sim/erc32: File loading via command line did not work
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
73be47f5
DE
79/* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
45cfd468 81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 82static unsigned int dwarf2_read_debug = 0;
45cfd468 83
d97bc12b 84/* When non-zero, dump DIEs after they are read in. */
ccce17b0 85static unsigned int dwarf2_die_debug = 0;
d97bc12b 86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3 90/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 91static int use_deprecated_index_sections = 0;
481860b3 92
6502dd73
DJ
93static const struct objfile_data *dwarf2_objfile_data_key;
94
f1e6e072
TT
95/* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97static int dwarf2_locexpr_index;
98static int dwarf2_loclist_index;
99static int dwarf2_locexpr_block_index;
100static int dwarf2_loclist_block_index;
101
73869dc2
DE
102/* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
dce234bc
PP
118struct dwarf2_section_info
119{
73869dc2
DE
120 union
121 {
e5aa3347 122 /* If this is a real section, the bfd section. */
73869dc2
DE
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 125 section. */
73869dc2
DE
126 struct dwarf2_section_info *containing_section;
127 } s;
19ac8c2e 128 /* Pointer to section data, only valid if readin. */
d521ce57 129 const gdb_byte *buffer;
73869dc2 130 /* The size of the section, real or virtual. */
dce234bc 131 bfd_size_type size;
73869dc2
DE
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
be391dca 135 /* True if we have tried to read this section. */
73869dc2
DE
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
dce234bc
PP
140};
141
8b70b953
TT
142typedef struct dwarf2_section_info dwarf2_section_info_def;
143DEF_VEC_O (dwarf2_section_info_def);
144
9291a0cd
TT
145/* All offsets in the index are of this type. It must be
146 architecture-independent. */
147typedef uint32_t offset_type;
148
149DEF_VEC_I (offset_type);
150
156942c7
DE
151/* Ensure only legit values are used. */
152#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158/* Ensure only legit values are used. */
159#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166/* Ensure we don't use more than the alloted nuber of bits for the CU. */
167#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
9291a0cd
TT
173/* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175struct mapped_index
176{
559a7a62
JK
177 /* Index data format version. */
178 int version;
179
9291a0cd
TT
180 /* The total length of the buffer. */
181 off_t total_size;
b11b1f88 182
9291a0cd
TT
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
b11b1f88 185
9291a0cd
TT
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
b11b1f88 188
3876f04e
DE
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
b11b1f88 191
9291a0cd 192 /* Size in slots, each slot is 2 offset_types. */
3876f04e 193 offset_type symbol_table_slots;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197};
198
95554aad
TT
199typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200DEF_VEC_P (dwarf2_per_cu_ptr);
201
9cdd5dbd
DE
202/* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
6502dd73
DJ
205struct dwarf2_per_objfile
206{
dce234bc
PP
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
dce234bc
PP
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
cf2c3c16 212 struct dwarf2_section_info macro;
dce234bc
PP
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
3019eac3 215 struct dwarf2_section_info addr;
dce234bc
PP
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
9291a0cd 218 struct dwarf2_section_info gdb_index;
ae038cb0 219
8b70b953
TT
220 VEC (dwarf2_section_info_def) *types;
221
be391dca
TT
222 /* Back link. */
223 struct objfile *objfile;
224
d467dd73 225 /* Table of all the compilation units. This is used to locate
10b3939b 226 the target compilation unit of a particular reference. */
ae038cb0
DJ
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
1fd400ff 232 /* The number of .debug_types-related CUs. */
d467dd73 233 int n_type_units;
1fd400ff 234
6aa5f3a6
DE
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
a2ce51a0
DE
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
b4dd5633 241 struct signatured_type **all_type_units;
1fd400ff 242
f4dc4d17
DE
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
72dca2f5 246
348e048f
DE
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
f4dc4d17
DE
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
6aa5f3a6 259 int nr_all_type_units_reallocs;
f4dc4d17
DE
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
3019eac3
DE
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
80626a55
DE
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
36586728
TT
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
72dca2f5
FR
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
9291a0cd 283
ae2de4f8
DE
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
286 unsigned char using_index;
287
ae2de4f8 288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 289 struct mapped_index *index_table;
98bfdba5 290
7b9f3c50 291 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
7b9f3c50
DE
298 htab_t quick_file_names_table;
299
98bfdba5
PA
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
673bfd45 303
dee91e82 304 /* Table mapping type DIEs to their struct type *.
673bfd45 305 This is NULL if not allocated yet.
02142a6c 306 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 307 htab_t die_type_hash;
95554aad
TT
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
311
312 /* Table containing line_header indexed by offset and offset_in_dwz. */
313 htab_t line_header_hash;
6502dd73
DJ
314};
315
316static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 317
251d32d9 318/* Default names of the debugging sections. */
c906108c 319
233a11ab
CS
320/* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
9cdd5dbd
DE
323static const struct dwarf2_debug_sections dwarf2_elf_names =
324{
251d32d9
TG
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 330 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
3019eac3 334 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
24d3216f
TT
337 { ".gdb_index", ".zgdb_index" },
338 23
251d32d9 339};
c906108c 340
80626a55 341/* List of DWO/DWP sections. */
3019eac3 342
80626a55 343static const struct dwop_section_names
3019eac3
DE
344{
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
09262596
DE
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
3019eac3
DE
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
80626a55
DE
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
3019eac3 356}
80626a55 357dwop_section_names =
3019eac3
DE
358{
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
370};
371
c906108c
SS
372/* local data types */
373
107d2387
AC
374/* The data in a compilation unit header, after target2host
375 translation, looks like this. */
c906108c 376struct comp_unit_head
a738430d 377{
c764a876 378 unsigned int length;
a738430d 379 short version;
a738430d
MK
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
b64f50a1 382 sect_offset abbrev_offset;
57349743 383
a738430d
MK
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
57349743 386
a738430d
MK
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
57349743 389
a738430d
MK
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
b64f50a1 392 sect_offset offset;
57349743 393
d00adf39
DE
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
b64f50a1 396 cu_offset first_die_offset;
a738430d 397};
c906108c 398
3da10d80
KS
399/* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401struct delayed_method_info
402{
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417};
418
419typedef struct delayed_method_info delayed_method_info;
420DEF_VEC_O (delayed_method_info);
421
e7c27a73
DJ
422/* Internal state when decoding a particular compilation unit. */
423struct dwarf2_cu
424{
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
d00adf39 428 /* The header of the compilation unit. */
e7c27a73 429 struct comp_unit_head header;
e142c38c 430
d00adf39
DE
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
e142c38c
DJ
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
b0f35d58
DL
441 const char *producer;
442
e142c38c
DJ
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
433df2d4
DE
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
72bf9492 458
b64f50a1
JK
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
ae038cb0
DJ
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
69d751e3 473 /* Backlink to our per_cu entry. */
ae038cb0
DJ
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
b64f50a1
JK
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
51545339 481 htab_t die_hash;
10b3939b
DJ
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
cb1df416
DJ
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
3da10d80
KS
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
96408a79
SA
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
034e5797
DE
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
3019eac3
DE
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
1dbab08b 514 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
515 ULONGEST addr_base;
516
2e3cf129
DE
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
1dbab08b 519 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 520 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
527 ULONGEST ranges_base;
528
ae038cb0
DJ
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
8be455d7
JK
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 536 unsigned int has_loclist : 1;
ba919b58 537
1b80a9fa
JK
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
ba919b58
TT
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 544 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 545 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
552};
553
10b3939b
DJ
554/* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
28dee7f5 556 read_symtab_private field of the psymtab. */
10b3939b 557
ae038cb0
DJ
558struct dwarf2_per_cu_data
559{
36586728 560 /* The start offset and length of this compilation unit.
45452591 561 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
b64f50a1 565 sect_offset offset;
36586728 566 unsigned int length;
ae038cb0
DJ
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
c764a876 570 unsigned int queued : 1;
ae038cb0 571
0d99eb77
DE
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
0186c6a7
DE
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
3019eac3
DE
581 unsigned int is_debug_types : 1;
582
36586728
TT
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
a2ce51a0
DE
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
7ee85ab1
DE
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
3019eac3
DE
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
8a0459fd 605 struct dwarf2_section_info *section;
348e048f 606
17ea53c3
JK
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
ae038cb0 609 struct dwarf2_cu *cu;
1c379e20 610
9cdd5dbd
DE
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
614 struct objfile *objfile;
615
fffbe6a8
YQ
616 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
617 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
95554aad 621 or NULL for unread partial units. */
9291a0cd
TT
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
95554aad 627
796a7ff8
DE
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
647};
648
348e048f
DE
649/* Entry in the signatured_types hash table. */
650
651struct signatured_type
652{
42e7ad6c 653 /* The "per_cu" object of this type.
ac9ec31b 654 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
3019eac3 659 /* The type's signature. */
348e048f
DE
660 ULONGEST signature;
661
3019eac3 662 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
0186c6a7
DE
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
ac9ec31b
DE
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
a2ce51a0
DE
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
348e048f
DE
686};
687
0186c6a7
DE
688typedef struct signatured_type *sig_type_ptr;
689DEF_VEC_P (sig_type_ptr);
690
094b34ac
DE
691/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694struct stmt_list_hash
695{
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701};
702
f4dc4d17
DE
703/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706struct type_unit_group
707{
0186c6a7 708 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
8a0459fd 713#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
714 struct dwarf2_per_cu_data per_cu;
715
0186c6a7
DE
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
f4dc4d17 720
43f3e411 721 /* The compunit symtab.
094b34ac 722 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
723 so we create an essentially anonymous symtab as the compunit symtab. */
724 struct compunit_symtab *compunit_symtab;
f4dc4d17 725
094b34ac
DE
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
f4dc4d17
DE
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742};
743
73869dc2 744/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
745
746struct dwo_sections
747{
748 struct dwarf2_section_info abbrev;
3019eac3
DE
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
09262596
DE
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
3019eac3
DE
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
80626a55
DE
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
3019eac3
DE
757 VEC (dwarf2_section_info_def) *types;
758};
759
c88ee1f0 760/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
761
762struct dwo_unit
763{
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 773 struct dwarf2_section_info *section;
3019eac3 774
19ac8c2e 775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781};
782
73869dc2
DE
783/* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787enum dwp_v2_section_ids
788{
789 DW_SECT_MIN = 1
790};
791
80626a55 792/* Data for one DWO file.
57d63ce2
DE
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
3019eac3
DE
802
803struct dwo_file
804{
0ac5b59e 805 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
0ac5b59e
DE
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
3019eac3 813
80626a55
DE
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
3019eac3 817
73869dc2
DE
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
3019eac3
DE
821 struct dwo_sections sections;
822
19c3d4c9
DE
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
3019eac3
DE
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833};
834
80626a55
DE
835/* These sections are what may appear in a DWP file. */
836
837struct dwp_sections
838{
73869dc2 839 /* These are used by both DWP version 1 and 2. */
80626a55
DE
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
73869dc2
DE
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
80626a55
DE
860};
861
73869dc2
DE
862/* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 864
73869dc2 865struct virtual_v1_dwo_sections
80626a55
DE
866{
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 874 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
875 struct dwarf2_section_info info_or_types;
876};
877
73869dc2
DE
878/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883struct virtual_v2_dwo_sections
884{
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907};
908
80626a55
DE
909/* Contents of DWP hash tables. */
910
911struct dwp_hash_table
912{
73869dc2 913 uint32_t version, nr_columns;
80626a55 914 uint32_t nr_units, nr_slots;
73869dc2
DE
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926#define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
80626a55
DE
938};
939
940/* Data for one DWP file. */
941
942struct dwp_file
943{
944 /* Name of the file. */
945 const char *name;
946
73869dc2
DE
947 /* File format version. */
948 int version;
949
93417882 950 /* The bfd. */
80626a55
DE
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
57d63ce2 956 /* Table of CUs in the file. */
80626a55
DE
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
19ac8c2e
DE
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
80626a55 965
73869dc2
DE
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
80626a55
DE
968 unsigned int num_sections;
969 asection **elf_sections;
970};
971
36586728
TT
972/* This represents a '.dwz' file. */
973
974struct dwz_file
975{
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
2ec9a5e0 982 struct dwarf2_section_info gdb_index;
36586728
TT
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986};
987
0963b4bd
MS
988/* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
dee91e82 991 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
992
993struct die_reader_specs
994{
a32a8923 995 /* The bfd of die_section. */
93311388
DE
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
80626a55 1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1002 struct dwo_file *dwo_file;
1003
dee91e82 1004 /* The section the die comes from.
3019eac3 1005 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
d521ce57 1009 const gdb_byte *buffer;
f664829e
DE
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
a2ce51a0
DE
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
93311388
DE
1016};
1017
fd820528 1018/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1019typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1020 const gdb_byte *info_ptr,
dee91e82
DE
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
debd256d
JB
1025/* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028struct line_header
1029{
527f3840
JK
1030 /* Offset of line number information in .debug_line section. */
1031 sect_offset offset;
1032
1033 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1034 unsigned offset_in_dwz : 1;
1035
debd256d
JB
1036 unsigned int total_length;
1037 unsigned short version;
1038 unsigned int header_length;
1039 unsigned char minimum_instruction_length;
2dc7f7b3 1040 unsigned char maximum_ops_per_instruction;
debd256d
JB
1041 unsigned char default_is_stmt;
1042 int line_base;
1043 unsigned char line_range;
1044 unsigned char opcode_base;
1045
1046 /* standard_opcode_lengths[i] is the number of operands for the
1047 standard opcode whose value is i. This means that
1048 standard_opcode_lengths[0] is unused, and the last meaningful
1049 element is standard_opcode_lengths[opcode_base - 1]. */
1050 unsigned char *standard_opcode_lengths;
1051
1052 /* The include_directories table. NOTE! These strings are not
1053 allocated with xmalloc; instead, they are pointers into
1054 debug_line_buffer. If you try to free them, `free' will get
1055 indigestion. */
1056 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1057 const char **include_dirs;
debd256d
JB
1058
1059 /* The file_names table. NOTE! These strings are not allocated
1060 with xmalloc; instead, they are pointers into debug_line_buffer.
1061 Don't try to free them directly. */
1062 unsigned int num_file_names, file_names_size;
1063 struct file_entry
c906108c 1064 {
d521ce57 1065 const char *name;
debd256d
JB
1066 unsigned int dir_index;
1067 unsigned int mod_time;
1068 unsigned int length;
aaa75496 1069 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1070 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1071 } *file_names;
1072
1073 /* The start and end of the statement program following this
6502dd73 1074 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1075 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1076};
c906108c
SS
1077
1078/* When we construct a partial symbol table entry we only
0963b4bd 1079 need this much information. */
c906108c
SS
1080struct partial_die_info
1081 {
72bf9492 1082 /* Offset of this DIE. */
b64f50a1 1083 sect_offset offset;
72bf9492
DJ
1084
1085 /* DWARF-2 tag for this DIE. */
1086 ENUM_BITFIELD(dwarf_tag) tag : 16;
1087
72bf9492
DJ
1088 /* Assorted flags describing the data found in this DIE. */
1089 unsigned int has_children : 1;
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
481860b3 1095 unsigned int may_be_inlined : 1;
72bf9492
DJ
1096
1097 /* Flag set if the SCOPE field of this structure has been
1098 computed. */
1099 unsigned int scope_set : 1;
1100
fa4028e9
JB
1101 /* Flag set if the DIE has a byte_size attribute. */
1102 unsigned int has_byte_size : 1;
1103
98bfdba5
PA
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
abc72ce4
DE
1107 /* Flag set if fixup_partial_die has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
36586728
TT
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
72bf9492 1116 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1117 sometimes a default name for unnamed DIEs. */
15d034d0 1118 const char *name;
72bf9492 1119
abc72ce4
DE
1120 /* The linkage name, if present. */
1121 const char *linkage_name;
1122
72bf9492
DJ
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
15d034d0 1126 const char *scope;
72bf9492 1127
95554aad
TT
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset offset;
1136 } d;
72bf9492
DJ
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1139 CORE_ADDR lowpc;
1140 CORE_ADDR highpc;
72bf9492 1141
93311388 1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1143 DW_AT_sibling, if any. */
abc72ce4
DE
1144 /* NOTE: This member isn't strictly necessary, read_partial_die could
1145 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1146 const gdb_byte *sibling;
72bf9492
DJ
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
b64f50a1 1151 sect_offset spec_offset;
72bf9492
DJ
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1156 };
1157
0963b4bd 1158/* This data structure holds the information of an abbrev. */
c906108c
SS
1159struct abbrev_info
1160 {
1161 unsigned int number; /* number identifying abbrev */
1162 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1163 unsigned short has_children; /* boolean */
1164 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1165 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1166 struct abbrev_info *next; /* next in chain */
1167 };
1168
1169struct attr_abbrev
1170 {
9d25dd43
DE
1171 ENUM_BITFIELD(dwarf_attribute) name : 16;
1172 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1173 };
1174
433df2d4
DE
1175/* Size of abbrev_table.abbrev_hash_table. */
1176#define ABBREV_HASH_SIZE 121
1177
1178/* Top level data structure to contain an abbreviation table. */
1179
1180struct abbrev_table
1181{
f4dc4d17
DE
1182 /* Where the abbrev table came from.
1183 This is used as a sanity check when the table is used. */
433df2d4
DE
1184 sect_offset offset;
1185
1186 /* Storage for the abbrev table. */
1187 struct obstack abbrev_obstack;
1188
1189 /* Hash table of abbrevs.
1190 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1191 It could be statically allocated, but the previous code didn't so we
1192 don't either. */
1193 struct abbrev_info **abbrevs;
1194};
1195
0963b4bd 1196/* Attributes have a name and a value. */
b60c80d6
DJ
1197struct attribute
1198 {
9d25dd43 1199 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1200 ENUM_BITFIELD(dwarf_form) form : 15;
1201
1202 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1203 field should be in u.str (existing only for DW_STRING) but it is kept
1204 here for better struct attribute alignment. */
1205 unsigned int string_is_canonical : 1;
1206
b60c80d6
DJ
1207 union
1208 {
15d034d0 1209 const char *str;
b60c80d6 1210 struct dwarf_block *blk;
43bbcdc2
PH
1211 ULONGEST unsnd;
1212 LONGEST snd;
b60c80d6 1213 CORE_ADDR addr;
ac9ec31b 1214 ULONGEST signature;
b60c80d6
DJ
1215 }
1216 u;
1217 };
1218
0963b4bd 1219/* This data structure holds a complete die structure. */
c906108c
SS
1220struct die_info
1221 {
76815b17
DE
1222 /* DWARF-2 tag for this DIE. */
1223 ENUM_BITFIELD(dwarf_tag) tag : 16;
1224
1225 /* Number of attributes */
98bfdba5
PA
1226 unsigned char num_attrs;
1227
1228 /* True if we're presently building the full type name for the
1229 type derived from this DIE. */
1230 unsigned char building_fullname : 1;
76815b17 1231
adde2bff
DE
1232 /* True if this die is in process. PR 16581. */
1233 unsigned char in_process : 1;
1234
76815b17
DE
1235 /* Abbrev number */
1236 unsigned int abbrev;
1237
93311388 1238 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1239 sect_offset offset;
78ba4af6
JB
1240
1241 /* The dies in a compilation unit form an n-ary tree. PARENT
1242 points to this die's parent; CHILD points to the first child of
1243 this node; and all the children of a given node are chained
4950bc1c 1244 together via their SIBLING fields. */
639d11d3
DC
1245 struct die_info *child; /* Its first child, if any. */
1246 struct die_info *sibling; /* Its next sibling, if any. */
1247 struct die_info *parent; /* Its parent, if any. */
c906108c 1248
b60c80d6
DJ
1249 /* An array of attributes, with NUM_ATTRS elements. There may be
1250 zero, but it's not common and zero-sized arrays are not
1251 sufficiently portable C. */
1252 struct attribute attrs[1];
c906108c
SS
1253 };
1254
0963b4bd 1255/* Get at parts of an attribute structure. */
c906108c
SS
1256
1257#define DW_STRING(attr) ((attr)->u.str)
8285870a 1258#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1259#define DW_UNSND(attr) ((attr)->u.unsnd)
1260#define DW_BLOCK(attr) ((attr)->u.blk)
1261#define DW_SND(attr) ((attr)->u.snd)
1262#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1263#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1264
0963b4bd 1265/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1266struct dwarf_block
1267 {
56eb65bd 1268 size_t size;
1d6edc3c
JK
1269
1270 /* Valid only if SIZE is not zero. */
d521ce57 1271 const gdb_byte *data;
c906108c
SS
1272 };
1273
c906108c
SS
1274#ifndef ATTR_ALLOC_CHUNK
1275#define ATTR_ALLOC_CHUNK 4
1276#endif
1277
c906108c
SS
1278/* Allocate fields for structs, unions and enums in this size. */
1279#ifndef DW_FIELD_ALLOC_CHUNK
1280#define DW_FIELD_ALLOC_CHUNK 4
1281#endif
1282
c906108c
SS
1283/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1284 but this would require a corresponding change in unpack_field_as_long
1285 and friends. */
1286static int bits_per_byte = 8;
1287
1288/* The routines that read and process dies for a C struct or C++ class
1289 pass lists of data member fields and lists of member function fields
1290 in an instance of a field_info structure, as defined below. */
1291struct field_info
c5aa993b 1292 {
0963b4bd 1293 /* List of data member and baseclasses fields. */
c5aa993b
JM
1294 struct nextfield
1295 {
1296 struct nextfield *next;
1297 int accessibility;
1298 int virtuality;
1299 struct field field;
1300 }
7d0ccb61 1301 *fields, *baseclasses;
c906108c 1302
7d0ccb61 1303 /* Number of fields (including baseclasses). */
c5aa993b 1304 int nfields;
c906108c 1305
c5aa993b
JM
1306 /* Number of baseclasses. */
1307 int nbaseclasses;
c906108c 1308
c5aa993b
JM
1309 /* Set if the accesibility of one of the fields is not public. */
1310 int non_public_fields;
c906108c 1311
c5aa993b
JM
1312 /* Member function fields array, entries are allocated in the order they
1313 are encountered in the object file. */
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 }
1319 *fnfields;
c906108c 1320
c5aa993b
JM
1321 /* Member function fieldlist array, contains name of possibly overloaded
1322 member function, number of overloaded member functions and a pointer
1323 to the head of the member function field chain. */
1324 struct fnfieldlist
1325 {
15d034d0 1326 const char *name;
c5aa993b
JM
1327 int length;
1328 struct nextfnfield *head;
1329 }
1330 *fnfieldlists;
c906108c 1331
c5aa993b
JM
1332 /* Number of entries in the fnfieldlists array. */
1333 int nfnfields;
98751a41
JK
1334
1335 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1336 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1337 struct typedef_field_list
1338 {
1339 struct typedef_field field;
1340 struct typedef_field_list *next;
1341 }
1342 *typedef_field_list;
1343 unsigned typedef_field_list_count;
c5aa993b 1344 };
c906108c 1345
10b3939b
DJ
1346/* One item on the queue of compilation units to read in full symbols
1347 for. */
1348struct dwarf2_queue_item
1349{
1350 struct dwarf2_per_cu_data *per_cu;
95554aad 1351 enum language pretend_language;
10b3939b
DJ
1352 struct dwarf2_queue_item *next;
1353};
1354
1355/* The current queue. */
1356static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1357
ae038cb0
DJ
1358/* Loaded secondary compilation units are kept in memory until they
1359 have not been referenced for the processing of this many
1360 compilation units. Set this to zero to disable caching. Cache
1361 sizes of up to at least twenty will improve startup time for
1362 typical inter-CU-reference binaries, at an obvious memory cost. */
1363static int dwarf2_max_cache_age = 5;
920d2a44
AC
1364static void
1365show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c, const char *value)
1367{
3e43a32a
MS
1368 fprintf_filtered (file, _("The upper bound on the age of cached "
1369 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1370 value);
1371}
4390d890 1372\f
c906108c
SS
1373/* local function prototypes */
1374
a32a8923
DE
1375static const char *get_section_name (const struct dwarf2_section_info *);
1376
1377static const char *get_section_file_name (const struct dwarf2_section_info *);
1378
4efb68b1 1379static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1380
918dd910
JK
1381static void dwarf2_find_base_address (struct die_info *die,
1382 struct dwarf2_cu *cu);
1383
0018ea6f
DE
1384static struct partial_symtab *create_partial_symtab
1385 (struct dwarf2_per_cu_data *per_cu, const char *name);
1386
c67a9c90 1387static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1388
72bf9492
DJ
1389static void scan_partial_symbols (struct partial_die_info *,
1390 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1391 int, struct dwarf2_cu *);
c906108c 1392
72bf9492
DJ
1393static void add_partial_symbol (struct partial_die_info *,
1394 struct dwarf2_cu *);
63d06c5c 1395
72bf9492
DJ
1396static void add_partial_namespace (struct partial_die_info *pdi,
1397 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1398 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1399
5d7cb8df 1400static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1401 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1402 struct dwarf2_cu *cu);
1403
72bf9492
DJ
1404static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1405 struct dwarf2_cu *cu);
91c24f0a 1406
bc30ff58
JB
1407static void add_partial_subprogram (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1409 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1410
257e7a09
YQ
1411static void dwarf2_read_symtab (struct partial_symtab *,
1412 struct objfile *);
c906108c 1413
a14ed312 1414static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1415
433df2d4
DE
1416static struct abbrev_info *abbrev_table_lookup_abbrev
1417 (const struct abbrev_table *, unsigned int);
1418
1419static struct abbrev_table *abbrev_table_read_table
1420 (struct dwarf2_section_info *, sect_offset);
1421
1422static void abbrev_table_free (struct abbrev_table *);
1423
f4dc4d17
DE
1424static void abbrev_table_free_cleanup (void *);
1425
dee91e82
DE
1426static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1427 struct dwarf2_section_info *);
c906108c 1428
f3dd6933 1429static void dwarf2_free_abbrev_table (void *);
c906108c 1430
d521ce57 1431static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1432
dee91e82 1433static struct partial_die_info *load_partial_dies
d521ce57 1434 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1435
d521ce57
TT
1436static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1437 struct partial_die_info *,
1438 struct abbrev_info *,
1439 unsigned int,
1440 const gdb_byte *);
c906108c 1441
36586728 1442static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1443 struct dwarf2_cu *);
72bf9492
DJ
1444
1445static void fixup_partial_die (struct partial_die_info *,
1446 struct dwarf2_cu *);
1447
d521ce57
TT
1448static const gdb_byte *read_attribute (const struct die_reader_specs *,
1449 struct attribute *, struct attr_abbrev *,
1450 const gdb_byte *);
a8329558 1451
a1855c1d 1452static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1453
a1855c1d 1454static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1455
a1855c1d 1456static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1457
a1855c1d 1458static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1459
a1855c1d 1460static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1461
d521ce57 1462static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1463 unsigned int *);
c906108c 1464
d521ce57 1465static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1466
1467static LONGEST read_checked_initial_length_and_offset
d521ce57 1468 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1469 unsigned int *, unsigned int *);
613e1657 1470
d521ce57
TT
1471static LONGEST read_offset (bfd *, const gdb_byte *,
1472 const struct comp_unit_head *,
c764a876
DE
1473 unsigned int *);
1474
d521ce57 1475static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1476
f4dc4d17
DE
1477static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1478 sect_offset);
1479
d521ce57 1480static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1481
d521ce57 1482static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1483
d521ce57
TT
1484static const char *read_indirect_string (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
4bdf3d34 1487
d521ce57 1488static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1489
d521ce57 1490static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1491
d521ce57 1492static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1493
d521ce57
TT
1494static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1495 const gdb_byte *,
3019eac3
DE
1496 unsigned int *);
1497
d521ce57 1498static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1499 ULONGEST str_index);
3019eac3 1500
e142c38c 1501static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1502
e142c38c
DJ
1503static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1504 struct dwarf2_cu *);
c906108c 1505
348e048f 1506static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1507 unsigned int);
348e048f 1508
05cf31d1
JB
1509static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1510 struct dwarf2_cu *cu);
1511
e142c38c 1512static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1513
e142c38c 1514static struct die_info *die_specification (struct die_info *die,
f2f0e013 1515 struct dwarf2_cu **);
63d06c5c 1516
debd256d
JB
1517static void free_line_header (struct line_header *lh);
1518
3019eac3
DE
1519static struct line_header *dwarf_decode_line_header (unsigned int offset,
1520 struct dwarf2_cu *cu);
debd256d 1521
f3f5162e 1522static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1523 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1524 CORE_ADDR, int decode_mapping);
c906108c 1525
4d663531 1526static void dwarf2_start_subfile (const char *, const char *);
c906108c 1527
43f3e411
DE
1528static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1529 const char *, const char *,
1530 CORE_ADDR);
f4dc4d17 1531
a14ed312 1532static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1533 struct dwarf2_cu *);
c906108c 1534
34eaf542
TT
1535static struct symbol *new_symbol_full (struct die_info *, struct type *,
1536 struct dwarf2_cu *, struct symbol *);
1537
ff39bb5e 1538static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1539 struct dwarf2_cu *);
c906108c 1540
ff39bb5e 1541static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1542 struct type *type,
1543 const char *name,
1544 struct obstack *obstack,
12df843f 1545 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1546 const gdb_byte **bytes,
98bfdba5 1547 struct dwarf2_locexpr_baton **baton);
2df3850c 1548
e7c27a73 1549static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1550
b4ba55a1
JB
1551static int need_gnat_info (struct dwarf2_cu *);
1552
3e43a32a
MS
1553static struct type *die_descriptive_type (struct die_info *,
1554 struct dwarf2_cu *);
b4ba55a1
JB
1555
1556static void set_descriptive_type (struct type *, struct die_info *,
1557 struct dwarf2_cu *);
1558
e7c27a73
DJ
1559static struct type *die_containing_type (struct die_info *,
1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1563 struct dwarf2_cu *);
c906108c 1564
f792889a 1565static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1566
673bfd45
DE
1567static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1568
0d5cff50 1569static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1570
6e70227d 1571static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1572 const char *suffix, int physname,
1573 struct dwarf2_cu *cu);
63d06c5c 1574
e7c27a73 1575static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1576
348e048f
DE
1577static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1578
e7c27a73 1579static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1580
e7c27a73 1581static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1582
96408a79
SA
1583static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1584
ff013f42
JK
1585static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *, struct partial_symtab *);
1587
a14ed312 1588static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1589 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1590 struct partial_symtab *);
c906108c 1591
fae299cd
DC
1592static void get_scope_pc_bounds (struct die_info *,
1593 CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *);
1595
801e3a5b
JB
1596static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1597 CORE_ADDR, struct dwarf2_cu *);
1598
a14ed312 1599static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1600 struct dwarf2_cu *);
c906108c 1601
a14ed312 1602static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1603 struct type *, struct dwarf2_cu *);
c906108c 1604
a14ed312 1605static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1606 struct die_info *, struct type *,
e7c27a73 1607 struct dwarf2_cu *);
c906108c 1608
a14ed312 1609static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1610 struct type *,
1611 struct dwarf2_cu *);
c906108c 1612
134d01f1 1613static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1614
e7c27a73 1615static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1616
e7c27a73 1617static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1618
5d7cb8df
JK
1619static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1620
27aa8d6a
SW
1621static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1622
74921315
KS
1623static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1624
f55ee35c
JK
1625static struct type *read_module_type (struct die_info *die,
1626 struct dwarf2_cu *cu);
1627
38d518c9 1628static const char *namespace_name (struct die_info *die,
e142c38c 1629 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1630
134d01f1 1631static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1632
e7c27a73 1633static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1634
6e70227d 1635static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1636 struct dwarf2_cu *);
1637
bf6af496 1638static struct die_info *read_die_and_siblings_1
d521ce57 1639 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1640 struct die_info *);
639d11d3 1641
dee91e82 1642static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1643 const gdb_byte *info_ptr,
1644 const gdb_byte **new_info_ptr,
639d11d3
DC
1645 struct die_info *parent);
1646
d521ce57
TT
1647static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1648 struct die_info **, const gdb_byte *,
1649 int *, int);
3019eac3 1650
d521ce57
TT
1651static const gdb_byte *read_full_die (const struct die_reader_specs *,
1652 struct die_info **, const gdb_byte *,
1653 int *);
93311388 1654
e7c27a73 1655static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1656
15d034d0
TT
1657static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1658 struct obstack *);
71c25dea 1659
15d034d0 1660static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1661
15d034d0 1662static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1663 struct die_info *die,
1664 struct dwarf2_cu *cu);
1665
ca69b9e6
DE
1666static const char *dwarf2_physname (const char *name, struct die_info *die,
1667 struct dwarf2_cu *cu);
1668
e142c38c 1669static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1670 struct dwarf2_cu **);
9219021c 1671
f39c6ffd 1672static const char *dwarf_tag_name (unsigned int);
c906108c 1673
f39c6ffd 1674static const char *dwarf_attr_name (unsigned int);
c906108c 1675
f39c6ffd 1676static const char *dwarf_form_name (unsigned int);
c906108c 1677
a14ed312 1678static char *dwarf_bool_name (unsigned int);
c906108c 1679
f39c6ffd 1680static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1681
f9aca02d 1682static struct die_info *sibling_die (struct die_info *);
c906108c 1683
d97bc12b
DE
1684static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1685
1686static void dump_die_for_error (struct die_info *);
1687
1688static void dump_die_1 (struct ui_file *, int level, int max_level,
1689 struct die_info *);
c906108c 1690
d97bc12b 1691/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1692
51545339 1693static void store_in_ref_table (struct die_info *,
10b3939b 1694 struct dwarf2_cu *);
c906108c 1695
ff39bb5e 1696static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1697
ff39bb5e 1698static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1699
348e048f 1700static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1701 const struct attribute *,
348e048f
DE
1702 struct dwarf2_cu **);
1703
10b3939b 1704static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1705 const struct attribute *,
f2f0e013 1706 struct dwarf2_cu **);
c906108c 1707
348e048f 1708static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1709 const struct attribute *,
348e048f
DE
1710 struct dwarf2_cu **);
1711
ac9ec31b
DE
1712static struct type *get_signatured_type (struct die_info *, ULONGEST,
1713 struct dwarf2_cu *);
1714
1715static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1716 const struct attribute *,
ac9ec31b
DE
1717 struct dwarf2_cu *);
1718
e5fe5e75 1719static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1720
52dc124a 1721static void read_signatured_type (struct signatured_type *);
348e048f 1722
c906108c
SS
1723/* memory allocation interface */
1724
7b5a2f43 1725static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1726
b60c80d6 1727static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1728
43f3e411 1729static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1730
6e5a29e1 1731static int attr_form_is_block (const struct attribute *);
8e19ed76 1732
6e5a29e1 1733static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1734
6e5a29e1 1735static int attr_form_is_constant (const struct attribute *);
3690dd37 1736
6e5a29e1 1737static int attr_form_is_ref (const struct attribute *);
7771576e 1738
8cf6f0b1
TT
1739static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1740 struct dwarf2_loclist_baton *baton,
ff39bb5e 1741 const struct attribute *attr);
8cf6f0b1 1742
ff39bb5e 1743static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1744 struct symbol *sym,
f1e6e072
TT
1745 struct dwarf2_cu *cu,
1746 int is_block);
4c2df51b 1747
d521ce57
TT
1748static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1749 const gdb_byte *info_ptr,
1750 struct abbrev_info *abbrev);
4bb7a0a7 1751
72bf9492
DJ
1752static void free_stack_comp_unit (void *);
1753
72bf9492
DJ
1754static hashval_t partial_die_hash (const void *item);
1755
1756static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1757
ae038cb0 1758static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1759 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1760
9816fde3 1761static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1762 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1763
1764static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1765 struct die_info *comp_unit_die,
1766 enum language pretend_language);
93311388 1767
68dc6402 1768static void free_heap_comp_unit (void *);
ae038cb0
DJ
1769
1770static void free_cached_comp_units (void *);
1771
1772static void age_cached_comp_units (void);
1773
dee91e82 1774static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1775
f792889a
DJ
1776static struct type *set_die_type (struct die_info *, struct type *,
1777 struct dwarf2_cu *);
1c379e20 1778
ae038cb0
DJ
1779static void create_all_comp_units (struct objfile *);
1780
0e50663e 1781static int create_all_type_units (struct objfile *);
1fd400ff 1782
95554aad
TT
1783static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1784 enum language);
10b3939b 1785
95554aad
TT
1786static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1787 enum language);
10b3939b 1788
f4dc4d17
DE
1789static void process_full_type_unit (struct dwarf2_per_cu_data *,
1790 enum language);
1791
10b3939b
DJ
1792static void dwarf2_add_dependence (struct dwarf2_cu *,
1793 struct dwarf2_per_cu_data *);
1794
ae038cb0
DJ
1795static void dwarf2_mark (struct dwarf2_cu *);
1796
1797static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1798
b64f50a1 1799static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1800 struct dwarf2_per_cu_data *);
673bfd45 1801
f792889a 1802static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1803
9291a0cd
TT
1804static void dwarf2_release_queue (void *dummy);
1805
95554aad
TT
1806static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1807 enum language pretend_language);
1808
a0f42c21 1809static void process_queue (void);
9291a0cd
TT
1810
1811static void find_file_and_directory (struct die_info *die,
1812 struct dwarf2_cu *cu,
15d034d0 1813 const char **name, const char **comp_dir);
9291a0cd
TT
1814
1815static char *file_full_name (int file, struct line_header *lh,
1816 const char *comp_dir);
1817
d521ce57 1818static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1819 (struct comp_unit_head *header,
1820 struct dwarf2_section_info *section,
d521ce57 1821 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1822 int is_debug_types_section);
1823
fd820528 1824static void init_cutu_and_read_dies
f4dc4d17
DE
1825 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1826 int use_existing_cu, int keep,
3019eac3
DE
1827 die_reader_func_ftype *die_reader_func, void *data);
1828
dee91e82
DE
1829static void init_cutu_and_read_dies_simple
1830 (struct dwarf2_per_cu_data *this_cu,
1831 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1832
673bfd45 1833static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1834
3019eac3
DE
1835static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1836
57d63ce2
DE
1837static struct dwo_unit *lookup_dwo_unit_in_dwp
1838 (struct dwp_file *dwp_file, const char *comp_dir,
1839 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1840
1841static struct dwp_file *get_dwp_file (void);
1842
3019eac3 1843static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1844 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1845
1846static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1847 (struct signatured_type *, const char *, const char *);
3019eac3 1848
89e63ee4
DE
1849static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1850
3019eac3
DE
1851static void free_dwo_file_cleanup (void *);
1852
95554aad
TT
1853static void process_cu_includes (void);
1854
1b80a9fa 1855static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1856
1857static void free_line_header_voidp (void *arg);
4390d890
DE
1858\f
1859/* Various complaints about symbol reading that don't abort the process. */
1860
1861static void
1862dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1863{
1864 complaint (&symfile_complaints,
1865 _("statement list doesn't fit in .debug_line section"));
1866}
1867
1868static void
1869dwarf2_debug_line_missing_file_complaint (void)
1870{
1871 complaint (&symfile_complaints,
1872 _(".debug_line section has line data without a file"));
1873}
1874
1875static void
1876dwarf2_debug_line_missing_end_sequence_complaint (void)
1877{
1878 complaint (&symfile_complaints,
1879 _(".debug_line section has line "
1880 "program sequence without an end"));
1881}
1882
1883static void
1884dwarf2_complex_location_expr_complaint (void)
1885{
1886 complaint (&symfile_complaints, _("location expression too complex"));
1887}
1888
1889static void
1890dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1891 int arg3)
1892{
1893 complaint (&symfile_complaints,
1894 _("const value length mismatch for '%s', got %d, expected %d"),
1895 arg1, arg2, arg3);
1896}
1897
1898static void
1899dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1900{
1901 complaint (&symfile_complaints,
1902 _("debug info runs off end of %s section"
1903 " [in module %s]"),
a32a8923
DE
1904 get_section_name (section),
1905 get_section_file_name (section));
4390d890 1906}
1b80a9fa 1907
4390d890
DE
1908static void
1909dwarf2_macro_malformed_definition_complaint (const char *arg1)
1910{
1911 complaint (&symfile_complaints,
1912 _("macro debug info contains a "
1913 "malformed macro definition:\n`%s'"),
1914 arg1);
1915}
1916
1917static void
1918dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1919{
1920 complaint (&symfile_complaints,
1921 _("invalid attribute class or form for '%s' in '%s'"),
1922 arg1, arg2);
1923}
527f3840
JK
1924
1925/* Hash function for line_header_hash. */
1926
1927static hashval_t
1928line_header_hash (const struct line_header *ofs)
1929{
1930 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1931}
1932
1933/* Hash function for htab_create_alloc_ex for line_header_hash. */
1934
1935static hashval_t
1936line_header_hash_voidp (const void *item)
1937{
1938 const struct line_header *ofs = item;
1939
1940 return line_header_hash (ofs);
1941}
1942
1943/* Equality function for line_header_hash. */
1944
1945static int
1946line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1947{
1948 const struct line_header *ofs_lhs = item_lhs;
1949 const struct line_header *ofs_rhs = item_rhs;
1950
1951 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1952 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1953}
1954
4390d890 1955\f
9291a0cd
TT
1956#if WORDS_BIGENDIAN
1957
1958/* Convert VALUE between big- and little-endian. */
1959static offset_type
1960byte_swap (offset_type value)
1961{
1962 offset_type result;
1963
1964 result = (value & 0xff) << 24;
1965 result |= (value & 0xff00) << 8;
1966 result |= (value & 0xff0000) >> 8;
1967 result |= (value & 0xff000000) >> 24;
1968 return result;
1969}
1970
1971#define MAYBE_SWAP(V) byte_swap (V)
1972
1973#else
1974#define MAYBE_SWAP(V) (V)
1975#endif /* WORDS_BIGENDIAN */
1976
31aa7e4e
JB
1977/* Read the given attribute value as an address, taking the attribute's
1978 form into account. */
1979
1980static CORE_ADDR
1981attr_value_as_address (struct attribute *attr)
1982{
1983 CORE_ADDR addr;
1984
1985 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1986 {
1987 /* Aside from a few clearly defined exceptions, attributes that
1988 contain an address must always be in DW_FORM_addr form.
