4653
a2ce51a0
DE
4654 /* Both can't be provided. */
4655 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4656
b0c7bfa9
DE
4657 /* These attributes aren't processed until later:
4658 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4659 However, the attribute is found in the stub which we won't have later.
4660 In order to not impose this complication on the rest of the code,
4661 we read them here and copy them to the DWO CU/TU die. */
4662
4663 stmt_list = NULL;
4664 low_pc = NULL;
4665 high_pc = NULL;
4666 ranges = NULL;
4667 comp_dir = NULL;
4668
4669 if (stub_comp_unit_die != NULL)
4670 {
4671 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4672 DWO file. */
4673 if (! this_cu->is_debug_types)
4674 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4675 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4676 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4677 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4678 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4679
4680 /* There should be a DW_AT_addr_base attribute here (if needed).
4681 We need the value before we can process DW_FORM_GNU_addr_index. */
4682 cu->addr_base = 0;
4683 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4684 if (attr)
4685 cu->addr_base = DW_UNSND (attr);
4686
4687 /* There should be a DW_AT_ranges_base attribute here (if needed).
4688 We need the value before we can process DW_AT_ranges. */
4689 cu->ranges_base = 0;
4690 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4691 if (attr)
4692 cu->ranges_base = DW_UNSND (attr);
4693 }
a2ce51a0
DE
4694 else if (stub_comp_dir != NULL)
4695 {
4696 /* Reconstruct the comp_dir attribute to simplify the code below. */
4697 comp_dir = (struct attribute *)
4698 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4699 comp_dir->name = DW_AT_comp_dir;
4700 comp_dir->form = DW_FORM_string;
4701 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4702 DW_STRING (comp_dir) = stub_comp_dir;
4703 }
b0c7bfa9
DE
4704
4705 /* Set up for reading the DWO CU/TU. */
4706 cu->dwo_unit = dwo_unit;
4707 section = dwo_unit->section;
4708 dwarf2_read_section (objfile, section);
4709 abfd = section->asection->owner;
4710 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4711 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4712 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4713
4714 if (this_cu->is_debug_types)
4715 {
4716 ULONGEST header_signature;
4717 cu_offset type_offset_in_tu;
4718 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4719
4720 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4721 dwo_abbrev_section,
4722 info_ptr,
4723 &header_signature,
4724 &type_offset_in_tu);
a2ce51a0
DE
4725 /* This is not an assert because it can be caused by bad debug info. */
4726 if (sig_type->signature != header_signature)
4727 {
4728 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4729 " TU at offset 0x%x [in module %s]"),
4730 hex_string (sig_type->signature),
4731 hex_string (header_signature),
4732 dwo_unit->offset.sect_off,
4733 bfd_get_filename (abfd));
4734 }
b0c7bfa9
DE
4735 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4736 /* For DWOs coming from DWP files, we don't know the CU length
4737 nor the type's offset in the TU until now. */
4738 dwo_unit->length = get_cu_length (&cu->header);
4739 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4740
4741 /* Establish the type offset that can be used to lookup the type.
4742 For DWO files, we don't know it until now. */
4743 sig_type->type_offset_in_section.sect_off =
4744 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4745 }
4746 else
4747 {
4748 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4749 dwo_abbrev_section,
4750 info_ptr, 0);
4751 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4752 /* For DWOs coming from DWP files, we don't know the CU length
4753 until now. */
4754 dwo_unit->length = get_cu_length (&cu->header);
4755 }
4756
02142a6c
DE
4757 /* Replace the CU's original abbrev table with the DWO's.
4758 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
4759 if (abbrev_table_provided)
4760 {
4761 /* Don't free the provided abbrev table, the caller of
4762 init_cutu_and_read_dies owns it. */
4763 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4764 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
4765 make_cleanup (dwarf2_free_abbrev_table, cu);
4766 }
4767 else
4768 {
4769 dwarf2_free_abbrev_table (cu);
4770 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4771 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
4772 }
4773
4774 /* Read in the die, but leave space to copy over the attributes
4775 from the stub. This has the benefit of simplifying the rest of
4776 the code - all the work to maintain the illusion of a single
4777 DW_TAG_{compile,type}_unit DIE is done here. */
4778 num_extra_attrs = ((stmt_list != NULL)
4779 + (low_pc != NULL)
4780 + (high_pc != NULL)
4781 + (ranges != NULL)
4782 + (comp_dir != NULL));
4783 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4784 result_has_children, num_extra_attrs);
4785
4786 /* Copy over the attributes from the stub to the DIE we just read in. */
4787 comp_unit_die = *result_comp_unit_die;
4788 i = comp_unit_die->num_attrs;
4789 if (stmt_list != NULL)
4790 comp_unit_die->attrs[i++] = *stmt_list;
4791 if (low_pc != NULL)
4792 comp_unit_die->attrs[i++] = *low_pc;
4793 if (high_pc != NULL)
4794 comp_unit_die->attrs[i++] = *high_pc;
4795 if (ranges != NULL)
4796 comp_unit_die->attrs[i++] = *ranges;
4797 if (comp_dir != NULL)
4798 comp_unit_die->attrs[i++] = *comp_dir;
4799 comp_unit_die->num_attrs += num_extra_attrs;
4800
bf6af496
DE
4801 if (dwarf2_die_debug)
4802 {
4803 fprintf_unfiltered (gdb_stdlog,
4804 "Read die from %s@0x%x of %s:\n",
4805 bfd_section_name (abfd, section->asection),
4806 (unsigned) (begin_info_ptr - section->buffer),
4807 bfd_get_filename (abfd));
4808 dump_die (comp_unit_die, dwarf2_die_debug);
4809 }
4810
a2ce51a0
DE
4811 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4812 TUs by skipping the stub and going directly to the entry in the DWO file.
4813 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4814 to get it via circuitous means. Blech. */
4815 if (comp_dir != NULL)
4816 result_reader->comp_dir = DW_STRING (comp_dir);
4817
b0c7bfa9
DE
4818 /* Skip dummy compilation units. */
4819 if (info_ptr >= begin_info_ptr + dwo_unit->length
4820 || peek_abbrev_code (abfd, info_ptr) == 0)
4821 return 0;
4822
4823 *result_info_ptr = info_ptr;
4824 return 1;
4825}
4826
4827/* Subroutine of init_cutu_and_read_dies to simplify it.
4828 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 4829 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
4830
4831static struct dwo_unit *
4832lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4833 struct die_info *comp_unit_die)
4834{
4835 struct dwarf2_cu *cu = this_cu->cu;
4836 struct attribute *attr;
4837 ULONGEST signature;
4838 struct dwo_unit *dwo_unit;
4839 const char *comp_dir, *dwo_name;
4840
a2ce51a0
DE
4841 gdb_assert (cu != NULL);
4842
b0c7bfa9
DE
4843 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4844 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4845 gdb_assert (attr != NULL);
4846 dwo_name = DW_STRING (attr);
4847 comp_dir = NULL;
4848 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4849 if (attr)
4850 comp_dir = DW_STRING (attr);
4851
4852 if (this_cu->is_debug_types)
4853 {
4854 struct signatured_type *sig_type;
4855
4856 /* Since this_cu is the first member of struct signatured_type,
4857 we can go from a pointer to one to a pointer to the other. */
4858 sig_type = (struct signatured_type *) this_cu;
4859 signature = sig_type->signature;
4860 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4861 }
4862 else
4863 {
4864 struct attribute *attr;
4865
4866 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4867 if (! attr)
4868 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4869 " [in module %s]"),
4870 dwo_name, this_cu->objfile->name);
4871 signature = DW_UNSND (attr);
4872 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4873 signature);
4874 }
4875
b0c7bfa9
DE
4876 return dwo_unit;
4877}
4878
a2ce51a0
DE
4879/* Subroutine of init_cutu_and_read_dies to simplify it.
4880 Read a TU directly from a DWO file, bypassing the stub. */
4881
4882static void
4883init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4884 die_reader_func_ftype *die_reader_func,
4885 void *data)
4886{
4887 struct dwarf2_cu *cu;
4888 struct signatured_type *sig_type;
4889 struct cleanup *cleanups, *free_cu_cleanup;
4890 struct die_reader_specs reader;
4891 const gdb_byte *info_ptr;
4892 struct die_info *comp_unit_die;
4893 int has_children;
4894
4895 /* Verify we can do the following downcast, and that we have the
4896 data we need. */
4897 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4898 sig_type = (struct signatured_type *) this_cu;
4899 gdb_assert (sig_type->dwo_unit != NULL);
4900
4901 cleanups = make_cleanup (null_cleanup, NULL);
4902
4903 gdb_assert (this_cu->cu == NULL);
4904 cu = xmalloc (sizeof (*cu));
4905 init_one_comp_unit (cu, this_cu);
4906 /* If an error occurs while loading, release our storage. */
4907 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4908
4909 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4910 0 /* abbrev_table_provided */,
4911 NULL /* stub_comp_unit_die */,
4912 sig_type->dwo_unit->dwo_file->comp_dir,
4913 &reader, &info_ptr,
4914 &comp_unit_die, &has_children) == 0)
4915 {
4916 /* Dummy die. */
4917 do_cleanups (cleanups);
4918 return;
4919 }
4920
4921 /* All the "real" work is done here. */
4922 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4923
4924 /* This duplicates some code in init_cutu_and_read_dies,
4925 but the alternative is making the latter more complex.
4926 This function is only for the special case of using DWO files directly:
4927 no point in overly complicating the general case just to handle this. */
4928 if (keep)
4929 {
4930 /* We've successfully allocated this compilation unit. Let our
4931 caller clean it up when finished with it. */
4932 discard_cleanups (free_cu_cleanup);
4933
4934 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4935 So we have to manually free the abbrev table. */
4936 dwarf2_free_abbrev_table (cu);
4937
4938 /* Link this CU into read_in_chain. */
4939 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4940 dwarf2_per_objfile->read_in_chain = this_cu;
4941 }
4942 else
4943 do_cleanups (free_cu_cleanup);
4944
4945 do_cleanups (cleanups);
4946}
4947
fd820528 4948/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4949 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4950
f4dc4d17
DE
4951 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4952 Otherwise the table specified in the comp unit header is read in and used.
4953 This is an optimization for when we already have the abbrev table.
4954
dee91e82
DE
4955 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4956 Otherwise, a new CU is allocated with xmalloc.
4957
4958 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4959 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4960
4961 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 4962 linker) then DIE_READER_FUNC will not get called. */
aaa75496 4963
70221824 4964static void
fd820528 4965init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 4966 struct abbrev_table *abbrev_table,
fd820528
DE
4967 int use_existing_cu, int keep,
4968 die_reader_func_ftype *die_reader_func,
4969 void *data)
c906108c 4970{
dee91e82 4971 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 4972 struct dwarf2_section_info *section = this_cu->section;
3019eac3 4973 bfd *abfd = section->asection->owner;
dee91e82 4974 struct dwarf2_cu *cu;
d521ce57 4975 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 4976 struct die_reader_specs reader;
d85a05f0 4977 struct die_info *comp_unit_die;
dee91e82 4978 int has_children;
d85a05f0 4979 struct attribute *attr;
365156ad 4980 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 4981 struct signatured_type *sig_type = NULL;
4bdcc0c1 4982 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
4983 /* Non-zero if CU currently points to a DWO file and we need to
4984 reread it. When this happens we need to reread the skeleton die
a2ce51a0 4985 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 4986 int rereading_dwo_cu = 0;
c906108c 4987
09406207
DE
4988 if (dwarf2_die_debug)
4989 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4990 this_cu->is_debug_types ? "type" : "comp",
4991 this_cu->offset.sect_off);
4992
dee91e82
DE
4993 if (use_existing_cu)
4994 gdb_assert (keep);
23745b47 4995
a2ce51a0
DE
4996 /* If we're reading a TU directly from a DWO file, including a virtual DWO
4997 file (instead of going through the stub), short-circuit all of this. */
4998 if (this_cu->reading_dwo_directly)
4999 {
5000 /* Narrow down the scope of possibilities to have to understand. */
5001 gdb_assert (this_cu->is_debug_types);
5002 gdb_assert (abbrev_table == NULL);
5003 gdb_assert (!use_existing_cu);
5004 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5005 return;
5006 }
5007
dee91e82
DE
5008 cleanups = make_cleanup (null_cleanup, NULL);
5009
5010 /* This is cheap if the section is already read in. */
5011 dwarf2_read_section (objfile, section);
5012
5013 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5014
5015 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5016
5017 if (use_existing_cu && this_cu->cu != NULL)
5018 {
5019 cu = this_cu->cu;
42e7ad6c
DE
5020
5021 /* If this CU is from a DWO file we need to start over, we need to
5022 refetch the attributes from the skeleton CU.
5023 This could be optimized by retrieving those attributes from when we
5024 were here the first time: the previous comp_unit_die was stored in
5025 comp_unit_obstack. But there's no data yet that we need this
5026 optimization. */
5027 if (cu->dwo_unit != NULL)
5028 rereading_dwo_cu = 1;
dee91e82
DE
5029 }
5030 else
5031 {
5032 /* If !use_existing_cu, this_cu->cu must be NULL. */
5033 gdb_assert (this_cu->cu == NULL);
5034
5035 cu = xmalloc (sizeof (*cu));
5036 init_one_comp_unit (cu, this_cu);
5037
5038 /* If an error occurs while loading, release our storage. */
365156ad 5039 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5040 }
dee91e82 5041
b0c7bfa9 5042 /* Get the header. */
42e7ad6c
DE
5043 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5044 {
5045 /* We already have the header, there's no need to read it in again. */
5046 info_ptr += cu->header.first_die_offset.cu_off;
5047 }
5048 else
5049 {
3019eac3 5050 if (this_cu->is_debug_types)
dee91e82
DE
5051 {
5052 ULONGEST signature;
42e7ad6c 5053 cu_offset type_offset_in_tu;
dee91e82 5054
4bdcc0c1
DE
5055 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5056 abbrev_section, info_ptr,
42e7ad6c
DE
5057 &signature,
5058 &type_offset_in_tu);
dee91e82 5059
42e7ad6c
DE
5060 /* Since per_cu is the first member of struct signatured_type,
5061 we can go from a pointer to one to a pointer to the other. */
5062 sig_type = (struct signatured_type *) this_cu;
5063 gdb_assert (sig_type->signature == signature);
5064 gdb_assert (sig_type->type_offset_in_tu.cu_off
5065 == type_offset_in_tu.cu_off);
dee91e82
DE
5066 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5067
42e7ad6c
DE
5068 /* LENGTH has not been set yet for type units if we're
5069 using .gdb_index. */
1ce1cefd 5070 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5071
5072 /* Establish the type offset that can be used to lookup the type. */
5073 sig_type->type_offset_in_section.sect_off =
5074 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5075 }
5076 else
5077 {
4bdcc0c1
DE
5078 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5079 abbrev_section,
5080 info_ptr, 0);
dee91e82
DE
5081
5082 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5083 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5084 }
5085 }
10b3939b 5086
6caca83c 5087 /* Skip dummy compilation units. */
dee91e82 5088 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5089 || peek_abbrev_code (abfd, info_ptr) == 0)
5090 {
dee91e82 5091 do_cleanups (cleanups);
21b2bd31 5092 return;
6caca83c
CC
5093 }
5094
433df2d4
DE
5095 /* If we don't have them yet, read the abbrevs for this compilation unit.
5096 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5097 done. Note that it's important that if the CU had an abbrev table
5098 on entry we don't free it when we're done: Somewhere up the call stack
5099 it may be in use. */
f4dc4d17
DE
5100 if (abbrev_table != NULL)
5101 {
5102 gdb_assert (cu->abbrev_table == NULL);
5103 gdb_assert (cu->header.abbrev_offset.sect_off
5104 == abbrev_table->offset.sect_off);
5105 cu->abbrev_table = abbrev_table;
5106 }
5107 else if (cu->abbrev_table == NULL)
dee91e82 5108 {
4bdcc0c1 5109 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5110 make_cleanup (dwarf2_free_abbrev_table, cu);
5111 }
42e7ad6c
DE
5112 else if (rereading_dwo_cu)
5113 {
5114 dwarf2_free_abbrev_table (cu);
5115 dwarf2_read_abbrevs (cu, abbrev_section);
5116 }
af703f96 5117
dee91e82 5118 /* Read the top level CU/TU die. */
3019eac3 5119 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5120 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5121
b0c7bfa9
DE
5122 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5123 from the DWO file.
5124 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5125 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5126 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5127 if (attr)
5128 {
3019eac3 5129 struct dwo_unit *dwo_unit;
b0c7bfa9 5130 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5131
5132 if (has_children)
6a506a2d
DE
5133 {
5134 complaint (&symfile_complaints,
5135 _("compilation unit with DW_AT_GNU_dwo_name"
5136 " has children (offset 0x%x) [in module %s]"),
5137 this_cu->offset.sect_off, bfd_get_filename (abfd));
5138 }
b0c7bfa9 5139 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5140 if (dwo_unit != NULL)
3019eac3 5141 {
6a506a2d
DE
5142 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5143 abbrev_table != NULL,
a2ce51a0 5144 comp_unit_die, NULL,
6a506a2d
DE
5145 &reader, &info_ptr,
5146 &dwo_comp_unit_die, &has_children) == 0)
5147 {
5148 /* Dummy die. */
5149 do_cleanups (cleanups);
5150 return;
5151 }
5152 comp_unit_die = dwo_comp_unit_die;
5153 }
5154 else
5155 {
5156 /* Yikes, we couldn't find the rest of the DIE, we only have
5157 the stub. A complaint has already been logged. There's
5158 not much more we can do except pass on the stub DIE to
5159 die_reader_func. We don't want to throw an error on bad
5160 debug info. */
3019eac3
DE
5161 }
5162 }
5163
b0c7bfa9 5164 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5165 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5166
b0c7bfa9 5167 /* Done, clean up. */
365156ad 5168 if (free_cu_cleanup != NULL)
348e048f 5169 {
365156ad
TT
5170 if (keep)
5171 {
5172 /* We've successfully allocated this compilation unit. Let our
5173 caller clean it up when finished with it. */
5174 discard_cleanups (free_cu_cleanup);
dee91e82 5175
365156ad
TT
5176 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5177 So we have to manually free the abbrev table. */
5178 dwarf2_free_abbrev_table (cu);
dee91e82 5179
365156ad
TT
5180 /* Link this CU into read_in_chain. */
5181 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5182 dwarf2_per_objfile->read_in_chain = this_cu;
5183 }
5184 else
5185 do_cleanups (free_cu_cleanup);
348e048f 5186 }
365156ad
TT
5187
5188 do_cleanups (cleanups);
dee91e82
DE
5189}
5190
3019eac3
DE
5191/* Read CU/TU THIS_CU in section SECTION,
5192 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5193 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5194 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5195
5196 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5197 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5198
5199 We fill in THIS_CU->length.
5200
5201 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5202 linker) then DIE_READER_FUNC will not get called.
5203
5204 THIS_CU->cu is always freed when done.
3019eac3
DE
5205 This is done in order to not leave THIS_CU->cu in a state where we have
5206 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5207
5208static void
5209init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5210 struct dwarf2_section_info *abbrev_section,
3019eac3 5211 struct dwo_file *dwo_file,
dee91e82
DE
5212 die_reader_func_ftype *die_reader_func,
5213 void *data)
5214{
5215 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5216 struct dwarf2_section_info *section = this_cu->section;
3019eac3 5217 bfd *abfd = section->asection->owner;
dee91e82 5218 struct dwarf2_cu cu;
d521ce57 5219 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5220 struct die_reader_specs reader;
5221 struct cleanup *cleanups;
5222 struct die_info *comp_unit_die;
5223 int has_children;
5224
09406207
DE
5225 if (dwarf2_die_debug)
5226 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5227 this_cu->is_debug_types ? "type" : "comp",
5228 this_cu->offset.sect_off);
5229
dee91e82
DE
5230 gdb_assert (this_cu->cu == NULL);
5231
dee91e82
DE
5232 /* This is cheap if the section is already read in. */
5233 dwarf2_read_section (objfile, section);
5234
5235 init_one_comp_unit (&cu, this_cu);
5236
5237 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5238
5239 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5240 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5241 abbrev_section, info_ptr,
3019eac3 5242 this_cu->is_debug_types);
dee91e82 5243
1ce1cefd 5244 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5245
5246 /* Skip dummy compilation units. */
5247 if (info_ptr >= begin_info_ptr + this_cu->length
5248 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5249 {
dee91e82 5250 do_cleanups (cleanups);
21b2bd31 5251 return;
93311388 5252 }
72bf9492 5253
dee91e82
DE
5254 dwarf2_read_abbrevs (&cu, abbrev_section);
5255 make_cleanup (dwarf2_free_abbrev_table, &cu);
5256
3019eac3 5257 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5258 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5259
5260 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5261
5262 do_cleanups (cleanups);
5263}
5264
3019eac3
DE
5265/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5266 does not lookup the specified DWO file.
5267 This cannot be used to read DWO files.
dee91e82
DE
5268
5269 THIS_CU->cu is always freed when done.
3019eac3
DE
5270 This is done in order to not leave THIS_CU->cu in a state where we have
5271 to care whether it refers to the "main" CU or the DWO CU.
5272 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5273
5274static void
5275init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5276 die_reader_func_ftype *die_reader_func,
5277 void *data)
5278{
5279 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5280 get_abbrev_section_for_cu (this_cu),
3019eac3 5281 NULL,
dee91e82
DE
5282 die_reader_func, data);
5283}
0018ea6f
DE
5284\f
5285/* Type Unit Groups.
dee91e82 5286
0018ea6f
DE
5287 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5288 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5289 so that all types coming from the same compilation (.o file) are grouped
5290 together. A future step could be to put the types in the same symtab as
5291 the CU the types ultimately came from. */
ff013f42 5292
f4dc4d17
DE
5293static hashval_t
5294hash_type_unit_group (const void *item)
5295{
094b34ac 5296 const struct type_unit_group *tu_group = item;
f4dc4d17 5297
094b34ac 5298 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5299}
348e048f
DE
5300
5301static int
f4dc4d17 5302eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5303{
f4dc4d17
DE
5304 const struct type_unit_group *lhs = item_lhs;
5305 const struct type_unit_group *rhs = item_rhs;
348e048f 5306
094b34ac 5307 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5308}
348e048f 5309
f4dc4d17
DE
5310/* Allocate a hash table for type unit groups. */
5311
5312static htab_t
5313allocate_type_unit_groups_table (void)
5314{
5315 return htab_create_alloc_ex (3,
5316 hash_type_unit_group,
5317 eq_type_unit_group,
5318 NULL,
5319 &dwarf2_per_objfile->objfile->objfile_obstack,
5320 hashtab_obstack_allocate,
5321 dummy_obstack_deallocate);
5322}
dee91e82 5323
f4dc4d17
DE
5324/* Type units that don't have DW_AT_stmt_list are grouped into their own
5325 partial symtabs. We combine several TUs per psymtab to not let the size
5326 of any one psymtab grow too big. */
5327#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5328#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5329
094b34ac 5330/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5331 Create the type_unit_group object used to hold one or more TUs. */
5332
5333static struct type_unit_group *
094b34ac 5334create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5335{
5336 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5337 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5338 struct type_unit_group *tu_group;
f4dc4d17
DE
5339
5340 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5341 struct type_unit_group);
094b34ac 5342 per_cu = &tu_group->per_cu;
f4dc4d17 5343 per_cu->objfile = objfile;
f4dc4d17 5344
094b34ac
DE
5345 if (dwarf2_per_objfile->using_index)
5346 {
5347 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5348 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5349 }
5350 else
5351 {
5352 unsigned int line_offset = line_offset_struct.sect_off;
5353 struct partial_symtab *pst;
5354 char *name;
5355
5356 /* Give the symtab a useful name for debug purposes. */
5357 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5358 name = xstrprintf ("<type_units_%d>",
5359 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5360 else
5361 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5362
5363 pst = create_partial_symtab (per_cu, name);
5364 pst->anonymous = 1;
f4dc4d17 5365
094b34ac
DE
5366 xfree (name);
5367 }
f4dc4d17 5368
094b34ac
DE
5369 tu_group->hash.dwo_unit = cu->dwo_unit;
5370 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5371
5372 return tu_group;
5373}
5374
094b34ac
DE
5375/* Look up the type_unit_group for type unit CU, and create it if necessary.
5376 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5377
5378static struct type_unit_group *
ff39bb5e 5379get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5380{
5381 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5382 struct type_unit_group *tu_group;
5383 void **slot;
5384 unsigned int line_offset;
5385 struct type_unit_group type_unit_group_for_lookup;
5386
5387 if (dwarf2_per_objfile->type_unit_groups == NULL)
5388 {
5389 dwarf2_per_objfile->type_unit_groups =
5390 allocate_type_unit_groups_table ();
5391 }
5392
5393 /* Do we need to create a new group, or can we use an existing one? */
5394
5395 if (stmt_list)
5396 {
5397 line_offset = DW_UNSND (stmt_list);
5398 ++tu_stats->nr_symtab_sharers;
5399 }
5400 else
5401 {
5402 /* Ugh, no stmt_list. Rare, but we have to handle it.
5403 We can do various things here like create one group per TU or
5404 spread them over multiple groups to split up the expansion work.
5405 To avoid worst case scenarios (too many groups or too large groups)
5406 we, umm, group them in bunches. */
5407 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5408 | (tu_stats->nr_stmt_less_type_units
5409 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5410 ++tu_stats->nr_stmt_less_type_units;
5411 }
5412
094b34ac
DE
5413 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5414 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5415 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5416 &type_unit_group_for_lookup, INSERT);
5417 if (*slot != NULL)
5418 {
5419 tu_group = *slot;
5420 gdb_assert (tu_group != NULL);
5421 }
5422 else
5423 {
5424 sect_offset line_offset_struct;
5425
5426 line_offset_struct.sect_off = line_offset;
094b34ac 5427 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5428 *slot = tu_group;
5429 ++tu_stats->nr_symtabs;
5430 }
5431
5432 return tu_group;
5433}
5434
5435/* Struct used to sort TUs by their abbreviation table offset. */
5436
5437struct tu_abbrev_offset
5438{
5439 struct signatured_type *sig_type;
5440 sect_offset abbrev_offset;
5441};
5442
5443/* Helper routine for build_type_unit_groups, passed to qsort. */
5444
5445static int
5446sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5447{
5448 const struct tu_abbrev_offset * const *a = ap;
5449 const struct tu_abbrev_offset * const *b = bp;
5450 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5451 unsigned int boff = (*b)->abbrev_offset.sect_off;
5452
5453 return (aoff > boff) - (aoff < boff);
5454}
5455
5456/* A helper function to add a type_unit_group to a table. */
5457
5458static int
5459add_type_unit_group_to_table (void **slot, void *datum)
5460{
5461 struct type_unit_group *tu_group = *slot;
5462 struct type_unit_group ***datap = datum;
5463
5464 **datap = tu_group;
5465 ++*datap;
5466
5467 return 1;
5468}
5469
5470/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5471 each one passing FUNC,DATA.
5472
5473 The efficiency is because we sort TUs by the abbrev table they use and
5474 only read each abbrev table once. In one program there are 200K TUs
5475 sharing 8K abbrev tables.
5476
5477 The main purpose of this function is to support building the
5478 dwarf2_per_objfile->type_unit_groups table.
5479 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5480 can collapse the search space by grouping them by stmt_list.
5481 The savings can be significant, in the same program from above the 200K TUs
5482 share 8K stmt_list tables.
5483
5484 FUNC is expected to call get_type_unit_group, which will create the
5485 struct type_unit_group if necessary and add it to
5486 dwarf2_per_objfile->type_unit_groups. */
5487
5488static void
5489build_type_unit_groups (die_reader_func_ftype *func, void *data)
5490{
5491 struct objfile *objfile = dwarf2_per_objfile->objfile;
5492 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5493 struct cleanup *cleanups;
5494 struct abbrev_table *abbrev_table;
5495 sect_offset abbrev_offset;
5496 struct tu_abbrev_offset *sorted_by_abbrev;
5497 struct type_unit_group **iter;
5498 int i;
5499
5500 /* It's up to the caller to not call us multiple times. */
5501 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5502
5503 if (dwarf2_per_objfile->n_type_units == 0)
5504 return;
5505
5506 /* TUs typically share abbrev tables, and there can be way more TUs than
5507 abbrev tables. Sort by abbrev table to reduce the number of times we
5508 read each abbrev table in.
5509 Alternatives are to punt or to maintain a cache of abbrev tables.
5510 This is simpler and efficient enough for now.
5511
5512 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5513 symtab to use). Typically TUs with the same abbrev offset have the same
5514 stmt_list value too so in practice this should work well.
5515
5516 The basic algorithm here is:
5517
5518 sort TUs by abbrev table
5519 for each TU with same abbrev table:
5520 read abbrev table if first user
5521 read TU top level DIE
5522 [IWBN if DWO skeletons had DW_AT_stmt_list]
5523 call FUNC */
5524
5525 if (dwarf2_read_debug)
5526 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5527
5528 /* Sort in a separate table to maintain the order of all_type_units
5529 for .gdb_index: TU indices directly index all_type_units. */
5530 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5531 dwarf2_per_objfile->n_type_units);
5532 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5533 {
5534 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5535
5536 sorted_by_abbrev[i].sig_type = sig_type;
5537 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5538 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5539 sig_type->per_cu.offset);
5540 }
5541 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5542 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5543 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5544
094b34ac
DE
5545 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5546 called any number of times, so we don't reset tu_stats here. */
5547
f4dc4d17
DE
5548 abbrev_offset.sect_off = ~(unsigned) 0;
5549 abbrev_table = NULL;
5550 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5551
5552 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5553 {
5554 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5555
5556 /* Switch to the next abbrev table if necessary. */
5557 if (abbrev_table == NULL
5558 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5559 {
5560 if (abbrev_table != NULL)
5561 {
5562 abbrev_table_free (abbrev_table);
5563 /* Reset to NULL in case abbrev_table_read_table throws
5564 an error: abbrev_table_free_cleanup will get called. */
5565 abbrev_table = NULL;
5566 }
5567 abbrev_offset = tu->abbrev_offset;
5568 abbrev_table =
5569 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5570 abbrev_offset);
5571 ++tu_stats->nr_uniq_abbrev_tables;
5572 }
5573
5574 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5575 func, data);
5576 }
5577
a2ce51a0
DE
5578 /* type_unit_groups can be NULL if there is an error in the debug info.
5579 Just create an empty table so the rest of gdb doesn't have to watch
5580 for this error case. */
5581 if (dwarf2_per_objfile->type_unit_groups == NULL)
5582 {
5583 dwarf2_per_objfile->type_unit_groups =
5584 allocate_type_unit_groups_table ();
5585 dwarf2_per_objfile->n_type_unit_groups = 0;
5586 }
5587
f4dc4d17
DE
5588 /* Create a vector of pointers to primary type units to make it easy to
5589 iterate over them and CUs. See dw2_get_primary_cu. */
5590 dwarf2_per_objfile->n_type_unit_groups =
5591 htab_elements (dwarf2_per_objfile->type_unit_groups);
5592 dwarf2_per_objfile->all_type_unit_groups =
5593 obstack_alloc (&objfile->objfile_obstack,
5594 dwarf2_per_objfile->n_type_unit_groups
5595 * sizeof (struct type_unit_group *));
5596 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5597 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5598 add_type_unit_group_to_table, &iter);
5599 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5600 == dwarf2_per_objfile->n_type_unit_groups);
5601
5602 do_cleanups (cleanups);
5603
5604 if (dwarf2_read_debug)
5605 {
5606 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5607 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5608 dwarf2_per_objfile->n_type_units);
5609 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5610 tu_stats->nr_uniq_abbrev_tables);
5611 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5612 tu_stats->nr_symtabs);
5613 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5614 tu_stats->nr_symtab_sharers);
5615 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5616 tu_stats->nr_stmt_less_type_units);
5617 }
5618}
0018ea6f
DE
5619\f
5620/* Partial symbol tables. */
5621
5622/* Create a psymtab named NAME and assign it to PER_CU.
5623
5624 The caller must fill in the following details:
5625 dirname, textlow, texthigh. */
5626
5627static struct partial_symtab *
5628create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5629{
5630 struct objfile *objfile = per_cu->objfile;
5631 struct partial_symtab *pst;
5632
5633 pst = start_psymtab_common (objfile, objfile->section_offsets,
5634 name, 0,
5635 objfile->global_psymbols.next,
5636 objfile->static_psymbols.next);
5637
5638 pst->psymtabs_addrmap_supported = 1;
5639
5640 /* This is the glue that links PST into GDB's symbol API. */
5641 pst->read_symtab_private = per_cu;
5642 pst->read_symtab = dwarf2_read_symtab;
5643 per_cu->v.psymtab = pst;
5644
5645 return pst;
5646}
5647
b93601f3
TT
5648/* The DATA object passed to process_psymtab_comp_unit_reader has this
5649 type. */
5650
5651struct process_psymtab_comp_unit_data
5652{
5653 /* True if we are reading a DW_TAG_partial_unit. */
5654
5655 int want_partial_unit;
5656
5657 /* The "pretend" language that is used if the CU doesn't declare a
5658 language. */
5659
5660 enum language pretend_language;
5661};
5662
0018ea6f
DE
5663/* die_reader_func for process_psymtab_comp_unit. */
5664
5665static void
5666process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5667 const gdb_byte *info_ptr,
0018ea6f
DE
5668 struct die_info *comp_unit_die,
5669 int has_children,
5670 void *data)
5671{
5672 struct dwarf2_cu *cu = reader->cu;
5673 struct objfile *objfile = cu->objfile;
5674 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5675 struct attribute *attr;
5676 CORE_ADDR baseaddr;
5677 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5678 struct partial_symtab *pst;
5679 int has_pc_info;
5680 const char *filename;
b93601f3 5681 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5682
b93601f3 5683 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5684 return;
5685
5686 gdb_assert (! per_cu->is_debug_types);
5687
b93601f3 5688 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5689
5690 cu->list_in_scope = &file_symbols;
5691
5692 /* Allocate a new partial symbol table structure. */
5693 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5694 if (attr == NULL || !DW_STRING (attr))
5695 filename = "";
5696 else
5697 filename = DW_STRING (attr);
5698
5699 pst = create_partial_symtab (per_cu, filename);
5700
5701 /* This must be done before calling dwarf2_build_include_psymtabs. */
5702 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5703 if (attr != NULL)
5704 pst->dirname = DW_STRING (attr);
5705
5706 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5707
5708 dwarf2_find_base_address (comp_unit_die, cu);
5709
5710 /* Possibly set the default values of LOWPC and HIGHPC from
5711 `DW_AT_ranges'. */
5712 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5713 &best_highpc, cu, pst);
5714 if (has_pc_info == 1 && best_lowpc < best_highpc)
5715 /* Store the contiguous range if it is not empty; it can be empty for
5716 CUs with no code. */
5717 addrmap_set_empty (objfile->psymtabs_addrmap,
5718 best_lowpc + baseaddr,
5719 best_highpc + baseaddr - 1, pst);
5720
5721 /* Check if comp unit has_children.
5722 If so, read the rest of the partial symbols from this comp unit.
5723 If not, there's no more debug_info for this comp unit. */
5724 if (has_children)
5725 {
5726 struct partial_die_info *first_die;
5727 CORE_ADDR lowpc, highpc;
5728
5729 lowpc = ((CORE_ADDR) -1);
5730 highpc = ((CORE_ADDR) 0);
5731
5732 first_die = load_partial_dies (reader, info_ptr, 1);
5733
5734 scan_partial_symbols (first_die, &lowpc, &highpc,
5735 ! has_pc_info, cu);
5736
5737 /* If we didn't find a lowpc, set it to highpc to avoid
5738 complaints from `maint check'. */
5739 if (lowpc == ((CORE_ADDR) -1))
5740 lowpc = highpc;
5741
5742 /* If the compilation unit didn't have an explicit address range,
5743 then use the information extracted from its child dies. */
5744 if (! has_pc_info)
5745 {
5746 best_lowpc = lowpc;
5747 best_highpc = highpc;
5748 }
5749 }
5750 pst->textlow = best_lowpc + baseaddr;
5751 pst->texthigh = best_highpc + baseaddr;
5752
5753 pst->n_global_syms = objfile->global_psymbols.next -
5754 (objfile->global_psymbols.list + pst->globals_offset);
5755 pst->n_static_syms = objfile->static_psymbols.next -
5756 (objfile->static_psymbols.list + pst->statics_offset);
5757 sort_pst_symbols (objfile, pst);
5758
5759 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5760 {
5761 int i;
5762 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5763 struct dwarf2_per_cu_data *iter;
5764
5765 /* Fill in 'dependencies' here; we fill in 'users' in a
5766 post-pass. */
5767 pst->number_of_dependencies = len;
5768 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5769 len * sizeof (struct symtab *));
5770 for (i = 0;
5771 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5772 i, iter);
5773 ++i)
5774 pst->dependencies[i] = iter->v.psymtab;
5775
5776 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5777 }
5778
5779 /* Get the list of files included in the current compilation unit,
5780 and build a psymtab for each of them. */
5781 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5782
5783 if (dwarf2_read_debug)
5784 {
5785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5786
5787 fprintf_unfiltered (gdb_stdlog,
5788 "Psymtab for %s unit @0x%x: %s - %s"
5789 ", %d global, %d static syms\n",
5790 per_cu->is_debug_types ? "type" : "comp",
5791 per_cu->offset.sect_off,
5792 paddress (gdbarch, pst->textlow),
5793 paddress (gdbarch, pst->texthigh),
5794 pst->n_global_syms, pst->n_static_syms);
5795 }
5796}
5797
5798/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5799 Process compilation unit THIS_CU for a psymtab. */
5800
5801static void
5802process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5803 int want_partial_unit,
5804 enum language pretend_language)
0018ea6f 5805{
b93601f3
TT
5806 struct process_psymtab_comp_unit_data info;
5807
0018ea6f
DE
5808 /* If this compilation unit was already read in, free the
5809 cached copy in order to read it in again. This is
5810 necessary because we skipped some symbols when we first
5811 read in the compilation unit (see load_partial_dies).
5812 This problem could be avoided, but the benefit is unclear. */
5813 if (this_cu->cu != NULL)
5814 free_one_cached_comp_unit (this_cu);
5815
5816 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
5817 info.want_partial_unit = want_partial_unit;
5818 info.pretend_language = pretend_language;
0018ea6f
DE
5819 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5820 process_psymtab_comp_unit_reader,
b93601f3 5821 &info);
0018ea6f
DE
5822
5823 /* Age out any secondary CUs. */
5824 age_cached_comp_units ();
5825}
f4dc4d17
DE
5826
5827/* Reader function for build_type_psymtabs. */
5828
5829static void
5830build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 5831 const gdb_byte *info_ptr,
f4dc4d17
DE
5832 struct die_info *type_unit_die,
5833 int has_children,
5834 void *data)
5835{
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 struct dwarf2_cu *cu = reader->cu;
5838 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 5839 struct signatured_type *sig_type;
f4dc4d17
DE
5840 struct type_unit_group *tu_group;
5841 struct attribute *attr;
5842 struct partial_die_info *first_die;
5843 CORE_ADDR lowpc, highpc;
5844 struct partial_symtab *pst;
5845
5846 gdb_assert (data == NULL);
0186c6a7
DE
5847 gdb_assert (per_cu->is_debug_types);
5848 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
5849
5850 if (! has_children)
5851 return;
5852
5853 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5854 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5855
0186c6a7 5856 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
5857
5858 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5859 cu->list_in_scope = &file_symbols;
5860 pst = create_partial_symtab (per_cu, "");
5861 pst->anonymous = 1;
5862
5863 first_die = load_partial_dies (reader, info_ptr, 1);
5864
5865 lowpc = (CORE_ADDR) -1;
5866 highpc = (CORE_ADDR) 0;
5867 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5868
5869 pst->n_global_syms = objfile->global_psymbols.next -
5870 (objfile->global_psymbols.list + pst->globals_offset);
5871 pst->n_static_syms = objfile->static_psymbols.next -
5872 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 5873 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
5874}
5875
5876/* Traversal function for build_type_psymtabs. */
5877
5878static int
5879build_type_psymtab_dependencies (void **slot, void *info)
5880{
5881 struct objfile *objfile = dwarf2_per_objfile->objfile;
5882 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5883 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5884 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
5885 int len = VEC_length (sig_type_ptr, tu_group->tus);
5886 struct signatured_type *iter;
f4dc4d17
DE
5887 int i;
5888
5889 gdb_assert (len > 0);
0186c6a7 5890 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
5891
5892 pst->number_of_dependencies = len;
5893 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5894 len * sizeof (struct psymtab *));
5895 for (i = 0;
0186c6a7 5896 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
5897 ++i)
5898 {
0186c6a7
DE
5899 gdb_assert (iter->per_cu.is_debug_types);
5900 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 5901 iter->type_unit_group = tu_group;
f4dc4d17
DE
5902 }
5903
0186c6a7 5904 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
5905
5906 return 1;
5907}
5908
5909/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5910 Build partial symbol tables for the .debug_types comp-units. */
5911
5912static void
5913build_type_psymtabs (struct objfile *objfile)
5914{
0e50663e 5915 if (! create_all_type_units (objfile))
348e048f
DE
5916 return;
5917
f4dc4d17
DE
5918 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5919
5920 /* Now that all TUs have been processed we can fill in the dependencies. */
5921 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5922 build_type_psymtab_dependencies, NULL);
348e048f
DE
5923}
5924
60606b2c
TT
5925/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5926
5927static void
5928psymtabs_addrmap_cleanup (void *o)
5929{
5930 struct objfile *objfile = o;
ec61707d 5931
60606b2c
TT
5932 objfile->psymtabs_addrmap = NULL;
5933}
5934
95554aad
TT
5935/* Compute the 'user' field for each psymtab in OBJFILE. */
5936
5937static void
5938set_partial_user (struct objfile *objfile)
5939{
5940 int i;
5941
5942 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5943 {
5944 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5945 struct partial_symtab *pst = per_cu->v.psymtab;
5946 int j;
5947
36586728
TT
5948 if (pst == NULL)
5949 continue;
5950
95554aad
TT
5951 for (j = 0; j < pst->number_of_dependencies; ++j)
5952 {
5953 /* Set the 'user' field only if it is not already set. */
5954 if (pst->dependencies[j]->user == NULL)
5955 pst->dependencies[j]->user = pst;
5956 }
5957 }
5958}
5959
93311388
DE
5960/* Build the partial symbol table by doing a quick pass through the
5961 .debug_info and .debug_abbrev sections. */
72bf9492 5962
93311388 5963static void
c67a9c90 5964dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5965{
60606b2c
TT
5966 struct cleanup *back_to, *addrmap_cleanup;
5967 struct obstack temp_obstack;
21b2bd31 5968 int i;
93311388 5969
45cfd468
DE
5970 if (dwarf2_read_debug)
5971 {
5972 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5973 objfile->name);
5974 }
5975
98bfdba5
PA
5976 dwarf2_per_objfile->reading_partial_symbols = 1;
5977
be391dca 5978 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5979
93311388
DE
5980 /* Any cached compilation units will be linked by the per-objfile
5981 read_in_chain. Make sure to free them when we're done. */
5982 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 5983
348e048f
DE
5984 build_type_psymtabs (objfile);
5985
93311388 5986 create_all_comp_units (objfile);
c906108c 5987
60606b2c
TT
5988 /* Create a temporary address map on a temporary obstack. We later
5989 copy this to the final obstack. */
5990 obstack_init (&temp_obstack);
5991 make_cleanup_obstack_free (&temp_obstack);
5992 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5993 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 5994
21b2bd31 5995 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 5996 {
21b2bd31 5997 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 5998
b93601f3 5999 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6000 }
ff013f42 6001
95554aad
TT
6002 set_partial_user (objfile);
6003
ff013f42
JK
6004 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6005 &objfile->objfile_obstack);
60606b2c 6006 discard_cleanups (addrmap_cleanup);
ff013f42 6007
ae038cb0 6008 do_cleanups (back_to);
45cfd468
DE
6009
6010 if (dwarf2_read_debug)
6011 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6012 objfile->name);
ae038cb0
DJ
6013}
6014
3019eac3 6015/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6016
6017static void
dee91e82 6018load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6019 const gdb_byte *info_ptr,
dee91e82
DE
6020 struct die_info *comp_unit_die,
6021 int has_children,
6022 void *data)
ae038cb0 6023{
dee91e82 6024 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6025
95554aad 6026 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6027
ae038cb0
DJ
6028 /* Check if comp unit has_children.
6029 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6030 If not, there's no more debug_info for this comp unit. */
d85a05f0 6031 if (has_children)
dee91e82
DE
6032 load_partial_dies (reader, info_ptr, 0);
6033}
98bfdba5 6034
dee91e82
DE
6035/* Load the partial DIEs for a secondary CU into memory.
6036 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6037
dee91e82
DE
6038static void
6039load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6040{
f4dc4d17
DE
6041 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6042 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6043}
6044
ae038cb0 6045static void
36586728
TT
6046read_comp_units_from_section (struct objfile *objfile,
6047 struct dwarf2_section_info *section,
6048 unsigned int is_dwz,
6049 int *n_allocated,
6050 int *n_comp_units,
6051 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6052{
d521ce57 6053 const gdb_byte *info_ptr;
36586728 6054 bfd *abfd = section->asection->owner;
be391dca 6055
bf6af496
DE
6056 if (dwarf2_read_debug)
6057 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6058 section->asection->name, bfd_get_filename (abfd));
6059
36586728 6060 dwarf2_read_section (objfile, section);
ae038cb0 6061
36586728 6062 info_ptr = section->buffer;
6e70227d 6063
36586728 6064 while (info_ptr < section->buffer + section->size)
ae038cb0 6065 {
c764a876 6066 unsigned int length, initial_length_size;
ae038cb0 6067 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6068 sect_offset offset;
ae038cb0 6069
36586728 6070 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6071
6072 /* Read just enough information to find out where the next
6073 compilation unit is. */
36586728 6074 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6075
6076 /* Save the compilation unit for later lookup. */
6077 this_cu = obstack_alloc (&objfile->objfile_obstack,
6078 sizeof (struct dwarf2_per_cu_data));
6079 memset (this_cu, 0, sizeof (*this_cu));
6080 this_cu->offset = offset;
c764a876 6081 this_cu->length = length + initial_length_size;
36586728 6082 this_cu->is_dwz = is_dwz;
9291a0cd 6083 this_cu->objfile = objfile;
8a0459fd 6084 this_cu->section = section;
ae038cb0 6085
36586728 6086 if (*n_comp_units == *n_allocated)
ae038cb0 6087 {
36586728
TT
6088 *n_allocated *= 2;
6089 *all_comp_units = xrealloc (*all_comp_units,
6090 *n_allocated
6091 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6092 }
36586728
TT
6093 (*all_comp_units)[*n_comp_units] = this_cu;
6094 ++*n_comp_units;
ae038cb0
DJ
6095
6096 info_ptr = info_ptr + this_cu->length;
6097 }
36586728
TT
6098}
6099
6100/* Create a list of all compilation units in OBJFILE.
6101 This is only done for -readnow and building partial symtabs. */
6102
6103static void
6104create_all_comp_units (struct objfile *objfile)
6105{
6106 int n_allocated;
6107 int n_comp_units;
6108 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6109 struct dwz_file *dwz;
36586728
TT
6110
6111 n_comp_units = 0;
6112 n_allocated = 10;
6113 all_comp_units = xmalloc (n_allocated
6114 * sizeof (struct dwarf2_per_cu_data *));
6115
6116 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6117 &n_allocated, &n_comp_units, &all_comp_units);
6118
4db1a1dc
TT
6119 dwz = dwarf2_get_dwz_file ();
6120 if (dwz != NULL)
6121 read_comp_units_from_section (objfile, &dwz->info, 1,
6122 &n_allocated, &n_comp_units,
6123 &all_comp_units);
ae038cb0
DJ
6124
6125 dwarf2_per_objfile->all_comp_units
6126 = obstack_alloc (&objfile->objfile_obstack,
6127 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6128 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6129 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6130 xfree (all_comp_units);
6131 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6132}
6133
5734ee8b
DJ
6134/* Process all loaded DIEs for compilation unit CU, starting at
6135 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6136 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6137 DW_AT_ranges). If NEED_PC is set, then this function will set
6138 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6139 and record the covered ranges in the addrmap. */
c906108c 6140
72bf9492
DJ
6141static void
6142scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6143 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6144{
72bf9492 6145 struct partial_die_info *pdi;
c906108c 6146
91c24f0a
DC
6147 /* Now, march along the PDI's, descending into ones which have
6148 interesting children but skipping the children of the other ones,
6149 until we reach the end of the compilation unit. */
c906108c 6150
72bf9492 6151 pdi = first_die;
91c24f0a 6152
72bf9492
DJ
6153 while (pdi != NULL)
6154 {
6155 fixup_partial_die (pdi, cu);
c906108c 6156
f55ee35c 6157 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6158 children, so we need to look at them. Ditto for anonymous
6159 enums. */
933c6fe4 6160
72bf9492 6161 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6162 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6163 || pdi->tag == DW_TAG_imported_unit)
c906108c 6164 {
72bf9492 6165 switch (pdi->tag)
c906108c
SS
6166 {
6167 case DW_TAG_subprogram:
5734ee8b 6168 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6169 break;
72929c62 6170 case DW_TAG_constant:
c906108c
SS
6171 case DW_TAG_variable:
6172 case DW_TAG_typedef:
91c24f0a 6173 case DW_TAG_union_type:
72bf9492 6174 if (!pdi->is_declaration)
63d06c5c 6175 {
72bf9492 6176 add_partial_symbol (pdi, cu);
63d06c5c
DC
6177 }
6178 break;
c906108c 6179 case DW_TAG_class_type:
680b30c7 6180 case DW_TAG_interface_type:
c906108c 6181 case DW_TAG_structure_type:
72bf9492 6182 if (!pdi->is_declaration)
c906108c 6183 {
72bf9492 6184 add_partial_symbol (pdi, cu);
c906108c
SS
6185 }
6186 break;
91c24f0a 6187 case DW_TAG_enumeration_type:
72bf9492
DJ
6188 if (!pdi->is_declaration)
6189 add_partial_enumeration (pdi, cu);
c906108c
SS
6190 break;
6191 case DW_TAG_base_type:
a02abb62 6192 case DW_TAG_subrange_type:
c906108c 6193 /* File scope base type definitions are added to the partial
c5aa993b 6194 symbol table. */
72bf9492 6195 add_partial_symbol (pdi, cu);
c906108c 6196 break;
d9fa45fe 6197 case DW_TAG_namespace:
5734ee8b 6198 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6199 break;
5d7cb8df
JK
6200 case DW_TAG_module:
6201 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6202 break;
95554aad
TT
6203 case DW_TAG_imported_unit:
6204 {
6205 struct dwarf2_per_cu_data *per_cu;
6206
f4dc4d17
DE
6207 /* For now we don't handle imported units in type units. */
6208 if (cu->per_cu->is_debug_types)
6209 {
6210 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6211 " supported in type units [in module %s]"),
6212 cu->objfile->name);
6213 }
6214
95554aad 6215 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6216 pdi->is_dwz,
95554aad
TT
6217 cu->objfile);
6218
6219 /* Go read the partial unit, if needed. */
6220 if (per_cu->v.psymtab == NULL)
b93601f3 6221 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6222
f4dc4d17 6223 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6224 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6225 }
6226 break;
c906108c
SS
6227 default:
6228 break;
6229 }
6230 }
6231
72bf9492
DJ
6232 /* If the die has a sibling, skip to the sibling. */
6233
6234 pdi = pdi->die_sibling;
6235 }
6236}
6237
6238/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6239
72bf9492 6240 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6241 name is concatenated with "::" and the partial DIE's name. For
6242 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6243 Enumerators are an exception; they use the scope of their parent
6244 enumeration type, i.e. the name of the enumeration type is not
6245 prepended to the enumerator.
91c24f0a 6246
72bf9492
DJ
6247 There are two complexities. One is DW_AT_specification; in this
6248 case "parent" means the parent of the target of the specification,
6249 instead of the direct parent of the DIE. The other is compilers
6250 which do not emit DW_TAG_namespace; in this case we try to guess
6251 the fully qualified name of structure types from their members'
6252 linkage names. This must be done using the DIE's children rather
6253 than the children of any DW_AT_specification target. We only need
6254 to do this for structures at the top level, i.e. if the target of
6255 any DW_AT_specification (if any; otherwise the DIE itself) does not
6256 have a parent. */
6257
6258/* Compute the scope prefix associated with PDI's parent, in
6259 compilation unit CU. The result will be allocated on CU's
6260 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6261 field. NULL is returned if no prefix is necessary. */
15d034d0 6262static const char *
72bf9492
DJ
6263partial_die_parent_scope (struct partial_die_info *pdi,
6264 struct dwarf2_cu *cu)
6265{
15d034d0 6266 const char *grandparent_scope;
72bf9492 6267 struct partial_die_info *parent, *real_pdi;
91c24f0a 6268
72bf9492
DJ
6269 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6270 then this means the parent of the specification DIE. */
6271
6272 real_pdi = pdi;
72bf9492 6273 while (real_pdi->has_specification)
36586728
TT
6274 real_pdi = find_partial_die (real_pdi->spec_offset,
6275 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6276
6277 parent = real_pdi->die_parent;
6278 if (parent == NULL)
6279 return NULL;
6280
6281 if (parent->scope_set)
6282 return parent->scope;
6283
6284 fixup_partial_die (parent, cu);
6285
10b3939b 6286 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6287
acebe513
UW
6288 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6289 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6290 Work around this problem here. */
6291 if (cu->language == language_cplus
6e70227d 6292 && parent->tag == DW_TAG_namespace
acebe513
UW
6293 && strcmp (parent->name, "::") == 0
6294 && grandparent_scope == NULL)
6295 {
6296 parent->scope = NULL;
6297 parent->scope_set = 1;
6298 return NULL;
6299 }
6300
9c6c53f7
SA
6301 if (pdi->tag == DW_TAG_enumerator)
6302 /* Enumerators should not get the name of the enumeration as a prefix. */
6303 parent->scope = grandparent_scope;
6304 else if (parent->tag == DW_TAG_namespace
f55ee35c 6305 || parent->tag == DW_TAG_module
72bf9492
DJ
6306 || parent->tag == DW_TAG_structure_type
6307 || parent->tag == DW_TAG_class_type
680b30c7 6308 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6309 || parent->tag == DW_TAG_union_type
6310 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6311 {
6312 if (grandparent_scope == NULL)
6313 parent->scope = parent->name;
6314 else
3e43a32a
MS
6315 parent->scope = typename_concat (&cu->comp_unit_obstack,
6316 grandparent_scope,
f55ee35c 6317 parent->name, 0, cu);
72bf9492 6318 }
72bf9492
DJ
6319 else
6320 {
6321 /* FIXME drow/2004-04-01: What should we be doing with
6322 function-local names? For partial symbols, we should probably be
6323 ignoring them. */
6324 complaint (&symfile_complaints,
e2e0b3e5 6325 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6326 parent->tag, pdi->offset.sect_off);
72bf9492 6327 parent->scope = grandparent_scope;
c906108c
SS
6328 }
6329
72bf9492
DJ
6330 parent->scope_set = 1;
6331 return parent->scope;
6332}
6333
6334/* Return the fully scoped name associated with PDI, from compilation unit
6335 CU. The result will be allocated with malloc. */
4568ecf9 6336
72bf9492
DJ
6337static char *
6338partial_die_full_name (struct partial_die_info *pdi,
6339 struct dwarf2_cu *cu)
6340{
15d034d0 6341 const char *parent_scope;
72bf9492 6342
98bfdba5
PA
6343 /* If this is a template instantiation, we can not work out the
6344 template arguments from partial DIEs. So, unfortunately, we have
6345 to go through the full DIEs. At least any work we do building
6346 types here will be reused if full symbols are loaded later. */
6347 if (pdi->has_template_arguments)
6348 {
6349 fixup_partial_die (pdi, cu);
6350
6351 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6352 {
6353 struct die_info *die;
6354 struct attribute attr;
6355 struct dwarf2_cu *ref_cu = cu;
6356
b64f50a1 6357 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6358 attr.name = 0;
6359 attr.form = DW_FORM_ref_addr;
4568ecf9 6360 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6361 die = follow_die_ref (NULL, &attr, &ref_cu);
6362
6363 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6364 }
6365 }
6366
72bf9492
DJ
6367 parent_scope = partial_die_parent_scope (pdi, cu);
6368 if (parent_scope == NULL)
6369 return NULL;
6370 else
f55ee35c 6371 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6372}
6373
6374static void
72bf9492 6375add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6376{
e7c27a73 6377 struct objfile *objfile = cu->objfile;
c906108c 6378 CORE_ADDR addr = 0;
15d034d0 6379 const char *actual_name = NULL;
e142c38c 6380 CORE_ADDR baseaddr;
15d034d0 6381 char *built_actual_name;
e142c38c
DJ
6382
6383 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6384
15d034d0
TT
6385 built_actual_name = partial_die_full_name (pdi, cu);
6386 if (built_actual_name != NULL)
6387 actual_name = built_actual_name;
63d06c5c 6388
72bf9492
DJ
6389 if (actual_name == NULL)
6390 actual_name = pdi->name;
6391
c906108c
SS
6392 switch (pdi->tag)
6393 {
6394 case DW_TAG_subprogram:
2cfa0c8d 6395 if (pdi->is_external || cu->language == language_ada)
c906108c 6396 {
2cfa0c8d
JB
6397 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6398 of the global scope. But in Ada, we want to be able to access
6399 nested procedures globally. So all Ada subprograms are stored
6400 in the global scope. */
f47fb265 6401 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6402 mst_text, objfile); */
f47fb265 6403 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6404 built_actual_name != NULL,
f47fb265
MS
6405 VAR_DOMAIN, LOC_BLOCK,
6406 &objfile->global_psymbols,
6407 0, pdi->lowpc + baseaddr,
6408 cu->language, objfile);
c906108c
SS
6409 }
6410 else
6411 {
f47fb265 6412 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6413 mst_file_text, objfile); */
f47fb265 6414 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6415 built_actual_name != NULL,
f47fb265
MS
6416 VAR_DOMAIN, LOC_BLOCK,
6417 &objfile->static_psymbols,
6418 0, pdi->lowpc + baseaddr,
6419 cu->language, objfile);
c906108c
SS
6420 }
6421 break;
72929c62
JB
6422 case DW_TAG_constant:
6423 {
6424 struct psymbol_allocation_list *list;
6425
6426 if (pdi->is_external)
6427 list = &objfile->global_psymbols;
6428 else
6429 list = &objfile->static_psymbols;
f47fb265 6430 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6431 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6432 list, 0, 0, cu->language, objfile);
72929c62
JB
6433 }
6434 break;
c906108c 6435 case DW_TAG_variable:
95554aad
TT
6436 if (pdi->d.locdesc)
6437 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6438
95554aad 6439 if (pdi->d.locdesc
caac4577
JG
6440 && addr == 0
6441 && !dwarf2_per_objfile->has_section_at_zero)
6442 {
6443 /* A global or static variable may also have been stripped
6444 out by the linker if unused, in which case its address
6445 will be nullified; do not add such variables into partial
6446 symbol table then. */
6447 }
6448 else if (pdi->is_external)
c906108c
SS
6449 {
6450 /* Global Variable.
6451 Don't enter into the minimal symbol tables as there is
6452 a minimal symbol table entry from the ELF symbols already.
6453 Enter into partial symbol table if it has a location
6454 descriptor or a type.
6455 If the location descriptor is missing, new_symbol will create
6456 a LOC_UNRESOLVED symbol, the address of the variable will then
6457 be determined from the minimal symbol table whenever the variable
6458 is referenced.
6459 The address for the partial symbol table entry is not
6460 used by GDB, but it comes in handy for debugging partial symbol
6461 table building. */
6462
95554aad 6463 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6464 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6465 built_actual_name != NULL,
f47fb265
MS
6466 VAR_DOMAIN, LOC_STATIC,
6467 &objfile->global_psymbols,
6468 0, addr + baseaddr,
6469 cu->language, objfile);
c906108c
SS
6470 }
6471 else
6472 {
0963b4bd 6473 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6474 if (pdi->d.locdesc == NULL)
decbce07 6475 {
15d034d0 6476 xfree (built_actual_name);
decbce07
MS
6477 return;
6478 }
f47fb265 6479 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6480 mst_file_data, objfile); */
f47fb265 6481 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6482 built_actual_name != NULL,
f47fb265
MS
6483 VAR_DOMAIN, LOC_STATIC,
6484 &objfile->static_psymbols,
6485 0, addr + baseaddr,
6486 cu->language, objfile);
c906108c
SS
6487 }
6488 break;
6489 case DW_TAG_typedef:
6490 case DW_TAG_base_type:
a02abb62 6491 case DW_TAG_subrange_type:
38d518c9 6492 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6493 built_actual_name != NULL,
176620f1 6494 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6495 &objfile->static_psymbols,
e142c38c 6496 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6497 break;
72bf9492
DJ
6498 case DW_TAG_namespace:
6499 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6500 built_actual_name != NULL,
72bf9492
DJ
6501 VAR_DOMAIN, LOC_TYPEDEF,
6502 &objfile->global_psymbols,
6503 0, (CORE_ADDR) 0, cu->language, objfile);
6504 break;
c906108c 6505 case DW_TAG_class_type:
680b30c7 6506 case DW_TAG_interface_type:
c906108c
SS
6507 case DW_TAG_structure_type:
6508 case DW_TAG_union_type:
6509 case DW_TAG_enumeration_type:
fa4028e9
JB
6510 /* Skip external references. The DWARF standard says in the section
6511 about "Structure, Union, and Class Type Entries": "An incomplete
6512 structure, union or class type is represented by a structure,
6513 union or class entry that does not have a byte size attribute
6514 and that has a DW_AT_declaration attribute." */
6515 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6516 {
15d034d0 6517 xfree (built_actual_name);
decbce07
MS
6518 return;
6519 }
fa4028e9 6520
63d06c5c
DC
6521 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6522 static vs. global. */
38d518c9 6523 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6524 built_actual_name != NULL,
176620f1 6525 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6526 (cu->language == language_cplus
6527 || cu->language == language_java)
63d06c5c
DC
6528 ? &objfile->global_psymbols
6529 : &objfile->static_psymbols,
e142c38c 6530 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6531
c906108c
SS
6532 break;
6533 case DW_TAG_enumerator:
38d518c9 6534 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6535 built_actual_name != NULL,
176620f1 6536 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6537 (cu->language == language_cplus
6538 || cu->language == language_java)
f6fe98ef
DJ
6539 ? &objfile->global_psymbols
6540 : &objfile->static_psymbols,
e142c38c 6541 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6542 break;
6543 default:
6544 break;
6545 }
5c4e30ca 6546
15d034d0 6547 xfree (built_actual_name);
c906108c
SS
6548}
6549
5c4e30ca
DC
6550/* Read a partial die corresponding to a namespace; also, add a symbol
6551 corresponding to that namespace to the symbol table. NAMESPACE is
6552 the name of the enclosing namespace. */
91c24f0a 6553
72bf9492
DJ
6554static void
6555add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6556 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6557 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6558{
72bf9492 6559 /* Add a symbol for the namespace. */
e7c27a73 6560
72bf9492 6561 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6562
6563 /* Now scan partial symbols in that namespace. */
6564
91c24f0a 6565 if (pdi->has_children)
5734ee8b 6566 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6567}
6568
5d7cb8df
JK
6569/* Read a partial die corresponding to a Fortran module. */
6570
6571static void
6572add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6573 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6574{
f55ee35c 6575 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6576
6577 if (pdi->has_children)
6578 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6579}
6580
bc30ff58
JB
6581/* Read a partial die corresponding to a subprogram and create a partial
6582 symbol for that subprogram. When the CU language allows it, this
6583 routine also defines a partial symbol for each nested subprogram
6584 that this subprogram contains.
6e70227d 6585
bc30ff58
JB
6586 DIE my also be a lexical block, in which case we simply search
6587 recursively for suprograms defined inside that lexical block.