1989 Unfortunately, some compilers happen to be violating this
1990 requirement by encoding addresses using other forms, such
1991 as DW_FORM_data4 for example. For those broken compilers,
1992 we try to do our best, without any guarantee of success,
1993 to interpret the address correctly. It would also be nice
1994 to generate a complaint, but that would require us to maintain
1995 a list of legitimate cases where a non-address form is allowed,
1996 as well as update callers to pass in at least the CU's DWARF
1997 version. This is more overhead than what we're willing to
1998 expand for a pretty rare case. */
1999 addr = DW_UNSND (attr);
2000 }
2001 else
2002 addr = DW_ADDR (attr);
2003
2004 return addr;
2005}
2006
9291a0cd
TT
2007/* The suffix for an index file. */
2008#define INDEX_SUFFIX ".gdb-index"
2009
c906108c 2010/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2011 information and return true if we have enough to do something.
2012 NAMES points to the dwarf2 section names, or is NULL if the standard
2013 ELF names are used. */
c906108c
SS
2014
2015int
251d32d9
TG
2016dwarf2_has_info (struct objfile *objfile,
2017 const struct dwarf2_debug_sections *names)
c906108c 2018{
be391dca
TT
2019 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2020 if (!dwarf2_per_objfile)
2021 {
2022 /* Initialize per-objfile state. */
2023 struct dwarf2_per_objfile *data
2024 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 2025
be391dca
TT
2026 memset (data, 0, sizeof (*data));
2027 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2028 dwarf2_per_objfile = data;
6502dd73 2029
251d32d9
TG
2030 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2031 (void *) names);
be391dca
TT
2032 dwarf2_per_objfile->objfile = objfile;
2033 }
73869dc2
DE
2034 return (!dwarf2_per_objfile->info.is_virtual
2035 && dwarf2_per_objfile->info.s.asection != NULL
2036 && !dwarf2_per_objfile->abbrev.is_virtual
2037 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2038}
2039
2040/* Return the containing section of virtual section SECTION. */
2041
2042static struct dwarf2_section_info *
2043get_containing_section (const struct dwarf2_section_info *section)
2044{
2045 gdb_assert (section->is_virtual);
2046 return section->s.containing_section;
c906108c
SS
2047}
2048
a32a8923
DE
2049/* Return the bfd owner of SECTION. */
2050
2051static struct bfd *
2052get_section_bfd_owner (const struct dwarf2_section_info *section)
2053{
73869dc2
DE
2054 if (section->is_virtual)
2055 {
2056 section = get_containing_section (section);
2057 gdb_assert (!section->is_virtual);
2058 }
2059 return section->s.asection->owner;
a32a8923
DE
2060}
2061
2062/* Return the bfd section of SECTION.
2063 Returns NULL if the section is not present. */
2064
2065static asection *
2066get_section_bfd_section (const struct dwarf2_section_info *section)
2067{
73869dc2
DE
2068 if (section->is_virtual)
2069 {
2070 section = get_containing_section (section);
2071 gdb_assert (!section->is_virtual);
2072 }
2073 return section->s.asection;
a32a8923
DE
2074}
2075
2076/* Return the name of SECTION. */
2077
2078static const char *
2079get_section_name (const struct dwarf2_section_info *section)
2080{
2081 asection *sectp = get_section_bfd_section (section);
2082
2083 gdb_assert (sectp != NULL);
2084 return bfd_section_name (get_section_bfd_owner (section), sectp);
2085}
2086
2087/* Return the name of the file SECTION is in. */
2088
2089static const char *
2090get_section_file_name (const struct dwarf2_section_info *section)
2091{
2092 bfd *abfd = get_section_bfd_owner (section);
2093
2094 return bfd_get_filename (abfd);
2095}
2096
2097/* Return the id of SECTION.
2098 Returns 0 if SECTION doesn't exist. */
2099
2100static int
2101get_section_id (const struct dwarf2_section_info *section)
2102{
2103 asection *sectp = get_section_bfd_section (section);
2104
2105 if (sectp == NULL)
2106 return 0;
2107 return sectp->id;
2108}
2109
2110/* Return the flags of SECTION.
73869dc2 2111 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2112
2113static int
2114get_section_flags (const struct dwarf2_section_info *section)
2115{
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 gdb_assert (sectp != NULL);
2119 return bfd_get_section_flags (sectp->owner, sectp);
2120}
2121
251d32d9
TG
2122/* When loading sections, we look either for uncompressed section or for
2123 compressed section names. */
233a11ab
CS
2124
2125static int
251d32d9
TG
2126section_is_p (const char *section_name,
2127 const struct dwarf2_section_names *names)
233a11ab 2128{
251d32d9
TG
2129 if (names->normal != NULL
2130 && strcmp (section_name, names->normal) == 0)
2131 return 1;
2132 if (names->compressed != NULL
2133 && strcmp (section_name, names->compressed) == 0)
2134 return 1;
2135 return 0;
233a11ab
CS
2136}
2137
c906108c
SS
2138/* This function is mapped across the sections and remembers the
2139 offset and size of each of the debugging sections we are interested
2140 in. */
2141
2142static void
251d32d9 2143dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2144{
251d32d9 2145 const struct dwarf2_debug_sections *names;
dc7650b8 2146 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2147
2148 if (vnames == NULL)
2149 names = &dwarf2_elf_names;
2150 else
2151 names = (const struct dwarf2_debug_sections *) vnames;
2152
dc7650b8
JK
2153 if ((aflag & SEC_HAS_CONTENTS) == 0)
2154 {
2155 }
2156 else if (section_is_p (sectp->name, &names->info))
c906108c 2157 {
73869dc2 2158 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2159 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2160 }
251d32d9 2161 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2162 {
73869dc2 2163 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2164 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2165 }
251d32d9 2166 else if (section_is_p (sectp->name, &names->line))
c906108c 2167 {
73869dc2 2168 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2169 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2170 }
251d32d9 2171 else if (section_is_p (sectp->name, &names->loc))
c906108c 2172 {
73869dc2 2173 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2174 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2175 }
251d32d9 2176 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2177 {
73869dc2 2178 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2179 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2180 }
cf2c3c16
TT
2181 else if (section_is_p (sectp->name, &names->macro))
2182 {
73869dc2 2183 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2184 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2185 }
251d32d9 2186 else if (section_is_p (sectp->name, &names->str))
c906108c 2187 {
73869dc2 2188 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2189 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2190 }
3019eac3
DE
2191 else if (section_is_p (sectp->name, &names->addr))
2192 {
73869dc2 2193 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2194 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2195 }
251d32d9 2196 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2197 {
73869dc2 2198 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2199 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2200 }
251d32d9 2201 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2202 {
73869dc2 2203 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2204 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2205 }
251d32d9 2206 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2207 {
73869dc2 2208 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2209 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2210 }
251d32d9 2211 else if (section_is_p (sectp->name, &names->types))
348e048f 2212 {
8b70b953
TT
2213 struct dwarf2_section_info type_section;
2214
2215 memset (&type_section, 0, sizeof (type_section));
73869dc2 2216 type_section.s.asection = sectp;
8b70b953
TT
2217 type_section.size = bfd_get_section_size (sectp);
2218
2219 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2220 &type_section);
348e048f 2221 }
251d32d9 2222 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2223 {
73869dc2 2224 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2225 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2226 }
dce234bc 2227
72dca2f5
FR
2228 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2229 && bfd_section_vma (abfd, sectp) == 0)
2230 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2231}
2232
fceca515
DE
2233/* A helper function that decides whether a section is empty,
2234 or not present. */
9e0ac564
TT
2235
2236static int
19ac8c2e 2237dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2238{
73869dc2
DE
2239 if (section->is_virtual)
2240 return section->size == 0;
2241 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2242}
2243
3019eac3
DE
2244/* Read the contents of the section INFO.
2245 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2246 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2247 of the DWO file.
dce234bc 2248 If the section is compressed, uncompress it before returning. */
c906108c 2249
dce234bc
PP
2250static void
2251dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2252{
a32a8923 2253 asection *sectp;
3019eac3 2254 bfd *abfd;
dce234bc 2255 gdb_byte *buf, *retbuf;
c906108c 2256
be391dca
TT
2257 if (info->readin)
2258 return;
dce234bc 2259 info->buffer = NULL;
be391dca 2260 info->readin = 1;
188dd5d6 2261
9e0ac564 2262 if (dwarf2_section_empty_p (info))
dce234bc 2263 return;
c906108c 2264
a32a8923 2265 sectp = get_section_bfd_section (info);
3019eac3 2266
73869dc2
DE
2267 /* If this is a virtual section we need to read in the real one first. */
2268 if (info->is_virtual)
2269 {
2270 struct dwarf2_section_info *containing_section =
2271 get_containing_section (info);
2272
2273 gdb_assert (sectp != NULL);
2274 if ((sectp->flags & SEC_RELOC) != 0)
2275 {
2276 error (_("Dwarf Error: DWP format V2 with relocations is not"
2277 " supported in section %s [in module %s]"),
2278 get_section_name (info), get_section_file_name (info));
2279 }
2280 dwarf2_read_section (objfile, containing_section);
2281 /* Other code should have already caught virtual sections that don't
2282 fit. */
2283 gdb_assert (info->virtual_offset + info->size
2284 <= containing_section->size);
2285 /* If the real section is empty or there was a problem reading the
2286 section we shouldn't get here. */
2287 gdb_assert (containing_section->buffer != NULL);
2288 info->buffer = containing_section->buffer + info->virtual_offset;
2289 return;
2290 }
2291
4bf44c1c
TT
2292 /* If the section has relocations, we must read it ourselves.
2293 Otherwise we attach it to the BFD. */
2294 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2295 {
d521ce57 2296 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2297 return;
dce234bc 2298 }
dce234bc 2299
4bf44c1c
TT
2300 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2301 info->buffer = buf;
dce234bc
PP
2302
2303 /* When debugging .o files, we may need to apply relocations; see
2304 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2305 We never compress sections in .o files, so we only need to
2306 try this when the section is not compressed. */
ac8035ab 2307 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2308 if (retbuf != NULL)
2309 {
2310 info->buffer = retbuf;
2311 return;
2312 }
2313
a32a8923
DE
2314 abfd = get_section_bfd_owner (info);
2315 gdb_assert (abfd != NULL);
2316
dce234bc
PP
2317 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2318 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2319 {
2320 error (_("Dwarf Error: Can't read DWARF data"
2321 " in section %s [in module %s]"),
2322 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2323 }
dce234bc
PP
2324}
2325
9e0ac564
TT
2326/* A helper function that returns the size of a section in a safe way.
2327 If you are positive that the section has been read before using the
2328 size, then it is safe to refer to the dwarf2_section_info object's
2329 "size" field directly. In other cases, you must call this
2330 function, because for compressed sections the size field is not set
2331 correctly until the section has been read. */
2332
2333static bfd_size_type
2334dwarf2_section_size (struct objfile *objfile,
2335 struct dwarf2_section_info *info)
2336{
2337 if (!info->readin)
2338 dwarf2_read_section (objfile, info);
2339 return info->size;
2340}
2341
dce234bc 2342/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2343 SECTION_NAME. */
af34e669 2344
dce234bc 2345void
3017a003
TG
2346dwarf2_get_section_info (struct objfile *objfile,
2347 enum dwarf2_section_enum sect,
d521ce57 2348 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2349 bfd_size_type *sizep)
2350{
2351 struct dwarf2_per_objfile *data
2352 = objfile_data (objfile, dwarf2_objfile_data_key);
2353 struct dwarf2_section_info *info;
a3b2a86b
TT
2354
2355 /* We may see an objfile without any DWARF, in which case we just
2356 return nothing. */
2357 if (data == NULL)
2358 {
2359 *sectp = NULL;
2360 *bufp = NULL;
2361 *sizep = 0;
2362 return;
2363 }
3017a003
TG
2364 switch (sect)
2365 {
2366 case DWARF2_DEBUG_FRAME:
2367 info = &data->frame;
2368 break;
2369 case DWARF2_EH_FRAME:
2370 info = &data->eh_frame;
2371 break;
2372 default:
2373 gdb_assert_not_reached ("unexpected section");
2374 }
dce234bc 2375
9e0ac564 2376 dwarf2_read_section (objfile, info);
dce234bc 2377
a32a8923 2378 *sectp = get_section_bfd_section (info);
dce234bc
PP
2379 *bufp = info->buffer;
2380 *sizep = info->size;
2381}
2382
36586728
TT
2383/* A helper function to find the sections for a .dwz file. */
2384
2385static void
2386locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2387{
2388 struct dwz_file *dwz_file = arg;
2389
2390 /* Note that we only support the standard ELF names, because .dwz
2391 is ELF-only (at the time of writing). */
2392 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2393 {
73869dc2 2394 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2395 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2398 {
73869dc2 2399 dwz_file->info.s.asection = sectp;
36586728
TT
2400 dwz_file->info.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2403 {
73869dc2 2404 dwz_file->str.s.asection = sectp;
36586728
TT
2405 dwz_file->str.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2408 {
73869dc2 2409 dwz_file->line.s.asection = sectp;
36586728
TT
2410 dwz_file->line.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2413 {
73869dc2 2414 dwz_file->macro.s.asection = sectp;
36586728
TT
2415 dwz_file->macro.size = bfd_get_section_size (sectp);
2416 }
2ec9a5e0
TT
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2418 {
73869dc2 2419 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2420 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2421 }
36586728
TT
2422}
2423
4db1a1dc
TT
2424/* Open the separate '.dwz' debug file, if needed. Return NULL if
2425 there is no .gnu_debugaltlink section in the file. Error if there
2426 is such a section but the file cannot be found. */
36586728
TT
2427
2428static struct dwz_file *
2429dwarf2_get_dwz_file (void)
2430{
4db1a1dc
TT
2431 bfd *dwz_bfd;
2432 char *data;
36586728
TT
2433 struct cleanup *cleanup;
2434 const char *filename;
2435 struct dwz_file *result;
acd13123 2436 bfd_size_type buildid_len_arg;
dc294be5
TT
2437 size_t buildid_len;
2438 bfd_byte *buildid;
36586728
TT
2439
2440 if (dwarf2_per_objfile->dwz_file != NULL)
2441 return dwarf2_per_objfile->dwz_file;
2442
4db1a1dc
TT
2443 bfd_set_error (bfd_error_no_error);
2444 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2445 &buildid_len_arg, &buildid);
4db1a1dc
TT
2446 if (data == NULL)
2447 {
2448 if (bfd_get_error () == bfd_error_no_error)
2449 return NULL;
2450 error (_("could not read '.gnu_debugaltlink' section: %s"),
2451 bfd_errmsg (bfd_get_error ()));
2452 }
36586728 2453 cleanup = make_cleanup (xfree, data);
dc294be5 2454 make_cleanup (xfree, buildid);
36586728 2455
acd13123
TT
2456 buildid_len = (size_t) buildid_len_arg;
2457
f9d83a0b 2458 filename = (const char *) data;
36586728
TT
2459 if (!IS_ABSOLUTE_PATH (filename))
2460 {
4262abfb 2461 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2462 char *rel;
2463
2464 make_cleanup (xfree, abs);
2465 abs = ldirname (abs);
2466 make_cleanup (xfree, abs);
2467
2468 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2469 make_cleanup (xfree, rel);
2470 filename = rel;
2471 }
2472
dc294be5
TT
2473 /* First try the file name given in the section. If that doesn't
2474 work, try to use the build-id instead. */
36586728 2475 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2476 if (dwz_bfd != NULL)
36586728 2477 {
dc294be5
TT
2478 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2479 {
2480 gdb_bfd_unref (dwz_bfd);
2481 dwz_bfd = NULL;
2482 }
36586728
TT
2483 }
2484
dc294be5
TT
2485 if (dwz_bfd == NULL)
2486 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2487
2488 if (dwz_bfd == NULL)
2489 error (_("could not find '.gnu_debugaltlink' file for %s"),
2490 objfile_name (dwarf2_per_objfile->objfile));
2491
36586728
TT
2492 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2493 struct dwz_file);
2494 result->dwz_bfd = dwz_bfd;
2495
2496 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2497
2498 do_cleanups (cleanup);
2499
13aaf454 2500 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2501 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2502 return result;
2503}
9291a0cd 2504\f
7b9f3c50
DE
2505/* DWARF quick_symbols_functions support. */
2506
2507/* TUs can share .debug_line entries, and there can be a lot more TUs than
2508 unique line tables, so we maintain a separate table of all .debug_line
2509 derived entries to support the sharing.
2510 All the quick functions need is the list of file names. We discard the
2511 line_header when we're done and don't need to record it here. */
2512struct quick_file_names
2513{
094b34ac
DE
2514 /* The data used to construct the hash key. */
2515 struct stmt_list_hash hash;
7b9f3c50
DE
2516
2517 /* The number of entries in file_names, real_names. */
2518 unsigned int num_file_names;
2519
2520 /* The file names from the line table, after being run through
2521 file_full_name. */
2522 const char **file_names;
2523
2524 /* The file names from the line table after being run through
2525 gdb_realpath. These are computed lazily. */
2526 const char **real_names;
2527};
2528
2529/* When using the index (and thus not using psymtabs), each CU has an
2530 object of this type. This is used to hold information needed by
2531 the various "quick" methods. */
2532struct dwarf2_per_cu_quick_data
2533{
2534 /* The file table. This can be NULL if there was no file table
2535 or it's currently not read in.
2536 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2537 struct quick_file_names *file_names;
2538
2539 /* The corresponding symbol table. This is NULL if symbols for this
2540 CU have not yet been read. */
43f3e411 2541 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2542
2543 /* A temporary mark bit used when iterating over all CUs in
2544 expand_symtabs_matching. */
2545 unsigned int mark : 1;
2546
2547 /* True if we've tried to read the file table and found there isn't one.
2548 There will be no point in trying to read it again next time. */
2549 unsigned int no_file_data : 1;
2550};
2551
094b34ac
DE
2552/* Utility hash function for a stmt_list_hash. */
2553
2554static hashval_t
2555hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2556{
2557 hashval_t v = 0;
2558
2559 if (stmt_list_hash->dwo_unit != NULL)
2560 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2561 v += stmt_list_hash->line_offset.sect_off;
2562 return v;
2563}
2564
2565/* Utility equality function for a stmt_list_hash. */
2566
2567static int
2568eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2569 const struct stmt_list_hash *rhs)
2570{
2571 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2572 return 0;
2573 if (lhs->dwo_unit != NULL
2574 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2575 return 0;
2576
2577 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2578}
2579
7b9f3c50
DE
2580/* Hash function for a quick_file_names. */
2581
2582static hashval_t
2583hash_file_name_entry (const void *e)
2584{
2585 const struct quick_file_names *file_data = e;
2586
094b34ac 2587 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2588}
2589
2590/* Equality function for a quick_file_names. */
2591
2592static int
2593eq_file_name_entry (const void *a, const void *b)
2594{
2595 const struct quick_file_names *ea = a;
2596 const struct quick_file_names *eb = b;
2597
094b34ac 2598 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2599}
2600
2601/* Delete function for a quick_file_names. */
2602
2603static void
2604delete_file_name_entry (void *e)
2605{
2606 struct quick_file_names *file_data = e;
2607 int i;
2608
2609 for (i = 0; i < file_data->num_file_names; ++i)
2610 {
2611 xfree ((void*) file_data->file_names[i]);
2612 if (file_data->real_names)
2613 xfree ((void*) file_data->real_names[i]);
2614 }
2615
2616 /* The space for the struct itself lives on objfile_obstack,
2617 so we don't free it here. */
2618}
2619
2620/* Create a quick_file_names hash table. */
2621
2622static htab_t
2623create_quick_file_names_table (unsigned int nr_initial_entries)
2624{
2625 return htab_create_alloc (nr_initial_entries,
2626 hash_file_name_entry, eq_file_name_entry,
2627 delete_file_name_entry, xcalloc, xfree);
2628}
9291a0cd 2629
918dd910
JK
2630/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2631 have to be created afterwards. You should call age_cached_comp_units after
2632 processing PER_CU->CU. dw2_setup must have been already called. */
2633
2634static void
2635load_cu (struct dwarf2_per_cu_data *per_cu)
2636{
3019eac3 2637 if (per_cu->is_debug_types)
e5fe5e75 2638 load_full_type_unit (per_cu);
918dd910 2639 else
95554aad 2640 load_full_comp_unit (per_cu, language_minimal);
918dd910 2641
918dd910 2642 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2643
2644 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2645}
2646
a0f42c21 2647/* Read in the symbols for PER_CU. */
2fdf6df6 2648
9291a0cd 2649static void
a0f42c21 2650dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2651{
2652 struct cleanup *back_to;
2653
f4dc4d17
DE
2654 /* Skip type_unit_groups, reading the type units they contain
2655 is handled elsewhere. */
2656 if (IS_TYPE_UNIT_GROUP (per_cu))
2657 return;
2658
9291a0cd
TT
2659 back_to = make_cleanup (dwarf2_release_queue, NULL);
2660
95554aad 2661 if (dwarf2_per_objfile->using_index
43f3e411 2662 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2663 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2664 {
2665 queue_comp_unit (per_cu, language_minimal);
2666 load_cu (per_cu);
89e63ee4
DE
2667
2668 /* If we just loaded a CU from a DWO, and we're working with an index
2669 that may badly handle TUs, load all the TUs in that DWO as well.
2670 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2671 if (!per_cu->is_debug_types
2672 && per_cu->cu->dwo_unit != NULL
2673 && dwarf2_per_objfile->index_table != NULL
2674 && dwarf2_per_objfile->index_table->version <= 7
2675 /* DWP files aren't supported yet. */
2676 && get_dwp_file () == NULL)
2677 queue_and_load_all_dwo_tus (per_cu);
95554aad 2678 }
9291a0cd 2679
a0f42c21 2680 process_queue ();
9291a0cd
TT
2681
2682 /* Age the cache, releasing compilation units that have not
2683 been used recently. */
2684 age_cached_comp_units ();
2685
2686 do_cleanups (back_to);
2687}
2688
2689/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2690 the objfile from which this CU came. Returns the resulting symbol
2691 table. */
2fdf6df6 2692
43f3e411 2693static struct compunit_symtab *
a0f42c21 2694dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2695{
95554aad 2696 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2697 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2698 {
2699 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2700 increment_reading_symtab ();
a0f42c21 2701 dw2_do_instantiate_symtab (per_cu);
95554aad 2702 process_cu_includes ();
9291a0cd
TT
2703 do_cleanups (back_to);
2704 }
f194fefb 2705
43f3e411 2706 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2707}
2708
8832e7e3 2709/* Return the CU/TU given its index.
f4dc4d17
DE
2710
2711 This is intended for loops like:
2712
2713 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2714 + dwarf2_per_objfile->n_type_units); ++i)
2715 {
8832e7e3 2716 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2717
2718 ...;
2719 }
2720*/
2fdf6df6 2721
1fd400ff 2722static struct dwarf2_per_cu_data *
8832e7e3 2723dw2_get_cutu (int index)
1fd400ff
TT
2724{
2725 if (index >= dwarf2_per_objfile->n_comp_units)
2726 {
f4dc4d17 2727 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2728 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2729 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2730 }
2731
2732 return dwarf2_per_objfile->all_comp_units[index];
2733}
2734
8832e7e3
DE
2735/* Return the CU given its index.
2736 This differs from dw2_get_cutu in that it's for when you know INDEX
2737 refers to a CU. */
f4dc4d17
DE
2738
2739static struct dwarf2_per_cu_data *
8832e7e3 2740dw2_get_cu (int index)
f4dc4d17 2741{
8832e7e3 2742 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2743
1fd400ff
TT
2744 return dwarf2_per_objfile->all_comp_units[index];
2745}
2746
2ec9a5e0
TT
2747/* A helper for create_cus_from_index that handles a given list of
2748 CUs. */
2fdf6df6 2749
74a0d9f6 2750static void
2ec9a5e0
TT
2751create_cus_from_index_list (struct objfile *objfile,
2752 const gdb_byte *cu_list, offset_type n_elements,
2753 struct dwarf2_section_info *section,
2754 int is_dwz,
2755 int base_offset)
9291a0cd
TT
2756{
2757 offset_type i;
9291a0cd 2758
2ec9a5e0 2759 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2760 {
2761 struct dwarf2_per_cu_data *the_cu;
2762 ULONGEST offset, length;
2763
74a0d9f6
JK
2764 gdb_static_assert (sizeof (ULONGEST) >= 8);
2765 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2766 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2767 cu_list += 2 * 8;
2768
2769 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2770 struct dwarf2_per_cu_data);
b64f50a1 2771 the_cu->offset.sect_off = offset;
9291a0cd
TT
2772 the_cu->length = length;
2773 the_cu->objfile = objfile;
8a0459fd 2774 the_cu->section = section;
9291a0cd
TT
2775 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2776 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2777 the_cu->is_dwz = is_dwz;
2778 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2779 }
9291a0cd
TT
2780}
2781
2ec9a5e0 2782/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2783 the CU objects for this objfile. */
2ec9a5e0 2784
74a0d9f6 2785static void
2ec9a5e0
TT
2786create_cus_from_index (struct objfile *objfile,
2787 const gdb_byte *cu_list, offset_type cu_list_elements,
2788 const gdb_byte *dwz_list, offset_type dwz_elements)
2789{
2790 struct dwz_file *dwz;
2791
2792 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2793 dwarf2_per_objfile->all_comp_units
2794 = obstack_alloc (&objfile->objfile_obstack,
2795 dwarf2_per_objfile->n_comp_units
2796 * sizeof (struct dwarf2_per_cu_data *));
2797
74a0d9f6
JK
2798 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2799 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2800
2801 if (dwz_elements == 0)
74a0d9f6 2802 return;
2ec9a5e0
TT
2803
2804 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2805 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2806 cu_list_elements / 2);
2ec9a5e0
TT
2807}
2808
1fd400ff 2809/* Create the signatured type hash table from the index. */
673bfd45 2810
74a0d9f6 2811static void
673bfd45 2812create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2813 struct dwarf2_section_info *section,
673bfd45
DE
2814 const gdb_byte *bytes,
2815 offset_type elements)
1fd400ff
TT
2816{
2817 offset_type i;
673bfd45 2818 htab_t sig_types_hash;
1fd400ff 2819
6aa5f3a6
DE
2820 dwarf2_per_objfile->n_type_units
2821 = dwarf2_per_objfile->n_allocated_type_units
2822 = elements / 3;
d467dd73 2823 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2824 = xmalloc (dwarf2_per_objfile->n_type_units
2825 * sizeof (struct signatured_type *));
1fd400ff 2826
673bfd45 2827 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2828
2829 for (i = 0; i < elements; i += 3)
2830 {
52dc124a
DE
2831 struct signatured_type *sig_type;
2832 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2833 void **slot;
2834
74a0d9f6
JK
2835 gdb_static_assert (sizeof (ULONGEST) >= 8);
2836 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2837 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2838 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2839 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2840 bytes += 3 * 8;
2841
52dc124a 2842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2843 struct signatured_type);
52dc124a 2844 sig_type->signature = signature;
3019eac3
DE
2845 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2846 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2847 sig_type->per_cu.section = section;
52dc124a
DE
2848 sig_type->per_cu.offset.sect_off = offset;
2849 sig_type->per_cu.objfile = objfile;
2850 sig_type->per_cu.v.quick
1fd400ff
TT
2851 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2852 struct dwarf2_per_cu_quick_data);
2853
52dc124a
DE
2854 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2855 *slot = sig_type;
1fd400ff 2856
b4dd5633 2857 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2858 }
2859
673bfd45 2860 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2861}
2862
9291a0cd
TT
2863/* Read the address map data from the mapped index, and use it to
2864 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2865
9291a0cd
TT
2866static void
2867create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2868{
3e29f34a 2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2870 const gdb_byte *iter, *end;
2871 struct obstack temp_obstack;
2872 struct addrmap *mutable_map;
2873 struct cleanup *cleanup;
2874 CORE_ADDR baseaddr;
2875
2876 obstack_init (&temp_obstack);
2877 cleanup = make_cleanup_obstack_free (&temp_obstack);
2878 mutable_map = addrmap_create_mutable (&temp_obstack);
2879
2880 iter = index->address_table;
2881 end = iter + index->address_table_size;
2882
2883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2884
2885 while (iter < end)
2886 {
2887 ULONGEST hi, lo, cu_index;
2888 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2889 iter += 8;
2890 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2891 iter += 8;
2892 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2893 iter += 4;
f652bce2 2894
24a55014 2895 if (lo > hi)
f652bce2 2896 {
24a55014
DE
2897 complaint (&symfile_complaints,
2898 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2899 hex_string (lo), hex_string (hi));
24a55014 2900 continue;
f652bce2 2901 }
24a55014
DE
2902
2903 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid CU number %u"),
2907 (unsigned) cu_index);
24a55014 2908 continue;
f652bce2 2909 }
24a55014 2910
3e29f34a
MR
2911 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2912 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2913 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2914 }
2915
2916 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2917 &objfile->objfile_obstack);
2918 do_cleanups (cleanup);
2919}
2920
59d7bcaf
JK
2921/* The hash function for strings in the mapped index. This is the same as
2922 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2923 implementation. This is necessary because the hash function is tied to the
2924 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2925 SYMBOL_HASH_NEXT.
2926
2927 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2928
9291a0cd 2929static hashval_t
559a7a62 2930mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2931{
2932 const unsigned char *str = (const unsigned char *) p;
2933 hashval_t r = 0;
2934 unsigned char c;
2935
2936 while ((c = *str++) != 0)
559a7a62
JK
2937 {
2938 if (index_version >= 5)
2939 c = tolower (c);
2940 r = r * 67 + c - 113;
2941 }
9291a0cd
TT
2942
2943 return r;
2944}
2945
2946/* Find a slot in the mapped index INDEX for the object named NAME.
2947 If NAME is found, set *VEC_OUT to point to the CU vector in the
2948 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2949
9291a0cd
TT
2950static int
2951find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2952 offset_type **vec_out)
2953{
0cf03b49
JK
2954 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2955 offset_type hash;
9291a0cd 2956 offset_type slot, step;
559a7a62 2957 int (*cmp) (const char *, const char *);
9291a0cd 2958
0cf03b49
JK
2959 if (current_language->la_language == language_cplus
2960 || current_language->la_language == language_java
2961 || current_language->la_language == language_fortran)
2962 {
2963 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2964 not contain any. */
a8719064 2965
72998fb3 2966 if (strchr (name, '(') != NULL)
0cf03b49 2967 {
72998fb3 2968 char *without_params = cp_remove_params (name);
0cf03b49 2969
72998fb3
DE
2970 if (without_params != NULL)
2971 {
2972 make_cleanup (xfree, without_params);
2973 name = without_params;
2974 }
0cf03b49
JK
2975 }
2976 }
2977
559a7a62 2978 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2979 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2980 simulate our NAME being searched is also lowercased. */
2981 hash = mapped_index_string_hash ((index->version == 4
2982 && case_sensitivity == case_sensitive_off
2983 ? 5 : index->version),
2984 name);
2985
3876f04e
DE
2986 slot = hash & (index->symbol_table_slots - 1);
2987 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2988 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2989
2990 for (;;)
2991 {
2992 /* Convert a slot number to an offset into the table. */
2993 offset_type i = 2 * slot;
2994 const char *str;
3876f04e 2995 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2996 {
2997 do_cleanups (back_to);
2998 return 0;
2999 }
9291a0cd 3000
3876f04e 3001 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3002 if (!cmp (name, str))
9291a0cd
TT
3003 {
3004 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3005 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3006 do_cleanups (back_to);
9291a0cd
TT
3007 return 1;
3008 }
3009
3876f04e 3010 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3011 }
3012}
3013
2ec9a5e0
TT
3014/* A helper function that reads the .gdb_index from SECTION and fills
3015 in MAP. FILENAME is the name of the file containing the section;
3016 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3017 ok to use deprecated sections.
3018
3019 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3020 out parameters that are filled in with information about the CU and
3021 TU lists in the section.
3022
3023 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3024
9291a0cd 3025static int
2ec9a5e0
TT
3026read_index_from_section (struct objfile *objfile,
3027 const char *filename,
3028 int deprecated_ok,
3029 struct dwarf2_section_info *section,
3030 struct mapped_index *map,
3031 const gdb_byte **cu_list,
3032 offset_type *cu_list_elements,
3033 const gdb_byte **types_list,
3034 offset_type *types_list_elements)
9291a0cd 3035{
948f8e3d 3036 const gdb_byte *addr;
2ec9a5e0 3037 offset_type version;
b3b272e1 3038 offset_type *metadata;
1fd400ff 3039 int i;
9291a0cd 3040
2ec9a5e0 3041 if (dwarf2_section_empty_p (section))
9291a0cd 3042 return 0;
82430852
JK
3043
3044 /* Older elfutils strip versions could keep the section in the main
3045 executable while splitting it for the separate debug info file. */
a32a8923 3046 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3047 return 0;
3048
2ec9a5e0 3049 dwarf2_read_section (objfile, section);
9291a0cd 3050
2ec9a5e0 3051 addr = section->buffer;
9291a0cd 3052 /* Version check. */
1fd400ff 3053 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3054 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3055 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3056 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3057 indices. */
831adc1f 3058 if (version < 4)
481860b3
GB
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3064 filename);
481860b3
GB
3065 warning_printed = 1;
3066 }
3067 return 0;
3068 }
3069 /* Index version 4 uses a different hash function than index version
3070 5 and later.