6588 Again, this is only performed when the CU language allows this
6589 type of definitions. */
6590
6591static void
6592add_partial_subprogram (struct partial_die_info *pdi,
6593 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6594 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6595{
6596 if (pdi->tag == DW_TAG_subprogram)
6597 {
6598 if (pdi->has_pc_info)
6599 {
6600 if (pdi->lowpc < *lowpc)
6601 *lowpc = pdi->lowpc;
6602 if (pdi->highpc > *highpc)
6603 *highpc = pdi->highpc;
5734ee8b
DJ
6604 if (need_pc)
6605 {
6606 CORE_ADDR baseaddr;
6607 struct objfile *objfile = cu->objfile;
6608
6609 baseaddr = ANOFFSET (objfile->section_offsets,
6610 SECT_OFF_TEXT (objfile));
6611 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6612 pdi->lowpc + baseaddr,
6613 pdi->highpc - 1 + baseaddr,
9291a0cd 6614 cu->per_cu->v.psymtab);
5734ee8b 6615 }
481860b3
GB
6616 }
6617
6618 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6619 {
bc30ff58 6620 if (!pdi->is_declaration)
e8d05480
JB
6621 /* Ignore subprogram DIEs that do not have a name, they are
6622 illegal. Do not emit a complaint at this point, we will
6623 do so when we convert this psymtab into a symtab. */
6624 if (pdi->name)
6625 add_partial_symbol (pdi, cu);
bc30ff58
JB
6626 }
6627 }
6e70227d 6628
bc30ff58
JB
6629 if (! pdi->has_children)
6630 return;
6631
6632 if (cu->language == language_ada)
6633 {
6634 pdi = pdi->die_child;
6635 while (pdi != NULL)
6636 {
6637 fixup_partial_die (pdi, cu);
6638 if (pdi->tag == DW_TAG_subprogram
6639 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6640 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6641 pdi = pdi->die_sibling;
6642 }
6643 }
6644}
6645
91c24f0a
DC
6646/* Read a partial die corresponding to an enumeration type. */
6647
72bf9492
DJ
6648static void
6649add_partial_enumeration (struct partial_die_info *enum_pdi,
6650 struct dwarf2_cu *cu)
91c24f0a 6651{
72bf9492 6652 struct partial_die_info *pdi;
91c24f0a
DC
6653
6654 if (enum_pdi->name != NULL)
72bf9492
DJ
6655 add_partial_symbol (enum_pdi, cu);
6656
6657 pdi = enum_pdi->die_child;
6658 while (pdi)
91c24f0a 6659 {
72bf9492 6660 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6661 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6662 else
72bf9492
DJ
6663 add_partial_symbol (pdi, cu);
6664 pdi = pdi->die_sibling;
91c24f0a 6665 }
91c24f0a
DC
6666}
6667
6caca83c
CC
6668/* Return the initial uleb128 in the die at INFO_PTR. */
6669
6670static unsigned int
d521ce57 6671peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6672{
6673 unsigned int bytes_read;
6674
6675 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6676}
6677
4bb7a0a7
DJ
6678/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6679 Return the corresponding abbrev, or NULL if the number is zero (indicating
6680 an empty DIE). In either case *BYTES_READ will be set to the length of
6681 the initial number. */
6682
6683static struct abbrev_info *
d521ce57 6684peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6685 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6686{
6687 bfd *abfd = cu->objfile->obfd;
6688 unsigned int abbrev_number;
6689 struct abbrev_info *abbrev;
6690
6691 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6692
6693 if (abbrev_number == 0)
6694 return NULL;
6695
433df2d4 6696 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6697 if (!abbrev)
6698 {
3e43a32a
MS
6699 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6700 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6701 }
6702
6703 return abbrev;
6704}
6705
93311388
DE
6706/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6707 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6708 DIE. Any children of the skipped DIEs will also be skipped. */
6709
d521ce57
TT
6710static const gdb_byte *
6711skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 6712{
dee91e82 6713 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6714 struct abbrev_info *abbrev;
6715 unsigned int bytes_read;
6716
6717 while (1)
6718 {
6719 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6720 if (abbrev == NULL)
6721 return info_ptr + bytes_read;
6722 else
dee91e82 6723 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6724 }
6725}
6726
93311388
DE
6727/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6728 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6729 abbrev corresponding to that skipped uleb128 should be passed in
6730 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6731 children. */
6732
d521ce57
TT
6733static const gdb_byte *
6734skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 6735 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6736{
6737 unsigned int bytes_read;
6738 struct attribute attr;
dee91e82
DE
6739 bfd *abfd = reader->abfd;
6740 struct dwarf2_cu *cu = reader->cu;
d521ce57 6741 const gdb_byte *buffer = reader->buffer;
f664829e 6742 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 6743 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6744 unsigned int form, i;
6745
6746 for (i = 0; i < abbrev->num_attrs; i++)
6747 {
6748 /* The only abbrev we care about is DW_AT_sibling. */
6749 if (abbrev->attrs[i].name == DW_AT_sibling)
6750 {
dee91e82 6751 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6752 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6753 complaint (&symfile_complaints,
6754 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6755 else
b64f50a1 6756 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6757 }
6758
6759 /* If it isn't DW_AT_sibling, skip this attribute. */
6760 form = abbrev->attrs[i].form;
6761 skip_attribute:
6762 switch (form)
6763 {
4bb7a0a7 6764 case DW_FORM_ref_addr:
ae411497
TT
6765 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6766 and later it is offset sized. */
6767 if (cu->header.version == 2)
6768 info_ptr += cu->header.addr_size;
6769 else
6770 info_ptr += cu->header.offset_size;
6771 break;
36586728
TT
6772 case DW_FORM_GNU_ref_alt:
6773 info_ptr += cu->header.offset_size;
6774 break;
ae411497 6775 case DW_FORM_addr:
4bb7a0a7
DJ
6776 info_ptr += cu->header.addr_size;
6777 break;
6778 case DW_FORM_data1:
6779 case DW_FORM_ref1:
6780 case DW_FORM_flag:
6781 info_ptr += 1;
6782 break;
2dc7f7b3
TT
6783 case DW_FORM_flag_present:
6784 break;
4bb7a0a7
DJ
6785 case DW_FORM_data2:
6786 case DW_FORM_ref2:
6787 info_ptr += 2;
6788 break;
6789 case DW_FORM_data4:
6790 case DW_FORM_ref4:
6791 info_ptr += 4;
6792 break;
6793 case DW_FORM_data8:
6794 case DW_FORM_ref8:
55f1336d 6795 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6796 info_ptr += 8;
6797 break;
6798 case DW_FORM_string:
9b1c24c8 6799 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6800 info_ptr += bytes_read;
6801 break;
2dc7f7b3 6802 case DW_FORM_sec_offset:
4bb7a0a7 6803 case DW_FORM_strp:
36586728 6804 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6805 info_ptr += cu->header.offset_size;
6806 break;
2dc7f7b3 6807 case DW_FORM_exprloc:
4bb7a0a7
DJ
6808 case DW_FORM_block:
6809 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6810 info_ptr += bytes_read;
6811 break;
6812 case DW_FORM_block1:
6813 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6814 break;
6815 case DW_FORM_block2:
6816 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6817 break;
6818 case DW_FORM_block4:
6819 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6820 break;
6821 case DW_FORM_sdata:
6822 case DW_FORM_udata:
6823 case DW_FORM_ref_udata:
3019eac3
DE
6824 case DW_FORM_GNU_addr_index:
6825 case DW_FORM_GNU_str_index:
d521ce57 6826 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6827 break;
6828 case DW_FORM_indirect:
6829 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6830 info_ptr += bytes_read;
6831 /* We need to continue parsing from here, so just go back to
6832 the top. */
6833 goto skip_attribute;
6834
6835 default:
3e43a32a
MS
6836 error (_("Dwarf Error: Cannot handle %s "
6837 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6838 dwarf_form_name (form),
6839 bfd_get_filename (abfd));
6840 }
6841 }
6842
6843 if (abbrev->has_children)
dee91e82 6844 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6845 else
6846 return info_ptr;
6847}
6848
93311388 6849/* Locate ORIG_PDI's sibling.
dee91e82 6850 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6851
d521ce57 6852static const gdb_byte *
dee91e82
DE
6853locate_pdi_sibling (const struct die_reader_specs *reader,
6854 struct partial_die_info *orig_pdi,
d521ce57 6855 const gdb_byte *info_ptr)
91c24f0a
DC
6856{
6857 /* Do we know the sibling already? */
72bf9492 6858
91c24f0a
DC
6859 if (orig_pdi->sibling)
6860 return orig_pdi->sibling;
6861
6862 /* Are there any children to deal with? */
6863
6864 if (!orig_pdi->has_children)
6865 return info_ptr;
6866
4bb7a0a7 6867 /* Skip the children the long way. */
91c24f0a 6868
dee91e82 6869 return skip_children (reader, info_ptr);
91c24f0a
DC
6870}
6871
257e7a09 6872/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 6873 not NULL. */
c906108c
SS
6874
6875static void
257e7a09
YQ
6876dwarf2_read_symtab (struct partial_symtab *self,
6877 struct objfile *objfile)
c906108c 6878{
257e7a09 6879 if (self->readin)
c906108c 6880 {
442e4d9c 6881 warning (_("bug: psymtab for %s is already read in."),
257e7a09 6882 self->filename);
442e4d9c
YQ
6883 }
6884 else
6885 {
6886 if (info_verbose)
c906108c 6887 {
442e4d9c 6888 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 6889 self->filename);
442e4d9c 6890 gdb_flush (gdb_stdout);
c906108c 6891 }
c906108c 6892
442e4d9c
YQ
6893 /* Restore our global data. */
6894 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 6895
442e4d9c
YQ
6896 /* If this psymtab is constructed from a debug-only objfile, the
6897 has_section_at_zero flag will not necessarily be correct. We
6898 can get the correct value for this flag by looking at the data
6899 associated with the (presumably stripped) associated objfile. */
6900 if (objfile->separate_debug_objfile_backlink)
6901 {
6902 struct dwarf2_per_objfile *dpo_backlink
6903 = objfile_data (objfile->separate_debug_objfile_backlink,
6904 dwarf2_objfile_data_key);
9a619af0 6905
442e4d9c
YQ
6906 dwarf2_per_objfile->has_section_at_zero
6907 = dpo_backlink->has_section_at_zero;
6908 }
b2ab525c 6909
442e4d9c 6910 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 6911
257e7a09 6912 psymtab_to_symtab_1 (self);
c906108c 6913
442e4d9c
YQ
6914 /* Finish up the debug error message. */
6915 if (info_verbose)
6916 printf_filtered (_("done.\n"));
c906108c 6917 }
95554aad
TT
6918
6919 process_cu_includes ();
c906108c 6920}
9cdd5dbd
DE
6921\f
6922/* Reading in full CUs. */
c906108c 6923
10b3939b
DJ
6924/* Add PER_CU to the queue. */
6925
6926static void
95554aad
TT
6927queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6928 enum language pretend_language)
10b3939b
DJ
6929{
6930 struct dwarf2_queue_item *item;
6931
6932 per_cu->queued = 1;
6933 item = xmalloc (sizeof (*item));
6934 item->per_cu = per_cu;
95554aad 6935 item->pretend_language = pretend_language;
10b3939b
DJ
6936 item->next = NULL;
6937
6938 if (dwarf2_queue == NULL)
6939 dwarf2_queue = item;
6940 else
6941 dwarf2_queue_tail->next = item;
6942
6943 dwarf2_queue_tail = item;
6944}
6945
0907af0c
DE
6946/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6947 unit and add it to our queue.
6948 The result is non-zero if PER_CU was queued, otherwise the result is zero
6949 meaning either PER_CU is already queued or it is already loaded. */
6950
6951static int
6952maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6953 struct dwarf2_per_cu_data *per_cu,
6954 enum language pretend_language)
6955{
6956 /* We may arrive here during partial symbol reading, if we need full
6957 DIEs to process an unusual case (e.g. template arguments). Do
6958 not queue PER_CU, just tell our caller to load its DIEs. */
6959 if (dwarf2_per_objfile->reading_partial_symbols)
6960 {
6961 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6962 return 1;
6963 return 0;
6964 }
6965
6966 /* Mark the dependence relation so that we don't flush PER_CU
6967 too early. */
6968 dwarf2_add_dependence (this_cu, per_cu);
6969
6970 /* If it's already on the queue, we have nothing to do. */
6971 if (per_cu->queued)
6972 return 0;
6973
6974 /* If the compilation unit is already loaded, just mark it as
6975 used. */
6976 if (per_cu->cu != NULL)
6977 {
6978 per_cu->cu->last_used = 0;
6979 return 0;
6980 }
6981
6982 /* Add it to the queue. */
6983 queue_comp_unit (per_cu, pretend_language);
6984
6985 return 1;
6986}
6987
10b3939b
DJ
6988/* Process the queue. */
6989
6990static void
a0f42c21 6991process_queue (void)
10b3939b
DJ
6992{
6993 struct dwarf2_queue_item *item, *next_item;
6994
45cfd468
DE
6995 if (dwarf2_read_debug)
6996 {
6997 fprintf_unfiltered (gdb_stdlog,
6998 "Expanding one or more symtabs of objfile %s ...\n",
6999 dwarf2_per_objfile->objfile->name);
7000 }
7001
03dd20cc
DJ
7002 /* The queue starts out with one item, but following a DIE reference
7003 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7004 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7005 {
9291a0cd
TT
7006 if (dwarf2_per_objfile->using_index
7007 ? !item->per_cu->v.quick->symtab
7008 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7009 {
7010 struct dwarf2_per_cu_data *per_cu = item->per_cu;
247f5c4f 7011 char buf[100];
f4dc4d17 7012
247f5c4f 7013 if (per_cu->is_debug_types)
f4dc4d17 7014 {
247f5c4f
DE
7015 struct signatured_type *sig_type =
7016 (struct signatured_type *) per_cu;
7017
7018 sprintf (buf, "TU %s at offset 0x%x",
7019 hex_string (sig_type->signature), per_cu->offset.sect_off);
f4dc4d17 7020 }
247f5c4f
DE
7021 else
7022 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7023
7024 if (dwarf2_read_debug)
7025 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7026
7027 if (per_cu->is_debug_types)
7028 process_full_type_unit (per_cu, item->pretend_language);
7029 else
7030 process_full_comp_unit (per_cu, item->pretend_language);
7031
7032 if (dwarf2_read_debug)
247f5c4f 7033 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7034 }
10b3939b
DJ
7035
7036 item->per_cu->queued = 0;
7037 next_item = item->next;
7038 xfree (item);
7039 }
7040
7041 dwarf2_queue_tail = NULL;
45cfd468
DE
7042
7043 if (dwarf2_read_debug)
7044 {
7045 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7046 dwarf2_per_objfile->objfile->name);
7047 }
10b3939b
DJ
7048}
7049
7050/* Free all allocated queue entries. This function only releases anything if
7051 an error was thrown; if the queue was processed then it would have been
7052 freed as we went along. */
7053
7054static void
7055dwarf2_release_queue (void *dummy)
7056{
7057 struct dwarf2_queue_item *item, *last;
7058
7059 item = dwarf2_queue;
7060 while (item)
7061 {
7062 /* Anything still marked queued is likely to be in an
7063 inconsistent state, so discard it. */
7064 if (item->per_cu->queued)
7065 {
7066 if (item->per_cu->cu != NULL)
dee91e82 7067 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7068 item->per_cu->queued = 0;
7069 }
7070
7071 last = item;
7072 item = item->next;
7073 xfree (last);
7074 }
7075
7076 dwarf2_queue = dwarf2_queue_tail = NULL;
7077}
7078
7079/* Read in full symbols for PST, and anything it depends on. */
7080
c906108c 7081static void
fba45db2 7082psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7083{
10b3939b 7084 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7085 int i;
7086
95554aad
TT
7087 if (pst->readin)
7088 return;
7089
aaa75496 7090 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7091 if (!pst->dependencies[i]->readin
7092 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7093 {
7094 /* Inform about additional files that need to be read in. */
7095 if (info_verbose)
7096 {
a3f17187 7097 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7098 fputs_filtered (" ", gdb_stdout);
7099 wrap_here ("");
7100 fputs_filtered ("and ", gdb_stdout);
7101 wrap_here ("");
7102 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7103 wrap_here (""); /* Flush output. */
aaa75496
JB
7104 gdb_flush (gdb_stdout);
7105 }
7106 psymtab_to_symtab_1 (pst->dependencies[i]);
7107 }
7108
e38df1d0 7109 per_cu = pst->read_symtab_private;
10b3939b
DJ
7110
7111 if (per_cu == NULL)
aaa75496
JB
7112 {
7113 /* It's an include file, no symbols to read for it.
7114 Everything is in the parent symtab. */
7115 pst->readin = 1;
7116 return;
7117 }
c906108c 7118
a0f42c21 7119 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7120}
7121
dee91e82
DE
7122/* Trivial hash function for die_info: the hash value of a DIE
7123 is its offset in .debug_info for this objfile. */
10b3939b 7124
dee91e82
DE
7125static hashval_t
7126die_hash (const void *item)
10b3939b 7127{
dee91e82 7128 const struct die_info *die = item;
6502dd73 7129
dee91e82
DE
7130 return die->offset.sect_off;
7131}
63d06c5c 7132
dee91e82
DE
7133/* Trivial comparison function for die_info structures: two DIEs
7134 are equal if they have the same offset. */
98bfdba5 7135
dee91e82
DE
7136static int
7137die_eq (const void *item_lhs, const void *item_rhs)
7138{
7139 const struct die_info *die_lhs = item_lhs;
7140 const struct die_info *die_rhs = item_rhs;
c906108c 7141
dee91e82
DE
7142 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7143}
c906108c 7144
dee91e82
DE
7145/* die_reader_func for load_full_comp_unit.
7146 This is identical to read_signatured_type_reader,
7147 but is kept separate for now. */
c906108c 7148
dee91e82
DE
7149static void
7150load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7151 const gdb_byte *info_ptr,
dee91e82
DE
7152 struct die_info *comp_unit_die,
7153 int has_children,
7154 void *data)
7155{
7156 struct dwarf2_cu *cu = reader->cu;
95554aad 7157 enum language *language_ptr = data;
6caca83c 7158
dee91e82
DE
7159 gdb_assert (cu->die_hash == NULL);
7160 cu->die_hash =
7161 htab_create_alloc_ex (cu->header.length / 12,
7162 die_hash,
7163 die_eq,
7164 NULL,
7165 &cu->comp_unit_obstack,
7166 hashtab_obstack_allocate,
7167 dummy_obstack_deallocate);
e142c38c 7168
dee91e82
DE
7169 if (has_children)
7170 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7171 &info_ptr, comp_unit_die);
7172 cu->dies = comp_unit_die;
7173 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7174
7175 /* We try not to read any attributes in this function, because not
9cdd5dbd 7176 all CUs needed for references have been loaded yet, and symbol
10b3939b 7177 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7178 or we won't be able to build types correctly.
7179 Similarly, if we do not read the producer, we can not apply
7180 producer-specific interpretation. */
95554aad 7181 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7182}
10b3939b 7183
dee91e82 7184/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7185
dee91e82 7186static void
95554aad
TT
7187load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7188 enum language pretend_language)
dee91e82 7189{
3019eac3 7190 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7191
f4dc4d17
DE
7192 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7193 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7194}
7195
3da10d80
KS
7196/* Add a DIE to the delayed physname list. */
7197
7198static void
7199add_to_method_list (struct type *type, int fnfield_index, int index,
7200 const char *name, struct die_info *die,
7201 struct dwarf2_cu *cu)
7202{
7203 struct delayed_method_info mi;
7204 mi.type = type;
7205 mi.fnfield_index = fnfield_index;
7206 mi.index = index;
7207 mi.name = name;
7208 mi.die = die;
7209 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7210}
7211
7212/* A cleanup for freeing the delayed method list. */
7213
7214static void
7215free_delayed_list (void *ptr)
7216{
7217 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7218 if (cu->method_list != NULL)
7219 {
7220 VEC_free (delayed_method_info, cu->method_list);
7221 cu->method_list = NULL;
7222 }
7223}
7224
7225/* Compute the physnames of any methods on the CU's method list.
7226
7227 The computation of method physnames is delayed in order to avoid the
7228 (bad) condition that one of the method's formal parameters is of an as yet
7229 incomplete type. */
7230
7231static void
7232compute_delayed_physnames (struct dwarf2_cu *cu)
7233{
7234 int i;
7235 struct delayed_method_info *mi;
7236 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7237 {
1d06ead6 7238 const char *physname;
3da10d80
KS
7239 struct fn_fieldlist *fn_flp
7240 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7241 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7242 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7243 }
7244}
7245
a766d390
DE
7246/* Go objects should be embedded in a DW_TAG_module DIE,
7247 and it's not clear if/how imported objects will appear.
7248 To keep Go support simple until that's worked out,
7249 go back through what we've read and create something usable.
7250 We could do this while processing each DIE, and feels kinda cleaner,
7251 but that way is more invasive.
7252 This is to, for example, allow the user to type "p var" or "b main"
7253 without having to specify the package name, and allow lookups
7254 of module.object to work in contexts that use the expression
7255 parser. */
7256
7257static void
7258fixup_go_packaging (struct dwarf2_cu *cu)
7259{
7260 char *package_name = NULL;
7261 struct pending *list;
7262 int i;
7263
7264 for (list = global_symbols; list != NULL; list = list->next)
7265 {
7266 for (i = 0; i < list->nsyms; ++i)
7267 {
7268 struct symbol *sym = list->symbol[i];
7269
7270 if (SYMBOL_LANGUAGE (sym) == language_go
7271 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7272 {
7273 char *this_package_name = go_symbol_package_name (sym);
7274
7275 if (this_package_name == NULL)
7276 continue;
7277 if (package_name == NULL)
7278 package_name = this_package_name;
7279 else
7280 {
7281 if (strcmp (package_name, this_package_name) != 0)
7282 complaint (&symfile_complaints,
7283 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7284 (SYMBOL_SYMTAB (sym)
05cba821 7285 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
a766d390
DE
7286 : cu->objfile->name),
7287 this_package_name, package_name);
7288 xfree (this_package_name);
7289 }
7290 }
7291 }
7292 }
7293
7294 if (package_name != NULL)
7295 {
7296 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7297 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7298 package_name,
7299 strlen (package_name));
a766d390 7300 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7301 saved_package_name, objfile);
a766d390
DE
7302 struct symbol *sym;
7303
7304 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7305
e623cf5d 7306 sym = allocate_symbol (objfile);
f85f34ed 7307 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7308 SYMBOL_SET_NAMES (sym, saved_package_name,
7309 strlen (saved_package_name), 0, objfile);
a766d390
DE
7310 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7311 e.g., "main" finds the "main" module and not C's main(). */
7312 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7313 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7314 SYMBOL_TYPE (sym) = type;
7315
7316 add_symbol_to_list (sym, &global_symbols);
7317
7318 xfree (package_name);
7319 }
7320}
7321
95554aad
TT
7322/* Return the symtab for PER_CU. This works properly regardless of
7323 whether we're using the index or psymtabs. */
7324
7325static struct symtab *
7326get_symtab (struct dwarf2_per_cu_data *per_cu)
7327{
7328 return (dwarf2_per_objfile->using_index
7329 ? per_cu->v.quick->symtab
7330 : per_cu->v.psymtab->symtab);
7331}
7332
7333/* A helper function for computing the list of all symbol tables
7334 included by PER_CU. */
7335
7336static void
ec94af83
DE
7337recursively_compute_inclusions (VEC (symtab_ptr) **result,
7338 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7339 struct dwarf2_per_cu_data *per_cu,
7340 struct symtab *immediate_parent)
95554aad
TT
7341{
7342 void **slot;
7343 int ix;
ec94af83 7344 struct symtab *symtab;
95554aad
TT
7345 struct dwarf2_per_cu_data *iter;
7346
7347 slot = htab_find_slot (all_children, per_cu, INSERT);
7348 if (*slot != NULL)
7349 {
7350 /* This inclusion and its children have been processed. */
7351 return;
7352 }
7353
7354 *slot = per_cu;
7355 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7356 symtab = get_symtab (per_cu);
7357 if (symtab != NULL)
7358 {
7359 /* If this is a type unit only add its symbol table if we haven't
7360 seen it yet (type unit per_cu's can share symtabs). */
7361 if (per_cu->is_debug_types)
7362 {
7363 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7364 if (*slot == NULL)
7365 {
7366 *slot = symtab;
7367 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7368 if (symtab->user == NULL)
7369 symtab->user = immediate_parent;
ec94af83
DE
7370 }
7371 }
7372 else
f9125b6c
TT
7373 {
7374 VEC_safe_push (symtab_ptr, *result, symtab);
7375 if (symtab->user == NULL)
7376 symtab->user = immediate_parent;
7377 }
ec94af83 7378 }
95554aad
TT
7379
7380 for (ix = 0;
796a7ff8 7381 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7382 ++ix)
ec94af83
DE
7383 {
7384 recursively_compute_inclusions (result, all_children,
f9125b6c 7385 all_type_symtabs, iter, symtab);
ec94af83 7386 }
95554aad
TT
7387}
7388
7389/* Compute the symtab 'includes' fields for the symtab related to
7390 PER_CU. */
7391
7392static void
7393compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7394{
f4dc4d17
DE
7395 gdb_assert (! per_cu->is_debug_types);
7396
796a7ff8 7397 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7398 {
7399 int ix, len;
ec94af83
DE
7400 struct dwarf2_per_cu_data *per_cu_iter;
7401 struct symtab *symtab_iter;
7402 VEC (symtab_ptr) *result_symtabs = NULL;
7403 htab_t all_children, all_type_symtabs;
95554aad
TT
7404 struct symtab *symtab = get_symtab (per_cu);
7405
7406 /* If we don't have a symtab, we can just skip this case. */
7407 if (symtab == NULL)
7408 return;
7409
7410 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7411 NULL, xcalloc, xfree);
ec94af83
DE
7412 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7413 NULL, xcalloc, xfree);
95554aad
TT
7414
7415 for (ix = 0;
796a7ff8 7416 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7417 ix, per_cu_iter);
95554aad 7418 ++ix)
ec94af83
DE
7419 {
7420 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7421 all_type_symtabs, per_cu_iter,
7422 symtab);
ec94af83 7423 }
95554aad 7424
ec94af83
DE
7425 /* Now we have a transitive closure of all the included symtabs. */
7426 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7427 symtab->includes
7428 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7429 (len + 1) * sizeof (struct symtab *));
7430 for (ix = 0;
ec94af83 7431 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7432 ++ix)
ec94af83 7433 symtab->includes[ix] = symtab_iter;
95554aad
TT
7434 symtab->includes[len] = NULL;
7435
ec94af83 7436 VEC_free (symtab_ptr, result_symtabs);
95554aad 7437 htab_delete (all_children);
ec94af83 7438 htab_delete (all_type_symtabs);
95554aad
TT
7439 }
7440}
7441
7442/* Compute the 'includes' field for the symtabs of all the CUs we just
7443 read. */
7444
7445static void
7446process_cu_includes (void)
7447{
7448 int ix;
7449 struct dwarf2_per_cu_data *iter;
7450
7451 for (ix = 0;
7452 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7453 ix, iter);
7454 ++ix)
f4dc4d17
DE
7455 {
7456 if (! iter->is_debug_types)
7457 compute_symtab_includes (iter);
7458 }
95554aad
TT
7459
7460 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7461}
7462
9cdd5dbd 7463/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7464 already been loaded into memory. */
7465
7466static void
95554aad
TT
7467process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7468 enum language pretend_language)
10b3939b 7469{
10b3939b 7470 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7471 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7472 CORE_ADDR lowpc, highpc;
7473 struct symtab *symtab;
3da10d80 7474 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7475 CORE_ADDR baseaddr;
4359dff1 7476 struct block *static_block;
10b3939b
DJ
7477
7478 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7479
10b3939b
DJ
7480 buildsym_init ();
7481 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7482 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7483
7484 cu->list_in_scope = &file_symbols;
c906108c 7485
95554aad
TT
7486 cu->language = pretend_language;
7487 cu->language_defn = language_def (cu->language);
7488
c906108c 7489 /* Do line number decoding in read_file_scope () */
10b3939b 7490 process_die (cu->dies, cu);
c906108c 7491
a766d390
DE
7492 /* For now fudge the Go package. */
7493 if (cu->language == language_go)
7494 fixup_go_packaging (cu);
7495
3da10d80
KS
7496 /* Now that we have processed all the DIEs in the CU, all the types
7497 should be complete, and it should now be safe to compute all of the
7498 physnames. */
7499 compute_delayed_physnames (cu);
7500 do_cleanups (delayed_list_cleanup);
7501
fae299cd
DC
7502 /* Some compilers don't define a DW_AT_high_pc attribute for the
7503 compilation unit. If the DW_AT_high_pc is missing, synthesize
7504 it, by scanning the DIE's below the compilation unit. */
10b3939b 7505 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7506
36586728 7507 static_block
ff546935 7508 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7509
7510 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7511 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7512 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7513 addrmap to help ensure it has an accurate map of pc values belonging to
7514 this comp unit. */
7515 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7516
7517 symtab = end_symtab_from_static_block (static_block, objfile,
7518 SECT_OFF_TEXT (objfile), 0);
c906108c 7519
8be455d7 7520 if (symtab != NULL)
c906108c 7521 {
df15bd07 7522 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7523
8be455d7
JK
7524 /* Set symtab language to language from DW_AT_language. If the
7525 compilation is from a C file generated by language preprocessors, do
7526 not set the language if it was already deduced by start_subfile. */
7527 if (!(cu->language == language_c && symtab->language != language_c))
7528 symtab->language = cu->language;
7529
7530 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7531 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7532 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7533 there were bugs in prologue debug info, fixed later in GCC-4.5
7534 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7535
7536 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7537 needed, it would be wrong due to missing DW_AT_producer there.
7538
7539 Still one can confuse GDB by using non-standard GCC compilation
7540 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7541 */
ab260dad 7542 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7543 symtab->locations_valid = 1;
e0d00bc7
JK
7544
7545 if (gcc_4_minor >= 5)
7546 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7547
7548 symtab->call_site_htab = cu->call_site_htab;
c906108c 7549 }
9291a0cd
TT
7550
7551 if (dwarf2_per_objfile->using_index)
7552 per_cu->v.quick->symtab = symtab;
7553 else
7554 {
7555 struct partial_symtab *pst = per_cu->v.psymtab;
7556 pst->symtab = symtab;
7557 pst->readin = 1;
7558 }
c906108c 7559
95554aad
TT
7560 /* Push it for inclusion processing later. */
7561 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7562
c906108c 7563 do_cleanups (back_to);
f4dc4d17 7564}
45cfd468 7565
f4dc4d17
DE
7566/* Generate full symbol information for type unit PER_CU, whose DIEs have
7567 already been loaded into memory. */
7568
7569static void
7570process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7571 enum language pretend_language)
7572{
7573 struct dwarf2_cu *cu = per_cu->cu;
7574 struct objfile *objfile = per_cu->objfile;
7575 struct symtab *symtab;
7576 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7577 struct signatured_type *sig_type;
7578
7579 gdb_assert (per_cu->is_debug_types);
7580 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7581
7582 buildsym_init ();
7583 back_to = make_cleanup (really_free_pendings, NULL);
7584 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7585
7586 cu->list_in_scope = &file_symbols;
7587
7588 cu->language = pretend_language;
7589 cu->language_defn = language_def (cu->language);
7590
7591 /* The symbol tables are set up in read_type_unit_scope. */
7592 process_die (cu->dies, cu);
7593
7594 /* For now fudge the Go package. */
7595 if (cu->language == language_go)
7596 fixup_go_packaging (cu);
7597
7598 /* Now that we have processed all the DIEs in the CU, all the types
7599 should be complete, and it should now be safe to compute all of the
7600 physnames. */
7601 compute_delayed_physnames (cu);
7602 do_cleanups (delayed_list_cleanup);
7603
7604 /* TUs share symbol tables.
7605 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7606 of it with end_expandable_symtab. Otherwise, complete the addition of
7607 this TU's symbols to the existing symtab. */
0186c6a7 7608 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7609 {
f4dc4d17 7610 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7611 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7612
7613 if (symtab != NULL)
7614 {
7615 /* Set symtab language to language from DW_AT_language. If the
7616 compilation is from a C file generated by language preprocessors,
7617 do not set the language if it was already deduced by
7618 start_subfile. */
7619 if (!(cu->language == language_c && symtab->language != language_c))
7620 symtab->language = cu->language;
7621 }
7622 }
7623 else
7624 {
7625 augment_type_symtab (objfile,
0186c6a7
DE
7626 sig_type->type_unit_group->primary_symtab);
7627 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7628 }
7629
7630 if (dwarf2_per_objfile->using_index)
7631 per_cu->v.quick->symtab = symtab;
7632 else
7633 {
7634 struct partial_symtab *pst = per_cu->v.psymtab;
7635 pst->symtab = symtab;
7636 pst->readin = 1;
45cfd468 7637 }
f4dc4d17
DE
7638
7639 do_cleanups (back_to);
c906108c
SS
7640}
7641
95554aad
TT
7642/* Process an imported unit DIE. */
7643
7644static void
7645process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7646{
7647 struct attribute *attr;
7648
f4dc4d17
DE
7649 /* For now we don't handle imported units in type units. */
7650 if (cu->per_cu->is_debug_types)
7651 {
7652 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7653 " supported in type units [in module %s]"),
7654 cu->objfile->name);
7655 }
7656
95554aad
TT
7657 attr = dwarf2_attr (die, DW_AT_import, cu);
7658 if (attr != NULL)
7659 {
7660 struct dwarf2_per_cu_data *per_cu;
7661 struct symtab *imported_symtab;
7662 sect_offset offset;
36586728 7663 int is_dwz;
95554aad
TT
7664
7665 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7666 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7667 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7668
7669 /* Queue the unit, if needed. */
7670 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7671 load_full_comp_unit (per_cu, cu->language);
7672
796a7ff8 7673 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7674 per_cu);
7675 }
7676}
7677
c906108c
SS
7678/* Process a die and its children. */
7679
7680static void
e7c27a73 7681process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7682{
7683 switch (die->tag)
7684 {
7685 case DW_TAG_padding:
7686 break;
7687 case DW_TAG_compile_unit:
95554aad 7688 case DW_TAG_partial_unit:
e7c27a73 7689 read_file_scope (die, cu);
c906108c 7690 break;
348e048f
DE
7691 case DW_TAG_type_unit:
7692 read_type_unit_scope (die, cu);
7693 break;
c906108c 7694 case DW_TAG_subprogram:
c906108c 7695 case DW_TAG_inlined_subroutine:
edb3359d 7696 read_func_scope (die, cu);
c906108c
SS
7697 break;
7698 case DW_TAG_lexical_block:
14898363
L
7699 case DW_TAG_try_block:
7700 case DW_TAG_catch_block:
e7c27a73 7701 read_lexical_block_scope (die, cu);
c906108c 7702 break;
96408a79
SA
7703 case DW_TAG_GNU_call_site:
7704 read_call_site_scope (die, cu);
7705 break;
c906108c 7706 case DW_TAG_class_type:
680b30c7 7707 case DW_TAG_interface_type:
c906108c
SS
7708 case DW_TAG_structure_type:
7709 case DW_TAG_union_type:
134d01f1 7710 process_structure_scope (die, cu);
c906108c
SS
7711 break;
7712 case DW_TAG_enumeration_type:
134d01f1 7713 process_enumeration_scope (die, cu);
c906108c 7714 break;
134d01f1 7715
f792889a
DJ
7716 /* These dies have a type, but processing them does not create
7717 a symbol or recurse to process the children. Therefore we can
7718 read them on-demand through read_type_die. */
c906108c 7719 case DW_TAG_subroutine_type:
72019c9c 7720 case DW_TAG_set_type:
c906108c 7721 case DW_TAG_array_type:
c906108c 7722 case DW_TAG_pointer_type:
c906108c 7723 case DW_TAG_ptr_to_member_type:
c906108c 7724 case DW_TAG_reference_type:
c906108c 7725 case DW_TAG_string_type:
c906108c 7726 break;
134d01f1 7727
c906108c 7728 case DW_TAG_base_type:
a02abb62 7729 case DW_TAG_subrange_type:
cb249c71 7730 case DW_TAG_typedef:
134d01f1
DJ
7731 /* Add a typedef symbol for the type definition, if it has a
7732 DW_AT_name. */
f792889a 7733 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7734 break;
c906108c 7735 case DW_TAG_common_block:
e7c27a73 7736 read_common_block (die, cu);
c906108c
SS
7737 break;
7738 case DW_TAG_common_inclusion:
7739 break;
d9fa45fe 7740 case DW_TAG_namespace:
4d4ec4e5 7741 cu->processing_has_namespace_info = 1;
e7c27a73 7742 read_namespace (die, cu);
d9fa45fe 7743 break;
5d7cb8df 7744 case DW_TAG_module:
4d4ec4e5 7745 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
7746 read_module (die, cu);
7747 break;
d9fa45fe
DC
7748 case DW_TAG_imported_declaration:
7749 case DW_TAG_imported_module:
4d4ec4e5 7750 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
7751 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7752 || cu->language != language_fortran))
7753 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7754 dwarf_tag_name (die->tag));
7755 read_import_statement (die, cu);
d9fa45fe 7756 break;
95554aad
TT
7757
7758 case DW_TAG_imported_unit:
7759 process_imported_unit_die (die, cu);
7760 break;
7761
c906108c 7762 default:
e7c27a73 7763 new_symbol (die, NULL, cu);
c906108c
SS
7764 break;
7765 }
7766}
ca69b9e6
DE
7767\f
7768/* DWARF name computation. */
c906108c 7769
94af9270
KS
7770/* A helper function for dwarf2_compute_name which determines whether DIE
7771 needs to have the name of the scope prepended to the name listed in the
7772 die. */
7773
7774static int
7775die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7776{
1c809c68
TT
7777 struct attribute *attr;
7778
94af9270
KS
7779 switch (die->tag)
7780 {
7781 case DW_TAG_namespace:
7782 case DW_TAG_typedef:
7783 case DW_TAG_class_type:
7784 case DW_TAG_interface_type:
7785 case DW_TAG_structure_type:
7786 case DW_TAG_union_type:
7787 case DW_TAG_enumeration_type:
7788 case DW_TAG_enumerator:
7789 case DW_TAG_subprogram:
7790 case DW_TAG_member:
7791 return 1;
7792
7793 case DW_TAG_variable:
c2b0a229 7794 case DW_TAG_constant:
94af9270
KS
7795 /* We only need to prefix "globally" visible variables. These include
7796 any variable marked with DW_AT_external or any variable that
7797 lives in a namespace. [Variables in anonymous namespaces
7798 require prefixing, but they are not DW_AT_external.] */
7799
7800 if (dwarf2_attr (die, DW_AT_specification, cu))
7801 {
7802 struct dwarf2_cu *spec_cu = cu;
9a619af0 7803
94af9270
KS
7804 return die_needs_namespace (die_specification (die, &spec_cu),
7805 spec_cu);
7806 }
7807
1c809c68 7808 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7809 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7810 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7811 return 0;
7812 /* A variable in a lexical block of some kind does not need a
7813 namespace, even though in C++ such variables may be external
7814 and have a mangled name. */
7815 if (die->parent->tag == DW_TAG_lexical_block
7816 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7817 || die->parent->tag == DW_TAG_catch_block
7818 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7819 return 0;
7820 return 1;
94af9270
KS
7821
7822 default:
7823 return 0;
7824 }
7825}
7826
98bfdba5
PA
7827/* Retrieve the last character from a mem_file. */
7828
7829static void
7830do_ui_file_peek_last (void *object, const char *buffer, long length)
7831{
7832 char *last_char_p = (char *) object;
7833
7834 if (length > 0)
7835 *last_char_p = buffer[length - 1];
7836}
7837
94af9270 7838/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7839 compute the physname for the object, which include a method's:
7840 - formal parameters (C++/Java),
7841 - receiver type (Go),
7842 - return type (Java).
7843
7844 The term "physname" is a bit confusing.
7845 For C++, for example, it is the demangled name.
7846 For Go, for example, it's the mangled name.
94af9270 7847
af6b7be1
JB
7848 For Ada, return the DIE's linkage name rather than the fully qualified
7849 name. PHYSNAME is ignored..
7850
94af9270
KS
7851 The result is allocated on the objfile_obstack and canonicalized. */
7852
7853static const char *
15d034d0
TT
7854dwarf2_compute_name (const char *name,
7855 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
7856 int physname)
7857{
bb5ed363
DE
7858 struct objfile *objfile = cu->objfile;
7859
94af9270
KS
7860 if (name == NULL)
7861 name = dwarf2_name (die, cu);
7862
f55ee35c
JK
7863 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7864 compute it by typename_concat inside GDB. */
7865 if (cu->language == language_ada
7866 || (cu->language == language_fortran && physname))
7867 {
7868 /* For Ada unit, we prefer the linkage name over the name, as
7869 the former contains the exported name, which the user expects
7870 to be able to reference. Ideally, we want the user to be able
7871 to reference this entity using either natural or linkage name,
7872 but we haven't started looking at this enhancement yet. */
7873 struct attribute *attr;
7874
7875 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7876 if (attr == NULL)
7877 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7878 if (attr && DW_STRING (attr))
7879 return DW_STRING (attr);
7880 }
7881
94af9270
KS
7882 /* These are the only languages we know how to qualify names in. */
7883 if (name != NULL
f55ee35c
JK
7884 && (cu->language == language_cplus || cu->language == language_java
7885 || cu->language == language_fortran))
94af9270
KS
7886 {
7887 if (die_needs_namespace (die, cu))
7888 {
7889 long length;
0d5cff50 7890 const char *prefix;
94af9270
KS
7891 struct ui_file *buf;
7892
7893 prefix = determine_prefix (die, cu);
7894 buf = mem_fileopen ();
7895 if (*prefix != '\0')
7896 {
f55ee35c
JK
7897 char *prefixed_name = typename_concat (NULL, prefix, name,
7898 physname, cu);
9a619af0 7899
94af9270
KS
7900 fputs_unfiltered (prefixed_name, buf);
7901 xfree (prefixed_name);
7902 }
7903 else
62d5b8da 7904 fputs_unfiltered (name, buf);
94af9270 7905
98bfdba5
PA
7906 /* Template parameters may be specified in the DIE's DW_AT_name, or
7907 as children with DW_TAG_template_type_param or
7908 DW_TAG_value_type_param. If the latter, add them to the name
7909 here. If the name already has template parameters, then
7910 skip this step; some versions of GCC emit both, and
7911 it is more efficient to use the pre-computed name.
7912
7913 Something to keep in mind about this process: it is very
7914 unlikely, or in some cases downright impossible, to produce
7915 something that will match the mangled name of a function.
7916 If the definition of the function has the same debug info,
7917 we should be able to match up with it anyway. But fallbacks
7918 using the minimal symbol, for instance to find a method
7919 implemented in a stripped copy of libstdc++, will not work.
7920 If we do not have debug info for the definition, we will have to
7921 match them up some other way.
7922
7923 When we do name matching there is a related problem with function
7924 templates; two instantiated function templates are allowed to
7925 differ only by their return types, which we do not add here. */
7926
7927 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7928 {
7929 struct attribute *attr;
7930 struct die_info *child;
7931 int first = 1;
7932
7933 die->building_fullname = 1;
7934
7935 for (child = die->child; child != NULL; child = child->sibling)
7936 {
7937 struct type *type;
12df843f 7938 LONGEST value;
d521ce57 7939 const gdb_byte *bytes;
98bfdba5
PA
7940 struct dwarf2_locexpr_baton *baton;
7941 struct value *v;
7942
7943 if (child->tag != DW_TAG_template_type_param
7944 && child->tag != DW_TAG_template_value_param)
7945 continue;
7946
7947 if (first)
7948 {
7949 fputs_unfiltered ("<", buf);
7950 first = 0;
7951 }
7952 else
7953 fputs_unfiltered (", ", buf);
7954
7955 attr = dwarf2_attr (child, DW_AT_type, cu);
7956 if (attr == NULL)
7957 {
7958 complaint (&symfile_complaints,
7959 _("template parameter missing DW_AT_type"));
7960 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7961 continue;
7962 }
7963 type = die_type (child, cu);
7964
7965 if (child->tag == DW_TAG_template_type_param)
7966 {
79d43c61 7967 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
7968 continue;
7969 }
7970
7971 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7972 if (attr == NULL)
7973 {
7974 complaint (&symfile_complaints,
3e43a32a
MS
7975 _("template parameter missing "
7976 "DW_AT_const_value"));
98bfdba5
PA
7977 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7978 continue;
7979 }
7980
7981 dwarf2_const_value_attr (attr, type, name,
7982 &cu->comp_unit_obstack, cu,
7983 &value, &bytes, &baton);
7984
7985 if (TYPE_NOSIGN (type))
7986 /* GDB prints characters as NUMBER 'CHAR'. If that's
7987 changed, this can use value_print instead. */
7988 c_printchar (value, type, buf);
7989 else
7990 {
7991 struct value_print_options opts;
7992
7993 if (baton != NULL)
7994 v = dwarf2_evaluate_loc_desc (type, NULL,
7995 baton->data,
7996 baton->size,
7997 baton->per_cu);
7998 else if (bytes != NULL)
7999 {
8000 v = allocate_value (type);
8001 memcpy (value_contents_writeable (v), bytes,
8002 TYPE_LENGTH (type));
8003 }
8004 else
8005 v = value_from_longest (type, value);
8006
3e43a32a
MS
8007 /* Specify decimal so that we do not depend on
8008 the radix. */
98bfdba5
PA
8009 get_formatted_print_options (&opts, 'd');
8010 opts.raw = 1;
8011 value_print (v, buf, &opts);
8012 release_value (v);
8013 value_free (v);
8014 }
8015 }
8016
8017 die->building_fullname = 0;
8018
8019 if (!first)
8020 {
8021 /* Close the argument list, with a space if necessary
8022 (nested templates). */
8023 char last_char = '\0';
8024 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8025 if (last_char == '>')
8026 fputs_unfiltered (" >", buf);
8027 else
8028 fputs_unfiltered (">", buf);
8029 }
8030 }
8031
94af9270
KS
8032 /* For Java and C++ methods, append formal parameter type
8033 information, if PHYSNAME. */
6e70227d 8034
94af9270
KS
8035 if (physname && die->tag == DW_TAG_subprogram
8036 && (cu->language == language_cplus
8037 || cu->language == language_java))
8038 {
8039 struct type *type = read_type_die (die, cu);
8040
79d43c61
TT
8041 c_type_print_args (type, buf, 1, cu->language,
8042 &type_print_raw_options);
94af9270
KS
8043
8044 if (cu->language == language_java)
8045 {
8046 /* For java, we must append the return type to method
0963b4bd 8047 names. */
94af9270
KS
8048 if (die->tag == DW_TAG_subprogram)
8049 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8050 0, 0, &type_print_raw_options);
94af9270
KS
8051 }
8052 else if (cu->language == language_cplus)
8053 {
60430eff
DJ
8054 /* Assume that an artificial first parameter is
8055 "this", but do not crash if it is not. RealView
8056 marks unnamed (and thus unused) parameters as
8057 artificial; there is no way to differentiate
8058 the two cases. */
94af9270
KS
8059 if (TYPE_NFIELDS (type) > 0
8060 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8061 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8062 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8063 0))))
94af9270
KS
8064 fputs_unfiltered (" const", buf);
8065 }
8066 }
8067
bb5ed363 8068 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8069 &length);
8070 ui_file_delete (buf);
8071
8072 if (cu->language == language_cplus)
8073 {
15d034d0 8074 const char *cname
94af9270 8075 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8076 &objfile->objfile_obstack);
9a619af0 8077
94af9270
KS
8078 if (cname != NULL)
8079 name = cname;
8080 }
8081 }
8082 }
8083
8084 return name;
8085}
8086
0114d602
DJ
8087/* Return the fully qualified name of DIE, based on its DW_AT_name.
8088 If scope qualifiers are appropriate they will be added. The result
8089 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8090 not have a name. NAME may either be from a previous call to
8091 dwarf2_name or NULL.
8092
0963b4bd 8093 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8094
8095static const char *
15d034d0 8096dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8097{
94af9270
KS
8098 return dwarf2_compute_name (name, die, cu, 0);
8099}
0114d602 8100
94af9270
KS
8101/* Construct a physname for the given DIE in CU. NAME may either be
8102 from a previous call to dwarf2_name or NULL. The result will be
8103 allocated on the objfile_objstack or NULL if the DIE does not have a
8104 name.
0114d602 8105
94af9270 8106 The output string will be canonicalized (if C++/Java). */
0114d602 8107
94af9270 8108static const char *
15d034d0 8109dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8110{
bb5ed363 8111 struct objfile *objfile = cu->objfile;
900e11f9
JK
8112 struct attribute *attr;
8113 const char *retval, *mangled = NULL, *canon = NULL;
8114 struct cleanup *back_to;
8115 int need_copy = 1;
8116
8117 /* In this case dwarf2_compute_name is just a shortcut not building anything
8118 on its own. */
8119 if (!die_needs_namespace (die, cu))
8120 return dwarf2_compute_name (name, die, cu, 1);
8121
8122 back_to = make_cleanup (null_cleanup, NULL);
8123
8124 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8125 if (!attr)
8126 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8127
8128 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8129 has computed. */
8130 if (attr && DW_STRING (attr))
8131 {
8132 char *demangled;
8133
8134 mangled = DW_STRING (attr);
8135
8136 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8137 type. It is easier for GDB users to search for such functions as
8138 `name(params)' than `long name(params)'. In such case the minimal
8139 symbol names do not match the full symbol names but for template
8140 functions there is never a need to look up their definition from their
8141 declaration so the only disadvantage remains the minimal symbol
8142 variant `long name(params)' does not have the proper inferior type.
8143 */
8144
a766d390
DE
8145 if (cu->language == language_go)
8146 {
8147 /* This is a lie, but we already lie to the caller new_symbol_full.
8148 new_symbol_full assumes we return the mangled name.
8149 This just undoes that lie until things are cleaned up. */
8150 demangled = NULL;
8151 }
8152 else
8153 {
8de20a37
TT
8154 demangled = gdb_demangle (mangled,
8155 (DMGL_PARAMS | DMGL_ANSI
8156 | (cu->language == language_java
8157 ? DMGL_JAVA | DMGL_RET_POSTFIX
8158 : DMGL_RET_DROP)));
a766d390 8159 }
900e11f9
JK
8160 if (demangled)
8161 {
8162 make_cleanup (xfree, demangled);
8163 canon = demangled;
8164 }
8165 else
8166 {
8167 canon = mangled;
8168 need_copy = 0;
8169 }
8170 }
8171
8172 if (canon == NULL || check_physname)
8173 {
8174 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8175
8176 if (canon != NULL && strcmp (physname, canon) != 0)
8177 {
8178 /* It may not mean a bug in GDB. The compiler could also
8179 compute DW_AT_linkage_name incorrectly. But in such case
8180 GDB would need to be bug-to-bug compatible. */
8181
8182 complaint (&symfile_complaints,
8183 _("Computed physname <%s> does not match demangled <%s> "
8184 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 8185 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
8186
8187 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8188 is available here - over computed PHYSNAME. It is safer
8189 against both buggy GDB and buggy compilers. */
8190
8191 retval = canon;
8192 }
8193 else
8194 {
8195 retval = physname;
8196 need_copy = 0;
8197 }
8198 }
8199 else
8200 retval = canon;
8201
8202 if (need_copy)
10f0c4bb 8203 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8204
8205 do_cleanups (back_to);
8206 return retval;
0114d602
DJ
8207}
8208
27aa8d6a
SW
8209/* Read the import statement specified by the given die and record it. */
8210
8211static void
8212read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8213{
bb5ed363 8214 struct objfile *objfile = cu->objfile;
27aa8d6a 8215 struct attribute *import_attr;
32019081 8216 struct die_info *imported_die, *child_die;
de4affc9 8217 struct dwarf2_cu *imported_cu;
27aa8d6a 8218 const char *imported_name;
794684b6 8219 const char *imported_name_prefix;
13387711
SW
8220 const char *canonical_name;
8221 const char *import_alias;
8222 const char *imported_declaration = NULL;
794684b6 8223 const char *import_prefix;
32019081
JK
8224 VEC (const_char_ptr) *excludes = NULL;
8225 struct cleanup *cleanups;
13387711 8226
27aa8d6a
SW
8227 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8228 if (import_attr == NULL)
8229 {
8230 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8231 dwarf_tag_name (die->tag));
8232 return;
8233 }
8234
de4affc9
CC
8235 imported_cu = cu;
8236 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8237 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8238 if (imported_name == NULL)
8239 {
8240 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8241
8242 The import in the following code:
8243 namespace A
8244 {
8245 typedef int B;
8246 }
8247
8248 int main ()
8249 {
8250 using A::B;
8251 B b;
8252 return b;
8253 }
8254
8255 ...
8256 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8257 <52> DW_AT_decl_file : 1
8258 <53> DW_AT_decl_line : 6
8259 <54> DW_AT_import : <0x75>
8260 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8261 <59> DW_AT_name : B
8262 <5b> DW_AT_decl_file : 1
8263 <5c> DW_AT_decl_line : 2
8264 <5d> DW_AT_type : <0x6e>
8265 ...
8266 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8267 <76> DW_AT_byte_size : 4
8268 <77> DW_AT_encoding : 5 (signed)
8269
8270 imports the wrong die ( 0x75 instead of 0x58 ).
8271 This case will be ignored until the gcc bug is fixed. */
8272 return;
8273 }
8274
82856980
SW
8275 /* Figure out the local name after import. */
8276 import_alias = dwarf2_name (die, cu);
27aa8d6a 8277
794684b6
SW
8278 /* Figure out where the statement is being imported to. */
8279 import_prefix = determine_prefix (die, cu);
8280
8281 /* Figure out what the scope of the imported die is and prepend it
8282 to the name of the imported die. */
de4affc9 8283 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8284
f55ee35c
JK
8285 if (imported_die->tag != DW_TAG_namespace
8286 && imported_die->tag != DW_TAG_module)
794684b6 8287 {
13387711
SW
8288 imported_declaration = imported_name;
8289 canonical_name = imported_name_prefix;
794684b6 8290 }
13387711 8291 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8292 canonical_name = obconcat (&objfile->objfile_obstack,
8293 imported_name_prefix, "::", imported_name,
8294 (char *) NULL);
13387711
SW
8295 else
8296 canonical_name = imported_name;
794684b6 8297
32019081
JK
8298 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8299
8300 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8301 for (child_die = die->child; child_die && child_die->tag;
8302 child_die = sibling_die (child_die))
8303 {
8304 /* DWARF-4: A Fortran use statement with a “rename list” may be
8305 represented by an imported module entry with an import attribute
8306 referring to the module and owned entries corresponding to those
8307 entities that are renamed as part of being imported. */
8308
8309 if (child_die->tag != DW_TAG_imported_declaration)
8310 {
8311 complaint (&symfile_complaints,
8312 _("child DW_TAG_imported_declaration expected "
8313 "- DIE at 0x%x [in module %s]"),
b64f50a1 8314 child_die->offset.sect_off, objfile->name);
32019081
JK
8315 continue;
8316 }
8317
8318 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8319 if (import_attr == NULL)
8320 {
8321 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8322 dwarf_tag_name (child_die->tag));
8323 continue;
8324 }
8325
8326 imported_cu = cu;
8327 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8328 &imported_cu);
8329 imported_name = dwarf2_name (imported_die, imported_cu);
8330 if (imported_name == NULL)
8331 {
8332 complaint (&symfile_complaints,
8333 _("child DW_TAG_imported_declaration has unknown "
8334 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 8335 child_die->offset.sect_off, objfile->name);
32019081
JK
8336 continue;
8337 }
8338
8339 VEC_safe_push (const_char_ptr, excludes, imported_name);
8340
8341 process_die (child_die, cu);
8342 }
8343
c0cc3a76
SW
8344 cp_add_using_directive (import_prefix,
8345 canonical_name,
8346 import_alias,
13387711 8347 imported_declaration,
32019081 8348 excludes,
12aaed36 8349 0,
bb5ed363 8350 &objfile->objfile_obstack);
32019081
JK
8351
8352 do_cleanups (cleanups);
27aa8d6a
SW
8353}
8354
f4dc4d17 8355/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8356
cb1df416
DJ
8357static void
8358free_cu_line_header (void *arg)
8359{
8360 struct dwarf2_cu *cu = arg;
8361
8362 free_line_header (cu->line_header);
8363 cu->line_header = NULL;
8364}
8365
1b80a9fa
JK
8366/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8367 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8368 this, it was first present in GCC release 4.3.0. */
8369
8370static int
8371producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8372{
8373 if (!cu->checked_producer)
8374 check_producer (cu);
8375
8376 return cu->producer_is_gcc_lt_4_3;
8377}
8378
9291a0cd
TT
8379static void
8380find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8381 const char **name, const char **comp_dir)
9291a0cd
TT
8382{
8383 struct attribute *attr;
8384
8385 *name = NULL;
8386 *comp_dir = NULL;
8387
8388 /* Find the filename. Do not use dwarf2_name here, since the filename
8389 is not a source language identifier. */
8390 attr = dwarf2_attr (die, DW_AT_name, cu);
8391 if (attr)
8392 {
8393 *name = DW_STRING (attr);
8394 }
8395
8396 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8397 if (attr)
8398 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8399 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8400 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8401 {
15d034d0
TT
8402 char *d = ldirname (*name);
8403
8404 *comp_dir = d;
8405 if (d != NULL)
8406 make_cleanup (xfree, d);
9291a0cd
TT
8407 }
8408 if (*comp_dir != NULL)
8409 {
8410 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8411 directory, get rid of it. */
8412 char *cp = strchr (*comp_dir, ':');
8413
8414 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8415 *comp_dir = cp + 1;
8416 }
8417
8418 if (*name == NULL)
8419 *name = "<unknown>";
8420}
8421
f4dc4d17
DE
8422/* Handle DW_AT_stmt_list for a compilation unit.
8423 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8424 COMP_DIR is the compilation directory.
8425 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8426
8427static void
8428handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8429 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8430{
8431 struct attribute *attr;
2ab95328 8432
f4dc4d17
DE
8433 gdb_assert (! cu->per_cu->is_debug_types);
8434
2ab95328
TT
8435 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8436 if (attr)
8437 {
8438 unsigned int line_offset = DW_UNSND (attr);
8439 struct line_header *line_header
3019eac3 8440 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8441
8442 if (line_header)
dee91e82
DE
8443 {
8444 cu->line_header = line_header;
8445 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8446 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8447 }
2ab95328
TT
8448 }
8449}
8450
95554aad 8451/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8452
c906108c 8453static void
e7c27a73 8454read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8455{
dee91e82 8456 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8457 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8458 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8459 CORE_ADDR highpc = ((CORE_ADDR) 0);
8460 struct attribute *attr;
15d034d0
TT
8461 const char *name = NULL;
8462 const char *comp_dir = NULL;
c906108c
SS
8463 struct die_info *child_die;
8464 bfd *abfd = objfile->obfd;
e142c38c 8465 CORE_ADDR baseaddr;
6e70227d 8466
e142c38c 8467 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8468
fae299cd 8469 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8470
8471 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8472 from finish_block. */
2acceee2 8473 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8474 lowpc = highpc;
8475 lowpc += baseaddr;
8476 highpc += baseaddr;
8477
9291a0cd 8478 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8479
95554aad 8480 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8481
f4b8a18d
KW
8482 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8483 standardised yet. As a workaround for the language detection we fall
8484 back to the DW_AT_producer string. */
8485 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8486 cu->language = language_opencl;
8487
3019eac3
DE
8488 /* Similar hack for Go. */
8489 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8490 set_cu_language (DW_LANG_Go, cu);
8491
f4dc4d17 8492 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8493
8494 /* Decode line number information if present. We do this before
8495 processing child DIEs, so that the line header table is available
8496 for DW_AT_decl_file. */
f4dc4d17 8497 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8498
8499 /* Process all dies in compilation unit. */
8500 if (die->child != NULL)
8501 {
8502 child_die = die->child;
8503 while (child_die && child_die->tag)
8504 {
8505 process_die (child_die, cu);
8506 child_die = sibling_die (child_die);
8507 }
8508 }
8509
8510 /* Decode macro information, if present. Dwarf 2 macro information
8511 refers to information in the line number info statement program
8512 header, so we can only read it if we've read the header
8513 successfully. */
8514 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8515 if (attr && cu->line_header)
8516 {
8517 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8518 complaint (&symfile_complaints,
8519 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8520
09262596 8521 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8522 }
8523 else
8524 {
8525 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8526 if (attr && cu->line_header)
8527 {
8528 unsigned int macro_offset = DW_UNSND (attr);
8529
09262596 8530 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8531 }
8532 }
8533
8534 do_cleanups (back_to);
8535}
8536
f4dc4d17
DE
8537/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8538 Create the set of symtabs used by this TU, or if this TU is sharing
8539 symtabs with another TU and the symtabs have already been created
8540 then restore those symtabs in the line header.
8541 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8542
8543static void
f4dc4d17 8544setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8545{
f4dc4d17
DE
8546 struct objfile *objfile = dwarf2_per_objfile->objfile;
8547 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8548 struct type_unit_group *tu_group;
8549 int first_time;
8550 struct line_header *lh;
3019eac3 8551 struct attribute *attr;
f4dc4d17 8552 unsigned int i, line_offset;
0186c6a7 8553 struct signatured_type *sig_type;
3019eac3 8554
f4dc4d17 8555 gdb_assert (per_cu->is_debug_types);
0186c6a7 8556 sig_type = (struct signatured_type *) per_cu;
3019eac3 8557
f4dc4d17 8558 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8559
f4dc4d17 8560 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8561 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8562 if (sig_type->type_unit_group == NULL)
8563 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8564 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8565
8566 /* If we've already processed this stmt_list there's no real need to
8567 do it again, we could fake it and just recreate the part we need
8568 (file name,index -> symtab mapping). If data shows this optimization
8569 is useful we can do it then. */
8570 first_time = tu_group->primary_symtab == NULL;
8571
8572 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8573 debug info. */
8574 lh = NULL;
8575 if (attr != NULL)
3019eac3 8576 {
f4dc4d17
DE
8577 line_offset = DW_UNSND (attr);
8578 lh = dwarf_decode_line_header (line_offset, cu);
8579 }
8580 if (lh == NULL)
8581 {
8582 if (first_time)
8583 dwarf2_start_symtab (cu, "", NULL, 0);
8584 else
8585 {
8586 gdb_assert (tu_group->symtabs == NULL);
8587 restart_symtab (0);
8588 }
8589 /* Note: The primary symtab will get allocated at the end. */
8590 return;
3019eac3
DE
8591 }
8592
f4dc4d17
DE
8593 cu->line_header = lh;
8594 make_cleanup (free_cu_line_header, cu);
3019eac3 8595
f4dc4d17
DE
8596 if (first_time)
8597 {
8598 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8599
f4dc4d17
DE
8600 tu_group->num_symtabs = lh->num_file_names;
8601 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8602
f4dc4d17
DE
8603 for (i = 0; i < lh->num_file_names; ++i)
8604 {
d521ce57 8605 const char *dir = NULL;
f4dc4d17 8606 struct file_entry *fe = &lh->file_names[i];
3019eac3 8607
f4dc4d17
DE
8608 if (fe->dir_index)
8609 dir = lh->include_dirs[fe->dir_index - 1];
8610 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8611
f4dc4d17
DE
8612 /* Note: We don't have to watch for the main subfile here, type units
8613 don't have DW_AT_name. */
3019eac3 8614
f4dc4d17
DE
8615 if (current_subfile->symtab == NULL)
8616 {
8617 /* NOTE: start_subfile will recognize when it's been passed
8618 a file it has already seen. So we can't assume there's a
8619 simple mapping from lh->file_names to subfiles,
8620 lh->file_names may contain dups. */
8621 current_subfile->symtab = allocate_symtab (current_subfile->name,
8622 objfile);
8623 }
8624
8625 fe->symtab = current_subfile->symtab;
8626 tu_group->symtabs[i] = fe->symtab;
8627 }
8628 }
8629 else
3019eac3 8630 {
f4dc4d17
DE
8631 restart_symtab (0);
8632
8633 for (i = 0; i < lh->num_file_names; ++i)
8634 {
8635 struct file_entry *fe = &lh->file_names[i];
8636
8637 fe->symtab = tu_group->symtabs[i];
8638 }
3019eac3
DE
8639 }
8640
f4dc4d17
DE
8641 /* The main symtab is allocated last. Type units don't have DW_AT_name
8642 so they don't have a "real" (so to speak) symtab anyway.
8643 There is later code that will assign the main symtab to all symbols
8644 that don't have one. We need to handle the case of a symbol with a
8645 missing symtab (DW_AT_decl_file) anyway. */
8646}
3019eac3 8647
f4dc4d17
DE
8648/* Process DW_TAG_type_unit.
8649 For TUs we want to skip the first top level sibling if it's not the
8650 actual type being defined by this TU. In this case the first top
8651 level sibling is there to provide context only. */
3019eac3 8652
f4dc4d17
DE
8653static void
8654read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8655{
8656 struct die_info *child_die;
3019eac3 8657
f4dc4d17
DE
8658 prepare_one_comp_unit (cu, die, language_minimal);
8659
8660 /* Initialize (or reinitialize) the machinery for building symtabs.
8661 We do this before processing child DIEs, so that the line header table
8662 is available for DW_AT_decl_file. */
8663 setup_type_unit_groups (die, cu);
8664
8665 if (die->child != NULL)
8666 {
8667 child_die = die->child;
8668 while (child_die && child_die->tag)
8669 {
8670 process_die (child_die, cu);
8671 child_die = sibling_die (child_die);
8672 }
8673 }
3019eac3
DE
8674}
8675\f
80626a55
DE
8676/* DWO/DWP files.
8677
8678 http://gcc.gnu.org/wiki/DebugFission
8679 http://gcc.gnu.org/wiki/DebugFissionDWP
8680
8681 To simplify handling of both DWO files ("object" files with the DWARF info)
8682 and DWP files (a file with the DWOs packaged up into one file), we treat
8683 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8684
8685static hashval_t
8686hash_dwo_file (const void *item)
8687{
8688 const struct dwo_file *dwo_file = item;
a2ce51a0 8689 hashval_t hash;
3019eac3 8690
a2ce51a0
DE
8691 hash = htab_hash_string (dwo_file->dwo_name);
8692 if (dwo_file->comp_dir != NULL)
8693 hash += htab_hash_string (dwo_file->comp_dir);
8694 return hash;
3019eac3
DE
8695}
8696
8697static int
8698eq_dwo_file (const void *item_lhs, const void *item_rhs)
8699{
8700 const struct dwo_file *lhs = item_lhs;
8701 const struct dwo_file *rhs = item_rhs;
8702
a2ce51a0
DE
8703 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8704 return 0;
8705 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8706 return lhs->comp_dir == rhs->comp_dir;
8707 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
8708}
8709
8710/* Allocate a hash table for DWO files. */
8711
8712static htab_t
8713allocate_dwo_file_hash_table (void)
8714{
8715 struct objfile *objfile = dwarf2_per_objfile->objfile;
8716
8717 return htab_create_alloc_ex (41,
8718 hash_dwo_file,
8719 eq_dwo_file,
8720 NULL,
8721 &objfile->objfile_obstack,
8722 hashtab_obstack_allocate,
8723 dummy_obstack_deallocate);
8724}
8725
80626a55
DE
8726/* Lookup DWO file DWO_NAME. */
8727
8728static void **
0ac5b59e 8729lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
8730{
8731 struct dwo_file find_entry;
8732 void **slot;
8733
8734 if (dwarf2_per_objfile->dwo_files == NULL)
8735 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8736
8737 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
8738 find_entry.dwo_name = dwo_name;
8739 find_entry.comp_dir = comp_dir;
80626a55
DE
8740 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8741
8742 return slot;
8743}
8744
3019eac3
DE
8745static hashval_t
8746hash_dwo_unit (const void *item)
8747{
8748 const struct dwo_unit *dwo_unit = item;
8749
8750 /* This drops the top 32 bits of the id, but is ok for a hash. */
8751 return dwo_unit->signature;
8752}
8753
8754static int
8755eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8756{
8757 const struct dwo_unit *lhs = item_lhs;
8758 const struct dwo_unit *rhs = item_rhs;
8759
8760 /* The signature is assumed to be unique within the DWO file.
8761 So while object file CU dwo_id's always have the value zero,
8762 that's OK, assuming each object file DWO file has only one CU,
8763 and that's the rule for now. */
8764 return lhs->signature == rhs->signature;
8765}
8766
8767/* Allocate a hash table for DWO CUs,TUs.
8768 There is one of these tables for each of CUs,TUs for each DWO file. */
8769
8770static htab_t
8771allocate_dwo_unit_table (struct objfile *objfile)
8772{
8773 /* Start out with a pretty small number.
8774 Generally DWO files contain only one CU and maybe some TUs. */
8775 return htab_create_alloc_ex (3,
8776 hash_dwo_unit,
8777 eq_dwo_unit,
8778 NULL,
8779 &objfile->objfile_obstack,
8780 hashtab_obstack_allocate,
8781 dummy_obstack_deallocate);
8782}
8783
80626a55 8784/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 8785
19c3d4c9 8786struct create_dwo_cu_data
3019eac3
DE
8787{
8788 struct dwo_file *dwo_file;
19c3d4c9 8789 struct dwo_unit dwo_unit;
3019eac3
DE
8790};
8791
19c3d4c9 8792/* die_reader_func for create_dwo_cu. */
3019eac3
DE
8793
8794static void
19c3d4c9
DE
8795create_dwo_cu_reader (const struct die_reader_specs *reader,
8796 const gdb_byte *info_ptr,
8797 struct die_info *comp_unit_die,
8798 int has_children,
8799 void *datap)
3019eac3
DE
8800{
8801 struct dwarf2_cu *cu = reader->cu;
8802 struct objfile *objfile = dwarf2_per_objfile->objfile;
8803 sect_offset offset = cu->per_cu->offset;
8a0459fd 8804 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 8805 struct create_dwo_cu_data *data = datap;
3019eac3 8806 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 8807 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 8808 struct attribute *attr;
3019eac3
DE
8809
8810 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8811 if (attr == NULL)
8812 {
19c3d4c9
DE
8813 complaint (&symfile_complaints,
8814 _("Dwarf Error: debug entry at offset 0x%x is missing"
8815 " its dwo_id [in module %s]"),
8816 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
8817 return;
8818 }
8819
3019eac3
DE
8820 dwo_unit->dwo_file = dwo_file;
8821 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 8822 dwo_unit->section = section;
3019eac3
DE
8823 dwo_unit->offset = offset;
8824 dwo_unit->length = cu->per_cu->length;
8825
09406207 8826 if (dwarf2_read_debug)
4031ecc5
DE
8827 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8828 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
8829}
8830
19c3d4c9
DE
8831/* Create the dwo_unit for the lone CU in DWO_FILE.
8832 Note: This function processes DWO files only, not DWP files. */
3019eac3 8833
19c3d4c9
DE
8834static struct dwo_unit *
8835create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
8836{
8837 struct objfile *objfile = dwarf2_per_objfile->objfile;
8838 struct dwarf2_section_info *section = &dwo_file->sections.info;
8839 bfd *abfd;
8840 htab_t cu_htab;
d521ce57 8841 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
8842 struct create_dwo_cu_data create_dwo_cu_data;
8843 struct dwo_unit *dwo_unit;
3019eac3
DE
8844
8845 dwarf2_read_section (objfile, section);
8846 info_ptr = section->buffer;
8847
8848 if (info_ptr == NULL)
8849 return NULL;
8850
8851 /* We can't set abfd until now because the section may be empty or
8852 not present, in which case section->asection will be NULL. */
8853 abfd = section->asection->owner;
8854
09406207 8855 if (dwarf2_read_debug)
19c3d4c9
DE
8856 {
8857 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8858 bfd_section_name (abfd, section->asection),
8859 bfd_get_filename (abfd));
8860 }
3019eac3 8861
19c3d4c9
DE
8862 create_dwo_cu_data.dwo_file = dwo_file;
8863 dwo_unit = NULL;
3019eac3
DE
8864
8865 end_ptr = info_ptr + section->size;
8866 while (info_ptr < end_ptr)
8867 {
8868 struct dwarf2_per_cu_data per_cu;
8869
19c3d4c9
DE
8870 memset (&create_dwo_cu_data.dwo_unit, 0,
8871 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
8872 memset (&per_cu, 0, sizeof (per_cu));
8873 per_cu.objfile = objfile;
8874 per_cu.is_debug_types = 0;
8875 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 8876 per_cu.section = section;
3019eac3
DE
8877
8878 init_cutu_and_read_dies_no_follow (&per_cu,
8879 &dwo_file->sections.abbrev,
8880 dwo_file,
19c3d4c9
DE
8881 create_dwo_cu_reader,
8882 &create_dwo_cu_data);
8883
8884 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8885 {
8886 /* If we've already found one, complain. We only support one
8887 because having more than one requires hacking the dwo_name of
8888 each to match, which is highly unlikely to happen. */
8889 if (dwo_unit != NULL)
8890 {
8891 complaint (&symfile_complaints,
8892 _("Multiple CUs in DWO file %s [in module %s]"),
8893 dwo_file->dwo_name, objfile->name);
8894 break;
8895 }
8896
8897 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8898 *dwo_unit = create_dwo_cu_data.dwo_unit;
8899 }
3019eac3
DE
8900
8901 info_ptr += per_cu.length;
8902 }
8903
19c3d4c9 8904 return dwo_unit;
3019eac3
DE
8905}
8906
80626a55
DE
8907/* DWP file .debug_{cu,tu}_index section format:
8908 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8909
d2415c6c
DE
8910 DWP Version 1:
8911
80626a55
DE
8912 Both index sections have the same format, and serve to map a 64-bit
8913 signature to a set of section numbers. Each section begins with a header,
8914 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8915 indexes, and a pool of 32-bit section numbers. The index sections will be
8916 aligned at 8-byte boundaries in the file.