3071
3072 Versions earlier than 6 did not emit psymbols for inlined
3073 functions. Using these files will cause GDB not to be able to
3074 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3075 indices unless the user has done
3076 "set use-deprecated-index-sections on". */
2ec9a5e0 3077 if (version < 6 && !deprecated_ok)
481860b3
GB
3078 {
3079 static int warning_printed = 0;
3080 if (!warning_printed)
3081 {
e615022a
DE
3082 warning (_("\
3083Skipping deprecated .gdb_index section in %s.\n\
3084Do \"set use-deprecated-index-sections on\" before the file is read\n\
3085to use the section anyway."),
2ec9a5e0 3086 filename);
481860b3
GB
3087 warning_printed = 1;
3088 }
3089 return 0;
3090 }
796a7ff8 3091 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3092 of the TU (for symbols coming from TUs),
3093 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3094 Plus gold-generated indices can have duplicate entries for global symbols,
3095 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3096 These are just performance bugs, and we can't distinguish gdb-generated
3097 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3098
481860b3 3099 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3100 longer backward compatible. */
796a7ff8 3101 if (version > 8)
594e8718 3102 return 0;
9291a0cd 3103
559a7a62 3104 map->version = version;
2ec9a5e0 3105 map->total_size = section->size;
9291a0cd
TT
3106
3107 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3108
3109 i = 0;
2ec9a5e0
TT
3110 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3111 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3112 / 8);
1fd400ff
TT
3113 ++i;
3114
2ec9a5e0
TT
3115 *types_list = addr + MAYBE_SWAP (metadata[i]);
3116 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3117 - MAYBE_SWAP (metadata[i]))
3118 / 8);
987d643c 3119 ++i;
1fd400ff
TT
3120
3121 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3122 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3123 - MAYBE_SWAP (metadata[i]));
3124 ++i;
3125
3876f04e
DE
3126 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3127 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / (2 * sizeof (offset_type)));
1fd400ff 3130 ++i;
9291a0cd 3131
f9d83a0b 3132 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3133
2ec9a5e0
TT
3134 return 1;
3135}
3136
3137
3138/* Read the index file. If everything went ok, initialize the "quick"
3139 elements of all the CUs and return 1. Otherwise, return 0. */
3140
3141static int
3142dwarf2_read_index (struct objfile *objfile)
3143{
3144 struct mapped_index local_map, *map;
3145 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3146 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3147 struct dwz_file *dwz;
2ec9a5e0 3148
4262abfb 3149 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3150 use_deprecated_index_sections,
3151 &dwarf2_per_objfile->gdb_index, &local_map,
3152 &cu_list, &cu_list_elements,
3153 &types_list, &types_list_elements))
3154 return 0;
3155
0fefef59 3156 /* Don't use the index if it's empty. */
2ec9a5e0 3157 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3158 return 0;
3159
2ec9a5e0
TT
3160 /* If there is a .dwz file, read it so we can get its CU list as
3161 well. */
4db1a1dc
TT
3162 dwz = dwarf2_get_dwz_file ();
3163 if (dwz != NULL)
2ec9a5e0 3164 {
2ec9a5e0
TT
3165 struct mapped_index dwz_map;
3166 const gdb_byte *dwz_types_ignore;
3167 offset_type dwz_types_elements_ignore;
3168
3169 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3170 1,
3171 &dwz->gdb_index, &dwz_map,
3172 &dwz_list, &dwz_list_elements,
3173 &dwz_types_ignore,
3174 &dwz_types_elements_ignore))
3175 {
3176 warning (_("could not read '.gdb_index' section from %s; skipping"),
3177 bfd_get_filename (dwz->dwz_bfd));
3178 return 0;
3179 }
3180 }
3181
74a0d9f6
JK
3182 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3183 dwz_list_elements);
1fd400ff 3184
8b70b953
TT
3185 if (types_list_elements)
3186 {
3187 struct dwarf2_section_info *section;
3188
3189 /* We can only handle a single .debug_types when we have an
3190 index. */
3191 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3192 return 0;
3193
3194 section = VEC_index (dwarf2_section_info_def,
3195 dwarf2_per_objfile->types, 0);
3196
74a0d9f6
JK
3197 create_signatured_type_table_from_index (objfile, section, types_list,
3198 types_list_elements);
8b70b953 3199 }
9291a0cd 3200
2ec9a5e0
TT
3201 create_addrmap_from_index (objfile, &local_map);
3202
3203 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3204 *map = local_map;
9291a0cd
TT
3205
3206 dwarf2_per_objfile->index_table = map;
3207 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3208 dwarf2_per_objfile->quick_file_names_table =
3209 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3210
3211 return 1;
3212}
3213
3214/* A helper for the "quick" functions which sets the global
3215 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3216
9291a0cd
TT
3217static void
3218dw2_setup (struct objfile *objfile)
3219{
3220 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3221 gdb_assert (dwarf2_per_objfile);
3222}
3223
dee91e82 3224/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3225
dee91e82
DE
3226static void
3227dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3228 const gdb_byte *info_ptr,
dee91e82
DE
3229 struct die_info *comp_unit_die,
3230 int has_children,
3231 void *data)
9291a0cd 3232{
dee91e82
DE
3233 struct dwarf2_cu *cu = reader->cu;
3234 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3235 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3236 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3237 struct line_header *lh;
9291a0cd 3238 struct attribute *attr;
dee91e82 3239 int i;
15d034d0 3240 const char *name, *comp_dir;
7b9f3c50
DE
3241 void **slot;
3242 struct quick_file_names *qfn;
3243 unsigned int line_offset;
9291a0cd 3244
0186c6a7
DE
3245 gdb_assert (! this_cu->is_debug_types);
3246
07261596
TT
3247 /* Our callers never want to match partial units -- instead they
3248 will match the enclosing full CU. */
3249 if (comp_unit_die->tag == DW_TAG_partial_unit)
3250 {
3251 this_cu->v.quick->no_file_data = 1;
3252 return;
3253 }
3254
0186c6a7 3255 lh_cu = this_cu;
7b9f3c50
DE
3256 lh = NULL;
3257 slot = NULL;
3258 line_offset = 0;
dee91e82
DE
3259
3260 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3261 if (attr)
3262 {
7b9f3c50
DE
3263 struct quick_file_names find_entry;
3264
3265 line_offset = DW_UNSND (attr);
3266
3267 /* We may have already read in this line header (TU line header sharing).
3268 If we have we're done. */
094b34ac
DE
3269 find_entry.hash.dwo_unit = cu->dwo_unit;
3270 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3271 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3272 &find_entry, INSERT);
3273 if (*slot != NULL)
3274 {
094b34ac 3275 lh_cu->v.quick->file_names = *slot;
dee91e82 3276 return;
7b9f3c50
DE
3277 }
3278
3019eac3 3279 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3280 }
3281 if (lh == NULL)
3282 {
094b34ac 3283 lh_cu->v.quick->no_file_data = 1;
dee91e82 3284 return;
9291a0cd
TT
3285 }
3286
7b9f3c50 3287 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3288 qfn->hash.dwo_unit = cu->dwo_unit;
3289 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3290 gdb_assert (slot != NULL);
3291 *slot = qfn;
9291a0cd 3292
dee91e82 3293 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3294
7b9f3c50
DE
3295 qfn->num_file_names = lh->num_file_names;
3296 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3297 lh->num_file_names * sizeof (char *));
9291a0cd 3298 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3299 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3300 qfn->real_names = NULL;
9291a0cd 3301
7b9f3c50 3302 free_line_header (lh);
7b9f3c50 3303
094b34ac 3304 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3305}
3306
3307/* A helper for the "quick" functions which attempts to read the line
3308 table for THIS_CU. */
3309
3310static struct quick_file_names *
e4a48d9d 3311dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3312{
0186c6a7
DE
3313 /* This should never be called for TUs. */
3314 gdb_assert (! this_cu->is_debug_types);
3315 /* Nor type unit groups. */
3316 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3317
dee91e82
DE
3318 if (this_cu->v.quick->file_names != NULL)
3319 return this_cu->v.quick->file_names;
3320 /* If we know there is no line data, no point in looking again. */
3321 if (this_cu->v.quick->no_file_data)
3322 return NULL;
3323
0186c6a7 3324 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3325
3326 if (this_cu->v.quick->no_file_data)
3327 return NULL;
3328 return this_cu->v.quick->file_names;
9291a0cd
TT
3329}
3330
3331/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3332 real path for a given file name from the line table. */
2fdf6df6 3333
9291a0cd 3334static const char *
7b9f3c50
DE
3335dw2_get_real_path (struct objfile *objfile,
3336 struct quick_file_names *qfn, int index)
9291a0cd 3337{
7b9f3c50
DE
3338 if (qfn->real_names == NULL)
3339 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3340 qfn->num_file_names, const char *);
9291a0cd 3341
7b9f3c50
DE
3342 if (qfn->real_names[index] == NULL)
3343 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3344
7b9f3c50 3345 return qfn->real_names[index];
9291a0cd
TT
3346}
3347
3348static struct symtab *
3349dw2_find_last_source_symtab (struct objfile *objfile)
3350{
43f3e411 3351 struct compunit_symtab *cust;
9291a0cd 3352 int index;
ae2de4f8 3353
9291a0cd
TT
3354 dw2_setup (objfile);
3355 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3356 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3357 if (cust == NULL)
3358 return NULL;
3359 return compunit_primary_filetab (cust);
9291a0cd
TT
3360}
3361
7b9f3c50
DE
3362/* Traversal function for dw2_forget_cached_source_info. */
3363
3364static int
3365dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3366{
7b9f3c50 3367 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3368
7b9f3c50 3369 if (file_data->real_names)
9291a0cd 3370 {
7b9f3c50 3371 int i;
9291a0cd 3372
7b9f3c50 3373 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3374 {
7b9f3c50
DE
3375 xfree ((void*) file_data->real_names[i]);
3376 file_data->real_names[i] = NULL;
9291a0cd
TT
3377 }
3378 }
7b9f3c50
DE
3379
3380 return 1;
3381}
3382
3383static void
3384dw2_forget_cached_source_info (struct objfile *objfile)
3385{
3386 dw2_setup (objfile);
3387
3388 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3389 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3390}
3391
f8eba3c6
TT
3392/* Helper function for dw2_map_symtabs_matching_filename that expands
3393 the symtabs and calls the iterator. */
3394
3395static int
3396dw2_map_expand_apply (struct objfile *objfile,
3397 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3398 const char *name, const char *real_path,
f8eba3c6
TT
3399 int (*callback) (struct symtab *, void *),
3400 void *data)
3401{
43f3e411 3402 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3403
3404 /* Don't visit already-expanded CUs. */
43f3e411 3405 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3406 return 0;
3407
3408 /* This may expand more than one symtab, and we want to iterate over
3409 all of them. */
a0f42c21 3410 dw2_instantiate_symtab (per_cu);
f8eba3c6 3411
f5b95b50 3412 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3413 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3414}
3415
3416/* Implementation of the map_symtabs_matching_filename method. */
3417
9291a0cd 3418static int
f8eba3c6 3419dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3420 const char *real_path,
f8eba3c6
TT
3421 int (*callback) (struct symtab *, void *),
3422 void *data)
9291a0cd
TT
3423{
3424 int i;
c011a4f4 3425 const char *name_basename = lbasename (name);
9291a0cd
TT
3426
3427 dw2_setup (objfile);
ae2de4f8 3428
848e3e78
DE
3429 /* The rule is CUs specify all the files, including those used by
3430 any TU, so there's no need to scan TUs here. */
f4dc4d17 3431
848e3e78 3432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3433 {
3434 int j;
8832e7e3 3435 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3436 struct quick_file_names *file_data;
9291a0cd 3437
3d7bb9d9 3438 /* We only need to look at symtabs not already expanded. */
43f3e411 3439 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3440 continue;
3441
e4a48d9d 3442 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3443 if (file_data == NULL)
9291a0cd
TT
3444 continue;
3445
7b9f3c50 3446 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3447 {
7b9f3c50 3448 const char *this_name = file_data->file_names[j];
da235a7c 3449 const char *this_real_name;
9291a0cd 3450
af529f8f 3451 if (compare_filenames_for_search (this_name, name))
9291a0cd 3452 {
f5b95b50 3453 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3454 callback, data))
3455 return 1;
288e77a7 3456 continue;
4aac40c8 3457 }
9291a0cd 3458
c011a4f4
DE
3459 /* Before we invoke realpath, which can get expensive when many
3460 files are involved, do a quick comparison of the basenames. */
3461 if (! basenames_may_differ
3462 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3463 continue;
3464
da235a7c
JK
3465 this_real_name = dw2_get_real_path (objfile, file_data, j);
3466 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3467 {
da235a7c
JK
3468 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3469 callback, data))
3470 return 1;
288e77a7 3471 continue;
da235a7c 3472 }
9291a0cd 3473
da235a7c
JK
3474 if (real_path != NULL)
3475 {
af529f8f
JK
3476 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3477 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3478 if (this_real_name != NULL
af529f8f 3479 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3480 {
f5b95b50 3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3482 callback, data))
3483 return 1;
288e77a7 3484 continue;
9291a0cd
TT
3485 }
3486 }
3487 }
3488 }
3489
9291a0cd
TT
3490 return 0;
3491}
3492
da51c347
DE
3493/* Struct used to manage iterating over all CUs looking for a symbol. */
3494
3495struct dw2_symtab_iterator
9291a0cd 3496{
da51c347
DE
3497 /* The internalized form of .gdb_index. */
3498 struct mapped_index *index;
3499 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3500 int want_specific_block;
3501 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3502 Unused if !WANT_SPECIFIC_BLOCK. */
3503 int block_index;
3504 /* The kind of symbol we're looking for. */
3505 domain_enum domain;
3506 /* The list of CUs from the index entry of the symbol,
3507 or NULL if not found. */
3508 offset_type *vec;
3509 /* The next element in VEC to look at. */
3510 int next;
3511 /* The number of elements in VEC, or zero if there is no match. */
3512 int length;
8943b874
DE
3513 /* Have we seen a global version of the symbol?
3514 If so we can ignore all further global instances.
3515 This is to work around gold/15646, inefficient gold-generated
3516 indices. */
3517 int global_seen;
da51c347 3518};
9291a0cd 3519
da51c347
DE
3520/* Initialize the index symtab iterator ITER.
3521 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3522 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3523
9291a0cd 3524static void
da51c347
DE
3525dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3526 struct mapped_index *index,
3527 int want_specific_block,
3528 int block_index,
3529 domain_enum domain,
3530 const char *name)
3531{
3532 iter->index = index;
3533 iter->want_specific_block = want_specific_block;
3534 iter->block_index = block_index;
3535 iter->domain = domain;
3536 iter->next = 0;
8943b874 3537 iter->global_seen = 0;
da51c347
DE
3538
3539 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3540 iter->length = MAYBE_SWAP (*iter->vec);
3541 else
3542 {
3543 iter->vec = NULL;
3544 iter->length = 0;
3545 }
3546}
3547
3548/* Return the next matching CU or NULL if there are no more. */
3549
3550static struct dwarf2_per_cu_data *
3551dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3552{
3553 for ( ; iter->next < iter->length; ++iter->next)
3554 {
3555 offset_type cu_index_and_attrs =
3556 MAYBE_SWAP (iter->vec[iter->next + 1]);
3557 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3558 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3559 int want_static = iter->block_index != GLOBAL_BLOCK;
3560 /* This value is only valid for index versions >= 7. */
3561 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3562 gdb_index_symbol_kind symbol_kind =
3563 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3564 /* Only check the symbol attributes if they're present.
3565 Indices prior to version 7 don't record them,
3566 and indices >= 7 may elide them for certain symbols
3567 (gold does this). */
3568 int attrs_valid =
3569 (iter->index->version >= 7
3570 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3571
3190f0c6
DE
3572 /* Don't crash on bad data. */
3573 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3574 + dwarf2_per_objfile->n_type_units))
3575 {
3576 complaint (&symfile_complaints,
3577 _(".gdb_index entry has bad CU index"
4262abfb
JK
3578 " [in module %s]"),
3579 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3580 continue;
3581 }
3582
8832e7e3 3583 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3584
da51c347 3585 /* Skip if already read in. */
43f3e411 3586 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3587 continue;
3588
8943b874
DE
3589 /* Check static vs global. */
3590 if (attrs_valid)
3591 {
3592 if (iter->want_specific_block
3593 && want_static != is_static)
3594 continue;
3595 /* Work around gold/15646. */
3596 if (!is_static && iter->global_seen)
3597 continue;
3598 if (!is_static)
3599 iter->global_seen = 1;
3600 }
da51c347
DE
3601
3602 /* Only check the symbol's kind if it has one. */
3603 if (attrs_valid)
3604 {
3605 switch (iter->domain)
3606 {
3607 case VAR_DOMAIN:
3608 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3609 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3610 /* Some types are also in VAR_DOMAIN. */
3611 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3612 continue;
3613 break;
3614 case STRUCT_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3616 continue;
3617 break;
3618 case LABEL_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3620 continue;
3621 break;
3622 default:
3623 break;
3624 }
3625 }
3626
3627 ++iter->next;
3628 return per_cu;
3629 }
3630
3631 return NULL;
3632}
3633
43f3e411 3634static struct compunit_symtab *
da51c347
DE
3635dw2_lookup_symbol (struct objfile *objfile, int block_index,
3636 const char *name, domain_enum domain)
9291a0cd 3637{
43f3e411 3638 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3639 struct mapped_index *index;
3640
9291a0cd
TT
3641 dw2_setup (objfile);
3642
156942c7
DE
3643 index = dwarf2_per_objfile->index_table;
3644
da51c347 3645 /* index is NULL if OBJF_READNOW. */
156942c7 3646 if (index)
9291a0cd 3647 {
da51c347
DE
3648 struct dw2_symtab_iterator iter;
3649 struct dwarf2_per_cu_data *per_cu;
3650
3651 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3652
da51c347 3653 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3654 {
da51c347 3655 struct symbol *sym = NULL;
43f3e411
DE
3656 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3657 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3658 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347
DE
3659
3660 /* Some caution must be observed with overloaded functions
3661 and methods, since the index will not contain any overload
3662 information (but NAME might contain it). */
f194fefb 3663 sym = block_lookup_symbol (block, name, domain);
1fd400ff 3664
da51c347
DE
3665 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3666 {
3667 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3668 return stab;
3669
3670 stab_best = stab;
9291a0cd 3671 }
da51c347
DE
3672
3673 /* Keep looking through other CUs. */
9291a0cd
TT
3674 }
3675 }
9291a0cd 3676
da51c347 3677 return stab_best;
9291a0cd
TT
3678}
3679
3680static void
3681dw2_print_stats (struct objfile *objfile)
3682{
e4a48d9d 3683 int i, total, count;
9291a0cd
TT
3684
3685 dw2_setup (objfile);
e4a48d9d 3686 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3687 count = 0;
e4a48d9d 3688 for (i = 0; i < total; ++i)
9291a0cd 3689 {
8832e7e3 3690 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3691
43f3e411 3692 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3693 ++count;
3694 }
e4a48d9d 3695 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3696 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3697}
3698
779bd270
DE
3699/* This dumps minimal information about the index.
3700 It is called via "mt print objfiles".
3701 One use is to verify .gdb_index has been loaded by the
3702 gdb.dwarf2/gdb-index.exp testcase. */
3703
9291a0cd
TT
3704static void
3705dw2_dump (struct objfile *objfile)
3706{
779bd270
DE
3707 dw2_setup (objfile);
3708 gdb_assert (dwarf2_per_objfile->using_index);
3709 printf_filtered (".gdb_index:");
3710 if (dwarf2_per_objfile->index_table != NULL)
3711 {
3712 printf_filtered (" version %d\n",
3713 dwarf2_per_objfile->index_table->version);
3714 }
3715 else
3716 printf_filtered (" faked for \"readnow\"\n");
3717 printf_filtered ("\n");
9291a0cd
TT
3718}
3719
3720static void
3189cb12
DE
3721dw2_relocate (struct objfile *objfile,
3722 const struct section_offsets *new_offsets,
3723 const struct section_offsets *delta)
9291a0cd
TT
3724{
3725 /* There's nothing to relocate here. */
3726}
3727
3728static void
3729dw2_expand_symtabs_for_function (struct objfile *objfile,
3730 const char *func_name)
3731{
da51c347
DE
3732 struct mapped_index *index;
3733
3734 dw2_setup (objfile);
3735
3736 index = dwarf2_per_objfile->index_table;
3737
3738 /* index is NULL if OBJF_READNOW. */
3739 if (index)
3740 {
3741 struct dw2_symtab_iterator iter;
3742 struct dwarf2_per_cu_data *per_cu;
3743
3744 /* Note: It doesn't matter what we pass for block_index here. */
3745 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3746 func_name);
3747
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3749 dw2_instantiate_symtab (per_cu);
3750 }
9291a0cd
TT
3751}
3752
3753static void
3754dw2_expand_all_symtabs (struct objfile *objfile)
3755{
3756 int i;
3757
3758 dw2_setup (objfile);
1fd400ff
TT
3759
3760 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3761 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3762 {
8832e7e3 3763 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3764
a0f42c21 3765 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3766 }
3767}
3768
3769static void
652a8996
JK
3770dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3771 const char *fullname)
9291a0cd
TT
3772{
3773 int i;
3774
3775 dw2_setup (objfile);
d4637a04
DE
3776
3777 /* We don't need to consider type units here.
3778 This is only called for examining code, e.g. expand_line_sal.
3779 There can be an order of magnitude (or more) more type units
3780 than comp units, and we avoid them if we can. */
3781
3782 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3783 {
3784 int j;
8832e7e3 3785 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3786 struct quick_file_names *file_data;
9291a0cd 3787
3d7bb9d9 3788 /* We only need to look at symtabs not already expanded. */
43f3e411 3789 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3790 continue;
3791
e4a48d9d 3792 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3793 if (file_data == NULL)
9291a0cd
TT
3794 continue;
3795
7b9f3c50 3796 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3797 {
652a8996
JK
3798 const char *this_fullname = file_data->file_names[j];
3799
3800 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3801 {
a0f42c21 3802 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3803 break;
3804 }
3805 }
3806 }
3807}
3808
9291a0cd 3809static void
ade7ed9e
DE
3810dw2_map_matching_symbols (struct objfile *objfile,
3811 const char * name, domain_enum namespace,
3812 int global,
40658b94
PH
3813 int (*callback) (struct block *,
3814 struct symbol *, void *),
2edb89d3
JK
3815 void *data, symbol_compare_ftype *match,
3816 symbol_compare_ftype *ordered_compare)
9291a0cd 3817{
40658b94 3818 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3819 current language is Ada for a non-Ada objfile using GNU index. As Ada
3820 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3821}
3822
3823static void
f8eba3c6
TT
3824dw2_expand_symtabs_matching
3825 (struct objfile *objfile,
206f2a57
DE
3826 expand_symtabs_file_matcher_ftype *file_matcher,
3827 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3828 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3829 enum search_domain kind,
3830 void *data)
9291a0cd
TT
3831{
3832 int i;
3833 offset_type iter;
4b5246aa 3834 struct mapped_index *index;
9291a0cd
TT
3835
3836 dw2_setup (objfile);
ae2de4f8
DE
3837
3838 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3839 if (!dwarf2_per_objfile->index_table)
3840 return;
4b5246aa 3841 index = dwarf2_per_objfile->index_table;
9291a0cd 3842
7b08b9eb 3843 if (file_matcher != NULL)
24c79950
TT
3844 {
3845 struct cleanup *cleanup;
3846 htab_t visited_found, visited_not_found;
3847
3848 visited_found = htab_create_alloc (10,
3849 htab_hash_pointer, htab_eq_pointer,
3850 NULL, xcalloc, xfree);
3851 cleanup = make_cleanup_htab_delete (visited_found);
3852 visited_not_found = htab_create_alloc (10,
3853 htab_hash_pointer, htab_eq_pointer,
3854 NULL, xcalloc, xfree);
3855 make_cleanup_htab_delete (visited_not_found);
3856
848e3e78
DE
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3861 {
3862 int j;
8832e7e3 3863 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3864 struct quick_file_names *file_data;
3865 void **slot;
7b08b9eb 3866
24c79950 3867 per_cu->v.quick->mark = 0;
3d7bb9d9 3868
24c79950 3869 /* We only need to look at symtabs not already expanded. */
43f3e411 3870 if (per_cu->v.quick->compunit_symtab)
24c79950 3871 continue;
7b08b9eb 3872
e4a48d9d 3873 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3874 if (file_data == NULL)
3875 continue;
7b08b9eb 3876
24c79950
TT
3877 if (htab_find (visited_not_found, file_data) != NULL)
3878 continue;
3879 else if (htab_find (visited_found, file_data) != NULL)
3880 {
3881 per_cu->v.quick->mark = 1;
3882 continue;
3883 }
3884
3885 for (j = 0; j < file_data->num_file_names; ++j)
3886 {
da235a7c
JK
3887 const char *this_real_name;
3888
fbd9ab74 3889 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3890 {
3891 per_cu->v.quick->mark = 1;
3892 break;
3893 }
da235a7c
JK
3894
3895 /* Before we invoke realpath, which can get expensive when many
3896 files are involved, do a quick comparison of the basenames. */
3897 if (!basenames_may_differ
3898 && !file_matcher (lbasename (file_data->file_names[j]),
3899 data, 1))
3900 continue;
3901
3902 this_real_name = dw2_get_real_path (objfile, file_data, j);
3903 if (file_matcher (this_real_name, data, 0))
3904 {
3905 per_cu->v.quick->mark = 1;
3906 break;
3907 }
24c79950
TT
3908 }
3909
3910 slot = htab_find_slot (per_cu->v.quick->mark
3911 ? visited_found
3912 : visited_not_found,
3913 file_data, INSERT);
3914 *slot = file_data;
3915 }
3916
3917 do_cleanups (cleanup);
3918 }
9291a0cd 3919
3876f04e 3920 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3921 {
3922 offset_type idx = 2 * iter;
3923 const char *name;
3924 offset_type *vec, vec_len, vec_idx;
8943b874 3925 int global_seen = 0;
9291a0cd 3926
3876f04e 3927 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3928 continue;
3929
3876f04e 3930 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3931
206f2a57 3932 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3933 continue;
3934
3935 /* The name was matched, now expand corresponding CUs that were
3936 marked. */
4b5246aa 3937 vec = (offset_type *) (index->constant_pool
3876f04e 3938 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3939 vec_len = MAYBE_SWAP (vec[0]);
3940 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3941 {
e254ef6a 3942 struct dwarf2_per_cu_data *per_cu;
156942c7 3943 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3944 /* This value is only valid for index versions >= 7. */
3945 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3946 gdb_index_symbol_kind symbol_kind =
3947 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3948 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3949 /* Only check the symbol attributes if they're present.
3950 Indices prior to version 7 don't record them,
3951 and indices >= 7 may elide them for certain symbols
3952 (gold does this). */
3953 int attrs_valid =
3954 (index->version >= 7
3955 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3956
8943b874
DE
3957 /* Work around gold/15646. */
3958 if (attrs_valid)
3959 {
3960 if (!is_static && global_seen)
3961 continue;
3962 if (!is_static)
3963 global_seen = 1;
3964 }
3965
3190f0c6
DE
3966 /* Only check the symbol's kind if it has one. */
3967 if (attrs_valid)
156942c7
DE
3968 {
3969 switch (kind)
3970 {
3971 case VARIABLES_DOMAIN:
3972 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3973 continue;
3974 break;
3975 case FUNCTIONS_DOMAIN:
3976 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3977 continue;
3978 break;
3979 case TYPES_DOMAIN:
3980 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3981 continue;
3982 break;
3983 default:
3984 break;
3985 }
3986 }
3987
3190f0c6
DE
3988 /* Don't crash on bad data. */
3989 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3990 + dwarf2_per_objfile->n_type_units))
3991 {
3992 complaint (&symfile_complaints,
3993 _(".gdb_index entry has bad CU index"
4262abfb 3994 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3995 continue;
3996 }
3997
8832e7e3 3998 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3999 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4000 {
4001 int symtab_was_null =
4002 (per_cu->v.quick->compunit_symtab == NULL);
4003
4004 dw2_instantiate_symtab (per_cu);
4005
4006 if (expansion_notify != NULL
4007 && symtab_was_null
4008 && per_cu->v.quick->compunit_symtab != NULL)
4009 {
4010 expansion_notify (per_cu->v.quick->compunit_symtab,
4011 data);
4012 }
4013 }
9291a0cd
TT
4014 }
4015 }
4016}
4017
43f3e411 4018/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4019 symtab. */
4020
43f3e411
DE
4021static struct compunit_symtab *
4022recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4023 CORE_ADDR pc)
9703b513
TT
4024{
4025 int i;
4026
43f3e411
DE
4027 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4028 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4029 return cust;
9703b513 4030
43f3e411 4031 if (cust->includes == NULL)
a3ec0bb1
DE
4032 return NULL;
4033
43f3e411 4034 for (i = 0; cust->includes[i]; ++i)
9703b513 4035 {
43f3e411 4036 struct compunit_symtab *s = cust->includes[i];
9703b513 4037
43f3e411 4038 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4039 if (s != NULL)
4040 return s;
4041 }
4042
4043 return NULL;
4044}
4045
43f3e411
DE
4046static struct compunit_symtab *
4047dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4048 struct bound_minimal_symbol msymbol,
4049 CORE_ADDR pc,
4050 struct obj_section *section,
4051 int warn_if_readin)
9291a0cd
TT
4052{
4053 struct dwarf2_per_cu_data *data;
43f3e411 4054 struct compunit_symtab *result;
9291a0cd
TT
4055
4056 dw2_setup (objfile);
4057
4058 if (!objfile->psymtabs_addrmap)
4059 return NULL;
4060
4061 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4062 if (!data)
4063 return NULL;
4064
43f3e411 4065 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4066 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4067 paddress (get_objfile_arch (objfile), pc));
4068
43f3e411
DE
4069 result
4070 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4071 pc);
9703b513
TT
4072 gdb_assert (result != NULL);
4073 return result;
9291a0cd
TT
4074}
4075
9291a0cd 4076static void
44b13c5a 4077dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4078 void *data, int need_fullname)
9291a0cd
TT
4079{
4080 int i;
24c79950
TT
4081 struct cleanup *cleanup;
4082 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4083 NULL, xcalloc, xfree);
9291a0cd 4084
24c79950 4085 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4086 dw2_setup (objfile);
ae2de4f8 4087
848e3e78
DE
4088 /* The rule is CUs specify all the files, including those used by
4089 any TU, so there's no need to scan TUs here.
4090 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4091
848e3e78 4092 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4093 {
8832e7e3 4094 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4095
43f3e411 4096 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4097 {
4098 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4099 INSERT);
4100
4101 *slot = per_cu->v.quick->file_names;
4102 }
4103 }
4104
848e3e78 4105 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4106 {
4107 int j;
8832e7e3 4108 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4109 struct quick_file_names *file_data;
24c79950 4110 void **slot;
9291a0cd 4111
3d7bb9d9 4112 /* We only need to look at symtabs not already expanded. */
43f3e411 4113 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4114 continue;
4115
e4a48d9d 4116 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4117 if (file_data == NULL)
9291a0cd
TT
4118 continue;
4119
24c79950
TT
4120 slot = htab_find_slot (visited, file_data, INSERT);
4121 if (*slot)
4122 {
4123 /* Already visited. */
4124 continue;
4125 }
4126 *slot = file_data;
4127
7b9f3c50 4128 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4129 {
74e2f255
DE
4130 const char *this_real_name;
4131
4132 if (need_fullname)
4133 this_real_name = dw2_get_real_path (objfile, file_data, j);
4134 else
4135 this_real_name = NULL;
7b9f3c50 4136 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4137 }
4138 }
24c79950
TT
4139
4140 do_cleanups (cleanup);
9291a0cd
TT
4141}
4142
4143static int
4144dw2_has_symbols (struct objfile *objfile)
4145{
4146 return 1;
4147}
4148
4149const struct quick_symbol_functions dwarf2_gdb_index_functions =
4150{
4151 dw2_has_symbols,
4152 dw2_find_last_source_symtab,
4153 dw2_forget_cached_source_info,
f8eba3c6 4154 dw2_map_symtabs_matching_filename,
9291a0cd 4155 dw2_lookup_symbol,
9291a0cd
TT
4156 dw2_print_stats,
4157 dw2_dump,
4158 dw2_relocate,
4159 dw2_expand_symtabs_for_function,
4160 dw2_expand_all_symtabs,
652a8996 4161 dw2_expand_symtabs_with_fullname,
40658b94 4162 dw2_map_matching_symbols,
9291a0cd 4163 dw2_expand_symtabs_matching,
43f3e411 4164 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4165 dw2_map_symbol_filenames
4166};
4167
4168/* Initialize for reading DWARF for this objfile. Return 0 if this
4169 file will use psymtabs, or 1 if using the GNU index. */
4170
4171int
4172dwarf2_initialize_objfile (struct objfile *objfile)
4173{
4174 /* If we're about to read full symbols, don't bother with the
4175 indices. In this case we also don't care if some other debug
4176 format is making psymtabs, because they are all about to be
4177 expanded anyway. */
4178 if ((objfile->flags & OBJF_READNOW))
4179 {
4180 int i;
4181
4182 dwarf2_per_objfile->using_index = 1;
4183 create_all_comp_units (objfile);
0e50663e 4184 create_all_type_units (objfile);
7b9f3c50
DE
4185 dwarf2_per_objfile->quick_file_names_table =
4186 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4187
1fd400ff 4188 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4189 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4190 {
8832e7e3 4191 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4192
e254ef6a
DE
4193 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4194 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4195 }
4196
4197 /* Return 1 so that gdb sees the "quick" functions. However,
4198 these functions will be no-ops because we will have expanded
4199 all symtabs. */
4200 return 1;
4201 }
4202
4203 if (dwarf2_read_index (objfile))
4204 return 1;
4205
9291a0cd
TT
4206 return 0;
4207}
4208
4209\f
4210
dce234bc
PP
4211/* Build a partial symbol table. */
4212
4213void
f29dff0a 4214dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4215{
c9bf0622
TT
4216 volatile struct gdb_exception except;
4217
f29dff0a 4218 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4219 {
4220 init_psymbol_list (objfile, 1024);
4221 }
4222
c9bf0622
TT
4223 TRY_CATCH (except, RETURN_MASK_ERROR)
4224 {
4225 /* This isn't really ideal: all the data we allocate on the
4226 objfile's obstack is still uselessly kept around. However,
4227 freeing it seems unsafe. */
4228 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4229
4230 dwarf2_build_psymtabs_hard (objfile);
4231 discard_cleanups (cleanups);
4232 }
4233 if (except.reason < 0)
4234 exception_print (gdb_stderr, except);
c906108c 4235}
c906108c 4236
1ce1cefd
DE
4237/* Return the total length of the CU described by HEADER. */
4238
4239static unsigned int
4240get_cu_length (const struct comp_unit_head *header)
4241{
4242 return header->initial_length_size + header->length;
4243}
4244
45452591
DE
4245/* Return TRUE if OFFSET is within CU_HEADER. */
4246
4247static inline int
b64f50a1 4248offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4249{
b64f50a1 4250 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4251 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4252
b64f50a1 4253 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4254}
4255
3b80fe9b
DE
4256/* Find the base address of the compilation unit for range lists and
4257 location lists. It will normally be specified by DW_AT_low_pc.
4258 In DWARF-3 draft 4, the base address could be overridden by
4259 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4260 compilation units with discontinuous ranges. */
4261
4262static void
4263dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4264{
4265 struct attribute *attr;
4266
4267 cu->base_known = 0;
4268 cu->base_address = 0;
4269
4270 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4271 if (attr)
4272 {
31aa7e4e 4273 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4274 cu->base_known = 1;
4275 }
4276 else
4277 {
4278 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4279 if (attr)
4280 {
31aa7e4e 4281 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4282 cu->base_known = 1;
4283 }
4284 }
4285}
4286
93311388
DE
4287/* Read in the comp unit header information from the debug_info at info_ptr.
4288 NOTE: This leaves members offset, first_die_offset to be filled in
4289 by the caller. */
107d2387 4290
d521ce57 4291static const gdb_byte *
107d2387 4292read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4293 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4294{
4295 int signed_addr;
891d2f0b 4296 unsigned int bytes_read;
c764a876
DE
4297
4298 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4299 cu_header->initial_length_size = bytes_read;
4300 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4301 info_ptr += bytes_read;
107d2387
AC
4302 cu_header->version = read_2_bytes (abfd, info_ptr);
4303 info_ptr += 2;
b64f50a1
JK
4304 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4305 &bytes_read);
613e1657 4306 info_ptr += bytes_read;
107d2387
AC
4307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4308 info_ptr += 1;
4309 signed_addr = bfd_get_sign_extend_vma (abfd);
4310 if (signed_addr < 0)
8e65ff28 4311 internal_error (__FILE__, __LINE__,
e2e0b3e5 4312 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4313 cu_header->signed_addr_p = signed_addr;
c764a876 4314
107d2387
AC
4315 return info_ptr;
4316}
4317
36586728
TT
4318/* Helper function that returns the proper abbrev section for
4319 THIS_CU. */
4320
4321static struct dwarf2_section_info *
4322get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4323{
4324 struct dwarf2_section_info *abbrev;
4325
4326 if (this_cu->is_dwz)
4327 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4328 else
4329 abbrev = &dwarf2_per_objfile->abbrev;
4330
4331 return abbrev;
4332}
4333
9ff913ba
DE
4334/* Subroutine of read_and_check_comp_unit_head and
4335 read_and_check_type_unit_head to simplify them.