8917
d2415c6c
DE
8918 The index section header consists of:
8919
8920 V, 32 bit version number
8921 -, 32 bits unused
8922 N, 32 bit number of compilation units or type units in the index
8923 M, 32 bit number of slots in the hash table
80626a55 8924
d2415c6c 8925 Numbers are recorded using the byte order of the application binary.
80626a55 8926
d2415c6c 8927 We assume that N and M will not exceed 2^32 - 1.
80626a55 8928
d2415c6c 8929 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
80626a55 8930
d2415c6c
DE
8931 The hash table begins at offset 16 in the section, and consists of an array
8932 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8933 order of the application binary). Unused slots in the hash table are 0.
8934 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 8935
d2415c6c
DE
8936 The parallel table begins immediately after the hash table
8937 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8938 array of 32-bit indexes (using the byte order of the application binary),
8939 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8940 table contains a 32-bit index into the pool of section numbers. For unused
8941 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 8942
d2415c6c
DE
8943 Given a 64-bit compilation unit signature or a type signature S, an entry
8944 in the hash table is located as follows:
80626a55 8945
d2415c6c
DE
8946 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8947 the low-order k bits all set to 1.
80626a55 8948
d2415c6c 8949 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 8950
d2415c6c
DE
8951 3) If the hash table entry at index H matches the signature, use that
8952 entry. If the hash table entry at index H is unused (all zeroes),
8953 terminate the search: the signature is not present in the table.
80626a55 8954
d2415c6c 8955 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 8956
d2415c6c
DE
8957 Because M > N and H' and M are relatively prime, the search is guaranteed
8958 to stop at an unused slot or find the match.
80626a55 8959
d2415c6c
DE
8960 The pool of section numbers begins immediately following the hash table
8961 (at offset 16 + 12 * M from the beginning of the section). The pool of
8962 section numbers consists of an array of 32-bit words (using the byte order
8963 of the application binary). Each item in the array is indexed starting
8964 from 0. The hash table entry provides the index of the first section
8965 number in the set. Additional section numbers in the set follow, and the
8966 set is terminated by a 0 entry (section number 0 is not used in ELF).
80626a55 8967
d2415c6c
DE
8968 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8969 section must be the first entry in the set, and the .debug_abbrev.dwo must
8970 be the second entry. Other members of the set may follow in any order. */
80626a55
DE
8971
8972/* Create a hash table to map DWO IDs to their CU/TU entry in
8973 .debug_{info,types}.dwo in DWP_FILE.
8974 Returns NULL if there isn't one.
8975 Note: This function processes DWP files only, not DWO files. */
8976
8977static struct dwp_hash_table *
8978create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8979{
8980 struct objfile *objfile = dwarf2_per_objfile->objfile;
8981 bfd *dbfd = dwp_file->dbfd;
948f8e3d 8982 const gdb_byte *index_ptr, *index_end;
80626a55
DE
8983 struct dwarf2_section_info *index;
8984 uint32_t version, nr_units, nr_slots;
8985 struct dwp_hash_table *htab;
8986
8987 if (is_debug_types)
8988 index = &dwp_file->sections.tu_index;
8989 else
8990 index = &dwp_file->sections.cu_index;
8991
8992 if (dwarf2_section_empty_p (index))
8993 return NULL;
8994 dwarf2_read_section (objfile, index);
8995
8996 index_ptr = index->buffer;
8997 index_end = index_ptr + index->size;
8998
8999 version = read_4_bytes (dbfd, index_ptr);
9000 index_ptr += 8; /* Skip the unused word. */
9001 nr_units = read_4_bytes (dbfd, index_ptr);
9002 index_ptr += 4;
9003 nr_slots = read_4_bytes (dbfd, index_ptr);
9004 index_ptr += 4;
9005
9006 if (version != 1)
9007 {
21aa081e 9008 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9009 " [in module %s]"),
21aa081e 9010 pulongest (version), dwp_file->name);
80626a55
DE
9011 }
9012 if (nr_slots != (nr_slots & -nr_slots))
9013 {
21aa081e 9014 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9015 " is not power of 2 [in module %s]"),
21aa081e 9016 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9017 }
9018
9019 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9020 htab->nr_units = nr_units;
9021 htab->nr_slots = nr_slots;
9022 htab->hash_table = index_ptr;
9023 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9024 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9025
9026 return htab;
9027}
9028
9029/* Update SECTIONS with the data from SECTP.
9030
9031 This function is like the other "locate" section routines that are
9032 passed to bfd_map_over_sections, but in this context the sections to
9033 read comes from the DWP hash table, not the full ELF section table.
9034
9035 The result is non-zero for success, or zero if an error was found. */
9036
9037static int
9038locate_virtual_dwo_sections (asection *sectp,
9039 struct virtual_dwo_sections *sections)
9040{
9041 const struct dwop_section_names *names = &dwop_section_names;
9042
9043 if (section_is_p (sectp->name, &names->abbrev_dwo))
9044 {
9045 /* There can be only one. */
9046 if (sections->abbrev.asection != NULL)
9047 return 0;
9048 sections->abbrev.asection = sectp;
9049 sections->abbrev.size = bfd_get_section_size (sectp);
9050 }
9051 else if (section_is_p (sectp->name, &names->info_dwo)
9052 || section_is_p (sectp->name, &names->types_dwo))
9053 {
9054 /* There can be only one. */
9055 if (sections->info_or_types.asection != NULL)
9056 return 0;
9057 sections->info_or_types.asection = sectp;
9058 sections->info_or_types.size = bfd_get_section_size (sectp);
9059 }
9060 else if (section_is_p (sectp->name, &names->line_dwo))
9061 {
9062 /* There can be only one. */
9063 if (sections->line.asection != NULL)
9064 return 0;
9065 sections->line.asection = sectp;
9066 sections->line.size = bfd_get_section_size (sectp);
9067 }
9068 else if (section_is_p (sectp->name, &names->loc_dwo))
9069 {
9070 /* There can be only one. */
9071 if (sections->loc.asection != NULL)
9072 return 0;
9073 sections->loc.asection = sectp;
9074 sections->loc.size = bfd_get_section_size (sectp);
9075 }
9076 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9077 {
9078 /* There can be only one. */
9079 if (sections->macinfo.asection != NULL)
9080 return 0;
9081 sections->macinfo.asection = sectp;
9082 sections->macinfo.size = bfd_get_section_size (sectp);
9083 }
9084 else if (section_is_p (sectp->name, &names->macro_dwo))
9085 {
9086 /* There can be only one. */
9087 if (sections->macro.asection != NULL)
9088 return 0;
9089 sections->macro.asection = sectp;
9090 sections->macro.size = bfd_get_section_size (sectp);
9091 }
9092 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9093 {
9094 /* There can be only one. */
9095 if (sections->str_offsets.asection != NULL)
9096 return 0;
9097 sections->str_offsets.asection = sectp;
9098 sections->str_offsets.size = bfd_get_section_size (sectp);
9099 }
9100 else
9101 {
9102 /* No other kind of section is valid. */
9103 return 0;
9104 }
9105
9106 return 1;
9107}
9108
9109/* Create a dwo_unit object for the DWO with signature SIGNATURE.
9110 HTAB is the hash table from the DWP file.
0ac5b59e
DE
9111 SECTION_INDEX is the index of the DWO in HTAB.
9112 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
80626a55
DE
9113
9114static struct dwo_unit *
9115create_dwo_in_dwp (struct dwp_file *dwp_file,
9116 const struct dwp_hash_table *htab,
9117 uint32_t section_index,
0ac5b59e 9118 const char *comp_dir,
80626a55
DE
9119 ULONGEST signature, int is_debug_types)
9120{
9121 struct objfile *objfile = dwarf2_per_objfile->objfile;
9122 bfd *dbfd = dwp_file->dbfd;
9123 const char *kind = is_debug_types ? "TU" : "CU";
9124 struct dwo_file *dwo_file;
9125 struct dwo_unit *dwo_unit;
9126 struct virtual_dwo_sections sections;
9127 void **dwo_file_slot;
9128 char *virtual_dwo_name;
9129 struct dwarf2_section_info *cutu;
9130 struct cleanup *cleanups;
9131 int i;
9132
9133 if (dwarf2_read_debug)
9134 {
21aa081e 9135 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
80626a55 9136 kind,
21aa081e 9137 pulongest (section_index), hex_string (signature),
80626a55
DE
9138 dwp_file->name);
9139 }
9140
9141 /* Fetch the sections of this DWO.
9142 Put a limit on the number of sections we look for so that bad data
9143 doesn't cause us to loop forever. */
9144
9145#define MAX_NR_DWO_SECTIONS \
9146 (1 /* .debug_info or .debug_types */ \
9147 + 1 /* .debug_abbrev */ \
9148 + 1 /* .debug_line */ \
9149 + 1 /* .debug_loc */ \
9150 + 1 /* .debug_str_offsets */ \
9151 + 1 /* .debug_macro */ \
9152 + 1 /* .debug_macinfo */ \
9153 + 1 /* trailing zero */)
9154
9155 memset (&sections, 0, sizeof (sections));
9156 cleanups = make_cleanup (null_cleanup, 0);
9157
9158 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9159 {
9160 asection *sectp;
9161 uint32_t section_nr =
9162 read_4_bytes (dbfd,
9163 htab->section_pool
9164 + (section_index + i) * sizeof (uint32_t));
9165
9166 if (section_nr == 0)
9167 break;
9168 if (section_nr >= dwp_file->num_sections)
9169 {
9170 error (_("Dwarf Error: bad DWP hash table, section number too large"
9171 " [in module %s]"),
9172 dwp_file->name);
9173 }
9174
9175 sectp = dwp_file->elf_sections[section_nr];
9176 if (! locate_virtual_dwo_sections (sectp, &sections))
9177 {
9178 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9179 " [in module %s]"),
9180 dwp_file->name);
9181 }
9182 }
9183
9184 if (i < 2
9185 || sections.info_or_types.asection == NULL
9186 || sections.abbrev.asection == NULL)
9187 {
9188 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9189 " [in module %s]"),
9190 dwp_file->name);
9191 }
9192 if (i == MAX_NR_DWO_SECTIONS)
9193 {
9194 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9195 " [in module %s]"),
9196 dwp_file->name);
9197 }
9198
9199 /* It's easier for the rest of the code if we fake a struct dwo_file and
9200 have dwo_unit "live" in that. At least for now.
9201
9202 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec
DE
9203 However, for each CU + set of TUs that came from the same original DWO
9204 file, we want to combine them back into a virtual DWO file to save space
80626a55
DE
9205 (fewer struct dwo_file objects to allocated). Remember that for really
9206 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9207
2792b94d
PM
9208 virtual_dwo_name =
9209 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9210 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9211 sections.line.asection ? sections.line.asection->id : 0,
9212 sections.loc.asection ? sections.loc.asection->id : 0,
9213 (sections.str_offsets.asection
9214 ? sections.str_offsets.asection->id
9215 : 0));
80626a55
DE
9216 make_cleanup (xfree, virtual_dwo_name);
9217 /* Can we use an existing virtual DWO file? */
0ac5b59e 9218 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9219 /* Create one if necessary. */
9220 if (*dwo_file_slot == NULL)
9221 {
9222 if (dwarf2_read_debug)
9223 {
9224 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9225 virtual_dwo_name);
9226 }
9227 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9228 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9229 virtual_dwo_name,
9230 strlen (virtual_dwo_name));
9231 dwo_file->comp_dir = comp_dir;
80626a55
DE
9232 dwo_file->sections.abbrev = sections.abbrev;
9233 dwo_file->sections.line = sections.line;
9234 dwo_file->sections.loc = sections.loc;
9235 dwo_file->sections.macinfo = sections.macinfo;
9236 dwo_file->sections.macro = sections.macro;
9237 dwo_file->sections.str_offsets = sections.str_offsets;
9238 /* The "str" section is global to the entire DWP file. */
9239 dwo_file->sections.str = dwp_file->sections.str;
9240 /* The info or types section is assigned later to dwo_unit,
9241 there's no need to record it in dwo_file.
9242 Also, we can't simply record type sections in dwo_file because
9243 we record a pointer into the vector in dwo_unit. As we collect more
9244 types we'll grow the vector and eventually have to reallocate space
9245 for it, invalidating all the pointers into the current copy. */
9246 *dwo_file_slot = dwo_file;
9247 }
9248 else
9249 {
9250 if (dwarf2_read_debug)
9251 {
9252 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9253 virtual_dwo_name);
9254 }
9255 dwo_file = *dwo_file_slot;
9256 }
9257 do_cleanups (cleanups);
9258
9259 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9260 dwo_unit->dwo_file = dwo_file;
9261 dwo_unit->signature = signature;
8a0459fd
DE
9262 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9263 sizeof (struct dwarf2_section_info));
9264 *dwo_unit->section = sections.info_or_types;
80626a55
DE
9265 /* offset, length, type_offset_in_tu are set later. */
9266
9267 return dwo_unit;
9268}
9269
9270/* Lookup the DWO with SIGNATURE in DWP_FILE. */
9271
9272static struct dwo_unit *
9273lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9274 const struct dwp_hash_table *htab,
0ac5b59e 9275 const char *comp_dir,
80626a55
DE
9276 ULONGEST signature, int is_debug_types)
9277{
9278 bfd *dbfd = dwp_file->dbfd;
9279 uint32_t mask = htab->nr_slots - 1;
9280 uint32_t hash = signature & mask;
9281 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9282 unsigned int i;
9283 void **slot;
9284 struct dwo_unit find_dwo_cu, *dwo_cu;
9285
9286 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9287 find_dwo_cu.signature = signature;
9288 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9289
9290 if (*slot != NULL)
9291 return *slot;
9292
9293 /* Use a for loop so that we don't loop forever on bad debug info. */
9294 for (i = 0; i < htab->nr_slots; ++i)
9295 {
9296 ULONGEST signature_in_table;
9297
9298 signature_in_table =
9299 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9300 if (signature_in_table == signature)
9301 {
9302 uint32_t section_index =
9303 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9304
9305 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
0ac5b59e 9306 comp_dir, signature, is_debug_types);
80626a55
DE
9307 return *slot;
9308 }
9309 if (signature_in_table == 0)
9310 return NULL;
9311 hash = (hash + hash2) & mask;
9312 }
9313
9314 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9315 " [in module %s]"),
9316 dwp_file->name);
9317}
9318
ab5088bf 9319/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
9320 Open the file specified by FILE_NAME and hand it off to BFD for
9321 preliminary analysis. Return a newly initialized bfd *, which
9322 includes a canonicalized copy of FILE_NAME.
80626a55 9323 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
9324 SEARCH_CWD is true if the current directory is to be searched.
9325 It will be searched before debug-file-directory.
9326 If unable to find/open the file, return NULL.
3019eac3
DE
9327 NOTE: This function is derived from symfile_bfd_open. */
9328
9329static bfd *
6ac97d4c 9330try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
9331{
9332 bfd *sym_bfd;
80626a55 9333 int desc, flags;
3019eac3 9334 char *absolute_name;
9c02c129
DE
9335 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9336 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9337 to debug_file_directory. */
9338 char *search_path;
9339 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9340
6ac97d4c
DE
9341 if (search_cwd)
9342 {
9343 if (*debug_file_directory != '\0')
9344 search_path = concat (".", dirname_separator_string,
9345 debug_file_directory, NULL);
9346 else
9347 search_path = xstrdup (".");
9348 }
9c02c129 9349 else
6ac97d4c 9350 search_path = xstrdup (debug_file_directory);
3019eac3 9351
9c02c129 9352 flags = 0;
80626a55
DE
9353 if (is_dwp)
9354 flags |= OPF_SEARCH_IN_PATH;
9c02c129 9355 desc = openp (search_path, flags, file_name,
3019eac3 9356 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 9357 xfree (search_path);
3019eac3
DE
9358 if (desc < 0)
9359 return NULL;
9360
bb397797 9361 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 9362 xfree (absolute_name);
9c02c129
DE
9363 if (sym_bfd == NULL)
9364 return NULL;
3019eac3
DE
9365 bfd_set_cacheable (sym_bfd, 1);
9366
9367 if (!bfd_check_format (sym_bfd, bfd_object))
9368 {
cbb099e8 9369 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
9370 return NULL;
9371 }
9372
3019eac3
DE
9373 return sym_bfd;
9374}
9375
ab5088bf 9376/* Try to open DWO file FILE_NAME.
3019eac3
DE
9377 COMP_DIR is the DW_AT_comp_dir attribute.
9378 The result is the bfd handle of the file.
9379 If there is a problem finding or opening the file, return NULL.
9380 Upon success, the canonicalized path of the file is stored in the bfd,
9381 same as symfile_bfd_open. */
9382
9383static bfd *
ab5088bf 9384open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
9385{
9386 bfd *abfd;
3019eac3 9387
80626a55 9388 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 9389 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
9390
9391 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9392
9393 if (comp_dir != NULL)
9394 {
80626a55 9395 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
9396
9397 /* NOTE: If comp_dir is a relative path, this will also try the
9398 search path, which seems useful. */
6ac97d4c 9399 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
9400 xfree (path_to_try);
9401 if (abfd != NULL)
9402 return abfd;
9403 }
9404
9405 /* That didn't work, try debug-file-directory, which, despite its name,
9406 is a list of paths. */
9407
9408 if (*debug_file_directory == '\0')
9409 return NULL;
9410
6ac97d4c 9411 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
9412}
9413
80626a55
DE
9414/* This function is mapped across the sections and remembers the offset and
9415 size of each of the DWO debugging sections we are interested in. */
9416
9417static void
9418dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9419{
9420 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9421 const struct dwop_section_names *names = &dwop_section_names;
9422
9423 if (section_is_p (sectp->name, &names->abbrev_dwo))
9424 {
9425 dwo_sections->abbrev.asection = sectp;
9426 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9427 }
9428 else if (section_is_p (sectp->name, &names->info_dwo))
9429 {
9430 dwo_sections->info.asection = sectp;
9431 dwo_sections->info.size = bfd_get_section_size (sectp);
9432 }
9433 else if (section_is_p (sectp->name, &names->line_dwo))
9434 {
9435 dwo_sections->line.asection = sectp;
9436 dwo_sections->line.size = bfd_get_section_size (sectp);
9437 }
9438 else if (section_is_p (sectp->name, &names->loc_dwo))
9439 {
9440 dwo_sections->loc.asection = sectp;
9441 dwo_sections->loc.size = bfd_get_section_size (sectp);
9442 }
9443 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9444 {
9445 dwo_sections->macinfo.asection = sectp;
9446 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9447 }
9448 else if (section_is_p (sectp->name, &names->macro_dwo))
9449 {
9450 dwo_sections->macro.asection = sectp;
9451 dwo_sections->macro.size = bfd_get_section_size (sectp);
9452 }
9453 else if (section_is_p (sectp->name, &names->str_dwo))
9454 {
9455 dwo_sections->str.asection = sectp;
9456 dwo_sections->str.size = bfd_get_section_size (sectp);
9457 }
9458 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9459 {
9460 dwo_sections->str_offsets.asection = sectp;
9461 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9462 }
9463 else if (section_is_p (sectp->name, &names->types_dwo))
9464 {
9465 struct dwarf2_section_info type_section;
9466
9467 memset (&type_section, 0, sizeof (type_section));
9468 type_section.asection = sectp;
9469 type_section.size = bfd_get_section_size (sectp);
9470 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9471 &type_section);
9472 }
9473}
9474
ab5088bf 9475/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 9476 by PER_CU. This is for the non-DWP case.
80626a55 9477 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
9478
9479static struct dwo_file *
0ac5b59e
DE
9480open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9481 const char *dwo_name, const char *comp_dir)
3019eac3
DE
9482{
9483 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9484 struct dwo_file *dwo_file;
9485 bfd *dbfd;
3019eac3
DE
9486 struct cleanup *cleanups;
9487
ab5088bf 9488 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
9489 if (dbfd == NULL)
9490 {
9491 if (dwarf2_read_debug)
9492 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9493 return NULL;
9494 }
9495 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9496 dwo_file->dwo_name = dwo_name;
9497 dwo_file->comp_dir = comp_dir;
80626a55 9498 dwo_file->dbfd = dbfd;
3019eac3
DE
9499
9500 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9501
80626a55 9502 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 9503
19c3d4c9 9504 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
9505
9506 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9507 dwo_file->sections.types);
9508
9509 discard_cleanups (cleanups);
9510
80626a55
DE
9511 if (dwarf2_read_debug)
9512 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9513
3019eac3
DE
9514 return dwo_file;
9515}
9516
80626a55
DE
9517/* This function is mapped across the sections and remembers the offset and
9518 size of each of the DWP debugging sections we are interested in. */
3019eac3 9519
80626a55
DE
9520static void
9521dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 9522{
80626a55
DE
9523 struct dwp_file *dwp_file = dwp_file_ptr;
9524 const struct dwop_section_names *names = &dwop_section_names;
9525 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 9526
80626a55
DE
9527 /* Record the ELF section number for later lookup: this is what the
9528 .debug_cu_index,.debug_tu_index tables use. */
9529 gdb_assert (elf_section_nr < dwp_file->num_sections);
9530 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 9531
80626a55
DE
9532 /* Look for specific sections that we need. */
9533 if (section_is_p (sectp->name, &names->str_dwo))
9534 {
9535 dwp_file->sections.str.asection = sectp;
9536 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9537 }
9538 else if (section_is_p (sectp->name, &names->cu_index))
9539 {
9540 dwp_file->sections.cu_index.asection = sectp;
9541 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9542 }
9543 else if (section_is_p (sectp->name, &names->tu_index))
9544 {
9545 dwp_file->sections.tu_index.asection = sectp;
9546 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9547 }
9548}
3019eac3 9549
80626a55 9550/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 9551
80626a55
DE
9552static hashval_t
9553hash_dwp_loaded_cutus (const void *item)
9554{
9555 const struct dwo_unit *dwo_unit = item;
3019eac3 9556
80626a55
DE
9557 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9558 return dwo_unit->signature;
3019eac3
DE
9559}
9560
80626a55 9561/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 9562
80626a55
DE
9563static int
9564eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 9565{
80626a55
DE
9566 const struct dwo_unit *dua = a;
9567 const struct dwo_unit *dub = b;
3019eac3 9568
80626a55
DE
9569 return dua->signature == dub->signature;
9570}
3019eac3 9571
80626a55 9572/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 9573
80626a55
DE
9574static htab_t
9575allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9576{
9577 return htab_create_alloc_ex (3,
9578 hash_dwp_loaded_cutus,
9579 eq_dwp_loaded_cutus,
9580 NULL,
9581 &objfile->objfile_obstack,
9582 hashtab_obstack_allocate,
9583 dummy_obstack_deallocate);
9584}
3019eac3 9585
ab5088bf
DE
9586/* Try to open DWP file FILE_NAME.
9587 The result is the bfd handle of the file.
9588 If there is a problem finding or opening the file, return NULL.
9589 Upon success, the canonicalized path of the file is stored in the bfd,
9590 same as symfile_bfd_open. */
9591
9592static bfd *
9593open_dwp_file (const char *file_name)
9594{
6ac97d4c
DE
9595 bfd *abfd;
9596
9597 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9598 if (abfd != NULL)
9599 return abfd;
9600
9601 /* Work around upstream bug 15652.
9602 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9603 [Whether that's a "bug" is debatable, but it is getting in our way.]
9604 We have no real idea where the dwp file is, because gdb's realpath-ing
9605 of the executable's path may have discarded the needed info.
9606 [IWBN if the dwp file name was recorded in the executable, akin to
9607 .gnu_debuglink, but that doesn't exist yet.]
9608 Strip the directory from FILE_NAME and search again. */
9609 if (*debug_file_directory != '\0')
9610 {
9611 /* Don't implicitly search the current directory here.
9612 If the user wants to search "." to handle this case,
9613 it must be added to debug-file-directory. */
9614 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9615 0 /*search_cwd*/);
9616 }
9617
9618 return NULL;
ab5088bf
DE
9619}
9620
80626a55
DE
9621/* Initialize the use of the DWP file for the current objfile.
9622 By convention the name of the DWP file is ${objfile}.dwp.
9623 The result is NULL if it can't be found. */
a766d390 9624
80626a55 9625static struct dwp_file *
ab5088bf 9626open_and_init_dwp_file (void)
80626a55
DE
9627{
9628 struct objfile *objfile = dwarf2_per_objfile->objfile;
9629 struct dwp_file *dwp_file;
9630 char *dwp_name;
9631 bfd *dbfd;
9632 struct cleanup *cleanups;
9633
2792b94d 9634 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
80626a55
DE
9635 cleanups = make_cleanup (xfree, dwp_name);
9636
ab5088bf 9637 dbfd = open_dwp_file (dwp_name);
80626a55
DE
9638 if (dbfd == NULL)
9639 {
9640 if (dwarf2_read_debug)
9641 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9642 do_cleanups (cleanups);
9643 return NULL;
3019eac3 9644 }
80626a55 9645 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 9646 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
9647 dwp_file->dbfd = dbfd;
9648 do_cleanups (cleanups);
c906108c 9649
80626a55
DE
9650 /* +1: section 0 is unused */
9651 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9652 dwp_file->elf_sections =
9653 OBSTACK_CALLOC (&objfile->objfile_obstack,
9654 dwp_file->num_sections, asection *);
9655
9656 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9657
9658 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9659
9660 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9661
9662 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9663
80626a55
DE
9664 if (dwarf2_read_debug)
9665 {
9666 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9667 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
9668 " %s CUs, %s TUs\n",
9669 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9670 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
9671 }
9672
9673 return dwp_file;
3019eac3 9674}
c906108c 9675
ab5088bf
DE
9676/* Wrapper around open_and_init_dwp_file, only open it once. */
9677
9678static struct dwp_file *
9679get_dwp_file (void)
9680{
9681 if (! dwarf2_per_objfile->dwp_checked)
9682 {
9683 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9684 dwarf2_per_objfile->dwp_checked = 1;
9685 }
9686 return dwarf2_per_objfile->dwp_file;
9687}
9688
80626a55
DE
9689/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9690 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9691 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9692 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9693 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9694
9695 This is called, for example, when wanting to read a variable with a
9696 complex location. Therefore we don't want to do file i/o for every call.
9697 Therefore we don't want to look for a DWO file on every call.
9698 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9699 then we check if we've already seen DWO_NAME, and only THEN do we check
9700 for a DWO file.
9701
1c658ad5 9702 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9703 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9704
3019eac3 9705static struct dwo_unit *
80626a55
DE
9706lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9707 const char *dwo_name, const char *comp_dir,
9708 ULONGEST signature, int is_debug_types)
3019eac3
DE
9709{
9710 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9711 const char *kind = is_debug_types ? "TU" : "CU";
9712 void **dwo_file_slot;
3019eac3 9713 struct dwo_file *dwo_file;
80626a55 9714 struct dwp_file *dwp_file;
cb1df416 9715
6a506a2d
DE
9716 /* First see if there's a DWP file.
9717 If we have a DWP file but didn't find the DWO inside it, don't
9718 look for the original DWO file. It makes gdb behave differently
9719 depending on whether one is debugging in the build tree. */
cf2c3c16 9720
ab5088bf 9721 dwp_file = get_dwp_file ();
80626a55 9722 if (dwp_file != NULL)
cf2c3c16 9723 {
80626a55
DE
9724 const struct dwp_hash_table *dwp_htab =
9725 is_debug_types ? dwp_file->tus : dwp_file->cus;
9726
9727 if (dwp_htab != NULL)
9728 {
9729 struct dwo_unit *dwo_cutu =
0ac5b59e
DE
9730 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9731 signature, is_debug_types);
80626a55
DE
9732
9733 if (dwo_cutu != NULL)
9734 {
9735 if (dwarf2_read_debug)
9736 {
9737 fprintf_unfiltered (gdb_stdlog,
9738 "Virtual DWO %s %s found: @%s\n",
9739 kind, hex_string (signature),
9740 host_address_to_string (dwo_cutu));
9741 }
9742 return dwo_cutu;
9743 }
9744 }
9745 }
6a506a2d 9746 else
80626a55 9747 {
6a506a2d 9748 /* No DWP file, look for the DWO file. */
80626a55 9749
6a506a2d
DE
9750 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9751 if (*dwo_file_slot == NULL)
80626a55 9752 {
6a506a2d
DE
9753 /* Read in the file and build a table of the CUs/TUs it contains. */
9754 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 9755 }
6a506a2d
DE
9756 /* NOTE: This will be NULL if unable to open the file. */
9757 dwo_file = *dwo_file_slot;
3019eac3 9758
6a506a2d 9759 if (dwo_file != NULL)
19c3d4c9 9760 {
6a506a2d
DE
9761 struct dwo_unit *dwo_cutu = NULL;
9762
9763 if (is_debug_types && dwo_file->tus)
9764 {
9765 struct dwo_unit find_dwo_cutu;
9766
9767 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9768 find_dwo_cutu.signature = signature;
9769 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9770 }
9771 else if (!is_debug_types && dwo_file->cu)
80626a55 9772 {
6a506a2d
DE
9773 if (signature == dwo_file->cu->signature)
9774 dwo_cutu = dwo_file->cu;
9775 }
9776
9777 if (dwo_cutu != NULL)
9778 {
9779 if (dwarf2_read_debug)
9780 {
9781 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9782 kind, dwo_name, hex_string (signature),
9783 host_address_to_string (dwo_cutu));
9784 }
9785 return dwo_cutu;
80626a55
DE
9786 }
9787 }
2e276125 9788 }
9cdd5dbd 9789
80626a55
DE
9790 /* We didn't find it. This could mean a dwo_id mismatch, or
9791 someone deleted the DWO/DWP file, or the search path isn't set up
9792 correctly to find the file. */
9793
9794 if (dwarf2_read_debug)
9795 {
9796 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9797 kind, dwo_name, hex_string (signature));
9798 }
3019eac3 9799
6656a72d
DE
9800 /* This is a warning and not a complaint because it can be caused by
9801 pilot error (e.g., user accidentally deleting the DWO). */
9802 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9803 " [in module %s]"),
9804 kind, dwo_name, hex_string (signature),
9805 this_unit->is_debug_types ? "TU" : "CU",
9806 this_unit->offset.sect_off, objfile->name);
3019eac3 9807 return NULL;
5fb290d7
DJ
9808}
9809
80626a55
DE
9810/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9811 See lookup_dwo_cutu_unit for details. */
9812
9813static struct dwo_unit *
9814lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9815 const char *dwo_name, const char *comp_dir,
9816 ULONGEST signature)
9817{
9818 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9819}
9820
9821/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9822 See lookup_dwo_cutu_unit for details. */
9823
9824static struct dwo_unit *
9825lookup_dwo_type_unit (struct signatured_type *this_tu,
9826 const char *dwo_name, const char *comp_dir)
9827{
9828 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9829}
9830
3019eac3
DE
9831/* Free all resources associated with DWO_FILE.
9832 Close the DWO file and munmap the sections.
9833 All memory should be on the objfile obstack. */
348e048f
DE
9834
9835static void
3019eac3 9836free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9837{
3019eac3
DE
9838 int ix;
9839 struct dwarf2_section_info *section;
348e048f 9840
5c6fa7ab 9841 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 9842 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9843
3019eac3
DE
9844 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9845}
348e048f 9846
3019eac3 9847/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9848
3019eac3
DE
9849static void
9850free_dwo_file_cleanup (void *arg)
9851{
9852 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9853 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9854
3019eac3
DE
9855 free_dwo_file (dwo_file, objfile);
9856}
348e048f 9857
3019eac3 9858/* Traversal function for free_dwo_files. */
2ab95328 9859
3019eac3
DE
9860static int
9861free_dwo_file_from_slot (void **slot, void *info)
9862{
9863 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9864 struct objfile *objfile = (struct objfile *) info;
348e048f 9865
3019eac3 9866 free_dwo_file (dwo_file, objfile);
348e048f 9867
3019eac3
DE
9868 return 1;
9869}
348e048f 9870
3019eac3 9871/* Free all resources associated with DWO_FILES. */
348e048f 9872
3019eac3
DE
9873static void
9874free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9875{
9876 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9877}
3019eac3
DE
9878\f
9879/* Read in various DIEs. */
348e048f 9880
d389af10
JK
9881/* qsort helper for inherit_abstract_dies. */
9882
9883static int
9884unsigned_int_compar (const void *ap, const void *bp)
9885{
9886 unsigned int a = *(unsigned int *) ap;
9887 unsigned int b = *(unsigned int *) bp;
9888
9889 return (a > b) - (b > a);
9890}
9891
9892/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9893 Inherit only the children of the DW_AT_abstract_origin DIE not being
9894 already referenced by DW_AT_abstract_origin from the children of the
9895 current DIE. */
d389af10
JK
9896
9897static void
9898inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9899{
9900 struct die_info *child_die;
9901 unsigned die_children_count;
9902 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9903 sect_offset *offsets;
9904 sect_offset *offsets_end, *offsetp;
d389af10
JK
9905 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9906 struct die_info *origin_die;
9907 /* Iterator of the ORIGIN_DIE children. */
9908 struct die_info *origin_child_die;
9909 struct cleanup *cleanups;
9910 struct attribute *attr;
cd02d79d
PA
9911 struct dwarf2_cu *origin_cu;
9912 struct pending **origin_previous_list_in_scope;
d389af10
JK
9913
9914 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9915 if (!attr)
9916 return;
9917
cd02d79d
PA
9918 /* Note that following die references may follow to a die in a
9919 different cu. */
9920
9921 origin_cu = cu;
9922 origin_die = follow_die_ref (die, attr, &origin_cu);
9923
9924 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9925 symbols in. */
9926 origin_previous_list_in_scope = origin_cu->list_in_scope;
9927 origin_cu->list_in_scope = cu->list_in_scope;
9928
edb3359d
DJ
9929 if (die->tag != origin_die->tag
9930 && !(die->tag == DW_TAG_inlined_subroutine
9931 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9932 complaint (&symfile_complaints,
9933 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9934 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9935
9936 child_die = die->child;
9937 die_children_count = 0;
9938 while (child_die && child_die->tag)
9939 {
9940 child_die = sibling_die (child_die);
9941 die_children_count++;
9942 }
9943 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9944 cleanups = make_cleanup (xfree, offsets);
9945
9946 offsets_end = offsets;
9947 child_die = die->child;
9948 while (child_die && child_die->tag)
9949 {
c38f313d
DJ
9950 /* For each CHILD_DIE, find the corresponding child of
9951 ORIGIN_DIE. If there is more than one layer of
9952 DW_AT_abstract_origin, follow them all; there shouldn't be,
9953 but GCC versions at least through 4.4 generate this (GCC PR
9954 40573). */
9955 struct die_info *child_origin_die = child_die;
cd02d79d 9956 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9957
c38f313d
DJ
9958 while (1)
9959 {
cd02d79d
PA
9960 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9961 child_origin_cu);
c38f313d
DJ
9962 if (attr == NULL)
9963 break;
cd02d79d
PA
9964 child_origin_die = follow_die_ref (child_origin_die, attr,
9965 &child_origin_cu);
c38f313d
DJ
9966 }
9967
d389af10
JK
9968 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9969 counterpart may exist. */
c38f313d 9970 if (child_origin_die != child_die)
d389af10 9971 {
edb3359d
DJ
9972 if (child_die->tag != child_origin_die->tag
9973 && !(child_die->tag == DW_TAG_inlined_subroutine
9974 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9975 complaint (&symfile_complaints,
9976 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9977 "different tags"), child_die->offset.sect_off,
9978 child_origin_die->offset.sect_off);
c38f313d
DJ
9979 if (child_origin_die->parent != origin_die)
9980 complaint (&symfile_complaints,
9981 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9982 "different parents"), child_die->offset.sect_off,
9983 child_origin_die->offset.sect_off);
c38f313d
DJ
9984 else
9985 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9986 }
9987 child_die = sibling_die (child_die);
9988 }
9989 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9990 unsigned_int_compar);
9991 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9992 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9993 complaint (&symfile_complaints,
9994 _("Multiple children of DIE 0x%x refer "
9995 "to DIE 0x%x as their abstract origin"),
b64f50a1 9996 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9997
9998 offsetp = offsets;
9999 origin_child_die = origin_die->child;
10000 while (origin_child_die && origin_child_die->tag)
10001 {
10002 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
10003 while (offsetp < offsets_end
10004 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 10005 offsetp++;
b64f50a1
JK
10006 if (offsetp >= offsets_end
10007 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
10008 {
10009 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 10010 process_die (origin_child_die, origin_cu);
d389af10
JK
10011 }
10012 origin_child_die = sibling_die (origin_child_die);
10013 }
cd02d79d 10014 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
10015
10016 do_cleanups (cleanups);
10017}
10018
c906108c 10019static void
e7c27a73 10020read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10021{
e7c27a73 10022 struct objfile *objfile = cu->objfile;
52f0bd74 10023 struct context_stack *new;
c906108c
SS
10024 CORE_ADDR lowpc;
10025 CORE_ADDR highpc;
10026 struct die_info *child_die;
edb3359d 10027 struct attribute *attr, *call_line, *call_file;
15d034d0 10028 const char *name;
e142c38c 10029 CORE_ADDR baseaddr;
801e3a5b 10030 struct block *block;
edb3359d 10031 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
10032 VEC (symbolp) *template_args = NULL;
10033 struct template_symbol *templ_func = NULL;
edb3359d
DJ
10034
10035 if (inlined_func)
10036 {
10037 /* If we do not have call site information, we can't show the
10038 caller of this inlined function. That's too confusing, so
10039 only use the scope for local variables. */
10040 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10041 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10042 if (call_line == NULL || call_file == NULL)
10043 {
10044 read_lexical_block_scope (die, cu);
10045 return;
10046 }
10047 }
c906108c 10048
e142c38c
DJ
10049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10050
94af9270 10051 name = dwarf2_name (die, cu);
c906108c 10052
e8d05480
JB
10053 /* Ignore functions with missing or empty names. These are actually
10054 illegal according to the DWARF standard. */
10055 if (name == NULL)
10056 {
10057 complaint (&symfile_complaints,
b64f50a1
JK
10058 _("missing name for subprogram DIE at %d"),
10059 die->offset.sect_off);
e8d05480
JB
10060 return;
10061 }
10062
10063 /* Ignore functions with missing or invalid low and high pc attributes. */
10064 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10065 {
ae4d0c03
PM
10066 attr = dwarf2_attr (die, DW_AT_external, cu);
10067 if (!attr || !DW_UNSND (attr))
10068 complaint (&symfile_complaints,
3e43a32a
MS
10069 _("cannot get low and high bounds "
10070 "for subprogram DIE at %d"),
b64f50a1 10071 die->offset.sect_off);
e8d05480
JB
10072 return;
10073 }
c906108c
SS
10074
10075 lowpc += baseaddr;
10076 highpc += baseaddr;
10077
34eaf542
TT
10078 /* If we have any template arguments, then we must allocate a
10079 different sort of symbol. */
10080 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10081 {
10082 if (child_die->tag == DW_TAG_template_type_param
10083 || child_die->tag == DW_TAG_template_value_param)
10084 {
e623cf5d 10085 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
10086 templ_func->base.is_cplus_template_function = 1;
10087 break;
10088 }
10089 }
10090
c906108c 10091 new = push_context (0, lowpc);
34eaf542
TT
10092 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10093 (struct symbol *) templ_func);
4c2df51b 10094
4cecd739
DJ
10095 /* If there is a location expression for DW_AT_frame_base, record
10096 it. */
e142c38c 10097 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 10098 if (attr)
f1e6e072 10099 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 10100
e142c38c 10101 cu->list_in_scope = &local_symbols;
c906108c 10102
639d11d3 10103 if (die->child != NULL)
c906108c 10104 {
639d11d3 10105 child_die = die->child;
c906108c
SS
10106 while (child_die && child_die->tag)
10107 {
34eaf542
TT
10108 if (child_die->tag == DW_TAG_template_type_param
10109 || child_die->tag == DW_TAG_template_value_param)
10110 {
10111 struct symbol *arg = new_symbol (child_die, NULL, cu);
10112
f1078f66
DJ
10113 if (arg != NULL)
10114 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
10115 }
10116 else
10117 process_die (child_die, cu);
c906108c
SS
10118 child_die = sibling_die (child_die);
10119 }
10120 }
10121
d389af10
JK
10122 inherit_abstract_dies (die, cu);
10123
4a811a97
UW
10124 /* If we have a DW_AT_specification, we might need to import using
10125 directives from the context of the specification DIE. See the
10126 comment in determine_prefix. */
10127 if (cu->language == language_cplus
10128 && dwarf2_attr (die, DW_AT_specification, cu))
10129 {
10130 struct dwarf2_cu *spec_cu = cu;
10131 struct die_info *spec_die = die_specification (die, &spec_cu);
10132
10133 while (spec_die)
10134 {
10135 child_die = spec_die->child;
10136 while (child_die && child_die->tag)
10137 {
10138 if (child_die->tag == DW_TAG_imported_module)
10139 process_die (child_die, spec_cu);
10140 child_die = sibling_die (child_die);
10141 }
10142
10143 /* In some cases, GCC generates specification DIEs that
10144 themselves contain DW_AT_specification attributes. */
10145 spec_die = die_specification (spec_die, &spec_cu);
10146 }
10147 }
10148
c906108c
SS
10149 new = pop_context ();
10150 /* Make a block for the local symbols within. */
801e3a5b
JB
10151 block = finish_block (new->name, &local_symbols, new->old_blocks,
10152 lowpc, highpc, objfile);
10153
df8a16a1 10154 /* For C++, set the block's scope. */
195a3f6c 10155 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 10156 && cu->processing_has_namespace_info)
195a3f6c
TT
10157 block_set_scope (block, determine_prefix (die, cu),
10158 &objfile->objfile_obstack);
df8a16a1 10159
801e3a5b
JB
10160 /* If we have address ranges, record them. */
10161 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 10162
34eaf542
TT
10163 /* Attach template arguments to function. */
10164 if (! VEC_empty (symbolp, template_args))
10165 {
10166 gdb_assert (templ_func != NULL);
10167
10168 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10169 templ_func->template_arguments
10170 = obstack_alloc (&objfile->objfile_obstack,
10171 (templ_func->n_template_arguments
10172 * sizeof (struct symbol *)));
10173 memcpy (templ_func->template_arguments,
10174 VEC_address (symbolp, template_args),
10175 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10176 VEC_free (symbolp, template_args);
10177 }
10178
208d8187
JB
10179 /* In C++, we can have functions nested inside functions (e.g., when
10180 a function declares a class that has methods). This means that
10181 when we finish processing a function scope, we may need to go
10182 back to building a containing block's symbol lists. */
10183 local_symbols = new->locals;
27aa8d6a 10184 using_directives = new->using_directives;
208d8187 10185
921e78cf
JB
10186 /* If we've finished processing a top-level function, subsequent
10187 symbols go in the file symbol list. */
10188 if (outermost_context_p ())
e142c38c 10189 cu->list_in_scope = &file_symbols;
c906108c
SS
10190}
10191
10192/* Process all the DIES contained within a lexical block scope. Start
10193 a new scope, process the dies, and then close the scope. */
10194
10195static void
e7c27a73 10196read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10197{
e7c27a73 10198 struct objfile *objfile = cu->objfile;
52f0bd74 10199 struct context_stack *new;
c906108c
SS
10200 CORE_ADDR lowpc, highpc;
10201 struct die_info *child_die;
e142c38c
DJ
10202 CORE_ADDR baseaddr;
10203
10204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
10205
10206 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
10207 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10208 as multiple lexical blocks? Handling children in a sane way would
6e70227d 10209 be nasty. Might be easier to properly extend generic blocks to
af34e669 10210 describe ranges. */
d85a05f0 10211 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
10212 return;
10213 lowpc += baseaddr;
10214 highpc += baseaddr;
10215
10216 push_context (0, lowpc);
639d11d3 10217 if (die->child != NULL)
c906108c 10218 {
639d11d3 10219 child_die = die->child;
c906108c
SS
10220 while (child_die && child_die->tag)
10221 {
e7c27a73 10222 process_die (child_die, cu);
c906108c
SS
10223 child_die = sibling_die (child_die);
10224 }
10225 }
10226 new = pop_context ();
10227
8540c487 10228 if (local_symbols != NULL || using_directives != NULL)
c906108c 10229 {
801e3a5b
JB
10230 struct block *block
10231 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10232 highpc, objfile);
10233
10234 /* Note that recording ranges after traversing children, as we
10235 do here, means that recording a parent's ranges entails
10236 walking across all its children's ranges as they appear in
10237 the address map, which is quadratic behavior.
10238
10239 It would be nicer to record the parent's ranges before
10240 traversing its children, simply overriding whatever you find
10241 there. But since we don't even decide whether to create a
10242 block until after we've traversed its children, that's hard
10243 to do. */
10244 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
10245 }
10246 local_symbols = new->locals;
27aa8d6a 10247 using_directives = new->using_directives;
c906108c
SS
10248}
10249
96408a79
SA
10250/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10251
10252static void
10253read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10254{
10255 struct objfile *objfile = cu->objfile;
10256 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10257 CORE_ADDR pc, baseaddr;
10258 struct attribute *attr;
10259 struct call_site *call_site, call_site_local;
10260 void **slot;
10261 int nparams;
10262 struct die_info *child_die;
10263
10264 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10265
10266 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10267 if (!attr)
10268 {
10269 complaint (&symfile_complaints,
10270 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10271 "DIE 0x%x [in module %s]"),
b64f50a1 10272 die->offset.sect_off, objfile->name);
96408a79
SA
10273 return;
10274 }
10275 pc = DW_ADDR (attr) + baseaddr;
10276
10277 if (cu->call_site_htab == NULL)
10278 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10279 NULL, &objfile->objfile_obstack,
10280 hashtab_obstack_allocate, NULL);
10281 call_site_local.pc = pc;
10282 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10283 if (*slot != NULL)
10284 {
10285 complaint (&symfile_complaints,
10286 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10287 "DIE 0x%x [in module %s]"),
b64f50a1 10288 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
10289 return;
10290 }
10291
10292 /* Count parameters at the caller. */
10293
10294 nparams = 0;
10295 for (child_die = die->child; child_die && child_die->tag;
10296 child_die = sibling_die (child_die))
10297 {
10298 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10299 {
10300 complaint (&symfile_complaints,
10301 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10302 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10303 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
10304 continue;
10305 }
10306
10307 nparams++;
10308 }
10309
10310 call_site = obstack_alloc (&objfile->objfile_obstack,
10311 (sizeof (*call_site)
10312 + (sizeof (*call_site->parameter)
10313 * (nparams - 1))));
10314 *slot = call_site;
10315 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10316 call_site->pc = pc;
10317
10318 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10319 {
10320 struct die_info *func_die;
10321
10322 /* Skip also over DW_TAG_inlined_subroutine. */
10323 for (func_die = die->parent;
10324 func_die && func_die->tag != DW_TAG_subprogram
10325 && func_die->tag != DW_TAG_subroutine_type;
10326 func_die = func_die->parent);
10327
10328 /* DW_AT_GNU_all_call_sites is a superset
10329 of DW_AT_GNU_all_tail_call_sites. */
10330 if (func_die
10331 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10332 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10333 {
10334 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10335 not complete. But keep CALL_SITE for look ups via call_site_htab,
10336 both the initial caller containing the real return address PC and
10337 the final callee containing the current PC of a chain of tail
10338 calls do not need to have the tail call list complete. But any
10339 function candidate for a virtual tail call frame searched via
10340 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10341 determined unambiguously. */
10342 }
10343 else
10344 {
10345 struct type *func_type = NULL;
10346
10347 if (func_die)
10348 func_type = get_die_type (func_die, cu);
10349 if (func_type != NULL)
10350 {
10351 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10352
10353 /* Enlist this call site to the function. */
10354 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10355 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10356 }
10357 else
10358 complaint (&symfile_complaints,
10359 _("Cannot find function owning DW_TAG_GNU_call_site "
10360 "DIE 0x%x [in module %s]"),
b64f50a1 10361 die->offset.sect_off, objfile->name);
96408a79
SA
10362 }
10363 }
10364
10365 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10366 if (attr == NULL)
10367 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10368 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10369 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10370 /* Keep NULL DWARF_BLOCK. */;
10371 else if (attr_form_is_block (attr))
10372 {
10373 struct dwarf2_locexpr_baton *dlbaton;
10374
10375 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10376 dlbaton->data = DW_BLOCK (attr)->data;
10377 dlbaton->size = DW_BLOCK (attr)->size;
10378 dlbaton->per_cu = cu->per_cu;
10379
10380 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10381 }
7771576e 10382 else if (attr_form_is_ref (attr))
96408a79 10383 {
96408a79
SA
10384 struct dwarf2_cu *target_cu = cu;
10385 struct die_info *target_die;
10386
ac9ec31b 10387 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
10388 gdb_assert (target_cu->objfile == objfile);
10389 if (die_is_declaration (target_die, target_cu))
10390 {
9112db09
JK
10391 const char *target_physname = NULL;
10392 struct attribute *target_attr;
10393
10394 /* Prefer the mangled name; otherwise compute the demangled one. */
10395 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10396 if (target_attr == NULL)
10397 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10398 target_cu);
10399 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10400 target_physname = DW_STRING (target_attr);
10401 else
10402 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
10403 if (target_physname == NULL)
10404 complaint (&symfile_complaints,
10405 _("DW_AT_GNU_call_site_target target DIE has invalid "
10406 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10407 die->offset.sect_off, objfile->name);
96408a79 10408 else
7d455152 10409 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
10410 }
10411 else
10412 {
10413 CORE_ADDR lowpc;
10414
10415 /* DW_AT_entry_pc should be preferred. */
10416 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10417 complaint (&symfile_complaints,
10418 _("DW_AT_GNU_call_site_target target DIE has invalid "
10419 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10420 die->offset.sect_off, objfile->name);
96408a79
SA
10421 else
10422 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10423 }
10424 }
10425 else
10426 complaint (&symfile_complaints,
10427 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10428 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 10429 die->offset.sect_off, objfile->name);
96408a79
SA
10430
10431 call_site->per_cu = cu->per_cu;
10432
10433 for (child_die = die->child;
10434 child_die && child_die->tag;
10435 child_die = sibling_die (child_die))
10436 {
96408a79 10437 struct call_site_parameter *parameter;
1788b2d3 10438 struct attribute *loc, *origin;
96408a79
SA
10439
10440 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10441 {
10442 /* Already printed the complaint above. */
10443 continue;
10444 }
10445
10446 gdb_assert (call_site->parameter_count < nparams);
10447 parameter = &call_site->parameter[call_site->parameter_count];
10448
1788b2d3
JK
10449 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10450 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10451 register is contained in DW_AT_GNU_call_site_value. */
96408a79 10452
24c5c679 10453 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 10454 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 10455 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
10456 {
10457 sect_offset offset;
10458
10459 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10460 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
10461 if (!offset_in_cu_p (&cu->header, offset))
10462 {
10463 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10464 binding can be done only inside one CU. Such referenced DIE
10465 therefore cannot be even moved to DW_TAG_partial_unit. */
10466 complaint (&symfile_complaints,
10467 _("DW_AT_abstract_origin offset is not in CU for "
10468 "DW_TAG_GNU_call_site child DIE 0x%x "
10469 "[in module %s]"),
10470 child_die->offset.sect_off, objfile->name);
10471 continue;
10472 }
1788b2d3
JK
10473 parameter->u.param_offset.cu_off = (offset.sect_off
10474 - cu->header.offset.sect_off);
10475 }
10476 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
10477 {
10478 complaint (&symfile_complaints,
10479 _("No DW_FORM_block* DW_AT_location for "
10480 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10481 child_die->offset.sect_off, objfile->name);
96408a79
SA
10482 continue;
10483 }
24c5c679 10484 else
96408a79 10485 {
24c5c679
JK
10486 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10487 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10488 if (parameter->u.dwarf_reg != -1)
10489 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10490 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10491 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10492 &parameter->u.fb_offset))
10493 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10494 else
10495 {
10496 complaint (&symfile_complaints,
10497 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10498 "for DW_FORM_block* DW_AT_location is supported for "
10499 "DW_TAG_GNU_call_site child DIE 0x%x "
10500 "[in module %s]"),
10501 child_die->offset.sect_off, objfile->name);
10502 continue;
10503 }
96408a79
SA
10504 }
10505
10506 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10507 if (!attr_form_is_block (attr))
10508 {
10509 complaint (&symfile_complaints,
10510 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10511 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10512 child_die->offset.sect_off, objfile->name);
96408a79
SA
10513 continue;
10514 }
10515 parameter->value = DW_BLOCK (attr)->data;
10516 parameter->value_size = DW_BLOCK (attr)->size;
10517
10518 /* Parameters are not pre-cleared by memset above. */
10519 parameter->data_value = NULL;
10520 parameter->data_value_size = 0;
10521 call_site->parameter_count++;
10522
10523 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10524 if (attr)
10525 {
10526 if (!attr_form_is_block (attr))
10527 complaint (&symfile_complaints,
10528 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10529 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10530 child_die->offset.sect_off, objfile->name);
96408a79
SA
10531 else
10532 {
10533 parameter->data_value = DW_BLOCK (attr)->data;
10534 parameter->data_value_size = DW_BLOCK (attr)->size;
10535 }
10536 }
10537 }
10538}
10539
43039443 10540/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
10541 Return 1 if the attributes are present and valid, otherwise, return 0.
10542 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
10543
10544static int
10545dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
10546 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10547 struct partial_symtab *ranges_pst)
43039443
JK
10548{
10549 struct objfile *objfile = cu->objfile;
10550 struct comp_unit_head *cu_header = &cu->header;
10551 bfd *obfd = objfile->obfd;
10552 unsigned int addr_size = cu_header->addr_size;
10553 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10554 /* Base address selection entry. */
10555 CORE_ADDR base;
10556 int found_base;
10557 unsigned int dummy;
d521ce57 10558 const gdb_byte *buffer;
43039443
JK
10559 CORE_ADDR marker;
10560 int low_set;
10561 CORE_ADDR low = 0;
10562 CORE_ADDR high = 0;
ff013f42 10563 CORE_ADDR baseaddr;
43039443 10564
d00adf39
DE
10565 found_base = cu->base_known;
10566 base = cu->base_address;
43039443 10567
be391dca 10568 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10569 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
10570 {
10571 complaint (&symfile_complaints,
10572 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10573 offset);
10574 return 0;
10575 }
dce234bc 10576 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
10577
10578 /* Read in the largest possible address. */
10579 marker = read_address (obfd, buffer, cu, &dummy);
10580 if ((marker & mask) == mask)
10581 {
10582 /* If we found the largest possible address, then
10583 read the base address. */
10584 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10585 buffer += 2 * addr_size;
10586 offset += 2 * addr_size;
10587 found_base = 1;
10588 }
10589
10590 low_set = 0;
10591
e7030f15 10592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 10593
43039443
JK
10594 while (1)
10595 {
10596 CORE_ADDR range_beginning, range_end;
10597
10598 range_beginning = read_address (obfd, buffer, cu, &dummy);
10599 buffer += addr_size;
10600 range_end = read_address (obfd, buffer, cu, &dummy);
10601 buffer += addr_size;
10602 offset += 2 * addr_size;
10603
10604 /* An end of list marker is a pair of zero addresses. */
10605 if (range_beginning == 0 && range_end == 0)
10606 /* Found the end of list entry. */
10607 break;
10608
10609 /* Each base address selection entry is a pair of 2 values.
10610 The first is the largest possible address, the second is
10611 the base address. Check for a base address here. */
10612 if ((range_beginning & mask) == mask)
10613 {
10614 /* If we found the largest possible address, then
10615 read the base address. */
10616 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10617 found_base = 1;
10618 continue;
10619 }
10620
10621 if (!found_base)
10622 {
10623 /* We have no valid base address for the ranges
10624 data. */
10625 complaint (&symfile_complaints,
10626 _("Invalid .debug_ranges data (no base address)"));
10627 return 0;
10628 }
10629
9277c30c
UW
10630 if (range_beginning > range_end)
10631 {
10632 /* Inverted range entries are invalid. */
10633 complaint (&symfile_complaints,
10634 _("Invalid .debug_ranges data (inverted range)"));
10635 return 0;
10636 }
10637
10638 /* Empty range entries have no effect. */
10639 if (range_beginning == range_end)
10640 continue;
10641
43039443
JK
10642 range_beginning += base;
10643 range_end += base;
10644
01093045
DE
10645 /* A not-uncommon case of bad debug info.
10646 Don't pollute the addrmap with bad data. */
10647 if (range_beginning + baseaddr == 0
10648 && !dwarf2_per_objfile->has_section_at_zero)
10649 {
10650 complaint (&symfile_complaints,
10651 _(".debug_ranges entry has start address of zero"
10652 " [in module %s]"), objfile->name);
10653 continue;
10654 }
10655
9277c30c 10656 if (ranges_pst != NULL)
ff013f42 10657 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
10658 range_beginning + baseaddr,
10659 range_end - 1 + baseaddr,
ff013f42
JK
10660 ranges_pst);
10661
43039443
JK
10662 /* FIXME: This is recording everything as a low-high
10663 segment of consecutive addresses. We should have a
10664 data structure for discontiguous block ranges
10665 instead. */
10666 if (! low_set)
10667 {
10668 low = range_beginning;
10669 high = range_end;
10670 low_set = 1;
10671 }
10672 else
10673 {
10674 if (range_beginning < low)
10675 low = range_beginning;
10676 if (range_end > high)
10677 high = range_end;
10678 }
10679 }
10680
10681 if (! low_set)
10682 /* If the first entry is an end-of-list marker, the range
10683 describes an empty scope, i.e. no instructions. */
10684 return 0;
10685
10686 if (low_return)
10687 *low_return = low;
10688 if (high_return)
10689 *high_return = high;
10690 return 1;
10691}
10692
af34e669
DJ
10693/* Get low and high pc attributes from a die. Return 1 if the attributes
10694 are present and valid, otherwise, return 0. Return -1 if the range is
10695 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10696
c906108c 10697static int
af34e669 10698dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10699 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10700 struct partial_symtab *pst)
c906108c
SS
10701{
10702 struct attribute *attr;
91da1414 10703 struct attribute *attr_high;
af34e669
DJ
10704 CORE_ADDR low = 0;
10705 CORE_ADDR high = 0;
10706 int ret = 0;
c906108c 10707
91da1414
MW
10708 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10709 if (attr_high)
af34e669 10710 {
e142c38c 10711 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10712 if (attr)
91da1414
MW
10713 {
10714 low = DW_ADDR (attr);
3019eac3
DE
10715 if (attr_high->form == DW_FORM_addr
10716 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10717 high = DW_ADDR (attr_high);
10718 else
10719 high = low + DW_UNSND (attr_high);
10720 }
af34e669
DJ
10721 else
10722 /* Found high w/o low attribute. */
10723 return 0;
10724
10725 /* Found consecutive range of addresses. */
10726 ret = 1;
10727 }
c906108c 10728 else
af34e669 10729 {
e142c38c 10730 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10731 if (attr != NULL)
10732 {
ab435259
DE
10733 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10734 We take advantage of the fact that DW_AT_ranges does not appear
10735 in DW_TAG_compile_unit of DWO files. */
10736 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10737 unsigned int ranges_offset = (DW_UNSND (attr)
10738 + (need_ranges_base
10739 ? cu->ranges_base
10740 : 0));
2e3cf129 10741
af34e669 10742 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10743 .debug_ranges section. */
2e3cf129 10744 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10745 return 0;
43039443 10746 /* Found discontinuous range of addresses. */
af34e669
DJ
10747 ret = -1;
10748 }
10749 }
c906108c 10750
9373cf26
JK
10751 /* read_partial_die has also the strict LOW < HIGH requirement. */
10752 if (high <= low)
c906108c
SS
10753 return 0;
10754
10755 /* When using the GNU linker, .gnu.linkonce. sections are used to
10756 eliminate duplicate copies of functions and vtables and such.
10757 The linker will arbitrarily choose one and discard the others.
10758 The AT_*_pc values for such functions refer to local labels in
10759 these sections. If the section from that file was discarded, the
10760 labels are not in the output, so the relocs get a value of 0.
10761 If this is a discarded function, mark the pc bounds as invalid,
10762 so that GDB will ignore it. */
72dca2f5 10763 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10764 return 0;
10765
10766 *lowpc = low;
96408a79
SA
10767 if (highpc)
10768 *highpc = high;
af34e669 10769 return ret;
c906108c
SS
10770}
10771
b084d499
JB
10772/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10773 its low and high PC addresses. Do nothing if these addresses could not
10774 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10775 and HIGHPC to the high address if greater than HIGHPC. */
10776
10777static void
10778dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10779 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10780 struct dwarf2_cu *cu)
10781{
10782 CORE_ADDR low, high;
10783 struct die_info *child = die->child;
10784
d85a05f0 10785 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10786 {
10787 *lowpc = min (*lowpc, low);
10788 *highpc = max (*highpc, high);
10789 }
10790
10791 /* If the language does not allow nested subprograms (either inside
10792 subprograms or lexical blocks), we're done. */
10793 if (cu->language != language_ada)
10794 return;
6e70227d 10795
b084d499
JB
10796 /* Check all the children of the given DIE. If it contains nested
10797 subprograms, then check their pc bounds. Likewise, we need to
10798 check lexical blocks as well, as they may also contain subprogram
10799 definitions. */
10800 while (child && child->tag)
10801 {
10802 if (child->tag == DW_TAG_subprogram
10803 || child->tag == DW_TAG_lexical_block)
10804 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10805 child = sibling_die (child);
10806 }
10807}
10808
fae299cd
DC
10809/* Get the low and high pc's represented by the scope DIE, and store
10810 them in *LOWPC and *HIGHPC. If the correct values can't be
10811 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10812
10813static void
10814get_scope_pc_bounds (struct die_info *die,
10815 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10816 struct dwarf2_cu *cu)
10817{
10818 CORE_ADDR best_low = (CORE_ADDR) -1;
10819 CORE_ADDR best_high = (CORE_ADDR) 0;
10820 CORE_ADDR current_low, current_high;
10821
d85a05f0 10822 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10823 {
10824 best_low = current_low;
10825 best_high = current_high;
10826 }
10827 else
10828 {
10829 struct die_info *child = die->child;
10830
10831 while (child && child->tag)
10832 {
10833 switch (child->tag) {
10834 case DW_TAG_subprogram:
b084d499 10835 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10836 break;
10837 case DW_TAG_namespace:
f55ee35c 10838 case DW_TAG_module:
fae299cd
DC
10839 /* FIXME: carlton/2004-01-16: Should we do this for
10840 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10841 that current GCC's always emit the DIEs corresponding
10842 to definitions of methods of classes as children of a
10843 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10844 the DIEs giving the declarations, which could be
10845 anywhere). But I don't see any reason why the
10846 standards says that they have to be there. */
10847 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10848
10849 if (current_low != ((CORE_ADDR) -1))
10850 {
10851 best_low = min (best_low, current_low);
10852 best_high = max (best_high, current_high);
10853 }
10854 break;
10855 default:
0963b4bd 10856 /* Ignore. */
fae299cd
DC
10857 break;
10858 }
10859
10860 child = sibling_die (child);
10861 }
10862 }
10863
10864 *lowpc = best_low;
10865 *highpc = best_high;
10866}
10867
801e3a5b
JB
10868/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10869 in DIE. */
380bca97 10870
801e3a5b
JB
10871static void
10872dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10873 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10874{
bb5ed363 10875 struct objfile *objfile = cu->objfile;
801e3a5b 10876 struct attribute *attr;
91da1414 10877 struct attribute *attr_high;
801e3a5b 10878
91da1414
MW
10879 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10880 if (attr_high)
801e3a5b 10881 {
801e3a5b
JB
10882 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10883 if (attr)
10884 {
10885 CORE_ADDR low = DW_ADDR (attr);
91da1414 10886 CORE_ADDR high;
3019eac3
DE
10887 if (attr_high->form == DW_FORM_addr
10888 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10889 high = DW_ADDR (attr_high);
10890 else
10891 high = low + DW_UNSND (attr_high);
9a619af0 10892
801e3a5b
JB
10893 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10894 }
10895 }
10896
10897 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10898 if (attr)
10899 {
bb5ed363 10900 bfd *obfd = objfile->obfd;
ab435259
DE
10901 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10902 We take advantage of the fact that DW_AT_ranges does not appear
10903 in DW_TAG_compile_unit of DWO files. */
10904 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
10905
10906 /* The value of the DW_AT_ranges attribute is the offset of the
10907 address range list in the .debug_ranges section. */
ab435259
DE
10908 unsigned long offset = (DW_UNSND (attr)
10909 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 10910 const gdb_byte *buffer;
801e3a5b
JB
10911
10912 /* For some target architectures, but not others, the
10913 read_address function sign-extends the addresses it returns.
10914 To recognize base address selection entries, we need a
10915 mask. */
10916 unsigned int addr_size = cu->header.addr_size;
10917 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10918
10919 /* The base address, to which the next pair is relative. Note
10920 that this 'base' is a DWARF concept: most entries in a range
10921 list are relative, to reduce the number of relocs against the
10922 debugging information. This is separate from this function's
10923 'baseaddr' argument, which GDB uses to relocate debugging
10924 information from a shared library based on the address at
10925 which the library was loaded. */
d00adf39
DE
10926 CORE_ADDR base = cu->base_address;
10927 int base_known = cu->base_known;
801e3a5b 10928
d62bfeaf 10929 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10930 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10931 {
10932 complaint (&symfile_complaints,
10933 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10934 offset);
10935 return;
10936 }
d62bfeaf 10937 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10938
10939 for (;;)
10940 {
10941 unsigned int bytes_read;
10942 CORE_ADDR start, end;
10943
10944 start = read_address (obfd, buffer, cu, &bytes_read);
10945 buffer += bytes_read;
10946 end = read_address (obfd, buffer, cu, &bytes_read);
10947 buffer += bytes_read;
10948
10949 /* Did we find the end of the range list? */
10950 if (start == 0 && end == 0)
10951 break;
10952
10953 /* Did we find a base address selection entry? */
10954 else if ((start & base_select_mask) == base_select_mask)
10955 {
10956 base = end;
10957 base_known = 1;
10958 }
10959
10960 /* We found an ordinary address range. */
10961 else
10962 {
10963 if (!base_known)
10964 {
10965 complaint (&symfile_complaints,
3e43a32a
MS
10966 _("Invalid .debug_ranges data "
10967 "(no base address)"));
801e3a5b
JB
10968 return;
10969 }
10970
9277c30c
UW
10971 if (start > end)
10972 {
10973 /* Inverted range entries are invalid. */
10974 complaint (&symfile_complaints,
10975 _("Invalid .debug_ranges data "
10976 "(inverted range)"));
10977 return;
10978 }
10979
10980 /* Empty range entries have no effect. */
10981 if (start == end)
10982 continue;
10983
01093045
DE
10984 start += base + baseaddr;
10985 end += base + baseaddr;
10986
10987 /* A not-uncommon case of bad debug info.
10988 Don't pollute the addrmap with bad data. */
10989 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10990 {
10991 complaint (&symfile_complaints,
10992 _(".debug_ranges entry has start address of zero"
10993 " [in module %s]"), objfile->name);
10994 continue;
10995 }
10996
10997 record_block_range (block, start, end - 1);
801e3a5b
JB
10998 }
10999 }
11000 }
11001}
11002
685b1105
JK
11003/* Check whether the producer field indicates either of GCC < 4.6, or the
11004 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 11005
685b1105
JK
11006static void
11007check_producer (struct dwarf2_cu *cu)
60d5a603
JK
11008{
11009 const char *cs;
11010 int major, minor, release;
11011
11012 if (cu->producer == NULL)
11013 {
11014 /* For unknown compilers expect their behavior is DWARF version
11015 compliant.
11016
11017 GCC started to support .debug_types sections by -gdwarf-4 since
11018 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11019 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11020 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11021 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 11022 }
685b1105 11023 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 11024 {
685b1105
JK
11025 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11026
ba919b58
TT
11027 cs = &cu->producer[strlen ("GNU ")];
11028 while (*cs && !isdigit (*cs))
11029 cs++;
11030 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11031 {
11032 /* Not recognized as GCC. */
11033 }
11034 else
1b80a9fa
JK
11035 {
11036 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11037 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11038 }
685b1105
JK
11039 }
11040 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11041 cu->producer_is_icc = 1;
11042 else
11043 {
11044 /* For other non-GCC compilers, expect their behavior is DWARF version
11045 compliant. */
60d5a603
JK
11046 }
11047
ba919b58 11048 cu->checked_producer = 1;
685b1105 11049}
ba919b58 11050
685b1105
JK
11051/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11052 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11053 during 4.6.0 experimental. */
11054
11055static int
11056producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11057{
11058 if (!cu->checked_producer)
11059 check_producer (cu);
11060
11061 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
11062}
11063
11064/* Return the default accessibility type if it is not overriden by
11065 DW_AT_accessibility. */
11066
11067static enum dwarf_access_attribute
11068dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11069{
11070 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11071 {
11072 /* The default DWARF 2 accessibility for members is public, the default
11073 accessibility for inheritance is private. */
11074
11075 if (die->tag != DW_TAG_inheritance)
11076 return DW_ACCESS_public;
11077 else
11078 return DW_ACCESS_private;
11079 }
11080 else
11081 {
11082 /* DWARF 3+ defines the default accessibility a different way. The same
11083 rules apply now for DW_TAG_inheritance as for the members and it only
11084 depends on the container kind. */
11085
11086 if (die->parent->tag == DW_TAG_class_type)
11087 return DW_ACCESS_private;
11088 else
11089 return DW_ACCESS_public;
11090 }
11091}
11092
74ac6d43
TT
11093/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11094 offset. If the attribute was not found return 0, otherwise return
11095 1. If it was found but could not properly be handled, set *OFFSET
11096 to 0. */
11097
11098static int
11099handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11100 LONGEST *offset)
11101{
11102 struct attribute *attr;
11103
11104 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11105 if (attr != NULL)
11106 {
11107 *offset = 0;
11108
11109 /* Note that we do not check for a section offset first here.