4336 Perform various error checking on the header. */
4337
4338static void
4339error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4340 struct dwarf2_section_info *section,
4341 struct dwarf2_section_info *abbrev_section)
9ff913ba 4342{
a32a8923
DE
4343 bfd *abfd = get_section_bfd_owner (section);
4344 const char *filename = get_section_file_name (section);
9ff913ba
DE
4345
4346 if (header->version != 2 && header->version != 3 && header->version != 4)
4347 error (_("Dwarf Error: wrong version in compilation unit header "
4348 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4349 filename);
4350
b64f50a1 4351 if (header->abbrev_offset.sect_off
36586728 4352 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4353 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4354 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4355 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4356 filename);
4357
4358 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4359 avoid potential 32-bit overflow. */
1ce1cefd 4360 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4361 > section->size)
4362 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4363 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4364 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4365 filename);
4366}
4367
4368/* Read in a CU/TU header and perform some basic error checking.
4369 The contents of the header are stored in HEADER.
4370 The result is a pointer to the start of the first DIE. */
adabb602 4371
d521ce57 4372static const gdb_byte *
9ff913ba
DE
4373read_and_check_comp_unit_head (struct comp_unit_head *header,
4374 struct dwarf2_section_info *section,
4bdcc0c1 4375 struct dwarf2_section_info *abbrev_section,
d521ce57 4376 const gdb_byte *info_ptr,
9ff913ba 4377 int is_debug_types_section)
72bf9492 4378{
d521ce57 4379 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4380 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4381
b64f50a1 4382 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4383
72bf9492
DJ
4384 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4385
460c1c54
CC
4386 /* If we're reading a type unit, skip over the signature and
4387 type_offset fields. */
b0df02fd 4388 if (is_debug_types_section)
460c1c54
CC
4389 info_ptr += 8 /*signature*/ + header->offset_size;
4390
b64f50a1 4391 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4392
4bdcc0c1 4393 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4394
4395 return info_ptr;
4396}
4397
348e048f
DE
4398/* Read in the types comp unit header information from .debug_types entry at
4399 types_ptr. The result is a pointer to one past the end of the header. */
4400
d521ce57 4401static const gdb_byte *
9ff913ba
DE
4402read_and_check_type_unit_head (struct comp_unit_head *header,
4403 struct dwarf2_section_info *section,
4bdcc0c1 4404 struct dwarf2_section_info *abbrev_section,
d521ce57 4405 const gdb_byte *info_ptr,
dee91e82
DE
4406 ULONGEST *signature,
4407 cu_offset *type_offset_in_tu)
348e048f 4408{
d521ce57 4409 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4410 bfd *abfd = get_section_bfd_owner (section);
348e048f 4411
b64f50a1 4412 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4413
9ff913ba 4414 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4415
9ff913ba
DE
4416 /* If we're reading a type unit, skip over the signature and
4417 type_offset fields. */
4418 if (signature != NULL)
4419 *signature = read_8_bytes (abfd, info_ptr);
4420 info_ptr += 8;
dee91e82
DE
4421 if (type_offset_in_tu != NULL)
4422 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4423 header->offset_size);
9ff913ba
DE
4424 info_ptr += header->offset_size;
4425
b64f50a1 4426 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4427
4bdcc0c1 4428 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4429
4430 return info_ptr;
348e048f
DE
4431}
4432
f4dc4d17
DE
4433/* Fetch the abbreviation table offset from a comp or type unit header. */
4434
4435static sect_offset
4436read_abbrev_offset (struct dwarf2_section_info *section,
4437 sect_offset offset)
4438{
a32a8923 4439 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4440 const gdb_byte *info_ptr;
f4dc4d17
DE
4441 unsigned int length, initial_length_size, offset_size;
4442 sect_offset abbrev_offset;
4443
4444 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4445 info_ptr = section->buffer + offset.sect_off;
4446 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4447 offset_size = initial_length_size == 4 ? 4 : 8;
4448 info_ptr += initial_length_size + 2 /*version*/;
4449 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4450 return abbrev_offset;
4451}
4452
aaa75496
JB
4453/* Allocate a new partial symtab for file named NAME and mark this new
4454 partial symtab as being an include of PST. */
4455
4456static void
d521ce57 4457dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4458 struct objfile *objfile)
4459{
4460 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4461
fbd9ab74
JK
4462 if (!IS_ABSOLUTE_PATH (subpst->filename))
4463 {
4464 /* It shares objfile->objfile_obstack. */
4465 subpst->dirname = pst->dirname;
4466 }
4467
aaa75496
JB
4468 subpst->section_offsets = pst->section_offsets;
4469 subpst->textlow = 0;
4470 subpst->texthigh = 0;
4471
4472 subpst->dependencies = (struct partial_symtab **)
4473 obstack_alloc (&objfile->objfile_obstack,
4474 sizeof (struct partial_symtab *));
4475 subpst->dependencies[0] = pst;
4476 subpst->number_of_dependencies = 1;
4477
4478 subpst->globals_offset = 0;
4479 subpst->n_global_syms = 0;
4480 subpst->statics_offset = 0;
4481 subpst->n_static_syms = 0;
43f3e411 4482 subpst->compunit_symtab = NULL;
aaa75496
JB
4483 subpst->read_symtab = pst->read_symtab;
4484 subpst->readin = 0;
4485
4486 /* No private part is necessary for include psymtabs. This property
4487 can be used to differentiate between such include psymtabs and
10b3939b 4488 the regular ones. */
58a9656e 4489 subpst->read_symtab_private = NULL;
aaa75496
JB
4490}
4491
4492/* Read the Line Number Program data and extract the list of files
4493 included by the source file represented by PST. Build an include
d85a05f0 4494 partial symtab for each of these included files. */
aaa75496
JB
4495
4496static void
4497dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4498 struct die_info *die,
4499 struct partial_symtab *pst)
aaa75496 4500{
d85a05f0
DJ
4501 struct line_header *lh = NULL;
4502 struct attribute *attr;
aaa75496 4503
d85a05f0
DJ
4504 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4505 if (attr)
3019eac3 4506 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4507 if (lh == NULL)
4508 return; /* No linetable, so no includes. */
4509
c6da4cef 4510 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4511 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4512
4513 free_line_header (lh);
4514}
4515
348e048f 4516static hashval_t
52dc124a 4517hash_signatured_type (const void *item)
348e048f 4518{
52dc124a 4519 const struct signatured_type *sig_type = item;
9a619af0 4520
348e048f 4521 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4522 return sig_type->signature;
348e048f
DE
4523}
4524
4525static int
52dc124a 4526eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4527{
4528 const struct signatured_type *lhs = item_lhs;
4529 const struct signatured_type *rhs = item_rhs;
9a619af0 4530
348e048f
DE
4531 return lhs->signature == rhs->signature;
4532}
4533
1fd400ff
TT
4534/* Allocate a hash table for signatured types. */
4535
4536static htab_t
673bfd45 4537allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4538{
4539 return htab_create_alloc_ex (41,
52dc124a
DE
4540 hash_signatured_type,
4541 eq_signatured_type,
1fd400ff
TT
4542 NULL,
4543 &objfile->objfile_obstack,
4544 hashtab_obstack_allocate,
4545 dummy_obstack_deallocate);
4546}
4547
d467dd73 4548/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4549
4550static int
d467dd73 4551add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4552{
4553 struct signatured_type *sigt = *slot;
b4dd5633 4554 struct signatured_type ***datap = datum;
1fd400ff 4555
b4dd5633 4556 **datap = sigt;
1fd400ff
TT
4557 ++*datap;
4558
4559 return 1;
4560}
4561
c88ee1f0
DE
4562/* Create the hash table of all entries in the .debug_types
4563 (or .debug_types.dwo) section(s).
4564 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4565 otherwise it is NULL.
4566
4567 The result is a pointer to the hash table or NULL if there are no types.
4568
4569 Note: This function processes DWO files only, not DWP files. */
348e048f 4570
3019eac3
DE
4571static htab_t
4572create_debug_types_hash_table (struct dwo_file *dwo_file,
4573 VEC (dwarf2_section_info_def) *types)
348e048f 4574{
3019eac3 4575 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4576 htab_t types_htab = NULL;
8b70b953
TT
4577 int ix;
4578 struct dwarf2_section_info *section;
4bdcc0c1 4579 struct dwarf2_section_info *abbrev_section;
348e048f 4580
3019eac3
DE
4581 if (VEC_empty (dwarf2_section_info_def, types))
4582 return NULL;
348e048f 4583
4bdcc0c1
DE
4584 abbrev_section = (dwo_file != NULL
4585 ? &dwo_file->sections.abbrev
4586 : &dwarf2_per_objfile->abbrev);
4587
09406207
DE
4588 if (dwarf2_read_debug)
4589 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4590 dwo_file ? ".dwo" : "",
a32a8923 4591 get_section_file_name (abbrev_section));
09406207 4592
8b70b953 4593 for (ix = 0;
3019eac3 4594 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4595 ++ix)
4596 {
3019eac3 4597 bfd *abfd;
d521ce57 4598 const gdb_byte *info_ptr, *end_ptr;
348e048f 4599
8b70b953
TT
4600 dwarf2_read_section (objfile, section);
4601 info_ptr = section->buffer;
348e048f 4602
8b70b953
TT
4603 if (info_ptr == NULL)
4604 continue;
348e048f 4605
3019eac3 4606 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4607 not present, in which case the bfd is unknown. */
4608 abfd = get_section_bfd_owner (section);
3019eac3 4609
dee91e82
DE
4610 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4611 because we don't need to read any dies: the signature is in the
4612 header. */
8b70b953
TT
4613
4614 end_ptr = info_ptr + section->size;
4615 while (info_ptr < end_ptr)
4616 {
b64f50a1 4617 sect_offset offset;
3019eac3 4618 cu_offset type_offset_in_tu;
8b70b953 4619 ULONGEST signature;
52dc124a 4620 struct signatured_type *sig_type;
3019eac3 4621 struct dwo_unit *dwo_tu;
8b70b953 4622 void **slot;
d521ce57 4623 const gdb_byte *ptr = info_ptr;
9ff913ba 4624 struct comp_unit_head header;
dee91e82 4625 unsigned int length;
348e048f 4626
b64f50a1 4627 offset.sect_off = ptr - section->buffer;
348e048f 4628
8b70b953 4629 /* We need to read the type's signature in order to build the hash
9ff913ba 4630 table, but we don't need anything else just yet. */
348e048f 4631
4bdcc0c1
DE
4632 ptr = read_and_check_type_unit_head (&header, section,
4633 abbrev_section, ptr,
3019eac3 4634 &signature, &type_offset_in_tu);
6caca83c 4635
1ce1cefd 4636 length = get_cu_length (&header);
dee91e82 4637
6caca83c 4638 /* Skip dummy type units. */
dee91e82
DE
4639 if (ptr >= info_ptr + length
4640 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4641 {
1ce1cefd 4642 info_ptr += length;
6caca83c
CC
4643 continue;
4644 }
8b70b953 4645
0349ea22
DE
4646 if (types_htab == NULL)
4647 {
4648 if (dwo_file)
4649 types_htab = allocate_dwo_unit_table (objfile);
4650 else
4651 types_htab = allocate_signatured_type_table (objfile);
4652 }
4653
3019eac3
DE
4654 if (dwo_file)
4655 {
4656 sig_type = NULL;
4657 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4658 struct dwo_unit);
4659 dwo_tu->dwo_file = dwo_file;
4660 dwo_tu->signature = signature;
4661 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4662 dwo_tu->section = section;
3019eac3
DE
4663 dwo_tu->offset = offset;
4664 dwo_tu->length = length;
4665 }
4666 else
4667 {
4668 /* N.B.: type_offset is not usable if this type uses a DWO file.
4669 The real type_offset is in the DWO file. */
4670 dwo_tu = NULL;
4671 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4672 struct signatured_type);
4673 sig_type->signature = signature;
4674 sig_type->type_offset_in_tu = type_offset_in_tu;
4675 sig_type->per_cu.objfile = objfile;
4676 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4677 sig_type->per_cu.section = section;
3019eac3
DE
4678 sig_type->per_cu.offset = offset;
4679 sig_type->per_cu.length = length;
4680 }
8b70b953 4681
3019eac3
DE
4682 slot = htab_find_slot (types_htab,
4683 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4684 INSERT);
8b70b953
TT
4685 gdb_assert (slot != NULL);
4686 if (*slot != NULL)
4687 {
3019eac3
DE
4688 sect_offset dup_offset;
4689
4690 if (dwo_file)
4691 {
4692 const struct dwo_unit *dup_tu = *slot;
4693
4694 dup_offset = dup_tu->offset;
4695 }
4696 else
4697 {
4698 const struct signatured_type *dup_tu = *slot;
4699
4700 dup_offset = dup_tu->per_cu.offset;
4701 }
b3c8eb43 4702
8b70b953 4703 complaint (&symfile_complaints,
c88ee1f0 4704 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4705 " the entry at offset 0x%x, signature %s"),
3019eac3 4706 offset.sect_off, dup_offset.sect_off,
4031ecc5 4707 hex_string (signature));
8b70b953 4708 }
3019eac3 4709 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4710
73be47f5 4711 if (dwarf2_read_debug > 1)
4031ecc5 4712 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4713 offset.sect_off,
4031ecc5 4714 hex_string (signature));
348e048f 4715
dee91e82 4716 info_ptr += length;
8b70b953 4717 }
348e048f
DE
4718 }
4719
3019eac3
DE
4720 return types_htab;
4721}
4722
4723/* Create the hash table of all entries in the .debug_types section,
4724 and initialize all_type_units.
4725 The result is zero if there is an error (e.g. missing .debug_types section),
4726 otherwise non-zero. */
4727
4728static int
4729create_all_type_units (struct objfile *objfile)
4730{
4731 htab_t types_htab;
b4dd5633 4732 struct signatured_type **iter;
3019eac3
DE
4733
4734 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4735 if (types_htab == NULL)
4736 {
4737 dwarf2_per_objfile->signatured_types = NULL;
4738 return 0;
4739 }
4740
348e048f
DE
4741 dwarf2_per_objfile->signatured_types = types_htab;
4742
6aa5f3a6
DE
4743 dwarf2_per_objfile->n_type_units
4744 = dwarf2_per_objfile->n_allocated_type_units
4745 = htab_elements (types_htab);
d467dd73 4746 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4747 = xmalloc (dwarf2_per_objfile->n_type_units
4748 * sizeof (struct signatured_type *));
d467dd73
DE
4749 iter = &dwarf2_per_objfile->all_type_units[0];
4750 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4751 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4752 == dwarf2_per_objfile->n_type_units);
1fd400ff 4753
348e048f
DE
4754 return 1;
4755}
4756
6aa5f3a6
DE
4757/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4758 If SLOT is non-NULL, it is the entry to use in the hash table.
4759 Otherwise we find one. */
4760
4761static struct signatured_type *
4762add_type_unit (ULONGEST sig, void **slot)
4763{
4764 struct objfile *objfile = dwarf2_per_objfile->objfile;
4765 int n_type_units = dwarf2_per_objfile->n_type_units;
4766 struct signatured_type *sig_type;
4767
4768 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4769 ++n_type_units;
4770 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4771 {
4772 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4773 dwarf2_per_objfile->n_allocated_type_units = 1;
4774 dwarf2_per_objfile->n_allocated_type_units *= 2;
4775 dwarf2_per_objfile->all_type_units
4776 = xrealloc (dwarf2_per_objfile->all_type_units,
4777 dwarf2_per_objfile->n_allocated_type_units
4778 * sizeof (struct signatured_type *));
4779 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4780 }
4781 dwarf2_per_objfile->n_type_units = n_type_units;
4782
4783 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4784 struct signatured_type);
4785 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4786 sig_type->signature = sig;
4787 sig_type->per_cu.is_debug_types = 1;
4788 if (dwarf2_per_objfile->using_index)
4789 {
4790 sig_type->per_cu.v.quick =
4791 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct dwarf2_per_cu_quick_data);
4793 }
4794
4795 if (slot == NULL)
4796 {
4797 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4798 sig_type, INSERT);
4799 }
4800 gdb_assert (*slot == NULL);
4801 *slot = sig_type;
4802 /* The rest of sig_type must be filled in by the caller. */
4803 return sig_type;
4804}
4805
a2ce51a0
DE
4806/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4807 Fill in SIG_ENTRY with DWO_ENTRY. */
4808
4809static void
4810fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4811 struct signatured_type *sig_entry,
4812 struct dwo_unit *dwo_entry)
4813{
7ee85ab1 4814 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4815 gdb_assert (! sig_entry->per_cu.queued);
4816 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4817 if (dwarf2_per_objfile->using_index)
4818 {
4819 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4820 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4821 }
4822 else
4823 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4824 gdb_assert (sig_entry->signature == dwo_entry->signature);
4825 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4826 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4827 gdb_assert (sig_entry->dwo_unit == NULL);
4828
4829 sig_entry->per_cu.section = dwo_entry->section;
4830 sig_entry->per_cu.offset = dwo_entry->offset;
4831 sig_entry->per_cu.length = dwo_entry->length;
4832 sig_entry->per_cu.reading_dwo_directly = 1;
4833 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4834 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4835 sig_entry->dwo_unit = dwo_entry;
4836}
4837
4838/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4839 If we haven't read the TU yet, create the signatured_type data structure
4840 for a TU to be read in directly from a DWO file, bypassing the stub.
4841 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4842 using .gdb_index, then when reading a CU we want to stay in the DWO file
4843 containing that CU. Otherwise we could end up reading several other DWO
4844 files (due to comdat folding) to process the transitive closure of all the
4845 mentioned TUs, and that can be slow. The current DWO file will have every
4846 type signature that it needs.
a2ce51a0
DE
4847 We only do this for .gdb_index because in the psymtab case we already have
4848 to read all the DWOs to build the type unit groups. */
4849
4850static struct signatured_type *
4851lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4852{
4853 struct objfile *objfile = dwarf2_per_objfile->objfile;
4854 struct dwo_file *dwo_file;
4855 struct dwo_unit find_dwo_entry, *dwo_entry;
4856 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4857 void **slot;
a2ce51a0
DE
4858
4859 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4860
6aa5f3a6
DE
4861 /* If TU skeletons have been removed then we may not have read in any
4862 TUs yet. */
4863 if (dwarf2_per_objfile->signatured_types == NULL)
4864 {
4865 dwarf2_per_objfile->signatured_types
4866 = allocate_signatured_type_table (objfile);
4867 }
a2ce51a0
DE
4868
4869 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4870 Use the global signatured_types array to do our own comdat-folding
4871 of types. If this is the first time we're reading this TU, and
4872 the TU has an entry in .gdb_index, replace the recorded data from
4873 .gdb_index with this TU. */
a2ce51a0 4874
a2ce51a0 4875 find_sig_entry.signature = sig;
6aa5f3a6
DE
4876 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4877 &find_sig_entry, INSERT);
4878 sig_entry = *slot;
7ee85ab1
DE
4879
4880 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4881 read. Don't reassign the global entry to point to this DWO if that's
4882 the case. Also note that if the TU is already being read, it may not
4883 have come from a DWO, the program may be a mix of Fission-compiled
4884 code and non-Fission-compiled code. */
4885
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4890 return sig_entry;
4891
6aa5f3a6
DE
4892 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4893 dwo_unit of the TU itself. */
4894 dwo_file = cu->dwo_unit->dwo_file;
4895
a2ce51a0
DE
4896 /* Ok, this is the first time we're reading this TU. */
4897 if (dwo_file->tus == NULL)
4898 return NULL;
4899 find_dwo_entry.signature = sig;
4900 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4901 if (dwo_entry == NULL)
4902 return NULL;
4903
6aa5f3a6
DE
4904 /* If the global table doesn't have an entry for this TU, add one. */
4905 if (sig_entry == NULL)
4906 sig_entry = add_type_unit (sig, slot);
4907
a2ce51a0 4908 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4909 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4910 return sig_entry;
4911}
4912
a2ce51a0
DE
4913/* Subroutine of lookup_signatured_type.
4914 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4915 then try the DWP file. If the TU stub (skeleton) has been removed then
4916 it won't be in .gdb_index. */
a2ce51a0
DE
4917
4918static struct signatured_type *
4919lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4920{
4921 struct objfile *objfile = dwarf2_per_objfile->objfile;
4922 struct dwp_file *dwp_file = get_dwp_file ();
4923 struct dwo_unit *dwo_entry;
4924 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4925 void **slot;
a2ce51a0
DE
4926
4927 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4928 gdb_assert (dwp_file != NULL);
4929
6aa5f3a6
DE
4930 /* If TU skeletons have been removed then we may not have read in any
4931 TUs yet. */
4932 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4933 {
6aa5f3a6
DE
4934 dwarf2_per_objfile->signatured_types
4935 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4936 }
4937
6aa5f3a6
DE
4938 find_sig_entry.signature = sig;
4939 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4940 &find_sig_entry, INSERT);
4941 sig_entry = *slot;
4942
4943 /* Have we already tried to read this TU?
4944 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4945 needn't exist in the global table yet). */
4946 if (sig_entry != NULL)
4947 return sig_entry;
4948
a2ce51a0
DE
4949 if (dwp_file->tus == NULL)
4950 return NULL;
57d63ce2
DE
4951 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4952 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4953 if (dwo_entry == NULL)
4954 return NULL;
4955
6aa5f3a6 4956 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4957 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4958
a2ce51a0
DE
4959 return sig_entry;
4960}
4961
380bca97 4962/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4963 Returns NULL if signature SIG is not present in the table.
4964 It is up to the caller to complain about this. */
348e048f
DE
4965
4966static struct signatured_type *
a2ce51a0 4967lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4968{
a2ce51a0
DE
4969 if (cu->dwo_unit
4970 && dwarf2_per_objfile->using_index)
4971 {
4972 /* We're in a DWO/DWP file, and we're using .gdb_index.
4973 These cases require special processing. */
4974 if (get_dwp_file () == NULL)
4975 return lookup_dwo_signatured_type (cu, sig);
4976 else
4977 return lookup_dwp_signatured_type (cu, sig);
4978 }
4979 else
4980 {
4981 struct signatured_type find_entry, *entry;
348e048f 4982
a2ce51a0
DE
4983 if (dwarf2_per_objfile->signatured_types == NULL)
4984 return NULL;
4985 find_entry.signature = sig;
4986 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4987 return entry;
4988 }
348e048f 4989}
42e7ad6c
DE
4990\f
4991/* Low level DIE reading support. */
348e048f 4992
d85a05f0
DJ
4993/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4994
4995static void
4996init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4997 struct dwarf2_cu *cu,
3019eac3
DE
4998 struct dwarf2_section_info *section,
4999 struct dwo_file *dwo_file)
d85a05f0 5000{
fceca515 5001 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5002 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5003 reader->cu = cu;
3019eac3 5004 reader->dwo_file = dwo_file;
dee91e82
DE
5005 reader->die_section = section;
5006 reader->buffer = section->buffer;
f664829e 5007 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5008 reader->comp_dir = NULL;
d85a05f0
DJ
5009}
5010
b0c7bfa9
DE
5011/* Subroutine of init_cutu_and_read_dies to simplify it.
5012 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5013 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5014 already.
5015
5016 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5017 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5018 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5019 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5020 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5021 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5022 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5023 are filled in with the info of the DIE from the DWO file.
5024 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5025 provided an abbrev table to use.
5026 The result is non-zero if a valid (non-dummy) DIE was found. */
5027
5028static int
5029read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5030 struct dwo_unit *dwo_unit,
5031 int abbrev_table_provided,
5032 struct die_info *stub_comp_unit_die,
a2ce51a0 5033 const char *stub_comp_dir,
b0c7bfa9 5034 struct die_reader_specs *result_reader,
d521ce57 5035 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5036 struct die_info **result_comp_unit_die,
5037 int *result_has_children)
5038{
5039 struct objfile *objfile = dwarf2_per_objfile->objfile;
5040 struct dwarf2_cu *cu = this_cu->cu;
5041 struct dwarf2_section_info *section;
5042 bfd *abfd;
d521ce57 5043 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5044 ULONGEST signature; /* Or dwo_id. */
5045 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5046 int i,num_extra_attrs;
5047 struct dwarf2_section_info *dwo_abbrev_section;
5048 struct attribute *attr;
5049 struct die_info *comp_unit_die;
5050
b0aeadb3
DE
5051 /* At most one of these may be provided. */
5052 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5053
b0c7bfa9
DE
5054 /* These attributes aren't processed until later:
5055 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5056 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5057 referenced later. However, these attributes are found in the stub
5058 which we won't have later. In order to not impose this complication
5059 on the rest of the code, we read them here and copy them to the
5060 DWO CU/TU die. */
b0c7bfa9
DE
5061
5062 stmt_list = NULL;
5063 low_pc = NULL;
5064 high_pc = NULL;
5065 ranges = NULL;
5066 comp_dir = NULL;
5067
5068 if (stub_comp_unit_die != NULL)
5069 {
5070 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5071 DWO file. */
5072 if (! this_cu->is_debug_types)
5073 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5074 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5075 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5076 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5077 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5078
5079 /* There should be a DW_AT_addr_base attribute here (if needed).
5080 We need the value before we can process DW_FORM_GNU_addr_index. */
5081 cu->addr_base = 0;
5082 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5083 if (attr)
5084 cu->addr_base = DW_UNSND (attr);
5085
5086 /* There should be a DW_AT_ranges_base attribute here (if needed).
5087 We need the value before we can process DW_AT_ranges. */
5088 cu->ranges_base = 0;
5089 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5090 if (attr)
5091 cu->ranges_base = DW_UNSND (attr);
5092 }
a2ce51a0
DE
5093 else if (stub_comp_dir != NULL)
5094 {
5095 /* Reconstruct the comp_dir attribute to simplify the code below. */
5096 comp_dir = (struct attribute *)
5097 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5098 comp_dir->name = DW_AT_comp_dir;
5099 comp_dir->form = DW_FORM_string;
5100 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5101 DW_STRING (comp_dir) = stub_comp_dir;
5102 }
b0c7bfa9
DE
5103
5104 /* Set up for reading the DWO CU/TU. */
5105 cu->dwo_unit = dwo_unit;
5106 section = dwo_unit->section;
5107 dwarf2_read_section (objfile, section);
a32a8923 5108 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5109 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5110 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5111 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5112
5113 if (this_cu->is_debug_types)
5114 {
5115 ULONGEST header_signature;
5116 cu_offset type_offset_in_tu;
5117 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5118
5119 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5120 dwo_abbrev_section,
5121 info_ptr,
5122 &header_signature,
5123 &type_offset_in_tu);
a2ce51a0
DE
5124 /* This is not an assert because it can be caused by bad debug info. */
5125 if (sig_type->signature != header_signature)
5126 {
5127 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5128 " TU at offset 0x%x [in module %s]"),
5129 hex_string (sig_type->signature),
5130 hex_string (header_signature),
5131 dwo_unit->offset.sect_off,
5132 bfd_get_filename (abfd));
5133 }
b0c7bfa9
DE
5134 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5135 /* For DWOs coming from DWP files, we don't know the CU length
5136 nor the type's offset in the TU until now. */
5137 dwo_unit->length = get_cu_length (&cu->header);
5138 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5139
5140 /* Establish the type offset that can be used to lookup the type.
5141 For DWO files, we don't know it until now. */
5142 sig_type->type_offset_in_section.sect_off =
5143 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5144 }
5145 else
5146 {
5147 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5148 dwo_abbrev_section,
5149 info_ptr, 0);
5150 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5151 /* For DWOs coming from DWP files, we don't know the CU length
5152 until now. */
5153 dwo_unit->length = get_cu_length (&cu->header);
5154 }
5155
02142a6c
DE
5156 /* Replace the CU's original abbrev table with the DWO's.
5157 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5158 if (abbrev_table_provided)
5159 {
5160 /* Don't free the provided abbrev table, the caller of
5161 init_cutu_and_read_dies owns it. */
5162 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5163 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5164 make_cleanup (dwarf2_free_abbrev_table, cu);
5165 }
5166 else
5167 {
5168 dwarf2_free_abbrev_table (cu);
5169 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5170 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5171 }
5172
5173 /* Read in the die, but leave space to copy over the attributes
5174 from the stub. This has the benefit of simplifying the rest of
5175 the code - all the work to maintain the illusion of a single
5176 DW_TAG_{compile,type}_unit DIE is done here. */
5177 num_extra_attrs = ((stmt_list != NULL)
5178 + (low_pc != NULL)
5179 + (high_pc != NULL)
5180 + (ranges != NULL)
5181 + (comp_dir != NULL));
5182 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5183 result_has_children, num_extra_attrs);
5184
5185 /* Copy over the attributes from the stub to the DIE we just read in. */
5186 comp_unit_die = *result_comp_unit_die;
5187 i = comp_unit_die->num_attrs;
5188 if (stmt_list != NULL)
5189 comp_unit_die->attrs[i++] = *stmt_list;
5190 if (low_pc != NULL)
5191 comp_unit_die->attrs[i++] = *low_pc;
5192 if (high_pc != NULL)
5193 comp_unit_die->attrs[i++] = *high_pc;
5194 if (ranges != NULL)
5195 comp_unit_die->attrs[i++] = *ranges;
5196 if (comp_dir != NULL)
5197 comp_unit_die->attrs[i++] = *comp_dir;
5198 comp_unit_die->num_attrs += num_extra_attrs;
5199
bf6af496
DE
5200 if (dwarf2_die_debug)
5201 {
5202 fprintf_unfiltered (gdb_stdlog,
5203 "Read die from %s@0x%x of %s:\n",
a32a8923 5204 get_section_name (section),
bf6af496
DE
5205 (unsigned) (begin_info_ptr - section->buffer),
5206 bfd_get_filename (abfd));
5207 dump_die (comp_unit_die, dwarf2_die_debug);
5208 }
5209
a2ce51a0
DE
5210 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5211 TUs by skipping the stub and going directly to the entry in the DWO file.
5212 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5213 to get it via circuitous means. Blech. */
5214 if (comp_dir != NULL)
5215 result_reader->comp_dir = DW_STRING (comp_dir);
5216
b0c7bfa9
DE
5217 /* Skip dummy compilation units. */
5218 if (info_ptr >= begin_info_ptr + dwo_unit->length
5219 || peek_abbrev_code (abfd, info_ptr) == 0)
5220 return 0;
5221
5222 *result_info_ptr = info_ptr;
5223 return 1;
5224}
5225
5226/* Subroutine of init_cutu_and_read_dies to simplify it.
5227 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5228 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5229
5230static struct dwo_unit *
5231lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5232 struct die_info *comp_unit_die)
5233{
5234 struct dwarf2_cu *cu = this_cu->cu;
5235 struct attribute *attr;
5236 ULONGEST signature;
5237 struct dwo_unit *dwo_unit;
5238 const char *comp_dir, *dwo_name;
5239
a2ce51a0
DE
5240 gdb_assert (cu != NULL);
5241
b0c7bfa9
DE
5242 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5243 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5244 gdb_assert (attr != NULL);
5245 dwo_name = DW_STRING (attr);
5246 comp_dir = NULL;
5247 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5248 if (attr)
5249 comp_dir = DW_STRING (attr);
5250
5251 if (this_cu->is_debug_types)
5252 {
5253 struct signatured_type *sig_type;
5254
5255 /* Since this_cu is the first member of struct signatured_type,
5256 we can go from a pointer to one to a pointer to the other. */
5257 sig_type = (struct signatured_type *) this_cu;
5258 signature = sig_type->signature;
5259 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5260 }
5261 else
5262 {
5263 struct attribute *attr;
5264
5265 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5266 if (! attr)
5267 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5268 " [in module %s]"),
4262abfb 5269 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5270 signature = DW_UNSND (attr);
5271 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5272 signature);
5273 }
5274
b0c7bfa9
DE
5275 return dwo_unit;
5276}
5277
a2ce51a0 5278/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5279 See it for a description of the parameters.
5280 Read a TU directly from a DWO file, bypassing the stub.
5281
5282 Note: This function could be a little bit simpler if we shared cleanups
5283 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5284 to do, so we keep this function self-contained. Or we could move this
5285 into our caller, but it's complex enough already. */
a2ce51a0
DE
5286
5287static void
6aa5f3a6
DE
5288init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5289 int use_existing_cu, int keep,
a2ce51a0
DE
5290 die_reader_func_ftype *die_reader_func,
5291 void *data)
5292{
5293 struct dwarf2_cu *cu;
5294 struct signatured_type *sig_type;
6aa5f3a6 5295 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5296 struct die_reader_specs reader;
5297 const gdb_byte *info_ptr;
5298 struct die_info *comp_unit_die;
5299 int has_children;
5300
5301 /* Verify we can do the following downcast, and that we have the
5302 data we need. */
5303 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5304 sig_type = (struct signatured_type *) this_cu;
5305 gdb_assert (sig_type->dwo_unit != NULL);
5306
5307 cleanups = make_cleanup (null_cleanup, NULL);
5308
6aa5f3a6
DE
5309 if (use_existing_cu && this_cu->cu != NULL)
5310 {
5311 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5312 cu = this_cu->cu;
5313 /* There's no need to do the rereading_dwo_cu handling that
5314 init_cutu_and_read_dies does since we don't read the stub. */
5315 }
5316 else
5317 {
5318 /* If !use_existing_cu, this_cu->cu must be NULL. */
5319 gdb_assert (this_cu->cu == NULL);
5320 cu = xmalloc (sizeof (*cu));
5321 init_one_comp_unit (cu, this_cu);
5322 /* If an error occurs while loading, release our storage. */
5323 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5324 }
5325
5326 /* A future optimization, if needed, would be to use an existing
5327 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5328 could share abbrev tables. */
a2ce51a0
DE
5329
5330 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5331 0 /* abbrev_table_provided */,
5332 NULL /* stub_comp_unit_die */,
5333 sig_type->dwo_unit->dwo_file->comp_dir,
5334 &reader, &info_ptr,
5335 &comp_unit_die, &has_children) == 0)
5336 {
5337 /* Dummy die. */
5338 do_cleanups (cleanups);
5339 return;
5340 }
5341
5342 /* All the "real" work is done here. */
5343 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5344
6aa5f3a6 5345 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5346 but the alternative is making the latter more complex.
5347 This function is only for the special case of using DWO files directly:
5348 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5349 if (free_cu_cleanup != NULL)
a2ce51a0 5350 {
6aa5f3a6
DE
5351 if (keep)
5352 {
5353 /* We've successfully allocated this compilation unit. Let our
5354 caller clean it up when finished with it. */
5355 discard_cleanups (free_cu_cleanup);
a2ce51a0 5356
6aa5f3a6
DE
5357 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5358 So we have to manually free the abbrev table. */
5359 dwarf2_free_abbrev_table (cu);
a2ce51a0 5360
6aa5f3a6
DE
5361 /* Link this CU into read_in_chain. */
5362 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5363 dwarf2_per_objfile->read_in_chain = this_cu;
5364 }
5365 else
5366 do_cleanups (free_cu_cleanup);
a2ce51a0 5367 }
a2ce51a0
DE
5368
5369 do_cleanups (cleanups);
5370}
5371
fd820528 5372/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5373 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5374
f4dc4d17
DE
5375 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5376 Otherwise the table specified in the comp unit header is read in and used.
5377 This is an optimization for when we already have the abbrev table.
5378
dee91e82
DE
5379 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5380 Otherwise, a new CU is allocated with xmalloc.
5381
5382 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5383 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5384
5385 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5386 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5387
70221824 5388static void
fd820528 5389init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5390 struct abbrev_table *abbrev_table,
fd820528
DE
5391 int use_existing_cu, int keep,
5392 die_reader_func_ftype *die_reader_func,
5393 void *data)
c906108c 5394{
dee91e82 5395 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5396 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5397 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5398 struct dwarf2_cu *cu;
d521ce57 5399 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5400 struct die_reader_specs reader;
d85a05f0 5401 struct die_info *comp_unit_die;
dee91e82 5402 int has_children;
d85a05f0 5403 struct attribute *attr;
365156ad 5404 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5405 struct signatured_type *sig_type = NULL;
4bdcc0c1 5406 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5407 /* Non-zero if CU currently points to a DWO file and we need to
5408 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5409 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5410 int rereading_dwo_cu = 0;
c906108c 5411
09406207
DE
5412 if (dwarf2_die_debug)
5413 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5414 this_cu->is_debug_types ? "type" : "comp",
5415 this_cu->offset.sect_off);
5416
dee91e82
DE
5417 if (use_existing_cu)
5418 gdb_assert (keep);
23745b47 5419
a2ce51a0
DE
5420 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5421 file (instead of going through the stub), short-circuit all of this. */
5422 if (this_cu->reading_dwo_directly)
5423 {
5424 /* Narrow down the scope of possibilities to have to understand. */
5425 gdb_assert (this_cu->is_debug_types);
5426 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5427 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5428 die_reader_func, data);
a2ce51a0
DE
5429 return;
5430 }
5431
dee91e82
DE
5432 cleanups = make_cleanup (null_cleanup, NULL);
5433
5434 /* This is cheap if the section is already read in. */
5435 dwarf2_read_section (objfile, section);
5436
5437 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5438
5439 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5440
5441 if (use_existing_cu && this_cu->cu != NULL)
5442 {
5443 cu = this_cu->cu;
42e7ad6c
DE
5444 /* If this CU is from a DWO file we need to start over, we need to
5445 refetch the attributes from the skeleton CU.
5446 This could be optimized by retrieving those attributes from when we
5447 were here the first time: the previous comp_unit_die was stored in
5448 comp_unit_obstack. But there's no data yet that we need this
5449 optimization. */
5450 if (cu->dwo_unit != NULL)
5451 rereading_dwo_cu = 1;
dee91e82
DE
5452 }
5453 else
5454 {
5455 /* If !use_existing_cu, this_cu->cu must be NULL. */
5456 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5457 cu = xmalloc (sizeof (*cu));
5458 init_one_comp_unit (cu, this_cu);
dee91e82 5459 /* If an error occurs while loading, release our storage. */
365156ad 5460 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5461 }
dee91e82 5462
b0c7bfa9 5463 /* Get the header. */
42e7ad6c
DE
5464 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5465 {
5466 /* We already have the header, there's no need to read it in again. */
5467 info_ptr += cu->header.first_die_offset.cu_off;
5468 }
5469 else
5470 {
3019eac3 5471 if (this_cu->is_debug_types)
dee91e82
DE
5472 {
5473 ULONGEST signature;
42e7ad6c 5474 cu_offset type_offset_in_tu;
dee91e82 5475
4bdcc0c1
DE
5476 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5477 abbrev_section, info_ptr,
42e7ad6c
DE
5478 &signature,
5479 &type_offset_in_tu);
dee91e82 5480
42e7ad6c
DE
5481 /* Since per_cu is the first member of struct signatured_type,
5482 we can go from a pointer to one to a pointer to the other. */
5483 sig_type = (struct signatured_type *) this_cu;
5484 gdb_assert (sig_type->signature == signature);
5485 gdb_assert (sig_type->type_offset_in_tu.cu_off
5486 == type_offset_in_tu.cu_off);
dee91e82
DE
5487 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5488
42e7ad6c
DE
5489 /* LENGTH has not been set yet for type units if we're
5490 using .gdb_index. */
1ce1cefd 5491 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5492
5493 /* Establish the type offset that can be used to lookup the type. */
5494 sig_type->type_offset_in_section.sect_off =
5495 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5496 }
5497 else
5498 {
4bdcc0c1
DE
5499 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5500 abbrev_section,
5501 info_ptr, 0);
dee91e82
DE
5502
5503 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5504 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5505 }
5506 }
10b3939b 5507
6caca83c 5508 /* Skip dummy compilation units. */
dee91e82 5509 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5510 || peek_abbrev_code (abfd, info_ptr) == 0)
5511 {
dee91e82 5512 do_cleanups (cleanups);
21b2bd31 5513 return;
6caca83c
CC
5514 }
5515
433df2d4
DE
5516 /* If we don't have them yet, read the abbrevs for this compilation unit.
5517 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5518 done. Note that it's important that if the CU had an abbrev table
5519 on entry we don't free it when we're done: Somewhere up the call stack
5520 it may be in use. */
f4dc4d17
DE
5521 if (abbrev_table != NULL)
5522 {
5523 gdb_assert (cu->abbrev_table == NULL);
5524 gdb_assert (cu->header.abbrev_offset.sect_off
5525 == abbrev_table->offset.sect_off);
5526 cu->abbrev_table = abbrev_table;
5527 }
5528 else if (cu->abbrev_table == NULL)
dee91e82 5529 {
4bdcc0c1 5530 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5531 make_cleanup (dwarf2_free_abbrev_table, cu);
5532 }
42e7ad6c
DE
5533 else if (rereading_dwo_cu)
5534 {
5535 dwarf2_free_abbrev_table (cu);
5536 dwarf2_read_abbrevs (cu, abbrev_section);
5537 }
af703f96 5538
dee91e82 5539 /* Read the top level CU/TU die. */
3019eac3 5540 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5541 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5542
b0c7bfa9
DE
5543 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5544 from the DWO file.
5545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5546 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5548 if (attr)
5549 {
3019eac3 5550 struct dwo_unit *dwo_unit;
b0c7bfa9 5551 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5552
5553 if (has_children)
6a506a2d
DE
5554 {
5555 complaint (&symfile_complaints,
5556 _("compilation unit with DW_AT_GNU_dwo_name"
5557 " has children (offset 0x%x) [in module %s]"),
5558 this_cu->offset.sect_off, bfd_get_filename (abfd));
5559 }
b0c7bfa9 5560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5561 if (dwo_unit != NULL)
3019eac3 5562 {
6a506a2d
DE
5563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5564 abbrev_table != NULL,
a2ce51a0 5565 comp_unit_die, NULL,
6a506a2d
DE
5566 &reader, &info_ptr,
5567 &dwo_comp_unit_die, &has_children) == 0)
5568 {
5569 /* Dummy die. */
5570 do_cleanups (cleanups);
5571 return;
5572 }
5573 comp_unit_die = dwo_comp_unit_die;
5574 }
5575 else
5576 {
5577 /* Yikes, we couldn't find the rest of the DIE, we only have
5578 the stub. A complaint has already been logged. There's
5579 not much more we can do except pass on the stub DIE to
5580 die_reader_func. We don't want to throw an error on bad
5581 debug info. */
3019eac3
DE
5582 }
5583 }
5584
b0c7bfa9 5585 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5587
b0c7bfa9 5588 /* Done, clean up. */
365156ad 5589 if (free_cu_cleanup != NULL)
348e048f 5590 {
365156ad
TT
5591 if (keep)
5592 {
5593 /* We've successfully allocated this compilation unit. Let our
5594 caller clean it up when finished with it. */
5595 discard_cleanups (free_cu_cleanup);
dee91e82 5596
365156ad
TT
5597 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5598 So we have to manually free the abbrev table. */
5599 dwarf2_free_abbrev_table (cu);
dee91e82 5600
365156ad
TT
5601 /* Link this CU into read_in_chain. */
5602 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5603 dwarf2_per_objfile->read_in_chain = this_cu;
5604 }
5605 else
5606 do_cleanups (free_cu_cleanup);
348e048f 5607 }
365156ad
TT
5608
5609 do_cleanups (cleanups);
dee91e82
DE
5610}
5611
33e80786
DE
5612/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5614 to have already done the lookup to find the DWO file).
dee91e82
DE
5615
5616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5617 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5618
5619 We fill in THIS_CU->length.
5620
5621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5622 linker) then DIE_READER_FUNC will not get called.
5623
5624 THIS_CU->cu is always freed when done.
3019eac3
DE
5625 This is done in order to not leave THIS_CU->cu in a state where we have
5626 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5627
5628static void
5629init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5630 struct dwo_file *dwo_file,
dee91e82
DE
5631 die_reader_func_ftype *die_reader_func,
5632 void *data)
5633{
5634 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5635 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5636 bfd *abfd = get_section_bfd_owner (section);
33e80786 5637 struct dwarf2_section_info *abbrev_section;
dee91e82 5638 struct dwarf2_cu cu;
d521ce57 5639 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5640 struct die_reader_specs reader;
5641 struct cleanup *cleanups;
5642 struct die_info *comp_unit_die;
5643 int has_children;
5644
09406207
DE
5645 if (dwarf2_die_debug)
5646 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5647 this_cu->is_debug_types ? "type" : "comp",
5648 this_cu->offset.sect_off);
5649
dee91e82
DE
5650 gdb_assert (this_cu->cu == NULL);
5651
33e80786
DE
5652 abbrev_section = (dwo_file != NULL
5653 ? &dwo_file->sections.abbrev
5654 : get_abbrev_section_for_cu (this_cu));
5655
dee91e82
DE
5656 /* This is cheap if the section is already read in. */
5657 dwarf2_read_section (objfile, section);
5658
5659 init_one_comp_unit (&cu, this_cu);
5660
5661 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5662
5663 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5664 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5665 abbrev_section, info_ptr,
3019eac3 5666 this_cu->is_debug_types);
dee91e82 5667
1ce1cefd 5668 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5669
5670 /* Skip dummy compilation units. */
5671 if (info_ptr >= begin_info_ptr + this_cu->length
5672 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5673 {
dee91e82 5674 do_cleanups (cleanups);
21b2bd31 5675 return;
93311388 5676 }
72bf9492 5677
dee91e82
DE
5678 dwarf2_read_abbrevs (&cu, abbrev_section);
5679 make_cleanup (dwarf2_free_abbrev_table, &cu);
5680
3019eac3 5681 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5682 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5683
5684 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5685
5686 do_cleanups (cleanups);
5687}
5688
3019eac3
DE
5689/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5690 does not lookup the specified DWO file.
5691 This cannot be used to read DWO files.
dee91e82
DE
5692
5693 THIS_CU->cu is always freed when done.
3019eac3
DE
5694 This is done in order to not leave THIS_CU->cu in a state where we have
5695 to care whether it refers to the "main" CU or the DWO CU.
5696 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5697
5698static void
5699init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5700 die_reader_func_ftype *die_reader_func,
5701 void *data)
5702{
33e80786 5703 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5704}
0018ea6f
DE
5705\f
5706/* Type Unit Groups.
dee91e82 5707
0018ea6f
DE
5708 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5709 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5710 so that all types coming from the same compilation (.o file) are grouped
5711 together. A future step could be to put the types in the same symtab as
5712 the CU the types ultimately came from. */
ff013f42 5713
f4dc4d17
DE
5714static hashval_t
5715hash_type_unit_group (const void *item)
5716{
094b34ac 5717 const struct type_unit_group *tu_group = item;
f4dc4d17 5718
094b34ac 5719 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5720}
348e048f
DE
5721
5722static int
f4dc4d17 5723eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5724{
f4dc4d17
DE
5725 const struct type_unit_group *lhs = item_lhs;
5726 const struct type_unit_group *rhs = item_rhs;
348e048f 5727
094b34ac 5728 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5729}
348e048f 5730
f4dc4d17
DE
5731/* Allocate a hash table for type unit groups. */
5732
5733static htab_t
5734allocate_type_unit_groups_table (void)
5735{
5736 return htab_create_alloc_ex (3,
5737 hash_type_unit_group,
5738 eq_type_unit_group,
5739 NULL,
5740 &dwarf2_per_objfile->objfile->objfile_obstack,
5741 hashtab_obstack_allocate,
5742 dummy_obstack_deallocate);
5743}
dee91e82 5744
f4dc4d17
DE
5745/* Type units that don't have DW_AT_stmt_list are grouped into their own
5746 partial symtabs. We combine several TUs per psymtab to not let the size
5747 of any one psymtab grow too big. */
5748#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5749#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5750
094b34ac 5751/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5752 Create the type_unit_group object used to hold one or more TUs. */
5753
5754static struct type_unit_group *
094b34ac 5755create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5756{
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5758 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5759 struct type_unit_group *tu_group;
f4dc4d17
DE
5760
5761 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5762 struct type_unit_group);
094b34ac 5763 per_cu = &tu_group->per_cu;
f4dc4d17 5764 per_cu->objfile = objfile;
f4dc4d17 5765
094b34ac
DE
5766 if (dwarf2_per_objfile->using_index)
5767 {
5768 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5769 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5770 }
5771 else
5772 {
5773 unsigned int line_offset = line_offset_struct.sect_off;
5774 struct partial_symtab *pst;
5775 char *name;
5776
5777 /* Give the symtab a useful name for debug purposes. */
5778 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5779 name = xstrprintf ("<type_units_%d>",
5780 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5781 else
5782 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5783
5784 pst = create_partial_symtab (per_cu, name);
5785 pst->anonymous = 1;
f4dc4d17 5786
094b34ac
DE
5787 xfree (name);
5788 }
f4dc4d17 5789
094b34ac
DE
5790 tu_group->hash.dwo_unit = cu->dwo_unit;
5791 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5792
5793 return tu_group;
5794}
5795
094b34ac
DE
5796/* Look up the type_unit_group for type unit CU, and create it if necessary.
5797 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5798
5799static struct type_unit_group *
ff39bb5e 5800get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5801{
5802 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5803 struct type_unit_group *tu_group;
5804 void **slot;
5805 unsigned int line_offset;
5806 struct type_unit_group type_unit_group_for_lookup;
5807
5808 if (dwarf2_per_objfile->type_unit_groups == NULL)
5809 {
5810 dwarf2_per_objfile->type_unit_groups =
5811 allocate_type_unit_groups_table ();
5812 }
5813
5814 /* Do we need to create a new group, or can we use an existing one? */
5815
5816 if (stmt_list)
5817 {
5818 line_offset = DW_UNSND (stmt_list);
5819 ++tu_stats->nr_symtab_sharers;
5820 }
5821 else
5822 {
5823 /* Ugh, no stmt_list. Rare, but we have to handle it.
5824 We can do various things here like create one group per TU or
5825 spread them over multiple groups to split up the expansion work.
5826 To avoid worst case scenarios (too many groups or too large groups)
5827 we, umm, group them in bunches. */
5828 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5829 | (tu_stats->nr_stmt_less_type_units
5830 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5831 ++tu_stats->nr_stmt_less_type_units;
5832 }
5833
094b34ac
DE
5834 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5835 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5836 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5837 &type_unit_group_for_lookup, INSERT);
5838 if (*slot != NULL)
5839 {
5840 tu_group = *slot;
5841 gdb_assert (tu_group != NULL);
5842 }
5843 else
5844 {
5845 sect_offset line_offset_struct;
5846
5847 line_offset_struct.sect_off = line_offset;
094b34ac 5848 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5849 *slot = tu_group;
5850 ++tu_stats->nr_symtabs;
5851 }
5852
5853 return tu_group;
5854}
0018ea6f
DE
5855\f
5856/* Partial symbol tables. */
5857
5858/* Create a psymtab named NAME and assign it to PER_CU.
5859
5860 The caller must fill in the following details:
5861 dirname, textlow, texthigh. */
5862
5863static struct partial_symtab *
5864create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5865{
5866 struct objfile *objfile = per_cu->objfile;
5867 struct partial_symtab *pst;
5868
5869 pst = start_psymtab_common (objfile, objfile->section_offsets,
5870 name, 0,
5871 objfile->global_psymbols.next,
5872 objfile->static_psymbols.next);
5873
5874 pst->psymtabs_addrmap_supported = 1;
5875
5876 /* This is the glue that links PST into GDB's symbol API. */
5877 pst->read_symtab_private = per_cu;
5878 pst->read_symtab = dwarf2_read_symtab;
5879 per_cu->v.psymtab = pst;
5880
5881 return pst;
5882}
5883
b93601f3
TT
5884/* The DATA object passed to process_psymtab_comp_unit_reader has this
5885 type. */
5886
5887struct process_psymtab_comp_unit_data
5888{
5889 /* True if we are reading a DW_TAG_partial_unit. */
5890
5891 int want_partial_unit;
5892
5893 /* The "pretend" language that is used if the CU doesn't declare a
5894 language. */
5895
5896 enum language pretend_language;
5897};
5898
0018ea6f
DE
5899/* die_reader_func for process_psymtab_comp_unit. */
5900
5901static void
5902process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5903 const gdb_byte *info_ptr,
0018ea6f
DE
5904 struct die_info *comp_unit_die,
5905 int has_children,
5906 void *data)
5907{
5908 struct dwarf2_cu *cu = reader->cu;
5909 struct objfile *objfile = cu->objfile;
3e29f34a 5910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5911 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5912 struct attribute *attr;
5913 CORE_ADDR baseaddr;
5914 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5915 struct partial_symtab *pst;
5916 int has_pc_info;
5917 const char *filename;
b93601f3 5918 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5919
b93601f3 5920 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5921 return;
5922
5923 gdb_assert (! per_cu->is_debug_types);
5924
b93601f3 5925 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5926
5927 cu->list_in_scope = &file_symbols;
5928
5929 /* Allocate a new partial symbol table structure. */
5930 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5931 if (attr == NULL || !DW_STRING (attr))
5932 filename = "";
5933 else
5934 filename = DW_STRING (attr);
5935
5936 pst = create_partial_symtab (per_cu, filename);
5937
5938 /* This must be done before calling dwarf2_build_include_psymtabs. */
5939 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5940 if (attr != NULL)
5941 pst->dirname = DW_STRING (attr);
5942
5943 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5944
5945 dwarf2_find_base_address (comp_unit_die, cu);
5946
5947 /* Possibly set the default values of LOWPC and HIGHPC from
5948 `DW_AT_ranges'. */
5949 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5950 &best_highpc, cu, pst);
5951 if (has_pc_info == 1 && best_lowpc < best_highpc)
5952 /* Store the contiguous range if it is not empty; it can be empty for
5953 CUs with no code. */
5954 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5955 gdbarch_adjust_dwarf2_addr (gdbarch,
5956 best_lowpc + baseaddr),
5957 gdbarch_adjust_dwarf2_addr (gdbarch,
5958 best_highpc + baseaddr) - 1,
5959 pst);
0018ea6f
DE
5960
5961 /* Check if comp unit has_children.
5962 If so, read the rest of the partial symbols from this comp unit.
5963 If not, there's no more debug_info for this comp unit. */
5964 if (has_children)
5965 {
5966 struct partial_die_info *first_die;
5967 CORE_ADDR lowpc, highpc;
5968
5969 lowpc = ((CORE_ADDR) -1);
5970 highpc = ((CORE_ADDR) 0);
5971
5972 first_die = load_partial_dies (reader, info_ptr, 1);
5973
5974 scan_partial_symbols (first_die, &lowpc, &highpc,
5975 ! has_pc_info, cu);
5976
5977 /* If we didn't find a lowpc, set it to highpc to avoid
5978 complaints from `maint check'. */
5979 if (lowpc == ((CORE_ADDR) -1))
5980 lowpc = highpc;
5981
5982 /* If the compilation unit didn't have an explicit address range,
5983 then use the information extracted from its child dies. */
5984 if (! has_pc_info)
5985 {
5986 best_lowpc = lowpc;
5987 best_highpc = highpc;
5988 }
5989 }
3e29f34a
MR
5990 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5991 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f
DE
5992
5993 pst->n_global_syms = objfile->global_psymbols.next -
5994 (objfile->global_psymbols.list + pst->globals_offset);
5995 pst->n_static_syms = objfile->static_psymbols.next -
5996 (objfile->static_psymbols.list + pst->statics_offset);
5997 sort_pst_symbols (objfile, pst);
5998
5999 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6000 {
6001 int i;
6002 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6003 struct dwarf2_per_cu_data *iter;
6004
6005 /* Fill in 'dependencies' here; we fill in 'users' in a
6006 post-pass. */
6007 pst->number_of_dependencies = len;
6008 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6009 len * sizeof (struct symtab *));
6010 for (i = 0;
6011 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6012 i, iter);
6013 ++i)
6014 pst->dependencies[i] = iter->v.psymtab;
6015
6016 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6017 }
6018
6019 /* Get the list of files included in the current compilation unit,
6020 and build a psymtab for each of them. */
6021 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6022
6023 if (dwarf2_read_debug)
6024 {
6025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6026
6027 fprintf_unfiltered (gdb_stdlog,
6028 "Psymtab for %s unit @0x%x: %s - %s"
6029 ", %d global, %d static syms\n",
6030 per_cu->is_debug_types ? "type" : "comp",
6031 per_cu->offset.sect_off,
6032 paddress (gdbarch, pst->textlow),
6033 paddress (gdbarch, pst->texthigh),
6034 pst->n_global_syms, pst->n_static_syms);
6035 }
6036}
6037
6038/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6039 Process compilation unit THIS_CU for a psymtab. */
6040
6041static void
6042process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6043 int want_partial_unit,
6044 enum language pretend_language)
0018ea6f 6045{
b93601f3
TT
6046 struct process_psymtab_comp_unit_data info;
6047
0018ea6f
DE
6048 /* If this compilation unit was already read in, free the
6049 cached copy in order to read it in again. This is
6050 necessary because we skipped some symbols when we first
6051 read in the compilation unit (see load_partial_dies).
6052 This problem could be avoided, but the benefit is unclear. */
6053 if (this_cu->cu != NULL)
6054 free_one_cached_comp_unit (this_cu);
6055
6056 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6057 info.want_partial_unit = want_partial_unit;
6058 info.pretend_language = pretend_language;
0018ea6f
DE
6059 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6060 process_psymtab_comp_unit_reader,
b93601f3 6061 &info);
0018ea6f
DE
6062
6063 /* Age out any secondary CUs. */
6064 age_cached_comp_units ();
6065}
f4dc4d17
DE
6066
6067/* Reader function for build_type_psymtabs. */
6068
6069static void
6070build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6071 const gdb_byte *info_ptr,
f4dc4d17
DE
6072 struct die_info *type_unit_die,
6073 int has_children,
6074 void *data)
6075{
6076 struct objfile *objfile = dwarf2_per_objfile->objfile;
6077 struct dwarf2_cu *cu = reader->cu;
6078 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6079 struct signatured_type *sig_type;
f4dc4d17
DE
6080 struct type_unit_group *tu_group;
6081 struct attribute *attr;
6082 struct partial_die_info *first_die;
6083 CORE_ADDR lowpc, highpc;
6084 struct partial_symtab *pst;
6085
6086 gdb_assert (data == NULL);
0186c6a7
DE
6087 gdb_assert (per_cu->is_debug_types);
6088 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6089
6090 if (! has_children)
6091 return;
6092
6093 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6094 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6095
0186c6a7 6096 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6097
6098 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6099 cu->list_in_scope = &file_symbols;
6100 pst = create_partial_symtab (per_cu, "");
6101 pst->anonymous = 1;
6102
6103 first_die = load_partial_dies (reader, info_ptr, 1);
6104
6105 lowpc = (CORE_ADDR) -1;
6106 highpc = (CORE_ADDR) 0;
6107 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6108
6109 pst->n_global_syms = objfile->global_psymbols.next -
6110 (objfile->global_psymbols.list + pst->globals_offset);
6111 pst->n_static_syms = objfile->static_psymbols.next -
6112 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6113 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6114}
6115
73051182
DE
6116/* Struct used to sort TUs by their abbreviation table offset. */
6117
6118struct tu_abbrev_offset
6119{
6120 struct signatured_type *sig_type;
6121 sect_offset abbrev_offset;
6122};
6123
6124/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6125
6126static int
6127sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6128{
6129 const struct tu_abbrev_offset * const *a = ap;
6130 const struct tu_abbrev_offset * const *b = bp;
6131 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6132 unsigned int boff = (*b)->abbrev_offset.sect_off;
6133
6134 return (aoff > boff) - (aoff < boff);
6135}
6136
6137/* Efficiently read all the type units.
6138 This does the bulk of the work for build_type_psymtabs.
6139
6140 The efficiency is because we sort TUs by the abbrev table they use and
6141 only read each abbrev table once. In one program there are 200K TUs
6142 sharing 8K abbrev tables.
6143
6144 The main purpose of this function is to support building the
6145 dwarf2_per_objfile->type_unit_groups table.
6146 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6147 can collapse the search space by grouping them by stmt_list.
6148 The savings can be significant, in the same program from above the 200K TUs
6149 share 8K stmt_list tables.
6150
6151 FUNC is expected to call get_type_unit_group, which will create the
6152 struct type_unit_group if necessary and add it to
6153 dwarf2_per_objfile->type_unit_groups. */
6154
6155static void
6156build_type_psymtabs_1 (void)
6157{
6158 struct objfile *objfile = dwarf2_per_objfile->objfile;
6159 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6160 struct cleanup *cleanups;
6161 struct abbrev_table *abbrev_table;
6162 sect_offset abbrev_offset;
6163 struct tu_abbrev_offset *sorted_by_abbrev;
6164 struct type_unit_group **iter;
6165 int i;
6166
6167 /* It's up to the caller to not call us multiple times. */
6168 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6169
6170 if (dwarf2_per_objfile->n_type_units == 0)
6171 return;
6172
6173 /* TUs typically share abbrev tables, and there can be way more TUs than
6174 abbrev tables. Sort by abbrev table to reduce the number of times we
6175 read each abbrev table in.
6176 Alternatives are to punt or to maintain a cache of abbrev tables.
6177 This is simpler and efficient enough for now.
6178
6179 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6180 symtab to use). Typically TUs with the same abbrev offset have the same
6181 stmt_list value too so in practice this should work well.
6182
6183 The basic algorithm here is:
6184
6185 sort TUs by abbrev table
6186 for each TU with same abbrev table:
6187 read abbrev table if first user
6188 read TU top level DIE
6189 [IWBN if DWO skeletons had DW_AT_stmt_list]
6190 call FUNC */
6191
6192 if (dwarf2_read_debug)
6193 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6194
6195 /* Sort in a separate table to maintain the order of all_type_units
6196 for .gdb_index: TU indices directly index all_type_units. */
6197 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6198 dwarf2_per_objfile->n_type_units);
6199 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6200 {
6201 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6202
6203 sorted_by_abbrev[i].sig_type = sig_type;
6204 sorted_by_abbrev[i].abbrev_offset =
6205 read_abbrev_offset (sig_type->per_cu.section,
6206 sig_type->per_cu.offset);
6207 }
6208 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6209 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6210 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6211
6212 abbrev_offset.sect_off = ~(unsigned) 0;
6213 abbrev_table = NULL;
6214 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6215
6216 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6217 {
6218 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6219
6220 /* Switch to the next abbrev table if necessary. */
6221 if (abbrev_table == NULL
6222 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6223 {
6224 if (abbrev_table != NULL)
6225 {
6226 abbrev_table_free (abbrev_table);
6227 /* Reset to NULL in case abbrev_table_read_table throws
6228 an error: abbrev_table_free_cleanup will get called. */
6229 abbrev_table = NULL;
6230 }
6231 abbrev_offset = tu->abbrev_offset;
6232 abbrev_table =
6233 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6234 abbrev_offset);
6235 ++tu_stats->nr_uniq_abbrev_tables;
6236 }
6237
6238 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6239 build_type_psymtabs_reader, NULL);
6240 }
6241
73051182 6242 do_cleanups (cleanups);
6aa5f3a6 6243}
73051182 6244
6aa5f3a6
DE
6245/* Print collected type unit statistics. */
6246
6247static void
6248print_tu_stats (void)
6249{
6250 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6251
6252 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6253 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6254 dwarf2_per_objfile->n_type_units);
6255 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6256 tu_stats->nr_uniq_abbrev_tables);
6257 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6258 tu_stats->nr_symtabs);
6259 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6260 tu_stats->nr_symtab_sharers);
6261 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6262 tu_stats->nr_stmt_less_type_units);
6263 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6264 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6265}
6266
f4dc4d17
DE
6267/* Traversal function for build_type_psymtabs. */
6268
6269static int
6270build_type_psymtab_dependencies (void **slot, void *info)
6271{
6272 struct objfile *objfile = dwarf2_per_objfile->objfile;
6273 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6274 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6275 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6276 int len = VEC_length (sig_type_ptr, tu_group->tus);
6277 struct signatured_type *iter;
f4dc4d17
DE
6278 int i;
6279
6280 gdb_assert (len > 0);
0186c6a7 6281 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6282
6283 pst->number_of_dependencies = len;
6284 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6285 len * sizeof (struct psymtab *));
6286 for (i = 0;
0186c6a7 6287 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6288 ++i)
6289 {
0186c6a7
DE
6290 gdb_assert (iter->per_cu.is_debug_types);
6291 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6292 iter->type_unit_group = tu_group;
f4dc4d17
DE
6293 }
6294
0186c6a7 6295 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6296
6297 return 1;
6298}
6299
6300/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6301 Build partial symbol tables for the .debug_types comp-units. */
6302
6303static void
6304build_type_psymtabs (struct objfile *objfile)
6305{
0e50663e 6306 if (! create_all_type_units (objfile))
348e048f
DE
6307 return;
6308
73051182 6309 build_type_psymtabs_1 ();
6aa5f3a6 6310}
f4dc4d17 6311
6aa5f3a6
DE
6312/* Traversal function for process_skeletonless_type_unit.
6313 Read a TU in a DWO file and build partial symbols for it. */
6314
6315static int
6316process_skeletonless_type_unit (void **slot, void *info)
6317{
6318 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6319 struct objfile *objfile = info;
6320 struct signatured_type find_entry, *entry;
6321
6322 /* If this TU doesn't exist in the global table, add it and read it in. */
6323
6324 if (dwarf2_per_objfile->signatured_types == NULL)
6325 {
6326 dwarf2_per_objfile->signatured_types
6327 = allocate_signatured_type_table (objfile);
6328 }
6329
6330 find_entry.signature = dwo_unit->signature;
6331 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6332 INSERT);
6333 /* If we've already seen this type there's nothing to do. What's happening
6334 is we're doing our own version of comdat-folding here. */
6335 if (*slot != NULL)
6336 return 1;
6337
6338 /* This does the job that create_all_type_units would have done for
6339 this TU. */
6340 entry = add_type_unit (dwo_unit->signature, slot);
6341 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6342 *slot = entry;
6343
6344 /* This does the job that build_type_psymtabs_1 would have done. */
6345 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6346 build_type_psymtabs_reader, NULL);
6347
6348 return 1;
6349}
6350
6351/* Traversal function for process_skeletonless_type_units. */
6352
6353static int
6354process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6355{
6356 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6357
6358 if (dwo_file->tus != NULL)
6359 {
6360 htab_traverse_noresize (dwo_file->tus,
6361 process_skeletonless_type_unit, info);
6362 }
6363
6364 return 1;
6365}
6366
6367/* Scan all TUs of DWO files, verifying we've processed them.
6368 This is needed in case a TU was emitted without its skeleton.
6369 Note: This can't be done until we know what all the DWO files are. */
6370
6371static void
6372process_skeletonless_type_units (struct objfile *objfile)
6373{
6374 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6375 if (get_dwp_file () == NULL
6376 && dwarf2_per_objfile->dwo_files != NULL)
6377 {
6378 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6379 process_dwo_file_for_skeletonless_type_units,
6380 objfile);
6381 }
348e048f
DE
6382}
6383
60606b2c
TT
6384/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6385
6386static void
6387psymtabs_addrmap_cleanup (void *o)
6388{
6389 struct objfile *objfile = o;
ec61707d 6390
60606b2c
TT
6391 objfile->psymtabs_addrmap = NULL;
6392}
6393
95554aad
TT
6394/* Compute the 'user' field for each psymtab in OBJFILE. */
6395
6396static void
6397set_partial_user (struct objfile *objfile)
6398{
6399 int i;
6400
6401 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6402 {
8832e7e3 6403 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6404 struct partial_symtab *pst = per_cu->v.psymtab;
6405 int j;
6406
36586728
TT
6407 if (pst == NULL)
6408 continue;
6409
95554aad
TT
6410 for (j = 0; j < pst->number_of_dependencies; ++j)
6411 {
6412 /* Set the 'user' field only if it is not already set. */
6413 if (pst->dependencies[j]->user == NULL)
6414 pst->dependencies[j]->user = pst;
6415 }
6416 }
6417}
6418
93311388
DE
6419/* Build the partial symbol table by doing a quick pass through the
6420 .debug_info and .debug_abbrev sections. */
72bf9492 6421
93311388 6422static void
c67a9c90 6423dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6424{
60606b2c
TT
6425 struct cleanup *back_to, *addrmap_cleanup;
6426 struct obstack temp_obstack;
21b2bd31 6427 int i;
93311388 6428
45cfd468
DE
6429 if (dwarf2_read_debug)
6430 {
6431 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6432 objfile_name (objfile));
45cfd468
DE
6433 }
6434
98bfdba5
PA
6435 dwarf2_per_objfile->reading_partial_symbols = 1;
6436
be391dca 6437 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6438
93311388
DE
6439 /* Any cached compilation units will be linked by the per-objfile
6440 read_in_chain. Make sure to free them when we're done. */
6441 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6442
348e048f
DE
6443 build_type_psymtabs (objfile);
6444
93311388 6445 create_all_comp_units (objfile);
c906108c 6446
60606b2c
TT
6447 /* Create a temporary address map on a temporary obstack. We later
6448 copy this to the final obstack. */
6449 obstack_init (&temp_obstack);
6450 make_cleanup_obstack_free (&temp_obstack);
6451 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6452 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6453
21b2bd31 6454 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6455 {
8832e7e3 6456 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6457
b93601f3 6458 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6459 }
ff013f42 6460
6aa5f3a6
DE
6461 /* This has to wait until we read the CUs, we need the list of DWOs. */
6462 process_skeletonless_type_units (objfile);
6463
6464 /* Now that all TUs have been processed we can fill in the dependencies. */
6465 if (dwarf2_per_objfile->type_unit_groups != NULL)
6466 {
6467 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6468 build_type_psymtab_dependencies, NULL);
6469 }
6470
6471 if (dwarf2_read_debug)
6472 print_tu_stats ();
6473
95554aad
TT
6474 set_partial_user (objfile);
6475
ff013f42
JK
6476 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6477 &objfile->objfile_obstack);
60606b2c 6478 discard_cleanups (addrmap_cleanup);
ff013f42 6479
ae038cb0 6480 do_cleanups (back_to);
45cfd468
DE
6481
6482 if (dwarf2_read_debug)
6483 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6484 objfile_name (objfile));
ae038cb0
DJ
6485}
6486
3019eac3 6487/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6488
6489static void
dee91e82 6490load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6491 const gdb_byte *info_ptr,
dee91e82
DE
6492 struct die_info *comp_unit_die,
6493 int has_children,
6494 void *data)
ae038cb0 6495{
dee91e82 6496 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6497
95554aad 6498 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6499
ae038cb0
DJ
6500 /* Check if comp unit has_children.
6501 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6502 If not, there's no more debug_info for this comp unit. */
d85a05f0 6503 if (has_children)
dee91e82
DE
6504 load_partial_dies (reader, info_ptr, 0);
6505}
98bfdba5 6506
dee91e82
DE
6507/* Load the partial DIEs for a secondary CU into memory.
6508 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6509
dee91e82
DE
6510static void
6511load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6512{
f4dc4d17
DE
6513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6514 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6515}
6516
ae038cb0 6517static void
36586728
TT
6518read_comp_units_from_section (struct objfile *objfile,
6519 struct dwarf2_section_info *section,
6520 unsigned int is_dwz,
6521 int *n_allocated,
6522 int *n_comp_units,
6523 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6524{
d521ce57 6525 const gdb_byte *info_ptr;
a32a8923 6526 bfd *abfd = get_section_bfd_owner (section);
be391dca 6527
bf6af496
DE
6528 if (dwarf2_read_debug)
6529 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6530 get_section_name (section),
6531 get_section_file_name (section));
bf6af496 6532
36586728 6533 dwarf2_read_section (objfile, section);
ae038cb0 6534
36586728 6535 info_ptr = section->buffer;
6e70227d 6536
36586728 6537 while (info_ptr < section->buffer + section->size)
ae038cb0 6538 {
c764a876 6539 unsigned int length, initial_length_size;
ae038cb0 6540 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6541 sect_offset offset;
ae038cb0 6542
36586728 6543 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6544
6545 /* Read just enough information to find out where the next
6546 compilation unit is. */
36586728 6547 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6548
6549 /* Save the compilation unit for later lookup. */
6550 this_cu = obstack_alloc (&objfile->objfile_obstack,
6551 sizeof (struct dwarf2_per_cu_data));
6552 memset (this_cu, 0, sizeof (*this_cu));
6553 this_cu->offset = offset;
c764a876 6554 this_cu->length = length + initial_length_size;
36586728 6555 this_cu->is_dwz = is_dwz;
9291a0cd 6556 this_cu->objfile = objfile;
8a0459fd 6557 this_cu->section = section;
ae038cb0 6558
36586728 6559 if (*n_comp_units == *n_allocated)
ae038cb0 6560 {
36586728
TT
6561 *n_allocated *= 2;
6562 *all_comp_units = xrealloc (*all_comp_units,
6563 *n_allocated
6564 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6565 }
36586728
TT
6566 (*all_comp_units)[*n_comp_units] = this_cu;
6567 ++*n_comp_units;
ae038cb0
DJ
6568
6569 info_ptr = info_ptr + this_cu->length;
6570 }
36586728
TT
6571}
6572
6573/* Create a list of all compilation units in OBJFILE.