11110 This is because DW_AT_data_member_location is new in DWARF 4,
11111 so if we see it, we can assume that a constant form is really
11112 a constant and not a section offset. */
11113 if (attr_form_is_constant (attr))
11114 *offset = dwarf2_get_attr_constant_value (attr, 0);
11115 else if (attr_form_is_section_offset (attr))
11116 dwarf2_complex_location_expr_complaint ();
11117 else if (attr_form_is_block (attr))
11118 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11119 else
11120 dwarf2_complex_location_expr_complaint ();
11121
11122 return 1;
11123 }
11124
11125 return 0;
11126}
11127
c906108c
SS
11128/* Add an aggregate field to the field list. */
11129
11130static void
107d2387 11131dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 11132 struct dwarf2_cu *cu)
6e70227d 11133{
e7c27a73 11134 struct objfile *objfile = cu->objfile;
5e2b427d 11135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
11136 struct nextfield *new_field;
11137 struct attribute *attr;
11138 struct field *fp;
15d034d0 11139 const char *fieldname = "";
c906108c
SS
11140
11141 /* Allocate a new field list entry and link it in. */
11142 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 11143 make_cleanup (xfree, new_field);
c906108c 11144 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
11145
11146 if (die->tag == DW_TAG_inheritance)
11147 {
11148 new_field->next = fip->baseclasses;
11149 fip->baseclasses = new_field;
11150 }
11151 else
11152 {
11153 new_field->next = fip->fields;
11154 fip->fields = new_field;
11155 }
c906108c
SS
11156 fip->nfields++;
11157
e142c38c 11158 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
11159 if (attr)
11160 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
11161 else
11162 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
11163 if (new_field->accessibility != DW_ACCESS_public)
11164 fip->non_public_fields = 1;
60d5a603 11165
e142c38c 11166 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
11167 if (attr)
11168 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
11169 else
11170 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
11171
11172 fp = &new_field->field;
a9a9bd0f 11173
e142c38c 11174 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 11175 {
74ac6d43
TT
11176 LONGEST offset;
11177
a9a9bd0f 11178 /* Data member other than a C++ static data member. */
6e70227d 11179
c906108c 11180 /* Get type of field. */
e7c27a73 11181 fp->type = die_type (die, cu);
c906108c 11182
d6a843b5 11183 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 11184
c906108c 11185 /* Get bit size of field (zero if none). */
e142c38c 11186 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
11187 if (attr)
11188 {
11189 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11190 }
11191 else
11192 {
11193 FIELD_BITSIZE (*fp) = 0;
11194 }
11195
11196 /* Get bit offset of field. */
74ac6d43
TT
11197 if (handle_data_member_location (die, cu, &offset))
11198 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 11199 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
11200 if (attr)
11201 {
5e2b427d 11202 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
11203 {
11204 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
11205 additional bit offset from the MSB of the containing
11206 anonymous object to the MSB of the field. We don't
11207 have to do anything special since we don't need to
11208 know the size of the anonymous object. */
f41f5e61 11209 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
11210 }
11211 else
11212 {
11213 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
11214 MSB of the anonymous object, subtract off the number of
11215 bits from the MSB of the field to the MSB of the
11216 object, and then subtract off the number of bits of
11217 the field itself. The result is the bit offset of
11218 the LSB of the field. */
c906108c
SS
11219 int anonymous_size;
11220 int bit_offset = DW_UNSND (attr);
11221
e142c38c 11222 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11223 if (attr)
11224 {
11225 /* The size of the anonymous object containing
11226 the bit field is explicit, so use the
11227 indicated size (in bytes). */
11228 anonymous_size = DW_UNSND (attr);
11229 }
11230 else
11231 {
11232 /* The size of the anonymous object containing
11233 the bit field must be inferred from the type
11234 attribute of the data member containing the
11235 bit field. */
11236 anonymous_size = TYPE_LENGTH (fp->type);
11237 }
f41f5e61
PA
11238 SET_FIELD_BITPOS (*fp,
11239 (FIELD_BITPOS (*fp)
11240 + anonymous_size * bits_per_byte
11241 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
11242 }
11243 }
11244
11245 /* Get name of field. */
39cbfefa
DJ
11246 fieldname = dwarf2_name (die, cu);
11247 if (fieldname == NULL)
11248 fieldname = "";
d8151005
DJ
11249
11250 /* The name is already allocated along with this objfile, so we don't
11251 need to duplicate it for the type. */
11252 fp->name = fieldname;
c906108c
SS
11253
11254 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 11255 pointer or virtual base class pointer) to private. */
e142c38c 11256 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 11257 {
d48cc9dd 11258 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
11259 new_field->accessibility = DW_ACCESS_private;
11260 fip->non_public_fields = 1;
11261 }
11262 }
a9a9bd0f 11263 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 11264 {
a9a9bd0f
DC
11265 /* C++ static member. */
11266
11267 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11268 is a declaration, but all versions of G++ as of this writing
11269 (so through at least 3.2.1) incorrectly generate
11270 DW_TAG_variable tags. */
6e70227d 11271
ff355380 11272 const char *physname;
c906108c 11273
a9a9bd0f 11274 /* Get name of field. */
39cbfefa
DJ
11275 fieldname = dwarf2_name (die, cu);
11276 if (fieldname == NULL)
c906108c
SS
11277 return;
11278
254e6b9e 11279 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
11280 if (attr
11281 /* Only create a symbol if this is an external value.
11282 new_symbol checks this and puts the value in the global symbol
11283 table, which we want. If it is not external, new_symbol
11284 will try to put the value in cu->list_in_scope which is wrong. */
11285 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
11286 {
11287 /* A static const member, not much different than an enum as far as
11288 we're concerned, except that we can support more types. */
11289 new_symbol (die, NULL, cu);
11290 }
11291
2df3850c 11292 /* Get physical name. */
ff355380 11293 physname = dwarf2_physname (fieldname, die, cu);
c906108c 11294
d8151005
DJ
11295 /* The name is already allocated along with this objfile, so we don't
11296 need to duplicate it for the type. */
11297 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 11298 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 11299 FIELD_NAME (*fp) = fieldname;
c906108c
SS
11300 }
11301 else if (die->tag == DW_TAG_inheritance)
11302 {
74ac6d43 11303 LONGEST offset;
d4b96c9a 11304
74ac6d43
TT
11305 /* C++ base class field. */
11306 if (handle_data_member_location (die, cu, &offset))
11307 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 11308 FIELD_BITSIZE (*fp) = 0;
e7c27a73 11309 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
11310 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11311 fip->nbaseclasses++;
11312 }
11313}
11314
98751a41
JK
11315/* Add a typedef defined in the scope of the FIP's class. */
11316
11317static void
11318dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11319 struct dwarf2_cu *cu)
6e70227d 11320{
98751a41 11321 struct objfile *objfile = cu->objfile;
98751a41
JK
11322 struct typedef_field_list *new_field;
11323 struct attribute *attr;
11324 struct typedef_field *fp;
11325 char *fieldname = "";
11326
11327 /* Allocate a new field list entry and link it in. */
11328 new_field = xzalloc (sizeof (*new_field));
11329 make_cleanup (xfree, new_field);
11330
11331 gdb_assert (die->tag == DW_TAG_typedef);
11332
11333 fp = &new_field->field;
11334
11335 /* Get name of field. */
11336 fp->name = dwarf2_name (die, cu);
11337 if (fp->name == NULL)
11338 return;
11339
11340 fp->type = read_type_die (die, cu);
11341
11342 new_field->next = fip->typedef_field_list;
11343 fip->typedef_field_list = new_field;
11344 fip->typedef_field_list_count++;
11345}
11346
c906108c
SS
11347/* Create the vector of fields, and attach it to the type. */
11348
11349static void
fba45db2 11350dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11351 struct dwarf2_cu *cu)
c906108c
SS
11352{
11353 int nfields = fip->nfields;
11354
11355 /* Record the field count, allocate space for the array of fields,
11356 and create blank accessibility bitfields if necessary. */
11357 TYPE_NFIELDS (type) = nfields;
11358 TYPE_FIELDS (type) = (struct field *)
11359 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11360 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11361
b4ba55a1 11362 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
11363 {
11364 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11365
11366 TYPE_FIELD_PRIVATE_BITS (type) =
11367 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11368 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11369
11370 TYPE_FIELD_PROTECTED_BITS (type) =
11371 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11372 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11373
774b6a14
TT
11374 TYPE_FIELD_IGNORE_BITS (type) =
11375 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11376 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
11377 }
11378
11379 /* If the type has baseclasses, allocate and clear a bit vector for
11380 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 11381 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
11382 {
11383 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 11384 unsigned char *pointer;
c906108c
SS
11385
11386 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
11387 pointer = TYPE_ALLOC (type, num_bytes);
11388 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
11389 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11390 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11391 }
11392
3e43a32a
MS
11393 /* Copy the saved-up fields into the field vector. Start from the head of
11394 the list, adding to the tail of the field array, so that they end up in
11395 the same order in the array in which they were added to the list. */
c906108c
SS
11396 while (nfields-- > 0)
11397 {
7d0ccb61
DJ
11398 struct nextfield *fieldp;
11399
11400 if (fip->fields)
11401 {
11402 fieldp = fip->fields;
11403 fip->fields = fieldp->next;
11404 }
11405 else
11406 {
11407 fieldp = fip->baseclasses;
11408 fip->baseclasses = fieldp->next;
11409 }
11410
11411 TYPE_FIELD (type, nfields) = fieldp->field;
11412 switch (fieldp->accessibility)
c906108c 11413 {
c5aa993b 11414 case DW_ACCESS_private:
b4ba55a1
JB
11415 if (cu->language != language_ada)
11416 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 11417 break;
c906108c 11418
c5aa993b 11419 case DW_ACCESS_protected:
b4ba55a1
JB
11420 if (cu->language != language_ada)
11421 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 11422 break;
c906108c 11423
c5aa993b
JM
11424 case DW_ACCESS_public:
11425 break;
c906108c 11426
c5aa993b
JM
11427 default:
11428 /* Unknown accessibility. Complain and treat it as public. */
11429 {
e2e0b3e5 11430 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 11431 fieldp->accessibility);
c5aa993b
JM
11432 }
11433 break;
c906108c
SS
11434 }
11435 if (nfields < fip->nbaseclasses)
11436 {
7d0ccb61 11437 switch (fieldp->virtuality)
c906108c 11438 {
c5aa993b
JM
11439 case DW_VIRTUALITY_virtual:
11440 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 11441 if (cu->language == language_ada)
a73c6dcd 11442 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
11443 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11444 break;
c906108c
SS
11445 }
11446 }
c906108c
SS
11447 }
11448}
11449
7d27a96d
TT
11450/* Return true if this member function is a constructor, false
11451 otherwise. */
11452
11453static int
11454dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11455{
11456 const char *fieldname;
11457 const char *typename;
11458 int len;
11459
11460 if (die->parent == NULL)
11461 return 0;
11462
11463 if (die->parent->tag != DW_TAG_structure_type
11464 && die->parent->tag != DW_TAG_union_type
11465 && die->parent->tag != DW_TAG_class_type)
11466 return 0;
11467
11468 fieldname = dwarf2_name (die, cu);
11469 typename = dwarf2_name (die->parent, cu);
11470 if (fieldname == NULL || typename == NULL)
11471 return 0;
11472
11473 len = strlen (fieldname);
11474 return (strncmp (fieldname, typename, len) == 0
11475 && (typename[len] == '\0' || typename[len] == '<'));
11476}
11477
c906108c
SS
11478/* Add a member function to the proper fieldlist. */
11479
11480static void
107d2387 11481dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 11482 struct type *type, struct dwarf2_cu *cu)
c906108c 11483{
e7c27a73 11484 struct objfile *objfile = cu->objfile;
c906108c
SS
11485 struct attribute *attr;
11486 struct fnfieldlist *flp;
11487 int i;
11488 struct fn_field *fnp;
15d034d0 11489 const char *fieldname;
c906108c 11490 struct nextfnfield *new_fnfield;
f792889a 11491 struct type *this_type;
60d5a603 11492 enum dwarf_access_attribute accessibility;
c906108c 11493
b4ba55a1 11494 if (cu->language == language_ada)
a73c6dcd 11495 error (_("unexpected member function in Ada type"));
b4ba55a1 11496
2df3850c 11497 /* Get name of member function. */
39cbfefa
DJ
11498 fieldname = dwarf2_name (die, cu);
11499 if (fieldname == NULL)
2df3850c 11500 return;
c906108c 11501
c906108c
SS
11502 /* Look up member function name in fieldlist. */
11503 for (i = 0; i < fip->nfnfields; i++)
11504 {
27bfe10e 11505 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
11506 break;
11507 }
11508
11509 /* Create new list element if necessary. */
11510 if (i < fip->nfnfields)
11511 flp = &fip->fnfieldlists[i];
11512 else
11513 {
11514 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11515 {
11516 fip->fnfieldlists = (struct fnfieldlist *)
11517 xrealloc (fip->fnfieldlists,
11518 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11519 * sizeof (struct fnfieldlist));
c906108c 11520 if (fip->nfnfields == 0)
c13c43fd 11521 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
11522 }
11523 flp = &fip->fnfieldlists[fip->nfnfields];
11524 flp->name = fieldname;
11525 flp->length = 0;
11526 flp->head = NULL;
3da10d80 11527 i = fip->nfnfields++;
c906108c
SS
11528 }
11529
11530 /* Create a new member function field and chain it to the field list
0963b4bd 11531 entry. */
c906108c 11532 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 11533 make_cleanup (xfree, new_fnfield);
c906108c
SS
11534 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11535 new_fnfield->next = flp->head;
11536 flp->head = new_fnfield;
11537 flp->length++;
11538
11539 /* Fill in the member function field info. */
11540 fnp = &new_fnfield->fnfield;
3da10d80
KS
11541
11542 /* Delay processing of the physname until later. */
11543 if (cu->language == language_cplus || cu->language == language_java)
11544 {
11545 add_to_method_list (type, i, flp->length - 1, fieldname,
11546 die, cu);
11547 }
11548 else
11549 {
1d06ead6 11550 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
11551 fnp->physname = physname ? physname : "";
11552 }
11553
c906108c 11554 fnp->type = alloc_type (objfile);
f792889a
DJ
11555 this_type = read_type_die (die, cu);
11556 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 11557 {
f792889a 11558 int nparams = TYPE_NFIELDS (this_type);
c906108c 11559
f792889a 11560 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
11561 of the method itself (TYPE_CODE_METHOD). */
11562 smash_to_method_type (fnp->type, type,
f792889a
DJ
11563 TYPE_TARGET_TYPE (this_type),
11564 TYPE_FIELDS (this_type),
11565 TYPE_NFIELDS (this_type),
11566 TYPE_VARARGS (this_type));
c906108c
SS
11567
11568 /* Handle static member functions.
c5aa993b 11569 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
11570 member functions. G++ helps GDB by marking the first
11571 parameter for non-static member functions (which is the this
11572 pointer) as artificial. We obtain this information from
11573 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 11574 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
11575 fnp->voffset = VOFFSET_STATIC;
11576 }
11577 else
e2e0b3e5 11578 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 11579 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
11580
11581 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 11582 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 11583 fnp->fcontext = die_containing_type (die, cu);
c906108c 11584
3e43a32a
MS
11585 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11586 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
11587
11588 /* Get accessibility. */
e142c38c 11589 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 11590 if (attr)
60d5a603
JK
11591 accessibility = DW_UNSND (attr);
11592 else
11593 accessibility = dwarf2_default_access_attribute (die, cu);
11594 switch (accessibility)
c906108c 11595 {
60d5a603
JK
11596 case DW_ACCESS_private:
11597 fnp->is_private = 1;
11598 break;
11599 case DW_ACCESS_protected:
11600 fnp->is_protected = 1;
11601 break;
c906108c
SS
11602 }
11603
b02dede2 11604 /* Check for artificial methods. */
e142c38c 11605 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
11606 if (attr && DW_UNSND (attr) != 0)
11607 fnp->is_artificial = 1;
11608
7d27a96d
TT
11609 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11610
0d564a31 11611 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
11612 function. For older versions of GCC, this is an offset in the
11613 appropriate virtual table, as specified by DW_AT_containing_type.
11614 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
11615 to the object address. */
11616
e142c38c 11617 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 11618 if (attr)
8e19ed76 11619 {
aec5aa8b 11620 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 11621 {
aec5aa8b
TT
11622 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11623 {
11624 /* Old-style GCC. */
11625 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11626 }
11627 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11628 || (DW_BLOCK (attr)->size > 1
11629 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11630 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11631 {
11632 struct dwarf_block blk;
11633 int offset;
11634
11635 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11636 ? 1 : 2);
11637 blk.size = DW_BLOCK (attr)->size - offset;
11638 blk.data = DW_BLOCK (attr)->data + offset;
11639 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11640 if ((fnp->voffset % cu->header.addr_size) != 0)
11641 dwarf2_complex_location_expr_complaint ();
11642 else
11643 fnp->voffset /= cu->header.addr_size;
11644 fnp->voffset += 2;
11645 }
11646 else
11647 dwarf2_complex_location_expr_complaint ();
11648
11649 if (!fnp->fcontext)
11650 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11651 }
3690dd37 11652 else if (attr_form_is_section_offset (attr))
8e19ed76 11653 {
4d3c2250 11654 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
11655 }
11656 else
11657 {
4d3c2250
KB
11658 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11659 fieldname);
8e19ed76 11660 }
0d564a31 11661 }
d48cc9dd
DJ
11662 else
11663 {
11664 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11665 if (attr && DW_UNSND (attr))
11666 {
11667 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11668 complaint (&symfile_complaints,
3e43a32a
MS
11669 _("Member function \"%s\" (offset %d) is virtual "
11670 "but the vtable offset is not specified"),
b64f50a1 11671 fieldname, die->offset.sect_off);
9655fd1a 11672 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
11673 TYPE_CPLUS_DYNAMIC (type) = 1;
11674 }
11675 }
c906108c
SS
11676}
11677
11678/* Create the vector of member function fields, and attach it to the type. */
11679
11680static void
fba45db2 11681dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11682 struct dwarf2_cu *cu)
c906108c
SS
11683{
11684 struct fnfieldlist *flp;
c906108c
SS
11685 int i;
11686
b4ba55a1 11687 if (cu->language == language_ada)
a73c6dcd 11688 error (_("unexpected member functions in Ada type"));
b4ba55a1 11689
c906108c
SS
11690 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11691 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11692 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11693
11694 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11695 {
11696 struct nextfnfield *nfp = flp->head;
11697 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11698 int k;
11699
11700 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11701 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11702 fn_flp->fn_fields = (struct fn_field *)
11703 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11704 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 11705 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
11706 }
11707
11708 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
11709}
11710
1168df01
JB
11711/* Returns non-zero if NAME is the name of a vtable member in CU's
11712 language, zero otherwise. */
11713static int
11714is_vtable_name (const char *name, struct dwarf2_cu *cu)
11715{
11716 static const char vptr[] = "_vptr";
987504bb 11717 static const char vtable[] = "vtable";
1168df01 11718
987504bb
JJ
11719 /* Look for the C++ and Java forms of the vtable. */
11720 if ((cu->language == language_java
11721 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11722 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11723 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11724 return 1;
11725
11726 return 0;
11727}
11728
c0dd20ea 11729/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11730 functions, with the ABI-specified layout. If TYPE describes
11731 such a structure, smash it into a member function type.
61049d3b
DJ
11732
11733 GCC shouldn't do this; it should just output pointer to member DIEs.
11734 This is GCC PR debug/28767. */
c0dd20ea 11735
0b92b5bb
TT
11736static void
11737quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11738{
0b92b5bb 11739 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11740
11741 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11742 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11743 return;
c0dd20ea
DJ
11744
11745 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11746 if (TYPE_FIELD_NAME (type, 0) == NULL
11747 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11748 || TYPE_FIELD_NAME (type, 1) == NULL
11749 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11750 return;
c0dd20ea
DJ
11751
11752 /* Find the type of the method. */
0b92b5bb 11753 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11754 if (pfn_type == NULL
11755 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11756 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11757 return;
c0dd20ea
DJ
11758
11759 /* Look for the "this" argument. */
11760 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11761 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11762 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11763 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11764 return;
c0dd20ea
DJ
11765
11766 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11767 new_type = alloc_type (objfile);
11768 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11769 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11770 TYPE_VARARGS (pfn_type));
0b92b5bb 11771 smash_to_methodptr_type (type, new_type);
c0dd20ea 11772}
1168df01 11773
685b1105
JK
11774/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11775 (icc). */
11776
11777static int
11778producer_is_icc (struct dwarf2_cu *cu)
11779{
11780 if (!cu->checked_producer)
11781 check_producer (cu);
11782
11783 return cu->producer_is_icc;
11784}
11785
c906108c 11786/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11787 (definition) to create a type for the structure or union. Fill in
11788 the type's name and general properties; the members will not be
3d1d5ea3 11789 processed until process_structure_scope.
c906108c 11790
c767944b
DJ
11791 NOTE: we need to call these functions regardless of whether or not the
11792 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11793 structure or union. This gets the type entered into our set of
11794 user defined types.
11795
11796 However, if the structure is incomplete (an opaque struct/union)
11797 then suppress creating a symbol table entry for it since gdb only
11798 wants to find the one with the complete definition. Note that if
11799 it is complete, we just call new_symbol, which does it's own
11800 checking about whether the struct/union is anonymous or not (and
11801 suppresses creating a symbol table entry itself). */
11802
f792889a 11803static struct type *
134d01f1 11804read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11805{
e7c27a73 11806 struct objfile *objfile = cu->objfile;
c906108c
SS
11807 struct type *type;
11808 struct attribute *attr;
15d034d0 11809 const char *name;
c906108c 11810
348e048f
DE
11811 /* If the definition of this type lives in .debug_types, read that type.
11812 Don't follow DW_AT_specification though, that will take us back up
11813 the chain and we want to go down. */
45e58e77 11814 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11815 if (attr)
11816 {
ac9ec31b 11817 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 11818
ac9ec31b 11819 /* The type's CU may not be the same as CU.
02142a6c 11820 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
11821 return set_die_type (die, type, cu);
11822 }
11823
c0dd20ea 11824 type = alloc_type (objfile);
c906108c 11825 INIT_CPLUS_SPECIFIC (type);
93311388 11826
39cbfefa
DJ
11827 name = dwarf2_name (die, cu);
11828 if (name != NULL)
c906108c 11829 {
987504bb
JJ
11830 if (cu->language == language_cplus
11831 || cu->language == language_java)
63d06c5c 11832 {
15d034d0 11833 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
11834
11835 /* dwarf2_full_name might have already finished building the DIE's
11836 type. If so, there is no need to continue. */
11837 if (get_die_type (die, cu) != NULL)
11838 return get_die_type (die, cu);
11839
11840 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11841 if (die->tag == DW_TAG_structure_type
11842 || die->tag == DW_TAG_class_type)
11843 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11844 }
11845 else
11846 {
d8151005
DJ
11847 /* The name is already allocated along with this objfile, so
11848 we don't need to duplicate it for the type. */
7d455152 11849 TYPE_TAG_NAME (type) = name;
94af9270
KS
11850 if (die->tag == DW_TAG_class_type)
11851 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11852 }
c906108c
SS
11853 }
11854
11855 if (die->tag == DW_TAG_structure_type)
11856 {
11857 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11858 }
11859 else if (die->tag == DW_TAG_union_type)
11860 {
11861 TYPE_CODE (type) = TYPE_CODE_UNION;
11862 }
11863 else
11864 {
c906108c
SS
11865 TYPE_CODE (type) = TYPE_CODE_CLASS;
11866 }
11867
0cc2414c
TT
11868 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11869 TYPE_DECLARED_CLASS (type) = 1;
11870
e142c38c 11871 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11872 if (attr)
11873 {
11874 TYPE_LENGTH (type) = DW_UNSND (attr);
11875 }
11876 else
11877 {
11878 TYPE_LENGTH (type) = 0;
11879 }
11880
685b1105
JK
11881 if (producer_is_icc (cu))
11882 {
11883 /* ICC does not output the required DW_AT_declaration
11884 on incomplete types, but gives them a size of zero. */
11885 }
11886 else
11887 TYPE_STUB_SUPPORTED (type) = 1;
11888
dc718098 11889 if (die_is_declaration (die, cu))
876cecd0 11890 TYPE_STUB (type) = 1;
a6c727b2
DJ
11891 else if (attr == NULL && die->child == NULL
11892 && producer_is_realview (cu->producer))
11893 /* RealView does not output the required DW_AT_declaration
11894 on incomplete types. */
11895 TYPE_STUB (type) = 1;
dc718098 11896
c906108c
SS
11897 /* We need to add the type field to the die immediately so we don't
11898 infinitely recurse when dealing with pointers to the structure
0963b4bd 11899 type within the structure itself. */
1c379e20 11900 set_die_type (die, type, cu);
c906108c 11901
7e314c57
JK
11902 /* set_die_type should be already done. */
11903 set_descriptive_type (type, die, cu);
11904
c767944b
DJ
11905 return type;
11906}
11907
11908/* Finish creating a structure or union type, including filling in
11909 its members and creating a symbol for it. */
11910
11911static void
11912process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11913{
11914 struct objfile *objfile = cu->objfile;
11915 struct die_info *child_die = die->child;
11916 struct type *type;
11917
11918 type = get_die_type (die, cu);
11919 if (type == NULL)
11920 type = read_structure_type (die, cu);
11921
e142c38c 11922 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11923 {
11924 struct field_info fi;
11925 struct die_info *child_die;
34eaf542 11926 VEC (symbolp) *template_args = NULL;
c767944b 11927 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11928
11929 memset (&fi, 0, sizeof (struct field_info));
11930
639d11d3 11931 child_die = die->child;
c906108c
SS
11932
11933 while (child_die && child_die->tag)
11934 {
a9a9bd0f
DC
11935 if (child_die->tag == DW_TAG_member
11936 || child_die->tag == DW_TAG_variable)
c906108c 11937 {
a9a9bd0f
DC
11938 /* NOTE: carlton/2002-11-05: A C++ static data member
11939 should be a DW_TAG_member that is a declaration, but
11940 all versions of G++ as of this writing (so through at
11941 least 3.2.1) incorrectly generate DW_TAG_variable
11942 tags for them instead. */
e7c27a73 11943 dwarf2_add_field (&fi, child_die, cu);
c906108c 11944 }
8713b1b1 11945 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11946 {
0963b4bd 11947 /* C++ member function. */
e7c27a73 11948 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11949 }
11950 else if (child_die->tag == DW_TAG_inheritance)
11951 {
11952 /* C++ base class field. */
e7c27a73 11953 dwarf2_add_field (&fi, child_die, cu);
c906108c 11954 }
98751a41
JK
11955 else if (child_die->tag == DW_TAG_typedef)
11956 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11957 else if (child_die->tag == DW_TAG_template_type_param
11958 || child_die->tag == DW_TAG_template_value_param)
11959 {
11960 struct symbol *arg = new_symbol (child_die, NULL, cu);
11961
f1078f66
DJ
11962 if (arg != NULL)
11963 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11964 }
11965
c906108c
SS
11966 child_die = sibling_die (child_die);
11967 }
11968
34eaf542
TT
11969 /* Attach template arguments to type. */
11970 if (! VEC_empty (symbolp, template_args))
11971 {
11972 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11973 TYPE_N_TEMPLATE_ARGUMENTS (type)
11974 = VEC_length (symbolp, template_args);
11975 TYPE_TEMPLATE_ARGUMENTS (type)
11976 = obstack_alloc (&objfile->objfile_obstack,
11977 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11978 * sizeof (struct symbol *)));
11979 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11980 VEC_address (symbolp, template_args),
11981 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11982 * sizeof (struct symbol *)));
11983 VEC_free (symbolp, template_args);
11984 }
11985
c906108c
SS
11986 /* Attach fields and member functions to the type. */
11987 if (fi.nfields)
e7c27a73 11988 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11989 if (fi.nfnfields)
11990 {
e7c27a73 11991 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11992
c5aa993b 11993 /* Get the type which refers to the base class (possibly this
c906108c 11994 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11995 class from the DW_AT_containing_type attribute. This use of
11996 DW_AT_containing_type is a GNU extension. */
c906108c 11997
e142c38c 11998 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11999 {
e7c27a73 12000 struct type *t = die_containing_type (die, cu);
c906108c
SS
12001
12002 TYPE_VPTR_BASETYPE (type) = t;
12003 if (type == t)
12004 {
c906108c
SS
12005 int i;
12006
12007 /* Our own class provides vtbl ptr. */
12008 for (i = TYPE_NFIELDS (t) - 1;
12009 i >= TYPE_N_BASECLASSES (t);
12010 --i)
12011 {
0d5cff50 12012 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 12013
1168df01 12014 if (is_vtable_name (fieldname, cu))
c906108c
SS
12015 {
12016 TYPE_VPTR_FIELDNO (type) = i;
12017 break;
12018 }
12019 }
12020
12021 /* Complain if virtual function table field not found. */
12022 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 12023 complaint (&symfile_complaints,
3e43a32a
MS
12024 _("virtual function table pointer "
12025 "not found when defining class '%s'"),
4d3c2250
KB
12026 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12027 "");
c906108c
SS
12028 }
12029 else
12030 {
12031 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12032 }
12033 }
f6235d4c
EZ
12034 else if (cu->producer
12035 && strncmp (cu->producer,
12036 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12037 {
12038 /* The IBM XLC compiler does not provide direct indication
12039 of the containing type, but the vtable pointer is
12040 always named __vfp. */
12041
12042 int i;
12043
12044 for (i = TYPE_NFIELDS (type) - 1;
12045 i >= TYPE_N_BASECLASSES (type);
12046 --i)
12047 {
12048 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12049 {
12050 TYPE_VPTR_FIELDNO (type) = i;
12051 TYPE_VPTR_BASETYPE (type) = type;
12052 break;
12053 }
12054 }
12055 }
c906108c 12056 }
98751a41
JK
12057
12058 /* Copy fi.typedef_field_list linked list elements content into the
12059 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12060 if (fi.typedef_field_list)
12061 {
12062 int i = fi.typedef_field_list_count;
12063
a0d7a4ff 12064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
12065 TYPE_TYPEDEF_FIELD_ARRAY (type)
12066 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12067 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12068
12069 /* Reverse the list order to keep the debug info elements order. */
12070 while (--i >= 0)
12071 {
12072 struct typedef_field *dest, *src;
6e70227d 12073
98751a41
JK
12074 dest = &TYPE_TYPEDEF_FIELD (type, i);
12075 src = &fi.typedef_field_list->field;
12076 fi.typedef_field_list = fi.typedef_field_list->next;
12077 *dest = *src;
12078 }
12079 }
c767944b
DJ
12080
12081 do_cleanups (back_to);
eb2a6f42
TT
12082
12083 if (HAVE_CPLUS_STRUCT (type))
12084 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 12085 }
63d06c5c 12086
bb5ed363 12087 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 12088
90aeadfc
DC
12089 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12090 snapshots) has been known to create a die giving a declaration
12091 for a class that has, as a child, a die giving a definition for a
12092 nested class. So we have to process our children even if the
12093 current die is a declaration. Normally, of course, a declaration
12094 won't have any children at all. */
134d01f1 12095
90aeadfc
DC
12096 while (child_die != NULL && child_die->tag)
12097 {
12098 if (child_die->tag == DW_TAG_member
12099 || child_die->tag == DW_TAG_variable
34eaf542
TT
12100 || child_die->tag == DW_TAG_inheritance
12101 || child_die->tag == DW_TAG_template_value_param
12102 || child_die->tag == DW_TAG_template_type_param)
134d01f1 12103 {
90aeadfc 12104 /* Do nothing. */
134d01f1 12105 }
90aeadfc
DC
12106 else
12107 process_die (child_die, cu);
134d01f1 12108
90aeadfc 12109 child_die = sibling_die (child_die);
134d01f1
DJ
12110 }
12111
fa4028e9
JB
12112 /* Do not consider external references. According to the DWARF standard,
12113 these DIEs are identified by the fact that they have no byte_size
12114 attribute, and a declaration attribute. */
12115 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12116 || !die_is_declaration (die, cu))
c767944b 12117 new_symbol (die, type, cu);
134d01f1
DJ
12118}
12119
12120/* Given a DW_AT_enumeration_type die, set its type. We do not
12121 complete the type's fields yet, or create any symbols. */
c906108c 12122
f792889a 12123static struct type *
134d01f1 12124read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12125{
e7c27a73 12126 struct objfile *objfile = cu->objfile;
c906108c 12127 struct type *type;
c906108c 12128 struct attribute *attr;
0114d602 12129 const char *name;
134d01f1 12130
348e048f
DE
12131 /* If the definition of this type lives in .debug_types, read that type.
12132 Don't follow DW_AT_specification though, that will take us back up
12133 the chain and we want to go down. */
45e58e77 12134 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12135 if (attr)
12136 {
ac9ec31b 12137 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12138
ac9ec31b 12139 /* The type's CU may not be the same as CU.
02142a6c 12140 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12141 return set_die_type (die, type, cu);
12142 }
12143
c906108c
SS
12144 type = alloc_type (objfile);
12145
12146 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 12147 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 12148 if (name != NULL)
7d455152 12149 TYPE_TAG_NAME (type) = name;
c906108c 12150
e142c38c 12151 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12152 if (attr)
12153 {
12154 TYPE_LENGTH (type) = DW_UNSND (attr);
12155 }
12156 else
12157 {
12158 TYPE_LENGTH (type) = 0;
12159 }
12160
137033e9
JB
12161 /* The enumeration DIE can be incomplete. In Ada, any type can be
12162 declared as private in the package spec, and then defined only
12163 inside the package body. Such types are known as Taft Amendment
12164 Types. When another package uses such a type, an incomplete DIE
12165 may be generated by the compiler. */
02eb380e 12166 if (die_is_declaration (die, cu))
876cecd0 12167 TYPE_STUB (type) = 1;
02eb380e 12168
f792889a 12169 return set_die_type (die, type, cu);
134d01f1
DJ
12170}
12171
12172/* Given a pointer to a die which begins an enumeration, process all
12173 the dies that define the members of the enumeration, and create the
12174 symbol for the enumeration type.
12175
12176 NOTE: We reverse the order of the element list. */
12177
12178static void
12179process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12180{
f792889a 12181 struct type *this_type;
134d01f1 12182
f792889a
DJ
12183 this_type = get_die_type (die, cu);
12184 if (this_type == NULL)
12185 this_type = read_enumeration_type (die, cu);
9dc481d3 12186
639d11d3 12187 if (die->child != NULL)
c906108c 12188 {
9dc481d3
DE
12189 struct die_info *child_die;
12190 struct symbol *sym;
12191 struct field *fields = NULL;
12192 int num_fields = 0;
12193 int unsigned_enum = 1;
15d034d0 12194 const char *name;
cafec441
TT
12195 int flag_enum = 1;
12196 ULONGEST mask = 0;
9dc481d3 12197
639d11d3 12198 child_die = die->child;
c906108c
SS
12199 while (child_die && child_die->tag)
12200 {
12201 if (child_die->tag != DW_TAG_enumerator)
12202 {
e7c27a73 12203 process_die (child_die, cu);
c906108c
SS
12204 }
12205 else
12206 {
39cbfefa
DJ
12207 name = dwarf2_name (child_die, cu);
12208 if (name)
c906108c 12209 {
f792889a 12210 sym = new_symbol (child_die, this_type, cu);
c906108c 12211 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
12212 {
12213 unsigned_enum = 0;
12214 flag_enum = 0;
12215 }
12216 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12217 flag_enum = 0;
12218 else
12219 mask |= SYMBOL_VALUE (sym);
c906108c
SS
12220
12221 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12222 {
12223 fields = (struct field *)
12224 xrealloc (fields,
12225 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12226 * sizeof (struct field));
c906108c
SS
12227 }
12228
3567439c 12229 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 12230 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 12231 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
12232 FIELD_BITSIZE (fields[num_fields]) = 0;
12233
12234 num_fields++;
12235 }
12236 }
12237
12238 child_die = sibling_die (child_die);
12239 }
12240
12241 if (num_fields)
12242 {
f792889a
DJ
12243 TYPE_NFIELDS (this_type) = num_fields;
12244 TYPE_FIELDS (this_type) = (struct field *)
12245 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12246 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 12247 sizeof (struct field) * num_fields);
b8c9b27d 12248 xfree (fields);
c906108c
SS
12249 }
12250 if (unsigned_enum)
876cecd0 12251 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
12252 if (flag_enum)
12253 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 12254 }
134d01f1 12255
6c83ed52
TT
12256 /* If we are reading an enum from a .debug_types unit, and the enum
12257 is a declaration, and the enum is not the signatured type in the
12258 unit, then we do not want to add a symbol for it. Adding a
12259 symbol would in some cases obscure the true definition of the
12260 enum, giving users an incomplete type when the definition is
12261 actually available. Note that we do not want to do this for all
12262 enums which are just declarations, because C++0x allows forward
12263 enum declarations. */
3019eac3 12264 if (cu->per_cu->is_debug_types
6c83ed52
TT
12265 && die_is_declaration (die, cu))
12266 {
52dc124a 12267 struct signatured_type *sig_type;
6c83ed52 12268
c0f78cd4 12269 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
12270 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12271 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
12272 return;
12273 }
12274
f792889a 12275 new_symbol (die, this_type, cu);
c906108c
SS
12276}
12277
12278/* Extract all information from a DW_TAG_array_type DIE and put it in
12279 the DIE's type field. For now, this only handles one dimensional
12280 arrays. */
12281
f792889a 12282static struct type *
e7c27a73 12283read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12284{
e7c27a73 12285 struct objfile *objfile = cu->objfile;
c906108c 12286 struct die_info *child_die;
7e314c57 12287 struct type *type;
c906108c
SS
12288 struct type *element_type, *range_type, *index_type;
12289 struct type **range_types = NULL;
12290 struct attribute *attr;
12291 int ndim = 0;
12292 struct cleanup *back_to;
15d034d0 12293 const char *name;
c906108c 12294
e7c27a73 12295 element_type = die_type (die, cu);
c906108c 12296
7e314c57
JK
12297 /* The die_type call above may have already set the type for this DIE. */
12298 type = get_die_type (die, cu);
12299 if (type)
12300 return type;
12301
c906108c
SS
12302 /* Irix 6.2 native cc creates array types without children for
12303 arrays with unspecified length. */
639d11d3 12304 if (die->child == NULL)
c906108c 12305 {
46bf5051 12306 index_type = objfile_type (objfile)->builtin_int;
c906108c 12307 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
12308 type = create_array_type (NULL, element_type, range_type);
12309 return set_die_type (die, type, cu);
c906108c
SS
12310 }
12311
12312 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 12313 child_die = die->child;
c906108c
SS
12314 while (child_die && child_die->tag)
12315 {
12316 if (child_die->tag == DW_TAG_subrange_type)
12317 {
f792889a 12318 struct type *child_type = read_type_die (child_die, cu);
9a619af0 12319
f792889a 12320 if (child_type != NULL)
a02abb62 12321 {
0963b4bd
MS
12322 /* The range type was succesfully read. Save it for the
12323 array type creation. */
a02abb62
JB
12324 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12325 {
12326 range_types = (struct type **)
12327 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12328 * sizeof (struct type *));
12329 if (ndim == 0)
12330 make_cleanup (free_current_contents, &range_types);
12331 }
f792889a 12332 range_types[ndim++] = child_type;
a02abb62 12333 }
c906108c
SS
12334 }
12335 child_die = sibling_die (child_die);
12336 }
12337
12338 /* Dwarf2 dimensions are output from left to right, create the
12339 necessary array types in backwards order. */
7ca2d3a3 12340
c906108c 12341 type = element_type;
7ca2d3a3
DL
12342
12343 if (read_array_order (die, cu) == DW_ORD_col_major)
12344 {
12345 int i = 0;
9a619af0 12346
7ca2d3a3
DL
12347 while (i < ndim)
12348 type = create_array_type (NULL, type, range_types[i++]);
12349 }
12350 else
12351 {
12352 while (ndim-- > 0)
12353 type = create_array_type (NULL, type, range_types[ndim]);
12354 }
c906108c 12355
f5f8a009
EZ
12356 /* Understand Dwarf2 support for vector types (like they occur on
12357 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12358 array type. This is not part of the Dwarf2/3 standard yet, but a
12359 custom vendor extension. The main difference between a regular
12360 array and the vector variant is that vectors are passed by value
12361 to functions. */
e142c38c 12362 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 12363 if (attr)
ea37ba09 12364 make_vector_type (type);
f5f8a009 12365
dbc98a8b
KW
12366 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12367 implementation may choose to implement triple vectors using this
12368 attribute. */
12369 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12370 if (attr)
12371 {
12372 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12373 TYPE_LENGTH (type) = DW_UNSND (attr);
12374 else
3e43a32a
MS
12375 complaint (&symfile_complaints,
12376 _("DW_AT_byte_size for array type smaller "
12377 "than the total size of elements"));
dbc98a8b
KW
12378 }
12379
39cbfefa
DJ
12380 name = dwarf2_name (die, cu);
12381 if (name)
12382 TYPE_NAME (type) = name;
6e70227d 12383
0963b4bd 12384 /* Install the type in the die. */
7e314c57
JK
12385 set_die_type (die, type, cu);
12386
12387 /* set_die_type should be already done. */
b4ba55a1
JB
12388 set_descriptive_type (type, die, cu);
12389
c906108c
SS
12390 do_cleanups (back_to);
12391
7e314c57 12392 return type;
c906108c
SS
12393}
12394
7ca2d3a3 12395static enum dwarf_array_dim_ordering
6e70227d 12396read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
12397{
12398 struct attribute *attr;
12399
12400 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12401
12402 if (attr) return DW_SND (attr);
12403
0963b4bd
MS
12404 /* GNU F77 is a special case, as at 08/2004 array type info is the
12405 opposite order to the dwarf2 specification, but data is still
12406 laid out as per normal fortran.
7ca2d3a3 12407
0963b4bd
MS
12408 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12409 version checking. */
7ca2d3a3 12410
905e0470
PM
12411 if (cu->language == language_fortran
12412 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
12413 {
12414 return DW_ORD_row_major;
12415 }
12416
6e70227d 12417 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
12418 {
12419 case array_column_major:
12420 return DW_ORD_col_major;
12421 case array_row_major:
12422 default:
12423 return DW_ORD_row_major;
12424 };
12425}
12426
72019c9c 12427/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 12428 the DIE's type field. */
72019c9c 12429
f792889a 12430static struct type *
72019c9c
GM
12431read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12432{
7e314c57
JK
12433 struct type *domain_type, *set_type;
12434 struct attribute *attr;
f792889a 12435
7e314c57
JK
12436 domain_type = die_type (die, cu);
12437
12438 /* The die_type call above may have already set the type for this DIE. */
12439 set_type = get_die_type (die, cu);
12440 if (set_type)
12441 return set_type;
12442
12443 set_type = create_set_type (NULL, domain_type);
12444
12445 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
12446 if (attr)
12447 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 12448
f792889a 12449 return set_die_type (die, set_type, cu);
72019c9c 12450}
7ca2d3a3 12451
0971de02
TT
12452/* A helper for read_common_block that creates a locexpr baton.
12453 SYM is the symbol which we are marking as computed.
12454 COMMON_DIE is the DIE for the common block.
12455 COMMON_LOC is the location expression attribute for the common
12456 block itself.
12457 MEMBER_LOC is the location expression attribute for the particular
12458 member of the common block that we are processing.
12459 CU is the CU from which the above come. */
12460
12461static void
12462mark_common_block_symbol_computed (struct symbol *sym,
12463 struct die_info *common_die,
12464 struct attribute *common_loc,
12465 struct attribute *member_loc,
12466 struct dwarf2_cu *cu)
12467{
12468 struct objfile *objfile = dwarf2_per_objfile->objfile;
12469 struct dwarf2_locexpr_baton *baton;
12470 gdb_byte *ptr;
12471 unsigned int cu_off;
12472 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12473 LONGEST offset = 0;
12474
12475 gdb_assert (common_loc && member_loc);
12476 gdb_assert (attr_form_is_block (common_loc));
12477 gdb_assert (attr_form_is_block (member_loc)
12478 || attr_form_is_constant (member_loc));
12479
12480 baton = obstack_alloc (&objfile->objfile_obstack,
12481 sizeof (struct dwarf2_locexpr_baton));
12482 baton->per_cu = cu->per_cu;
12483 gdb_assert (baton->per_cu);
12484
12485 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12486
12487 if (attr_form_is_constant (member_loc))
12488 {
12489 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12490 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12491 }
12492 else
12493 baton->size += DW_BLOCK (member_loc)->size;
12494
12495 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12496 baton->data = ptr;
12497
12498 *ptr++ = DW_OP_call4;
12499 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12500 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12501 ptr += 4;
12502
12503 if (attr_form_is_constant (member_loc))
12504 {
12505 *ptr++ = DW_OP_addr;
12506 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12507 ptr += cu->header.addr_size;
12508 }
12509 else
12510 {
12511 /* We have to copy the data here, because DW_OP_call4 will only
12512 use a DW_AT_location attribute. */
12513 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12514 ptr += DW_BLOCK (member_loc)->size;
12515 }
12516
12517 *ptr++ = DW_OP_plus;
12518 gdb_assert (ptr - baton->data == baton->size);
12519
0971de02 12520 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 12521 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
12522}
12523
4357ac6c
TT
12524/* Create appropriate locally-scoped variables for all the
12525 DW_TAG_common_block entries. Also create a struct common_block
12526 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12527 is used to sepate the common blocks name namespace from regular
12528 variable names. */
c906108c
SS
12529
12530static void
e7c27a73 12531read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12532{
0971de02
TT
12533 struct attribute *attr;
12534
12535 attr = dwarf2_attr (die, DW_AT_location, cu);
12536 if (attr)
12537 {
12538 /* Support the .debug_loc offsets. */
12539 if (attr_form_is_block (attr))
12540 {
12541 /* Ok. */
12542 }
12543 else if (attr_form_is_section_offset (attr))
12544 {
12545 dwarf2_complex_location_expr_complaint ();
12546 attr = NULL;
12547 }
12548 else
12549 {
12550 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12551 "common block member");
12552 attr = NULL;
12553 }
12554 }
12555
639d11d3 12556 if (die->child != NULL)
c906108c 12557 {
4357ac6c
TT
12558 struct objfile *objfile = cu->objfile;
12559 struct die_info *child_die;
12560 size_t n_entries = 0, size;
12561 struct common_block *common_block;
12562 struct symbol *sym;
74ac6d43 12563
4357ac6c
TT
12564 for (child_die = die->child;
12565 child_die && child_die->tag;
12566 child_die = sibling_die (child_die))
12567 ++n_entries;
12568
12569 size = (sizeof (struct common_block)
12570 + (n_entries - 1) * sizeof (struct symbol *));
12571 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12572 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12573 common_block->n_entries = 0;
12574
12575 for (child_die = die->child;
12576 child_die && child_die->tag;
12577 child_die = sibling_die (child_die))
12578 {
12579 /* Create the symbol in the DW_TAG_common_block block in the current
12580 symbol scope. */
e7c27a73 12581 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
12582 if (sym != NULL)
12583 {
12584 struct attribute *member_loc;
12585
12586 common_block->contents[common_block->n_entries++] = sym;
12587
12588 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12589 cu);
12590 if (member_loc)
12591 {
12592 /* GDB has handled this for a long time, but it is
12593 not specified by DWARF. It seems to have been
12594 emitted by gfortran at least as recently as:
12595 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12596 complaint (&symfile_complaints,
12597 _("Variable in common block has "
12598 "DW_AT_data_member_location "
12599 "- DIE at 0x%x [in module %s]"),
12600 child_die->offset.sect_off, cu->objfile->name);
12601
12602 if (attr_form_is_section_offset (member_loc))
12603 dwarf2_complex_location_expr_complaint ();
12604 else if (attr_form_is_constant (member_loc)
12605 || attr_form_is_block (member_loc))
12606 {
12607 if (attr)
12608 mark_common_block_symbol_computed (sym, die, attr,
12609 member_loc, cu);
12610 }
12611 else
12612 dwarf2_complex_location_expr_complaint ();
12613 }
12614 }
c906108c 12615 }
4357ac6c
TT
12616
12617 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12618 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
12619 }
12620}
12621
0114d602 12622/* Create a type for a C++ namespace. */
d9fa45fe 12623
0114d602
DJ
12624static struct type *
12625read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 12626{
e7c27a73 12627 struct objfile *objfile = cu->objfile;
0114d602 12628 const char *previous_prefix, *name;
9219021c 12629 int is_anonymous;
0114d602
DJ
12630 struct type *type;
12631
12632 /* For extensions, reuse the type of the original namespace. */
12633 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12634 {
12635 struct die_info *ext_die;
12636 struct dwarf2_cu *ext_cu = cu;
9a619af0 12637
0114d602
DJ
12638 ext_die = dwarf2_extension (die, &ext_cu);
12639 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
12640
12641 /* EXT_CU may not be the same as CU.
02142a6c 12642 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
12643 return set_die_type (die, type, cu);
12644 }
9219021c 12645
e142c38c 12646 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
12647
12648 /* Now build the name of the current namespace. */
12649
0114d602
DJ
12650 previous_prefix = determine_prefix (die, cu);
12651 if (previous_prefix[0] != '\0')
12652 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 12653 previous_prefix, name, 0, cu);
0114d602
DJ
12654
12655 /* Create the type. */
12656 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12657 objfile);
abee88f2 12658 TYPE_NAME (type) = name;
0114d602
DJ
12659 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12660
60531b24 12661 return set_die_type (die, type, cu);
0114d602
DJ
12662}
12663
12664/* Read a C++ namespace. */
12665
12666static void
12667read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12668{
12669 struct objfile *objfile = cu->objfile;
0114d602 12670 int is_anonymous;
9219021c 12671
5c4e30ca
DC
12672 /* Add a symbol associated to this if we haven't seen the namespace
12673 before. Also, add a using directive if it's an anonymous
12674 namespace. */
9219021c 12675
f2f0e013 12676 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
12677 {
12678 struct type *type;
12679
0114d602 12680 type = read_type_die (die, cu);
e7c27a73 12681 new_symbol (die, type, cu);
5c4e30ca 12682
e8e80198 12683 namespace_name (die, &is_anonymous, cu);
5c4e30ca 12684 if (is_anonymous)
0114d602
DJ
12685 {
12686 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 12687
c0cc3a76 12688 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 12689 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 12690 }
5c4e30ca 12691 }
9219021c 12692
639d11d3 12693 if (die->child != NULL)
d9fa45fe 12694 {
639d11d3 12695 struct die_info *child_die = die->child;
6e70227d 12696
d9fa45fe
DC
12697 while (child_die && child_die->tag)
12698 {
e7c27a73 12699 process_die (child_die, cu);
d9fa45fe
DC
12700 child_die = sibling_die (child_die);
12701 }
12702 }
38d518c9
EZ
12703}
12704
f55ee35c
JK
12705/* Read a Fortran module as type. This DIE can be only a declaration used for
12706 imported module. Still we need that type as local Fortran "use ... only"
12707 declaration imports depend on the created type in determine_prefix. */
12708
12709static struct type *
12710read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12711{
12712 struct objfile *objfile = cu->objfile;
15d034d0 12713 const char *module_name;
f55ee35c
JK
12714 struct type *type;
12715
12716 module_name = dwarf2_name (die, cu);
12717 if (!module_name)
3e43a32a
MS
12718 complaint (&symfile_complaints,
12719 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12720 die->offset.sect_off);
f55ee35c
JK
12721 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12722
12723 /* determine_prefix uses TYPE_TAG_NAME. */
12724 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12725
12726 return set_die_type (die, type, cu);
12727}
12728
5d7cb8df
JK
12729/* Read a Fortran module. */
12730
12731static void
12732read_module (struct die_info *die, struct dwarf2_cu *cu)
12733{
12734 struct die_info *child_die = die->child;
12735
5d7cb8df
JK
12736 while (child_die && child_die->tag)
12737 {
12738 process_die (child_die, cu);
12739 child_die = sibling_die (child_die);
12740 }
12741}
12742
38d518c9
EZ
12743/* Return the name of the namespace represented by DIE. Set
12744 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12745 namespace. */
12746
12747static const char *
e142c38c 12748namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12749{
12750 struct die_info *current_die;
12751 const char *name = NULL;
12752
12753 /* Loop through the extensions until we find a name. */
12754
12755 for (current_die = die;
12756 current_die != NULL;
f2f0e013 12757 current_die = dwarf2_extension (die, &cu))
38d518c9 12758 {
e142c38c 12759 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12760 if (name != NULL)
12761 break;
12762 }
12763
12764 /* Is it an anonymous namespace? */
12765
12766 *is_anonymous = (name == NULL);
12767 if (*is_anonymous)
2b1dbab0 12768 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12769
12770 return name;
d9fa45fe
DC
12771}
12772
c906108c
SS
12773/* Extract all information from a DW_TAG_pointer_type DIE and add to
12774 the user defined type vector. */
12775
f792889a 12776static struct type *
e7c27a73 12777read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12778{
5e2b427d 12779 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12780 struct comp_unit_head *cu_header = &cu->header;
c906108c 12781 struct type *type;
8b2dbe47
KB
12782 struct attribute *attr_byte_size;
12783 struct attribute *attr_address_class;
12784 int byte_size, addr_class;
7e314c57
JK
12785 struct type *target_type;
12786
12787 target_type = die_type (die, cu);
c906108c 12788
7e314c57
JK
12789 /* The die_type call above may have already set the type for this DIE. */
12790 type = get_die_type (die, cu);
12791 if (type)
12792 return type;
12793
12794 type = lookup_pointer_type (target_type);
8b2dbe47 12795
e142c38c 12796 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12797 if (attr_byte_size)
12798 byte_size = DW_UNSND (attr_byte_size);
c906108c 12799 else
8b2dbe47
KB
12800 byte_size = cu_header->addr_size;
12801
e142c38c 12802 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12803 if (attr_address_class)
12804 addr_class = DW_UNSND (attr_address_class);
12805 else
12806 addr_class = DW_ADDR_none;
12807
12808 /* If the pointer size or address class is different than the
12809 default, create a type variant marked as such and set the
12810 length accordingly. */
12811 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12812 {
5e2b427d 12813 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12814 {
12815 int type_flags;
12816
849957d9 12817 type_flags = gdbarch_address_class_type_flags
5e2b427d 12818 (gdbarch, byte_size, addr_class);
876cecd0
TT
12819 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12820 == 0);
8b2dbe47
KB
12821 type = make_type_with_address_space (type, type_flags);
12822 }
12823 else if (TYPE_LENGTH (type) != byte_size)
12824 {
3e43a32a
MS
12825 complaint (&symfile_complaints,
12826 _("invalid pointer size %d"), byte_size);
8b2dbe47 12827 }
6e70227d 12828 else
9a619af0
MS
12829 {
12830 /* Should we also complain about unhandled address classes? */
12831 }
c906108c 12832 }
8b2dbe47
KB
12833
12834 TYPE_LENGTH (type) = byte_size;
f792889a 12835 return set_die_type (die, type, cu);
c906108c
SS
12836}
12837
12838/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12839 the user defined type vector. */
12840
f792889a 12841static struct type *
e7c27a73 12842read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12843{
12844 struct type *type;
12845 struct type *to_type;
12846 struct type *domain;
12847
e7c27a73
DJ
12848 to_type = die_type (die, cu);
12849 domain = die_containing_type (die, cu);
0d5de010 12850
7e314c57
JK
12851 /* The calls above may have already set the type for this DIE. */
12852 type = get_die_type (die, cu);
12853 if (type)
12854 return type;
12855
0d5de010
DJ
12856 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12857 type = lookup_methodptr_type (to_type);
7078baeb
TT
12858 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12859 {
12860 struct type *new_type = alloc_type (cu->objfile);
12861
12862 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12863 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12864 TYPE_VARARGS (to_type));
12865 type = lookup_methodptr_type (new_type);
12866 }
0d5de010
DJ
12867 else
12868 type = lookup_memberptr_type (to_type, domain);
c906108c 12869
f792889a 12870 return set_die_type (die, type, cu);
c906108c
SS
12871}
12872
12873/* Extract all information from a DW_TAG_reference_type DIE and add to
12874 the user defined type vector. */
12875
f792889a 12876static struct type *
e7c27a73 12877read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12878{
e7c27a73 12879 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12880 struct type *type, *target_type;
c906108c
SS
12881 struct attribute *attr;
12882
7e314c57
JK
12883 target_type = die_type (die, cu);
12884
12885 /* The die_type call above may have already set the type for this DIE. */
12886 type = get_die_type (die, cu);
12887 if (type)
12888 return type;
12889
12890 type = lookup_reference_type (target_type);
e142c38c 12891 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12892 if (attr)
12893 {
12894 TYPE_LENGTH (type) = DW_UNSND (attr);
12895 }
12896 else
12897 {
107d2387 12898 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12899 }
f792889a 12900 return set_die_type (die, type, cu);
c906108c
SS
12901}
12902
f792889a 12903static struct type *
e7c27a73 12904read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12905{
f792889a 12906 struct type *base_type, *cv_type;
c906108c 12907
e7c27a73 12908 base_type = die_type (die, cu);
7e314c57
JK
12909
12910 /* The die_type call above may have already set the type for this DIE. */
12911 cv_type = get_die_type (die, cu);
12912 if (cv_type)
12913 return cv_type;
12914
2f608a3a
KW
12915 /* In case the const qualifier is applied to an array type, the element type
12916 is so qualified, not the array type (section 6.7.3 of C99). */
12917 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12918 {
12919 struct type *el_type, *inner_array;
12920
12921 base_type = copy_type (base_type);
12922 inner_array = base_type;
12923
12924 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12925 {
12926 TYPE_TARGET_TYPE (inner_array) =
12927 copy_type (TYPE_TARGET_TYPE (inner_array));
12928 inner_array = TYPE_TARGET_TYPE (inner_array);
12929 }
12930
12931 el_type = TYPE_TARGET_TYPE (inner_array);
12932 TYPE_TARGET_TYPE (inner_array) =
12933 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12934
12935 return set_die_type (die, base_type, cu);
12936 }
12937
f792889a
DJ
12938 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12939 return set_die_type (die, cv_type, cu);
c906108c
SS
12940}
12941
f792889a 12942static struct type *
e7c27a73 12943read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12944{
f792889a 12945 struct type *base_type, *cv_type;
c906108c 12946
e7c27a73 12947 base_type = die_type (die, cu);
7e314c57
JK
12948
12949 /* The die_type call above may have already set the type for this DIE. */
12950 cv_type = get_die_type (die, cu);
12951 if (cv_type)
12952 return cv_type;
12953
f792889a
DJ
12954 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12955 return set_die_type (die, cv_type, cu);
c906108c
SS
12956}
12957
06d66ee9
TT
12958/* Handle DW_TAG_restrict_type. */
12959
12960static struct type *
12961read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12962{
12963 struct type *base_type, *cv_type;
12964
12965 base_type = die_type (die, cu);
12966
12967 /* The die_type call above may have already set the type for this DIE. */
12968 cv_type = get_die_type (die, cu);
12969 if (cv_type)
12970 return cv_type;
12971
12972 cv_type = make_restrict_type (base_type);
12973 return set_die_type (die, cv_type, cu);
12974}
12975
c906108c
SS
12976/* Extract all information from a DW_TAG_string_type DIE and add to
12977 the user defined type vector. It isn't really a user defined type,
12978 but it behaves like one, with other DIE's using an AT_user_def_type
12979 attribute to reference it. */
12980
f792889a 12981static struct type *
e7c27a73 12982read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12983{
e7c27a73 12984 struct objfile *objfile = cu->objfile;
3b7538c0 12985 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12986 struct type *type, *range_type, *index_type, *char_type;
12987 struct attribute *attr;
12988 unsigned int length;
12989
e142c38c 12990 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12991 if (attr)
12992 {
12993 length = DW_UNSND (attr);
12994 }
12995 else
12996 {
0963b4bd 12997 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12998 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12999 if (attr)
13000 {
13001 length = DW_UNSND (attr);
13002 }
13003 else
13004 {
13005 length = 1;
13006 }
c906108c 13007 }
6ccb9162 13008
46bf5051 13009 index_type = objfile_type (objfile)->builtin_int;
c906108c 13010 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
13011 char_type = language_string_char_type (cu->language_defn, gdbarch);
13012 type = create_string_type (NULL, char_type, range_type);
6ccb9162 13013
f792889a 13014 return set_die_type (die, type, cu);
c906108c
SS
13015}
13016
4d804846
JB
13017/* Assuming that DIE corresponds to a function, returns nonzero
13018 if the function is prototyped. */
13019
13020static int
13021prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13022{
13023 struct attribute *attr;
13024
13025 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13026 if (attr && (DW_UNSND (attr) != 0))
13027 return 1;
13028
13029 /* The DWARF standard implies that the DW_AT_prototyped attribute
13030 is only meaninful for C, but the concept also extends to other
13031 languages that allow unprototyped functions (Eg: Objective C).
13032 For all other languages, assume that functions are always
13033 prototyped. */
13034 if (cu->language != language_c
13035 && cu->language != language_objc
13036 && cu->language != language_opencl)
13037 return 1;
13038
13039 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13040 prototyped and unprototyped functions; default to prototyped,
13041 since that is more common in modern code (and RealView warns
13042 about unprototyped functions). */
13043 if (producer_is_realview (cu->producer))
13044 return 1;
13045
13046 return 0;
13047}
13048
c906108c
SS
13049/* Handle DIES due to C code like:
13050
13051 struct foo
c5aa993b
JM
13052 {
13053 int (*funcp)(int a, long l);
13054 int b;
13055 };
c906108c 13056
0963b4bd 13057 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 13058
f792889a 13059static struct type *
e7c27a73 13060read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13061{
bb5ed363 13062 struct objfile *objfile = cu->objfile;
0963b4bd
MS
13063 struct type *type; /* Type that this function returns. */
13064 struct type *ftype; /* Function that returns above type. */
c906108c
SS
13065 struct attribute *attr;
13066
e7c27a73 13067 type = die_type (die, cu);
7e314c57
JK
13068
13069 /* The die_type call above may have already set the type for this DIE. */
13070 ftype = get_die_type (die, cu);
13071 if (ftype)
13072 return ftype;
13073
0c8b41f1 13074 ftype = lookup_function_type (type);
c906108c 13075
4d804846 13076 if (prototyped_function_p (die, cu))
a6c727b2 13077 TYPE_PROTOTYPED (ftype) = 1;
c906108c 13078
c055b101
CV
13079 /* Store the calling convention in the type if it's available in
13080 the subroutine die. Otherwise set the calling convention to
13081 the default value DW_CC_normal. */
13082 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
13083 if (attr)
13084 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13085 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13086 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13087 else
13088 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
13089
13090 /* We need to add the subroutine type to the die immediately so
13091 we don't infinitely recurse when dealing with parameters
0963b4bd 13092 declared as the same subroutine type. */
76c10ea2 13093 set_die_type (die, ftype, cu);
6e70227d 13094
639d11d3 13095 if (die->child != NULL)
c906108c 13096 {
bb5ed363 13097 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 13098 struct die_info *child_die;
8072405b 13099 int nparams, iparams;
c906108c
SS
13100
13101 /* Count the number of parameters.
13102 FIXME: GDB currently ignores vararg functions, but knows about
13103 vararg member functions. */
8072405b 13104 nparams = 0;
639d11d3 13105 child_die = die->child;
c906108c
SS
13106 while (child_die && child_die->tag)
13107 {
13108 if (child_die->tag == DW_TAG_formal_parameter)
13109 nparams++;
13110 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 13111 TYPE_VARARGS (ftype) = 1;
c906108c
SS
13112 child_die = sibling_die (child_die);
13113 }
13114
13115 /* Allocate storage for parameters and fill them in. */
13116 TYPE_NFIELDS (ftype) = nparams;
13117 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 13118 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 13119
8072405b
JK
13120 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13121 even if we error out during the parameters reading below. */
13122 for (iparams = 0; iparams < nparams; iparams++)
13123 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13124
13125 iparams = 0;
639d11d3 13126 child_die = die->child;
c906108c
SS
13127 while (child_die && child_die->tag)
13128 {
13129 if (child_die->tag == DW_TAG_formal_parameter)
13130 {
3ce3b1ba
PA
13131 struct type *arg_type;
13132
13133 /* DWARF version 2 has no clean way to discern C++
13134 static and non-static member functions. G++ helps
13135 GDB by marking the first parameter for non-static
13136 member functions (which is the this pointer) as
13137 artificial. We pass this information to
13138 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13139
13140 DWARF version 3 added DW_AT_object_pointer, which GCC
13141 4.5 does not yet generate. */
e142c38c 13142 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
13143 if (attr)
13144 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13145 else
418835cc
KS
13146 {
13147 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13148
13149 /* GCC/43521: In java, the formal parameter
13150 "this" is sometimes not marked with DW_AT_artificial. */
13151 if (cu->language == language_java)
13152 {
13153 const char *name = dwarf2_name (child_die, cu);
9a619af0 13154
418835cc
KS
13155 if (name && !strcmp (name, "this"))
13156 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13157 }
13158 }
3ce3b1ba
PA
13159 arg_type = die_type (child_die, cu);
13160
13161 /* RealView does not mark THIS as const, which the testsuite
13162 expects. GCC marks THIS as const in method definitions,
13163 but not in the class specifications (GCC PR 43053). */
13164 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13165 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13166 {
13167 int is_this = 0;
13168 struct dwarf2_cu *arg_cu = cu;
13169 const char *name = dwarf2_name (child_die, cu);
13170
13171 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13172 if (attr)
13173 {
13174 /* If the compiler emits this, use it. */
13175 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13176 is_this = 1;
13177 }
13178 else if (name && strcmp (name, "this") == 0)
13179 /* Function definitions will have the argument names. */
13180 is_this = 1;
13181 else if (name == NULL && iparams == 0)
13182 /* Declarations may not have the names, so like
13183 elsewhere in GDB, assume an artificial first
13184 argument is "this". */
13185 is_this = 1;
13186
13187 if (is_this)
13188 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13189 arg_type, 0);
13190 }
13191
13192 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
13193 iparams++;
13194 }
13195 child_die = sibling_die (child_die);
13196 }
13197 }
13198
76c10ea2 13199 return ftype;
c906108c
SS
13200}
13201
f792889a 13202static struct type *
e7c27a73 13203read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13204{
e7c27a73 13205 struct objfile *objfile = cu->objfile;
0114d602 13206 const char *name = NULL;
3c8e0968 13207 struct type *this_type, *target_type;
c906108c 13208
94af9270 13209 name = dwarf2_full_name (NULL, die, cu);
f792889a 13210 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 13211 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 13212 TYPE_NAME (this_type) = name;
f792889a 13213 set_die_type (die, this_type, cu);
3c8e0968
DE
13214 target_type = die_type (die, cu);
13215 if (target_type != this_type)
13216 TYPE_TARGET_TYPE (this_type) = target_type;
13217 else
13218 {
13219 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13220 spec and cause infinite loops in GDB. */
13221 complaint (&symfile_complaints,
13222 _("Self-referential DW_TAG_typedef "
13223 "- DIE at 0x%x [in module %s]"),
b64f50a1 13224 die->offset.sect_off, objfile->name);
3c8e0968
DE
13225 TYPE_TARGET_TYPE (this_type) = NULL;
13226 }
f792889a 13227 return this_type;
c906108c
SS
13228}
13229
13230/* Find a representation of a given base type and install
13231 it in the TYPE field of the die. */
13232
f792889a 13233static struct type *
e7c27a73 13234read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13235{
e7c27a73 13236 struct objfile *objfile = cu->objfile;
c906108c
SS
13237 struct type *type;
13238 struct attribute *attr;
13239 int encoding = 0, size = 0;
15d034d0 13240 const char *name;
6ccb9162
UW
13241 enum type_code code = TYPE_CODE_INT;
13242 int type_flags = 0;
13243 struct type *target_type = NULL;
c906108c 13244
e142c38c 13245 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
13246 if (attr)
13247 {
13248 encoding = DW_UNSND (attr);
13249 }
e142c38c 13250 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13251 if (attr)
13252 {
13253 size = DW_UNSND (attr);
13254 }
39cbfefa 13255 name = dwarf2_name (die, cu);
6ccb9162 13256 if (!name)
c906108c 13257 {
6ccb9162
UW
13258 complaint (&symfile_complaints,
13259 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 13260 }
6ccb9162
UW
13261
13262 switch (encoding)
c906108c 13263 {
6ccb9162
UW
13264 case DW_ATE_address:
13265 /* Turn DW_ATE_address into a void * pointer. */
13266 code = TYPE_CODE_PTR;
13267 type_flags |= TYPE_FLAG_UNSIGNED;
13268 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13269 break;
13270 case DW_ATE_boolean:
13271 code = TYPE_CODE_BOOL;
13272 type_flags |= TYPE_FLAG_UNSIGNED;
13273 break;
13274 case DW_ATE_complex_float:
13275 code = TYPE_CODE_COMPLEX;
13276 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13277 break;
13278 case DW_ATE_decimal_float:
13279 code = TYPE_CODE_DECFLOAT;
13280 break;
13281 case DW_ATE_float:
13282 code = TYPE_CODE_FLT;
13283 break;
13284 case DW_ATE_signed:
13285 break;
13286 case DW_ATE_unsigned:
13287 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
13288 if (cu->language == language_fortran
13289 && name
13290 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13291 code = TYPE_CODE_CHAR;
6ccb9162
UW
13292 break;
13293 case DW_ATE_signed_char:
6e70227d 13294 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13295 || cu->language == language_pascal
13296 || cu->language == language_fortran)
6ccb9162
UW
13297 code = TYPE_CODE_CHAR;
13298 break;
13299 case DW_ATE_unsigned_char:
868a0084 13300 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13301 || cu->language == language_pascal
13302 || cu->language == language_fortran)
6ccb9162
UW
13303 code = TYPE_CODE_CHAR;
13304 type_flags |= TYPE_FLAG_UNSIGNED;
13305 break;
75079b2b
TT
13306 case DW_ATE_UTF:
13307 /* We just treat this as an integer and then recognize the
13308 type by name elsewhere. */
13309 break;
13310
6ccb9162
UW
13311 default:
13312 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13313 dwarf_type_encoding_name (encoding));
13314 break;
c906108c 13315 }
6ccb9162 13316
0114d602
DJ
13317 type = init_type (code, size, type_flags, NULL, objfile);
13318 TYPE_NAME (type) = name;
6ccb9162
UW
13319 TYPE_TARGET_TYPE (type) = target_type;
13320
0114d602 13321 if (name && strcmp (name, "char") == 0)
876cecd0 13322 TYPE_NOSIGN (type) = 1;
0114d602 13323
f792889a 13324 return set_die_type (die, type, cu);
c906108c
SS
13325}
13326
a02abb62
JB
13327/* Read the given DW_AT_subrange DIE. */
13328
f792889a 13329static struct type *
a02abb62
JB
13330read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13331{
4c9ad8c2 13332 struct type *base_type, *orig_base_type;
a02abb62
JB
13333 struct type *range_type;
13334 struct attribute *attr;
4fae6e18
JK
13335 LONGEST low, high;
13336 int low_default_is_valid;
15d034d0 13337 const char *name;
43bbcdc2 13338 LONGEST negative_mask;
e77813c8 13339
4c9ad8c2
TT
13340 orig_base_type = die_type (die, cu);
13341 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13342 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13343 creating the range type, but we use the result of check_typedef
13344 when examining properties of the type. */
13345 base_type = check_typedef (orig_base_type);
a02abb62 13346
7e314c57
JK
13347 /* The die_type call above may have already set the type for this DIE. */
13348 range_type = get_die_type (die, cu);
13349 if (range_type)
13350 return range_type;
13351
4fae6e18
JK
13352 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13353 omitting DW_AT_lower_bound. */
13354 switch (cu->language)
6e70227d 13355 {
4fae6e18
JK
13356 case language_c:
13357 case language_cplus:
13358 low = 0;
13359 low_default_is_valid = 1;
13360 break;
13361 case language_fortran:
13362 low = 1;
13363 low_default_is_valid = 1;
13364 break;
13365 case language_d:
13366 case language_java:
13367 case language_objc:
13368 low = 0;
13369 low_default_is_valid = (cu->header.version >= 4);
13370 break;
13371 case language_ada:
13372 case language_m2:
13373 case language_pascal:
a02abb62 13374 low = 1;
4fae6e18
JK
13375 low_default_is_valid = (cu->header.version >= 4);
13376 break;
13377 default:
13378 low = 0;
13379 low_default_is_valid = 0;
13380 break;
a02abb62
JB
13381 }
13382
dd5e6932
DJ
13383 /* FIXME: For variable sized arrays either of these could be
13384 a variable rather than a constant value. We'll allow it,
13385 but we don't know how to handle it. */
e142c38c 13386 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 13387 if (attr)
4fae6e18
JK
13388 low = dwarf2_get_attr_constant_value (attr, low);
13389 else if (!low_default_is_valid)
13390 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13391 "- DIE at 0x%x [in module %s]"),
13392 die->offset.sect_off, cu->objfile->name);
a02abb62 13393
e142c38c 13394 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 13395 if (attr)
6e70227d 13396 {
7771576e 13397 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
13398 {
13399 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 13400 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
13401 FIXME: GDB does not yet know how to handle dynamic
13402 arrays properly, treat them as arrays with unspecified
13403 length for now.
13404
13405 FIXME: jimb/2003-09-22: GDB does not really know
13406 how to handle arrays of unspecified length
13407 either; we just represent them as zero-length
13408 arrays. Choose an appropriate upper bound given
13409 the lower bound we've computed above. */
13410 high = low - 1;
13411 }
13412 else
13413 high = dwarf2_get_attr_constant_value (attr, 1);
13414 }
e77813c8
PM
13415 else
13416 {
13417 attr = dwarf2_attr (die, DW_AT_count, cu);
13418 if (attr)
13419 {
13420 int count = dwarf2_get_attr_constant_value (attr, 1);
13421 high = low + count - 1;
13422 }
c2ff108b
JK
13423 else
13424 {
13425 /* Unspecified array length. */
13426 high = low - 1;
13427 }
e77813c8
PM
13428 }
13429
13430 /* Dwarf-2 specifications explicitly allows to create subrange types
13431 without specifying a base type.
13432 In that case, the base type must be set to the type of
13433 the lower bound, upper bound or count, in that order, if any of these
13434 three attributes references an object that has a type.
13435 If no base type is found, the Dwarf-2 specifications say that
13436 a signed integer type of size equal to the size of an address should
13437 be used.
13438 For the following C code: `extern char gdb_int [];'
13439 GCC produces an empty range DIE.
13440 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 13441 high bound or count are not yet handled by this code. */
e77813c8
PM
13442 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13443 {
13444 struct objfile *objfile = cu->objfile;
13445 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13446 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13447 struct type *int_type = objfile_type (objfile)->builtin_int;
13448
13449 /* Test "int", "long int", and "long long int" objfile types,
13450 and select the first one having a size above or equal to the
13451 architecture address size. */
13452 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13453 base_type = int_type;
13454 else
13455 {
13456 int_type = objfile_type (objfile)->builtin_long;
13457 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13458 base_type = int_type;
13459 else
13460 {
13461 int_type = objfile_type (objfile)->builtin_long_long;
13462 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13463 base_type = int_type;
13464 }
13465 }
13466 }
a02abb62 13467
6e70227d 13468 negative_mask =
43bbcdc2
PH
13469 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13470 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13471 low |= negative_mask;
13472 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13473 high |= negative_mask;
13474
4c9ad8c2 13475 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 13476
bbb0eef6
JK
13477 /* Mark arrays with dynamic length at least as an array of unspecified
13478 length. GDB could check the boundary but before it gets implemented at
13479 least allow accessing the array elements. */
d48323d8 13480 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
13481 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13482
c2ff108b
JK
13483 /* Ada expects an empty array on no boundary attributes. */
13484 if (attr == NULL && cu->language != language_ada)
13485 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13486
39cbfefa
DJ
13487 name = dwarf2_name (die, cu);
13488 if (name)
13489 TYPE_NAME (range_type) = name;
6e70227d 13490
e142c38c 13491 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
13492 if (attr)
13493 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13494
7e314c57
JK
13495 set_die_type (die, range_type, cu);
13496
13497 /* set_die_type should be already done. */
b4ba55a1
JB
13498 set_descriptive_type (range_type, die, cu);
13499
7e314c57 13500 return range_type;
a02abb62 13501}
6e70227d 13502
f792889a 13503static struct type *
81a17f79
JB
13504read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13505{
13506 struct type *type;
81a17f79 13507
81a17f79
JB
13508 /* For now, we only support the C meaning of an unspecified type: void. */
13509
0114d602
DJ
13510 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13511 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 13512
f792889a 13513 return set_die_type (die, type, cu);
81a17f79 13514}
a02abb62 13515
639d11d3
DC
13516/* Read a single die and all its descendents. Set the die's sibling
13517 field to NULL; set other fields in the die correctly, and set all
13518 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13519 location of the info_ptr after reading all of those dies. PARENT
13520 is the parent of the die in question. */
13521
13522static struct die_info *
dee91e82 13523read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
13524 const gdb_byte *info_ptr,
13525 const gdb_byte **new_info_ptr,
dee91e82 13526 struct die_info *parent)
639d11d3
DC
13527{
13528 struct die_info *die;
d521ce57 13529 const gdb_byte *cur_ptr;
639d11d3
DC
13530 int has_children;
13531
bf6af496 13532 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
13533 if (die == NULL)
13534 {
13535 *new_info_ptr = cur_ptr;
13536 return NULL;
13537 }
93311388 13538 store_in_ref_table (die, reader->cu);
639d11d3
DC
13539
13540 if (has_children)
bf6af496 13541 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
13542 else
13543 {
13544 die->child = NULL;
13545 *new_info_ptr = cur_ptr;
13546 }
13547
13548 die->sibling = NULL;
13549 die->parent = parent;
13550 return die;
13551}
13552
13553/* Read a die, all of its descendents, and all of its siblings; set
13554 all of the fields of all of the dies correctly. Arguments are as
13555 in read_die_and_children. */
13556
13557static struct die_info *
bf6af496 13558read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
13559 const gdb_byte *info_ptr,
13560 const gdb_byte **new_info_ptr,
bf6af496 13561 struct die_info *parent)
639d11d3
DC
13562{
13563 struct die_info *first_die, *last_sibling;
d521ce57 13564 const gdb_byte *cur_ptr;
639d11d3 13565
c906108c 13566 cur_ptr = info_ptr;
639d11d3
DC
13567 first_die = last_sibling = NULL;
13568
13569 while (1)
c906108c 13570 {
639d11d3 13571 struct die_info *die
dee91e82 13572 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 13573
1d325ec1 13574 if (die == NULL)
c906108c 13575 {
639d11d3
DC
13576 *new_info_ptr = cur_ptr;
13577 return first_die;
c906108c 13578 }
1d325ec1
DJ
13579
13580 if (!first_die)
13581 first_die = die;
c906108c 13582 else
1d325ec1
DJ
13583 last_sibling->sibling = die;
13584
13585 last_sibling = die;
c906108c 13586 }
c906108c
SS
13587}
13588
bf6af496
DE
13589/* Read a die, all of its descendents, and all of its siblings; set
13590 all of the fields of all of the dies correctly. Arguments are as
13591 in read_die_and_children.
13592 This the main entry point for reading a DIE and all its children. */
13593
13594static struct die_info *
13595read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
13596 const gdb_byte *info_ptr,
13597 const gdb_byte **new_info_ptr,
bf6af496
DE
13598 struct die_info *parent)
13599{
13600 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13601 new_info_ptr, parent);
13602
13603 if (dwarf2_die_debug)
13604 {
13605 fprintf_unfiltered (gdb_stdlog,
13606 "Read die from %s@0x%x of %s:\n",
13607 bfd_section_name (reader->abfd,
13608 reader->die_section->asection),
13609 (unsigned) (info_ptr - reader->die_section->buffer),
13610 bfd_get_filename (reader->abfd));
13611 dump_die (die, dwarf2_die_debug);
13612 }
13613
13614 return die;
13615}
13616
3019eac3
DE
13617/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13618 attributes.
13619 The caller is responsible for filling in the extra attributes
13620 and updating (*DIEP)->num_attrs.
13621 Set DIEP to point to a newly allocated die with its information,
13622 except for its child, sibling, and parent fields.
13623 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 13624
d521ce57 13625static const gdb_byte *
3019eac3 13626read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 13627 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 13628 int *has_children, int num_extra_attrs)
93311388 13629{
b64f50a1
JK
13630 unsigned int abbrev_number, bytes_read, i;
13631 sect_offset offset;
93311388
DE
13632 struct abbrev_info *abbrev;
13633 struct die_info *die;
13634 struct dwarf2_cu *cu = reader->cu;
13635 bfd *abfd = reader->abfd;
13636
b64f50a1 13637 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
13638 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13639 info_ptr += bytes_read;
13640 if (!abbrev_number)
13641 {
13642 *diep = NULL;
13643 *has_children = 0;
13644 return info_ptr;
13645 }
13646
433df2d4 13647 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 13648 if (!abbrev)
348e048f
DE
13649 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13650 abbrev_number,
13651 bfd_get_filename (abfd));
13652
3019eac3 13653 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
13654 die->offset = offset;
13655 die->tag = abbrev->tag;
13656 die->abbrev = abbrev_number;
13657
3019eac3
DE
13658 /* Make the result usable.
13659 The caller needs to update num_attrs after adding the extra
13660 attributes. */
93311388
DE
13661 die->num_attrs = abbrev->num_attrs;
13662
13663 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
13664 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13665 info_ptr);
93311388
DE
13666
13667 *diep = die;
13668 *has_children = abbrev->has_children;
13669 return info_ptr;
13670}
13671
3019eac3
DE
13672/* Read a die and all its attributes.
13673 Set DIEP to point to a newly allocated die with its information,
13674 except for its child, sibling, and parent fields.
13675 Set HAS_CHILDREN to tell whether the die has children or not. */
13676
d521ce57 13677static const gdb_byte *
3019eac3 13678read_full_die (const struct die_reader_specs *reader,
d521ce57 13679 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
13680 int *has_children)
13681{
d521ce57 13682 const gdb_byte *result;
bf6af496
DE
13683
13684 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13685
13686 if (dwarf2_die_debug)
13687 {
13688 fprintf_unfiltered (gdb_stdlog,
13689 "Read die from %s@0x%x of %s:\n",
13690 bfd_section_name (reader->abfd,
13691 reader->die_section->asection),
13692 (unsigned) (info_ptr - reader->die_section->buffer),
13693 bfd_get_filename (reader->abfd));
13694 dump_die (*diep, dwarf2_die_debug);
13695 }
13696
13697 return result;
3019eac3 13698}
433df2d4
DE
13699\f
13700/* Abbreviation tables.
3019eac3 13701
433df2d4 13702 In DWARF version 2, the description of the debugging information is
c906108c
SS
13703 stored in a separate .debug_abbrev section. Before we read any
13704 dies from a section we read in all abbreviations and install them
433df2d4
DE
13705 in a hash table. */
13706
13707/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13708
13709static struct abbrev_info *
13710abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13711{
13712 struct abbrev_info *abbrev;
13713
13714 abbrev = (struct abbrev_info *)
13715 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13716 memset (abbrev, 0, sizeof (struct abbrev_info));
13717 return abbrev;
13718}
13719
13720/* Add an abbreviation to the table. */
c906108c
SS
13721
13722static void
433df2d4
DE
13723abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13724 unsigned int abbrev_number,
13725 struct abbrev_info *abbrev)
13726{
13727 unsigned int hash_number;
13728
13729 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13730 abbrev->next = abbrev_table->abbrevs[hash_number];
13731 abbrev_table->abbrevs[hash_number] = abbrev;
13732}
dee91e82 13733
433df2d4
DE
13734/* Look up an abbrev in the table.
13735 Returns NULL if the abbrev is not found. */
13736
13737static struct abbrev_info *
13738abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13739 unsigned int abbrev_number)
c906108c 13740{
433df2d4
DE
13741 unsigned int hash_number;
13742 struct abbrev_info *abbrev;
13743
13744 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13745 abbrev = abbrev_table->abbrevs[hash_number];
13746
13747 while (abbrev)
13748 {
13749 if (abbrev->number == abbrev_number)
13750 return abbrev;
13751 abbrev = abbrev->next;
13752 }
13753 return NULL;
13754}
13755
13756/* Read in an abbrev table. */
13757
13758static struct abbrev_table *
13759abbrev_table_read_table (struct dwarf2_section_info *section,
13760 sect_offset offset)
13761{
13762 struct objfile *objfile = dwarf2_per_objfile->objfile;
13763 bfd *abfd = section->asection->owner;
13764 struct abbrev_table *abbrev_table;
d521ce57 13765 const gdb_byte *abbrev_ptr;
c906108c
SS
13766 struct abbrev_info *cur_abbrev;
13767 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 13768 unsigned int abbrev_form;
f3dd6933
DJ
13769 struct attr_abbrev *cur_attrs;
13770 unsigned int allocated_attrs;
c906108c 13771
433df2d4 13772 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 13773 abbrev_table->offset = offset;
433df2d4
DE
13774 obstack_init (&abbrev_table->abbrev_obstack);
13775 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13776 (ABBREV_HASH_SIZE
13777 * sizeof (struct abbrev_info *)));
13778 memset (abbrev_table->abbrevs, 0,
13779 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 13780
433df2d4
DE
13781 dwarf2_read_section (objfile, section);
13782 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
13783 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13784 abbrev_ptr += bytes_read;
13785
f3dd6933
DJ
13786 allocated_attrs = ATTR_ALLOC_CHUNK;
13787 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 13788
0963b4bd 13789 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
13790 while (abbrev_number)
13791 {
433df2d4 13792 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13793
13794 /* read in abbrev header */
13795 cur_abbrev->number = abbrev_number;
13796 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13797 abbrev_ptr += bytes_read;
13798 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13799 abbrev_ptr += 1;
13800
13801 /* now read in declarations */
13802 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13803 abbrev_ptr += bytes_read;
13804 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13805 abbrev_ptr += bytes_read;
13806 while (abbrev_name)
13807 {
f3dd6933 13808 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13809 {
f3dd6933
DJ
13810 allocated_attrs += ATTR_ALLOC_CHUNK;
13811 cur_attrs
13812 = xrealloc (cur_attrs, (allocated_attrs
13813 * sizeof (struct attr_abbrev)));
c906108c 13814 }
ae038cb0 13815
f3dd6933
DJ
13816 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13817 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13818 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13819 abbrev_ptr += bytes_read;
13820 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13821 abbrev_ptr += bytes_read;
13822 }
13823
433df2d4 13824 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13825 (cur_abbrev->num_attrs
13826 * sizeof (struct attr_abbrev)));
13827 memcpy (cur_abbrev->attrs, cur_attrs,
13828 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13829
433df2d4 13830 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13831
13832 /* Get next abbreviation.
13833 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13834 always properly terminated with an abbrev number of 0.
13835 Exit loop if we encounter an abbreviation which we have
13836 already read (which means we are about to read the abbreviations
13837 for the next compile unit) or if the end of the abbreviation
13838 table is reached. */
433df2d4 13839 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13840 break;
13841 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13842 abbrev_ptr += bytes_read;
433df2d4 13843 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13844 break;
13845 }
f3dd6933
DJ
13846
13847 xfree (cur_attrs);
433df2d4 13848 return abbrev_table;
c906108c
SS
13849}
13850
433df2d4 13851/* Free the resources held by ABBREV_TABLE. */
c906108c 13852
c906108c 13853static void
433df2d4 13854abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13855{
433df2d4
DE
13856 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13857 xfree (abbrev_table);
c906108c
SS
13858}
13859
f4dc4d17
DE
13860/* Same as abbrev_table_free but as a cleanup.
13861 We pass in a pointer to the pointer to the table so that we can
13862 set the pointer to NULL when we're done. It also simplifies
13863 build_type_unit_groups. */
13864
13865static void
13866abbrev_table_free_cleanup (void *table_ptr)
13867{
13868 struct abbrev_table **abbrev_table_ptr = table_ptr;
13869
13870 if (*abbrev_table_ptr != NULL)
13871 abbrev_table_free (*abbrev_table_ptr);
13872 *abbrev_table_ptr = NULL;
13873}
13874
433df2d4
DE
13875/* Read the abbrev table for CU from ABBREV_SECTION. */
13876
13877static void
13878dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13879 struct dwarf2_section_info *abbrev_section)
c906108c 13880{
433df2d4
DE
13881 cu->abbrev_table =
13882 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13883}
c906108c 13884
433df2d4 13885/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13886
433df2d4
DE
13887static void
13888dwarf2_free_abbrev_table (void *ptr_to_cu)
13889{
13890 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13891
a2ce51a0
DE
13892 if (cu->abbrev_table != NULL)
13893 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
13894 /* Set this to NULL so that we SEGV if we try to read it later,
13895 and also because free_comp_unit verifies this is NULL. */
13896 cu->abbrev_table = NULL;
13897}
13898\f
72bf9492
DJ
13899/* Returns nonzero if TAG represents a type that we might generate a partial
13900 symbol for. */
13901
13902static int
13903is_type_tag_for_partial (int tag)
13904{
13905 switch (tag)
13906 {
13907#if 0
13908 /* Some types that would be reasonable to generate partial symbols for,
13909 that we don't at present. */
13910 case DW_TAG_array_type:
13911 case DW_TAG_file_type:
13912 case DW_TAG_ptr_to_member_type:
13913 case DW_TAG_set_type:
13914 case DW_TAG_string_type:
13915 case DW_TAG_subroutine_type:
13916#endif
13917 case DW_TAG_base_type:
13918 case DW_TAG_class_type:
680b30c7 13919 case DW_TAG_interface_type:
72bf9492
DJ
13920 case DW_TAG_enumeration_type:
13921 case DW_TAG_structure_type:
13922 case DW_TAG_subrange_type:
13923 case DW_TAG_typedef:
13924 case DW_TAG_union_type:
13925 return 1;
13926 default:
13927 return 0;
13928 }
13929}
13930
13931/* Load all DIEs that are interesting for partial symbols into memory. */
13932
13933static struct partial_die_info *
dee91e82 13934load_partial_dies (const struct die_reader_specs *reader,
d521ce57 13935 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 13936{
dee91e82 13937 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13938 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13939 struct partial_die_info *part_die;
13940 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13941 struct abbrev_info *abbrev;
13942 unsigned int bytes_read;
5afb4e99 13943 unsigned int load_all = 0;
72bf9492
DJ
13944 int nesting_level = 1;
13945
13946 parent_die = NULL;
13947 last_die = NULL;
13948
7adf1e79
DE
13949 gdb_assert (cu->per_cu != NULL);
13950 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13951 load_all = 1;
13952
72bf9492
DJ
13953 cu->partial_dies
13954 = htab_create_alloc_ex (cu->header.length / 12,
13955 partial_die_hash,
13956 partial_die_eq,
13957 NULL,
13958 &cu->comp_unit_obstack,
13959 hashtab_obstack_allocate,
13960 dummy_obstack_deallocate);
13961
13962 part_die = obstack_alloc (&cu->comp_unit_obstack,
13963 sizeof (struct partial_die_info));
13964
13965 while (1)
13966 {
13967 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13968
13969 /* A NULL abbrev means the end of a series of children. */
13970 if (abbrev == NULL)
13971 {
13972 if (--nesting_level == 0)
13973 {
13974 /* PART_DIE was probably the last thing allocated on the
13975 comp_unit_obstack, so we could call obstack_free
13976 here. We don't do that because the waste is small,
13977 and will be cleaned up when we're done with this
13978 compilation unit. This way, we're also more robust
13979 against other users of the comp_unit_obstack. */
13980 return first_die;
13981 }
13982 info_ptr += bytes_read;
13983 last_die = parent_die;
13984 parent_die = parent_die->die_parent;
13985 continue;
13986 }
13987
98bfdba5
PA
13988 /* Check for template arguments. We never save these; if
13989 they're seen, we just mark the parent, and go on our way. */
13990 if (parent_die != NULL
13991 && cu->language == language_cplus
13992 && (abbrev->tag == DW_TAG_template_type_param
13993 || abbrev->tag == DW_TAG_template_value_param))
13994 {
13995 parent_die->has_template_arguments = 1;
13996
13997 if (!load_all)
13998 {
13999 /* We don't need a partial DIE for the template argument. */
dee91e82 14000 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14001 continue;
14002 }
14003 }
14004
0d99eb77 14005 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
14006 Skip their other children. */
14007 if (!load_all
14008 && cu->language == language_cplus
14009 && parent_die != NULL
14010 && parent_die->tag == DW_TAG_subprogram)
14011 {
dee91e82 14012 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14013 continue;
14014 }
14015
5afb4e99
DJ
14016 /* Check whether this DIE is interesting enough to save. Normally
14017 we would not be interested in members here, but there may be
14018 later variables referencing them via DW_AT_specification (for
14019 static members). */
14020 if (!load_all
14021 && !is_type_tag_for_partial (abbrev->tag)
72929c62 14022 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
14023 && abbrev->tag != DW_TAG_enumerator
14024 && abbrev->tag != DW_TAG_subprogram
bc30ff58 14025 && abbrev->tag != DW_TAG_lexical_block
72bf9492 14026 && abbrev->tag != DW_TAG_variable
5afb4e99 14027 && abbrev->tag != DW_TAG_namespace
f55ee35c 14028 && abbrev->tag != DW_TAG_module
95554aad
TT
14029 && abbrev->tag != DW_TAG_member
14030 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
14031 {
14032 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14033 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
14034 continue;
14035 }
14036
dee91e82
DE
14037 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14038 info_ptr);
72bf9492
DJ
14039
14040 /* This two-pass algorithm for processing partial symbols has a
14041 high cost in cache pressure. Thus, handle some simple cases
14042 here which cover the majority of C partial symbols. DIEs
14043 which neither have specification tags in them, nor could have
14044 specification tags elsewhere pointing at them, can simply be
14045 processed and discarded.
14046
14047 This segment is also optional; scan_partial_symbols and
14048 add_partial_symbol will handle these DIEs if we chain
14049 them in normally. When compilers which do not emit large
14050 quantities of duplicate debug information are more common,
14051 this code can probably be removed. */
14052
14053 /* Any complete simple types at the top level (pretty much all
14054 of them, for a language without namespaces), can be processed
14055 directly. */
14056 if (parent_die == NULL
14057 && part_die->has_specification == 0
14058 && part_die->is_declaration == 0
d8228535 14059 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
14060 || part_die->tag == DW_TAG_base_type
14061 || part_die->tag == DW_TAG_subrange_type))
14062 {
14063 if (building_psymtab && part_die->name != NULL)
04a679b8 14064 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14065 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
14066 &objfile->static_psymbols,
14067 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 14068 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14069 continue;
14070 }
14071
d8228535
JK
14072 /* The exception for DW_TAG_typedef with has_children above is
14073 a workaround of GCC PR debug/47510. In the case of this complaint
14074 type_name_no_tag_or_error will error on such types later.
14075
14076 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14077 it could not find the child DIEs referenced later, this is checked
14078 above. In correct DWARF DW_TAG_typedef should have no children. */
14079
14080 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14081 complaint (&symfile_complaints,
14082 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14083 "- DIE at 0x%x [in module %s]"),
b64f50a1 14084 part_die->offset.sect_off, objfile->name);
d8228535 14085
72bf9492
DJ
14086 /* If we're at the second level, and we're an enumerator, and
14087 our parent has no specification (meaning possibly lives in a
14088 namespace elsewhere), then we can add the partial symbol now
14089 instead of queueing it. */
14090 if (part_die->tag == DW_TAG_enumerator
14091 && parent_die != NULL
14092 && parent_die->die_parent == NULL
14093 && parent_die->tag == DW_TAG_enumeration_type
14094 && parent_die->has_specification == 0)
14095 {
14096 if (part_die->name == NULL)
3e43a32a
MS
14097 complaint (&symfile_complaints,
14098 _("malformed enumerator DIE ignored"));
72bf9492 14099 else if (building_psymtab)
04a679b8 14100 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14101 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
14102 (cu->language == language_cplus
14103 || cu->language == language_java)
bb5ed363
DE
14104 ? &objfile->global_psymbols
14105 : &objfile->static_psymbols,
14106 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 14107
dee91e82 14108 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14109 continue;
14110 }
14111
14112 /* We'll save this DIE so link it in. */
14113 part_die->die_parent = parent_die;
14114 part_die->die_sibling = NULL;
14115 part_die->die_child = NULL;
14116
14117 if (last_die && last_die == parent_die)
14118 last_die->die_child = part_die;
14119 else if (last_die)
14120 last_die->die_sibling = part_die;
14121
14122 last_die = part_die;
14123
14124 if (first_die == NULL)
14125 first_die = part_die;
14126
14127 /* Maybe add the DIE to the hash table. Not all DIEs that we
14128 find interesting need to be in the hash table, because we
14129 also have the parent/sibling/child chains; only those that we
14130 might refer to by offset later during partial symbol reading.
14131
14132 For now this means things that might have be the target of a
14133 DW_AT_specification, DW_AT_abstract_origin, or
14134 DW_AT_extension. DW_AT_extension will refer only to
14135 namespaces; DW_AT_abstract_origin refers to functions (and
14136 many things under the function DIE, but we do not recurse
14137 into function DIEs during partial symbol reading) and
14138 possibly variables as well; DW_AT_specification refers to
14139 declarations. Declarations ought to have the DW_AT_declaration
14140 flag. It happens that GCC forgets to put it in sometimes, but
14141 only for functions, not for types.
14142
14143 Adding more things than necessary to the hash table is harmless
14144 except for the performance cost. Adding too few will result in
5afb4e99
DJ
14145 wasted time in find_partial_die, when we reread the compilation
14146 unit with load_all_dies set. */
72bf9492 14147
5afb4e99 14148 if (load_all
72929c62 14149 || abbrev->tag == DW_TAG_constant
5afb4e99 14150 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
14151 || abbrev->tag == DW_TAG_variable
14152 || abbrev->tag == DW_TAG_namespace
14153 || part_die->is_declaration)
14154 {
14155 void **slot;
14156
14157 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 14158 part_die->offset.sect_off, INSERT);
72bf9492
DJ
14159 *slot = part_die;
14160 }
14161
14162 part_die = obstack_alloc (&cu->comp_unit_obstack,
14163 sizeof (struct partial_die_info));
14164
14165 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 14166 we have no reason to follow the children of structures; for other
98bfdba5
PA
14167 languages we have to, so that we can get at method physnames
14168 to infer fully qualified class names, for DW_AT_specification,
14169 and for C++ template arguments. For C++, we also look one level
14170 inside functions to find template arguments (if the name of the
14171 function does not already contain the template arguments).
bc30ff58
JB
14172
14173 For Ada, we need to scan the children of subprograms and lexical
14174 blocks as well because Ada allows the definition of nested
14175 entities that could be interesting for the debugger, such as
14176 nested subprograms for instance. */
72bf9492 14177 if (last_die->has_children
5afb4e99
DJ
14178 && (load_all
14179 || last_die->tag == DW_TAG_namespace
f55ee35c 14180 || last_die->tag == DW_TAG_module
72bf9492 14181 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
14182 || (cu->language == language_cplus
14183 && last_die->tag == DW_TAG_subprogram
14184 && (last_die->name == NULL
14185 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
14186 || (cu->language != language_c
14187 && (last_die->tag == DW_TAG_class_type
680b30c7 14188 || last_die->tag == DW_TAG_interface_type
72bf9492 14189 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
14190 || last_die->tag == DW_TAG_union_type))
14191 || (cu->language == language_ada
14192 && (last_die->tag == DW_TAG_subprogram
14193 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
14194 {
14195 nesting_level++;
14196 parent_die = last_die;
14197 continue;
14198 }
14199
14200 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14201 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
14202
14203 /* Back to the top, do it again. */
14204 }
14205}
14206
c906108c
SS
14207/* Read a minimal amount of information into the minimal die structure. */
14208
d521ce57 14209static const gdb_byte *
dee91e82
DE
14210read_partial_die (const struct die_reader_specs *reader,
14211 struct partial_die_info *part_die,
14212 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 14213 const gdb_byte *info_ptr)
c906108c 14214{
dee91e82 14215 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14216 struct objfile *objfile = cu->objfile;
d521ce57 14217 const gdb_byte *buffer = reader->buffer;
fa238c03 14218 unsigned int i;
c906108c 14219 struct attribute attr;
c5aa993b 14220 int has_low_pc_attr = 0;
c906108c 14221 int has_high_pc_attr = 0;
91da1414 14222 int high_pc_relative = 0;
c906108c 14223
72bf9492 14224 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 14225
b64f50a1 14226 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
14227
14228 info_ptr += abbrev_len;
14229
14230 if (abbrev == NULL)
14231 return info_ptr;
14232
c906108c
SS
14233 part_die->tag = abbrev->tag;
14234 part_die->has_children = abbrev->has_children;
c906108c
SS
14235
14236 for (i = 0; i < abbrev->num_attrs; ++i)
14237 {
dee91e82 14238 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
14239
14240 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 14241 partial symbol table. */
c906108c
SS
14242 switch (attr.name)
14243 {
14244 case DW_AT_name:
71c25dea
TT
14245 switch (part_die->tag)
14246 {
14247 case DW_TAG_compile_unit:
95554aad 14248 case DW_TAG_partial_unit:
348e048f 14249 case DW_TAG_type_unit:
71c25dea
TT
14250 /* Compilation units have a DW_AT_name that is a filename, not
14251 a source language identifier. */
14252 case DW_TAG_enumeration_type:
14253 case DW_TAG_enumerator:
14254 /* These tags always have simple identifiers already; no need
14255 to canonicalize them. */
14256 part_die->name = DW_STRING (&attr);
14257 break;
14258 default:
14259 part_die->name
14260 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 14261 &objfile->objfile_obstack);
71c25dea
TT
14262 break;
14263 }
c906108c 14264 break;
31ef98ae 14265 case DW_AT_linkage_name:
c906108c 14266 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
14267 /* Note that both forms of linkage name might appear. We
14268 assume they will be the same, and we only store the last
14269 one we see. */
94af9270
KS
14270 if (cu->language == language_ada)
14271 part_die->name = DW_STRING (&attr);
abc72ce4 14272 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
14273 break;
14274 case DW_AT_low_pc:
14275 has_low_pc_attr = 1;
14276 part_die->lowpc = DW_ADDR (&attr);
14277 break;
14278 case DW_AT_high_pc:
14279 has_high_pc_attr = 1;
3019eac3
DE
14280 if (attr.form == DW_FORM_addr
14281 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
14282 part_die->highpc = DW_ADDR (&attr);
14283 else
14284 {
14285 high_pc_relative = 1;
14286 part_die->highpc = DW_UNSND (&attr);
14287 }
c906108c
SS
14288 break;
14289 case DW_AT_location:
0963b4bd 14290 /* Support the .debug_loc offsets. */
8e19ed76
PS
14291 if (attr_form_is_block (&attr))
14292 {
95554aad 14293 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 14294 }
3690dd37 14295 else if (attr_form_is_section_offset (&attr))
8e19ed76 14296 {
4d3c2250 14297 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
14298 }
14299 else
14300 {
4d3c2250
KB
14301 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14302 "partial symbol information");
8e19ed76 14303 }
c906108c 14304 break;
c906108c
SS
14305 case DW_AT_external:
14306 part_die->is_external = DW_UNSND (&attr);
14307 break;
14308 case DW_AT_declaration:
14309 part_die->is_declaration = DW_UNSND (&attr);
14310 break;
14311 case DW_AT_type:
14312 part_die->has_type = 1;
14313 break;
14314 case DW_AT_abstract_origin:
14315 case DW_AT_specification:
72bf9492
DJ
14316 case DW_AT_extension:
14317 part_die->has_specification = 1;
c764a876 14318 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
14319 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14320 || cu->per_cu->is_dwz);
c906108c
SS
14321 break;
14322 case DW_AT_sibling:
14323 /* Ignore absolute siblings, they might point outside of
14324 the current compile unit. */
14325 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
14326 complaint (&symfile_complaints,
14327 _("ignoring absolute DW_AT_sibling"));
c906108c 14328 else
b64f50a1 14329 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 14330 break;
fa4028e9
JB
14331 case DW_AT_byte_size:
14332 part_die->has_byte_size = 1;
14333 break;
68511cec
CES
14334 case DW_AT_calling_convention:
14335 /* DWARF doesn't provide a way to identify a program's source-level
14336 entry point. DW_AT_calling_convention attributes are only meant
14337 to describe functions' calling conventions.
14338
14339 However, because it's a necessary piece of information in
14340 Fortran, and because DW_CC_program is the only piece of debugging
14341 information whose definition refers to a 'main program' at all,
14342 several compilers have begun marking Fortran main programs with
14343 DW_CC_program --- even when those functions use the standard
14344 calling conventions.
14345
14346 So until DWARF specifies a way to provide this information and
14347 compilers pick up the new representation, we'll support this
14348 practice. */
14349 if (DW_UNSND (&attr) == DW_CC_program
14350 && cu->language == language_fortran)
01f8c46d
JK
14351 {
14352 set_main_name (part_die->name);
14353
14354 /* As this DIE has a static linkage the name would be difficult
14355 to look up later. */
14356 language_of_main = language_fortran;
14357 }
68511cec 14358 break;
481860b3
GB
14359 case DW_AT_inline:
14360 if (DW_UNSND (&attr) == DW_INL_inlined
14361 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14362 part_die->may_be_inlined = 1;
14363 break;
95554aad
TT
14364
14365 case DW_AT_import:
14366 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
14367 {
14368 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14369 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14370 || cu->per_cu->is_dwz);
14371 }
95554aad
TT
14372 break;
14373
c906108c
SS
14374 default:
14375 break;
14376 }
14377 }
14378
91da1414
MW
14379 if (high_pc_relative)
14380 part_die->highpc += part_die->lowpc;
14381
9373cf26
JK
14382 if (has_low_pc_attr && has_high_pc_attr)
14383 {
14384 /* When using the GNU linker, .gnu.linkonce. sections are used to
14385 eliminate duplicate copies of functions and vtables and such.
14386 The linker will arbitrarily choose one and discard the others.
14387 The AT_*_pc values for such functions refer to local labels in
14388 these sections. If the section from that file was discarded, the
14389 labels are not in the output, so the relocs get a value of 0.
14390 If this is a discarded function, mark the pc bounds as invalid,
14391 so that GDB will ignore it. */
14392 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14393 {
bb5ed363 14394 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14395
14396 complaint (&symfile_complaints,
14397 _("DW_AT_low_pc %s is zero "
14398 "for DIE at 0x%x [in module %s]"),
14399 paddress (gdbarch, part_die->lowpc),
b64f50a1 14400 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14401 }
14402 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14403 else if (part_die->lowpc >= part_die->highpc)
14404 {
bb5ed363 14405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14406
14407 complaint (&symfile_complaints,
14408 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14409 "for DIE at 0x%x [in module %s]"),
14410 paddress (gdbarch, part_die->lowpc),
14411 paddress (gdbarch, part_die->highpc),
b64f50a1 14412 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14413 }
14414 else
14415 part_die->has_pc_info = 1;
14416 }
85cbf3d3 14417
c906108c
SS
14418 return info_ptr;
14419}
14420
72bf9492
DJ
14421/* Find a cached partial DIE at OFFSET in CU. */
14422
14423static struct partial_die_info *
b64f50a1 14424find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
14425{
14426 struct partial_die_info *lookup_die = NULL;
14427 struct partial_die_info part_die;
14428
14429 part_die.offset = offset;
b64f50a1
JK
14430 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14431 offset.sect_off);
72bf9492 14432
72bf9492
DJ
14433 return lookup_die;
14434}
14435
348e048f
DE
14436/* Find a partial DIE at OFFSET, which may or may not be in CU,
14437 except in the case of .debug_types DIEs which do not reference
14438 outside their CU (they do however referencing other types via
55f1336d 14439 DW_FORM_ref_sig8). */
72bf9492
DJ
14440
14441static struct partial_die_info *
36586728 14442find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 14443{
bb5ed363 14444 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
14445 struct dwarf2_per_cu_data *per_cu = NULL;
14446 struct partial_die_info *pd = NULL;
72bf9492 14447
36586728
TT
14448 if (offset_in_dwz == cu->per_cu->is_dwz
14449 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
14450 {
14451 pd = find_partial_die_in_comp_unit (offset, cu);
14452 if (pd != NULL)
14453 return pd;
0d99eb77
DE
14454 /* We missed recording what we needed.
14455 Load all dies and try again. */
14456 per_cu = cu->per_cu;
5afb4e99 14457 }
0d99eb77
DE
14458 else
14459 {
14460 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 14461 if (cu->per_cu->is_debug_types)
0d99eb77
DE
14462 {
14463 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14464 " external reference to offset 0x%lx [in module %s].\n"),
14465 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14466 bfd_get_filename (objfile->obfd));
14467 }
36586728
TT
14468 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14469 objfile);
72bf9492 14470
0d99eb77
DE
14471 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14472 load_partial_comp_unit (per_cu);
ae038cb0 14473
0d99eb77
DE
14474 per_cu->cu->last_used = 0;
14475 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14476 }
5afb4e99 14477
dee91e82
DE
14478 /* If we didn't find it, and not all dies have been loaded,
14479 load them all and try again. */
14480
5afb4e99
DJ
14481 if (pd == NULL && per_cu->load_all_dies == 0)
14482 {
5afb4e99 14483 per_cu->load_all_dies = 1;
fd820528
DE
14484
14485 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14486 THIS_CU->cu may already be in use. So we can't just free it and
14487 replace its DIEs with the ones we read in. Instead, we leave those
14488 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14489 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14490 set. */
dee91e82 14491 load_partial_comp_unit (per_cu);
5afb4e99
DJ
14492
14493 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14494 }
14495
14496 if (pd == NULL)
14497 internal_error (__FILE__, __LINE__,
3e43a32a
MS
14498 _("could not find partial DIE 0x%x "
14499 "in cache [from module %s]\n"),
b64f50a1 14500 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 14501 return pd;
72bf9492
DJ
14502}
14503
abc72ce4
DE
14504/* See if we can figure out if the class lives in a namespace. We do
14505 this by looking for a member function; its demangled name will
14506 contain namespace info, if there is any. */
14507
14508static void
14509guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14510 struct dwarf2_cu *cu)
14511{
14512 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14513 what template types look like, because the demangler
14514 frequently doesn't give the same name as the debug info. We
14515 could fix this by only using the demangled name to get the
14516 prefix (but see comment in read_structure_type). */
14517
14518 struct partial_die_info *real_pdi;
14519 struct partial_die_info *child_pdi;
14520
14521 /* If this DIE (this DIE's specification, if any) has a parent, then
14522 we should not do this. We'll prepend the parent's fully qualified
14523 name when we create the partial symbol. */
14524
14525 real_pdi = struct_pdi;
14526 while (real_pdi->has_specification)
36586728
TT
14527 real_pdi = find_partial_die (real_pdi->spec_offset,
14528 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
14529
14530 if (real_pdi->die_parent != NULL)
14531 return;
14532
14533 for (child_pdi = struct_pdi->die_child;
14534 child_pdi != NULL;
14535 child_pdi = child_pdi->die_sibling)
14536 {
14537 if (child_pdi->tag == DW_TAG_subprogram
14538 && child_pdi->linkage_name != NULL)
14539 {
14540 char *actual_class_name
14541 = language_class_name_from_physname (cu->language_defn,
14542 child_pdi->linkage_name);
14543 if (actual_class_name != NULL)
14544 {
14545 struct_pdi->name
10f0c4bb
TT
14546 = obstack_copy0 (&cu->objfile->objfile_obstack,
14547 actual_class_name,
14548 strlen (actual_class_name));
abc72ce4
DE
14549 xfree (actual_class_name);
14550 }
14551 break;
14552 }
14553 }
14554}
14555
72bf9492
DJ
14556/* Adjust PART_DIE before generating a symbol for it. This function
14557 may set the is_external flag or change the DIE's name. */
14558
14559static void
14560fixup_partial_die (struct partial_die_info *part_die,
14561 struct dwarf2_cu *cu)
14562{
abc72ce4
DE
14563 /* Once we've fixed up a die, there's no point in doing so again.
14564 This also avoids a memory leak if we were to call
14565 guess_partial_die_structure_name multiple times. */
14566 if (part_die->fixup_called)
14567 return;
14568
72bf9492
DJ
14569 /* If we found a reference attribute and the DIE has no name, try
14570 to find a name in the referred to DIE. */
14571
14572 if (part_die->name == NULL && part_die->has_specification)
14573 {
14574 struct partial_die_info *spec_die;
72bf9492 14575
36586728
TT
14576 spec_die = find_partial_die (part_die->spec_offset,
14577 part_die->spec_is_dwz, cu);
72bf9492 14578
10b3939b 14579 fixup_partial_die (spec_die, cu);
72bf9492
DJ
14580
14581 if (spec_die->name)
14582 {
14583 part_die->name = spec_die->name;
14584
14585 /* Copy DW_AT_external attribute if it is set. */
14586 if (spec_die->is_external)
14587 part_die->is_external = spec_die->is_external;
14588 }
14589 }
14590
14591 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
14592
14593 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 14594 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 14595
abc72ce4
DE
14596 /* If there is no parent die to provide a namespace, and there are
14597 children, see if we can determine the namespace from their linkage
122d1940 14598 name. */
abc72ce4 14599 if (cu->language == language_cplus
8b70b953 14600 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
14601 && part_die->die_parent == NULL
14602 && part_die->has_children
14603 && (part_die->tag == DW_TAG_class_type
14604 || part_die->tag == DW_TAG_structure_type
14605 || part_die->tag == DW_TAG_union_type))
14606 guess_partial_die_structure_name (part_die, cu);
14607
53832f31
TT
14608 /* GCC might emit a nameless struct or union that has a linkage
14609 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14610 if (part_die->name == NULL
96408a79
SA
14611 && (part_die->tag == DW_TAG_class_type
14612 || part_die->tag == DW_TAG_interface_type
14613 || part_die->tag == DW_TAG_structure_type
14614 || part_die->tag == DW_TAG_union_type)
53832f31
TT
14615 && part_die->linkage_name != NULL)
14616 {
14617 char *demangled;
14618
8de20a37 14619 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
14620 if (demangled)
14621 {
96408a79
SA
14622 const char *base;
14623
14624 /* Strip any leading namespaces/classes, keep only the base name.
14625 DW_AT_name for named DIEs does not contain the prefixes. */
14626 base = strrchr (demangled, ':');
14627 if (base && base > demangled && base[-1] == ':')
14628 base++;
14629 else
14630 base = demangled;
14631
10f0c4bb
TT
14632 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14633 base, strlen (base));
53832f31
TT
14634 xfree (demangled);
14635 }
14636 }
14637
abc72ce4 14638 part_die->fixup_called = 1;
72bf9492
DJ
14639}
14640
a8329558 14641/* Read an attribute value described by an attribute form. */
c906108c 14642
d521ce57 14643static const gdb_byte *
dee91e82
DE
14644read_attribute_value (const struct die_reader_specs *reader,
14645 struct attribute *attr, unsigned form,
d521ce57 14646 const gdb_byte *info_ptr)
c906108c 14647{
dee91e82
DE
14648 struct dwarf2_cu *cu = reader->cu;
14649 bfd *abfd = reader->abfd;
e7c27a73 14650 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14651 unsigned int bytes_read;
14652 struct dwarf_block *blk;
14653
a8329558
KW
14654 attr->form = form;
14655 switch (form)
c906108c 14656 {
c906108c 14657 case DW_FORM_ref_addr:
ae411497 14658 if (cu->header.version == 2)
4568ecf9 14659 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 14660 else
4568ecf9
DE
14661 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14662 &cu->header, &bytes_read);
ae411497
TT
14663 info_ptr += bytes_read;
14664 break;
36586728
TT
14665 case DW_FORM_GNU_ref_alt:
14666 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14667 info_ptr += bytes_read;
14668 break;
ae411497 14669 case DW_FORM_addr:
e7c27a73 14670 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 14671 info_ptr += bytes_read;
c906108c
SS
14672 break;
14673 case DW_FORM_block2:
7b5a2f43 14674 blk = dwarf_alloc_block (cu);
c906108c
SS
14675 blk->size = read_2_bytes (abfd, info_ptr);
14676 info_ptr += 2;
14677 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14678 info_ptr += blk->size;
14679 DW_BLOCK (attr) = blk;
14680 break;
14681 case DW_FORM_block4:
7b5a2f43 14682 blk = dwarf_alloc_block (cu);
c906108c
SS
14683 blk->size = read_4_bytes (abfd, info_ptr);
14684 info_ptr += 4;
14685 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14686 info_ptr += blk->size;
14687 DW_BLOCK (attr) = blk;
14688 break;
14689 case DW_FORM_data2:
14690 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14691 info_ptr += 2;
14692 break;
14693 case DW_FORM_data4:
14694 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14695 info_ptr += 4;
14696 break;
14697 case DW_FORM_data8:
14698 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14699 info_ptr += 8;
14700 break;
2dc7f7b3
TT
14701 case DW_FORM_sec_offset:
14702 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14703 info_ptr += bytes_read;
14704 break;
c906108c 14705 case DW_FORM_string:
9b1c24c8 14706 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 14707 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
14708 info_ptr += bytes_read;
14709 break;
4bdf3d34 14710 case DW_FORM_strp:
36586728
TT
14711 if (!cu->per_cu->is_dwz)
14712 {
14713 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14714 &bytes_read);
14715 DW_STRING_IS_CANONICAL (attr) = 0;
14716 info_ptr += bytes_read;
14717 break;
14718 }
14719 /* FALLTHROUGH */
14720 case DW_FORM_GNU_strp_alt:
14721 {
14722 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14723 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14724 &bytes_read);
14725
14726 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14727 DW_STRING_IS_CANONICAL (attr) = 0;
14728 info_ptr += bytes_read;
14729 }
4bdf3d34 14730 break;
2dc7f7b3 14731 case DW_FORM_exprloc:
c906108c 14732 case DW_FORM_block:
7b5a2f43 14733 blk = dwarf_alloc_block (cu);
c906108c
SS
14734 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14735 info_ptr += bytes_read;
14736 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14737 info_ptr += blk->size;
14738 DW_BLOCK (attr) = blk;
14739 break;
14740 case DW_FORM_block1:
7b5a2f43 14741 blk = dwarf_alloc_block (cu);
c906108c
SS
14742 blk->size = read_1_byte (abfd, info_ptr);
14743 info_ptr += 1;
14744 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14745 info_ptr += blk->size;
14746 DW_BLOCK (attr) = blk;
14747 break;
14748 case DW_FORM_data1:
14749 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14750 info_ptr += 1;
14751 break;
14752 case DW_FORM_flag:
14753 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14754 info_ptr += 1;
14755 break;
2dc7f7b3
TT
14756 case DW_FORM_flag_present:
14757 DW_UNSND (attr) = 1;
14758 break;
c906108c
SS
14759 case DW_FORM_sdata:
14760 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14761 info_ptr += bytes_read;
14762 break;
14763 case DW_FORM_udata:
14764 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14765 info_ptr += bytes_read;
14766 break;
14767 case DW_FORM_ref1:
4568ecf9
DE
14768 DW_UNSND (attr) = (cu->header.offset.sect_off
14769 + read_1_byte (abfd, info_ptr));
c906108c
SS
14770 info_ptr += 1;
14771 break;
14772 case DW_FORM_ref2:
4568ecf9
DE
14773 DW_UNSND (attr) = (cu->header.offset.sect_off
14774 + read_2_bytes (abfd, info_ptr));
c906108c
SS
14775 info_ptr += 2;
14776 break;
14777 case DW_FORM_ref4:
4568ecf9
DE
14778 DW_UNSND (attr) = (cu->header.offset.sect_off
14779 + read_4_bytes (abfd, info_ptr));
c906108c
SS
14780 info_ptr += 4;
14781 break;
613e1657 14782 case DW_FORM_ref8:
4568ecf9
DE
14783 DW_UNSND (attr) = (cu->header.offset.sect_off
14784 + read_8_bytes (abfd, info_ptr));
613e1657
KB
14785 info_ptr += 8;
14786 break;
55f1336d 14787 case DW_FORM_ref_sig8:
ac9ec31b 14788 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
14789 info_ptr += 8;
14790 break;
c906108c 14791 case DW_FORM_ref_udata:
4568ecf9
DE
14792 DW_UNSND (attr) = (cu->header.offset.sect_off
14793 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14794 info_ptr += bytes_read;
14795 break;
c906108c 14796 case DW_FORM_indirect:
a8329558
KW
14797 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14798 info_ptr += bytes_read;
dee91e82 14799 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14800 break;
3019eac3
DE
14801 case DW_FORM_GNU_addr_index:
14802 if (reader->dwo_file == NULL)
14803 {
14804 /* For now flag a hard error.
14805 Later we can turn this into a complaint. */
14806 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14807 dwarf_form_name (form),
14808 bfd_get_filename (abfd));
14809 }
14810 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14811 info_ptr += bytes_read;
14812 break;
14813 case DW_FORM_GNU_str_index:
14814 if (reader->dwo_file == NULL)
14815 {
14816 /* For now flag a hard error.
14817 Later we can turn this into a complaint if warranted. */
14818 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14819 dwarf_form_name (form),
14820 bfd_get_filename (abfd));
14821 }
14822 {
14823 ULONGEST str_index =
14824 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14825
14826 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14827 DW_STRING_IS_CANONICAL (attr) = 0;
14828 info_ptr += bytes_read;
14829 }
14830 break;
c906108c 14831 default:
8a3fe4f8 14832 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14833 dwarf_form_name (form),
14834 bfd_get_filename (abfd));
c906108c 14835 }
28e94949 14836
36586728 14837 /* Super hack. */
7771576e 14838 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
14839 attr->form = DW_FORM_GNU_ref_alt;
14840
28e94949
JB
14841 /* We have seen instances where the compiler tried to emit a byte
14842 size attribute of -1 which ended up being encoded as an unsigned
14843 0xffffffff. Although 0xffffffff is technically a valid size value,
14844 an object of this size seems pretty unlikely so we can relatively
14845 safely treat these cases as if the size attribute was invalid and
14846 treat them as zero by default. */
14847 if (attr->name == DW_AT_byte_size
14848 && form == DW_FORM_data4
14849 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14850 {
14851 complaint
14852 (&symfile_complaints,
43bbcdc2
PH
14853 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14854 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14855 DW_UNSND (attr) = 0;
14856 }
28e94949 14857
c906108c
SS
14858 return info_ptr;
14859}
14860
a8329558
KW
14861/* Read an attribute described by an abbreviated attribute. */
14862
d521ce57 14863static const gdb_byte *
dee91e82
DE
14864read_attribute (const struct die_reader_specs *reader,
14865 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 14866 const gdb_byte *info_ptr)
a8329558
KW
14867{
14868 attr->name = abbrev->name;
dee91e82 14869 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14870}
14871
0963b4bd 14872/* Read dwarf information from a buffer. */
c906108c
SS
14873
14874static unsigned int
a1855c1d 14875read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14876{
fe1b8b76 14877 return bfd_get_8 (abfd, buf);
c906108c
SS
14878}
14879
14880static int
a1855c1d 14881read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14882{
fe1b8b76 14883 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14884}
14885
14886static unsigned int
a1855c1d 14887read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14888{
fe1b8b76 14889 return bfd_get_16 (abfd, buf);
c906108c
SS
14890}
14891
21ae7a4d 14892static int
a1855c1d 14893read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14894{
14895 return bfd_get_signed_16 (abfd, buf);
14896}
14897
c906108c 14898static unsigned int
a1855c1d 14899read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14900{
fe1b8b76 14901 return bfd_get_32 (abfd, buf);
c906108c
SS
14902}
14903
21ae7a4d 14904static int
a1855c1d 14905read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14906{
14907 return bfd_get_signed_32 (abfd, buf);
14908}
14909
93311388 14910static ULONGEST
a1855c1d 14911read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14912{
fe1b8b76 14913 return bfd_get_64 (abfd, buf);
c906108c
SS
14914}
14915
14916static CORE_ADDR
d521ce57 14917read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14918 unsigned int *bytes_read)
c906108c 14919{
e7c27a73 14920 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14921 CORE_ADDR retval = 0;
14922
107d2387 14923 if (cu_header->signed_addr_p)
c906108c 14924 {
107d2387
AC
14925 switch (cu_header->addr_size)
14926 {
14927 case 2:
fe1b8b76 14928 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14929 break;
14930 case 4:
fe1b8b76 14931 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14932 break;
14933 case 8:
fe1b8b76 14934 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14935 break;
14936 default:
8e65ff28 14937 internal_error (__FILE__, __LINE__,
e2e0b3e5 14938 _("read_address: bad switch, signed [in module %s]"),
659b0389 14939 bfd_get_filename (abfd));
107d2387
AC
14940 }
14941 }
14942 else
14943 {
14944 switch (cu_header->addr_size)
14945 {
14946 case 2:
fe1b8b76 14947 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14948 break;
14949 case 4:
fe1b8b76 14950 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14951 break;
14952 case 8:
fe1b8b76 14953 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14954 break;
14955 default:
8e65ff28 14956 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14957 _("read_address: bad switch, "
14958 "unsigned [in module %s]"),
659b0389 14959 bfd_get_filename (abfd));
107d2387 14960 }
c906108c 14961 }
64367e0a 14962
107d2387
AC
14963 *bytes_read = cu_header->addr_size;
14964 return retval;
c906108c
SS
14965}
14966
f7ef9339 14967/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14968 specification allows the initial length to take up either 4 bytes
14969 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14970 bytes describe the length and all offsets will be 8 bytes in length
14971 instead of 4.
14972
f7ef9339
KB
14973 An older, non-standard 64-bit format is also handled by this
14974 function. The older format in question stores the initial length
14975 as an 8-byte quantity without an escape value. Lengths greater
14976 than 2^32 aren't very common which means that the initial 4 bytes
14977 is almost always zero. Since a length value of zero doesn't make
14978 sense for the 32-bit format, this initial zero can be considered to
14979 be an escape value which indicates the presence of the older 64-bit
14980 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14981 greater than 4GB. If it becomes necessary to handle lengths
14982 somewhat larger than 4GB, we could allow other small values (such
14983 as the non-sensical values of 1, 2, and 3) to also be used as
14984 escape values indicating the presence of the old format.
f7ef9339 14985
917c78fc
MK
14986 The value returned via bytes_read should be used to increment the
14987 relevant pointer after calling read_initial_length().
c764a876 14988
613e1657
KB
14989 [ Note: read_initial_length() and read_offset() are based on the
14990 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14991 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14992 from:
14993
f7ef9339 14994 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14995
613e1657
KB
14996 This document is only a draft and is subject to change. (So beware.)
14997
f7ef9339 14998 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14999 determined empirically by examining 64-bit ELF files produced by
15000 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
15001
15002 - Kevin, July 16, 2002
613e1657
KB
15003 ] */
15004
15005static LONGEST
d521ce57 15006read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 15007{
fe1b8b76 15008 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 15009
dd373385 15010 if (length == 0xffffffff)
613e1657 15011 {
fe1b8b76 15012 length = bfd_get_64 (abfd, buf + 4);
613e1657 15013 *bytes_read = 12;
613e1657 15014 }
dd373385 15015 else if (length == 0)
f7ef9339 15016 {
dd373385 15017 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 15018 length = bfd_get_64 (abfd, buf);
f7ef9339 15019 *bytes_read = 8;
f7ef9339 15020 }
613e1657
KB
15021 else
15022 {
15023 *bytes_read = 4;
613e1657
KB
15024 }
15025
c764a876
DE
15026 return length;
15027}
dd373385 15028
c764a876
DE
15029/* Cover function for read_initial_length.
15030 Returns the length of the object at BUF, and stores the size of the
15031 initial length in *BYTES_READ and stores the size that offsets will be in
15032 *OFFSET_SIZE.
15033 If the initial length size is not equivalent to that specified in
15034 CU_HEADER then issue a complaint.
15035 This is useful when reading non-comp-unit headers. */
dd373385 15036
c764a876 15037static LONGEST
d521ce57 15038read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
15039 const struct comp_unit_head *cu_header,
15040 unsigned int *bytes_read,
15041 unsigned int *offset_size)
15042{
15043 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15044
15045 gdb_assert (cu_header->initial_length_size == 4
15046 || cu_header->initial_length_size == 8
15047 || cu_header->initial_length_size == 12);
15048
15049 if (cu_header->initial_length_size != *bytes_read)
15050 complaint (&symfile_complaints,
15051 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 15052
c764a876 15053 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 15054 return length;
613e1657
KB
15055}
15056
15057/* Read an offset from the data stream. The size of the offset is
917c78fc 15058 given by cu_header->offset_size. */
613e1657
KB
15059
15060static LONGEST
d521ce57
TT
15061read_offset (bfd *abfd, const gdb_byte *buf,
15062 const struct comp_unit_head *cu_header,
891d2f0b 15063 unsigned int *bytes_read)
c764a876
DE
15064{
15065 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 15066
c764a876
DE
15067 *bytes_read = cu_header->offset_size;
15068 return offset;
15069}
15070
15071/* Read an offset from the data stream. */
15072
15073static LONGEST
d521ce57 15074read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
15075{
15076 LONGEST retval = 0;
15077
c764a876 15078 switch (offset_size)
613e1657
KB
15079 {
15080 case 4:
fe1b8b76 15081 retval = bfd_get_32 (abfd, buf);
613e1657
KB
15082 break;
15083 case 8:
fe1b8b76 15084 retval = bfd_get_64 (abfd, buf);
613e1657
KB
15085 break;
15086 default:
8e65ff28 15087 internal_error (__FILE__, __LINE__,
c764a876 15088 _("read_offset_1: bad switch [in module %s]"),
659b0389 15089 bfd_get_filename (abfd));
613e1657
KB
15090 }
15091
917c78fc 15092 return retval;
613e1657
KB
15093}
15094
d521ce57
TT
15095static const gdb_byte *
15096read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
15097{
15098 /* If the size of a host char is 8 bits, we can return a pointer
15099 to the buffer, otherwise we have to copy the data to a buffer
15100 allocated on the temporary obstack. */
4bdf3d34 15101 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 15102 return buf;
c906108c
SS
15103}
15104
d521ce57
TT
15105static const char *
15106read_direct_string (bfd *abfd, const gdb_byte *buf,
15107 unsigned int *bytes_read_ptr)
c906108c
SS
15108{
15109 /* If the size of a host char is 8 bits, we can return a pointer
15110 to the string, otherwise we have to copy the string to a buffer
15111 allocated on the temporary obstack. */
4bdf3d34 15112 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
15113 if (*buf == '\0')
15114 {
15115 *bytes_read_ptr = 1;
15116 return NULL;
15117 }
d521ce57
TT
15118 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15119 return (const char *) buf;
4bdf3d34
JJ
15120}
15121
d521ce57 15122static const char *
cf2c3c16 15123read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 15124{
be391dca 15125 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 15126 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
15127 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15128 bfd_get_filename (abfd));
dce234bc 15129 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
15130 error (_("DW_FORM_strp pointing outside of "
15131 ".debug_str section [in module %s]"),
15132 bfd_get_filename (abfd));
4bdf3d34 15133 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 15134 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 15135 return NULL;
d521ce57 15136 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
15137}
15138
36586728
TT
15139/* Read a string at offset STR_OFFSET in the .debug_str section from
15140 the .dwz file DWZ. Throw an error if the offset is too large. If
15141 the string consists of a single NUL byte, return NULL; otherwise
15142 return a pointer to the string. */
15143
d521ce57 15144static const char *
36586728
TT
15145read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15146{
15147 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15148
15149 if (dwz->str.buffer == NULL)
15150 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15151 "section [in module %s]"),
15152 bfd_get_filename (dwz->dwz_bfd));
15153 if (str_offset >= dwz->str.size)
15154 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15155 ".debug_str section [in module %s]"),
15156 bfd_get_filename (dwz->dwz_bfd));
15157 gdb_assert (HOST_CHAR_BIT == 8);
15158 if (dwz->str.buffer[str_offset] == '\0')
15159 return NULL;
d521ce57 15160 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
15161}
15162
d521ce57
TT
15163static const char *
15164read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
15165 const struct comp_unit_head *cu_header,
15166 unsigned int *bytes_read_ptr)
15167{
15168 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15169
15170 return read_indirect_string_at_offset (abfd, str_offset);
15171}
15172
12df843f 15173static ULONGEST
d521ce57
TT
15174read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15175 unsigned int *bytes_read_ptr)
c906108c 15176{
12df843f 15177 ULONGEST result;
ce5d95e1 15178 unsigned int num_read;
c906108c
SS
15179 int i, shift;
15180 unsigned char byte;
15181
15182 result = 0;
15183 shift = 0;
15184 num_read = 0;
15185 i = 0;
15186 while (1)
15187 {
fe1b8b76 15188 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15189 buf++;
15190 num_read++;
12df843f 15191 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
15192 if ((byte & 128) == 0)
15193 {
15194 break;
15195 }
15196 shift += 7;
15197 }
15198 *bytes_read_ptr = num_read;
15199 return result;
15200}
15201
12df843f 15202static LONGEST
d521ce57
TT
15203read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15204 unsigned int *bytes_read_ptr)
c906108c 15205{
12df843f 15206 LONGEST result;
77e0b926 15207 int i, shift, num_read;
c906108c
SS
15208 unsigned char byte;
15209
15210 result = 0;
15211 shift = 0;
c906108c
SS
15212 num_read = 0;
15213 i = 0;
15214 while (1)
15215 {
fe1b8b76 15216 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15217 buf++;
15218 num_read++;
12df843f 15219 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
15220 shift += 7;
15221 if ((byte & 128) == 0)
15222 {
15223 break;
15224 }
15225 }
77e0b926 15226 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 15227 result |= -(((LONGEST) 1) << shift);
c906108c
SS
15228 *bytes_read_ptr = num_read;
15229 return result;
15230}
15231
3019eac3
DE
15232/* Given index ADDR_INDEX in .debug_addr, fetch the value.
15233 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15234 ADDR_SIZE is the size of addresses from the CU header. */
15235
15236static CORE_ADDR
15237read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15238{
15239 struct objfile *objfile = dwarf2_per_objfile->objfile;
15240 bfd *abfd = objfile->obfd;
15241 const gdb_byte *info_ptr;
15242
15243 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15244 if (dwarf2_per_objfile->addr.buffer == NULL)
15245 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15246 objfile->name);
15247 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15248 error (_("DW_FORM_addr_index pointing outside of "
15249 ".debug_addr section [in module %s]"),
15250 objfile->name);
15251 info_ptr = (dwarf2_per_objfile->addr.buffer
15252 + addr_base + addr_index * addr_size);
15253 if (addr_size == 4)
15254 return bfd_get_32 (abfd, info_ptr);
15255 else
15256 return bfd_get_64 (abfd, info_ptr);
15257}
15258
15259/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15260
15261static CORE_ADDR
15262read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15263{
15264 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15265}
15266
15267/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15268
15269static CORE_ADDR
d521ce57 15270read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
15271 unsigned int *bytes_read)
15272{
15273 bfd *abfd = cu->objfile->obfd;
15274 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15275
15276 return read_addr_index (cu, addr_index);
15277}
15278
15279/* Data structure to pass results from dwarf2_read_addr_index_reader
15280 back to dwarf2_read_addr_index. */
15281
15282struct dwarf2_read_addr_index_data
15283{
15284 ULONGEST addr_base;
15285 int addr_size;
15286};
15287
15288/* die_reader_func for dwarf2_read_addr_index. */
15289
15290static void
15291dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 15292 const gdb_byte *info_ptr,
3019eac3
DE
15293 struct die_info *comp_unit_die,
15294 int has_children,
15295 void *data)
15296{
15297 struct dwarf2_cu *cu = reader->cu;
15298 struct dwarf2_read_addr_index_data *aidata =
15299 (struct dwarf2_read_addr_index_data *) data;
15300
15301 aidata->addr_base = cu->addr_base;
15302 aidata->addr_size = cu->header.addr_size;
15303}
15304
15305/* Given an index in .debug_addr, fetch the value.
15306 NOTE: This can be called during dwarf expression evaluation,
15307 long after the debug information has been read, and thus per_cu->cu
15308 may no longer exist. */
15309
15310CORE_ADDR
15311dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15312 unsigned int addr_index)
15313{
15314 struct objfile *objfile = per_cu->objfile;
15315 struct dwarf2_cu *cu = per_cu->cu;
15316 ULONGEST addr_base;
15317 int addr_size;
15318
15319 /* This is intended to be called from outside this file. */
15320 dw2_setup (objfile);
15321
15322 /* We need addr_base and addr_size.