6574 This is only done for -readnow and building partial symtabs. */
6575
6576static void
6577create_all_comp_units (struct objfile *objfile)
6578{
6579 int n_allocated;
6580 int n_comp_units;
6581 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6582 struct dwz_file *dwz;
36586728
TT
6583
6584 n_comp_units = 0;
6585 n_allocated = 10;
6586 all_comp_units = xmalloc (n_allocated
6587 * sizeof (struct dwarf2_per_cu_data *));
6588
6589 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6590 &n_allocated, &n_comp_units, &all_comp_units);
6591
4db1a1dc
TT
6592 dwz = dwarf2_get_dwz_file ();
6593 if (dwz != NULL)
6594 read_comp_units_from_section (objfile, &dwz->info, 1,
6595 &n_allocated, &n_comp_units,
6596 &all_comp_units);
ae038cb0
DJ
6597
6598 dwarf2_per_objfile->all_comp_units
6599 = obstack_alloc (&objfile->objfile_obstack,
6600 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6601 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6602 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6603 xfree (all_comp_units);
6604 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6605}
6606
5734ee8b 6607/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6608 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6609 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6610 DW_AT_ranges). See the comments of add_partial_subprogram on how
6611 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6612
72bf9492
DJ
6613static void
6614scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6615 CORE_ADDR *highpc, int set_addrmap,
6616 struct dwarf2_cu *cu)
c906108c 6617{
72bf9492 6618 struct partial_die_info *pdi;
c906108c 6619
91c24f0a
DC
6620 /* Now, march along the PDI's, descending into ones which have
6621 interesting children but skipping the children of the other ones,
6622 until we reach the end of the compilation unit. */
c906108c 6623
72bf9492 6624 pdi = first_die;
91c24f0a 6625
72bf9492
DJ
6626 while (pdi != NULL)
6627 {
6628 fixup_partial_die (pdi, cu);
c906108c 6629
f55ee35c 6630 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6631 children, so we need to look at them. Ditto for anonymous
6632 enums. */
933c6fe4 6633
72bf9492 6634 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6635 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6636 || pdi->tag == DW_TAG_imported_unit)
c906108c 6637 {
72bf9492 6638 switch (pdi->tag)
c906108c
SS
6639 {
6640 case DW_TAG_subprogram:
cdc07690 6641 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6642 break;
72929c62 6643 case DW_TAG_constant:
c906108c
SS
6644 case DW_TAG_variable:
6645 case DW_TAG_typedef:
91c24f0a 6646 case DW_TAG_union_type:
72bf9492 6647 if (!pdi->is_declaration)
63d06c5c 6648 {
72bf9492 6649 add_partial_symbol (pdi, cu);
63d06c5c
DC
6650 }
6651 break;
c906108c 6652 case DW_TAG_class_type:
680b30c7 6653 case DW_TAG_interface_type:
c906108c 6654 case DW_TAG_structure_type:
72bf9492 6655 if (!pdi->is_declaration)
c906108c 6656 {
72bf9492 6657 add_partial_symbol (pdi, cu);
c906108c
SS
6658 }
6659 break;
91c24f0a 6660 case DW_TAG_enumeration_type:
72bf9492
DJ
6661 if (!pdi->is_declaration)
6662 add_partial_enumeration (pdi, cu);
c906108c
SS
6663 break;
6664 case DW_TAG_base_type:
a02abb62 6665 case DW_TAG_subrange_type:
c906108c 6666 /* File scope base type definitions are added to the partial
c5aa993b 6667 symbol table. */
72bf9492 6668 add_partial_symbol (pdi, cu);
c906108c 6669 break;
d9fa45fe 6670 case DW_TAG_namespace:
cdc07690 6671 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6672 break;
5d7cb8df 6673 case DW_TAG_module:
cdc07690 6674 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6675 break;
95554aad
TT
6676 case DW_TAG_imported_unit:
6677 {
6678 struct dwarf2_per_cu_data *per_cu;
6679
f4dc4d17
DE
6680 /* For now we don't handle imported units in type units. */
6681 if (cu->per_cu->is_debug_types)
6682 {
6683 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6684 " supported in type units [in module %s]"),
4262abfb 6685 objfile_name (cu->objfile));
f4dc4d17
DE
6686 }
6687
95554aad 6688 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6689 pdi->is_dwz,
95554aad
TT
6690 cu->objfile);
6691
6692 /* Go read the partial unit, if needed. */
6693 if (per_cu->v.psymtab == NULL)
b93601f3 6694 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6695
f4dc4d17 6696 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6697 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6698 }
6699 break;
74921315
KS
6700 case DW_TAG_imported_declaration:
6701 add_partial_symbol (pdi, cu);
6702 break;
c906108c
SS
6703 default:
6704 break;
6705 }
6706 }
6707
72bf9492
DJ
6708 /* If the die has a sibling, skip to the sibling. */
6709
6710 pdi = pdi->die_sibling;
6711 }
6712}
6713
6714/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6715
72bf9492 6716 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6717 name is concatenated with "::" and the partial DIE's name. For
6718 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6719 Enumerators are an exception; they use the scope of their parent
6720 enumeration type, i.e. the name of the enumeration type is not
6721 prepended to the enumerator.
91c24f0a 6722
72bf9492
DJ
6723 There are two complexities. One is DW_AT_specification; in this
6724 case "parent" means the parent of the target of the specification,
6725 instead of the direct parent of the DIE. The other is compilers
6726 which do not emit DW_TAG_namespace; in this case we try to guess
6727 the fully qualified name of structure types from their members'
6728 linkage names. This must be done using the DIE's children rather
6729 than the children of any DW_AT_specification target. We only need
6730 to do this for structures at the top level, i.e. if the target of
6731 any DW_AT_specification (if any; otherwise the DIE itself) does not
6732 have a parent. */
6733
6734/* Compute the scope prefix associated with PDI's parent, in
6735 compilation unit CU. The result will be allocated on CU's
6736 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6737 field. NULL is returned if no prefix is necessary. */
15d034d0 6738static const char *
72bf9492
DJ
6739partial_die_parent_scope (struct partial_die_info *pdi,
6740 struct dwarf2_cu *cu)
6741{
15d034d0 6742 const char *grandparent_scope;
72bf9492 6743 struct partial_die_info *parent, *real_pdi;
91c24f0a 6744
72bf9492
DJ
6745 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6746 then this means the parent of the specification DIE. */
6747
6748 real_pdi = pdi;
72bf9492 6749 while (real_pdi->has_specification)
36586728
TT
6750 real_pdi = find_partial_die (real_pdi->spec_offset,
6751 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6752
6753 parent = real_pdi->die_parent;
6754 if (parent == NULL)
6755 return NULL;
6756
6757 if (parent->scope_set)
6758 return parent->scope;
6759
6760 fixup_partial_die (parent, cu);
6761
10b3939b 6762 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6763
acebe513
UW
6764 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6765 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6766 Work around this problem here. */
6767 if (cu->language == language_cplus
6e70227d 6768 && parent->tag == DW_TAG_namespace
acebe513
UW
6769 && strcmp (parent->name, "::") == 0
6770 && grandparent_scope == NULL)
6771 {
6772 parent->scope = NULL;
6773 parent->scope_set = 1;
6774 return NULL;
6775 }
6776
9c6c53f7
SA
6777 if (pdi->tag == DW_TAG_enumerator)
6778 /* Enumerators should not get the name of the enumeration as a prefix. */
6779 parent->scope = grandparent_scope;
6780 else if (parent->tag == DW_TAG_namespace
f55ee35c 6781 || parent->tag == DW_TAG_module
72bf9492
DJ
6782 || parent->tag == DW_TAG_structure_type
6783 || parent->tag == DW_TAG_class_type
680b30c7 6784 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6785 || parent->tag == DW_TAG_union_type
6786 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6787 {
6788 if (grandparent_scope == NULL)
6789 parent->scope = parent->name;
6790 else
3e43a32a
MS
6791 parent->scope = typename_concat (&cu->comp_unit_obstack,
6792 grandparent_scope,
f55ee35c 6793 parent->name, 0, cu);
72bf9492 6794 }
72bf9492
DJ
6795 else
6796 {
6797 /* FIXME drow/2004-04-01: What should we be doing with
6798 function-local names? For partial symbols, we should probably be
6799 ignoring them. */
6800 complaint (&symfile_complaints,
e2e0b3e5 6801 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6802 parent->tag, pdi->offset.sect_off);
72bf9492 6803 parent->scope = grandparent_scope;
c906108c
SS
6804 }
6805
72bf9492
DJ
6806 parent->scope_set = 1;
6807 return parent->scope;
6808}
6809
6810/* Return the fully scoped name associated with PDI, from compilation unit
6811 CU. The result will be allocated with malloc. */
4568ecf9 6812
72bf9492
DJ
6813static char *
6814partial_die_full_name (struct partial_die_info *pdi,
6815 struct dwarf2_cu *cu)
6816{
15d034d0 6817 const char *parent_scope;
72bf9492 6818
98bfdba5
PA
6819 /* If this is a template instantiation, we can not work out the
6820 template arguments from partial DIEs. So, unfortunately, we have
6821 to go through the full DIEs. At least any work we do building
6822 types here will be reused if full symbols are loaded later. */
6823 if (pdi->has_template_arguments)
6824 {
6825 fixup_partial_die (pdi, cu);
6826
6827 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6828 {
6829 struct die_info *die;
6830 struct attribute attr;
6831 struct dwarf2_cu *ref_cu = cu;
6832
b64f50a1 6833 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6834 attr.name = 0;
6835 attr.form = DW_FORM_ref_addr;
4568ecf9 6836 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6837 die = follow_die_ref (NULL, &attr, &ref_cu);
6838
6839 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6840 }
6841 }
6842
72bf9492
DJ
6843 parent_scope = partial_die_parent_scope (pdi, cu);
6844 if (parent_scope == NULL)
6845 return NULL;
6846 else
f55ee35c 6847 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6848}
6849
6850static void
72bf9492 6851add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6852{
e7c27a73 6853 struct objfile *objfile = cu->objfile;
3e29f34a 6854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6855 CORE_ADDR addr = 0;
15d034d0 6856 const char *actual_name = NULL;
e142c38c 6857 CORE_ADDR baseaddr;
15d034d0 6858 char *built_actual_name;
e142c38c
DJ
6859
6860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6861
15d034d0
TT
6862 built_actual_name = partial_die_full_name (pdi, cu);
6863 if (built_actual_name != NULL)
6864 actual_name = built_actual_name;
63d06c5c 6865
72bf9492
DJ
6866 if (actual_name == NULL)
6867 actual_name = pdi->name;
6868
c906108c
SS
6869 switch (pdi->tag)
6870 {
6871 case DW_TAG_subprogram:
3e29f34a 6872 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6873 if (pdi->is_external || cu->language == language_ada)
c906108c 6874 {
2cfa0c8d
JB
6875 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6876 of the global scope. But in Ada, we want to be able to access
6877 nested procedures globally. So all Ada subprograms are stored
6878 in the global scope. */
3e29f34a
MR
6879 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6880 objfile); */
f47fb265 6881 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6882 built_actual_name != NULL,
f47fb265
MS
6883 VAR_DOMAIN, LOC_BLOCK,
6884 &objfile->global_psymbols,
3e29f34a 6885 0, addr, cu->language, objfile);
c906108c
SS
6886 }
6887 else
6888 {
3e29f34a
MR
6889 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6890 objfile); */
f47fb265 6891 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6892 built_actual_name != NULL,
f47fb265
MS
6893 VAR_DOMAIN, LOC_BLOCK,
6894 &objfile->static_psymbols,
3e29f34a 6895 0, addr, cu->language, objfile);
c906108c
SS
6896 }
6897 break;
72929c62
JB
6898 case DW_TAG_constant:
6899 {
6900 struct psymbol_allocation_list *list;
6901
6902 if (pdi->is_external)
6903 list = &objfile->global_psymbols;
6904 else
6905 list = &objfile->static_psymbols;
f47fb265 6906 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6907 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6908 list, 0, 0, cu->language, objfile);
72929c62
JB
6909 }
6910 break;
c906108c 6911 case DW_TAG_variable:
95554aad
TT
6912 if (pdi->d.locdesc)
6913 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6914
95554aad 6915 if (pdi->d.locdesc
caac4577
JG
6916 && addr == 0
6917 && !dwarf2_per_objfile->has_section_at_zero)
6918 {
6919 /* A global or static variable may also have been stripped
6920 out by the linker if unused, in which case its address
6921 will be nullified; do not add such variables into partial
6922 symbol table then. */
6923 }
6924 else if (pdi->is_external)
c906108c
SS
6925 {
6926 /* Global Variable.
6927 Don't enter into the minimal symbol tables as there is
6928 a minimal symbol table entry from the ELF symbols already.
6929 Enter into partial symbol table if it has a location
6930 descriptor or a type.
6931 If the location descriptor is missing, new_symbol will create
6932 a LOC_UNRESOLVED symbol, the address of the variable will then
6933 be determined from the minimal symbol table whenever the variable
6934 is referenced.
6935 The address for the partial symbol table entry is not
6936 used by GDB, but it comes in handy for debugging partial symbol
6937 table building. */
6938
95554aad 6939 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6940 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6941 built_actual_name != NULL,
f47fb265
MS
6942 VAR_DOMAIN, LOC_STATIC,
6943 &objfile->global_psymbols,
6944 0, addr + baseaddr,
6945 cu->language, objfile);
c906108c
SS
6946 }
6947 else
6948 {
0963b4bd 6949 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6950 if (pdi->d.locdesc == NULL)
decbce07 6951 {
15d034d0 6952 xfree (built_actual_name);
decbce07
MS
6953 return;
6954 }
f47fb265 6955 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6956 mst_file_data, objfile); */
f47fb265 6957 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6958 built_actual_name != NULL,
f47fb265
MS
6959 VAR_DOMAIN, LOC_STATIC,
6960 &objfile->static_psymbols,
6961 0, addr + baseaddr,
6962 cu->language, objfile);
c906108c
SS
6963 }
6964 break;
6965 case DW_TAG_typedef:
6966 case DW_TAG_base_type:
a02abb62 6967 case DW_TAG_subrange_type:
38d518c9 6968 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6969 built_actual_name != NULL,
176620f1 6970 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6971 &objfile->static_psymbols,
e142c38c 6972 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6973 break;
74921315 6974 case DW_TAG_imported_declaration:
72bf9492
DJ
6975 case DW_TAG_namespace:
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6977 built_actual_name != NULL,
72bf9492
DJ
6978 VAR_DOMAIN, LOC_TYPEDEF,
6979 &objfile->global_psymbols,
6980 0, (CORE_ADDR) 0, cu->language, objfile);
6981 break;
530e8392
KB
6982 case DW_TAG_module:
6983 add_psymbol_to_list (actual_name, strlen (actual_name),
6984 built_actual_name != NULL,
6985 MODULE_DOMAIN, LOC_TYPEDEF,
6986 &objfile->global_psymbols,
6987 0, (CORE_ADDR) 0, cu->language, objfile);
6988 break;
c906108c 6989 case DW_TAG_class_type:
680b30c7 6990 case DW_TAG_interface_type:
c906108c
SS
6991 case DW_TAG_structure_type:
6992 case DW_TAG_union_type:
6993 case DW_TAG_enumeration_type:
fa4028e9
JB
6994 /* Skip external references. The DWARF standard says in the section
6995 about "Structure, Union, and Class Type Entries": "An incomplete
6996 structure, union or class type is represented by a structure,
6997 union or class entry that does not have a byte size attribute
6998 and that has a DW_AT_declaration attribute." */
6999 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7000 {
15d034d0 7001 xfree (built_actual_name);
decbce07
MS
7002 return;
7003 }
fa4028e9 7004
63d06c5c
DC
7005 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7006 static vs. global. */
38d518c9 7007 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7008 built_actual_name != NULL,
176620f1 7009 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7010 (cu->language == language_cplus
7011 || cu->language == language_java)
63d06c5c
DC
7012 ? &objfile->global_psymbols
7013 : &objfile->static_psymbols,
e142c38c 7014 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 7015
c906108c
SS
7016 break;
7017 case DW_TAG_enumerator:
38d518c9 7018 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7019 built_actual_name != NULL,
176620f1 7020 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7021 (cu->language == language_cplus
7022 || cu->language == language_java)
f6fe98ef
DJ
7023 ? &objfile->global_psymbols
7024 : &objfile->static_psymbols,
e142c38c 7025 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
7026 break;
7027 default:
7028 break;
7029 }
5c4e30ca 7030
15d034d0 7031 xfree (built_actual_name);
c906108c
SS
7032}
7033
5c4e30ca
DC
7034/* Read a partial die corresponding to a namespace; also, add a symbol
7035 corresponding to that namespace to the symbol table. NAMESPACE is
7036 the name of the enclosing namespace. */
91c24f0a 7037
72bf9492
DJ
7038static void
7039add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7040 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7041 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7042{
72bf9492 7043 /* Add a symbol for the namespace. */
e7c27a73 7044
72bf9492 7045 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7046
7047 /* Now scan partial symbols in that namespace. */
7048
91c24f0a 7049 if (pdi->has_children)
cdc07690 7050 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7051}
7052
5d7cb8df
JK
7053/* Read a partial die corresponding to a Fortran module. */
7054
7055static void
7056add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7057 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7058{
530e8392
KB
7059 /* Add a symbol for the namespace. */
7060
7061 add_partial_symbol (pdi, cu);
7062
f55ee35c 7063 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7064
7065 if (pdi->has_children)
cdc07690 7066 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7067}
7068
bc30ff58
JB
7069/* Read a partial die corresponding to a subprogram and create a partial
7070 symbol for that subprogram. When the CU language allows it, this
7071 routine also defines a partial symbol for each nested subprogram
cdc07690 7072 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7073 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7074 and highest PC values found in PDI.
6e70227d 7075
cdc07690
YQ
7076 PDI may also be a lexical block, in which case we simply search
7077 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7078 Again, this is only performed when the CU language allows this
7079 type of definitions. */
7080
7081static void
7082add_partial_subprogram (struct partial_die_info *pdi,
7083 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7084 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7085{
7086 if (pdi->tag == DW_TAG_subprogram)
7087 {
7088 if (pdi->has_pc_info)
7089 {
7090 if (pdi->lowpc < *lowpc)
7091 *lowpc = pdi->lowpc;
7092 if (pdi->highpc > *highpc)
7093 *highpc = pdi->highpc;
cdc07690 7094 if (set_addrmap)
5734ee8b 7095 {
5734ee8b 7096 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7097 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7098 CORE_ADDR baseaddr;
7099 CORE_ADDR highpc;
7100 CORE_ADDR lowpc;
5734ee8b
DJ
7101
7102 baseaddr = ANOFFSET (objfile->section_offsets,
7103 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7104 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7105 pdi->lowpc + baseaddr);
7106 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7107 pdi->highpc + baseaddr);
7108 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7109 cu->per_cu->v.psymtab);
5734ee8b 7110 }
481860b3
GB
7111 }
7112
7113 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7114 {
bc30ff58 7115 if (!pdi->is_declaration)
e8d05480
JB
7116 /* Ignore subprogram DIEs that do not have a name, they are
7117 illegal. Do not emit a complaint at this point, we will
7118 do so when we convert this psymtab into a symtab. */
7119 if (pdi->name)
7120 add_partial_symbol (pdi, cu);
bc30ff58
JB
7121 }
7122 }
6e70227d 7123
bc30ff58
JB
7124 if (! pdi->has_children)
7125 return;
7126
7127 if (cu->language == language_ada)
7128 {
7129 pdi = pdi->die_child;
7130 while (pdi != NULL)
7131 {
7132 fixup_partial_die (pdi, cu);
7133 if (pdi->tag == DW_TAG_subprogram
7134 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7135 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7136 pdi = pdi->die_sibling;
7137 }
7138 }
7139}
7140
91c24f0a
DC
7141/* Read a partial die corresponding to an enumeration type. */
7142
72bf9492
DJ
7143static void
7144add_partial_enumeration (struct partial_die_info *enum_pdi,
7145 struct dwarf2_cu *cu)
91c24f0a 7146{
72bf9492 7147 struct partial_die_info *pdi;
91c24f0a
DC
7148
7149 if (enum_pdi->name != NULL)
72bf9492
DJ
7150 add_partial_symbol (enum_pdi, cu);
7151
7152 pdi = enum_pdi->die_child;
7153 while (pdi)
91c24f0a 7154 {
72bf9492 7155 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7156 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7157 else
72bf9492
DJ
7158 add_partial_symbol (pdi, cu);
7159 pdi = pdi->die_sibling;
91c24f0a 7160 }
91c24f0a
DC
7161}
7162
6caca83c
CC
7163/* Return the initial uleb128 in the die at INFO_PTR. */
7164
7165static unsigned int
d521ce57 7166peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7167{
7168 unsigned int bytes_read;
7169
7170 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7171}
7172
4bb7a0a7
DJ
7173/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7174 Return the corresponding abbrev, or NULL if the number is zero (indicating
7175 an empty DIE). In either case *BYTES_READ will be set to the length of
7176 the initial number. */
7177
7178static struct abbrev_info *
d521ce57 7179peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7180 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7181{
7182 bfd *abfd = cu->objfile->obfd;
7183 unsigned int abbrev_number;
7184 struct abbrev_info *abbrev;
7185
7186 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7187
7188 if (abbrev_number == 0)
7189 return NULL;
7190
433df2d4 7191 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7192 if (!abbrev)
7193 {
422b9917
DE
7194 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7195 " at offset 0x%x [in module %s]"),
7196 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7197 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7198 }
7199
7200 return abbrev;
7201}
7202
93311388
DE
7203/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7204 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7205 DIE. Any children of the skipped DIEs will also be skipped. */
7206
d521ce57
TT
7207static const gdb_byte *
7208skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7209{
dee91e82 7210 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7211 struct abbrev_info *abbrev;
7212 unsigned int bytes_read;
7213
7214 while (1)
7215 {
7216 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7217 if (abbrev == NULL)
7218 return info_ptr + bytes_read;
7219 else
dee91e82 7220 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7221 }
7222}
7223
93311388
DE
7224/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7226 abbrev corresponding to that skipped uleb128 should be passed in
7227 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7228 children. */
7229
d521ce57
TT
7230static const gdb_byte *
7231skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7232 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7233{
7234 unsigned int bytes_read;
7235 struct attribute attr;
dee91e82
DE
7236 bfd *abfd = reader->abfd;
7237 struct dwarf2_cu *cu = reader->cu;
d521ce57 7238 const gdb_byte *buffer = reader->buffer;
f664829e 7239 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7240 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7241 unsigned int form, i;
7242
7243 for (i = 0; i < abbrev->num_attrs; i++)
7244 {
7245 /* The only abbrev we care about is DW_AT_sibling. */
7246 if (abbrev->attrs[i].name == DW_AT_sibling)
7247 {
dee91e82 7248 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7249 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7250 complaint (&symfile_complaints,
7251 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7252 else
b9502d3f
WN
7253 {
7254 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7255 const gdb_byte *sibling_ptr = buffer + off;
7256
7257 if (sibling_ptr < info_ptr)
7258 complaint (&symfile_complaints,
7259 _("DW_AT_sibling points backwards"));
22869d73
KS
7260 else if (sibling_ptr > reader->buffer_end)
7261 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7262 else
7263 return sibling_ptr;
7264 }
4bb7a0a7
DJ
7265 }
7266
7267 /* If it isn't DW_AT_sibling, skip this attribute. */
7268 form = abbrev->attrs[i].form;
7269 skip_attribute:
7270 switch (form)
7271 {
4bb7a0a7 7272 case DW_FORM_ref_addr:
ae411497
TT
7273 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7274 and later it is offset sized. */
7275 if (cu->header.version == 2)
7276 info_ptr += cu->header.addr_size;
7277 else
7278 info_ptr += cu->header.offset_size;
7279 break;
36586728
TT
7280 case DW_FORM_GNU_ref_alt:
7281 info_ptr += cu->header.offset_size;
7282 break;
ae411497 7283 case DW_FORM_addr:
4bb7a0a7
DJ
7284 info_ptr += cu->header.addr_size;
7285 break;
7286 case DW_FORM_data1:
7287 case DW_FORM_ref1:
7288 case DW_FORM_flag:
7289 info_ptr += 1;
7290 break;
2dc7f7b3
TT
7291 case DW_FORM_flag_present:
7292 break;
4bb7a0a7
DJ
7293 case DW_FORM_data2:
7294 case DW_FORM_ref2:
7295 info_ptr += 2;
7296 break;
7297 case DW_FORM_data4:
7298 case DW_FORM_ref4:
7299 info_ptr += 4;
7300 break;
7301 case DW_FORM_data8:
7302 case DW_FORM_ref8:
55f1336d 7303 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7304 info_ptr += 8;
7305 break;
7306 case DW_FORM_string:
9b1c24c8 7307 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7308 info_ptr += bytes_read;
7309 break;
2dc7f7b3 7310 case DW_FORM_sec_offset:
4bb7a0a7 7311 case DW_FORM_strp:
36586728 7312 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7313 info_ptr += cu->header.offset_size;
7314 break;
2dc7f7b3 7315 case DW_FORM_exprloc:
4bb7a0a7
DJ
7316 case DW_FORM_block:
7317 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7318 info_ptr += bytes_read;
7319 break;
7320 case DW_FORM_block1:
7321 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7322 break;
7323 case DW_FORM_block2:
7324 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7325 break;
7326 case DW_FORM_block4:
7327 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7328 break;
7329 case DW_FORM_sdata:
7330 case DW_FORM_udata:
7331 case DW_FORM_ref_udata:
3019eac3
DE
7332 case DW_FORM_GNU_addr_index:
7333 case DW_FORM_GNU_str_index:
d521ce57 7334 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7335 break;
7336 case DW_FORM_indirect:
7337 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7338 info_ptr += bytes_read;
7339 /* We need to continue parsing from here, so just go back to
7340 the top. */
7341 goto skip_attribute;
7342
7343 default:
3e43a32a
MS
7344 error (_("Dwarf Error: Cannot handle %s "
7345 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7346 dwarf_form_name (form),
7347 bfd_get_filename (abfd));
7348 }
7349 }
7350
7351 if (abbrev->has_children)
dee91e82 7352 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7353 else
7354 return info_ptr;
7355}
7356
93311388 7357/* Locate ORIG_PDI's sibling.
dee91e82 7358 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7359
d521ce57 7360static const gdb_byte *
dee91e82
DE
7361locate_pdi_sibling (const struct die_reader_specs *reader,
7362 struct partial_die_info *orig_pdi,
d521ce57 7363 const gdb_byte *info_ptr)
91c24f0a
DC
7364{
7365 /* Do we know the sibling already? */
72bf9492 7366
91c24f0a
DC
7367 if (orig_pdi->sibling)
7368 return orig_pdi->sibling;
7369
7370 /* Are there any children to deal with? */
7371
7372 if (!orig_pdi->has_children)
7373 return info_ptr;
7374
4bb7a0a7 7375 /* Skip the children the long way. */
91c24f0a 7376
dee91e82 7377 return skip_children (reader, info_ptr);
91c24f0a
DC
7378}
7379
257e7a09 7380/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7381 not NULL. */
c906108c
SS
7382
7383static void
257e7a09
YQ
7384dwarf2_read_symtab (struct partial_symtab *self,
7385 struct objfile *objfile)
c906108c 7386{
257e7a09 7387 if (self->readin)
c906108c 7388 {
442e4d9c 7389 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7390 self->filename);
442e4d9c
YQ
7391 }
7392 else
7393 {
7394 if (info_verbose)
c906108c 7395 {
442e4d9c 7396 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7397 self->filename);
442e4d9c 7398 gdb_flush (gdb_stdout);
c906108c 7399 }
c906108c 7400
442e4d9c
YQ
7401 /* Restore our global data. */
7402 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7403
442e4d9c
YQ
7404 /* If this psymtab is constructed from a debug-only objfile, the
7405 has_section_at_zero flag will not necessarily be correct. We
7406 can get the correct value for this flag by looking at the data
7407 associated with the (presumably stripped) associated objfile. */
7408 if (objfile->separate_debug_objfile_backlink)
7409 {
7410 struct dwarf2_per_objfile *dpo_backlink
7411 = objfile_data (objfile->separate_debug_objfile_backlink,
7412 dwarf2_objfile_data_key);
9a619af0 7413
442e4d9c
YQ
7414 dwarf2_per_objfile->has_section_at_zero
7415 = dpo_backlink->has_section_at_zero;
7416 }
b2ab525c 7417
442e4d9c 7418 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7419
257e7a09 7420 psymtab_to_symtab_1 (self);
c906108c 7421
442e4d9c
YQ
7422 /* Finish up the debug error message. */
7423 if (info_verbose)
7424 printf_filtered (_("done.\n"));
c906108c 7425 }
95554aad
TT
7426
7427 process_cu_includes ();
c906108c 7428}
9cdd5dbd
DE
7429\f
7430/* Reading in full CUs. */
c906108c 7431
10b3939b
DJ
7432/* Add PER_CU to the queue. */
7433
7434static void
95554aad
TT
7435queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7436 enum language pretend_language)
10b3939b
DJ
7437{
7438 struct dwarf2_queue_item *item;
7439
7440 per_cu->queued = 1;
7441 item = xmalloc (sizeof (*item));
7442 item->per_cu = per_cu;
95554aad 7443 item->pretend_language = pretend_language;
10b3939b
DJ
7444 item->next = NULL;
7445
7446 if (dwarf2_queue == NULL)
7447 dwarf2_queue = item;
7448 else
7449 dwarf2_queue_tail->next = item;
7450
7451 dwarf2_queue_tail = item;
7452}
7453
89e63ee4
DE
7454/* If PER_CU is not yet queued, add it to the queue.
7455 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7456 dependency.
0907af0c 7457 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7458 meaning either PER_CU is already queued or it is already loaded.
7459
7460 N.B. There is an invariant here that if a CU is queued then it is loaded.
7461 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7462
7463static int
89e63ee4 7464maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7465 struct dwarf2_per_cu_data *per_cu,
7466 enum language pretend_language)
7467{
7468 /* We may arrive here during partial symbol reading, if we need full
7469 DIEs to process an unusual case (e.g. template arguments). Do
7470 not queue PER_CU, just tell our caller to load its DIEs. */
7471 if (dwarf2_per_objfile->reading_partial_symbols)
7472 {
7473 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7474 return 1;
7475 return 0;
7476 }
7477
7478 /* Mark the dependence relation so that we don't flush PER_CU
7479 too early. */
89e63ee4
DE
7480 if (dependent_cu != NULL)
7481 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7482
7483 /* If it's already on the queue, we have nothing to do. */
7484 if (per_cu->queued)
7485 return 0;
7486
7487 /* If the compilation unit is already loaded, just mark it as
7488 used. */
7489 if (per_cu->cu != NULL)
7490 {
7491 per_cu->cu->last_used = 0;
7492 return 0;
7493 }
7494
7495 /* Add it to the queue. */
7496 queue_comp_unit (per_cu, pretend_language);
7497
7498 return 1;
7499}
7500
10b3939b
DJ
7501/* Process the queue. */
7502
7503static void
a0f42c21 7504process_queue (void)
10b3939b
DJ
7505{
7506 struct dwarf2_queue_item *item, *next_item;
7507
45cfd468
DE
7508 if (dwarf2_read_debug)
7509 {
7510 fprintf_unfiltered (gdb_stdlog,
7511 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7512 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7513 }
7514
03dd20cc
DJ
7515 /* The queue starts out with one item, but following a DIE reference
7516 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7517 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7518 {
9291a0cd 7519 if (dwarf2_per_objfile->using_index
43f3e411 7520 ? !item->per_cu->v.quick->compunit_symtab
9291a0cd 7521 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7522 {
7523 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7524 unsigned int debug_print_threshold;
247f5c4f 7525 char buf[100];
f4dc4d17 7526
247f5c4f 7527 if (per_cu->is_debug_types)
f4dc4d17 7528 {
247f5c4f
DE
7529 struct signatured_type *sig_type =
7530 (struct signatured_type *) per_cu;
7531
7532 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7533 hex_string (sig_type->signature),
7534 per_cu->offset.sect_off);
7535 /* There can be 100s of TUs.
7536 Only print them in verbose mode. */
7537 debug_print_threshold = 2;
f4dc4d17 7538 }
247f5c4f 7539 else
73be47f5
DE
7540 {
7541 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7542 debug_print_threshold = 1;
7543 }
247f5c4f 7544
73be47f5 7545 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7546 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7547
7548 if (per_cu->is_debug_types)
7549 process_full_type_unit (per_cu, item->pretend_language);
7550 else
7551 process_full_comp_unit (per_cu, item->pretend_language);
7552
73be47f5 7553 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7554 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7555 }
10b3939b
DJ
7556
7557 item->per_cu->queued = 0;
7558 next_item = item->next;
7559 xfree (item);
7560 }
7561
7562 dwarf2_queue_tail = NULL;
45cfd468
DE
7563
7564 if (dwarf2_read_debug)
7565 {
7566 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7567 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7568 }
10b3939b
DJ
7569}
7570
7571/* Free all allocated queue entries. This function only releases anything if
7572 an error was thrown; if the queue was processed then it would have been
7573 freed as we went along. */
7574
7575static void
7576dwarf2_release_queue (void *dummy)
7577{
7578 struct dwarf2_queue_item *item, *last;
7579
7580 item = dwarf2_queue;
7581 while (item)
7582 {
7583 /* Anything still marked queued is likely to be in an
7584 inconsistent state, so discard it. */
7585 if (item->per_cu->queued)
7586 {
7587 if (item->per_cu->cu != NULL)
dee91e82 7588 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7589 item->per_cu->queued = 0;
7590 }
7591
7592 last = item;
7593 item = item->next;
7594 xfree (last);
7595 }
7596
7597 dwarf2_queue = dwarf2_queue_tail = NULL;
7598}
7599
7600/* Read in full symbols for PST, and anything it depends on. */
7601
c906108c 7602static void
fba45db2 7603psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7604{
10b3939b 7605 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7606 int i;
7607
95554aad
TT
7608 if (pst->readin)
7609 return;
7610
aaa75496 7611 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7612 if (!pst->dependencies[i]->readin
7613 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7614 {
7615 /* Inform about additional files that need to be read in. */
7616 if (info_verbose)
7617 {
a3f17187 7618 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7619 fputs_filtered (" ", gdb_stdout);
7620 wrap_here ("");
7621 fputs_filtered ("and ", gdb_stdout);
7622 wrap_here ("");
7623 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7624 wrap_here (""); /* Flush output. */
aaa75496
JB
7625 gdb_flush (gdb_stdout);
7626 }
7627 psymtab_to_symtab_1 (pst->dependencies[i]);
7628 }
7629
e38df1d0 7630 per_cu = pst->read_symtab_private;
10b3939b
DJ
7631
7632 if (per_cu == NULL)
aaa75496
JB
7633 {
7634 /* It's an include file, no symbols to read for it.
7635 Everything is in the parent symtab. */
7636 pst->readin = 1;
7637 return;
7638 }
c906108c 7639
a0f42c21 7640 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7641}
7642
dee91e82
DE
7643/* Trivial hash function for die_info: the hash value of a DIE
7644 is its offset in .debug_info for this objfile. */
10b3939b 7645
dee91e82
DE
7646static hashval_t
7647die_hash (const void *item)
10b3939b 7648{
dee91e82 7649 const struct die_info *die = item;
6502dd73 7650
dee91e82
DE
7651 return die->offset.sect_off;
7652}
63d06c5c 7653
dee91e82
DE
7654/* Trivial comparison function for die_info structures: two DIEs
7655 are equal if they have the same offset. */
98bfdba5 7656
dee91e82
DE
7657static int
7658die_eq (const void *item_lhs, const void *item_rhs)
7659{
7660 const struct die_info *die_lhs = item_lhs;
7661 const struct die_info *die_rhs = item_rhs;
c906108c 7662
dee91e82
DE
7663 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7664}
c906108c 7665
dee91e82
DE
7666/* die_reader_func for load_full_comp_unit.
7667 This is identical to read_signatured_type_reader,
7668 but is kept separate for now. */
c906108c 7669
dee91e82
DE
7670static void
7671load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7672 const gdb_byte *info_ptr,
dee91e82
DE
7673 struct die_info *comp_unit_die,
7674 int has_children,
7675 void *data)
7676{
7677 struct dwarf2_cu *cu = reader->cu;
95554aad 7678 enum language *language_ptr = data;
6caca83c 7679
dee91e82
DE
7680 gdb_assert (cu->die_hash == NULL);
7681 cu->die_hash =
7682 htab_create_alloc_ex (cu->header.length / 12,
7683 die_hash,
7684 die_eq,
7685 NULL,
7686 &cu->comp_unit_obstack,
7687 hashtab_obstack_allocate,
7688 dummy_obstack_deallocate);
e142c38c 7689
dee91e82
DE
7690 if (has_children)
7691 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7692 &info_ptr, comp_unit_die);
7693 cu->dies = comp_unit_die;
7694 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7695
7696 /* We try not to read any attributes in this function, because not
9cdd5dbd 7697 all CUs needed for references have been loaded yet, and symbol
10b3939b 7698 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7699 or we won't be able to build types correctly.
7700 Similarly, if we do not read the producer, we can not apply
7701 producer-specific interpretation. */
95554aad 7702 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7703}
10b3939b 7704
dee91e82 7705/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7706
dee91e82 7707static void
95554aad
TT
7708load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7709 enum language pretend_language)
dee91e82 7710{
3019eac3 7711 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7712
f4dc4d17
DE
7713 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7714 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7715}
7716
3da10d80
KS
7717/* Add a DIE to the delayed physname list. */
7718
7719static void
7720add_to_method_list (struct type *type, int fnfield_index, int index,
7721 const char *name, struct die_info *die,
7722 struct dwarf2_cu *cu)
7723{
7724 struct delayed_method_info mi;
7725 mi.type = type;
7726 mi.fnfield_index = fnfield_index;
7727 mi.index = index;
7728 mi.name = name;
7729 mi.die = die;
7730 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7731}
7732
7733/* A cleanup for freeing the delayed method list. */
7734
7735static void
7736free_delayed_list (void *ptr)
7737{
7738 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7739 if (cu->method_list != NULL)
7740 {
7741 VEC_free (delayed_method_info, cu->method_list);
7742 cu->method_list = NULL;
7743 }
7744}
7745
7746/* Compute the physnames of any methods on the CU's method list.
7747
7748 The computation of method physnames is delayed in order to avoid the
7749 (bad) condition that one of the method's formal parameters is of an as yet
7750 incomplete type. */
7751
7752static void
7753compute_delayed_physnames (struct dwarf2_cu *cu)
7754{
7755 int i;
7756 struct delayed_method_info *mi;
7757 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7758 {
1d06ead6 7759 const char *physname;
3da10d80
KS
7760 struct fn_fieldlist *fn_flp
7761 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7762 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7764 = physname ? physname : "";
3da10d80
KS
7765 }
7766}
7767
a766d390
DE
7768/* Go objects should be embedded in a DW_TAG_module DIE,
7769 and it's not clear if/how imported objects will appear.