15323 If we don't have PER_CU->cu, we have to get it.
15324 Nasty, but the alternative is storing the needed info in PER_CU,
15325 which at this point doesn't seem justified: it's not clear how frequently
15326 it would get used and it would increase the size of every PER_CU.
15327 Entry points like dwarf2_per_cu_addr_size do a similar thing
15328 so we're not in uncharted territory here.
15329 Alas we need to be a bit more complicated as addr_base is contained
15330 in the DIE.
15331
15332 We don't need to read the entire CU(/TU).
15333 We just need the header and top level die.
a1b64ce1 15334
3019eac3 15335 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 15336 For now we skip this optimization. */
3019eac3
DE
15337
15338 if (cu != NULL)
15339 {
15340 addr_base = cu->addr_base;
15341 addr_size = cu->header.addr_size;
15342 }
15343 else
15344 {
15345 struct dwarf2_read_addr_index_data aidata;
15346
a1b64ce1
DE
15347 /* Note: We can't use init_cutu_and_read_dies_simple here,
15348 we need addr_base. */
15349 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15350 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
15351 addr_base = aidata.addr_base;
15352 addr_size = aidata.addr_size;
15353 }
15354
15355 return read_addr_index_1 (addr_index, addr_base, addr_size);
15356}
15357
15358/* Given a DW_AT_str_index, fetch the string. */
15359
d521ce57 15360static const char *
3019eac3
DE
15361read_str_index (const struct die_reader_specs *reader,
15362 struct dwarf2_cu *cu, ULONGEST str_index)
15363{
15364 struct objfile *objfile = dwarf2_per_objfile->objfile;
15365 const char *dwo_name = objfile->name;
15366 bfd *abfd = objfile->obfd;
15367 struct dwo_sections *sections = &reader->dwo_file->sections;
d521ce57 15368 const gdb_byte *info_ptr;
3019eac3
DE
15369 ULONGEST str_offset;
15370
15371 dwarf2_read_section (objfile, &sections->str);
15372 dwarf2_read_section (objfile, &sections->str_offsets);
15373 if (sections->str.buffer == NULL)
15374 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15375 " in CU at offset 0x%lx [in module %s]"),
15376 (long) cu->header.offset.sect_off, dwo_name);
15377 if (sections->str_offsets.buffer == NULL)
15378 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15379 " in CU at offset 0x%lx [in module %s]"),
15380 (long) cu->header.offset.sect_off, dwo_name);
15381 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15382 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15383 " section in CU at offset 0x%lx [in module %s]"),
15384 (long) cu->header.offset.sect_off, dwo_name);
15385 info_ptr = (sections->str_offsets.buffer
15386 + str_index * cu->header.offset_size);
15387 if (cu->header.offset_size == 4)
15388 str_offset = bfd_get_32 (abfd, info_ptr);
15389 else
15390 str_offset = bfd_get_64 (abfd, info_ptr);
15391 if (str_offset >= sections->str.size)
15392 error (_("Offset from DW_FORM_str_index pointing outside of"
15393 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15394 (long) cu->header.offset.sect_off, dwo_name);
d521ce57 15395 return (const char *) (sections->str.buffer + str_offset);
3019eac3
DE
15396}
15397
3019eac3
DE
15398/* Return the length of an LEB128 number in BUF. */
15399
15400static int
15401leb128_size (const gdb_byte *buf)
15402{
15403 const gdb_byte *begin = buf;
15404 gdb_byte byte;
15405
15406 while (1)
15407 {
15408 byte = *buf++;
15409 if ((byte & 128) == 0)
15410 return buf - begin;
15411 }
15412}
15413
c906108c 15414static void
e142c38c 15415set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
15416{
15417 switch (lang)
15418 {
15419 case DW_LANG_C89:
76bee0cc 15420 case DW_LANG_C99:
c906108c 15421 case DW_LANG_C:
d1be3247 15422 case DW_LANG_UPC:
e142c38c 15423 cu->language = language_c;
c906108c
SS
15424 break;
15425 case DW_LANG_C_plus_plus:
e142c38c 15426 cu->language = language_cplus;
c906108c 15427 break;
6aecb9c2
JB
15428 case DW_LANG_D:
15429 cu->language = language_d;
15430 break;
c906108c
SS
15431 case DW_LANG_Fortran77:
15432 case DW_LANG_Fortran90:
b21b22e0 15433 case DW_LANG_Fortran95:
e142c38c 15434 cu->language = language_fortran;
c906108c 15435 break;
a766d390
DE
15436 case DW_LANG_Go:
15437 cu->language = language_go;
15438 break;
c906108c 15439 case DW_LANG_Mips_Assembler:
e142c38c 15440 cu->language = language_asm;
c906108c 15441 break;
bebd888e 15442 case DW_LANG_Java:
e142c38c 15443 cu->language = language_java;
bebd888e 15444 break;
c906108c 15445 case DW_LANG_Ada83:
8aaf0b47 15446 case DW_LANG_Ada95:
bc5f45f8
JB
15447 cu->language = language_ada;
15448 break;
72019c9c
GM
15449 case DW_LANG_Modula2:
15450 cu->language = language_m2;
15451 break;
fe8e67fd
PM
15452 case DW_LANG_Pascal83:
15453 cu->language = language_pascal;
15454 break;
22566fbd
DJ
15455 case DW_LANG_ObjC:
15456 cu->language = language_objc;
15457 break;
c906108c
SS
15458 case DW_LANG_Cobol74:
15459 case DW_LANG_Cobol85:
c906108c 15460 default:
e142c38c 15461 cu->language = language_minimal;
c906108c
SS
15462 break;
15463 }
e142c38c 15464 cu->language_defn = language_def (cu->language);
c906108c
SS
15465}
15466
15467/* Return the named attribute or NULL if not there. */
15468
15469static struct attribute *
e142c38c 15470dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 15471{
a48e046c 15472 for (;;)
c906108c 15473 {
a48e046c
TT
15474 unsigned int i;
15475 struct attribute *spec = NULL;
15476
15477 for (i = 0; i < die->num_attrs; ++i)
15478 {
15479 if (die->attrs[i].name == name)
15480 return &die->attrs[i];
15481 if (die->attrs[i].name == DW_AT_specification
15482 || die->attrs[i].name == DW_AT_abstract_origin)
15483 spec = &die->attrs[i];
15484 }
15485
15486 if (!spec)
15487 break;
c906108c 15488
f2f0e013 15489 die = follow_die_ref (die, spec, &cu);
f2f0e013 15490 }
c5aa993b 15491
c906108c
SS
15492 return NULL;
15493}
15494
348e048f
DE
15495/* Return the named attribute or NULL if not there,
15496 but do not follow DW_AT_specification, etc.
15497 This is for use in contexts where we're reading .debug_types dies.
15498 Following DW_AT_specification, DW_AT_abstract_origin will take us
15499 back up the chain, and we want to go down. */
15500
15501static struct attribute *
45e58e77 15502dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
15503{
15504 unsigned int i;
15505
15506 for (i = 0; i < die->num_attrs; ++i)
15507 if (die->attrs[i].name == name)
15508 return &die->attrs[i];
15509
15510 return NULL;
15511}
15512
05cf31d1
JB
15513/* Return non-zero iff the attribute NAME is defined for the given DIE,
15514 and holds a non-zero value. This function should only be used for
2dc7f7b3 15515 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
15516
15517static int
15518dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15519{
15520 struct attribute *attr = dwarf2_attr (die, name, cu);
15521
15522 return (attr && DW_UNSND (attr));
15523}
15524
3ca72b44 15525static int
e142c38c 15526die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 15527{
05cf31d1
JB
15528 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15529 which value is non-zero. However, we have to be careful with
15530 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15531 (via dwarf2_flag_true_p) follows this attribute. So we may
15532 end up accidently finding a declaration attribute that belongs
15533 to a different DIE referenced by the specification attribute,
15534 even though the given DIE does not have a declaration attribute. */
15535 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15536 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
15537}
15538
63d06c5c 15539/* Return the die giving the specification for DIE, if there is
f2f0e013 15540 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
15541 containing the return value on output. If there is no
15542 specification, but there is an abstract origin, that is
15543 returned. */
63d06c5c
DC
15544
15545static struct die_info *
f2f0e013 15546die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 15547{
f2f0e013
DJ
15548 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15549 *spec_cu);
63d06c5c 15550
edb3359d
DJ
15551 if (spec_attr == NULL)
15552 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15553
63d06c5c
DC
15554 if (spec_attr == NULL)
15555 return NULL;
15556 else
f2f0e013 15557 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 15558}
c906108c 15559
debd256d 15560/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
15561 refers to.
15562 NOTE: This is also used as a "cleanup" function. */
15563
debd256d
JB
15564static void
15565free_line_header (struct line_header *lh)
15566{
15567 if (lh->standard_opcode_lengths)
a8bc7b56 15568 xfree (lh->standard_opcode_lengths);
debd256d
JB
15569
15570 /* Remember that all the lh->file_names[i].name pointers are
15571 pointers into debug_line_buffer, and don't need to be freed. */
15572 if (lh->file_names)
a8bc7b56 15573 xfree (lh->file_names);
debd256d
JB
15574
15575 /* Similarly for the include directory names. */
15576 if (lh->include_dirs)
a8bc7b56 15577 xfree (lh->include_dirs);
debd256d 15578
a8bc7b56 15579 xfree (lh);
debd256d
JB
15580}
15581
debd256d 15582/* Add an entry to LH's include directory table. */
ae2de4f8 15583
debd256d 15584static void
d521ce57 15585add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 15586{
debd256d
JB
15587 /* Grow the array if necessary. */
15588 if (lh->include_dirs_size == 0)
c5aa993b 15589 {
debd256d
JB
15590 lh->include_dirs_size = 1; /* for testing */
15591 lh->include_dirs = xmalloc (lh->include_dirs_size
15592 * sizeof (*lh->include_dirs));
15593 }
15594 else if (lh->num_include_dirs >= lh->include_dirs_size)
15595 {
15596 lh->include_dirs_size *= 2;
15597 lh->include_dirs = xrealloc (lh->include_dirs,
15598 (lh->include_dirs_size
15599 * sizeof (*lh->include_dirs)));
c5aa993b 15600 }
c906108c 15601
debd256d
JB
15602 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15603}
6e70227d 15604
debd256d 15605/* Add an entry to LH's file name table. */
ae2de4f8 15606
debd256d
JB
15607static void
15608add_file_name (struct line_header *lh,
d521ce57 15609 const char *name,
debd256d
JB
15610 unsigned int dir_index,
15611 unsigned int mod_time,
15612 unsigned int length)
15613{
15614 struct file_entry *fe;
15615
15616 /* Grow the array if necessary. */
15617 if (lh->file_names_size == 0)
15618 {
15619 lh->file_names_size = 1; /* for testing */
15620 lh->file_names = xmalloc (lh->file_names_size
15621 * sizeof (*lh->file_names));
15622 }
15623 else if (lh->num_file_names >= lh->file_names_size)
15624 {
15625 lh->file_names_size *= 2;
15626 lh->file_names = xrealloc (lh->file_names,
15627 (lh->file_names_size
15628 * sizeof (*lh->file_names)));
15629 }
15630
15631 fe = &lh->file_names[lh->num_file_names++];
15632 fe->name = name;
15633 fe->dir_index = dir_index;
15634 fe->mod_time = mod_time;
15635 fe->length = length;
aaa75496 15636 fe->included_p = 0;
cb1df416 15637 fe->symtab = NULL;
debd256d 15638}
6e70227d 15639
36586728
TT
15640/* A convenience function to find the proper .debug_line section for a
15641 CU. */
15642
15643static struct dwarf2_section_info *
15644get_debug_line_section (struct dwarf2_cu *cu)
15645{
15646 struct dwarf2_section_info *section;
15647
15648 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15649 DWO file. */
15650 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15651 section = &cu->dwo_unit->dwo_file->sections.line;
15652 else if (cu->per_cu->is_dwz)
15653 {
15654 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15655
15656 section = &dwz->line;
15657 }
15658 else
15659 section = &dwarf2_per_objfile->line;
15660
15661 return section;
15662}
15663
debd256d 15664/* Read the statement program header starting at OFFSET in
3019eac3 15665 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 15666 to a struct line_header, allocated using xmalloc.
debd256d
JB
15667
15668 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
15669 the returned object point into the dwarf line section buffer,
15670 and must not be freed. */
ae2de4f8 15671
debd256d 15672static struct line_header *
3019eac3 15673dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
15674{
15675 struct cleanup *back_to;
15676 struct line_header *lh;
d521ce57 15677 const gdb_byte *line_ptr;
c764a876 15678 unsigned int bytes_read, offset_size;
debd256d 15679 int i;
d521ce57 15680 const char *cur_dir, *cur_file;
3019eac3
DE
15681 struct dwarf2_section_info *section;
15682 bfd *abfd;
15683
36586728 15684 section = get_debug_line_section (cu);
3019eac3
DE
15685 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15686 if (section->buffer == NULL)
debd256d 15687 {
3019eac3
DE
15688 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15689 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15690 else
15691 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
15692 return 0;
15693 }
15694
fceca515
DE
15695 /* We can't do this until we know the section is non-empty.
15696 Only then do we know we have such a section. */
15697 abfd = section->asection->owner;
15698
a738430d
MK
15699 /* Make sure that at least there's room for the total_length field.
15700 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 15701 if (offset + 4 >= section->size)
debd256d 15702 {
4d3c2250 15703 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15704 return 0;
15705 }
15706
15707 lh = xmalloc (sizeof (*lh));
15708 memset (lh, 0, sizeof (*lh));
15709 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15710 (void *) lh);
15711
3019eac3 15712 line_ptr = section->buffer + offset;
debd256d 15713
a738430d 15714 /* Read in the header. */
6e70227d 15715 lh->total_length =
c764a876
DE
15716 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15717 &bytes_read, &offset_size);
debd256d 15718 line_ptr += bytes_read;
3019eac3 15719 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 15720 {
4d3c2250 15721 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 15722 do_cleanups (back_to);
debd256d
JB
15723 return 0;
15724 }
15725 lh->statement_program_end = line_ptr + lh->total_length;
15726 lh->version = read_2_bytes (abfd, line_ptr);
15727 line_ptr += 2;
c764a876
DE
15728 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15729 line_ptr += offset_size;
debd256d
JB
15730 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15731 line_ptr += 1;
2dc7f7b3
TT
15732 if (lh->version >= 4)
15733 {
15734 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15735 line_ptr += 1;
15736 }
15737 else
15738 lh->maximum_ops_per_instruction = 1;
15739
15740 if (lh->maximum_ops_per_instruction == 0)
15741 {
15742 lh->maximum_ops_per_instruction = 1;
15743 complaint (&symfile_complaints,
3e43a32a
MS
15744 _("invalid maximum_ops_per_instruction "
15745 "in `.debug_line' section"));
2dc7f7b3
TT
15746 }
15747
debd256d
JB
15748 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15749 line_ptr += 1;
15750 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15751 line_ptr += 1;
15752 lh->line_range = read_1_byte (abfd, line_ptr);
15753 line_ptr += 1;
15754 lh->opcode_base = read_1_byte (abfd, line_ptr);
15755 line_ptr += 1;
15756 lh->standard_opcode_lengths
fe1b8b76 15757 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
15758
15759 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15760 for (i = 1; i < lh->opcode_base; ++i)
15761 {
15762 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15763 line_ptr += 1;
15764 }
15765
a738430d 15766 /* Read directory table. */
9b1c24c8 15767 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15768 {
15769 line_ptr += bytes_read;
15770 add_include_dir (lh, cur_dir);
15771 }
15772 line_ptr += bytes_read;
15773
a738430d 15774 /* Read file name table. */
9b1c24c8 15775 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15776 {
15777 unsigned int dir_index, mod_time, length;
15778
15779 line_ptr += bytes_read;
15780 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15781 line_ptr += bytes_read;
15782 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15783 line_ptr += bytes_read;
15784 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15785 line_ptr += bytes_read;
15786
15787 add_file_name (lh, cur_file, dir_index, mod_time, length);
15788 }
15789 line_ptr += bytes_read;
6e70227d 15790 lh->statement_program_start = line_ptr;
debd256d 15791
3019eac3 15792 if (line_ptr > (section->buffer + section->size))
4d3c2250 15793 complaint (&symfile_complaints,
3e43a32a
MS
15794 _("line number info header doesn't "
15795 "fit in `.debug_line' section"));
debd256d
JB
15796
15797 discard_cleanups (back_to);
15798 return lh;
15799}
c906108c 15800
c6da4cef
DE
15801/* Subroutine of dwarf_decode_lines to simplify it.
15802 Return the file name of the psymtab for included file FILE_INDEX
15803 in line header LH of PST.
15804 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15805 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
15806 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15807
15808 The function creates dangling cleanup registration. */
c6da4cef 15809
d521ce57 15810static const char *
c6da4cef
DE
15811psymtab_include_file_name (const struct line_header *lh, int file_index,
15812 const struct partial_symtab *pst,
15813 const char *comp_dir)
15814{
15815 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
15816 const char *include_name = fe.name;
15817 const char *include_name_to_compare = include_name;
15818 const char *dir_name = NULL;
72b9f47f
TT
15819 const char *pst_filename;
15820 char *copied_name = NULL;
c6da4cef
DE
15821 int file_is_pst;
15822
15823 if (fe.dir_index)
15824 dir_name = lh->include_dirs[fe.dir_index - 1];
15825
15826 if (!IS_ABSOLUTE_PATH (include_name)
15827 && (dir_name != NULL || comp_dir != NULL))
15828 {
15829 /* Avoid creating a duplicate psymtab for PST.
15830 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15831 Before we do the comparison, however, we need to account
15832 for DIR_NAME and COMP_DIR.
15833 First prepend dir_name (if non-NULL). If we still don't
15834 have an absolute path prepend comp_dir (if non-NULL).
15835 However, the directory we record in the include-file's
15836 psymtab does not contain COMP_DIR (to match the
15837 corresponding symtab(s)).
15838
15839 Example:
15840
15841 bash$ cd /tmp
15842 bash$ gcc -g ./hello.c
15843 include_name = "hello.c"
15844 dir_name = "."
15845 DW_AT_comp_dir = comp_dir = "/tmp"
15846 DW_AT_name = "./hello.c" */
15847
15848 if (dir_name != NULL)
15849 {
d521ce57
TT
15850 char *tem = concat (dir_name, SLASH_STRING,
15851 include_name, (char *)NULL);
15852
15853 make_cleanup (xfree, tem);
15854 include_name = tem;
c6da4cef 15855 include_name_to_compare = include_name;
c6da4cef
DE
15856 }
15857 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15858 {
d521ce57
TT
15859 char *tem = concat (comp_dir, SLASH_STRING,
15860 include_name, (char *)NULL);
15861
15862 make_cleanup (xfree, tem);
15863 include_name_to_compare = tem;
c6da4cef
DE
15864 }
15865 }
15866
15867 pst_filename = pst->filename;
15868 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15869 {
72b9f47f
TT
15870 copied_name = concat (pst->dirname, SLASH_STRING,
15871 pst_filename, (char *)NULL);
15872 pst_filename = copied_name;
c6da4cef
DE
15873 }
15874
1e3fad37 15875 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 15876
72b9f47f
TT
15877 if (copied_name != NULL)
15878 xfree (copied_name);
c6da4cef
DE
15879
15880 if (file_is_pst)
15881 return NULL;
15882 return include_name;
15883}
15884
c91513d8
PP
15885/* Ignore this record_line request. */
15886
15887static void
15888noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15889{
15890 return;
15891}
15892
f3f5162e
DE
15893/* Subroutine of dwarf_decode_lines to simplify it.
15894 Process the line number information in LH. */
debd256d 15895
c906108c 15896static void
f3f5162e
DE
15897dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15898 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15899{
d521ce57
TT
15900 const gdb_byte *line_ptr, *extended_end;
15901 const gdb_byte *line_end;
a8c50c1f 15902 unsigned int bytes_read, extended_len;
c906108c 15903 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15904 CORE_ADDR baseaddr;
15905 struct objfile *objfile = cu->objfile;
f3f5162e 15906 bfd *abfd = objfile->obfd;
fbf65064 15907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15908 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15909 struct subfile *last_subfile = NULL;
c91513d8
PP
15910 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15911 = record_line;
e142c38c
DJ
15912
15913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15914
debd256d
JB
15915 line_ptr = lh->statement_program_start;
15916 line_end = lh->statement_program_end;
c906108c
SS
15917
15918 /* Read the statement sequences until there's nothing left. */
15919 while (line_ptr < line_end)
15920 {
15921 /* state machine registers */
15922 CORE_ADDR address = 0;
15923 unsigned int file = 1;
15924 unsigned int line = 1;
15925 unsigned int column = 0;
debd256d 15926 int is_stmt = lh->default_is_stmt;
c906108c
SS
15927 int basic_block = 0;
15928 int end_sequence = 0;
fbf65064 15929 CORE_ADDR addr;
2dc7f7b3 15930 unsigned char op_index = 0;
c906108c 15931
aaa75496 15932 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15933 {
aaa75496 15934 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15935 /* lh->include_dirs and lh->file_names are 0-based, but the
15936 directory and file name numbers in the statement program
15937 are 1-based. */
15938 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 15939 const char *dir = NULL;
a738430d 15940
debd256d
JB
15941 if (fe->dir_index)
15942 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15943
15944 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15945 }
15946
a738430d 15947 /* Decode the table. */
c5aa993b 15948 while (!end_sequence)
c906108c
SS
15949 {
15950 op_code = read_1_byte (abfd, line_ptr);
15951 line_ptr += 1;
59205f5a
JB
15952 if (line_ptr > line_end)
15953 {
15954 dwarf2_debug_line_missing_end_sequence_complaint ();
15955 break;
15956 }
9aa1fe7e 15957
debd256d 15958 if (op_code >= lh->opcode_base)
6e70227d 15959 {
a738430d 15960 /* Special operand. */
debd256d 15961 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15962 address += (((op_index + (adj_opcode / lh->line_range))
15963 / lh->maximum_ops_per_instruction)
15964 * lh->minimum_instruction_length);
15965 op_index = ((op_index + (adj_opcode / lh->line_range))
15966 % lh->maximum_ops_per_instruction);
debd256d 15967 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15968 if (lh->num_file_names < file || file == 0)
25e43795 15969 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15970 /* For now we ignore lines not starting on an
15971 instruction boundary. */
15972 else if (op_index == 0)
25e43795
DJ
15973 {
15974 lh->file_names[file - 1].included_p = 1;
ca5f395d 15975 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15976 {
15977 if (last_subfile != current_subfile)
15978 {
15979 addr = gdbarch_addr_bits_remove (gdbarch, address);
15980 if (last_subfile)
c91513d8 15981 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15982 last_subfile = current_subfile;
15983 }
25e43795 15984 /* Append row to matrix using current values. */
7019d805 15985 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15986 (*p_record_line) (current_subfile, line, addr);
366da635 15987 }
25e43795 15988 }
ca5f395d 15989 basic_block = 0;
9aa1fe7e
GK
15990 }
15991 else switch (op_code)
c906108c
SS
15992 {
15993 case DW_LNS_extended_op:
3e43a32a
MS
15994 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15995 &bytes_read);
473b7be6 15996 line_ptr += bytes_read;
a8c50c1f 15997 extended_end = line_ptr + extended_len;
c906108c
SS
15998 extended_op = read_1_byte (abfd, line_ptr);
15999 line_ptr += 1;
16000 switch (extended_op)
16001 {
16002 case DW_LNE_end_sequence:
c91513d8 16003 p_record_line = record_line;
c906108c 16004 end_sequence = 1;
c906108c
SS
16005 break;
16006 case DW_LNE_set_address:
e7c27a73 16007 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
16008
16009 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16010 {
16011 /* This line table is for a function which has been
16012 GCd by the linker. Ignore it. PR gdb/12528 */
16013
16014 long line_offset
36586728 16015 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
16016
16017 complaint (&symfile_complaints,
16018 _(".debug_line address at offset 0x%lx is 0 "
16019 "[in module %s]"),
bb5ed363 16020 line_offset, objfile->name);
c91513d8
PP
16021 p_record_line = noop_record_line;
16022 }
16023
2dc7f7b3 16024 op_index = 0;
107d2387
AC
16025 line_ptr += bytes_read;
16026 address += baseaddr;
c906108c
SS
16027 break;
16028 case DW_LNE_define_file:
debd256d 16029 {
d521ce57 16030 const char *cur_file;
debd256d 16031 unsigned int dir_index, mod_time, length;
6e70227d 16032
3e43a32a
MS
16033 cur_file = read_direct_string (abfd, line_ptr,
16034 &bytes_read);
debd256d
JB
16035 line_ptr += bytes_read;
16036 dir_index =
16037 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16038 line_ptr += bytes_read;
16039 mod_time =
16040 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16041 line_ptr += bytes_read;
16042 length =
16043 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16044 line_ptr += bytes_read;
16045 add_file_name (lh, cur_file, dir_index, mod_time, length);
16046 }
c906108c 16047 break;
d0c6ba3d
CC
16048 case DW_LNE_set_discriminator:
16049 /* The discriminator is not interesting to the debugger;
16050 just ignore it. */
16051 line_ptr = extended_end;
16052 break;
c906108c 16053 default:
4d3c2250 16054 complaint (&symfile_complaints,
e2e0b3e5 16055 _("mangled .debug_line section"));
debd256d 16056 return;
c906108c 16057 }
a8c50c1f
DJ
16058 /* Make sure that we parsed the extended op correctly. If e.g.
16059 we expected a different address size than the producer used,
16060 we may have read the wrong number of bytes. */
16061 if (line_ptr != extended_end)
16062 {
16063 complaint (&symfile_complaints,
16064 _("mangled .debug_line section"));
16065 return;
16066 }
c906108c
SS
16067 break;
16068 case DW_LNS_copy:
59205f5a 16069 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16070 dwarf2_debug_line_missing_file_complaint ();
16071 else
366da635 16072 {
25e43795 16073 lh->file_names[file - 1].included_p = 1;
ca5f395d 16074 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16075 {
16076 if (last_subfile != current_subfile)
16077 {
16078 addr = gdbarch_addr_bits_remove (gdbarch, address);
16079 if (last_subfile)
c91513d8 16080 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16081 last_subfile = current_subfile;
16082 }
7019d805 16083 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16084 (*p_record_line) (current_subfile, line, addr);
fbf65064 16085 }
366da635 16086 }
c906108c
SS
16087 basic_block = 0;
16088 break;
16089 case DW_LNS_advance_pc:
2dc7f7b3
TT
16090 {
16091 CORE_ADDR adjust
16092 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16093
16094 address += (((op_index + adjust)
16095 / lh->maximum_ops_per_instruction)
16096 * lh->minimum_instruction_length);
16097 op_index = ((op_index + adjust)
16098 % lh->maximum_ops_per_instruction);
16099 line_ptr += bytes_read;
16100 }
c906108c
SS
16101 break;
16102 case DW_LNS_advance_line:
16103 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16104 line_ptr += bytes_read;
16105 break;
16106 case DW_LNS_set_file:
debd256d 16107 {
a738430d
MK
16108 /* The arrays lh->include_dirs and lh->file_names are
16109 0-based, but the directory and file name numbers in
16110 the statement program are 1-based. */
debd256d 16111 struct file_entry *fe;
d521ce57 16112 const char *dir = NULL;
a738430d 16113
debd256d
JB
16114 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16115 line_ptr += bytes_read;
59205f5a 16116 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16117 dwarf2_debug_line_missing_file_complaint ();
16118 else
16119 {
16120 fe = &lh->file_names[file - 1];
16121 if (fe->dir_index)
16122 dir = lh->include_dirs[fe->dir_index - 1];
16123 if (!decode_for_pst_p)
16124 {
16125 last_subfile = current_subfile;
16126 dwarf2_start_subfile (fe->name, dir, comp_dir);
16127 }
16128 }
debd256d 16129 }
c906108c
SS
16130 break;
16131 case DW_LNS_set_column:
16132 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16133 line_ptr += bytes_read;
16134 break;
16135 case DW_LNS_negate_stmt:
16136 is_stmt = (!is_stmt);
16137 break;
16138 case DW_LNS_set_basic_block:
16139 basic_block = 1;
16140 break;
c2c6d25f
JM
16141 /* Add to the address register of the state machine the
16142 address increment value corresponding to special opcode
a738430d
MK
16143 255. I.e., this value is scaled by the minimum
16144 instruction length since special opcode 255 would have
b021a221 16145 scaled the increment. */
c906108c 16146 case DW_LNS_const_add_pc:
2dc7f7b3
TT
16147 {
16148 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16149
16150 address += (((op_index + adjust)
16151 / lh->maximum_ops_per_instruction)
16152 * lh->minimum_instruction_length);
16153 op_index = ((op_index + adjust)
16154 % lh->maximum_ops_per_instruction);
16155 }
c906108c
SS
16156 break;
16157 case DW_LNS_fixed_advance_pc:
16158 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 16159 op_index = 0;
c906108c
SS
16160 line_ptr += 2;
16161 break;
9aa1fe7e 16162 default:
a738430d
MK
16163 {
16164 /* Unknown standard opcode, ignore it. */
9aa1fe7e 16165 int i;
a738430d 16166
debd256d 16167 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
16168 {
16169 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16170 line_ptr += bytes_read;
16171 }
16172 }
c906108c
SS
16173 }
16174 }
59205f5a
JB
16175 if (lh->num_file_names < file || file == 0)
16176 dwarf2_debug_line_missing_file_complaint ();
16177 else
16178 {
16179 lh->file_names[file - 1].included_p = 1;
16180 if (!decode_for_pst_p)
fbf65064
UW
16181 {
16182 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16183 (*p_record_line) (current_subfile, 0, addr);
fbf65064 16184 }
59205f5a 16185 }
c906108c 16186 }
f3f5162e
DE
16187}
16188
16189/* Decode the Line Number Program (LNP) for the given line_header
16190 structure and CU. The actual information extracted and the type
16191 of structures created from the LNP depends on the value of PST.
16192
16193 1. If PST is NULL, then this procedure uses the data from the program
16194 to create all necessary symbol tables, and their linetables.
16195
16196 2. If PST is not NULL, this procedure reads the program to determine
16197 the list of files included by the unit represented by PST, and
16198 builds all the associated partial symbol tables.
16199
16200 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16201 It is used for relative paths in the line table.
16202 NOTE: When processing partial symtabs (pst != NULL),
16203 comp_dir == pst->dirname.
16204
16205 NOTE: It is important that psymtabs have the same file name (via strcmp)
16206 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16207 symtab we don't use it in the name of the psymtabs we create.
16208 E.g. expand_line_sal requires this when finding psymtabs to expand.
16209 A good testcase for this is mb-inline.exp. */
16210
16211static void
16212dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16213 struct dwarf2_cu *cu, struct partial_symtab *pst,
16214 int want_line_info)
16215{
16216 struct objfile *objfile = cu->objfile;
16217 const int decode_for_pst_p = (pst != NULL);
16218 struct subfile *first_subfile = current_subfile;
16219
16220 if (want_line_info)
16221 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
16222
16223 if (decode_for_pst_p)
16224 {
16225 int file_index;
16226
16227 /* Now that we're done scanning the Line Header Program, we can
16228 create the psymtab of each included file. */
16229 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16230 if (lh->file_names[file_index].included_p == 1)
16231 {
d521ce57 16232 const char *include_name =
c6da4cef
DE
16233 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16234 if (include_name != NULL)
aaa75496
JB
16235 dwarf2_create_include_psymtab (include_name, pst, objfile);
16236 }
16237 }
cb1df416
DJ
16238 else
16239 {
16240 /* Make sure a symtab is created for every file, even files
16241 which contain only variables (i.e. no code with associated
16242 line numbers). */
cb1df416 16243 int i;
cb1df416
DJ
16244
16245 for (i = 0; i < lh->num_file_names; i++)
16246 {
d521ce57 16247 const char *dir = NULL;
f3f5162e 16248 struct file_entry *fe;
9a619af0 16249
cb1df416
DJ
16250 fe = &lh->file_names[i];
16251 if (fe->dir_index)
16252 dir = lh->include_dirs[fe->dir_index - 1];
16253 dwarf2_start_subfile (fe->name, dir, comp_dir);
16254
16255 /* Skip the main file; we don't need it, and it must be
16256 allocated last, so that it will show up before the
16257 non-primary symtabs in the objfile's symtab list. */
16258 if (current_subfile == first_subfile)
16259 continue;
16260
16261 if (current_subfile->symtab == NULL)
16262 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 16263 objfile);
cb1df416
DJ
16264 fe->symtab = current_subfile->symtab;
16265 }
16266 }
c906108c
SS
16267}
16268
16269/* Start a subfile for DWARF. FILENAME is the name of the file and
16270 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
16271 or NULL if not known. COMP_DIR is the compilation directory for the
16272 linetable's compilation unit or NULL if not known.
c906108c
SS
16273 This routine tries to keep line numbers from identical absolute and
16274 relative file names in a common subfile.
16275
16276 Using the `list' example from the GDB testsuite, which resides in
16277 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16278 of /srcdir/list0.c yields the following debugging information for list0.c:
16279
c5aa993b
JM
16280 DW_AT_name: /srcdir/list0.c
16281 DW_AT_comp_dir: /compdir
357e46e7 16282 files.files[0].name: list0.h
c5aa993b 16283 files.files[0].dir: /srcdir
357e46e7 16284 files.files[1].name: list0.c
c5aa993b 16285 files.files[1].dir: /srcdir
c906108c
SS
16286
16287 The line number information for list0.c has to end up in a single
4f1520fb
FR
16288 subfile, so that `break /srcdir/list0.c:1' works as expected.
16289 start_subfile will ensure that this happens provided that we pass the
16290 concatenation of files.files[1].dir and files.files[1].name as the
16291 subfile's name. */
c906108c
SS
16292
16293static void
d521ce57 16294dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 16295 const char *comp_dir)
c906108c 16296{
d521ce57 16297 char *copy = NULL;
4f1520fb
FR
16298
16299 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16300 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16301 second argument to start_subfile. To be consistent, we do the
16302 same here. In order not to lose the line information directory,
16303 we concatenate it to the filename when it makes sense.
16304 Note that the Dwarf3 standard says (speaking of filenames in line
16305 information): ``The directory index is ignored for file names
16306 that represent full path names''. Thus ignoring dirname in the
16307 `else' branch below isn't an issue. */
c906108c 16308
d5166ae1 16309 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
16310 {
16311 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16312 filename = copy;
16313 }
c906108c 16314
d521ce57 16315 start_subfile (filename, comp_dir);
4f1520fb 16316
d521ce57
TT
16317 if (copy != NULL)
16318 xfree (copy);
c906108c
SS
16319}
16320
f4dc4d17
DE
16321/* Start a symtab for DWARF.
16322 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16323
16324static void
16325dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 16326 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
16327{
16328 start_symtab (name, comp_dir, low_pc);
16329 record_debugformat ("DWARF 2");
16330 record_producer (cu->producer);
16331
16332 /* We assume that we're processing GCC output. */
16333 processing_gcc_compilation = 2;
16334
4d4ec4e5 16335 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
16336}
16337
4c2df51b
DJ
16338static void
16339var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 16340 struct dwarf2_cu *cu)
4c2df51b 16341{
e7c27a73
DJ
16342 struct objfile *objfile = cu->objfile;
16343 struct comp_unit_head *cu_header = &cu->header;
16344
4c2df51b
DJ
16345 /* NOTE drow/2003-01-30: There used to be a comment and some special
16346 code here to turn a symbol with DW_AT_external and a
16347 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16348 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16349 with some versions of binutils) where shared libraries could have
16350 relocations against symbols in their debug information - the
16351 minimal symbol would have the right address, but the debug info
16352 would not. It's no longer necessary, because we will explicitly
16353 apply relocations when we read in the debug information now. */
16354
16355 /* A DW_AT_location attribute with no contents indicates that a
16356 variable has been optimized away. */
16357 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16358 {
f1e6e072 16359 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
16360 return;
16361 }
16362
16363 /* Handle one degenerate form of location expression specially, to
16364 preserve GDB's previous behavior when section offsets are
3019eac3
DE
16365 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16366 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
16367
16368 if (attr_form_is_block (attr)
3019eac3
DE
16369 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16370 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16371 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16372 && (DW_BLOCK (attr)->size
16373 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 16374 {
891d2f0b 16375 unsigned int dummy;
4c2df51b 16376
3019eac3
DE
16377 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16378 SYMBOL_VALUE_ADDRESS (sym) =
16379 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16380 else
16381 SYMBOL_VALUE_ADDRESS (sym) =
16382 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 16383 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
16384 fixup_symbol_section (sym, objfile);
16385 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16386 SYMBOL_SECTION (sym));
4c2df51b
DJ
16387 return;
16388 }
16389
16390 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16391 expression evaluator, and use LOC_COMPUTED only when necessary
16392 (i.e. when the value of a register or memory location is
16393 referenced, or a thread-local block, etc.). Then again, it might
16394 not be worthwhile. I'm assuming that it isn't unless performance
16395 or memory numbers show me otherwise. */
16396
f1e6e072 16397 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 16398
f1e6e072 16399 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 16400 cu->has_loclist = 1;
4c2df51b
DJ
16401}
16402
c906108c
SS
16403/* Given a pointer to a DWARF information entry, figure out if we need
16404 to make a symbol table entry for it, and if so, create a new entry
16405 and return a pointer to it.
16406 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
16407 used the passed type.
16408 If SPACE is not NULL, use it to hold the new symbol. If it is
16409 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
16410
16411static struct symbol *
34eaf542
TT
16412new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16413 struct symbol *space)
c906108c 16414{
e7c27a73 16415 struct objfile *objfile = cu->objfile;
c906108c 16416 struct symbol *sym = NULL;
15d034d0 16417 const char *name;
c906108c
SS
16418 struct attribute *attr = NULL;
16419 struct attribute *attr2 = NULL;
e142c38c 16420 CORE_ADDR baseaddr;
e37fd15a
SW
16421 struct pending **list_to_add = NULL;
16422
edb3359d 16423 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
16424
16425 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16426
94af9270 16427 name = dwarf2_name (die, cu);
c906108c
SS
16428 if (name)
16429 {
94af9270 16430 const char *linkagename;
34eaf542 16431 int suppress_add = 0;
94af9270 16432
34eaf542
TT
16433 if (space)
16434 sym = space;
16435 else
e623cf5d 16436 sym = allocate_symbol (objfile);
c906108c 16437 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
16438
16439 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 16440 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
16441 linkagename = dwarf2_physname (name, die, cu);
16442 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 16443
f55ee35c
JK
16444 /* Fortran does not have mangling standard and the mangling does differ
16445 between gfortran, iFort etc. */
16446 if (cu->language == language_fortran
b250c185 16447 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 16448 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 16449 dwarf2_full_name (name, die, cu),
29df156d 16450 NULL);
f55ee35c 16451
c906108c 16452 /* Default assumptions.
c5aa993b 16453 Use the passed type or decode it from the die. */
176620f1 16454 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 16455 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
16456 if (type != NULL)
16457 SYMBOL_TYPE (sym) = type;
16458 else
e7c27a73 16459 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
16460 attr = dwarf2_attr (die,
16461 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16462 cu);
c906108c
SS
16463 if (attr)
16464 {
16465 SYMBOL_LINE (sym) = DW_UNSND (attr);
16466 }
cb1df416 16467
edb3359d
DJ
16468 attr = dwarf2_attr (die,
16469 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16470 cu);
cb1df416
DJ
16471 if (attr)
16472 {
16473 int file_index = DW_UNSND (attr);
9a619af0 16474
cb1df416
DJ
16475 if (cu->line_header == NULL
16476 || file_index > cu->line_header->num_file_names)
16477 complaint (&symfile_complaints,
16478 _("file index out of range"));
1c3d648d 16479 else if (file_index > 0)
cb1df416
DJ
16480 {
16481 struct file_entry *fe;
9a619af0 16482
cb1df416
DJ
16483 fe = &cu->line_header->file_names[file_index - 1];
16484 SYMBOL_SYMTAB (sym) = fe->symtab;
16485 }
16486 }
16487
c906108c
SS
16488 switch (die->tag)
16489 {
16490 case DW_TAG_label:
e142c38c 16491 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
16492 if (attr)
16493 {
16494 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16495 }
0f5238ed
TT
16496 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16497 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 16498 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 16499 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
16500 break;
16501 case DW_TAG_subprogram:
16502 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16503 finish_block. */
f1e6e072 16504 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 16505 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
16506 if ((attr2 && (DW_UNSND (attr2) != 0))
16507 || cu->language == language_ada)
c906108c 16508 {
2cfa0c8d
JB
16509 /* Subprograms marked external are stored as a global symbol.
16510 Ada subprograms, whether marked external or not, are always
16511 stored as a global symbol, because we want to be able to
16512 access them globally. For instance, we want to be able
16513 to break on a nested subprogram without having to
16514 specify the context. */
e37fd15a 16515 list_to_add = &global_symbols;
c906108c
SS
16516 }
16517 else
16518 {
e37fd15a 16519 list_to_add = cu->list_in_scope;
c906108c
SS
16520 }
16521 break;
edb3359d
DJ
16522 case DW_TAG_inlined_subroutine:
16523 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16524 finish_block. */
f1e6e072 16525 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 16526 SYMBOL_INLINED (sym) = 1;
481860b3 16527 list_to_add = cu->list_in_scope;
edb3359d 16528 break;
34eaf542
TT
16529 case DW_TAG_template_value_param:
16530 suppress_add = 1;
16531 /* Fall through. */
72929c62 16532 case DW_TAG_constant:
c906108c 16533 case DW_TAG_variable:
254e6b9e 16534 case DW_TAG_member:
0963b4bd
MS
16535 /* Compilation with minimal debug info may result in
16536 variables with missing type entries. Change the
16537 misleading `void' type to something sensible. */
c906108c 16538 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 16539 SYMBOL_TYPE (sym)
46bf5051 16540 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 16541
e142c38c 16542 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
16543 /* In the case of DW_TAG_member, we should only be called for
16544 static const members. */
16545 if (die->tag == DW_TAG_member)
16546 {
3863f96c
DE
16547 /* dwarf2_add_field uses die_is_declaration,
16548 so we do the same. */
254e6b9e
DE
16549 gdb_assert (die_is_declaration (die, cu));
16550 gdb_assert (attr);
16551 }
c906108c
SS
16552 if (attr)
16553 {
e7c27a73 16554 dwarf2_const_value (attr, sym, cu);
e142c38c 16555 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 16556 if (!suppress_add)
34eaf542
TT
16557 {
16558 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 16559 list_to_add = &global_symbols;
34eaf542 16560 else
e37fd15a 16561 list_to_add = cu->list_in_scope;
34eaf542 16562 }
c906108c
SS
16563 break;
16564 }
e142c38c 16565 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16566 if (attr)
16567 {
e7c27a73 16568 var_decode_location (attr, sym, cu);
e142c38c 16569 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
16570
16571 /* Fortran explicitly imports any global symbols to the local
16572 scope by DW_TAG_common_block. */
16573 if (cu->language == language_fortran && die->parent
16574 && die->parent->tag == DW_TAG_common_block)
16575 attr2 = NULL;
16576
caac4577
JG
16577 if (SYMBOL_CLASS (sym) == LOC_STATIC
16578 && SYMBOL_VALUE_ADDRESS (sym) == 0
16579 && !dwarf2_per_objfile->has_section_at_zero)
16580 {
16581 /* When a static variable is eliminated by the linker,
16582 the corresponding debug information is not stripped
16583 out, but the variable address is set to null;
16584 do not add such variables into symbol table. */
16585 }
16586 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 16587 {
f55ee35c
JK
16588 /* Workaround gfortran PR debug/40040 - it uses
16589 DW_AT_location for variables in -fPIC libraries which may
16590 get overriden by other libraries/executable and get
16591 a different address. Resolve it by the minimal symbol
16592 which may come from inferior's executable using copy
16593 relocation. Make this workaround only for gfortran as for
16594 other compilers GDB cannot guess the minimal symbol
16595 Fortran mangling kind. */
16596 if (cu->language == language_fortran && die->parent
16597 && die->parent->tag == DW_TAG_module
16598 && cu->producer
16599 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 16600 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 16601
1c809c68
TT
16602 /* A variable with DW_AT_external is never static,
16603 but it may be block-scoped. */
16604 list_to_add = (cu->list_in_scope == &file_symbols
16605 ? &global_symbols : cu->list_in_scope);
1c809c68 16606 }
c906108c 16607 else
e37fd15a 16608 list_to_add = cu->list_in_scope;
c906108c
SS
16609 }
16610 else
16611 {
16612 /* We do not know the address of this symbol.
c5aa993b
JM
16613 If it is an external symbol and we have type information
16614 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16615 The address of the variable will then be determined from
16616 the minimal symbol table whenever the variable is
16617 referenced. */
e142c38c 16618 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
16619
16620 /* Fortran explicitly imports any global symbols to the local
16621 scope by DW_TAG_common_block. */
16622 if (cu->language == language_fortran && die->parent
16623 && die->parent->tag == DW_TAG_common_block)
16624 {
16625 /* SYMBOL_CLASS doesn't matter here because
16626 read_common_block is going to reset it. */
16627 if (!suppress_add)
16628 list_to_add = cu->list_in_scope;
16629 }
16630 else if (attr2 && (DW_UNSND (attr2) != 0)
16631 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 16632 {
0fe7935b
DJ
16633 /* A variable with DW_AT_external is never static, but it
16634 may be block-scoped. */
16635 list_to_add = (cu->list_in_scope == &file_symbols
16636 ? &global_symbols : cu->list_in_scope);
16637
f1e6e072 16638 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 16639 }
442ddf59
JK
16640 else if (!die_is_declaration (die, cu))
16641 {
16642 /* Use the default LOC_OPTIMIZED_OUT class. */
16643 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
16644 if (!suppress_add)
16645 list_to_add = cu->list_in_scope;
442ddf59 16646 }
c906108c
SS
16647 }
16648 break;
16649 case DW_TAG_formal_parameter:
edb3359d
DJ
16650 /* If we are inside a function, mark this as an argument. If
16651 not, we might be looking at an argument to an inlined function
16652 when we do not have enough information to show inlined frames;
16653 pretend it's a local variable in that case so that the user can
16654 still see it. */
16655 if (context_stack_depth > 0
16656 && context_stack[context_stack_depth - 1].name != NULL)
16657 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 16658 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16659 if (attr)
16660 {
e7c27a73 16661 var_decode_location (attr, sym, cu);
c906108c 16662 }
e142c38c 16663 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16664 if (attr)
16665 {
e7c27a73 16666 dwarf2_const_value (attr, sym, cu);
c906108c 16667 }
f346a30d 16668
e37fd15a 16669 list_to_add = cu->list_in_scope;
c906108c
SS
16670 break;
16671 case DW_TAG_unspecified_parameters:
16672 /* From varargs functions; gdb doesn't seem to have any
16673 interest in this information, so just ignore it for now.
16674 (FIXME?) */
16675 break;
34eaf542
TT
16676 case DW_TAG_template_type_param:
16677 suppress_add = 1;
16678 /* Fall through. */
c906108c 16679 case DW_TAG_class_type:
680b30c7 16680 case DW_TAG_interface_type:
c906108c
SS
16681 case DW_TAG_structure_type:
16682 case DW_TAG_union_type:
72019c9c 16683 case DW_TAG_set_type:
c906108c 16684 case DW_TAG_enumeration_type:
f1e6e072 16685 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16686 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 16687
63d06c5c 16688 {
987504bb 16689 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
16690 really ever be static objects: otherwise, if you try
16691 to, say, break of a class's method and you're in a file
16692 which doesn't mention that class, it won't work unless
16693 the check for all static symbols in lookup_symbol_aux
16694 saves you. See the OtherFileClass tests in
16695 gdb.c++/namespace.exp. */
16696
e37fd15a 16697 if (!suppress_add)
34eaf542 16698 {
34eaf542
TT
16699 list_to_add = (cu->list_in_scope == &file_symbols
16700 && (cu->language == language_cplus
16701 || cu->language == language_java)
16702 ? &global_symbols : cu->list_in_scope);
63d06c5c 16703
64382290
TT
16704 /* The semantics of C++ state that "struct foo {
16705 ... }" also defines a typedef for "foo". A Java
16706 class declaration also defines a typedef for the
16707 class. */
16708 if (cu->language == language_cplus
16709 || cu->language == language_java
16710 || cu->language == language_ada)
16711 {
16712 /* The symbol's name is already allocated along
16713 with this objfile, so we don't need to
16714 duplicate it for the type. */
16715 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16716 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16717 }
63d06c5c
DC
16718 }
16719 }
c906108c
SS
16720 break;
16721 case DW_TAG_typedef:
f1e6e072 16722 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 16723 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16724 list_to_add = cu->list_in_scope;
63d06c5c 16725 break;
c906108c 16726 case DW_TAG_base_type:
a02abb62 16727 case DW_TAG_subrange_type:
f1e6e072 16728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16730 list_to_add = cu->list_in_scope;
c906108c
SS
16731 break;
16732 case DW_TAG_enumerator:
e142c38c 16733 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16734 if (attr)
16735 {
e7c27a73 16736 dwarf2_const_value (attr, sym, cu);
c906108c 16737 }
63d06c5c
DC
16738 {
16739 /* NOTE: carlton/2003-11-10: See comment above in the
16740 DW_TAG_class_type, etc. block. */
16741
e142c38c 16742 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
16743 && (cu->language == language_cplus
16744 || cu->language == language_java)
e142c38c 16745 ? &global_symbols : cu->list_in_scope);
63d06c5c 16746 }
c906108c 16747 break;
5c4e30ca 16748 case DW_TAG_namespace:
f1e6e072 16749 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 16750 list_to_add = &global_symbols;
5c4e30ca 16751 break;
4357ac6c 16752 case DW_TAG_common_block:
f1e6e072 16753 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
16754 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16755 add_symbol_to_list (sym, cu->list_in_scope);
16756 break;
c906108c
SS
16757 default:
16758 /* Not a tag we recognize. Hopefully we aren't processing
16759 trash data, but since we must specifically ignore things
16760 we don't recognize, there is nothing else we should do at
0963b4bd 16761 this point. */
e2e0b3e5 16762 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 16763 dwarf_tag_name (die->tag));
c906108c
SS
16764 break;
16765 }
df8a16a1 16766
e37fd15a
SW
16767 if (suppress_add)
16768 {
16769 sym->hash_next = objfile->template_symbols;
16770 objfile->template_symbols = sym;
16771 list_to_add = NULL;
16772 }
16773
16774 if (list_to_add != NULL)
16775 add_symbol_to_list (sym, list_to_add);
16776
df8a16a1
DJ
16777 /* For the benefit of old versions of GCC, check for anonymous
16778 namespaces based on the demangled name. */
4d4ec4e5 16779 if (!cu->processing_has_namespace_info
94af9270 16780 && cu->language == language_cplus)
a10964d1 16781 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
16782 }
16783 return (sym);
16784}
16785
34eaf542
TT
16786/* A wrapper for new_symbol_full that always allocates a new symbol. */
16787
16788static struct symbol *
16789new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16790{
16791 return new_symbol_full (die, type, cu, NULL);
16792}
16793
98bfdba5
PA
16794/* Given an attr with a DW_FORM_dataN value in host byte order,
16795 zero-extend it as appropriate for the symbol's type. The DWARF
16796 standard (v4) is not entirely clear about the meaning of using
16797 DW_FORM_dataN for a constant with a signed type, where the type is
16798 wider than the data. The conclusion of a discussion on the DWARF
16799 list was that this is unspecified. We choose to always zero-extend
16800 because that is the interpretation long in use by GCC. */
c906108c 16801
98bfdba5 16802static gdb_byte *
ff39bb5e 16803dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 16804 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16805{
e7c27a73 16806 struct objfile *objfile = cu->objfile;
e17a4113
UW
16807 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16808 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16809 LONGEST l = DW_UNSND (attr);
16810
16811 if (bits < sizeof (*value) * 8)
16812 {
16813 l &= ((LONGEST) 1 << bits) - 1;
16814 *value = l;
16815 }
16816 else if (bits == sizeof (*value) * 8)
16817 *value = l;
16818 else
16819 {
16820 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16821 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16822 return bytes;
16823 }
16824
16825 return NULL;
16826}
16827
16828/* Read a constant value from an attribute. Either set *VALUE, or if
16829 the value does not fit in *VALUE, set *BYTES - either already
16830 allocated on the objfile obstack, or newly allocated on OBSTACK,
16831 or, set *BATON, if we translated the constant to a location
16832 expression. */
16833
16834static void
ff39bb5e 16835dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
16836 const char *name, struct obstack *obstack,
16837 struct dwarf2_cu *cu,
d521ce57 16838 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
16839 struct dwarf2_locexpr_baton **baton)
16840{
16841 struct objfile *objfile = cu->objfile;
16842 struct comp_unit_head *cu_header = &cu->header;
c906108c 16843 struct dwarf_block *blk;
98bfdba5
PA
16844 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16845 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16846
16847 *value = 0;
16848 *bytes = NULL;
16849 *baton = NULL;
c906108c
SS
16850
16851 switch (attr->form)
16852 {
16853 case DW_FORM_addr:
3019eac3 16854 case DW_FORM_GNU_addr_index:
ac56253d 16855 {
ac56253d
TT
16856 gdb_byte *data;
16857
98bfdba5
PA
16858 if (TYPE_LENGTH (type) != cu_header->addr_size)
16859 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16860 cu_header->addr_size,
98bfdba5 16861 TYPE_LENGTH (type));
ac56253d
TT
16862 /* Symbols of this form are reasonably rare, so we just
16863 piggyback on the existing location code rather than writing
16864 a new implementation of symbol_computed_ops. */
7919a973 16865 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
16866 (*baton)->per_cu = cu->per_cu;
16867 gdb_assert ((*baton)->per_cu);
ac56253d 16868
98bfdba5 16869 (*baton)->size = 2 + cu_header->addr_size;
7919a973 16870 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 16871 (*baton)->data = data;
ac56253d
TT
16872
16873 data[0] = DW_OP_addr;
16874 store_unsigned_integer (&data[1], cu_header->addr_size,
16875 byte_order, DW_ADDR (attr));
16876 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16877 }
c906108c 16878 break;
4ac36638 16879 case DW_FORM_string:
93b5768b 16880 case DW_FORM_strp:
3019eac3 16881 case DW_FORM_GNU_str_index:
36586728 16882 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16883 /* DW_STRING is already allocated on the objfile obstack, point
16884 directly to it. */
d521ce57 16885 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 16886 break;
c906108c
SS
16887 case DW_FORM_block1:
16888 case DW_FORM_block2:
16889 case DW_FORM_block4:
16890 case DW_FORM_block:
2dc7f7b3 16891 case DW_FORM_exprloc:
c906108c 16892 blk = DW_BLOCK (attr);
98bfdba5
PA
16893 if (TYPE_LENGTH (type) != blk->size)
16894 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16895 TYPE_LENGTH (type));
16896 *bytes = blk->data;
c906108c 16897 break;
2df3850c
JM
16898
16899 /* The DW_AT_const_value attributes are supposed to carry the
16900 symbol's value "represented as it would be on the target
16901 architecture." By the time we get here, it's already been
16902 converted to host endianness, so we just need to sign- or
16903 zero-extend it as appropriate. */
16904 case DW_FORM_data1:
3aef2284 16905 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 16906 break;
c906108c 16907 case DW_FORM_data2:
3aef2284 16908 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 16909 break;
c906108c 16910 case DW_FORM_data4:
3aef2284 16911 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 16912 break;
c906108c 16913 case DW_FORM_data8:
3aef2284 16914 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
16915 break;
16916
c906108c 16917 case DW_FORM_sdata:
98bfdba5 16918 *value = DW_SND (attr);
2df3850c
JM
16919 break;
16920
c906108c 16921 case DW_FORM_udata:
98bfdba5 16922 *value = DW_UNSND (attr);
c906108c 16923 break;
2df3850c 16924
c906108c 16925 default:
4d3c2250 16926 complaint (&symfile_complaints,
e2e0b3e5 16927 _("unsupported const value attribute form: '%s'"),
4d3c2250 16928 dwarf_form_name (attr->form));
98bfdba5 16929 *value = 0;
c906108c
SS
16930 break;
16931 }
16932}
16933
2df3850c 16934
98bfdba5
PA
16935/* Copy constant value from an attribute to a symbol. */
16936
2df3850c 16937static void
ff39bb5e 16938dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 16939 struct dwarf2_cu *cu)
2df3850c 16940{
98bfdba5
PA
16941 struct objfile *objfile = cu->objfile;
16942 struct comp_unit_head *cu_header = &cu->header;
12df843f 16943 LONGEST value;
d521ce57 16944 const gdb_byte *bytes;
98bfdba5 16945 struct dwarf2_locexpr_baton *baton;
2df3850c 16946
98bfdba5
PA
16947 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16948 SYMBOL_PRINT_NAME (sym),
16949 &objfile->objfile_obstack, cu,
16950 &value, &bytes, &baton);
2df3850c 16951
98bfdba5
PA
16952 if (baton != NULL)
16953 {
98bfdba5 16954 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16955 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
16956 }
16957 else if (bytes != NULL)
16958 {
16959 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 16960 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
16961 }
16962 else
16963 {
16964 SYMBOL_VALUE (sym) = value;
f1e6e072 16965 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 16966 }
2df3850c
JM
16967}
16968
c906108c
SS
16969/* Return the type of the die in question using its DW_AT_type attribute. */
16970
16971static struct type *
e7c27a73 16972die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16973{
c906108c 16974 struct attribute *type_attr;
c906108c 16975
e142c38c 16976 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16977 if (!type_attr)
16978 {
16979 /* A missing DW_AT_type represents a void type. */
46bf5051 16980 return objfile_type (cu->objfile)->builtin_void;
c906108c 16981 }
348e048f 16982
673bfd45 16983 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16984}
16985
b4ba55a1
JB
16986/* True iff CU's producer generates GNAT Ada auxiliary information
16987 that allows to find parallel types through that information instead
16988 of having to do expensive parallel lookups by type name. */
16989
16990static int
16991need_gnat_info (struct dwarf2_cu *cu)
16992{
16993 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16994 of GNAT produces this auxiliary information, without any indication
16995 that it is produced. Part of enhancing the FSF version of GNAT
16996 to produce that information will be to put in place an indicator
16997 that we can use in order to determine whether the descriptive type
16998 info is available or not. One suggestion that has been made is
16999 to use a new attribute, attached to the CU die. For now, assume
17000 that the descriptive type info is not available. */
17001 return 0;
17002}
17003
b4ba55a1
JB
17004/* Return the auxiliary type of the die in question using its
17005 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17006 attribute is not present. */
17007
17008static struct type *
17009die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17010{
b4ba55a1 17011 struct attribute *type_attr;
b4ba55a1
JB
17012
17013 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17014 if (!type_attr)
17015 return NULL;
17016
673bfd45 17017 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
17018}
17019
17020/* If DIE has a descriptive_type attribute, then set the TYPE's
17021 descriptive type accordingly. */
17022
17023static void
17024set_descriptive_type (struct type *type, struct die_info *die,
17025 struct dwarf2_cu *cu)
17026{
17027 struct type *descriptive_type = die_descriptive_type (die, cu);
17028
17029 if (descriptive_type)
17030 {
17031 ALLOCATE_GNAT_AUX_TYPE (type);
17032 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17033 }
17034}
17035
c906108c
SS
17036/* Return the containing type of the die in question using its
17037 DW_AT_containing_type attribute. */
17038
17039static struct type *
e7c27a73 17040die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17041{
c906108c 17042 struct attribute *type_attr;
c906108c 17043
e142c38c 17044 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
17045 if (!type_attr)
17046 error (_("Dwarf Error: Problem turning containing type into gdb type "
17047 "[in module %s]"), cu->objfile->name);
17048
673bfd45 17049 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17050}
17051
ac9ec31b
DE
17052/* Return an error marker type to use for the ill formed type in DIE/CU. */
17053
17054static struct type *
17055build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17056{
17057 struct objfile *objfile = dwarf2_per_objfile->objfile;
17058 char *message, *saved;
17059
17060 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17061 objfile->name,
17062 cu->header.offset.sect_off,
17063 die->offset.sect_off);
17064 saved = obstack_copy0 (&objfile->objfile_obstack,
17065 message, strlen (message));
17066 xfree (message);
17067
17068 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17069}
17070
673bfd45 17071/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
17072 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17073 DW_AT_containing_type.
673bfd45
DE
17074 If there is no type substitute an error marker. */
17075
c906108c 17076static struct type *
ff39bb5e 17077lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 17078 struct dwarf2_cu *cu)
c906108c 17079{
bb5ed363 17080 struct objfile *objfile = cu->objfile;
f792889a
DJ
17081 struct type *this_type;
17082
ac9ec31b
DE
17083 gdb_assert (attr->name == DW_AT_type
17084 || attr->name == DW_AT_GNAT_descriptive_type
17085 || attr->name == DW_AT_containing_type);
17086
673bfd45
DE
17087 /* First see if we have it cached. */
17088
36586728
TT
17089 if (attr->form == DW_FORM_GNU_ref_alt)
17090 {
17091 struct dwarf2_per_cu_data *per_cu;
17092 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17093
17094 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17095 this_type = get_die_type_at_offset (offset, per_cu);
17096 }
7771576e 17097 else if (attr_form_is_ref (attr))
673bfd45 17098 {
b64f50a1 17099 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
17100
17101 this_type = get_die_type_at_offset (offset, cu->per_cu);
17102 }
55f1336d 17103 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 17104 {
ac9ec31b 17105 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 17106
ac9ec31b 17107 return get_signatured_type (die, signature, cu);
673bfd45
DE
17108 }
17109 else
17110 {
ac9ec31b
DE
17111 complaint (&symfile_complaints,
17112 _("Dwarf Error: Bad type attribute %s in DIE"
17113 " at 0x%x [in module %s]"),
17114 dwarf_attr_name (attr->name), die->offset.sect_off,
17115 objfile->name);
17116 return build_error_marker_type (cu, die);
673bfd45
DE
17117 }
17118
17119 /* If not cached we need to read it in. */
17120
17121 if (this_type == NULL)
17122 {
ac9ec31b 17123 struct die_info *type_die = NULL;
673bfd45
DE
17124 struct dwarf2_cu *type_cu = cu;
17125
7771576e 17126 if (attr_form_is_ref (attr))
ac9ec31b
DE
17127 type_die = follow_die_ref (die, attr, &type_cu);
17128 if (type_die == NULL)
17129 return build_error_marker_type (cu, die);
17130 /* If we find the type now, it's probably because the type came
3019eac3
DE
17131 from an inter-CU reference and the type's CU got expanded before
17132 ours. */
ac9ec31b 17133 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
17134 }
17135
17136 /* If we still don't have a type use an error marker. */
17137
17138 if (this_type == NULL)
ac9ec31b 17139 return build_error_marker_type (cu, die);
673bfd45 17140
f792889a 17141 return this_type;
c906108c
SS
17142}
17143
673bfd45
DE
17144/* Return the type in DIE, CU.
17145 Returns NULL for invalid types.
17146
02142a6c 17147 This first does a lookup in die_type_hash,
673bfd45
DE
17148 and only reads the die in if necessary.
17149
17150 NOTE: This can be called when reading in partial or full symbols. */
17151
f792889a 17152static struct type *
e7c27a73 17153read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17154{
f792889a
DJ
17155 struct type *this_type;
17156
17157 this_type = get_die_type (die, cu);
17158 if (this_type)
17159 return this_type;
17160
673bfd45
DE
17161 return read_type_die_1 (die, cu);
17162}
17163
17164/* Read the type in DIE, CU.
17165 Returns NULL for invalid types. */
17166
17167static struct type *
17168read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17169{
17170 struct type *this_type = NULL;
17171
c906108c
SS
17172 switch (die->tag)
17173 {
17174 case DW_TAG_class_type:
680b30c7 17175 case DW_TAG_interface_type:
c906108c
SS
17176 case DW_TAG_structure_type:
17177 case DW_TAG_union_type:
f792889a 17178 this_type = read_structure_type (die, cu);
c906108c
SS
17179 break;
17180 case DW_TAG_enumeration_type:
f792889a 17181 this_type = read_enumeration_type (die, cu);
c906108c
SS
17182 break;
17183 case DW_TAG_subprogram:
17184 case DW_TAG_subroutine_type:
edb3359d 17185 case DW_TAG_inlined_subroutine:
f792889a 17186 this_type = read_subroutine_type (die, cu);
c906108c
SS
17187 break;
17188 case DW_TAG_array_type:
f792889a 17189 this_type = read_array_type (die, cu);
c906108c 17190 break;
72019c9c 17191 case DW_TAG_set_type:
f792889a 17192 this_type = read_set_type (die, cu);
72019c9c 17193 break;
c906108c 17194 case DW_TAG_pointer_type:
f792889a 17195 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
17196 break;
17197 case DW_TAG_ptr_to_member_type:
f792889a 17198 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
17199 break;
17200 case DW_TAG_reference_type:
f792889a 17201 this_type = read_tag_reference_type (die, cu);
c906108c
SS
17202 break;
17203 case DW_TAG_const_type:
f792889a 17204 this_type = read_tag_const_type (die, cu);
c906108c
SS
17205 break;
17206 case DW_TAG_volatile_type:
f792889a 17207 this_type = read_tag_volatile_type (die, cu);
c906108c 17208 break;
06d66ee9
TT
17209 case DW_TAG_restrict_type:
17210 this_type = read_tag_restrict_type (die, cu);
17211 break;
c906108c 17212 case DW_TAG_string_type:
f792889a 17213 this_type = read_tag_string_type (die, cu);
c906108c
SS
17214 break;
17215 case DW_TAG_typedef:
f792889a 17216 this_type = read_typedef (die, cu);
c906108c 17217 break;
a02abb62 17218 case DW_TAG_subrange_type:
f792889a 17219 this_type = read_subrange_type (die, cu);
a02abb62 17220 break;
c906108c 17221 case DW_TAG_base_type:
f792889a 17222 this_type = read_base_type (die, cu);
c906108c 17223 break;
81a17f79 17224 case DW_TAG_unspecified_type:
f792889a 17225 this_type = read_unspecified_type (die, cu);
81a17f79 17226 break;
0114d602
DJ
17227 case DW_TAG_namespace:
17228 this_type = read_namespace_type (die, cu);
17229 break;
f55ee35c
JK
17230 case DW_TAG_module:
17231 this_type = read_module_type (die, cu);
17232 break;
c906108c 17233 default:
3e43a32a
MS
17234 complaint (&symfile_complaints,
17235 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 17236 dwarf_tag_name (die->tag));
c906108c
SS
17237 break;
17238 }
63d06c5c 17239
f792889a 17240 return this_type;
63d06c5c
DC
17241}
17242
abc72ce4
DE
17243/* See if we can figure out if the class lives in a namespace. We do
17244 this by looking for a member function; its demangled name will
17245 contain namespace info, if there is any.
17246 Return the computed name or NULL.
17247 Space for the result is allocated on the objfile's obstack.
17248 This is the full-die version of guess_partial_die_structure_name.
17249 In this case we know DIE has no useful parent. */
17250
17251static char *
17252guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17253{
17254 struct die_info *spec_die;
17255 struct dwarf2_cu *spec_cu;
17256 struct die_info *child;
17257
17258 spec_cu = cu;
17259 spec_die = die_specification (die, &spec_cu);
17260 if (spec_die != NULL)
17261 {
17262 die = spec_die;
17263 cu = spec_cu;
17264 }
17265
17266 for (child = die->child;
17267 child != NULL;
17268 child = child->sibling)
17269 {
17270 if (child->tag == DW_TAG_subprogram)
17271 {
17272 struct attribute *attr;
17273
17274 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17275 if (attr == NULL)
17276 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17277 if (attr != NULL)
17278 {
17279 char *actual_name
17280 = language_class_name_from_physname (cu->language_defn,
17281 DW_STRING (attr));
17282 char *name = NULL;
17283
17284 if (actual_name != NULL)
17285 {
15d034d0 17286 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
17287
17288 if (die_name != NULL
17289 && strcmp (die_name, actual_name) != 0)
17290 {
17291 /* Strip off the class name from the full name.
17292 We want the prefix. */
17293 int die_name_len = strlen (die_name);
17294 int actual_name_len = strlen (actual_name);
17295
17296 /* Test for '::' as a sanity check. */
17297 if (actual_name_len > die_name_len + 2
3e43a32a
MS
17298 && actual_name[actual_name_len
17299 - die_name_len - 1] == ':')
abc72ce4 17300 name =
10f0c4bb
TT
17301 obstack_copy0 (&cu->objfile->objfile_obstack,
17302 actual_name,
17303 actual_name_len - die_name_len - 2);
abc72ce4
DE
17304 }
17305 }
17306 xfree (actual_name);
17307 return name;
17308 }
17309 }
17310 }
17311
17312 return NULL;
17313}
17314
96408a79
SA
17315/* GCC might emit a nameless typedef that has a linkage name. Determine the
17316 prefix part in such case. See
17317 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17318
17319static char *
17320anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17321{
17322 struct attribute *attr;
17323 char *base;
17324
17325 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17326 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17327 return NULL;
17328
17329 attr = dwarf2_attr (die, DW_AT_name, cu);
17330 if (attr != NULL && DW_STRING (attr) != NULL)
17331 return NULL;
17332
17333 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17334 if (attr == NULL)
17335 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17336 if (attr == NULL || DW_STRING (attr) == NULL)
17337 return NULL;
17338
17339 /* dwarf2_name had to be already called. */
17340 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17341
17342 /* Strip the base name, keep any leading namespaces/classes. */
17343 base = strrchr (DW_STRING (attr), ':');
17344 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17345 return "";
17346
10f0c4bb
TT
17347 return obstack_copy0 (&cu->objfile->objfile_obstack,
17348 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
17349}
17350
fdde2d81 17351/* Return the name of the namespace/class that DIE is defined within,
0114d602 17352 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 17353
0114d602
DJ
17354 For example, if we're within the method foo() in the following
17355 code:
17356
17357 namespace N {
17358 class C {
17359 void foo () {
17360 }
17361 };
17362 }
17363
17364 then determine_prefix on foo's die will return "N::C". */
fdde2d81 17365
0d5cff50 17366static const char *
e142c38c 17367determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 17368{
0114d602
DJ
17369 struct die_info *parent, *spec_die;
17370 struct dwarf2_cu *spec_cu;
17371 struct type *parent_type;
96408a79 17372 char *retval;
63d06c5c 17373
f55ee35c
JK
17374 if (cu->language != language_cplus && cu->language != language_java
17375 && cu->language != language_fortran)
0114d602
DJ
17376 return "";
17377
96408a79
SA
17378 retval = anonymous_struct_prefix (die, cu);
17379 if (retval)
17380 return retval;
17381
0114d602
DJ
17382 /* We have to be careful in the presence of DW_AT_specification.
17383 For example, with GCC 3.4, given the code
17384
17385 namespace N {
17386 void foo() {
17387 // Definition of N::foo.
17388 }
17389 }
17390
17391 then we'll have a tree of DIEs like this:
17392
17393 1: DW_TAG_compile_unit
17394 2: DW_TAG_namespace // N
17395 3: DW_TAG_subprogram // declaration of N::foo
17396 4: DW_TAG_subprogram // definition of N::foo
17397 DW_AT_specification // refers to die #3
17398
17399 Thus, when processing die #4, we have to pretend that we're in
17400 the context of its DW_AT_specification, namely the contex of die
17401 #3. */
17402 spec_cu = cu;
17403 spec_die = die_specification (die, &spec_cu);
17404 if (spec_die == NULL)
17405 parent = die->parent;
17406 else
63d06c5c 17407 {
0114d602
DJ
17408 parent = spec_die->parent;
17409 cu = spec_cu;
63d06c5c 17410 }
0114d602
DJ
17411
17412 if (parent == NULL)
17413 return "";
98bfdba5
PA
17414 else if (parent->building_fullname)
17415 {
17416 const char *name;
17417 const char *parent_name;
17418
17419 /* It has been seen on RealView 2.2 built binaries,
17420 DW_TAG_template_type_param types actually _defined_ as
17421 children of the parent class:
17422
17423 enum E {};
17424 template class <class Enum> Class{};
17425 Class<enum E> class_e;
17426
17427 1: DW_TAG_class_type (Class)
17428 2: DW_TAG_enumeration_type (E)
17429 3: DW_TAG_enumerator (enum1:0)
17430 3: DW_TAG_enumerator (enum2:1)
17431 ...
17432 2: DW_TAG_template_type_param
17433 DW_AT_type DW_FORM_ref_udata (E)
17434
17435 Besides being broken debug info, it can put GDB into an
17436 infinite loop. Consider:
17437
17438 When we're building the full name for Class<E>, we'll start
17439 at Class, and go look over its template type parameters,
17440 finding E. We'll then try to build the full name of E, and
17441 reach here. We're now trying to build the full name of E,
17442 and look over the parent DIE for containing scope. In the
17443 broken case, if we followed the parent DIE of E, we'd again
17444 find Class, and once again go look at its template type
17445 arguments, etc., etc. Simply don't consider such parent die
17446 as source-level parent of this die (it can't be, the language
17447 doesn't allow it), and break the loop here. */
17448 name = dwarf2_name (die, cu);
17449 parent_name = dwarf2_name (parent, cu);
17450 complaint (&symfile_complaints,
17451 _("template param type '%s' defined within parent '%s'"),
17452 name ? name : "<unknown>",
17453 parent_name ? parent_name : "<unknown>");
17454 return "";
17455 }
63d06c5c 17456 else
0114d602
DJ
17457 switch (parent->tag)
17458 {
63d06c5c 17459 case DW_TAG_namespace:
0114d602 17460 parent_type = read_type_die (parent, cu);
acebe513
UW
17461 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17462 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17463 Work around this problem here. */
17464 if (cu->language == language_cplus
17465 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17466 return "";
0114d602
DJ
17467 /* We give a name to even anonymous namespaces. */
17468 return TYPE_TAG_NAME (parent_type);
63d06c5c 17469 case DW_TAG_class_type:
680b30c7 17470 case DW_TAG_interface_type:
63d06c5c 17471 case DW_TAG_structure_type:
0114d602 17472 case DW_TAG_union_type:
f55ee35c 17473 case DW_TAG_module:
0114d602
DJ
17474 parent_type = read_type_die (parent, cu);
17475 if (TYPE_TAG_NAME (parent_type) != NULL)
17476 return TYPE_TAG_NAME (parent_type);
17477 else
17478 /* An anonymous structure is only allowed non-static data
17479 members; no typedefs, no member functions, et cetera.
17480 So it does not need a prefix. */
17481 return "";
abc72ce4 17482 case DW_TAG_compile_unit:
95554aad 17483 case DW_TAG_partial_unit:
abc72ce4
DE
17484 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17485 if (cu->language == language_cplus
8b70b953 17486 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
17487 && die->child != NULL
17488 && (die->tag == DW_TAG_class_type
17489 || die->tag == DW_TAG_structure_type
17490 || die->tag == DW_TAG_union_type))
17491 {
17492 char *name = guess_full_die_structure_name (die, cu);
17493 if (name != NULL)
17494 return name;
17495 }
17496 return "";
63d06c5c 17497 default:
8176b9b8 17498 return determine_prefix (parent, cu);
63d06c5c 17499 }
63d06c5c
DC
17500}
17501
3e43a32a
MS
17502/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17503 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17504 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17505 an obconcat, otherwise allocate storage for the result. The CU argument is
17506 used to determine the language and hence, the appropriate separator. */
987504bb 17507
f55ee35c 17508#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
17509
17510static char *
f55ee35c
JK
17511typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17512 int physname, struct dwarf2_cu *cu)
63d06c5c 17513{
f55ee35c 17514 const char *lead = "";
5c315b68 17515 const char *sep;
63d06c5c 17516
3e43a32a
MS
17517 if (suffix == NULL || suffix[0] == '\0'
17518 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
17519 sep = "";
17520 else if (cu->language == language_java)
17521 sep = ".";
f55ee35c
JK
17522 else if (cu->language == language_fortran && physname)
17523 {
17524 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17525 DW_AT_MIPS_linkage_name is preferred and used instead. */
17526
17527 lead = "__";
17528 sep = "_MOD_";
17529 }
987504bb
JJ
17530 else
17531 sep = "::";
63d06c5c 17532
6dd47d34
DE
17533 if (prefix == NULL)
17534 prefix = "";
17535 if (suffix == NULL)
17536 suffix = "";
17537
987504bb
JJ
17538 if (obs == NULL)
17539 {
3e43a32a
MS
17540 char *retval
17541 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 17542
f55ee35c
JK
17543 strcpy (retval, lead);
17544 strcat (retval, prefix);
6dd47d34
DE
17545 strcat (retval, sep);
17546 strcat (retval, suffix);
63d06c5c
DC
17547 return retval;
17548 }
987504bb
JJ
17549 else
17550 {
17551 /* We have an obstack. */
f55ee35c 17552 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 17553 }
63d06c5c
DC
17554}
17555
c906108c
SS
17556/* Return sibling of die, NULL if no sibling. */
17557
f9aca02d 17558static struct die_info *
fba45db2 17559sibling_die (struct die_info *die)
c906108c 17560{
639d11d3 17561 return die->sibling;
c906108c
SS
17562}
17563
71c25dea
TT
17564/* Get name of a die, return NULL if not found. */
17565
15d034d0
TT
17566static const char *
17567dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
17568 struct obstack *obstack)
17569{
17570 if (name && cu->language == language_cplus)
17571 {
17572 char *canon_name = cp_canonicalize_string (name);
17573
17574 if (canon_name != NULL)
17575 {
17576 if (strcmp (canon_name, name) != 0)
10f0c4bb 17577 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
17578 xfree (canon_name);
17579 }
17580 }
17581
17582 return name;
c906108c
SS
17583}
17584
9219021c
DC
17585/* Get name of a die, return NULL if not found. */
17586
15d034d0 17587static const char *
e142c38c 17588dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
17589{
17590 struct attribute *attr;
17591
e142c38c 17592 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
17593 if ((!attr || !DW_STRING (attr))
17594 && die->tag != DW_TAG_class_type
17595 && die->tag != DW_TAG_interface_type
17596 && die->tag != DW_TAG_structure_type
17597 && die->tag != DW_TAG_union_type)
71c25dea
TT
17598 return NULL;
17599
17600 switch (die->tag)
17601 {
17602 case DW_TAG_compile_unit:
95554aad 17603 case DW_TAG_partial_unit:
71c25dea
TT
17604 /* Compilation units have a DW_AT_name that is a filename, not
17605 a source language identifier. */
17606 case DW_TAG_enumeration_type:
17607 case DW_TAG_enumerator:
17608 /* These tags always have simple identifiers already; no need
17609 to canonicalize them. */
17610 return DW_STRING (attr);
907af001 17611
418835cc
KS
17612 case DW_TAG_subprogram:
17613 /* Java constructors will all be named "<init>", so return
17614 the class name when we see this special case. */
17615 if (cu->language == language_java
17616 && DW_STRING (attr) != NULL
17617 && strcmp (DW_STRING (attr), "<init>") == 0)
17618 {
17619 struct dwarf2_cu *spec_cu = cu;
17620 struct die_info *spec_die;
17621
17622 /* GCJ will output '<init>' for Java constructor names.
17623 For this special case, return the name of the parent class. */
17624
17625 /* GCJ may output suprogram DIEs with AT_specification set.
17626 If so, use the name of the specified DIE. */
17627 spec_die = die_specification (die, &spec_cu);
17628 if (spec_die != NULL)
17629 return dwarf2_name (spec_die, spec_cu);
17630
17631 do
17632 {
17633 die = die->parent;
17634 if (die->tag == DW_TAG_class_type)
17635 return dwarf2_name (die, cu);
17636 }
95554aad
TT
17637 while (die->tag != DW_TAG_compile_unit
17638 && die->tag != DW_TAG_partial_unit);
418835cc 17639 }
907af001
UW
17640 break;
17641
17642 case DW_TAG_class_type:
17643 case DW_TAG_interface_type:
17644 case DW_TAG_structure_type:
17645 case DW_TAG_union_type:
17646 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17647 structures or unions. These were of the form "._%d" in GCC 4.1,
17648 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17649 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
17650 if (attr && DW_STRING (attr)
17651 && (strncmp (DW_STRING (attr), "._", 2) == 0
17652 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 17653 return NULL;
53832f31
TT
17654
17655 /* GCC might emit a nameless typedef that has a linkage name. See
17656 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17657 if (!attr || DW_STRING (attr) == NULL)
17658 {
df5c6c50 17659 char *demangled = NULL;
53832f31
TT
17660
17661 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17662 if (attr == NULL)
17663 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17664
17665 if (attr == NULL || DW_STRING (attr) == NULL)
17666 return NULL;
17667
df5c6c50
JK
17668 /* Avoid demangling DW_STRING (attr) the second time on a second
17669 call for the same DIE. */
17670 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 17671 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
17672
17673 if (demangled)
17674 {
96408a79
SA
17675 char *base;
17676
53832f31 17677 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
17678 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17679 demangled, strlen (demangled));
53832f31
TT
17680 DW_STRING_IS_CANONICAL (attr) = 1;
17681 xfree (demangled);
96408a79
SA
17682
17683 /* Strip any leading namespaces/classes, keep only the base name.
17684 DW_AT_name for named DIEs does not contain the prefixes. */
17685 base = strrchr (DW_STRING (attr), ':');
17686 if (base && base > DW_STRING (attr) && base[-1] == ':')
17687 return &base[1];
17688 else
17689 return DW_STRING (attr);
53832f31
TT
17690 }
17691 }
907af001
UW
17692 break;
17693
71c25dea 17694 default:
907af001
UW
17695 break;
17696 }
17697
17698 if (!DW_STRING_IS_CANONICAL (attr))
17699 {
17700 DW_STRING (attr)
17701 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17702 &cu->objfile->objfile_obstack);
17703 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 17704 }
907af001 17705 return DW_STRING (attr);
9219021c
DC
17706}
17707
17708/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
17709 is none. *EXT_CU is the CU containing DIE on input, and the CU
17710 containing the return value on output. */
9219021c
DC
17711
17712static struct die_info *
f2f0e013 17713dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
17714{
17715 struct attribute *attr;
9219021c 17716
f2f0e013 17717 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
17718 if (attr == NULL)
17719 return NULL;
17720
f2f0e013 17721 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
17722}
17723
c906108c
SS
17724/* Convert a DIE tag into its string name. */
17725
f39c6ffd 17726static const char *
aa1ee363 17727dwarf_tag_name (unsigned tag)
c906108c 17728{
f39c6ffd
TT
17729 const char *name = get_DW_TAG_name (tag);
17730
17731 if (name == NULL)
17732 return "DW_TAG_<unknown>";
17733
17734 return name;
c906108c
SS
17735}
17736
17737/* Convert a DWARF attribute code into its string name. */
17738
f39c6ffd 17739static const char *
aa1ee363 17740dwarf_attr_name (unsigned attr)
c906108c 17741{
f39c6ffd
TT
17742 const char *name;
17743
c764a876 17744#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
17745 if (attr == DW_AT_MIPS_fde)
17746 return "DW_AT_MIPS_fde";
17747#else
17748 if (attr == DW_AT_HP_block_index)
17749 return "DW_AT_HP_block_index";
c764a876 17750#endif
f39c6ffd
TT
17751
17752 name = get_DW_AT_name (attr);
17753
17754 if (name == NULL)
17755 return "DW_AT_<unknown>";
17756
17757 return name;
c906108c
SS
17758}
17759
17760/* Convert a DWARF value form code into its string name. */
17761
f39c6ffd 17762static const char *
aa1ee363 17763dwarf_form_name (unsigned form)
c906108c 17764{
f39c6ffd
TT
17765 const char *name = get_DW_FORM_name (form);
17766
17767 if (name == NULL)
17768 return "DW_FORM_<unknown>";
17769
17770 return name;
c906108c
SS
17771}
17772
17773static char *
fba45db2 17774dwarf_bool_name (unsigned mybool)
c906108c
SS
17775{
17776 if (mybool)
17777 return "TRUE";
17778 else
17779 return "FALSE";
17780}
17781
17782/* Convert a DWARF type code into its string name. */
17783
f39c6ffd 17784static const char *
aa1ee363 17785dwarf_type_encoding_name (unsigned enc)
c906108c 17786{
f39c6ffd 17787 const char *name = get_DW_ATE_name (enc);
c906108c 17788
f39c6ffd
TT
17789 if (name == NULL)
17790 return "DW_ATE_<unknown>";
c906108c 17791
f39c6ffd 17792 return name;
c906108c 17793}
c906108c 17794
f9aca02d 17795static void
d97bc12b 17796dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17797{
17798 unsigned int i;
17799
d97bc12b
DE
17800 print_spaces (indent, f);
17801 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17802 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17803
17804 if (die->parent != NULL)
17805 {
17806 print_spaces (indent, f);
17807 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17808 die->parent->offset.sect_off);
d97bc12b
DE
17809 }
17810
17811 print_spaces (indent, f);
17812 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17813 dwarf_bool_name (die->child != NULL));
c906108c 17814
d97bc12b
DE
17815 print_spaces (indent, f);
17816 fprintf_unfiltered (f, " attributes:\n");
17817
c906108c
SS
17818 for (i = 0; i < die->num_attrs; ++i)
17819 {
d97bc12b
DE
17820 print_spaces (indent, f);
17821 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17822 dwarf_attr_name (die->attrs[i].name),
17823 dwarf_form_name (die->attrs[i].form));
d97bc12b 17824
c906108c
SS
17825 switch (die->attrs[i].form)
17826 {
c906108c 17827 case DW_FORM_addr:
3019eac3 17828 case DW_FORM_GNU_addr_index:
d97bc12b 17829 fprintf_unfiltered (f, "address: ");
5af949e3 17830 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17831 break;
17832 case DW_FORM_block2:
17833 case DW_FORM_block4:
17834 case DW_FORM_block:
17835 case DW_FORM_block1:
56eb65bd
SP
17836 fprintf_unfiltered (f, "block: size %s",
17837 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17838 break;
2dc7f7b3 17839 case DW_FORM_exprloc:
56eb65bd
SP
17840 fprintf_unfiltered (f, "expression: size %s",
17841 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17842 break;
4568ecf9
DE
17843 case DW_FORM_ref_addr:
17844 fprintf_unfiltered (f, "ref address: ");
17845 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17846 break;
36586728
TT
17847 case DW_FORM_GNU_ref_alt:
17848 fprintf_unfiltered (f, "alt ref address: ");
17849 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17850 break;
10b3939b
DJ
17851 case DW_FORM_ref1:
17852 case DW_FORM_ref2:
17853 case DW_FORM_ref4:
4568ecf9
DE
17854 case DW_FORM_ref8:
17855 case DW_FORM_ref_udata:
d97bc12b 17856 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17857 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17858 break;
c906108c
SS
17859 case DW_FORM_data1:
17860 case DW_FORM_data2:
17861 case DW_FORM_data4:
ce5d95e1 17862 case DW_FORM_data8:
c906108c
SS
17863 case DW_FORM_udata:
17864 case DW_FORM_sdata:
43bbcdc2
PH
17865 fprintf_unfiltered (f, "constant: %s",
17866 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17867 break;
2dc7f7b3
TT
17868 case DW_FORM_sec_offset:
17869 fprintf_unfiltered (f, "section offset: %s",
17870 pulongest (DW_UNSND (&die->attrs[i])));
17871 break;
55f1336d 17872 case DW_FORM_ref_sig8:
ac9ec31b
DE
17873 fprintf_unfiltered (f, "signature: %s",
17874 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 17875 break;
c906108c 17876 case DW_FORM_string:
4bdf3d34 17877 case DW_FORM_strp:
3019eac3 17878 case DW_FORM_GNU_str_index:
36586728 17879 case DW_FORM_GNU_strp_alt:
8285870a 17880 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17881 DW_STRING (&die->attrs[i])
8285870a
JK
17882 ? DW_STRING (&die->attrs[i]) : "",
17883 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17884 break;
17885 case DW_FORM_flag:
17886 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17887 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17888 else
d97bc12b 17889 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17890 break;
2dc7f7b3
TT
17891 case DW_FORM_flag_present:
17892 fprintf_unfiltered (f, "flag: TRUE");
17893 break;
a8329558 17894 case DW_FORM_indirect:
0963b4bd
MS
17895 /* The reader will have reduced the indirect form to
17896 the "base form" so this form should not occur. */
3e43a32a
MS
17897 fprintf_unfiltered (f,
17898 "unexpected attribute form: DW_FORM_indirect");
a8329558 17899 break;
c906108c 17900 default:
d97bc12b 17901 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17902 die->attrs[i].form);
d97bc12b 17903 break;
c906108c 17904 }
d97bc12b 17905 fprintf_unfiltered (f, "\n");
c906108c
SS
17906 }
17907}
17908
f9aca02d 17909static void
d97bc12b 17910dump_die_for_error (struct die_info *die)
c906108c 17911{
d97bc12b
DE
17912 dump_die_shallow (gdb_stderr, 0, die);
17913}
17914
17915static void
17916dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17917{
17918 int indent = level * 4;
17919
17920 gdb_assert (die != NULL);
17921
17922 if (level >= max_level)
17923 return;
17924
17925 dump_die_shallow (f, indent, die);
17926
17927 if (die->child != NULL)
c906108c 17928 {
d97bc12b
DE
17929 print_spaces (indent, f);
17930 fprintf_unfiltered (f, " Children:");
17931 if (level + 1 < max_level)
17932 {
17933 fprintf_unfiltered (f, "\n");
17934 dump_die_1 (f, level + 1, max_level, die->child);
17935 }
17936 else
17937 {
3e43a32a
MS
17938 fprintf_unfiltered (f,
17939 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17940 }
17941 }
17942
17943 if (die->sibling != NULL && level > 0)
17944 {
17945 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17946 }
17947}
17948
d97bc12b
DE
17949/* This is called from the pdie macro in gdbinit.in.
17950 It's not static so gcc will keep a copy callable from gdb. */
17951
17952void
17953dump_die (struct die_info *die, int max_level)
17954{
17955 dump_die_1 (gdb_stdlog, 0, max_level, die);
17956}
17957
f9aca02d 17958static void
51545339 17959store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17960{
51545339 17961 void **slot;
c906108c 17962
b64f50a1
JK
17963 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17964 INSERT);
51545339
DJ
17965
17966 *slot = die;
c906108c
SS
17967}
17968
b64f50a1
JK
17969/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17970 required kind. */
17971
17972static sect_offset
ff39bb5e 17973dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 17974{
4568ecf9 17975 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17976
7771576e 17977 if (attr_form_is_ref (attr))
b64f50a1 17978 return retval;
93311388 17979
b64f50a1 17980 retval.sect_off = 0;
93311388
DE
17981 complaint (&symfile_complaints,
17982 _("unsupported die ref attribute form: '%s'"),
17983 dwarf_form_name (attr->form));
b64f50a1 17984 return retval;
c906108c
SS
17985}
17986
43bbcdc2
PH
17987/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17988 * the value held by the attribute is not constant. */
a02abb62 17989
43bbcdc2 17990static LONGEST
ff39bb5e 17991dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
17992{
17993 if (attr->form == DW_FORM_sdata)
17994 return DW_SND (attr);
17995 else if (attr->form == DW_FORM_udata
17996 || attr->form == DW_FORM_data1
17997 || attr->form == DW_FORM_data2
17998 || attr->form == DW_FORM_data4
17999 || attr->form == DW_FORM_data8)
18000 return DW_UNSND (attr);
18001 else
18002 {
3e43a32a
MS
18003 complaint (&symfile_complaints,
18004 _("Attribute value is not a constant (%s)"),
a02abb62
JB
18005 dwarf_form_name (attr->form));
18006 return default_value;
18007 }
18008}
18009
348e048f
DE
18010/* Follow reference or signature attribute ATTR of SRC_DIE.
18011 On entry *REF_CU is the CU of SRC_DIE.
18012 On exit *REF_CU is the CU of the result. */
18013
18014static struct die_info *
ff39bb5e 18015follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
18016 struct dwarf2_cu **ref_cu)
18017{
18018 struct die_info *die;
18019
7771576e 18020 if (attr_form_is_ref (attr))
348e048f 18021 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 18022 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
18023 die = follow_die_sig (src_die, attr, ref_cu);
18024 else
18025 {
18026 dump_die_for_error (src_die);
18027 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18028 (*ref_cu)->objfile->name);
18029 }
18030
18031 return die;
03dd20cc
DJ
18032}
18033
5c631832 18034/* Follow reference OFFSET.
673bfd45
DE
18035 On entry *REF_CU is the CU of the source die referencing OFFSET.
18036 On exit *REF_CU is the CU of the result.
18037 Returns NULL if OFFSET is invalid. */
f504f079 18038
f9aca02d 18039static struct die_info *
36586728
TT
18040follow_die_offset (sect_offset offset, int offset_in_dwz,
18041 struct dwarf2_cu **ref_cu)
c906108c 18042{
10b3939b 18043 struct die_info temp_die;
f2f0e013 18044 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 18045
348e048f
DE
18046 gdb_assert (cu->per_cu != NULL);
18047
98bfdba5
PA
18048 target_cu = cu;
18049
3019eac3 18050 if (cu->per_cu->is_debug_types)
348e048f
DE
18051 {
18052 /* .debug_types CUs cannot reference anything outside their CU.
18053 If they need to, they have to reference a signatured type via
55f1336d 18054 DW_FORM_ref_sig8. */
348e048f 18055 if (! offset_in_cu_p (&cu->header, offset))
5c631832 18056 return NULL;
348e048f 18057 }
36586728
TT
18058 else if (offset_in_dwz != cu->per_cu->is_dwz
18059 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
18060 {
18061 struct dwarf2_per_cu_data *per_cu;
9a619af0 18062
36586728
TT
18063 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18064 cu->objfile);
03dd20cc
DJ
18065
18066 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
18067 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18068 load_full_comp_unit (per_cu, cu->language);
03dd20cc 18069
10b3939b
DJ
18070 target_cu = per_cu->cu;
18071 }
98bfdba5
PA
18072 else if (cu->dies == NULL)
18073 {
18074 /* We're loading full DIEs during partial symbol reading. */
18075 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 18076 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 18077 }
c906108c 18078
f2f0e013 18079 *ref_cu = target_cu;
51545339 18080 temp_die.offset = offset;
b64f50a1 18081 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 18082}
10b3939b 18083
5c631832
JK
18084/* Follow reference attribute ATTR of SRC_DIE.
18085 On entry *REF_CU is the CU of SRC_DIE.
18086 On exit *REF_CU is the CU of the result. */
18087
18088static struct die_info *
ff39bb5e 18089follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
18090 struct dwarf2_cu **ref_cu)
18091{
b64f50a1 18092 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
18093 struct dwarf2_cu *cu = *ref_cu;
18094 struct die_info *die;
18095
36586728
TT
18096 die = follow_die_offset (offset,
18097 (attr->form == DW_FORM_GNU_ref_alt
18098 || cu->per_cu->is_dwz),
18099 ref_cu);
5c631832
JK
18100 if (!die)
18101 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18102 "at 0x%x [in module %s]"),
b64f50a1 18103 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 18104
5c631832
JK
18105 return die;
18106}
18107
d83e736b
JK
18108/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18109 Returned value is intended for DW_OP_call*. Returned
18110 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
18111
18112struct dwarf2_locexpr_baton
8b9737bf
TT
18113dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18114 struct dwarf2_per_cu_data *per_cu,
18115 CORE_ADDR (*get_frame_pc) (void *baton),
18116 void *baton)
5c631832 18117{
918dd910 18118 struct dwarf2_cu *cu;
5c631832
JK
18119 struct die_info *die;
18120 struct attribute *attr;
18121 struct dwarf2_locexpr_baton retval;
18122
8cf6f0b1
TT
18123 dw2_setup (per_cu->objfile);
18124
918dd910
JK
18125 if (per_cu->cu == NULL)
18126 load_cu (per_cu);
18127 cu = per_cu->cu;
18128
36586728 18129 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
18130 if (!die)
18131 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 18132 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18133
18134 attr = dwarf2_attr (die, DW_AT_location, cu);
18135 if (!attr)
18136 {
e103e986
JK
18137 /* DWARF: "If there is no such attribute, then there is no effect.".
18138 DATA is ignored if SIZE is 0. */
5c631832 18139
e103e986 18140 retval.data = NULL;
5c631832
JK
18141 retval.size = 0;
18142 }
8cf6f0b1
TT
18143 else if (attr_form_is_section_offset (attr))
18144 {
18145 struct dwarf2_loclist_baton loclist_baton;
18146 CORE_ADDR pc = (*get_frame_pc) (baton);
18147 size_t size;
18148
18149 fill_in_loclist_baton (cu, &loclist_baton, attr);
18150
18151 retval.data = dwarf2_find_location_expression (&loclist_baton,
18152 &size, pc);
18153 retval.size = size;
18154 }
5c631832
JK
18155 else
18156 {
18157 if (!attr_form_is_block (attr))
18158 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18159 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 18160 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18161
18162 retval.data = DW_BLOCK (attr)->data;
18163 retval.size = DW_BLOCK (attr)->size;
18164 }
18165 retval.per_cu = cu->per_cu;
918dd910 18166
918dd910
JK
18167 age_cached_comp_units ();
18168
5c631832 18169 return retval;
348e048f
DE
18170}
18171
8b9737bf
TT
18172/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18173 offset. */
18174
18175struct dwarf2_locexpr_baton
18176dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18177 struct dwarf2_per_cu_data *per_cu,
18178 CORE_ADDR (*get_frame_pc) (void *baton),
18179 void *baton)
18180{
18181 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18182
18183 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18184}
18185
b6807d98
TT
18186/* Write a constant of a given type as target-ordered bytes into
18187 OBSTACK. */
18188
18189static const gdb_byte *
18190write_constant_as_bytes (struct obstack *obstack,
18191 enum bfd_endian byte_order,
18192 struct type *type,
18193 ULONGEST value,
18194 LONGEST *len)
18195{
18196 gdb_byte *result;
18197
18198 *len = TYPE_LENGTH (type);
18199 result = obstack_alloc (obstack, *len);
18200 store_unsigned_integer (result, *len, byte_order, value);
18201
18202 return result;
18203}
18204
18205/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18206 pointer to the constant bytes and set LEN to the length of the
18207 data. If memory is needed, allocate it on OBSTACK. If the DIE
18208 does not have a DW_AT_const_value, return NULL. */
18209
18210const gdb_byte *
18211dwarf2_fetch_constant_bytes (sect_offset offset,
18212 struct dwarf2_per_cu_data *per_cu,
18213 struct obstack *obstack,
18214 LONGEST *len)
18215{
18216 struct dwarf2_cu *cu;
18217 struct die_info *die;
18218 struct attribute *attr;
18219 const gdb_byte *result = NULL;
18220 struct type *type;
18221 LONGEST value;
18222 enum bfd_endian byte_order;
18223
18224 dw2_setup (per_cu->objfile);
18225
18226 if (per_cu->cu == NULL)
18227 load_cu (per_cu);
18228 cu = per_cu->cu;
18229
18230 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18231 if (!die)
18232 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18233 offset.sect_off, per_cu->objfile->name);
18234
18235
18236 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18237 if (attr == NULL)
18238 return NULL;
18239
18240 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18241 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18242
18243 switch (attr->form)
18244 {
18245 case DW_FORM_addr:
18246 case DW_FORM_GNU_addr_index:
18247 {
18248 gdb_byte *tem;
18249
18250 *len = cu->header.addr_size;
18251 tem = obstack_alloc (obstack, *len);
18252 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18253 result = tem;
18254 }
18255 break;
18256 case DW_FORM_string:
18257 case DW_FORM_strp:
18258 case DW_FORM_GNU_str_index:
18259 case DW_FORM_GNU_strp_alt:
18260 /* DW_STRING is already allocated on the objfile obstack, point
18261 directly to it. */
18262 result = (const gdb_byte *) DW_STRING (attr);
18263 *len = strlen (DW_STRING (attr));
18264 break;
18265 case DW_FORM_block1:
18266 case DW_FORM_block2:
18267 case DW_FORM_block4:
18268 case DW_FORM_block:
18269 case DW_FORM_exprloc:
18270 result = DW_BLOCK (attr)->data;
18271 *len = DW_BLOCK (attr)->size;
18272 break;
18273
18274 /* The DW_AT_const_value attributes are supposed to carry the
18275 symbol's value "represented as it would be on the target
18276 architecture." By the time we get here, it's already been
18277 converted to host endianness, so we just need to sign- or
18278 zero-extend it as appropriate. */
18279 case DW_FORM_data1:
18280 type = die_type (die, cu);
18281 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18282 if (result == NULL)
18283 result = write_constant_as_bytes (obstack, byte_order,
18284 type, value, len);
18285 break;
18286 case DW_FORM_data2:
18287 type = die_type (die, cu);
18288 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18289 if (result == NULL)
18290 result = write_constant_as_bytes (obstack, byte_order,
18291 type, value, len);
18292 break;
18293 case DW_FORM_data4:
18294 type = die_type (die, cu);
18295 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18296 if (result == NULL)
18297 result = write_constant_as_bytes (obstack, byte_order,
18298 type, value, len);
18299 break;
18300 case DW_FORM_data8:
18301 type = die_type (die, cu);
18302 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18303 if (result == NULL)
18304 result = write_constant_as_bytes (obstack, byte_order,
18305 type, value, len);
18306 break;
18307
18308 case DW_FORM_sdata:
18309 type = die_type (die, cu);
18310 result = write_constant_as_bytes (obstack, byte_order,
18311 type, DW_SND (attr), len);
18312 break;
18313
18314 case DW_FORM_udata:
18315 type = die_type (die, cu);
18316 result = write_constant_as_bytes (obstack, byte_order,
18317 type, DW_UNSND (attr), len);
18318 break;
18319
18320 default:
18321 complaint (&symfile_complaints,
18322 _("unsupported const value attribute form: '%s'"),
18323 dwarf_form_name (attr->form));
18324 break;
18325 }
18326
18327 return result;
18328}
18329
8a9b8146
TT
18330/* Return the type of the DIE at DIE_OFFSET in the CU named by
18331 PER_CU. */
18332
18333struct type *
b64f50a1 18334dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
18335 struct dwarf2_per_cu_data *per_cu)
18336{
b64f50a1
JK
18337 sect_offset die_offset_sect;
18338
8a9b8146 18339 dw2_setup (per_cu->objfile);
b64f50a1
JK
18340
18341 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18342 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
18343}
18344
ac9ec31b 18345/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 18346 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
18347 On exit *REF_CU is the CU of the result.
18348 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
18349
18350static struct die_info *
ac9ec31b
DE
18351follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18352 struct dwarf2_cu **ref_cu)
348e048f
DE
18353{
18354 struct objfile *objfile = (*ref_cu)->objfile;
18355 struct die_info temp_die;
348e048f
DE
18356 struct dwarf2_cu *sig_cu;
18357 struct die_info *die;
18358
ac9ec31b
DE
18359 /* While it might be nice to assert sig_type->type == NULL here,
18360 we can get here for DW_AT_imported_declaration where we need
18361 the DIE not the type. */
348e048f
DE
18362
18363 /* If necessary, add it to the queue and load its DIEs. */
18364
95554aad 18365 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 18366 read_signatured_type (sig_type);
348e048f
DE
18367
18368 gdb_assert (sig_type->per_cu.cu != NULL);
18369
18370 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
18371 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18372 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
18373 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18374 temp_die.offset.sect_off);
348e048f
DE
18375 if (die)
18376 {
796a7ff8
DE
18377 /* For .gdb_index version 7 keep track of included TUs.
18378 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18379 if (dwarf2_per_objfile->index_table != NULL
18380 && dwarf2_per_objfile->index_table->version <= 7)
18381 {
18382 VEC_safe_push (dwarf2_per_cu_ptr,
18383 (*ref_cu)->per_cu->imported_symtabs,
18384 sig_cu->per_cu);
18385 }
18386
348e048f
DE
18387 *ref_cu = sig_cu;
18388 return die;
18389 }
18390
ac9ec31b
DE
18391 return NULL;
18392}
18393
18394/* Follow signatured type referenced by ATTR in SRC_DIE.
18395 On entry *REF_CU is the CU of SRC_DIE.
18396 On exit *REF_CU is the CU of the result.
18397 The result is the DIE of the type.
18398 If the referenced type cannot be found an error is thrown. */
18399
18400static struct die_info *
ff39bb5e 18401follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
18402 struct dwarf2_cu **ref_cu)
18403{
18404 ULONGEST signature = DW_SIGNATURE (attr);
18405 struct signatured_type *sig_type;
18406 struct die_info *die;
18407
18408 gdb_assert (attr->form == DW_FORM_ref_sig8);
18409
a2ce51a0 18410 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
18411 /* sig_type will be NULL if the signatured type is missing from
18412 the debug info. */
18413 if (sig_type == NULL)
18414 {
18415 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18416 " from DIE at 0x%x [in module %s]"),
18417 hex_string (signature), src_die->offset.sect_off,
18418 (*ref_cu)->objfile->name);
18419 }
18420
18421 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18422 if (die == NULL)
18423 {
18424 dump_die_for_error (src_die);
18425 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18426 " from DIE at 0x%x [in module %s]"),
18427 hex_string (signature), src_die->offset.sect_off,
18428 (*ref_cu)->objfile->name);
18429 }
18430
18431 return die;
18432}
18433
18434/* Get the type specified by SIGNATURE referenced in DIE/CU,
18435 reading in and processing the type unit if necessary. */
18436
18437static struct type *
18438get_signatured_type (struct die_info *die, ULONGEST signature,
18439 struct dwarf2_cu *cu)
18440{
18441 struct signatured_type *sig_type;
18442 struct dwarf2_cu *type_cu;
18443 struct die_info *type_die;
18444 struct type *type;
18445
a2ce51a0 18446 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
18447 /* sig_type will be NULL if the signatured type is missing from
18448 the debug info. */
18449 if (sig_type == NULL)
18450 {
18451 complaint (&symfile_complaints,
18452 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18453 " from DIE at 0x%x [in module %s]"),
18454 hex_string (signature), die->offset.sect_off,
18455 dwarf2_per_objfile->objfile->name);
18456 return build_error_marker_type (cu, die);
18457 }
18458
18459 /* If we already know the type we're done. */
18460 if (sig_type->type != NULL)
18461 return sig_type->type;
18462
18463 type_cu = cu;
18464 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18465 if (type_die != NULL)
18466 {
18467 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18468 is created. This is important, for example, because for c++ classes
18469 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18470 type = read_type_die (type_die, type_cu);
18471 if (type == NULL)
18472 {
18473 complaint (&symfile_complaints,
18474 _("Dwarf Error: Cannot build signatured type %s"
18475 " referenced from DIE at 0x%x [in module %s]"),
18476 hex_string (signature), die->offset.sect_off,
18477 dwarf2_per_objfile->objfile->name);
18478 type = build_error_marker_type (cu, die);
18479 }
18480 }
18481 else
18482 {
18483 complaint (&symfile_complaints,
18484 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18485 " from DIE at 0x%x [in module %s]"),
18486 hex_string (signature), die->offset.sect_off,
18487 dwarf2_per_objfile->objfile->name);
18488 type = build_error_marker_type (cu, die);
18489 }
18490 sig_type->type = type;
18491
18492 return type;
18493}
18494
18495/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18496 reading in and processing the type unit if necessary. */
18497
18498static struct type *
ff39bb5e 18499get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 18500 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
18501{
18502 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 18503 if (attr_form_is_ref (attr))
ac9ec31b
DE
18504 {
18505 struct dwarf2_cu *type_cu = cu;
18506 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18507
18508 return read_type_die (type_die, type_cu);
18509 }
18510 else if (attr->form == DW_FORM_ref_sig8)
18511 {
18512 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18513 }
18514 else
18515 {
18516 complaint (&symfile_complaints,
18517 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18518 " at 0x%x [in module %s]"),
18519 dwarf_form_name (attr->form), die->offset.sect_off,
18520 dwarf2_per_objfile->objfile->name);
18521 return build_error_marker_type (cu, die);
18522 }
348e048f
DE
18523}
18524
e5fe5e75 18525/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
18526
18527static void
e5fe5e75 18528load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 18529{
52dc124a 18530 struct signatured_type *sig_type;
348e048f 18531
f4dc4d17
DE
18532 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18533 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18534
6721b2ec
DE
18535 /* We have the per_cu, but we need the signatured_type.
18536 Fortunately this is an easy translation. */
18537 gdb_assert (per_cu->is_debug_types);
18538 sig_type = (struct signatured_type *) per_cu;
348e048f 18539
6721b2ec 18540 gdb_assert (per_cu->cu == NULL);
348e048f 18541
52dc124a 18542 read_signatured_type (sig_type);
348e048f 18543
6721b2ec 18544 gdb_assert (per_cu->cu != NULL);
348e048f
DE
18545}
18546
dee91e82
DE
18547/* die_reader_func for read_signatured_type.
18548 This is identical to load_full_comp_unit_reader,
18549 but is kept separate for now. */
348e048f
DE
18550
18551static void
dee91e82 18552read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 18553 const gdb_byte *info_ptr,
dee91e82
DE
18554 struct die_info *comp_unit_die,
18555 int has_children,
18556 void *data)
348e048f 18557{
dee91e82 18558 struct dwarf2_cu *cu = reader->cu;
348e048f 18559
dee91e82
DE
18560 gdb_assert (cu->die_hash == NULL);
18561 cu->die_hash =
18562 htab_create_alloc_ex (cu->header.length / 12,
18563 die_hash,
18564 die_eq,
18565 NULL,
18566 &cu->comp_unit_obstack,
18567 hashtab_obstack_allocate,
18568 dummy_obstack_deallocate);
348e048f 18569
dee91e82
DE
18570 if (has_children)
18571 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18572 &info_ptr, comp_unit_die);
18573 cu->dies = comp_unit_die;
18574 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
18575
18576 /* We try not to read any attributes in this function, because not
9cdd5dbd 18577 all CUs needed for references have been loaded yet, and symbol
348e048f 18578 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
18579 or we won't be able to build types correctly.
18580 Similarly, if we do not read the producer, we can not apply
18581 producer-specific interpretation. */
95554aad 18582 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 18583}
348e048f 18584
3019eac3
DE
18585/* Read in a signatured type and build its CU and DIEs.
18586 If the type is a stub for the real type in a DWO file,
18587 read in the real type from the DWO file as well. */
dee91e82
DE
18588
18589static void
18590read_signatured_type (struct signatured_type *sig_type)
18591{
18592 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 18593
3019eac3 18594 gdb_assert (per_cu->is_debug_types);
dee91e82 18595 gdb_assert (per_cu->cu == NULL);
348e048f 18596
f4dc4d17
DE
18597 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18598 read_signatured_type_reader, NULL);
7ee85ab1 18599 sig_type->per_cu.tu_read = 1;
c906108c
SS
18600}
18601
c906108c
SS
18602/* Decode simple location descriptions.
18603 Given a pointer to a dwarf block that defines a location, compute
18604 the location and return the value.
18605
4cecd739
DJ
18606 NOTE drow/2003-11-18: This function is called in two situations
18607 now: for the address of static or global variables (partial symbols
18608 only) and for offsets into structures which are expected to be
18609 (more or less) constant. The partial symbol case should go away,
18610 and only the constant case should remain. That will let this
18611 function complain more accurately. A few special modes are allowed
18612 without complaint for global variables (for instance, global
18613 register values and thread-local values).
c906108c
SS
18614
18615 A location description containing no operations indicates that the
4cecd739 18616 object is optimized out. The return value is 0 for that case.
6b992462
DJ
18617 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18618 callers will only want a very basic result and this can become a
21ae7a4d
JK
18619 complaint.
18620
18621 Note that stack[0] is unused except as a default error return. */
c906108c
SS
18622
18623static CORE_ADDR
e7c27a73 18624decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 18625{
e7c27a73 18626 struct objfile *objfile = cu->objfile;
56eb65bd
SP
18627 size_t i;
18628 size_t size = blk->size;
d521ce57 18629 const gdb_byte *data = blk->data;
21ae7a4d
JK
18630 CORE_ADDR stack[64];
18631 int stacki;
18632 unsigned int bytes_read, unsnd;
18633 gdb_byte op;
c906108c 18634
21ae7a4d
JK
18635 i = 0;
18636 stacki = 0;
18637 stack[stacki] = 0;
18638 stack[++stacki] = 0;
18639
18640 while (i < size)
18641 {
18642 op = data[i++];
18643 switch (op)
18644 {
18645 case DW_OP_lit0:
18646 case DW_OP_lit1:
18647 case DW_OP_lit2:
18648 case DW_OP_lit3:
18649 case DW_OP_lit4:
18650 case DW_OP_lit5:
18651 case DW_OP_lit6:
18652 case DW_OP_lit7:
18653 case DW_OP_lit8:
18654 case DW_OP_lit9:
18655 case DW_OP_lit10:
18656 case DW_OP_lit11:
18657 case DW_OP_lit12:
18658 case DW_OP_lit13:
18659 case DW_OP_lit14:
18660 case DW_OP_lit15:
18661 case DW_OP_lit16:
18662 case DW_OP_lit17:
18663 case DW_OP_lit18:
18664 case DW_OP_lit19:
18665 case DW_OP_lit20:
18666 case DW_OP_lit21:
18667 case DW_OP_lit22:
18668 case DW_OP_lit23:
18669 case DW_OP_lit24:
18670 case DW_OP_lit25:
18671 case DW_OP_lit26:
18672 case DW_OP_lit27:
18673 case DW_OP_lit28:
18674 case DW_OP_lit29:
18675 case DW_OP_lit30:
18676 case DW_OP_lit31:
18677 stack[++stacki] = op - DW_OP_lit0;
18678 break;
f1bea926 18679
21ae7a4d
JK
18680 case DW_OP_reg0:
18681 case DW_OP_reg1:
18682 case DW_OP_reg2:
18683 case DW_OP_reg3:
18684 case DW_OP_reg4:
18685 case DW_OP_reg5:
18686 case DW_OP_reg6:
18687 case DW_OP_reg7:
18688 case DW_OP_reg8:
18689 case DW_OP_reg9:
18690 case DW_OP_reg10:
18691 case DW_OP_reg11:
18692 case DW_OP_reg12:
18693 case DW_OP_reg13:
18694 case DW_OP_reg14:
18695 case DW_OP_reg15:
18696 case DW_OP_reg16:
18697 case DW_OP_reg17:
18698 case DW_OP_reg18:
18699 case DW_OP_reg19:
18700 case DW_OP_reg20:
18701 case DW_OP_reg21:
18702 case DW_OP_reg22:
18703 case DW_OP_reg23:
18704 case DW_OP_reg24:
18705 case DW_OP_reg25:
18706 case DW_OP_reg26:
18707 case DW_OP_reg27:
18708 case DW_OP_reg28:
18709 case DW_OP_reg29:
18710 case DW_OP_reg30:
18711 case DW_OP_reg31:
18712 stack[++stacki] = op - DW_OP_reg0;
18713 if (i < size)
18714 dwarf2_complex_location_expr_complaint ();
18715 break;
c906108c 18716
21ae7a4d
JK
18717 case DW_OP_regx:
18718 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18719 i += bytes_read;
18720 stack[++stacki] = unsnd;
18721 if (i < size)
18722 dwarf2_complex_location_expr_complaint ();
18723 break;
c906108c 18724
21ae7a4d
JK
18725 case DW_OP_addr:
18726 stack[++stacki] = read_address (objfile->obfd, &data[i],
18727 cu, &bytes_read);
18728 i += bytes_read;
18729 break;
d53d4ac5 18730
21ae7a4d
JK
18731 case DW_OP_const1u:
18732 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18733 i += 1;
18734 break;
18735
18736 case DW_OP_const1s:
18737 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18738 i += 1;
18739 break;
18740
18741 case DW_OP_const2u:
18742 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18743 i += 2;
18744 break;
18745
18746 case DW_OP_const2s:
18747 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18748 i += 2;
18749 break;
d53d4ac5 18750
21ae7a4d
JK
18751 case DW_OP_const4u:
18752 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18753 i += 4;
18754 break;
18755
18756 case DW_OP_const4s:
18757 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18758 i += 4;
18759 break;
18760
585861ea
JK
18761 case DW_OP_const8u:
18762 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18763 i += 8;
18764 break;
18765
21ae7a4d
JK
18766 case DW_OP_constu:
18767 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18768 &bytes_read);
18769 i += bytes_read;
18770 break;
18771
18772 case DW_OP_consts:
18773 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18774 i += bytes_read;
18775 break;
18776
18777 case DW_OP_dup:
18778 stack[stacki + 1] = stack[stacki];
18779 stacki++;
18780 break;
18781
18782 case DW_OP_plus:
18783 stack[stacki - 1] += stack[stacki];
18784 stacki--;
18785 break;
18786
18787 case DW_OP_plus_uconst:
18788 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18789 &bytes_read);
18790 i += bytes_read;
18791 break;
18792
18793 case DW_OP_minus:
18794 stack[stacki - 1] -= stack[stacki];
18795 stacki--;
18796 break;
18797
18798 case DW_OP_deref:
18799 /* If we're not the last op, then we definitely can't encode
18800 this using GDB's address_class enum. This is valid for partial
18801 global symbols, although the variable's address will be bogus
18802 in the psymtab. */
18803 if (i < size)
18804 dwarf2_complex_location_expr_complaint ();
18805 break;
18806
18807 case DW_OP_GNU_push_tls_address:
18808 /* The top of the stack has the offset from the beginning
18809 of the thread control block at which the variable is located. */
18810 /* Nothing should follow this operator, so the top of stack would
18811 be returned. */
18812 /* This is valid for partial global symbols, but the variable's
585861ea
JK
18813 address will be bogus in the psymtab. Make it always at least
18814 non-zero to not look as a variable garbage collected by linker
18815 which have DW_OP_addr 0. */
21ae7a4d
JK
18816 if (i < size)
18817 dwarf2_complex_location_expr_complaint ();
585861ea 18818 stack[stacki]++;
21ae7a4d
JK
18819 break;
18820
18821 case DW_OP_GNU_uninit:
18822 break;
18823
3019eac3 18824 case DW_OP_GNU_addr_index:
49f6c839 18825 case DW_OP_GNU_const_index:
3019eac3
DE
18826 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18827 &bytes_read);
18828 i += bytes_read;
18829 break;
18830
21ae7a4d
JK
18831 default:
18832 {
f39c6ffd 18833 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
18834
18835 if (name)
18836 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18837 name);
18838 else
18839 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18840 op);
18841 }
18842
18843 return (stack[stacki]);
d53d4ac5 18844 }
3c6e0cb3 18845
21ae7a4d
JK
18846 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18847 outside of the allocated space. Also enforce minimum>0. */
18848 if (stacki >= ARRAY_SIZE (stack) - 1)
18849 {
18850 complaint (&symfile_complaints,
18851 _("location description stack overflow"));
18852 return 0;
18853 }
18854
18855 if (stacki <= 0)
18856 {
18857 complaint (&symfile_complaints,
18858 _("location description stack underflow"));
18859 return 0;
18860 }
18861 }
18862 return (stack[stacki]);
c906108c
SS
18863}
18864
18865/* memory allocation interface */
18866
c906108c 18867static struct dwarf_block *
7b5a2f43 18868dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
18869{
18870 struct dwarf_block *blk;
18871
18872 blk = (struct dwarf_block *)
7b5a2f43 18873 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
18874 return (blk);
18875}
18876
c906108c 18877static struct die_info *
b60c80d6 18878dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
18879{
18880 struct die_info *die;
b60c80d6
DJ
18881 size_t size = sizeof (struct die_info);
18882
18883 if (num_attrs > 1)
18884 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 18885
b60c80d6 18886 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
18887 memset (die, 0, sizeof (struct die_info));
18888 return (die);
18889}
2e276125
JB
18890
18891\f
18892/* Macro support. */
18893
233d95b5
JK
18894/* Return file name relative to the compilation directory of file number I in
18895 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 18896 responsible for freeing it. */
233d95b5 18897
2e276125 18898static char *
233d95b5 18899file_file_name (int file, struct line_header *lh)
2e276125 18900{
6a83a1e6
EZ
18901 /* Is the file number a valid index into the line header's file name
18902 table? Remember that file numbers start with one, not zero. */
18903 if (1 <= file && file <= lh->num_file_names)
18904 {
18905 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 18906
233d95b5 18907 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 18908 return xstrdup (fe->name);
233d95b5
JK
18909 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18910 fe->name, NULL);
6a83a1e6 18911 }
2e276125
JB
18912 else
18913 {
6a83a1e6
EZ
18914 /* The compiler produced a bogus file number. We can at least
18915 record the macro definitions made in the file, even if we
18916 won't be able to find the file by name. */
18917 char fake_name[80];
9a619af0 18918
8c042590
PM
18919 xsnprintf (fake_name, sizeof (fake_name),
18920 "<bad macro file number %d>", file);
2e276125 18921
6e70227d 18922 complaint (&symfile_complaints,
6a83a1e6
EZ
18923 _("bad file number in macro information (%d)"),
18924 file);
2e276125 18925
6a83a1e6 18926 return xstrdup (fake_name);
2e276125
JB
18927 }
18928}
18929
233d95b5
JK
18930/* Return the full name of file number I in *LH's file name table.
18931 Use COMP_DIR as the name of the current directory of the
18932 compilation. The result is allocated using xmalloc; the caller is
18933 responsible for freeing it. */
18934static char *
18935file_full_name (int file, struct line_header *lh, const char *comp_dir)
18936{
18937 /* Is the file number a valid index into the line header's file name
18938 table? Remember that file numbers start with one, not zero. */
18939 if (1 <= file && file <= lh->num_file_names)
18940 {
18941 char *relative = file_file_name (file, lh);
18942
18943 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18944 return relative;
18945 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18946 }
18947 else
18948 return file_file_name (file, lh);
18949}
18950
2e276125
JB
18951
18952static struct macro_source_file *
18953macro_start_file (int file, int line,
18954 struct macro_source_file *current_file,
18955 const char *comp_dir,
18956 struct line_header *lh, struct objfile *objfile)
18957{
233d95b5
JK
18958 /* File name relative to the compilation directory of this source file. */
18959 char *file_name = file_file_name (file, lh);
2e276125 18960
2e276125 18961 if (! current_file)
abc9d0dc 18962 {
fc474241
DE
18963 /* Note: We don't create a macro table for this compilation unit
18964 at all until we actually get a filename. */
18965 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
18966
abc9d0dc
TT
18967 /* If we have no current file, then this must be the start_file
18968 directive for the compilation unit's main source file. */
fc474241
DE
18969 current_file = macro_set_main (macro_table, file_name);
18970 macro_define_special (macro_table);
abc9d0dc 18971 }
2e276125 18972 else
233d95b5 18973 current_file = macro_include (current_file, line, file_name);
2e276125 18974
233d95b5 18975 xfree (file_name);
6e70227d 18976
2e276125
JB
18977 return current_file;
18978}
18979
18980
18981/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18982 followed by a null byte. */
18983static char *
18984copy_string (const char *buf, int len)
18985{
18986 char *s = xmalloc (len + 1);
9a619af0 18987
2e276125
JB
18988 memcpy (s, buf, len);
18989 s[len] = '\0';
2e276125
JB
18990 return s;
18991}
18992
18993
18994static const char *
18995consume_improper_spaces (const char *p, const char *body)
18996{
18997 if (*p == ' ')
18998 {
4d3c2250 18999 complaint (&symfile_complaints,
3e43a32a
MS
19000 _("macro definition contains spaces "
19001 "in formal argument list:\n`%s'"),
4d3c2250 19002 body);
2e276125
JB
19003
19004 while (*p == ' ')
19005 p++;
19006 }
19007
19008 return p;
19009}
19010
19011
19012static void
19013parse_macro_definition (struct macro_source_file *file, int line,
19014 const char *body)
19015{
19016 const char *p;
19017
19018 /* The body string takes one of two forms. For object-like macro
19019 definitions, it should be:
19020
19021 <macro name> " " <definition>
19022
19023 For function-like macro definitions, it should be:
19024
19025 <macro name> "() " <definition>
19026 or
19027 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19028
19029 Spaces may appear only where explicitly indicated, and in the
19030 <definition>.
19031
19032 The Dwarf 2 spec says that an object-like macro's name is always
19033 followed by a space, but versions of GCC around March 2002 omit
6e70227d 19034 the space when the macro's definition is the empty string.
2e276125
JB
19035
19036 The Dwarf 2 spec says that there should be no spaces between the
19037 formal arguments in a function-like macro's formal argument list,
19038 but versions of GCC around March 2002 include spaces after the
19039 commas. */
19040
19041
19042 /* Find the extent of the macro name. The macro name is terminated
19043 by either a space or null character (for an object-like macro) or
19044 an opening paren (for a function-like macro). */
19045 for (p = body; *p; p++)
19046 if (*p == ' ' || *p == '(')
19047 break;
19048
19049 if (*p == ' ' || *p == '\0')
19050 {
19051 /* It's an object-like macro. */
19052 int name_len = p - body;
19053 char *name = copy_string (body, name_len);
19054 const char *replacement;
19055
19056 if (*p == ' ')
19057 replacement = body + name_len + 1;
19058 else
19059 {
4d3c2250 19060 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19061 replacement = body + name_len;
19062 }
6e70227d 19063
2e276125
JB
19064 macro_define_object (file, line, name, replacement);
19065
19066 xfree (name);
19067 }
19068 else if (*p == '(')
19069 {
19070 /* It's a function-like macro. */
19071 char *name = copy_string (body, p - body);
19072 int argc = 0;
19073 int argv_size = 1;
19074 char **argv = xmalloc (argv_size * sizeof (*argv));
19075
19076 p++;
19077
19078 p = consume_improper_spaces (p, body);
19079
19080 /* Parse the formal argument list. */
19081 while (*p && *p != ')')
19082 {
19083 /* Find the extent of the current argument name. */
19084 const char *arg_start = p;
19085
19086 while (*p && *p != ',' && *p != ')' && *p != ' ')
19087 p++;
19088
19089 if (! *p || p == arg_start)
4d3c2250 19090 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19091 else
19092 {
19093 /* Make sure argv has room for the new argument. */
19094 if (argc >= argv_size)
19095 {
19096 argv_size *= 2;
19097 argv = xrealloc (argv, argv_size * sizeof (*argv));
19098 }
19099
19100 argv[argc++] = copy_string (arg_start, p - arg_start);
19101 }
19102
19103 p = consume_improper_spaces (p, body);
19104
19105 /* Consume the comma, if present. */
19106 if (*p == ',')
19107 {
19108 p++;
19109
19110 p = consume_improper_spaces (p, body);
19111 }
19112 }
19113
19114 if (*p == ')')
19115 {
19116 p++;
19117
19118 if (*p == ' ')
19119 /* Perfectly formed definition, no complaints. */
19120 macro_define_function (file, line, name,
6e70227d 19121 argc, (const char **) argv,
2e276125
JB
19122 p + 1);
19123 else if (*p == '\0')
19124 {
19125 /* Complain, but do define it. */
4d3c2250 19126 dwarf2_macro_malformed_definition_complaint (body);
2e276125 19127 macro_define_function (file, line, name,
6e70227d 19128 argc, (const char **) argv,
2e276125
JB
19129 p);
19130 }
19131 else
19132 /* Just complain. */
4d3c2250 19133 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19134 }
19135 else
19136 /* Just complain. */
4d3c2250 19137 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19138
19139 xfree (name);
19140 {
19141 int i;
19142
19143 for (i = 0; i < argc; i++)
19144 xfree (argv[i]);
19145 }
19146 xfree (argv);
19147 }
19148 else
4d3c2250 19149 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19150}
19151
cf2c3c16
TT
19152/* Skip some bytes from BYTES according to the form given in FORM.
19153 Returns the new pointer. */
2e276125 19154
d521ce57
TT
19155static const gdb_byte *
19156skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
19157 enum dwarf_form form,
19158 unsigned int offset_size,
19159 struct dwarf2_section_info *section)
2e276125 19160{
cf2c3c16 19161 unsigned int bytes_read;
2e276125 19162
cf2c3c16 19163 switch (form)
2e276125 19164 {
cf2c3c16
TT
19165 case DW_FORM_data1:
19166 case DW_FORM_flag:
19167 ++bytes;
19168 break;
19169
19170 case DW_FORM_data2:
19171 bytes += 2;
19172 break;
19173
19174 case DW_FORM_data4:
19175 bytes += 4;
19176 break;
19177
19178 case DW_FORM_data8:
19179 bytes += 8;
19180 break;
19181
19182 case DW_FORM_string:
19183 read_direct_string (abfd, bytes, &bytes_read);
19184 bytes += bytes_read;
19185 break;
19186
19187 case DW_FORM_sec_offset:
19188 case DW_FORM_strp:
36586728 19189 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
19190 bytes += offset_size;
19191 break;
19192
19193 case DW_FORM_block:
19194 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19195 bytes += bytes_read;
19196 break;
19197
19198 case DW_FORM_block1:
19199 bytes += 1 + read_1_byte (abfd, bytes);
19200 break;
19201 case DW_FORM_block2:
19202 bytes += 2 + read_2_bytes (abfd, bytes);
19203 break;
19204 case DW_FORM_block4:
19205 bytes += 4 + read_4_bytes (abfd, bytes);
19206 break;
19207
19208 case DW_FORM_sdata:
19209 case DW_FORM_udata:
3019eac3
DE
19210 case DW_FORM_GNU_addr_index:
19211 case DW_FORM_GNU_str_index:
d521ce57 19212 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
19213 if (bytes == NULL)
19214 {
19215 dwarf2_section_buffer_overflow_complaint (section);
19216 return NULL;
19217 }
cf2c3c16
TT
19218 break;
19219
19220 default:
19221 {
19222 complain:
19223 complaint (&symfile_complaints,
19224 _("invalid form 0x%x in `%s'"),
19225 form,
19226 section->asection->name);
19227 return NULL;
19228 }
2e276125
JB
19229 }
19230
cf2c3c16
TT
19231 return bytes;
19232}
757a13d0 19233
cf2c3c16
TT
19234/* A helper for dwarf_decode_macros that handles skipping an unknown
19235 opcode. Returns an updated pointer to the macro data buffer; or,
19236 on error, issues a complaint and returns NULL. */
757a13d0 19237
d521ce57 19238static const gdb_byte *
cf2c3c16 19239skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
19240 const gdb_byte **opcode_definitions,
19241 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
19242 bfd *abfd,
19243 unsigned int offset_size,
19244 struct dwarf2_section_info *section)
19245{
19246 unsigned int bytes_read, i;
19247 unsigned long arg;
d521ce57 19248 const gdb_byte *defn;
2e276125 19249
cf2c3c16 19250 if (opcode_definitions[opcode] == NULL)
2e276125 19251 {
cf2c3c16
TT
19252 complaint (&symfile_complaints,
19253 _("unrecognized DW_MACFINO opcode 0x%x"),
19254 opcode);
19255 return NULL;
19256 }
2e276125 19257
cf2c3c16
TT
19258 defn = opcode_definitions[opcode];
19259 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19260 defn += bytes_read;
2e276125 19261
cf2c3c16
TT
19262 for (i = 0; i < arg; ++i)
19263 {
f664829e
DE
19264 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19265 section);
cf2c3c16
TT
19266 if (mac_ptr == NULL)
19267 {
19268 /* skip_form_bytes already issued the complaint. */
19269 return NULL;
19270 }
19271 }
757a13d0 19272
cf2c3c16
TT
19273 return mac_ptr;
19274}
757a13d0 19275
cf2c3c16
TT
19276/* A helper function which parses the header of a macro section.