7770 To keep Go support simple until that's worked out,
7771 go back through what we've read and create something usable.
7772 We could do this while processing each DIE, and feels kinda cleaner,
7773 but that way is more invasive.
7774 This is to, for example, allow the user to type "p var" or "b main"
7775 without having to specify the package name, and allow lookups
7776 of module.object to work in contexts that use the expression
7777 parser. */
7778
7779static void
7780fixup_go_packaging (struct dwarf2_cu *cu)
7781{
7782 char *package_name = NULL;
7783 struct pending *list;
7784 int i;
7785
7786 for (list = global_symbols; list != NULL; list = list->next)
7787 {
7788 for (i = 0; i < list->nsyms; ++i)
7789 {
7790 struct symbol *sym = list->symbol[i];
7791
7792 if (SYMBOL_LANGUAGE (sym) == language_go
7793 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7794 {
7795 char *this_package_name = go_symbol_package_name (sym);
7796
7797 if (this_package_name == NULL)
7798 continue;
7799 if (package_name == NULL)
7800 package_name = this_package_name;
7801 else
7802 {
7803 if (strcmp (package_name, this_package_name) != 0)
7804 complaint (&symfile_complaints,
7805 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7806 (symbol_symtab (sym) != NULL
7807 ? symtab_to_filename_for_display
7808 (symbol_symtab (sym))
4262abfb 7809 : objfile_name (cu->objfile)),
a766d390
DE
7810 this_package_name, package_name);
7811 xfree (this_package_name);
7812 }
7813 }
7814 }
7815 }
7816
7817 if (package_name != NULL)
7818 {
7819 struct objfile *objfile = cu->objfile;
34a68019
TT
7820 const char *saved_package_name
7821 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7822 package_name,
7823 strlen (package_name));
a766d390 7824 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7825 saved_package_name, objfile);
a766d390
DE
7826 struct symbol *sym;
7827
7828 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7829
e623cf5d 7830 sym = allocate_symbol (objfile);
f85f34ed 7831 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7832 SYMBOL_SET_NAMES (sym, saved_package_name,
7833 strlen (saved_package_name), 0, objfile);
a766d390
DE
7834 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7835 e.g., "main" finds the "main" module and not C's main(). */
7836 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7837 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7838 SYMBOL_TYPE (sym) = type;
7839
7840 add_symbol_to_list (sym, &global_symbols);
7841
7842 xfree (package_name);
7843 }
7844}
7845
95554aad
TT
7846/* Return the symtab for PER_CU. This works properly regardless of
7847 whether we're using the index or psymtabs. */
7848
43f3e411
DE
7849static struct compunit_symtab *
7850get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7851{
7852 return (dwarf2_per_objfile->using_index
43f3e411
DE
7853 ? per_cu->v.quick->compunit_symtab
7854 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7855}
7856
7857/* A helper function for computing the list of all symbol tables
7858 included by PER_CU. */
7859
7860static void
43f3e411 7861recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7862 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7863 struct dwarf2_per_cu_data *per_cu,
43f3e411 7864 struct compunit_symtab *immediate_parent)
95554aad
TT
7865{
7866 void **slot;
7867 int ix;
43f3e411 7868 struct compunit_symtab *cust;
95554aad
TT
7869 struct dwarf2_per_cu_data *iter;
7870
7871 slot = htab_find_slot (all_children, per_cu, INSERT);
7872 if (*slot != NULL)
7873 {
7874 /* This inclusion and its children have been processed. */
7875 return;
7876 }
7877
7878 *slot = per_cu;
7879 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7880 cust = get_compunit_symtab (per_cu);
7881 if (cust != NULL)
ec94af83
DE
7882 {
7883 /* If this is a type unit only add its symbol table if we haven't
7884 seen it yet (type unit per_cu's can share symtabs). */
7885 if (per_cu->is_debug_types)
7886 {
43f3e411 7887 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7888 if (*slot == NULL)
7889 {
43f3e411
DE
7890 *slot = cust;
7891 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7892 if (cust->user == NULL)
7893 cust->user = immediate_parent;
ec94af83
DE
7894 }
7895 }
7896 else
f9125b6c 7897 {
43f3e411
DE
7898 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7899 if (cust->user == NULL)
7900 cust->user = immediate_parent;
f9125b6c 7901 }
ec94af83 7902 }
95554aad
TT
7903
7904 for (ix = 0;
796a7ff8 7905 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7906 ++ix)
ec94af83
DE
7907 {
7908 recursively_compute_inclusions (result, all_children,
43f3e411 7909 all_type_symtabs, iter, cust);
ec94af83 7910 }
95554aad
TT
7911}
7912
43f3e411 7913/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7914 PER_CU. */
7915
7916static void
43f3e411 7917compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7918{
f4dc4d17
DE
7919 gdb_assert (! per_cu->is_debug_types);
7920
796a7ff8 7921 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7922 {
7923 int ix, len;
ec94af83 7924 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7925 struct compunit_symtab *compunit_symtab_iter;
7926 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7927 htab_t all_children, all_type_symtabs;
43f3e411 7928 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7929
7930 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7931 if (cust == NULL)
95554aad
TT
7932 return;
7933
7934 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7935 NULL, xcalloc, xfree);
ec94af83
DE
7936 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7937 NULL, xcalloc, xfree);
95554aad
TT
7938
7939 for (ix = 0;
796a7ff8 7940 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7941 ix, per_cu_iter);
95554aad 7942 ++ix)
ec94af83
DE
7943 {
7944 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7945 all_type_symtabs, per_cu_iter,
43f3e411 7946 cust);
ec94af83 7947 }
95554aad 7948
ec94af83 7949 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7950 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7951 cust->includes
95554aad
TT
7952 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7953 (len + 1) * sizeof (struct symtab *));
7954 for (ix = 0;
43f3e411
DE
7955 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7956 compunit_symtab_iter);
95554aad 7957 ++ix)
43f3e411
DE
7958 cust->includes[ix] = compunit_symtab_iter;
7959 cust->includes[len] = NULL;
95554aad 7960
43f3e411 7961 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7962 htab_delete (all_children);
ec94af83 7963 htab_delete (all_type_symtabs);
95554aad
TT
7964 }
7965}
7966
7967/* Compute the 'includes' field for the symtabs of all the CUs we just
7968 read. */
7969
7970static void
7971process_cu_includes (void)
7972{
7973 int ix;
7974 struct dwarf2_per_cu_data *iter;
7975
7976 for (ix = 0;
7977 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7978 ix, iter);
7979 ++ix)
f4dc4d17
DE
7980 {
7981 if (! iter->is_debug_types)
43f3e411 7982 compute_compunit_symtab_includes (iter);
f4dc4d17 7983 }
95554aad
TT
7984
7985 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7986}
7987
9cdd5dbd 7988/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7989 already been loaded into memory. */
7990
7991static void
95554aad
TT
7992process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7993 enum language pretend_language)
10b3939b 7994{
10b3939b 7995 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7996 struct objfile *objfile = per_cu->objfile;
3e29f34a 7997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 7998 CORE_ADDR lowpc, highpc;
43f3e411 7999 struct compunit_symtab *cust;
3da10d80 8000 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8001 CORE_ADDR baseaddr;
4359dff1 8002 struct block *static_block;
3e29f34a 8003 CORE_ADDR addr;
10b3939b
DJ
8004
8005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8006
10b3939b
DJ
8007 buildsym_init ();
8008 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8009 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8010
8011 cu->list_in_scope = &file_symbols;
c906108c 8012
95554aad
TT
8013 cu->language = pretend_language;
8014 cu->language_defn = language_def (cu->language);
8015
c906108c 8016 /* Do line number decoding in read_file_scope () */
10b3939b 8017 process_die (cu->dies, cu);
c906108c 8018
a766d390
DE
8019 /* For now fudge the Go package. */
8020 if (cu->language == language_go)
8021 fixup_go_packaging (cu);
8022
3da10d80
KS
8023 /* Now that we have processed all the DIEs in the CU, all the types
8024 should be complete, and it should now be safe to compute all of the
8025 physnames. */
8026 compute_delayed_physnames (cu);
8027 do_cleanups (delayed_list_cleanup);
8028
fae299cd
DC
8029 /* Some compilers don't define a DW_AT_high_pc attribute for the
8030 compilation unit. If the DW_AT_high_pc is missing, synthesize
8031 it, by scanning the DIE's below the compilation unit. */
10b3939b 8032 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8033
3e29f34a
MR
8034 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8035 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8036
8037 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8038 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8039 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8040 addrmap to help ensure it has an accurate map of pc values belonging to
8041 this comp unit. */
8042 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8043
43f3e411
DE
8044 cust = end_symtab_from_static_block (static_block,
8045 SECT_OFF_TEXT (objfile), 0);
c906108c 8046
43f3e411 8047 if (cust != NULL)
c906108c 8048 {
df15bd07 8049 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8050
8be455d7
JK
8051 /* Set symtab language to language from DW_AT_language. If the
8052 compilation is from a C file generated by language preprocessors, do
8053 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
8054 if (!(cu->language == language_c
8055 && COMPUNIT_FILETABS (cust)->language != language_c))
8056 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8057
8058 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8059 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8060 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8061 there were bugs in prologue debug info, fixed later in GCC-4.5
8062 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8063
8064 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8065 needed, it would be wrong due to missing DW_AT_producer there.
8066
8067 Still one can confuse GDB by using non-standard GCC compilation
8068 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8069 */
ab260dad 8070 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8071 cust->locations_valid = 1;
e0d00bc7
JK
8072
8073 if (gcc_4_minor >= 5)
43f3e411 8074 cust->epilogue_unwind_valid = 1;
96408a79 8075
43f3e411 8076 cust->call_site_htab = cu->call_site_htab;
c906108c 8077 }
9291a0cd
TT
8078
8079 if (dwarf2_per_objfile->using_index)
43f3e411 8080 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8081 else
8082 {
8083 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8084 pst->compunit_symtab = cust;
9291a0cd
TT
8085 pst->readin = 1;
8086 }
c906108c 8087
95554aad
TT
8088 /* Push it for inclusion processing later. */
8089 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8090
c906108c 8091 do_cleanups (back_to);
f4dc4d17 8092}
45cfd468 8093
f4dc4d17
DE
8094/* Generate full symbol information for type unit PER_CU, whose DIEs have
8095 already been loaded into memory. */
8096
8097static void
8098process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8099 enum language pretend_language)
8100{
8101 struct dwarf2_cu *cu = per_cu->cu;
8102 struct objfile *objfile = per_cu->objfile;
43f3e411 8103 struct compunit_symtab *cust;
f4dc4d17 8104 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8105 struct signatured_type *sig_type;
8106
8107 gdb_assert (per_cu->is_debug_types);
8108 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8109
8110 buildsym_init ();
8111 back_to = make_cleanup (really_free_pendings, NULL);
8112 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8113
8114 cu->list_in_scope = &file_symbols;
8115
8116 cu->language = pretend_language;
8117 cu->language_defn = language_def (cu->language);
8118
8119 /* The symbol tables are set up in read_type_unit_scope. */
8120 process_die (cu->dies, cu);
8121
8122 /* For now fudge the Go package. */
8123 if (cu->language == language_go)
8124 fixup_go_packaging (cu);
8125
8126 /* Now that we have processed all the DIEs in the CU, all the types
8127 should be complete, and it should now be safe to compute all of the
8128 physnames. */
8129 compute_delayed_physnames (cu);
8130 do_cleanups (delayed_list_cleanup);
8131
8132 /* TUs share symbol tables.
8133 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8134 of it with end_expandable_symtab. Otherwise, complete the addition of
8135 this TU's symbols to the existing symtab. */
43f3e411 8136 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8137 {
43f3e411
DE
8138 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8139 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8140
43f3e411 8141 if (cust != NULL)
f4dc4d17
DE
8142 {
8143 /* Set symtab language to language from DW_AT_language. If the
8144 compilation is from a C file generated by language preprocessors,
8145 do not set the language if it was already deduced by
8146 start_subfile. */
43f3e411
DE
8147 if (!(cu->language == language_c
8148 && COMPUNIT_FILETABS (cust)->language != language_c))
8149 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8150 }
8151 }
8152 else
8153 {
0ab9ce85 8154 augment_type_symtab ();
43f3e411 8155 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8156 }
8157
8158 if (dwarf2_per_objfile->using_index)
43f3e411 8159 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8160 else
8161 {
8162 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8163 pst->compunit_symtab = cust;
f4dc4d17 8164 pst->readin = 1;
45cfd468 8165 }
f4dc4d17
DE
8166
8167 do_cleanups (back_to);
c906108c
SS
8168}
8169
95554aad
TT
8170/* Process an imported unit DIE. */
8171
8172static void
8173process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8174{
8175 struct attribute *attr;
8176
f4dc4d17
DE
8177 /* For now we don't handle imported units in type units. */
8178 if (cu->per_cu->is_debug_types)
8179 {
8180 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8181 " supported in type units [in module %s]"),
4262abfb 8182 objfile_name (cu->objfile));
f4dc4d17
DE
8183 }
8184
95554aad
TT
8185 attr = dwarf2_attr (die, DW_AT_import, cu);
8186 if (attr != NULL)
8187 {
8188 struct dwarf2_per_cu_data *per_cu;
8189 struct symtab *imported_symtab;
8190 sect_offset offset;
36586728 8191 int is_dwz;
95554aad
TT
8192
8193 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8194 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8195 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8196
69d751e3 8197 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8198 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8199 load_full_comp_unit (per_cu, cu->language);
8200
796a7ff8 8201 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8202 per_cu);
8203 }
8204}
8205
adde2bff
DE
8206/* Reset the in_process bit of a die. */
8207
8208static void
8209reset_die_in_process (void *arg)
8210{
8211 struct die_info *die = arg;
8c3cb9fa 8212
adde2bff
DE
8213 die->in_process = 0;
8214}
8215
c906108c
SS
8216/* Process a die and its children. */
8217
8218static void
e7c27a73 8219process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8220{
adde2bff
DE
8221 struct cleanup *in_process;
8222
8223 /* We should only be processing those not already in process. */
8224 gdb_assert (!die->in_process);
8225
8226 die->in_process = 1;
8227 in_process = make_cleanup (reset_die_in_process,die);
8228
c906108c
SS
8229 switch (die->tag)
8230 {
8231 case DW_TAG_padding:
8232 break;
8233 case DW_TAG_compile_unit:
95554aad 8234 case DW_TAG_partial_unit:
e7c27a73 8235 read_file_scope (die, cu);
c906108c 8236 break;
348e048f
DE
8237 case DW_TAG_type_unit:
8238 read_type_unit_scope (die, cu);
8239 break;
c906108c 8240 case DW_TAG_subprogram:
c906108c 8241 case DW_TAG_inlined_subroutine:
edb3359d 8242 read_func_scope (die, cu);
c906108c
SS
8243 break;
8244 case DW_TAG_lexical_block:
14898363
L
8245 case DW_TAG_try_block:
8246 case DW_TAG_catch_block:
e7c27a73 8247 read_lexical_block_scope (die, cu);
c906108c 8248 break;
96408a79
SA
8249 case DW_TAG_GNU_call_site:
8250 read_call_site_scope (die, cu);
8251 break;
c906108c 8252 case DW_TAG_class_type:
680b30c7 8253 case DW_TAG_interface_type:
c906108c
SS
8254 case DW_TAG_structure_type:
8255 case DW_TAG_union_type:
134d01f1 8256 process_structure_scope (die, cu);
c906108c
SS
8257 break;
8258 case DW_TAG_enumeration_type:
134d01f1 8259 process_enumeration_scope (die, cu);
c906108c 8260 break;
134d01f1 8261
f792889a
DJ
8262 /* These dies have a type, but processing them does not create
8263 a symbol or recurse to process the children. Therefore we can
8264 read them on-demand through read_type_die. */
c906108c 8265 case DW_TAG_subroutine_type:
72019c9c 8266 case DW_TAG_set_type:
c906108c 8267 case DW_TAG_array_type:
c906108c 8268 case DW_TAG_pointer_type:
c906108c 8269 case DW_TAG_ptr_to_member_type:
c906108c 8270 case DW_TAG_reference_type:
c906108c 8271 case DW_TAG_string_type:
c906108c 8272 break;
134d01f1 8273
c906108c 8274 case DW_TAG_base_type:
a02abb62 8275 case DW_TAG_subrange_type:
cb249c71 8276 case DW_TAG_typedef:
134d01f1
DJ
8277 /* Add a typedef symbol for the type definition, if it has a
8278 DW_AT_name. */
f792889a 8279 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8280 break;
c906108c 8281 case DW_TAG_common_block:
e7c27a73 8282 read_common_block (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_common_inclusion:
8285 break;
d9fa45fe 8286 case DW_TAG_namespace:
4d4ec4e5 8287 cu->processing_has_namespace_info = 1;
e7c27a73 8288 read_namespace (die, cu);
d9fa45fe 8289 break;
5d7cb8df 8290 case DW_TAG_module:
4d4ec4e5 8291 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8292 read_module (die, cu);
8293 break;
d9fa45fe 8294 case DW_TAG_imported_declaration:
74921315
KS
8295 cu->processing_has_namespace_info = 1;
8296 if (read_namespace_alias (die, cu))
8297 break;
8298 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8299 case DW_TAG_imported_module:
4d4ec4e5 8300 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8301 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8302 || cu->language != language_fortran))
8303 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8304 dwarf_tag_name (die->tag));
8305 read_import_statement (die, cu);
d9fa45fe 8306 break;
95554aad
TT
8307
8308 case DW_TAG_imported_unit:
8309 process_imported_unit_die (die, cu);
8310 break;
8311
c906108c 8312 default:
e7c27a73 8313 new_symbol (die, NULL, cu);
c906108c
SS
8314 break;
8315 }
adde2bff
DE
8316
8317 do_cleanups (in_process);
c906108c 8318}
ca69b9e6
DE
8319\f
8320/* DWARF name computation. */
c906108c 8321
94af9270
KS
8322/* A helper function for dwarf2_compute_name which determines whether DIE
8323 needs to have the name of the scope prepended to the name listed in the
8324 die. */
8325
8326static int
8327die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8328{
1c809c68
TT
8329 struct attribute *attr;
8330
94af9270
KS
8331 switch (die->tag)
8332 {
8333 case DW_TAG_namespace:
8334 case DW_TAG_typedef:
8335 case DW_TAG_class_type:
8336 case DW_TAG_interface_type:
8337 case DW_TAG_structure_type:
8338 case DW_TAG_union_type:
8339 case DW_TAG_enumeration_type:
8340 case DW_TAG_enumerator:
8341 case DW_TAG_subprogram:
8342 case DW_TAG_member:
74921315 8343 case DW_TAG_imported_declaration:
94af9270
KS
8344 return 1;
8345
8346 case DW_TAG_variable:
c2b0a229 8347 case DW_TAG_constant:
94af9270
KS
8348 /* We only need to prefix "globally" visible variables. These include
8349 any variable marked with DW_AT_external or any variable that
8350 lives in a namespace. [Variables in anonymous namespaces
8351 require prefixing, but they are not DW_AT_external.] */
8352
8353 if (dwarf2_attr (die, DW_AT_specification, cu))
8354 {
8355 struct dwarf2_cu *spec_cu = cu;
9a619af0 8356
94af9270
KS
8357 return die_needs_namespace (die_specification (die, &spec_cu),
8358 spec_cu);
8359 }
8360
1c809c68 8361 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8362 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8363 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8364 return 0;
8365 /* A variable in a lexical block of some kind does not need a
8366 namespace, even though in C++ such variables may be external
8367 and have a mangled name. */
8368 if (die->parent->tag == DW_TAG_lexical_block
8369 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8370 || die->parent->tag == DW_TAG_catch_block
8371 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8372 return 0;
8373 return 1;
94af9270
KS
8374
8375 default:
8376 return 0;
8377 }
8378}
8379
98bfdba5
PA
8380/* Retrieve the last character from a mem_file. */
8381
8382static void
8383do_ui_file_peek_last (void *object, const char *buffer, long length)
8384{
8385 char *last_char_p = (char *) object;
8386
8387 if (length > 0)
8388 *last_char_p = buffer[length - 1];
8389}
8390
94af9270 8391/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8392 compute the physname for the object, which include a method's:
8393 - formal parameters (C++/Java),
8394 - receiver type (Go),
8395 - return type (Java).
8396
8397 The term "physname" is a bit confusing.
8398 For C++, for example, it is the demangled name.
8399 For Go, for example, it's the mangled name.
94af9270 8400
af6b7be1
JB
8401 For Ada, return the DIE's linkage name rather than the fully qualified
8402 name. PHYSNAME is ignored..
8403
94af9270
KS
8404 The result is allocated on the objfile_obstack and canonicalized. */
8405
8406static const char *
15d034d0
TT
8407dwarf2_compute_name (const char *name,
8408 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8409 int physname)
8410{
bb5ed363
DE
8411 struct objfile *objfile = cu->objfile;
8412
94af9270
KS
8413 if (name == NULL)
8414 name = dwarf2_name (die, cu);
8415
f55ee35c
JK
8416 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8417 compute it by typename_concat inside GDB. */
8418 if (cu->language == language_ada
8419 || (cu->language == language_fortran && physname))
8420 {
8421 /* For Ada unit, we prefer the linkage name over the name, as
8422 the former contains the exported name, which the user expects
8423 to be able to reference. Ideally, we want the user to be able
8424 to reference this entity using either natural or linkage name,
8425 but we haven't started looking at this enhancement yet. */
8426 struct attribute *attr;
8427
8428 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8429 if (attr == NULL)
8430 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8431 if (attr && DW_STRING (attr))
8432 return DW_STRING (attr);
8433 }
8434
94af9270
KS
8435 /* These are the only languages we know how to qualify names in. */
8436 if (name != NULL
f55ee35c
JK
8437 && (cu->language == language_cplus || cu->language == language_java
8438 || cu->language == language_fortran))
94af9270
KS
8439 {
8440 if (die_needs_namespace (die, cu))
8441 {
8442 long length;
0d5cff50 8443 const char *prefix;
94af9270 8444 struct ui_file *buf;
34a68019
TT
8445 char *intermediate_name;
8446 const char *canonical_name = NULL;
94af9270
KS
8447
8448 prefix = determine_prefix (die, cu);
8449 buf = mem_fileopen ();
8450 if (*prefix != '\0')
8451 {
f55ee35c
JK
8452 char *prefixed_name = typename_concat (NULL, prefix, name,
8453 physname, cu);
9a619af0 8454
94af9270
KS
8455 fputs_unfiltered (prefixed_name, buf);
8456 xfree (prefixed_name);
8457 }
8458 else
62d5b8da 8459 fputs_unfiltered (name, buf);
94af9270 8460
98bfdba5
PA
8461 /* Template parameters may be specified in the DIE's DW_AT_name, or
8462 as children with DW_TAG_template_type_param or
8463 DW_TAG_value_type_param. If the latter, add them to the name
8464 here. If the name already has template parameters, then
8465 skip this step; some versions of GCC emit both, and
8466 it is more efficient to use the pre-computed name.
8467
8468 Something to keep in mind about this process: it is very
8469 unlikely, or in some cases downright impossible, to produce
8470 something that will match the mangled name of a function.
8471 If the definition of the function has the same debug info,
8472 we should be able to match up with it anyway. But fallbacks
8473 using the minimal symbol, for instance to find a method
8474 implemented in a stripped copy of libstdc++, will not work.
8475 If we do not have debug info for the definition, we will have to
8476 match them up some other way.
8477
8478 When we do name matching there is a related problem with function
8479 templates; two instantiated function templates are allowed to
8480 differ only by their return types, which we do not add here. */
8481
8482 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8483 {
8484 struct attribute *attr;
8485 struct die_info *child;
8486 int first = 1;
8487
8488 die->building_fullname = 1;
8489
8490 for (child = die->child; child != NULL; child = child->sibling)
8491 {
8492 struct type *type;
12df843f 8493 LONGEST value;
d521ce57 8494 const gdb_byte *bytes;
98bfdba5
PA
8495 struct dwarf2_locexpr_baton *baton;
8496 struct value *v;
8497
8498 if (child->tag != DW_TAG_template_type_param
8499 && child->tag != DW_TAG_template_value_param)
8500 continue;
8501
8502 if (first)
8503 {
8504 fputs_unfiltered ("<", buf);
8505 first = 0;
8506 }
8507 else
8508 fputs_unfiltered (", ", buf);
8509
8510 attr = dwarf2_attr (child, DW_AT_type, cu);
8511 if (attr == NULL)
8512 {
8513 complaint (&symfile_complaints,
8514 _("template parameter missing DW_AT_type"));
8515 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8516 continue;
8517 }
8518 type = die_type (child, cu);
8519
8520 if (child->tag == DW_TAG_template_type_param)
8521 {
79d43c61 8522 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8523 continue;
8524 }
8525
8526 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8527 if (attr == NULL)
8528 {
8529 complaint (&symfile_complaints,
3e43a32a
MS
8530 _("template parameter missing "
8531 "DW_AT_const_value"));
98bfdba5
PA
8532 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8533 continue;
8534 }
8535
8536 dwarf2_const_value_attr (attr, type, name,
8537 &cu->comp_unit_obstack, cu,
8538 &value, &bytes, &baton);
8539
8540 if (TYPE_NOSIGN (type))
8541 /* GDB prints characters as NUMBER 'CHAR'. If that's
8542 changed, this can use value_print instead. */
8543 c_printchar (value, type, buf);
8544 else
8545 {
8546 struct value_print_options opts;
8547
8548 if (baton != NULL)
8549 v = dwarf2_evaluate_loc_desc (type, NULL,
8550 baton->data,
8551 baton->size,
8552 baton->per_cu);
8553 else if (bytes != NULL)
8554 {
8555 v = allocate_value (type);
8556 memcpy (value_contents_writeable (v), bytes,
8557 TYPE_LENGTH (type));
8558 }
8559 else
8560 v = value_from_longest (type, value);
8561
3e43a32a
MS
8562 /* Specify decimal so that we do not depend on
8563 the radix. */
98bfdba5
PA
8564 get_formatted_print_options (&opts, 'd');
8565 opts.raw = 1;
8566 value_print (v, buf, &opts);
8567 release_value (v);
8568 value_free (v);
8569 }
8570 }
8571
8572 die->building_fullname = 0;
8573
8574 if (!first)
8575 {
8576 /* Close the argument list, with a space if necessary
8577 (nested templates). */
8578 char last_char = '\0';
8579 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8580 if (last_char == '>')
8581 fputs_unfiltered (" >", buf);
8582 else
8583 fputs_unfiltered (">", buf);
8584 }
8585 }
8586
94af9270
KS
8587 /* For Java and C++ methods, append formal parameter type
8588 information, if PHYSNAME. */
6e70227d 8589
94af9270
KS
8590 if (physname && die->tag == DW_TAG_subprogram
8591 && (cu->language == language_cplus
8592 || cu->language == language_java))
8593 {
8594 struct type *type = read_type_die (die, cu);
8595
79d43c61
TT
8596 c_type_print_args (type, buf, 1, cu->language,
8597 &type_print_raw_options);
94af9270
KS
8598
8599 if (cu->language == language_java)
8600 {
8601 /* For java, we must append the return type to method
0963b4bd 8602 names. */
94af9270
KS
8603 if (die->tag == DW_TAG_subprogram)
8604 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8605 0, 0, &type_print_raw_options);
94af9270
KS
8606 }
8607 else if (cu->language == language_cplus)
8608 {
60430eff
DJ
8609 /* Assume that an artificial first parameter is
8610 "this", but do not crash if it is not. RealView
8611 marks unnamed (and thus unused) parameters as
8612 artificial; there is no way to differentiate
8613 the two cases. */
94af9270
KS
8614 if (TYPE_NFIELDS (type) > 0
8615 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8616 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8617 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8618 0))))
94af9270
KS
8619 fputs_unfiltered (" const", buf);
8620 }
8621 }
8622
34a68019 8623 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8624 ui_file_delete (buf);
8625
8626 if (cu->language == language_cplus)
34a68019
TT
8627 canonical_name
8628 = dwarf2_canonicalize_name (intermediate_name, cu,
8629 &objfile->per_bfd->storage_obstack);
8630
8631 /* If we only computed INTERMEDIATE_NAME, or if
8632 INTERMEDIATE_NAME is already canonical, then we need to
8633 copy it to the appropriate obstack. */
8634 if (canonical_name == NULL || canonical_name == intermediate_name)
8635 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8636 intermediate_name,
8637 strlen (intermediate_name));
8638 else
8639 name = canonical_name;
9a619af0 8640
34a68019 8641 xfree (intermediate_name);
94af9270
KS
8642 }
8643 }
8644
8645 return name;
8646}
8647
0114d602
DJ
8648/* Return the fully qualified name of DIE, based on its DW_AT_name.
8649 If scope qualifiers are appropriate they will be added. The result
34a68019 8650 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8651 not have a name. NAME may either be from a previous call to
8652 dwarf2_name or NULL.
8653
0963b4bd 8654 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8655
8656static const char *
15d034d0 8657dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8658{
94af9270
KS
8659 return dwarf2_compute_name (name, die, cu, 0);
8660}
0114d602 8661
94af9270
KS
8662/* Construct a physname for the given DIE in CU. NAME may either be
8663 from a previous call to dwarf2_name or NULL. The result will be
8664 allocated on the objfile_objstack or NULL if the DIE does not have a
8665 name.
0114d602 8666
94af9270 8667 The output string will be canonicalized (if C++/Java). */
0114d602 8668
94af9270 8669static const char *
15d034d0 8670dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8671{
bb5ed363 8672 struct objfile *objfile = cu->objfile;
900e11f9
JK
8673 struct attribute *attr;
8674 const char *retval, *mangled = NULL, *canon = NULL;
8675 struct cleanup *back_to;
8676 int need_copy = 1;
8677
8678 /* In this case dwarf2_compute_name is just a shortcut not building anything
8679 on its own. */
8680 if (!die_needs_namespace (die, cu))
8681 return dwarf2_compute_name (name, die, cu, 1);
8682
8683 back_to = make_cleanup (null_cleanup, NULL);
8684
8685 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8686 if (!attr)
8687 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8688
8689 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8690 has computed. */
8691 if (attr && DW_STRING (attr))
8692 {
8693 char *demangled;
8694
8695 mangled = DW_STRING (attr);
8696
8697 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8698 type. It is easier for GDB users to search for such functions as
8699 `name(params)' than `long name(params)'. In such case the minimal
8700 symbol names do not match the full symbol names but for template
8701 functions there is never a need to look up their definition from their
8702 declaration so the only disadvantage remains the minimal symbol
8703 variant `long name(params)' does not have the proper inferior type.
8704 */
8705
a766d390
DE
8706 if (cu->language == language_go)
8707 {
8708 /* This is a lie, but we already lie to the caller new_symbol_full.
8709 new_symbol_full assumes we return the mangled name.
8710 This just undoes that lie until things are cleaned up. */
8711 demangled = NULL;
8712 }
8713 else
8714 {
8de20a37
TT
8715 demangled = gdb_demangle (mangled,
8716 (DMGL_PARAMS | DMGL_ANSI
8717 | (cu->language == language_java
8718 ? DMGL_JAVA | DMGL_RET_POSTFIX
8719 : DMGL_RET_DROP)));
a766d390 8720 }
900e11f9
JK
8721 if (demangled)
8722 {
8723 make_cleanup (xfree, demangled);
8724 canon = demangled;
8725 }
8726 else
8727 {
8728 canon = mangled;
8729 need_copy = 0;
8730 }
8731 }
8732
8733 if (canon == NULL || check_physname)
8734 {
8735 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8736
8737 if (canon != NULL && strcmp (physname, canon) != 0)
8738 {
8739 /* It may not mean a bug in GDB. The compiler could also
8740 compute DW_AT_linkage_name incorrectly. But in such case
8741 GDB would need to be bug-to-bug compatible. */
8742
8743 complaint (&symfile_complaints,
8744 _("Computed physname <%s> does not match demangled <%s> "
8745 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8746 physname, canon, mangled, die->offset.sect_off,
8747 objfile_name (objfile));
900e11f9
JK
8748
8749 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8750 is available here - over computed PHYSNAME. It is safer
8751 against both buggy GDB and buggy compilers. */
8752
8753 retval = canon;
8754 }
8755 else
8756 {
8757 retval = physname;
8758 need_copy = 0;
8759 }
8760 }
8761 else
8762 retval = canon;
8763
8764 if (need_copy)
34a68019
TT
8765 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8766 retval, strlen (retval));
900e11f9
JK
8767
8768 do_cleanups (back_to);
8769 return retval;
0114d602
DJ
8770}
8771
74921315
KS
8772/* Inspect DIE in CU for a namespace alias. If one exists, record
8773 a new symbol for it.
8774
8775 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8776
8777static int
8778read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8779{
8780 struct attribute *attr;
8781
8782 /* If the die does not have a name, this is not a namespace
8783 alias. */
8784 attr = dwarf2_attr (die, DW_AT_name, cu);
8785 if (attr != NULL)
8786 {
8787 int num;
8788 struct die_info *d = die;
8789 struct dwarf2_cu *imported_cu = cu;
8790
8791 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8792 keep inspecting DIEs until we hit the underlying import. */
8793#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8794 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8795 {
8796 attr = dwarf2_attr (d, DW_AT_import, cu);
8797 if (attr == NULL)
8798 break;
8799
8800 d = follow_die_ref (d, attr, &imported_cu);
8801 if (d->tag != DW_TAG_imported_declaration)
8802 break;
8803 }
8804
8805 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8806 {
8807 complaint (&symfile_complaints,
8808 _("DIE at 0x%x has too many recursively imported "
8809 "declarations"), d->offset.sect_off);
8810 return 0;
8811 }
8812
8813 if (attr != NULL)
8814 {
8815 struct type *type;
8816 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8817
8818 type = get_die_type_at_offset (offset, cu->per_cu);
8819 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8820 {
8821 /* This declaration is a global namespace alias. Add
8822 a symbol for it whose type is the aliased namespace. */
8823 new_symbol (die, type, cu);
8824 return 1;
8825 }
8826 }
8827 }
8828
8829 return 0;
8830}
8831
27aa8d6a
SW
8832/* Read the import statement specified by the given die and record it. */
8833
8834static void
8835read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8836{
bb5ed363 8837 struct objfile *objfile = cu->objfile;
27aa8d6a 8838 struct attribute *import_attr;
32019081 8839 struct die_info *imported_die, *child_die;
de4affc9 8840 struct dwarf2_cu *imported_cu;
27aa8d6a 8841 const char *imported_name;
794684b6 8842 const char *imported_name_prefix;
13387711
SW
8843 const char *canonical_name;
8844 const char *import_alias;
8845 const char *imported_declaration = NULL;
794684b6 8846 const char *import_prefix;
32019081
JK
8847 VEC (const_char_ptr) *excludes = NULL;
8848 struct cleanup *cleanups;
13387711 8849
27aa8d6a
SW
8850 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8851 if (import_attr == NULL)
8852 {
8853 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8854 dwarf_tag_name (die->tag));
8855 return;
8856 }
8857
de4affc9
CC
8858 imported_cu = cu;
8859 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8860 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8861 if (imported_name == NULL)
8862 {
8863 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8864
8865 The import in the following code:
8866 namespace A
8867 {
8868 typedef int B;
8869 }
8870
8871 int main ()
8872 {
8873 using A::B;
8874 B b;
8875 return b;
8876 }
8877
8878 ...
8879 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8880 <52> DW_AT_decl_file : 1
8881 <53> DW_AT_decl_line : 6
8882 <54> DW_AT_import : <0x75>
8883 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8884 <59> DW_AT_name : B
8885 <5b> DW_AT_decl_file : 1
8886 <5c> DW_AT_decl_line : 2
8887 <5d> DW_AT_type : <0x6e>
8888 ...
8889 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8890 <76> DW_AT_byte_size : 4
8891 <77> DW_AT_encoding : 5 (signed)
8892
8893 imports the wrong die ( 0x75 instead of 0x58 ).