19277 If the macro section is the extended (for now called "GNU") type,
19278 then this updates *OFFSET_SIZE. Returns a pointer to just after
19279 the header, or issues a complaint and returns NULL on error. */
757a13d0 19280
d521ce57
TT
19281static const gdb_byte *
19282dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 19283 bfd *abfd,
d521ce57 19284 const gdb_byte *mac_ptr,
cf2c3c16
TT
19285 unsigned int *offset_size,
19286 int section_is_gnu)
19287{
19288 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 19289
cf2c3c16
TT
19290 if (section_is_gnu)
19291 {
19292 unsigned int version, flags;
757a13d0 19293
cf2c3c16
TT
19294 version = read_2_bytes (abfd, mac_ptr);
19295 if (version != 4)
19296 {
19297 complaint (&symfile_complaints,
19298 _("unrecognized version `%d' in .debug_macro section"),
19299 version);
19300 return NULL;
19301 }
19302 mac_ptr += 2;
757a13d0 19303
cf2c3c16
TT
19304 flags = read_1_byte (abfd, mac_ptr);
19305 ++mac_ptr;
19306 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 19307
cf2c3c16
TT
19308 if ((flags & 2) != 0)
19309 /* We don't need the line table offset. */
19310 mac_ptr += *offset_size;
757a13d0 19311
cf2c3c16
TT
19312 /* Vendor opcode descriptions. */
19313 if ((flags & 4) != 0)
19314 {
19315 unsigned int i, count;
757a13d0 19316
cf2c3c16
TT
19317 count = read_1_byte (abfd, mac_ptr);
19318 ++mac_ptr;
19319 for (i = 0; i < count; ++i)
19320 {
19321 unsigned int opcode, bytes_read;
19322 unsigned long arg;
19323
19324 opcode = read_1_byte (abfd, mac_ptr);
19325 ++mac_ptr;
19326 opcode_definitions[opcode] = mac_ptr;
19327 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19328 mac_ptr += bytes_read;
19329 mac_ptr += arg;
19330 }
757a13d0 19331 }
cf2c3c16 19332 }
757a13d0 19333
cf2c3c16
TT
19334 return mac_ptr;
19335}
757a13d0 19336
cf2c3c16 19337/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 19338 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
19339
19340static void
d521ce57
TT
19341dwarf_decode_macro_bytes (bfd *abfd,
19342 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 19343 struct macro_source_file *current_file,
15d034d0 19344 struct line_header *lh, const char *comp_dir,
cf2c3c16 19345 struct dwarf2_section_info *section,
36586728 19346 int section_is_gnu, int section_is_dwz,
cf2c3c16 19347 unsigned int offset_size,
8fc3fc34
TT
19348 struct objfile *objfile,
19349 htab_t include_hash)
cf2c3c16
TT
19350{
19351 enum dwarf_macro_record_type macinfo_type;
19352 int at_commandline;
d521ce57 19353 const gdb_byte *opcode_definitions[256];
757a13d0 19354
cf2c3c16
TT
19355 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19356 &offset_size, section_is_gnu);
19357 if (mac_ptr == NULL)
19358 {
19359 /* We already issued a complaint. */
19360 return;
19361 }
757a13d0
JK
19362
19363 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19364 GDB is still reading the definitions from command line. First
19365 DW_MACINFO_start_file will need to be ignored as it was already executed
19366 to create CURRENT_FILE for the main source holding also the command line
19367 definitions. On first met DW_MACINFO_start_file this flag is reset to
19368 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19369
19370 at_commandline = 1;
19371
19372 do
19373 {
19374 /* Do we at least have room for a macinfo type byte? */
19375 if (mac_ptr >= mac_end)
19376 {
f664829e 19377 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
19378 break;
19379 }
19380
19381 macinfo_type = read_1_byte (abfd, mac_ptr);
19382 mac_ptr++;
19383
cf2c3c16
TT
19384 /* Note that we rely on the fact that the corresponding GNU and
19385 DWARF constants are the same. */
757a13d0
JK
19386 switch (macinfo_type)
19387 {
19388 /* A zero macinfo type indicates the end of the macro
19389 information. */
19390 case 0:
19391 break;
2e276125 19392
cf2c3c16
TT
19393 case DW_MACRO_GNU_define:
19394 case DW_MACRO_GNU_undef:
19395 case DW_MACRO_GNU_define_indirect:
19396 case DW_MACRO_GNU_undef_indirect:
36586728
TT
19397 case DW_MACRO_GNU_define_indirect_alt:
19398 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 19399 {
891d2f0b 19400 unsigned int bytes_read;
2e276125 19401 int line;
d521ce57 19402 const char *body;
cf2c3c16 19403 int is_define;
2e276125 19404
cf2c3c16
TT
19405 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19406 mac_ptr += bytes_read;
19407
19408 if (macinfo_type == DW_MACRO_GNU_define
19409 || macinfo_type == DW_MACRO_GNU_undef)
19410 {
19411 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19412 mac_ptr += bytes_read;
19413 }
19414 else
19415 {
19416 LONGEST str_offset;
19417
19418 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19419 mac_ptr += offset_size;
2e276125 19420
36586728 19421 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
19422 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19423 || section_is_dwz)
36586728
TT
19424 {
19425 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19426
19427 body = read_indirect_string_from_dwz (dwz, str_offset);
19428 }
19429 else
19430 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
19431 }
19432
19433 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
19434 || macinfo_type == DW_MACRO_GNU_define_indirect
19435 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 19436 if (! current_file)
757a13d0
JK
19437 {
19438 /* DWARF violation as no main source is present. */
19439 complaint (&symfile_complaints,
19440 _("debug info with no main source gives macro %s "
19441 "on line %d: %s"),
cf2c3c16
TT
19442 is_define ? _("definition") : _("undefinition"),
19443 line, body);
757a13d0
JK
19444 break;
19445 }
3e43a32a
MS
19446 if ((line == 0 && !at_commandline)
19447 || (line != 0 && at_commandline))
4d3c2250 19448 complaint (&symfile_complaints,
757a13d0
JK
19449 _("debug info gives %s macro %s with %s line %d: %s"),
19450 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 19451 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
19452 line == 0 ? _("zero") : _("non-zero"), line, body);
19453
cf2c3c16 19454 if (is_define)
757a13d0 19455 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
19456 else
19457 {
19458 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
19459 || macinfo_type == DW_MACRO_GNU_undef_indirect
19460 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
19461 macro_undef (current_file, line, body);
19462 }
2e276125
JB
19463 }
19464 break;
19465
cf2c3c16 19466 case DW_MACRO_GNU_start_file:
2e276125 19467 {
891d2f0b 19468 unsigned int bytes_read;
2e276125
JB
19469 int line, file;
19470
19471 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19472 mac_ptr += bytes_read;
19473 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19474 mac_ptr += bytes_read;
19475
3e43a32a
MS
19476 if ((line == 0 && !at_commandline)
19477 || (line != 0 && at_commandline))
757a13d0
JK
19478 complaint (&symfile_complaints,
19479 _("debug info gives source %d included "
19480 "from %s at %s line %d"),
19481 file, at_commandline ? _("command-line") : _("file"),
19482 line == 0 ? _("zero") : _("non-zero"), line);
19483
19484 if (at_commandline)
19485 {
cf2c3c16
TT
19486 /* This DW_MACRO_GNU_start_file was executed in the
19487 pass one. */
757a13d0
JK
19488 at_commandline = 0;
19489 }
19490 else
19491 current_file = macro_start_file (file, line,
19492 current_file, comp_dir,
cf2c3c16 19493 lh, objfile);
2e276125
JB
19494 }
19495 break;
19496
cf2c3c16 19497 case DW_MACRO_GNU_end_file:
2e276125 19498 if (! current_file)
4d3c2250 19499 complaint (&symfile_complaints,
3e43a32a
MS
19500 _("macro debug info has an unmatched "
19501 "`close_file' directive"));
2e276125
JB
19502 else
19503 {
19504 current_file = current_file->included_by;
19505 if (! current_file)
19506 {
cf2c3c16 19507 enum dwarf_macro_record_type next_type;
2e276125
JB
19508
19509 /* GCC circa March 2002 doesn't produce the zero
19510 type byte marking the end of the compilation
19511 unit. Complain if it's not there, but exit no
19512 matter what. */
19513
19514 /* Do we at least have room for a macinfo type byte? */
19515 if (mac_ptr >= mac_end)
19516 {
f664829e 19517 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
19518 return;
19519 }
19520
19521 /* We don't increment mac_ptr here, so this is just
19522 a look-ahead. */
19523 next_type = read_1_byte (abfd, mac_ptr);
19524 if (next_type != 0)
4d3c2250 19525 complaint (&symfile_complaints,
3e43a32a
MS
19526 _("no terminating 0-type entry for "
19527 "macros in `.debug_macinfo' section"));
2e276125
JB
19528
19529 return;
19530 }
19531 }
19532 break;
19533
cf2c3c16 19534 case DW_MACRO_GNU_transparent_include:
36586728 19535 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19536 {
19537 LONGEST offset;
8fc3fc34 19538 void **slot;
a036ba48
TT
19539 bfd *include_bfd = abfd;
19540 struct dwarf2_section_info *include_section = section;
19541 struct dwarf2_section_info alt_section;
d521ce57 19542 const gdb_byte *include_mac_end = mac_end;
a036ba48 19543 int is_dwz = section_is_dwz;
d521ce57 19544 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
19545
19546 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19547 mac_ptr += offset_size;
19548
a036ba48
TT
19549 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19550 {
19551 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19552
19553 dwarf2_read_section (dwarf2_per_objfile->objfile,
19554 &dwz->macro);
19555
19556 include_bfd = dwz->macro.asection->owner;
19557 include_section = &dwz->macro;
19558 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19559 is_dwz = 1;
19560 }
19561
19562 new_mac_ptr = include_section->buffer + offset;
19563 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19564
8fc3fc34
TT
19565 if (*slot != NULL)
19566 {
19567 /* This has actually happened; see
19568 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19569 complaint (&symfile_complaints,
19570 _("recursive DW_MACRO_GNU_transparent_include in "
19571 ".debug_macro section"));
19572 }
19573 else
19574 {
d521ce57 19575 *slot = (void *) new_mac_ptr;
36586728 19576
a036ba48 19577 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 19578 include_mac_end, current_file,
8fc3fc34 19579 lh, comp_dir,
36586728 19580 section, section_is_gnu, is_dwz,
8fc3fc34
TT
19581 offset_size, objfile, include_hash);
19582
d521ce57 19583 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 19584 }
cf2c3c16
TT
19585 }
19586 break;
19587
2e276125 19588 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
19589 if (!section_is_gnu)
19590 {
19591 unsigned int bytes_read;
19592 int constant;
2e276125 19593
cf2c3c16
TT
19594 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19595 mac_ptr += bytes_read;
19596 read_direct_string (abfd, mac_ptr, &bytes_read);
19597 mac_ptr += bytes_read;
2e276125 19598
cf2c3c16
TT
19599 /* We don't recognize any vendor extensions. */
19600 break;
19601 }
19602 /* FALLTHROUGH */
19603
19604 default:
19605 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19606 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19607 section);
19608 if (mac_ptr == NULL)
19609 return;
19610 break;
2e276125 19611 }
757a13d0 19612 } while (macinfo_type != 0);
2e276125 19613}
8e19ed76 19614
cf2c3c16 19615static void
09262596 19616dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 19617 const char *comp_dir, int section_is_gnu)
cf2c3c16 19618{
bb5ed363 19619 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
19620 struct line_header *lh = cu->line_header;
19621 bfd *abfd;
d521ce57 19622 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
19623 struct macro_source_file *current_file = 0;
19624 enum dwarf_macro_record_type macinfo_type;
19625 unsigned int offset_size = cu->header.offset_size;
d521ce57 19626 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
19627 struct cleanup *cleanup;
19628 htab_t include_hash;
19629 void **slot;
09262596
DE
19630 struct dwarf2_section_info *section;
19631 const char *section_name;
19632
19633 if (cu->dwo_unit != NULL)
19634 {
19635 if (section_is_gnu)
19636 {
19637 section = &cu->dwo_unit->dwo_file->sections.macro;
19638 section_name = ".debug_macro.dwo";
19639 }
19640 else
19641 {
19642 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19643 section_name = ".debug_macinfo.dwo";
19644 }
19645 }
19646 else
19647 {
19648 if (section_is_gnu)
19649 {
19650 section = &dwarf2_per_objfile->macro;
19651 section_name = ".debug_macro";
19652 }
19653 else
19654 {
19655 section = &dwarf2_per_objfile->macinfo;
19656 section_name = ".debug_macinfo";
19657 }
19658 }
cf2c3c16 19659
bb5ed363 19660 dwarf2_read_section (objfile, section);
cf2c3c16
TT
19661 if (section->buffer == NULL)
19662 {
fceca515 19663 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
19664 return;
19665 }
09262596 19666 abfd = section->asection->owner;
cf2c3c16
TT
19667
19668 /* First pass: Find the name of the base filename.
19669 This filename is needed in order to process all macros whose definition
19670 (or undefinition) comes from the command line. These macros are defined
19671 before the first DW_MACINFO_start_file entry, and yet still need to be
19672 associated to the base file.
19673
19674 To determine the base file name, we scan the macro definitions until we
19675 reach the first DW_MACINFO_start_file entry. We then initialize
19676 CURRENT_FILE accordingly so that any macro definition found before the
19677 first DW_MACINFO_start_file can still be associated to the base file. */
19678
19679 mac_ptr = section->buffer + offset;
19680 mac_end = section->buffer + section->size;
19681
19682 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19683 &offset_size, section_is_gnu);
19684 if (mac_ptr == NULL)
19685 {
19686 /* We already issued a complaint. */
19687 return;
19688 }
19689
19690 do
19691 {
19692 /* Do we at least have room for a macinfo type byte? */
19693 if (mac_ptr >= mac_end)
19694 {
19695 /* Complaint is printed during the second pass as GDB will probably
19696 stop the first pass earlier upon finding
19697 DW_MACINFO_start_file. */
19698 break;
19699 }
19700
19701 macinfo_type = read_1_byte (abfd, mac_ptr);
19702 mac_ptr++;
19703
19704 /* Note that we rely on the fact that the corresponding GNU and
19705 DWARF constants are the same. */
19706 switch (macinfo_type)
19707 {
19708 /* A zero macinfo type indicates the end of the macro
19709 information. */
19710 case 0:
19711 break;
19712
19713 case DW_MACRO_GNU_define:
19714 case DW_MACRO_GNU_undef:
19715 /* Only skip the data by MAC_PTR. */
19716 {
19717 unsigned int bytes_read;
19718
19719 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19720 mac_ptr += bytes_read;
19721 read_direct_string (abfd, mac_ptr, &bytes_read);
19722 mac_ptr += bytes_read;
19723 }
19724 break;
19725
19726 case DW_MACRO_GNU_start_file:
19727 {
19728 unsigned int bytes_read;
19729 int line, file;
19730
19731 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19732 mac_ptr += bytes_read;
19733 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19734 mac_ptr += bytes_read;
19735
19736 current_file = macro_start_file (file, line, current_file,
bb5ed363 19737 comp_dir, lh, objfile);
cf2c3c16
TT
19738 }
19739 break;
19740
19741 case DW_MACRO_GNU_end_file:
19742 /* No data to skip by MAC_PTR. */
19743 break;
19744
19745 case DW_MACRO_GNU_define_indirect:
19746 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
19747 case DW_MACRO_GNU_define_indirect_alt:
19748 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
19749 {
19750 unsigned int bytes_read;
19751
19752 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19753 mac_ptr += bytes_read;
19754 mac_ptr += offset_size;
19755 }
19756 break;
19757
19758 case DW_MACRO_GNU_transparent_include:
f7a35f02 19759 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19760 /* Note that, according to the spec, a transparent include
19761 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19762 skip this opcode. */
19763 mac_ptr += offset_size;
19764 break;
19765
19766 case DW_MACINFO_vendor_ext:
19767 /* Only skip the data by MAC_PTR. */
19768 if (!section_is_gnu)
19769 {
19770 unsigned int bytes_read;
19771
19772 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19773 mac_ptr += bytes_read;
19774 read_direct_string (abfd, mac_ptr, &bytes_read);
19775 mac_ptr += bytes_read;
19776 }
19777 /* FALLTHROUGH */
19778
19779 default:
19780 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19781 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19782 section);
19783 if (mac_ptr == NULL)
19784 return;
19785 break;
19786 }
19787 } while (macinfo_type != 0 && current_file == NULL);
19788
19789 /* Second pass: Process all entries.
19790
19791 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19792 command-line macro definitions/undefinitions. This flag is unset when we
19793 reach the first DW_MACINFO_start_file entry. */
19794
8fc3fc34
TT
19795 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19796 NULL, xcalloc, xfree);
19797 cleanup = make_cleanup_htab_delete (include_hash);
19798 mac_ptr = section->buffer + offset;
19799 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 19800 *slot = (void *) mac_ptr;
8fc3fc34 19801 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
19802 current_file, lh, comp_dir, section,
19803 section_is_gnu, 0,
8fc3fc34
TT
19804 offset_size, objfile, include_hash);
19805 do_cleanups (cleanup);
cf2c3c16
TT
19806}
19807
8e19ed76 19808/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 19809 if so return true else false. */
380bca97 19810
8e19ed76 19811static int
6e5a29e1 19812attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
19813{
19814 return (attr == NULL ? 0 :
19815 attr->form == DW_FORM_block1
19816 || attr->form == DW_FORM_block2
19817 || attr->form == DW_FORM_block4
2dc7f7b3
TT
19818 || attr->form == DW_FORM_block
19819 || attr->form == DW_FORM_exprloc);
8e19ed76 19820}
4c2df51b 19821
c6a0999f
JB
19822/* Return non-zero if ATTR's value is a section offset --- classes
19823 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19824 You may use DW_UNSND (attr) to retrieve such offsets.
19825
19826 Section 7.5.4, "Attribute Encodings", explains that no attribute
19827 may have a value that belongs to more than one of these classes; it
19828 would be ambiguous if we did, because we use the same forms for all
19829 of them. */
380bca97 19830
3690dd37 19831static int
6e5a29e1 19832attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
19833{
19834 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
19835 || attr->form == DW_FORM_data8
19836 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
19837}
19838
3690dd37
JB
19839/* Return non-zero if ATTR's value falls in the 'constant' class, or
19840 zero otherwise. When this function returns true, you can apply
19841 dwarf2_get_attr_constant_value to it.
19842
19843 However, note that for some attributes you must check
19844 attr_form_is_section_offset before using this test. DW_FORM_data4
19845 and DW_FORM_data8 are members of both the constant class, and of
19846 the classes that contain offsets into other debug sections
19847 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19848 that, if an attribute's can be either a constant or one of the
19849 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19850 taken as section offsets, not constants. */
380bca97 19851
3690dd37 19852static int
6e5a29e1 19853attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
19854{
19855 switch (attr->form)
19856 {
19857 case DW_FORM_sdata:
19858 case DW_FORM_udata:
19859 case DW_FORM_data1:
19860 case DW_FORM_data2:
19861 case DW_FORM_data4:
19862 case DW_FORM_data8:
19863 return 1;
19864 default:
19865 return 0;
19866 }
19867}
19868
7771576e
SA
19869
19870/* DW_ADDR is always stored already as sect_offset; despite for the forms
19871 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19872
19873static int
6e5a29e1 19874attr_form_is_ref (const struct attribute *attr)
7771576e
SA
19875{
19876 switch (attr->form)
19877 {
19878 case DW_FORM_ref_addr:
19879 case DW_FORM_ref1:
19880 case DW_FORM_ref2:
19881 case DW_FORM_ref4:
19882 case DW_FORM_ref8:
19883 case DW_FORM_ref_udata:
19884 case DW_FORM_GNU_ref_alt:
19885 return 1;
19886 default:
19887 return 0;
19888 }
19889}
19890
3019eac3
DE
19891/* Return the .debug_loc section to use for CU.
19892 For DWO files use .debug_loc.dwo. */
19893
19894static struct dwarf2_section_info *
19895cu_debug_loc_section (struct dwarf2_cu *cu)
19896{
19897 if (cu->dwo_unit)
19898 return &cu->dwo_unit->dwo_file->sections.loc;
19899 return &dwarf2_per_objfile->loc;
19900}
19901
8cf6f0b1
TT
19902/* A helper function that fills in a dwarf2_loclist_baton. */
19903
19904static void
19905fill_in_loclist_baton (struct dwarf2_cu *cu,
19906 struct dwarf2_loclist_baton *baton,
ff39bb5e 19907 const struct attribute *attr)
8cf6f0b1 19908{
3019eac3
DE
19909 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19910
19911 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
19912
19913 baton->per_cu = cu->per_cu;
19914 gdb_assert (baton->per_cu);
19915 /* We don't know how long the location list is, but make sure we
19916 don't run off the edge of the section. */
3019eac3
DE
19917 baton->size = section->size - DW_UNSND (attr);
19918 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 19919 baton->base_address = cu->base_address;
f664829e 19920 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
19921}
19922
4c2df51b 19923static void
ff39bb5e 19924dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 19925 struct dwarf2_cu *cu, int is_block)
4c2df51b 19926{
bb5ed363 19927 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 19928 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 19929
3690dd37 19930 if (attr_form_is_section_offset (attr)
3019eac3 19931 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
19932 the section. If so, fall through to the complaint in the
19933 other branch. */
3019eac3 19934 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 19935 {
0d53c4c4 19936 struct dwarf2_loclist_baton *baton;
4c2df51b 19937
bb5ed363 19938 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19939 sizeof (struct dwarf2_loclist_baton));
4c2df51b 19940
8cf6f0b1 19941 fill_in_loclist_baton (cu, baton, attr);
be391dca 19942
d00adf39 19943 if (cu->base_known == 0)
0d53c4c4 19944 complaint (&symfile_complaints,
3e43a32a
MS
19945 _("Location list used without "
19946 "specifying the CU base address."));
4c2df51b 19947
f1e6e072
TT
19948 SYMBOL_ACLASS_INDEX (sym) = (is_block
19949 ? dwarf2_loclist_block_index
19950 : dwarf2_loclist_index);
0d53c4c4
DJ
19951 SYMBOL_LOCATION_BATON (sym) = baton;
19952 }
19953 else
19954 {
19955 struct dwarf2_locexpr_baton *baton;
19956
bb5ed363 19957 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19958 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
19959 baton->per_cu = cu->per_cu;
19960 gdb_assert (baton->per_cu);
0d53c4c4
DJ
19961
19962 if (attr_form_is_block (attr))
19963 {
19964 /* Note that we're just copying the block's data pointer
19965 here, not the actual data. We're still pointing into the
6502dd73
DJ
19966 info_buffer for SYM's objfile; right now we never release
19967 that buffer, but when we do clean up properly this may
19968 need to change. */
0d53c4c4
DJ
19969 baton->size = DW_BLOCK (attr)->size;
19970 baton->data = DW_BLOCK (attr)->data;
19971 }
19972 else
19973 {
19974 dwarf2_invalid_attrib_class_complaint ("location description",
19975 SYMBOL_NATURAL_NAME (sym));
19976 baton->size = 0;
0d53c4c4 19977 }
6e70227d 19978
f1e6e072
TT
19979 SYMBOL_ACLASS_INDEX (sym) = (is_block
19980 ? dwarf2_locexpr_block_index
19981 : dwarf2_locexpr_index);
0d53c4c4
DJ
19982 SYMBOL_LOCATION_BATON (sym) = baton;
19983 }
4c2df51b 19984}
6502dd73 19985
9aa1f1e3
TT
19986/* Return the OBJFILE associated with the compilation unit CU. If CU
19987 came from a separate debuginfo file, then the master objfile is
19988 returned. */
ae0d2f24
UW
19989
19990struct objfile *
19991dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19992{
9291a0cd 19993 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
19994
19995 /* Return the master objfile, so that we can report and look up the
19996 correct file containing this variable. */
19997 if (objfile->separate_debug_objfile_backlink)
19998 objfile = objfile->separate_debug_objfile_backlink;
19999
20000 return objfile;
20001}
20002
96408a79
SA
20003/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20004 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20005 CU_HEADERP first. */
20006
20007static const struct comp_unit_head *
20008per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20009 struct dwarf2_per_cu_data *per_cu)
20010{
d521ce57 20011 const gdb_byte *info_ptr;
96408a79
SA
20012
20013 if (per_cu->cu)
20014 return &per_cu->cu->header;
20015
8a0459fd 20016 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
20017
20018 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 20019 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
20020
20021 return cu_headerp;
20022}
20023
ae0d2f24
UW
20024/* Return the address size given in the compilation unit header for CU. */
20025
98714339 20026int
ae0d2f24
UW
20027dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20028{
96408a79
SA
20029 struct comp_unit_head cu_header_local;
20030 const struct comp_unit_head *cu_headerp;
c471e790 20031
96408a79
SA
20032 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20033
20034 return cu_headerp->addr_size;
ae0d2f24
UW
20035}
20036
9eae7c52
TT
20037/* Return the offset size given in the compilation unit header for CU. */
20038
20039int
20040dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20041{
96408a79
SA
20042 struct comp_unit_head cu_header_local;
20043 const struct comp_unit_head *cu_headerp;
9c6c53f7 20044
96408a79
SA
20045 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20046
20047 return cu_headerp->offset_size;
20048}
20049
20050/* See its dwarf2loc.h declaration. */
20051
20052int
20053dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20054{
20055 struct comp_unit_head cu_header_local;
20056 const struct comp_unit_head *cu_headerp;
20057
20058 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20059
20060 if (cu_headerp->version == 2)
20061 return cu_headerp->addr_size;
20062 else
20063 return cu_headerp->offset_size;
181cebd4
JK
20064}
20065
9aa1f1e3
TT
20066/* Return the text offset of the CU. The returned offset comes from
20067 this CU's objfile. If this objfile came from a separate debuginfo
20068 file, then the offset may be different from the corresponding
20069 offset in the parent objfile. */
20070
20071CORE_ADDR
20072dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20073{
bb3fa9d0 20074 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
20075
20076 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20077}
20078
348e048f
DE
20079/* Locate the .debug_info compilation unit from CU's objfile which contains
20080 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
20081
20082static struct dwarf2_per_cu_data *
b64f50a1 20083dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 20084 unsigned int offset_in_dwz,
ae038cb0
DJ
20085 struct objfile *objfile)
20086{
20087 struct dwarf2_per_cu_data *this_cu;
20088 int low, high;
36586728 20089 const sect_offset *cu_off;
ae038cb0 20090
ae038cb0
DJ
20091 low = 0;
20092 high = dwarf2_per_objfile->n_comp_units - 1;
20093 while (high > low)
20094 {
36586728 20095 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 20096 int mid = low + (high - low) / 2;
9a619af0 20097
36586728
TT
20098 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20099 cu_off = &mid_cu->offset;
20100 if (mid_cu->is_dwz > offset_in_dwz
20101 || (mid_cu->is_dwz == offset_in_dwz
20102 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
20103 high = mid;
20104 else
20105 low = mid + 1;
20106 }
20107 gdb_assert (low == high);
36586728
TT
20108 this_cu = dwarf2_per_objfile->all_comp_units[low];
20109 cu_off = &this_cu->offset;
20110 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 20111 {
36586728 20112 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
20113 error (_("Dwarf Error: could not find partial DIE containing "
20114 "offset 0x%lx [in module %s]"),
b64f50a1 20115 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 20116
b64f50a1
JK
20117 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20118 <= offset.sect_off);
ae038cb0
DJ
20119 return dwarf2_per_objfile->all_comp_units[low-1];
20120 }
20121 else
20122 {
20123 this_cu = dwarf2_per_objfile->all_comp_units[low];
20124 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
20125 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20126 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20127 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
20128 return this_cu;
20129 }
20130}
20131
23745b47 20132/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 20133
9816fde3 20134static void
23745b47 20135init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 20136{
9816fde3 20137 memset (cu, 0, sizeof (*cu));
23745b47
DE
20138 per_cu->cu = cu;
20139 cu->per_cu = per_cu;
20140 cu->objfile = per_cu->objfile;
93311388 20141 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
20142}
20143
20144/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20145
20146static void
95554aad
TT
20147prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20148 enum language pretend_language)
9816fde3
JK
20149{
20150 struct attribute *attr;
20151
20152 /* Set the language we're debugging. */
20153 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20154 if (attr)
20155 set_cu_language (DW_UNSND (attr), cu);
20156 else
9cded63f 20157 {
95554aad 20158 cu->language = pretend_language;
9cded63f
TT
20159 cu->language_defn = language_def (cu->language);
20160 }
dee91e82
DE
20161
20162 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20163 if (attr)
20164 cu->producer = DW_STRING (attr);
93311388
DE
20165}
20166
ae038cb0
DJ
20167/* Release one cached compilation unit, CU. We unlink it from the tree
20168 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
20169 the caller is responsible for that.
20170 NOTE: DATA is a void * because this function is also used as a
20171 cleanup routine. */
ae038cb0
DJ
20172
20173static void
68dc6402 20174free_heap_comp_unit (void *data)
ae038cb0
DJ
20175{
20176 struct dwarf2_cu *cu = data;
20177
23745b47
DE
20178 gdb_assert (cu->per_cu != NULL);
20179 cu->per_cu->cu = NULL;
ae038cb0
DJ
20180 cu->per_cu = NULL;
20181
20182 obstack_free (&cu->comp_unit_obstack, NULL);
20183
20184 xfree (cu);
20185}
20186
72bf9492 20187/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 20188 when we're finished with it. We can't free the pointer itself, but be
dee91e82 20189 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
20190
20191static void
20192free_stack_comp_unit (void *data)
20193{
20194 struct dwarf2_cu *cu = data;
20195
23745b47
DE
20196 gdb_assert (cu->per_cu != NULL);
20197 cu->per_cu->cu = NULL;
20198 cu->per_cu = NULL;
20199
72bf9492
DJ
20200 obstack_free (&cu->comp_unit_obstack, NULL);
20201 cu->partial_dies = NULL;
ae038cb0
DJ
20202}
20203
20204/* Free all cached compilation units. */
20205
20206static void
20207free_cached_comp_units (void *data)
20208{
20209 struct dwarf2_per_cu_data *per_cu, **last_chain;
20210
20211 per_cu = dwarf2_per_objfile->read_in_chain;
20212 last_chain = &dwarf2_per_objfile->read_in_chain;
20213 while (per_cu != NULL)
20214 {
20215 struct dwarf2_per_cu_data *next_cu;
20216
20217 next_cu = per_cu->cu->read_in_chain;
20218
68dc6402 20219 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20220 *last_chain = next_cu;
20221
20222 per_cu = next_cu;
20223 }
20224}
20225
20226/* Increase the age counter on each cached compilation unit, and free
20227 any that are too old. */
20228
20229static void
20230age_cached_comp_units (void)
20231{
20232 struct dwarf2_per_cu_data *per_cu, **last_chain;
20233
20234 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20235 per_cu = dwarf2_per_objfile->read_in_chain;
20236 while (per_cu != NULL)
20237 {
20238 per_cu->cu->last_used ++;
20239 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20240 dwarf2_mark (per_cu->cu);
20241 per_cu = per_cu->cu->read_in_chain;
20242 }
20243
20244 per_cu = dwarf2_per_objfile->read_in_chain;
20245 last_chain = &dwarf2_per_objfile->read_in_chain;
20246 while (per_cu != NULL)
20247 {
20248 struct dwarf2_per_cu_data *next_cu;
20249
20250 next_cu = per_cu->cu->read_in_chain;
20251
20252 if (!per_cu->cu->mark)
20253 {
68dc6402 20254 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20255 *last_chain = next_cu;
20256 }
20257 else
20258 last_chain = &per_cu->cu->read_in_chain;
20259
20260 per_cu = next_cu;
20261 }
20262}
20263
20264/* Remove a single compilation unit from the cache. */
20265
20266static void
dee91e82 20267free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
20268{
20269 struct dwarf2_per_cu_data *per_cu, **last_chain;
20270
20271 per_cu = dwarf2_per_objfile->read_in_chain;
20272 last_chain = &dwarf2_per_objfile->read_in_chain;
20273 while (per_cu != NULL)
20274 {
20275 struct dwarf2_per_cu_data *next_cu;
20276
20277 next_cu = per_cu->cu->read_in_chain;
20278
dee91e82 20279 if (per_cu == target_per_cu)
ae038cb0 20280 {
68dc6402 20281 free_heap_comp_unit (per_cu->cu);
dee91e82 20282 per_cu->cu = NULL;
ae038cb0
DJ
20283 *last_chain = next_cu;
20284 break;
20285 }
20286 else
20287 last_chain = &per_cu->cu->read_in_chain;
20288
20289 per_cu = next_cu;
20290 }
20291}
20292
fe3e1990
DJ
20293/* Release all extra memory associated with OBJFILE. */
20294
20295void
20296dwarf2_free_objfile (struct objfile *objfile)
20297{
20298 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20299
20300 if (dwarf2_per_objfile == NULL)
20301 return;
20302
20303 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20304 free_cached_comp_units (NULL);
20305
7b9f3c50
DE
20306 if (dwarf2_per_objfile->quick_file_names_table)
20307 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 20308
fe3e1990
DJ
20309 /* Everything else should be on the objfile obstack. */
20310}
20311
dee91e82
DE
20312/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20313 We store these in a hash table separate from the DIEs, and preserve them
20314 when the DIEs are flushed out of cache.
20315
20316 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 20317 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
20318 or the type may come from a DWO file. Furthermore, while it's more logical
20319 to use per_cu->section+offset, with Fission the section with the data is in
20320 the DWO file but we don't know that section at the point we need it.
20321 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20322 because we can enter the lookup routine, get_die_type_at_offset, from
20323 outside this file, and thus won't necessarily have PER_CU->cu.
20324 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 20325
dee91e82 20326struct dwarf2_per_cu_offset_and_type
1c379e20 20327{
dee91e82 20328 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 20329 sect_offset offset;
1c379e20
DJ
20330 struct type *type;
20331};
20332
dee91e82 20333/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20334
20335static hashval_t
dee91e82 20336per_cu_offset_and_type_hash (const void *item)
1c379e20 20337{
dee91e82 20338 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 20339
dee91e82 20340 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
20341}
20342
dee91e82 20343/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20344
20345static int
dee91e82 20346per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 20347{
dee91e82
DE
20348 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20349 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 20350
dee91e82
DE
20351 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20352 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
20353}
20354
20355/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
20356 table if necessary. For convenience, return TYPE.
20357
20358 The DIEs reading must have careful ordering to:
20359 * Not cause infite loops trying to read in DIEs as a prerequisite for
20360 reading current DIE.
20361 * Not trying to dereference contents of still incompletely read in types
20362 while reading in other DIEs.
20363 * Enable referencing still incompletely read in types just by a pointer to
20364 the type without accessing its fields.
20365
20366 Therefore caller should follow these rules:
20367 * Try to fetch any prerequisite types we may need to build this DIE type
20368 before building the type and calling set_die_type.
e71ec853 20369 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
20370 possible before fetching more types to complete the current type.
20371 * Make the type as complete as possible before fetching more types. */
1c379e20 20372
f792889a 20373static struct type *
1c379e20
DJ
20374set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20375{
dee91e82 20376 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 20377 struct objfile *objfile = cu->objfile;
1c379e20 20378
b4ba55a1
JB
20379 /* For Ada types, make sure that the gnat-specific data is always
20380 initialized (if not already set). There are a few types where
20381 we should not be doing so, because the type-specific area is
20382 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20383 where the type-specific area is used to store the floatformat).
20384 But this is not a problem, because the gnat-specific information
20385 is actually not needed for these types. */
20386 if (need_gnat_info (cu)
20387 && TYPE_CODE (type) != TYPE_CODE_FUNC
20388 && TYPE_CODE (type) != TYPE_CODE_FLT
20389 && !HAVE_GNAT_AUX_INFO (type))
20390 INIT_GNAT_SPECIFIC (type);
20391
dee91e82 20392 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20393 {
dee91e82
DE
20394 dwarf2_per_objfile->die_type_hash =
20395 htab_create_alloc_ex (127,
20396 per_cu_offset_and_type_hash,
20397 per_cu_offset_and_type_eq,
20398 NULL,
20399 &objfile->objfile_obstack,
20400 hashtab_obstack_allocate,
20401 dummy_obstack_deallocate);
f792889a 20402 }
1c379e20 20403
dee91e82 20404 ofs.per_cu = cu->per_cu;
1c379e20
DJ
20405 ofs.offset = die->offset;
20406 ofs.type = type;
dee91e82
DE
20407 slot = (struct dwarf2_per_cu_offset_and_type **)
20408 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
20409 if (*slot)
20410 complaint (&symfile_complaints,
20411 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 20412 die->offset.sect_off);
673bfd45 20413 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 20414 **slot = ofs;
f792889a 20415 return type;
1c379e20
DJ
20416}
20417
02142a6c
DE
20418/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20419 or return NULL if the die does not have a saved type. */
1c379e20
DJ
20420
20421static struct type *
b64f50a1 20422get_die_type_at_offset (sect_offset offset,
673bfd45 20423 struct dwarf2_per_cu_data *per_cu)
1c379e20 20424{
dee91e82 20425 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 20426
dee91e82 20427 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20428 return NULL;
1c379e20 20429
dee91e82 20430 ofs.per_cu = per_cu;
673bfd45 20431 ofs.offset = offset;
dee91e82 20432 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
20433 if (slot)
20434 return slot->type;
20435 else
20436 return NULL;
20437}
20438
02142a6c 20439/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
20440 or return NULL if DIE does not have a saved type. */
20441
20442static struct type *
20443get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20444{
20445 return get_die_type_at_offset (die->offset, cu->per_cu);
20446}
20447
10b3939b
DJ
20448/* Add a dependence relationship from CU to REF_PER_CU. */
20449
20450static void
20451dwarf2_add_dependence (struct dwarf2_cu *cu,
20452 struct dwarf2_per_cu_data *ref_per_cu)
20453{
20454 void **slot;
20455
20456 if (cu->dependencies == NULL)
20457 cu->dependencies
20458 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20459 NULL, &cu->comp_unit_obstack,
20460 hashtab_obstack_allocate,
20461 dummy_obstack_deallocate);
20462
20463 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20464 if (*slot == NULL)
20465 *slot = ref_per_cu;
20466}
1c379e20 20467
f504f079
DE
20468/* Subroutine of dwarf2_mark to pass to htab_traverse.
20469 Set the mark field in every compilation unit in the
ae038cb0
DJ
20470 cache that we must keep because we are keeping CU. */
20471
10b3939b
DJ
20472static int
20473dwarf2_mark_helper (void **slot, void *data)
20474{
20475 struct dwarf2_per_cu_data *per_cu;
20476
20477 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
20478
20479 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20480 reading of the chain. As such dependencies remain valid it is not much
20481 useful to track and undo them during QUIT cleanups. */
20482 if (per_cu->cu == NULL)
20483 return 1;
20484
10b3939b
DJ
20485 if (per_cu->cu->mark)
20486 return 1;
20487 per_cu->cu->mark = 1;
20488
20489 if (per_cu->cu->dependencies != NULL)
20490 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20491
20492 return 1;
20493}
20494
f504f079
DE
20495/* Set the mark field in CU and in every other compilation unit in the
20496 cache that we must keep because we are keeping CU. */
20497
ae038cb0
DJ
20498static void
20499dwarf2_mark (struct dwarf2_cu *cu)
20500{
20501 if (cu->mark)
20502 return;
20503 cu->mark = 1;
10b3939b
DJ
20504 if (cu->dependencies != NULL)
20505 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
20506}
20507
20508static void
20509dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20510{
20511 while (per_cu)
20512 {
20513 per_cu->cu->mark = 0;
20514 per_cu = per_cu->cu->read_in_chain;
20515 }
72bf9492
DJ
20516}
20517
72bf9492
DJ
20518/* Trivial hash function for partial_die_info: the hash value of a DIE
20519 is its offset in .debug_info for this objfile. */
20520
20521static hashval_t
20522partial_die_hash (const void *item)
20523{
20524 const struct partial_die_info *part_die = item;
9a619af0 20525
b64f50a1 20526 return part_die->offset.sect_off;
72bf9492
DJ
20527}
20528
20529/* Trivial comparison function for partial_die_info structures: two DIEs
20530 are equal if they have the same offset. */
20531
20532static int
20533partial_die_eq (const void *item_lhs, const void *item_rhs)
20534{
20535 const struct partial_die_info *part_die_lhs = item_lhs;
20536 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 20537
b64f50a1 20538 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
20539}
20540
ae038cb0
DJ
20541static struct cmd_list_element *set_dwarf2_cmdlist;
20542static struct cmd_list_element *show_dwarf2_cmdlist;
20543
20544static void
20545set_dwarf2_cmd (char *args, int from_tty)
20546{
20547 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20548}
20549
20550static void
20551show_dwarf2_cmd (char *args, int from_tty)
6e70227d 20552{
ae038cb0
DJ
20553 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20554}
20555
4bf44c1c 20556/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
20557
20558static void
c1bd65d0 20559dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
20560{
20561 struct dwarf2_per_objfile *data = d;
8b70b953 20562 int ix;
8b70b953 20563
626f2d1c
TT
20564 /* Make sure we don't accidentally use dwarf2_per_objfile while
20565 cleaning up. */
20566 dwarf2_per_objfile = NULL;
20567
59b0c7c1
JB
20568 for (ix = 0; ix < data->n_comp_units; ++ix)
20569 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 20570
59b0c7c1 20571 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 20572 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
20573 data->all_type_units[ix]->per_cu.imported_symtabs);
20574 xfree (data->all_type_units);
95554aad 20575
8b70b953 20576 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
20577
20578 if (data->dwo_files)
20579 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
20580 if (data->dwp_file)
20581 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
20582
20583 if (data->dwz_file && data->dwz_file->dwz_bfd)
20584 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
20585}
20586
20587\f
ae2de4f8 20588/* The "save gdb-index" command. */
9291a0cd
TT
20589
20590/* The contents of the hash table we create when building the string
20591 table. */
20592struct strtab_entry
20593{
20594 offset_type offset;
20595 const char *str;
20596};
20597
559a7a62
JK
20598/* Hash function for a strtab_entry.
20599
20600 Function is used only during write_hash_table so no index format backward
20601 compatibility is needed. */
b89be57b 20602
9291a0cd
TT
20603static hashval_t
20604hash_strtab_entry (const void *e)
20605{
20606 const struct strtab_entry *entry = e;
559a7a62 20607 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
20608}
20609
20610/* Equality function for a strtab_entry. */
b89be57b 20611
9291a0cd
TT
20612static int
20613eq_strtab_entry (const void *a, const void *b)
20614{
20615 const struct strtab_entry *ea = a;
20616 const struct strtab_entry *eb = b;
20617 return !strcmp (ea->str, eb->str);
20618}
20619
20620/* Create a strtab_entry hash table. */
b89be57b 20621
9291a0cd
TT
20622static htab_t
20623create_strtab (void)
20624{
20625 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20626 xfree, xcalloc, xfree);
20627}
20628
20629/* Add a string to the constant pool. Return the string's offset in
20630 host order. */
b89be57b 20631
9291a0cd
TT
20632static offset_type
20633add_string (htab_t table, struct obstack *cpool, const char *str)
20634{
20635 void **slot;
20636 struct strtab_entry entry;
20637 struct strtab_entry *result;
20638
20639 entry.str = str;
20640 slot = htab_find_slot (table, &entry, INSERT);
20641 if (*slot)
20642 result = *slot;
20643 else
20644 {
20645 result = XNEW (struct strtab_entry);
20646 result->offset = obstack_object_size (cpool);
20647 result->str = str;
20648 obstack_grow_str0 (cpool, str);
20649 *slot = result;
20650 }
20651 return result->offset;
20652}
20653
20654/* An entry in the symbol table. */
20655struct symtab_index_entry
20656{
20657 /* The name of the symbol. */
20658 const char *name;
20659 /* The offset of the name in the constant pool. */
20660 offset_type index_offset;
20661 /* A sorted vector of the indices of all the CUs that hold an object
20662 of this name. */
20663 VEC (offset_type) *cu_indices;
20664};
20665
20666/* The symbol table. This is a power-of-2-sized hash table. */
20667struct mapped_symtab
20668{
20669 offset_type n_elements;
20670 offset_type size;
20671 struct symtab_index_entry **data;
20672};
20673
20674/* Hash function for a symtab_index_entry. */
b89be57b 20675
9291a0cd
TT
20676static hashval_t
20677hash_symtab_entry (const void *e)
20678{
20679 const struct symtab_index_entry *entry = e;
20680 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20681 sizeof (offset_type) * VEC_length (offset_type,
20682 entry->cu_indices),
20683 0);
20684}
20685
20686/* Equality function for a symtab_index_entry. */
b89be57b 20687
9291a0cd
TT
20688static int
20689eq_symtab_entry (const void *a, const void *b)
20690{
20691 const struct symtab_index_entry *ea = a;
20692 const struct symtab_index_entry *eb = b;
20693 int len = VEC_length (offset_type, ea->cu_indices);
20694 if (len != VEC_length (offset_type, eb->cu_indices))
20695 return 0;
20696 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20697 VEC_address (offset_type, eb->cu_indices),
20698 sizeof (offset_type) * len);
20699}
20700
20701/* Destroy a symtab_index_entry. */
b89be57b 20702
9291a0cd
TT
20703static void
20704delete_symtab_entry (void *p)
20705{
20706 struct symtab_index_entry *entry = p;
20707 VEC_free (offset_type, entry->cu_indices);
20708 xfree (entry);
20709}
20710
20711/* Create a hash table holding symtab_index_entry objects. */
b89be57b 20712
9291a0cd 20713static htab_t
3876f04e 20714create_symbol_hash_table (void)
9291a0cd
TT
20715{
20716 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20717 delete_symtab_entry, xcalloc, xfree);
20718}
20719
20720/* Create a new mapped symtab object. */
b89be57b 20721
9291a0cd
TT
20722static struct mapped_symtab *
20723create_mapped_symtab (void)
20724{
20725 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20726 symtab->n_elements = 0;
20727 symtab->size = 1024;
20728 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20729 return symtab;
20730}
20731
20732/* Destroy a mapped_symtab. */
b89be57b 20733
9291a0cd
TT
20734static void
20735cleanup_mapped_symtab (void *p)
20736{
20737 struct mapped_symtab *symtab = p;
20738 /* The contents of the array are freed when the other hash table is
20739 destroyed. */
20740 xfree (symtab->data);
20741 xfree (symtab);
20742}
20743
20744/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
20745 the slot.
20746
20747 Function is used only during write_hash_table so no index format backward
20748 compatibility is needed. */
b89be57b 20749
9291a0cd
TT
20750static struct symtab_index_entry **
20751find_slot (struct mapped_symtab *symtab, const char *name)
20752{
559a7a62 20753 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
20754
20755 index = hash & (symtab->size - 1);
20756 step = ((hash * 17) & (symtab->size - 1)) | 1;
20757
20758 for (;;)
20759 {
20760 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20761 return &symtab->data[index];
20762 index = (index + step) & (symtab->size - 1);
20763 }
20764}
20765
20766/* Expand SYMTAB's hash table. */
b89be57b 20767
9291a0cd
TT
20768static void
20769hash_expand (struct mapped_symtab *symtab)
20770{
20771 offset_type old_size = symtab->size;
20772 offset_type i;
20773 struct symtab_index_entry **old_entries = symtab->data;
20774
20775 symtab->size *= 2;
20776 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20777
20778 for (i = 0; i < old_size; ++i)
20779 {
20780 if (old_entries[i])
20781 {
20782 struct symtab_index_entry **slot = find_slot (symtab,
20783 old_entries[i]->name);
20784 *slot = old_entries[i];
20785 }
20786 }
20787
20788 xfree (old_entries);
20789}
20790
156942c7
DE
20791/* Add an entry to SYMTAB. NAME is the name of the symbol.
20792 CU_INDEX is the index of the CU in which the symbol appears.
20793 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 20794
9291a0cd
TT
20795static void
20796add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 20797 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
20798 offset_type cu_index)
20799{
20800 struct symtab_index_entry **slot;
156942c7 20801 offset_type cu_index_and_attrs;
9291a0cd
TT
20802
20803 ++symtab->n_elements;
20804 if (4 * symtab->n_elements / 3 >= symtab->size)
20805 hash_expand (symtab);
20806
20807 slot = find_slot (symtab, name);
20808 if (!*slot)
20809 {
20810 *slot = XNEW (struct symtab_index_entry);
20811 (*slot)->name = name;
156942c7 20812 /* index_offset is set later. */
9291a0cd
TT
20813 (*slot)->cu_indices = NULL;
20814 }
156942c7
DE
20815
20816 cu_index_and_attrs = 0;
20817 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20818 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20819 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20820
20821 /* We don't want to record an index value twice as we want to avoid the
20822 duplication.
20823 We process all global symbols and then all static symbols
20824 (which would allow us to avoid the duplication by only having to check
20825 the last entry pushed), but a symbol could have multiple kinds in one CU.
20826 To keep things simple we don't worry about the duplication here and
20827 sort and uniqufy the list after we've processed all symbols. */
20828 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20829}
20830
20831/* qsort helper routine for uniquify_cu_indices. */
20832
20833static int
20834offset_type_compare (const void *ap, const void *bp)
20835{
20836 offset_type a = *(offset_type *) ap;
20837 offset_type b = *(offset_type *) bp;
20838
20839 return (a > b) - (b > a);
20840}
20841
20842/* Sort and remove duplicates of all symbols' cu_indices lists. */
20843
20844static void
20845uniquify_cu_indices (struct mapped_symtab *symtab)
20846{
20847 int i;
20848
20849 for (i = 0; i < symtab->size; ++i)
20850 {
20851 struct symtab_index_entry *entry = symtab->data[i];
20852
20853 if (entry
20854 && entry->cu_indices != NULL)
20855 {
20856 unsigned int next_to_insert, next_to_check;
20857 offset_type last_value;
20858
20859 qsort (VEC_address (offset_type, entry->cu_indices),
20860 VEC_length (offset_type, entry->cu_indices),
20861 sizeof (offset_type), offset_type_compare);
20862
20863 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20864 next_to_insert = 1;
20865 for (next_to_check = 1;
20866 next_to_check < VEC_length (offset_type, entry->cu_indices);
20867 ++next_to_check)
20868 {
20869 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20870 != last_value)
20871 {
20872 last_value = VEC_index (offset_type, entry->cu_indices,
20873 next_to_check);
20874 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20875 last_value);
20876 ++next_to_insert;
20877 }
20878 }
20879 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20880 }
20881 }
9291a0cd
TT
20882}
20883
20884/* Add a vector of indices to the constant pool. */
b89be57b 20885
9291a0cd 20886static offset_type
3876f04e 20887add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
20888 struct symtab_index_entry *entry)
20889{
20890 void **slot;
20891
3876f04e 20892 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
20893 if (!*slot)
20894 {
20895 offset_type len = VEC_length (offset_type, entry->cu_indices);
20896 offset_type val = MAYBE_SWAP (len);
20897 offset_type iter;
20898 int i;
20899
20900 *slot = entry;
20901 entry->index_offset = obstack_object_size (cpool);
20902
20903 obstack_grow (cpool, &val, sizeof (val));
20904 for (i = 0;
20905 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20906 ++i)
20907 {
20908 val = MAYBE_SWAP (iter);
20909 obstack_grow (cpool, &val, sizeof (val));
20910 }
20911 }
20912 else
20913 {
20914 struct symtab_index_entry *old_entry = *slot;
20915 entry->index_offset = old_entry->index_offset;
20916 entry = old_entry;
20917 }
20918 return entry->index_offset;
20919}
20920
20921/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20922 constant pool entries going into the obstack CPOOL. */
b89be57b 20923
9291a0cd
TT
20924static void
20925write_hash_table (struct mapped_symtab *symtab,
20926 struct obstack *output, struct obstack *cpool)
20927{
20928 offset_type i;
3876f04e 20929 htab_t symbol_hash_table;
9291a0cd
TT
20930 htab_t str_table;
20931
3876f04e 20932 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 20933 str_table = create_strtab ();
3876f04e 20934
9291a0cd
TT
20935 /* We add all the index vectors to the constant pool first, to
20936 ensure alignment is ok. */
20937 for (i = 0; i < symtab->size; ++i)
20938 {
20939 if (symtab->data[i])
3876f04e 20940 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
20941 }
20942
20943 /* Now write out the hash table. */
20944 for (i = 0; i < symtab->size; ++i)
20945 {
20946 offset_type str_off, vec_off;
20947
20948 if (symtab->data[i])
20949 {
20950 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20951 vec_off = symtab->data[i]->index_offset;
20952 }
20953 else
20954 {
20955 /* While 0 is a valid constant pool index, it is not valid
20956 to have 0 for both offsets. */
20957 str_off = 0;
20958 vec_off = 0;
20959 }
20960
20961 str_off = MAYBE_SWAP (str_off);
20962 vec_off = MAYBE_SWAP (vec_off);
20963
20964 obstack_grow (output, &str_off, sizeof (str_off));
20965 obstack_grow (output, &vec_off, sizeof (vec_off));
20966 }
20967
20968 htab_delete (str_table);
3876f04e 20969 htab_delete (symbol_hash_table);
9291a0cd
TT
20970}
20971
0a5429f6
DE
20972/* Struct to map psymtab to CU index in the index file. */
20973struct psymtab_cu_index_map
20974{
20975 struct partial_symtab *psymtab;
20976 unsigned int cu_index;
20977};
20978
20979static hashval_t
20980hash_psymtab_cu_index (const void *item)
20981{
20982 const struct psymtab_cu_index_map *map = item;
20983
20984 return htab_hash_pointer (map->psymtab);
20985}
20986
20987static int
20988eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20989{
20990 const struct psymtab_cu_index_map *lhs = item_lhs;
20991 const struct psymtab_cu_index_map *rhs = item_rhs;
20992
20993 return lhs->psymtab == rhs->psymtab;
20994}
20995
20996/* Helper struct for building the address table. */
20997struct addrmap_index_data
20998{
20999 struct objfile *objfile;
21000 struct obstack *addr_obstack;
21001 htab_t cu_index_htab;
21002
21003 /* Non-zero if the previous_* fields are valid.
21004 We can't write an entry until we see the next entry (since it is only then
21005 that we know the end of the entry). */
21006 int previous_valid;
21007 /* Index of the CU in the table of all CUs in the index file. */
21008 unsigned int previous_cu_index;
0963b4bd 21009 /* Start address of the CU. */
0a5429f6
DE
21010 CORE_ADDR previous_cu_start;
21011};
21012
21013/* Write an address entry to OBSTACK. */
b89be57b 21014
9291a0cd 21015static void
0a5429f6
DE
21016add_address_entry (struct objfile *objfile, struct obstack *obstack,
21017 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 21018{
0a5429f6 21019 offset_type cu_index_to_write;
948f8e3d 21020 gdb_byte addr[8];
9291a0cd
TT
21021 CORE_ADDR baseaddr;
21022
21023 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21024
0a5429f6
DE
21025 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21026 obstack_grow (obstack, addr, 8);
21027 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21028 obstack_grow (obstack, addr, 8);
21029 cu_index_to_write = MAYBE_SWAP (cu_index);
21030 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21031}
21032
21033/* Worker function for traversing an addrmap to build the address table. */
21034
21035static int
21036add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21037{
21038 struct addrmap_index_data *data = datap;
21039 struct partial_symtab *pst = obj;
0a5429f6
DE
21040
21041 if (data->previous_valid)
21042 add_address_entry (data->objfile, data->addr_obstack,
21043 data->previous_cu_start, start_addr,
21044 data->previous_cu_index);
21045
21046 data->previous_cu_start = start_addr;
21047 if (pst != NULL)
21048 {
21049 struct psymtab_cu_index_map find_map, *map;
21050 find_map.psymtab = pst;
21051 map = htab_find (data->cu_index_htab, &find_map);
21052 gdb_assert (map != NULL);
21053 data->previous_cu_index = map->cu_index;
21054 data->previous_valid = 1;
21055 }
21056 else
21057 data->previous_valid = 0;
21058
21059 return 0;
21060}
21061
21062/* Write OBJFILE's address map to OBSTACK.
21063 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21064 in the index file. */
21065
21066static void
21067write_address_map (struct objfile *objfile, struct obstack *obstack,
21068 htab_t cu_index_htab)
21069{
21070 struct addrmap_index_data addrmap_index_data;
21071
21072 /* When writing the address table, we have to cope with the fact that
21073 the addrmap iterator only provides the start of a region; we have to
21074 wait until the next invocation to get the start of the next region. */
21075
21076 addrmap_index_data.objfile = objfile;
21077 addrmap_index_data.addr_obstack = obstack;
21078 addrmap_index_data.cu_index_htab = cu_index_htab;
21079 addrmap_index_data.previous_valid = 0;
21080
21081 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21082 &addrmap_index_data);
21083
21084 /* It's highly unlikely the last entry (end address = 0xff...ff)
21085 is valid, but we should still handle it.
21086 The end address is recorded as the start of the next region, but that
21087 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21088 anyway. */
21089 if (addrmap_index_data.previous_valid)
21090 add_address_entry (objfile, obstack,
21091 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21092 addrmap_index_data.previous_cu_index);
9291a0cd
TT
21093}
21094
156942c7
DE
21095/* Return the symbol kind of PSYM. */
21096
21097static gdb_index_symbol_kind
21098symbol_kind (struct partial_symbol *psym)
21099{
21100 domain_enum domain = PSYMBOL_DOMAIN (psym);
21101 enum address_class aclass = PSYMBOL_CLASS (psym);
21102
21103 switch (domain)
21104 {
21105 case VAR_DOMAIN:
21106 switch (aclass)
21107 {
21108 case LOC_BLOCK:
21109 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21110 case LOC_TYPEDEF:
21111 return GDB_INDEX_SYMBOL_KIND_TYPE;
21112 case LOC_COMPUTED:
21113 case LOC_CONST_BYTES:
21114 case LOC_OPTIMIZED_OUT:
21115 case LOC_STATIC:
21116 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21117 case LOC_CONST:
21118 /* Note: It's currently impossible to recognize psyms as enum values
21119 short of reading the type info. For now punt. */
21120 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21121 default:
21122 /* There are other LOC_FOO values that one might want to classify
21123 as variables, but dwarf2read.c doesn't currently use them. */
21124 return GDB_INDEX_SYMBOL_KIND_OTHER;
21125 }
21126 case STRUCT_DOMAIN:
21127 return GDB_INDEX_SYMBOL_KIND_TYPE;
21128 default:
21129 return GDB_INDEX_SYMBOL_KIND_OTHER;
21130 }
21131}
21132
9291a0cd 21133/* Add a list of partial symbols to SYMTAB. */
b89be57b 21134
9291a0cd
TT
21135static void
21136write_psymbols (struct mapped_symtab *symtab,
987d643c 21137 htab_t psyms_seen,
9291a0cd
TT
21138 struct partial_symbol **psymp,
21139 int count,
987d643c
TT
21140 offset_type cu_index,
21141 int is_static)
9291a0cd
TT
21142{
21143 for (; count-- > 0; ++psymp)
21144 {
156942c7
DE
21145 struct partial_symbol *psym = *psymp;
21146 void **slot;
987d643c 21147
156942c7 21148 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 21149 error (_("Ada is not currently supported by the index"));
987d643c 21150
987d643c 21151 /* Only add a given psymbol once. */
156942c7 21152 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
21153 if (!*slot)
21154 {
156942c7
DE
21155 gdb_index_symbol_kind kind = symbol_kind (psym);
21156
21157 *slot = psym;
21158 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21159 is_static, kind, cu_index);
987d643c 21160 }
9291a0cd
TT
21161 }
21162}
21163
21164/* Write the contents of an ("unfinished") obstack to FILE. Throw an
21165 exception if there is an error. */
b89be57b 21166
9291a0cd
TT
21167static void
21168write_obstack (FILE *file, struct obstack *obstack)
21169{
21170 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21171 file)
21172 != obstack_object_size (obstack))
21173 error (_("couldn't data write to file"));
21174}
21175
21176/* Unlink a file if the argument is not NULL. */
b89be57b 21177
9291a0cd
TT
21178static void
21179unlink_if_set (void *p)
21180{
21181 char **filename = p;
21182 if (*filename)
21183 unlink (*filename);
21184}
21185
1fd400ff
TT
21186/* A helper struct used when iterating over debug_types. */
21187struct signatured_type_index_data
21188{
21189 struct objfile *objfile;
21190 struct mapped_symtab *symtab;
21191 struct obstack *types_list;
987d643c 21192 htab_t psyms_seen;
1fd400ff
TT
21193 int cu_index;
21194};
21195
21196/* A helper function that writes a single signatured_type to an
21197 obstack. */
b89be57b 21198
1fd400ff
TT
21199static int
21200write_one_signatured_type (void **slot, void *d)
21201{
21202 struct signatured_type_index_data *info = d;
21203 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 21204 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
21205 gdb_byte val[8];
21206
21207 write_psymbols (info->symtab,
987d643c 21208 info->psyms_seen,
3e43a32a
MS
21209 info->objfile->global_psymbols.list
21210 + psymtab->globals_offset,
987d643c
TT
21211 psymtab->n_global_syms, info->cu_index,
21212 0);
1fd400ff 21213 write_psymbols (info->symtab,
987d643c 21214 info->psyms_seen,
3e43a32a
MS
21215 info->objfile->static_psymbols.list
21216 + psymtab->statics_offset,
987d643c
TT
21217 psymtab->n_static_syms, info->cu_index,
21218 1);
1fd400ff 21219
b64f50a1
JK
21220 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21221 entry->per_cu.offset.sect_off);
1fd400ff 21222 obstack_grow (info->types_list, val, 8);
3019eac3
DE
21223 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21224 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
21225 obstack_grow (info->types_list, val, 8);
21226 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21227 obstack_grow (info->types_list, val, 8);
21228
21229 ++info->cu_index;
21230
21231 return 1;
21232}
21233
95554aad
TT
21234/* Recurse into all "included" dependencies and write their symbols as
21235 if they appeared in this psymtab. */
21236
21237static void
21238recursively_write_psymbols (struct objfile *objfile,
21239 struct partial_symtab *psymtab,
21240 struct mapped_symtab *symtab,
21241 htab_t psyms_seen,
21242 offset_type cu_index)
21243{
21244 int i;
21245
21246 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21247 if (psymtab->dependencies[i]->user != NULL)
21248 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21249 symtab, psyms_seen, cu_index);
21250
21251 write_psymbols (symtab,
21252 psyms_seen,
21253 objfile->global_psymbols.list + psymtab->globals_offset,
21254 psymtab->n_global_syms, cu_index,
21255 0);
21256 write_psymbols (symtab,
21257 psyms_seen,
21258 objfile->static_psymbols.list + psymtab->statics_offset,
21259 psymtab->n_static_syms, cu_index,
21260 1);
21261}
21262
9291a0cd 21263/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 21264
9291a0cd
TT
21265static void
21266write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21267{
21268 struct cleanup *cleanup;
21269 char *filename, *cleanup_filename;
1fd400ff
TT
21270 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21271 struct obstack cu_list, types_cu_list;
9291a0cd
TT
21272 int i;
21273 FILE *out_file;
21274 struct mapped_symtab *symtab;
21275 offset_type val, size_of_contents, total_len;
21276 struct stat st;
987d643c 21277 htab_t psyms_seen;
0a5429f6
DE
21278 htab_t cu_index_htab;
21279 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 21280
9291a0cd
TT
21281 if (dwarf2_per_objfile->using_index)
21282 error (_("Cannot use an index to create the index"));
21283
8b70b953
TT
21284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21285 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21286
260b681b
DE
21287 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21288 return;
21289
9291a0cd 21290 if (stat (objfile->name, &st) < 0)
7e17e088 21291 perror_with_name (objfile->name);
9291a0cd
TT
21292
21293 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21294 INDEX_SUFFIX, (char *) NULL);
21295 cleanup = make_cleanup (xfree, filename);
21296
614c279d 21297 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
21298 if (!out_file)
21299 error (_("Can't open `%s' for writing"), filename);
21300
21301 cleanup_filename = filename;
21302 make_cleanup (unlink_if_set, &cleanup_filename);
21303
21304 symtab = create_mapped_symtab ();
21305 make_cleanup (cleanup_mapped_symtab, symtab);
21306
21307 obstack_init (&addr_obstack);
21308 make_cleanup_obstack_free (&addr_obstack);
21309
21310 obstack_init (&cu_list);
21311 make_cleanup_obstack_free (&cu_list);
21312
1fd400ff
TT
21313 obstack_init (&types_cu_list);
21314 make_cleanup_obstack_free (&types_cu_list);
21315
987d643c
TT
21316 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21317 NULL, xcalloc, xfree);
96408a79 21318 make_cleanup_htab_delete (psyms_seen);
987d643c 21319
0a5429f6
DE
21320 /* While we're scanning CU's create a table that maps a psymtab pointer
21321 (which is what addrmap records) to its index (which is what is recorded
21322 in the index file). This will later be needed to write the address
21323 table. */
21324 cu_index_htab = htab_create_alloc (100,
21325 hash_psymtab_cu_index,
21326 eq_psymtab_cu_index,
21327 NULL, xcalloc, xfree);
96408a79 21328 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
21329 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21330 xmalloc (sizeof (struct psymtab_cu_index_map)
21331 * dwarf2_per_objfile->n_comp_units);
21332 make_cleanup (xfree, psymtab_cu_index_map);
21333
21334 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
21335 work here. Also, the debug_types entries do not appear in
21336 all_comp_units, but only in their own hash table. */
9291a0cd
TT
21337 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21338 {
3e43a32a
MS
21339 struct dwarf2_per_cu_data *per_cu
21340 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 21341 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 21342 gdb_byte val[8];
0a5429f6
DE
21343 struct psymtab_cu_index_map *map;
21344 void **slot;
9291a0cd 21345
92fac807
JK
21346 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21347 It may be referenced from a local scope but in such case it does not
21348 need to be present in .gdb_index. */
21349 if (psymtab == NULL)
21350 continue;
21351
95554aad
TT
21352 if (psymtab->user == NULL)
21353 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 21354
0a5429f6
DE
21355 map = &psymtab_cu_index_map[i];
21356 map->psymtab = psymtab;
21357 map->cu_index = i;
21358 slot = htab_find_slot (cu_index_htab, map, INSERT);
21359 gdb_assert (slot != NULL);
21360 gdb_assert (*slot == NULL);
21361 *slot = map;
9291a0cd 21362
b64f50a1
JK
21363 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21364 per_cu->offset.sect_off);
9291a0cd 21365 obstack_grow (&cu_list, val, 8);
e254ef6a 21366 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
21367 obstack_grow (&cu_list, val, 8);
21368 }
21369
0a5429f6
DE
21370 /* Dump the address map. */
21371 write_address_map (objfile, &addr_obstack, cu_index_htab);
21372
1fd400ff
TT
21373 /* Write out the .debug_type entries, if any. */
21374 if (dwarf2_per_objfile->signatured_types)
21375 {
21376 struct signatured_type_index_data sig_data;
21377
21378 sig_data.objfile = objfile;
21379 sig_data.symtab = symtab;
21380 sig_data.types_list = &types_cu_list;
987d643c 21381 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
21382 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21383 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21384 write_one_signatured_type, &sig_data);
21385 }
21386
156942c7
DE
21387 /* Now that we've processed all symbols we can shrink their cu_indices
21388 lists. */
21389 uniquify_cu_indices (symtab);
21390
9291a0cd
TT
21391 obstack_init (&constant_pool);
21392 make_cleanup_obstack_free (&constant_pool);
21393 obstack_init (&symtab_obstack);
21394 make_cleanup_obstack_free (&symtab_obstack);
21395 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21396
21397 obstack_init (&contents);
21398 make_cleanup_obstack_free (&contents);
1fd400ff 21399 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
21400 total_len = size_of_contents;
21401
21402 /* The version number. */
796a7ff8 21403 val = MAYBE_SWAP (8);
9291a0cd
TT
21404 obstack_grow (&contents, &val, sizeof (val));
21405
21406 /* The offset of the CU list from the start of the file. */
21407 val = MAYBE_SWAP (total_len);
21408 obstack_grow (&contents, &val, sizeof (val));
21409 total_len += obstack_object_size (&cu_list);
21410
1fd400ff
TT
21411 /* The offset of the types CU list from the start of the file. */
21412 val = MAYBE_SWAP (total_len);
21413 obstack_grow (&contents, &val, sizeof (val));
21414 total_len += obstack_object_size (&types_cu_list);
21415
9291a0cd
TT
21416 /* The offset of the address table from the start of the file. */
21417 val = MAYBE_SWAP (total_len);
21418 obstack_grow (&contents, &val, sizeof (val));
21419 total_len += obstack_object_size (&addr_obstack);
21420
21421 /* The offset of the symbol table from the start of the file. */
21422 val = MAYBE_SWAP (total_len);
21423 obstack_grow (&contents, &val, sizeof (val));
21424 total_len += obstack_object_size (&symtab_obstack);
21425
21426 /* The offset of the constant pool from the start of the file. */
21427 val = MAYBE_SWAP (total_len);
21428 obstack_grow (&contents, &val, sizeof (val));
21429 total_len += obstack_object_size (&constant_pool);
21430
21431 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21432
21433 write_obstack (out_file, &contents);
21434 write_obstack (out_file, &cu_list);
1fd400ff 21435 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
21436 write_obstack (out_file, &addr_obstack);
21437 write_obstack (out_file, &symtab_obstack);
21438 write_obstack (out_file, &constant_pool);
21439
21440 fclose (out_file);
21441
21442 /* We want to keep the file, so we set cleanup_filename to NULL
21443 here. See unlink_if_set. */
21444 cleanup_filename = NULL;
21445
21446 do_cleanups (cleanup);
21447}
21448
90476074
TT
21449/* Implementation of the `save gdb-index' command.
21450
21451 Note that the file format used by this command is documented in the
21452 GDB manual. Any changes here must be documented there. */
11570e71 21453
9291a0cd
TT
21454static void
21455save_gdb_index_command (char *arg, int from_tty)
21456{
21457 struct objfile *objfile;
21458
21459 if (!arg || !*arg)
96d19272 21460 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
21461
21462 ALL_OBJFILES (objfile)
21463 {
21464 struct stat st;
21465
21466 /* If the objfile does not correspond to an actual file, skip it. */
21467 if (stat (objfile->name, &st) < 0)
21468 continue;
21469
21470 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21471 if (dwarf2_per_objfile)
21472 {
21473 volatile struct gdb_exception except;
21474
21475 TRY_CATCH (except, RETURN_MASK_ERROR)
21476 {
21477 write_psymtabs_to_index (objfile, arg);
21478 }
21479 if (except.reason < 0)
21480 exception_fprintf (gdb_stderr, except,
21481 _("Error while writing index for `%s': "),
21482 objfile->name);
21483 }
21484 }
dce234bc
PP
21485}
21486
9291a0cd
TT
21487\f
21488
9eae7c52
TT
21489int dwarf2_always_disassemble;
21490
21491static void
21492show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21493 struct cmd_list_element *c, const char *value)
21494{
3e43a32a
MS
21495 fprintf_filtered (file,
21496 _("Whether to always disassemble "
21497 "DWARF expressions is %s.\n"),
9eae7c52
TT
21498 value);
21499}
21500
900e11f9
JK
21501static void
21502show_check_physname (struct ui_file *file, int from_tty,
21503 struct cmd_list_element *c, const char *value)
21504{
21505 fprintf_filtered (file,
21506 _("Whether to check \"physname\" is %s.\n"),
21507 value);
21508}
21509
6502dd73
DJ
21510void _initialize_dwarf2_read (void);
21511
21512void
21513_initialize_dwarf2_read (void)
21514{
96d19272
JK
21515 struct cmd_list_element *c;
21516
dce234bc 21517 dwarf2_objfile_data_key
c1bd65d0 21518 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 21519
1bedd215
AC
21520 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21521Set DWARF 2 specific variables.\n\
21522Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21523 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21524 0/*allow-unknown*/, &maintenance_set_cmdlist);
21525
1bedd215
AC
21526 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21527Show DWARF 2 specific variables\n\
21528Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21529 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21530 0/*allow-unknown*/, &maintenance_show_cmdlist);
21531
21532 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
21533 &dwarf2_max_cache_age, _("\
21534Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21535Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21536A higher limit means that cached compilation units will be stored\n\
21537in memory longer, and more total memory will be used. Zero disables\n\
21538caching, which can slow down startup."),
2c5b56ce 21539 NULL,
920d2a44 21540 show_dwarf2_max_cache_age,
2c5b56ce 21541 &set_dwarf2_cmdlist,
ae038cb0 21542 &show_dwarf2_cmdlist);
d97bc12b 21543
9eae7c52
TT
21544 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21545 &dwarf2_always_disassemble, _("\
21546Set whether `info address' always disassembles DWARF expressions."), _("\
21547Show whether `info address' always disassembles DWARF expressions."), _("\
21548When enabled, DWARF expressions are always printed in an assembly-like\n\
21549syntax. When disabled, expressions will be printed in a more\n\
21550conversational style, when possible."),
21551 NULL,
21552 show_dwarf2_always_disassemble,
21553 &set_dwarf2_cmdlist,
21554 &show_dwarf2_cmdlist);
21555
45cfd468
DE
21556 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21557Set debugging of the dwarf2 reader."), _("\
21558Show debugging of the dwarf2 reader."), _("\
21559When enabled, debugging messages are printed during dwarf2 reading\n\
21560and symtab expansion."),
21561 NULL,
21562 NULL,
21563 &setdebuglist, &showdebuglist);
21564
ccce17b0 21565 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
21566Set debugging of the dwarf2 DIE reader."), _("\
21567Show debugging of the dwarf2 DIE reader."), _("\
21568When enabled (non-zero), DIEs are dumped after they are read in.\n\
21569The value is the maximum depth to print."),
ccce17b0
YQ
21570 NULL,
21571 NULL,
21572 &setdebuglist, &showdebuglist);
9291a0cd 21573
900e11f9
JK
21574 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21575Set cross-checking of \"physname\" code against demangler."), _("\
21576Show cross-checking of \"physname\" code against demangler."), _("\
21577When enabled, GDB's internal \"physname\" code is checked against\n\
21578the demangler."),
21579 NULL, show_check_physname,
21580 &setdebuglist, &showdebuglist);
21581
e615022a
DE
21582 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21583 no_class, &use_deprecated_index_sections, _("\
21584Set whether to use deprecated gdb_index sections."), _("\
21585Show whether to use deprecated gdb_index sections."), _("\
21586When enabled, deprecated .gdb_index sections are used anyway.\n\
21587Normally they are ignored either because of a missing feature or\n\
21588performance issue.\n\
21589Warning: This option must be enabled before gdb reads the file."),
21590 NULL,
21591 NULL,
21592 &setlist, &showlist);
21593
96d19272 21594 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 21595 _("\
fc1a9d6e 21596Save a gdb-index file.\n\
11570e71 21597Usage: save gdb-index DIRECTORY"),
96d19272
JK
21598 &save_cmdlist);
21599 set_cmd_completer (c, filename_completer);
f1e6e072
TT
21600
21601 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21602 &dwarf2_locexpr_funcs);
21603 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21604 &dwarf2_loclist_funcs);
21605
21606 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21607 &dwarf2_block_frame_base_locexpr_funcs);
21608 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21609 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 21610}
This page took 3.623059 seconds and 4 git commands to generate.