8894 This case will be ignored until the gcc bug is fixed. */
8895 return;
8896 }
8897
82856980
SW
8898 /* Figure out the local name after import. */
8899 import_alias = dwarf2_name (die, cu);
27aa8d6a 8900
794684b6
SW
8901 /* Figure out where the statement is being imported to. */
8902 import_prefix = determine_prefix (die, cu);
8903
8904 /* Figure out what the scope of the imported die is and prepend it
8905 to the name of the imported die. */
de4affc9 8906 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8907
f55ee35c
JK
8908 if (imported_die->tag != DW_TAG_namespace
8909 && imported_die->tag != DW_TAG_module)
794684b6 8910 {
13387711
SW
8911 imported_declaration = imported_name;
8912 canonical_name = imported_name_prefix;
794684b6 8913 }
13387711 8914 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8915 canonical_name = obconcat (&objfile->objfile_obstack,
8916 imported_name_prefix, "::", imported_name,
8917 (char *) NULL);
13387711
SW
8918 else
8919 canonical_name = imported_name;
794684b6 8920
32019081
JK
8921 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8922
8923 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8924 for (child_die = die->child; child_die && child_die->tag;
8925 child_die = sibling_die (child_die))
8926 {
8927 /* DWARF-4: A Fortran use statement with a “rename list” may be
8928 represented by an imported module entry with an import attribute
8929 referring to the module and owned entries corresponding to those
8930 entities that are renamed as part of being imported. */
8931
8932 if (child_die->tag != DW_TAG_imported_declaration)
8933 {
8934 complaint (&symfile_complaints,
8935 _("child DW_TAG_imported_declaration expected "
8936 "- DIE at 0x%x [in module %s]"),
4262abfb 8937 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8938 continue;
8939 }
8940
8941 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8942 if (import_attr == NULL)
8943 {
8944 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8945 dwarf_tag_name (child_die->tag));
8946 continue;
8947 }
8948
8949 imported_cu = cu;
8950 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8951 &imported_cu);
8952 imported_name = dwarf2_name (imported_die, imported_cu);
8953 if (imported_name == NULL)
8954 {
8955 complaint (&symfile_complaints,
8956 _("child DW_TAG_imported_declaration has unknown "
8957 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8958 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8959 continue;
8960 }
8961
8962 VEC_safe_push (const_char_ptr, excludes, imported_name);
8963
8964 process_die (child_die, cu);
8965 }
8966
c0cc3a76
SW
8967 cp_add_using_directive (import_prefix,
8968 canonical_name,
8969 import_alias,
13387711 8970 imported_declaration,
32019081 8971 excludes,
12aaed36 8972 0,
bb5ed363 8973 &objfile->objfile_obstack);
32019081
JK
8974
8975 do_cleanups (cleanups);
27aa8d6a
SW
8976}
8977
f4dc4d17 8978/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8979
cb1df416
DJ
8980static void
8981free_cu_line_header (void *arg)
8982{
8983 struct dwarf2_cu *cu = arg;
8984
8985 free_line_header (cu->line_header);
8986 cu->line_header = NULL;
8987}
8988
1b80a9fa
JK
8989/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8990 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8991 this, it was first present in GCC release 4.3.0. */
8992
8993static int
8994producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8995{
8996 if (!cu->checked_producer)
8997 check_producer (cu);
8998
8999 return cu->producer_is_gcc_lt_4_3;
9000}
9001
9291a0cd
TT
9002static void
9003find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9004 const char **name, const char **comp_dir)
9291a0cd
TT
9005{
9006 struct attribute *attr;
9007
9008 *name = NULL;
9009 *comp_dir = NULL;
9010
9011 /* Find the filename. Do not use dwarf2_name here, since the filename
9012 is not a source language identifier. */
9013 attr = dwarf2_attr (die, DW_AT_name, cu);
9014 if (attr)
9015 {
9016 *name = DW_STRING (attr);
9017 }
9018
9019 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9020 if (attr)
9021 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
9022 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9023 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9024 {
15d034d0
TT
9025 char *d = ldirname (*name);
9026
9027 *comp_dir = d;
9028 if (d != NULL)
9029 make_cleanup (xfree, d);
9291a0cd
TT
9030 }
9031 if (*comp_dir != NULL)
9032 {
9033 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9034 directory, get rid of it. */
9035 char *cp = strchr (*comp_dir, ':');
9036
9037 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9038 *comp_dir = cp + 1;
9039 }
9040
9041 if (*name == NULL)
9042 *name = "<unknown>";
9043}
9044
f4dc4d17
DE
9045/* Handle DW_AT_stmt_list for a compilation unit.
9046 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9047 COMP_DIR is the compilation directory. LOWPC is passed to
9048 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9049
9050static void
9051handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9052 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9053{
527f3840 9054 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9055 struct attribute *attr;
527f3840
JK
9056 unsigned int line_offset;
9057 struct line_header line_header_local;
9058 hashval_t line_header_local_hash;
9059 unsigned u;
9060 void **slot;
9061 int decode_mapping;
2ab95328 9062
f4dc4d17
DE
9063 gdb_assert (! cu->per_cu->is_debug_types);
9064
2ab95328 9065 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9066 if (attr == NULL)
9067 return;
9068
9069 line_offset = DW_UNSND (attr);
9070
9071 /* The line header hash table is only created if needed (it exists to
9072 prevent redundant reading of the line table for partial_units).
9073 If we're given a partial_unit, we'll need it. If we're given a
9074 compile_unit, then use the line header hash table if it's already
9075 created, but don't create one just yet. */
9076
9077 if (dwarf2_per_objfile->line_header_hash == NULL
9078 && die->tag == DW_TAG_partial_unit)
2ab95328 9079 {
527f3840
JK
9080 dwarf2_per_objfile->line_header_hash
9081 = htab_create_alloc_ex (127, line_header_hash_voidp,
9082 line_header_eq_voidp,
9083 free_line_header_voidp,
9084 &objfile->objfile_obstack,
9085 hashtab_obstack_allocate,
9086 dummy_obstack_deallocate);
9087 }
2ab95328 9088
527f3840
JK
9089 line_header_local.offset.sect_off = line_offset;
9090 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9091 line_header_local_hash = line_header_hash (&line_header_local);
9092 if (dwarf2_per_objfile->line_header_hash != NULL)
9093 {
9094 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9095 &line_header_local,
9096 line_header_local_hash, NO_INSERT);
9097
9098 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9099 is not present in *SLOT (since if there is something in *SLOT then
9100 it will be for a partial_unit). */
9101 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9102 {
527f3840
JK
9103 gdb_assert (*slot != NULL);
9104 cu->line_header = *slot;
9105 return;
dee91e82 9106 }
2ab95328 9107 }
527f3840
JK
9108
9109 /* dwarf_decode_line_header does not yet provide sufficient information.
9110 We always have to call also dwarf_decode_lines for it. */
9111 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9112 if (cu->line_header == NULL)
9113 return;
9114
9115 if (dwarf2_per_objfile->line_header_hash == NULL)
9116 slot = NULL;
9117 else
9118 {
9119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9120 &line_header_local,
9121 line_header_local_hash, INSERT);
9122 gdb_assert (slot != NULL);
9123 }
9124 if (slot != NULL && *slot == NULL)
9125 {
9126 /* This newly decoded line number information unit will be owned
9127 by line_header_hash hash table. */
9128 *slot = cu->line_header;
9129 }
9130 else
9131 {
9132 /* We cannot free any current entry in (*slot) as that struct line_header
9133 may be already used by multiple CUs. Create only temporary decoded
9134 line_header for this CU - it may happen at most once for each line
9135 number information unit. And if we're not using line_header_hash
9136 then this is what we want as well. */
9137 gdb_assert (die->tag != DW_TAG_partial_unit);
9138 make_cleanup (free_cu_line_header, cu);
9139 }
9140 decode_mapping = (die->tag != DW_TAG_partial_unit);
9141 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9142 decode_mapping);
2ab95328
TT
9143}
9144
95554aad 9145/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9146
c906108c 9147static void
e7c27a73 9148read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9149{
dee91e82 9150 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9151 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9152 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9153 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9154 CORE_ADDR highpc = ((CORE_ADDR) 0);
9155 struct attribute *attr;
15d034d0
TT
9156 const char *name = NULL;
9157 const char *comp_dir = NULL;
c906108c
SS
9158 struct die_info *child_die;
9159 bfd *abfd = objfile->obfd;
e142c38c 9160 CORE_ADDR baseaddr;
6e70227d 9161
e142c38c 9162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9163
fae299cd 9164 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9165
9166 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9167 from finish_block. */
2acceee2 9168 if (lowpc == ((CORE_ADDR) -1))
c906108c 9169 lowpc = highpc;
3e29f34a 9170 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9171
9291a0cd 9172 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9173
95554aad 9174 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9175
f4b8a18d
KW
9176 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9177 standardised yet. As a workaround for the language detection we fall
9178 back to the DW_AT_producer string. */
9179 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9180 cu->language = language_opencl;
9181
3019eac3
DE
9182 /* Similar hack for Go. */
9183 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9184 set_cu_language (DW_LANG_Go, cu);
9185
f4dc4d17 9186 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9187
9188 /* Decode line number information if present. We do this before
9189 processing child DIEs, so that the line header table is available
9190 for DW_AT_decl_file. */
c3b7b696 9191 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9192
9193 /* Process all dies in compilation unit. */
9194 if (die->child != NULL)
9195 {
9196 child_die = die->child;
9197 while (child_die && child_die->tag)
9198 {
9199 process_die (child_die, cu);
9200 child_die = sibling_die (child_die);
9201 }
9202 }
9203
9204 /* Decode macro information, if present. Dwarf 2 macro information
9205 refers to information in the line number info statement program
9206 header, so we can only read it if we've read the header
9207 successfully. */
9208 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9209 if (attr && cu->line_header)
9210 {
9211 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9212 complaint (&symfile_complaints,
9213 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9214
43f3e411 9215 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9216 }
9217 else
9218 {
9219 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9220 if (attr && cu->line_header)
9221 {
9222 unsigned int macro_offset = DW_UNSND (attr);
9223
43f3e411 9224 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9225 }
9226 }
9227
9228 do_cleanups (back_to);
9229}
9230
f4dc4d17
DE
9231/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9232 Create the set of symtabs used by this TU, or if this TU is sharing
9233 symtabs with another TU and the symtabs have already been created
9234 then restore those symtabs in the line header.
9235 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9236
9237static void
f4dc4d17 9238setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9239{
f4dc4d17
DE
9240 struct objfile *objfile = dwarf2_per_objfile->objfile;
9241 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9242 struct type_unit_group *tu_group;
9243 int first_time;
9244 struct line_header *lh;
3019eac3 9245 struct attribute *attr;
f4dc4d17 9246 unsigned int i, line_offset;
0186c6a7 9247 struct signatured_type *sig_type;
3019eac3 9248
f4dc4d17 9249 gdb_assert (per_cu->is_debug_types);
0186c6a7 9250 sig_type = (struct signatured_type *) per_cu;
3019eac3 9251
f4dc4d17 9252 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9253
f4dc4d17 9254 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9255 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9256 if (sig_type->type_unit_group == NULL)
9257 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9258 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9259
9260 /* If we've already processed this stmt_list there's no real need to
9261 do it again, we could fake it and just recreate the part we need
9262 (file name,index -> symtab mapping). If data shows this optimization
9263 is useful we can do it then. */
43f3e411 9264 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9265
9266 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9267 debug info. */
9268 lh = NULL;
9269 if (attr != NULL)
3019eac3 9270 {
f4dc4d17
DE
9271 line_offset = DW_UNSND (attr);
9272 lh = dwarf_decode_line_header (line_offset, cu);
9273 }
9274 if (lh == NULL)
9275 {
9276 if (first_time)
9277 dwarf2_start_symtab (cu, "", NULL, 0);
9278 else
9279 {
9280 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9281 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9282 }
f4dc4d17 9283 return;
3019eac3
DE
9284 }
9285
f4dc4d17
DE
9286 cu->line_header = lh;
9287 make_cleanup (free_cu_line_header, cu);
3019eac3 9288
f4dc4d17
DE
9289 if (first_time)
9290 {
43f3e411 9291 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9292
f4dc4d17
DE
9293 tu_group->num_symtabs = lh->num_file_names;
9294 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9295
f4dc4d17
DE
9296 for (i = 0; i < lh->num_file_names; ++i)
9297 {
d521ce57 9298 const char *dir = NULL;
f4dc4d17 9299 struct file_entry *fe = &lh->file_names[i];
3019eac3 9300
f4dc4d17
DE
9301 if (fe->dir_index)
9302 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9303 dwarf2_start_subfile (fe->name, dir);
3019eac3 9304
f4dc4d17
DE
9305 if (current_subfile->symtab == NULL)
9306 {
9307 /* NOTE: start_subfile will recognize when it's been passed
9308 a file it has already seen. So we can't assume there's a
43f3e411 9309 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9310 lh->file_names may contain dups. */
43f3e411
DE
9311 current_subfile->symtab
9312 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9313 }
9314
9315 fe->symtab = current_subfile->symtab;
9316 tu_group->symtabs[i] = fe->symtab;
9317 }
9318 }
9319 else
3019eac3 9320 {
0ab9ce85 9321 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9322
9323 for (i = 0; i < lh->num_file_names; ++i)
9324 {
9325 struct file_entry *fe = &lh->file_names[i];
9326
9327 fe->symtab = tu_group->symtabs[i];
9328 }
3019eac3
DE
9329 }
9330
f4dc4d17
DE
9331 /* The main symtab is allocated last. Type units don't have DW_AT_name
9332 so they don't have a "real" (so to speak) symtab anyway.
9333 There is later code that will assign the main symtab to all symbols
9334 that don't have one. We need to handle the case of a symbol with a
9335 missing symtab (DW_AT_decl_file) anyway. */
9336}
3019eac3 9337
f4dc4d17
DE
9338/* Process DW_TAG_type_unit.
9339 For TUs we want to skip the first top level sibling if it's not the
9340 actual type being defined by this TU. In this case the first top
9341 level sibling is there to provide context only. */
3019eac3 9342
f4dc4d17
DE
9343static void
9344read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9345{
9346 struct die_info *child_die;
3019eac3 9347
f4dc4d17
DE
9348 prepare_one_comp_unit (cu, die, language_minimal);
9349
9350 /* Initialize (or reinitialize) the machinery for building symtabs.
9351 We do this before processing child DIEs, so that the line header table
9352 is available for DW_AT_decl_file. */
9353 setup_type_unit_groups (die, cu);
9354
9355 if (die->child != NULL)
9356 {
9357 child_die = die->child;
9358 while (child_die && child_die->tag)
9359 {
9360 process_die (child_die, cu);
9361 child_die = sibling_die (child_die);
9362 }
9363 }
3019eac3
DE
9364}
9365\f
80626a55
DE
9366/* DWO/DWP files.
9367
9368 http://gcc.gnu.org/wiki/DebugFission
9369 http://gcc.gnu.org/wiki/DebugFissionDWP
9370
9371 To simplify handling of both DWO files ("object" files with the DWARF info)
9372 and DWP files (a file with the DWOs packaged up into one file), we treat
9373 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9374
9375static hashval_t
9376hash_dwo_file (const void *item)
9377{
9378 const struct dwo_file *dwo_file = item;
a2ce51a0 9379 hashval_t hash;
3019eac3 9380
a2ce51a0
DE
9381 hash = htab_hash_string (dwo_file->dwo_name);
9382 if (dwo_file->comp_dir != NULL)
9383 hash += htab_hash_string (dwo_file->comp_dir);
9384 return hash;
3019eac3
DE
9385}
9386
9387static int
9388eq_dwo_file (const void *item_lhs, const void *item_rhs)
9389{
9390 const struct dwo_file *lhs = item_lhs;
9391 const struct dwo_file *rhs = item_rhs;
9392
a2ce51a0
DE
9393 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9394 return 0;
9395 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9396 return lhs->comp_dir == rhs->comp_dir;
9397 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9398}
9399
9400/* Allocate a hash table for DWO files. */
9401
9402static htab_t
9403allocate_dwo_file_hash_table (void)
9404{
9405 struct objfile *objfile = dwarf2_per_objfile->objfile;
9406
9407 return htab_create_alloc_ex (41,
9408 hash_dwo_file,
9409 eq_dwo_file,
9410 NULL,
9411 &objfile->objfile_obstack,
9412 hashtab_obstack_allocate,
9413 dummy_obstack_deallocate);
9414}
9415
80626a55
DE
9416/* Lookup DWO file DWO_NAME. */
9417
9418static void **
0ac5b59e 9419lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9420{
9421 struct dwo_file find_entry;
9422 void **slot;
9423
9424 if (dwarf2_per_objfile->dwo_files == NULL)
9425 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9426
9427 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9428 find_entry.dwo_name = dwo_name;
9429 find_entry.comp_dir = comp_dir;
80626a55
DE
9430 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9431
9432 return slot;
9433}
9434
3019eac3
DE
9435static hashval_t
9436hash_dwo_unit (const void *item)
9437{
9438 const struct dwo_unit *dwo_unit = item;
9439
9440 /* This drops the top 32 bits of the id, but is ok for a hash. */
9441 return dwo_unit->signature;
9442}
9443
9444static int
9445eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9446{
9447 const struct dwo_unit *lhs = item_lhs;
9448 const struct dwo_unit *rhs = item_rhs;
9449
9450 /* The signature is assumed to be unique within the DWO file.
9451 So while object file CU dwo_id's always have the value zero,
9452 that's OK, assuming each object file DWO file has only one CU,
9453 and that's the rule for now. */
9454 return lhs->signature == rhs->signature;
9455}
9456
9457/* Allocate a hash table for DWO CUs,TUs.
9458 There is one of these tables for each of CUs,TUs for each DWO file. */
9459
9460static htab_t
9461allocate_dwo_unit_table (struct objfile *objfile)
9462{
9463 /* Start out with a pretty small number.
9464 Generally DWO files contain only one CU and maybe some TUs. */
9465 return htab_create_alloc_ex (3,
9466 hash_dwo_unit,
9467 eq_dwo_unit,
9468 NULL,
9469 &objfile->objfile_obstack,
9470 hashtab_obstack_allocate,
9471 dummy_obstack_deallocate);
9472}
9473
80626a55 9474/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9475
19c3d4c9 9476struct create_dwo_cu_data
3019eac3
DE
9477{
9478 struct dwo_file *dwo_file;
19c3d4c9 9479 struct dwo_unit dwo_unit;
3019eac3
DE
9480};
9481
19c3d4c9 9482/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9483
9484static void
19c3d4c9
DE
9485create_dwo_cu_reader (const struct die_reader_specs *reader,
9486 const gdb_byte *info_ptr,
9487 struct die_info *comp_unit_die,
9488 int has_children,
9489 void *datap)
3019eac3
DE
9490{
9491 struct dwarf2_cu *cu = reader->cu;
9492 struct objfile *objfile = dwarf2_per_objfile->objfile;
9493 sect_offset offset = cu->per_cu->offset;
8a0459fd 9494 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9495 struct create_dwo_cu_data *data = datap;
3019eac3 9496 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9497 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9498 struct attribute *attr;
3019eac3
DE
9499
9500 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9501 if (attr == NULL)
9502 {
19c3d4c9
DE
9503 complaint (&symfile_complaints,
9504 _("Dwarf Error: debug entry at offset 0x%x is missing"
9505 " its dwo_id [in module %s]"),
9506 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9507 return;
9508 }
9509
3019eac3
DE
9510 dwo_unit->dwo_file = dwo_file;
9511 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9512 dwo_unit->section = section;
3019eac3
DE
9513 dwo_unit->offset = offset;
9514 dwo_unit->length = cu->per_cu->length;
9515
09406207 9516 if (dwarf2_read_debug)
4031ecc5
DE
9517 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9518 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9519}
9520
19c3d4c9
DE
9521/* Create the dwo_unit for the lone CU in DWO_FILE.
9522 Note: This function processes DWO files only, not DWP files. */
3019eac3 9523
19c3d4c9
DE
9524static struct dwo_unit *
9525create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9526{
9527 struct objfile *objfile = dwarf2_per_objfile->objfile;
9528 struct dwarf2_section_info *section = &dwo_file->sections.info;
9529 bfd *abfd;
9530 htab_t cu_htab;
d521ce57 9531 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9532 struct create_dwo_cu_data create_dwo_cu_data;
9533 struct dwo_unit *dwo_unit;
3019eac3
DE
9534
9535 dwarf2_read_section (objfile, section);
9536 info_ptr = section->buffer;
9537
9538 if (info_ptr == NULL)
9539 return NULL;
9540
9541 /* We can't set abfd until now because the section may be empty or
9542 not present, in which case section->asection will be NULL. */
a32a8923 9543 abfd = get_section_bfd_owner (section);
3019eac3 9544
09406207 9545 if (dwarf2_read_debug)
19c3d4c9
DE
9546 {
9547 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9548 get_section_name (section),
9549 get_section_file_name (section));
19c3d4c9 9550 }
3019eac3 9551
19c3d4c9
DE
9552 create_dwo_cu_data.dwo_file = dwo_file;
9553 dwo_unit = NULL;
3019eac3
DE
9554
9555 end_ptr = info_ptr + section->size;
9556 while (info_ptr < end_ptr)
9557 {
9558 struct dwarf2_per_cu_data per_cu;
9559
19c3d4c9
DE
9560 memset (&create_dwo_cu_data.dwo_unit, 0,
9561 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9562 memset (&per_cu, 0, sizeof (per_cu));
9563 per_cu.objfile = objfile;
9564 per_cu.is_debug_types = 0;
9565 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9566 per_cu.section = section;
3019eac3 9567
33e80786 9568 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9569 create_dwo_cu_reader,
9570 &create_dwo_cu_data);
9571
9572 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9573 {
9574 /* If we've already found one, complain. We only support one
9575 because having more than one requires hacking the dwo_name of
9576 each to match, which is highly unlikely to happen. */
9577 if (dwo_unit != NULL)
9578 {
9579 complaint (&symfile_complaints,
9580 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9581 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9582 break;
9583 }
9584
9585 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9586 *dwo_unit = create_dwo_cu_data.dwo_unit;
9587 }
3019eac3
DE
9588
9589 info_ptr += per_cu.length;
9590 }
9591
19c3d4c9 9592 return dwo_unit;
3019eac3
DE
9593}
9594
80626a55
DE
9595/* DWP file .debug_{cu,tu}_index section format:
9596 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9597
d2415c6c
DE
9598 DWP Version 1:
9599
80626a55
DE
9600 Both index sections have the same format, and serve to map a 64-bit
9601 signature to a set of section numbers. Each section begins with a header,
9602 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9603 indexes, and a pool of 32-bit section numbers. The index sections will be
9604 aligned at 8-byte boundaries in the file.
9605
d2415c6c
DE
9606 The index section header consists of:
9607
9608 V, 32 bit version number
9609 -, 32 bits unused
9610 N, 32 bit number of compilation units or type units in the index
9611 M, 32 bit number of slots in the hash table
80626a55 9612
d2415c6c 9613 Numbers are recorded using the byte order of the application binary.
80626a55 9614
d2415c6c
DE
9615 The hash table begins at offset 16 in the section, and consists of an array
9616 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9617 order of the application binary). Unused slots in the hash table are 0.
9618 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9619
d2415c6c
DE
9620 The parallel table begins immediately after the hash table
9621 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9622 array of 32-bit indexes (using the byte order of the application binary),
9623 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9624 table contains a 32-bit index into the pool of section numbers. For unused
9625 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9626
73869dc2
DE
9627 The pool of section numbers begins immediately following the hash table
9628 (at offset 16 + 12 * M from the beginning of the section). The pool of
9629 section numbers consists of an array of 32-bit words (using the byte order
9630 of the application binary). Each item in the array is indexed starting
9631 from 0. The hash table entry provides the index of the first section
9632 number in the set. Additional section numbers in the set follow, and the
9633 set is terminated by a 0 entry (section number 0 is not used in ELF).
9634
9635 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9636 section must be the first entry in the set, and the .debug_abbrev.dwo must
9637 be the second entry. Other members of the set may follow in any order.
9638
9639 ---
9640
9641 DWP Version 2:
9642
9643 DWP Version 2 combines all the .debug_info, etc. sections into one,
9644 and the entries in the index tables are now offsets into these sections.
9645 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9646 section.
9647
9648 Index Section Contents:
9649 Header
9650 Hash Table of Signatures dwp_hash_table.hash_table
9651 Parallel Table of Indices dwp_hash_table.unit_table
9652 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9653 Table of Section Sizes dwp_hash_table.v2.sizes
9654
9655 The index section header consists of:
9656
9657 V, 32 bit version number
9658 L, 32 bit number of columns in the table of section offsets
9659 N, 32 bit number of compilation units or type units in the index
9660 M, 32 bit number of slots in the hash table
9661
9662 Numbers are recorded using the byte order of the application binary.
9663
9664 The hash table has the same format as version 1.
9665 The parallel table of indices has the same format as version 1,
9666 except that the entries are origin-1 indices into the table of sections
9667 offsets and the table of section sizes.
9668
9669 The table of offsets begins immediately following the parallel table
9670 (at offset 16 + 12 * M from the beginning of the section). The table is
9671 a two-dimensional array of 32-bit words (using the byte order of the
9672 application binary), with L columns and N+1 rows, in row-major order.
9673 Each row in the array is indexed starting from 0. The first row provides
9674 a key to the remaining rows: each column in this row provides an identifier
9675 for a debug section, and the offsets in the same column of subsequent rows
9676 refer to that section. The section identifiers are:
9677
9678 DW_SECT_INFO 1 .debug_info.dwo
9679 DW_SECT_TYPES 2 .debug_types.dwo
9680 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9681 DW_SECT_LINE 4 .debug_line.dwo
9682 DW_SECT_LOC 5 .debug_loc.dwo
9683 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9684 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9685 DW_SECT_MACRO 8 .debug_macro.dwo
9686
9687 The offsets provided by the CU and TU index sections are the base offsets
9688 for the contributions made by each CU or TU to the corresponding section
9689 in the package file. Each CU and TU header contains an abbrev_offset
9690 field, used to find the abbreviations table for that CU or TU within the
9691 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9692 be interpreted as relative to the base offset given in the index section.
9693 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9694 should be interpreted as relative to the base offset for .debug_line.dwo,
9695 and offsets into other debug sections obtained from DWARF attributes should
9696 also be interpreted as relative to the corresponding base offset.
9697
9698 The table of sizes begins immediately following the table of offsets.
9699 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9700 with L columns and N rows, in row-major order. Each row in the array is
9701 indexed starting from 1 (row 0 is shared by the two tables).
9702
9703 ---
9704
9705 Hash table lookup is handled the same in version 1 and 2:
9706
9707 We assume that N and M will not exceed 2^32 - 1.
9708 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9709
d2415c6c
DE
9710 Given a 64-bit compilation unit signature or a type signature S, an entry
9711 in the hash table is located as follows:
80626a55 9712
d2415c6c
DE
9713 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9714 the low-order k bits all set to 1.
80626a55 9715
d2415c6c 9716 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9717
d2415c6c
DE
9718 3) If the hash table entry at index H matches the signature, use that
9719 entry. If the hash table entry at index H is unused (all zeroes),
9720 terminate the search: the signature is not present in the table.
80626a55 9721
d2415c6c 9722 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9723
d2415c6c 9724 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9725 to stop at an unused slot or find the match. */
80626a55
DE
9726
9727/* Create a hash table to map DWO IDs to their CU/TU entry in
9728 .debug_{info,types}.dwo in DWP_FILE.
9729 Returns NULL if there isn't one.
9730 Note: This function processes DWP files only, not DWO files. */
9731
9732static struct dwp_hash_table *
9733create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9734{
9735 struct objfile *objfile = dwarf2_per_objfile->objfile;
9736 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9737 const gdb_byte *index_ptr, *index_end;
80626a55 9738 struct dwarf2_section_info *index;
73869dc2 9739 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9740 struct dwp_hash_table *htab;
9741
9742 if (is_debug_types)
9743 index = &dwp_file->sections.tu_index;
9744 else
9745 index = &dwp_file->sections.cu_index;
9746
9747 if (dwarf2_section_empty_p (index))
9748 return NULL;
9749 dwarf2_read_section (objfile, index);
9750
9751 index_ptr = index->buffer;
9752 index_end = index_ptr + index->size;
9753
9754 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9755 index_ptr += 4;
9756 if (version == 2)
9757 nr_columns = read_4_bytes (dbfd, index_ptr);
9758 else
9759 nr_columns = 0;
9760 index_ptr += 4;
80626a55
DE
9761 nr_units = read_4_bytes (dbfd, index_ptr);
9762 index_ptr += 4;
9763 nr_slots = read_4_bytes (dbfd, index_ptr);
9764 index_ptr += 4;
9765
73869dc2 9766 if (version != 1 && version != 2)
80626a55 9767 {
21aa081e 9768 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9769 " [in module %s]"),
21aa081e 9770 pulongest (version), dwp_file->name);
80626a55
DE
9771 }
9772 if (nr_slots != (nr_slots & -nr_slots))
9773 {
21aa081e 9774 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9775 " is not power of 2 [in module %s]"),
21aa081e 9776 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9777 }
9778
9779 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9780 htab->version = version;
9781 htab->nr_columns = nr_columns;
80626a55
DE
9782 htab->nr_units = nr_units;
9783 htab->nr_slots = nr_slots;
9784 htab->hash_table = index_ptr;
9785 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9786
9787 /* Exit early if the table is empty. */
9788 if (nr_slots == 0 || nr_units == 0
9789 || (version == 2 && nr_columns == 0))
9790 {
9791 /* All must be zero. */
9792 if (nr_slots != 0 || nr_units != 0
9793 || (version == 2 && nr_columns != 0))
9794 {
9795 complaint (&symfile_complaints,
9796 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9797 " all zero [in modules %s]"),
9798 dwp_file->name);
9799 }
9800 return htab;
9801 }
9802
9803 if (version == 1)
9804 {
9805 htab->section_pool.v1.indices =
9806 htab->unit_table + sizeof (uint32_t) * nr_slots;
9807 /* It's harder to decide whether the section is too small in v1.
9808 V1 is deprecated anyway so we punt. */
9809 }
9810 else
9811 {
9812 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9813 int *ids = htab->section_pool.v2.section_ids;
9814 /* Reverse map for error checking. */
9815 int ids_seen[DW_SECT_MAX + 1];
9816 int i;
9817
9818 if (nr_columns < 2)
9819 {
9820 error (_("Dwarf Error: bad DWP hash table, too few columns"
9821 " in section table [in module %s]"),
9822 dwp_file->name);
9823 }
9824 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9825 {
9826 error (_("Dwarf Error: bad DWP hash table, too many columns"
9827 " in section table [in module %s]"),
9828 dwp_file->name);
9829 }
9830 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9831 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9832 for (i = 0; i < nr_columns; ++i)
9833 {
9834 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9835
9836 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9837 {
9838 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9839 " in section table [in module %s]"),
9840 id, dwp_file->name);
9841 }
9842 if (ids_seen[id] != -1)
9843 {
9844 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9845 " id %d in section table [in module %s]"),
9846 id, dwp_file->name);
9847 }
9848 ids_seen[id] = i;
9849 ids[i] = id;
9850 }
9851 /* Must have exactly one info or types section. */
9852 if (((ids_seen[DW_SECT_INFO] != -1)
9853 + (ids_seen[DW_SECT_TYPES] != -1))
9854 != 1)
9855 {
9856 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9857 " DWO info/types section [in module %s]"),
9858 dwp_file->name);
9859 }
9860 /* Must have an abbrev section. */
9861 if (ids_seen[DW_SECT_ABBREV] == -1)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9864 " section [in module %s]"),
9865 dwp_file->name);
9866 }
9867 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9868 htab->section_pool.v2.sizes =
9869 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9870 * nr_units * nr_columns);
9871 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9872 * nr_units * nr_columns))
9873 > index_end)
9874 {
9875 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9876 " [in module %s]"),
9877 dwp_file->name);
9878 }
9879 }
80626a55
DE
9880
9881 return htab;
9882}
9883
9884/* Update SECTIONS with the data from SECTP.
9885
9886 This function is like the other "locate" section routines that are
9887 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9888 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9889
9890 The result is non-zero for success, or zero if an error was found. */
9891
9892static int
73869dc2
DE
9893locate_v1_virtual_dwo_sections (asection *sectp,
9894 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9895{
9896 const struct dwop_section_names *names = &dwop_section_names;
9897
9898 if (section_is_p (sectp->name, &names->abbrev_dwo))
9899 {
9900 /* There can be only one. */
73869dc2 9901 if (sections->abbrev.s.asection != NULL)
80626a55 9902 return 0;
73869dc2 9903 sections->abbrev.s.asection = sectp;
80626a55
DE
9904 sections->abbrev.size = bfd_get_section_size (sectp);
9905 }
9906 else if (section_is_p (sectp->name, &names->info_dwo)
9907 || section_is_p (sectp->name, &names->types_dwo))
9908 {
9909 /* There can be only one. */
73869dc2 9910 if (sections->info_or_types.s.asection != NULL)
80626a55 9911 return 0;
73869dc2 9912 sections->info_or_types.s.asection = sectp;
80626a55
DE
9913 sections->info_or_types.size = bfd_get_section_size (sectp);
9914 }
9915 else if (section_is_p (sectp->name, &names->line_dwo))
9916 {
9917 /* There can be only one. */
73869dc2 9918 if (sections->line.s.asection != NULL)
80626a55 9919 return 0;
73869dc2 9920 sections->line.s.asection = sectp;
80626a55
DE
9921 sections->line.size = bfd_get_section_size (sectp);
9922 }
9923 else if (section_is_p (sectp->name, &names->loc_dwo))
9924 {
9925 /* There can be only one. */
73869dc2 9926 if (sections->loc.s.asection != NULL)
80626a55 9927 return 0;
73869dc2 9928 sections->loc.s.asection = sectp;
80626a55
DE
9929 sections->loc.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9932 {
9933 /* There can be only one. */
73869dc2 9934 if (sections->macinfo.s.asection != NULL)
80626a55 9935 return 0;
73869dc2 9936 sections->macinfo.s.asection = sectp;
80626a55
DE
9937 sections->macinfo.size = bfd_get_section_size (sectp);
9938 }
9939 else if (section_is_p (sectp->name, &names->macro_dwo))
9940 {
9941 /* There can be only one. */
73869dc2 9942 if (sections->macro.s.asection != NULL)
80626a55 9943 return 0;
73869dc2 9944 sections->macro.s.asection = sectp;
80626a55
DE
9945 sections->macro.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9948 {
9949 /* There can be only one. */
73869dc2 9950 if (sections->str_offsets.s.asection != NULL)
80626a55 9951 return 0;
73869dc2 9952 sections->str_offsets.s.asection = sectp;
80626a55
DE
9953 sections->str_offsets.size = bfd_get_section_size (sectp);
9954 }
9955 else
9956 {
9957 /* No other kind of section is valid. */
9958 return 0;
9959 }
9960
9961 return 1;
9962}
9963
73869dc2
DE
9964/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9965 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9966 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9967 This is for DWP version 1 files. */
80626a55
DE
9968
9969static struct dwo_unit *
73869dc2
DE
9970create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9971 uint32_t unit_index,
9972 const char *comp_dir,
9973 ULONGEST signature, int is_debug_types)
80626a55
DE
9974{
9975 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9976 const struct dwp_hash_table *dwp_htab =
9977 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9978 bfd *dbfd = dwp_file->dbfd;
9979 const char *kind = is_debug_types ? "TU" : "CU";
9980 struct dwo_file *dwo_file;
9981 struct dwo_unit *dwo_unit;
73869dc2 9982 struct virtual_v1_dwo_sections sections;
80626a55
DE
9983 void **dwo_file_slot;
9984 char *virtual_dwo_name;
9985 struct dwarf2_section_info *cutu;
9986 struct cleanup *cleanups;
9987 int i;
9988
73869dc2
DE
9989 gdb_assert (dwp_file->version == 1);
9990
80626a55
DE
9991 if (dwarf2_read_debug)
9992 {
73869dc2 9993 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9994 kind,
73869dc2 9995 pulongest (unit_index), hex_string (signature),
80626a55
DE
9996 dwp_file->name);
9997 }
9998
19ac8c2e 9999 /* Fetch the sections of this DWO unit.
80626a55
DE
10000 Put a limit on the number of sections we look for so that bad data
10001 doesn't cause us to loop forever. */
10002
73869dc2 10003#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10004 (1 /* .debug_info or .debug_types */ \
10005 + 1 /* .debug_abbrev */ \
10006 + 1 /* .debug_line */ \
10007 + 1 /* .debug_loc */ \
10008 + 1 /* .debug_str_offsets */ \
19ac8c2e 10009 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10010 + 1 /* trailing zero */)
10011
10012 memset (&sections, 0, sizeof (sections));
10013 cleanups = make_cleanup (null_cleanup, 0);
10014
73869dc2 10015 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10016 {
10017 asection *sectp;
10018 uint32_t section_nr =
10019 read_4_bytes (dbfd,
73869dc2
DE
10020 dwp_htab->section_pool.v1.indices
10021 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10022
10023 if (section_nr == 0)
10024 break;
10025 if (section_nr >= dwp_file->num_sections)
10026 {
10027 error (_("Dwarf Error: bad DWP hash table, section number too large"
10028 " [in module %s]"),
10029 dwp_file->name);
10030 }
10031
10032 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10033 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10034 {
10035 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10036 " [in module %s]"),
10037 dwp_file->name);
10038 }
10039 }
10040
10041 if (i < 2
a32a8923
DE
10042 || dwarf2_section_empty_p (&sections.info_or_types)
10043 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10044 {
10045 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10046 " [in module %s]"),
10047 dwp_file->name);
10048 }
73869dc2 10049 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10050 {
10051 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055
10056 /* It's easier for the rest of the code if we fake a struct dwo_file and
10057 have dwo_unit "live" in that. At least for now.
10058
10059 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10060 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10061 file, we can combine them back into a virtual DWO file to save space
10062 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10063 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10064
2792b94d
PM
10065 virtual_dwo_name =
10066 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10067 get_section_id (&sections.abbrev),
10068 get_section_id (&sections.line),
10069 get_section_id (&sections.loc),
10070 get_section_id (&sections.str_offsets));
80626a55
DE
10071 make_cleanup (xfree, virtual_dwo_name);
10072 /* Can we use an existing virtual DWO file? */
0ac5b59e 10073 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10074 /* Create one if necessary. */
10075 if (*dwo_file_slot == NULL)
10076 {
10077 if (dwarf2_read_debug)
10078 {
10079 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10080 virtual_dwo_name);
10081 }
10082 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10083 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10084 virtual_dwo_name,
10085 strlen (virtual_dwo_name));
10086 dwo_file->comp_dir = comp_dir;
80626a55
DE
10087 dwo_file->sections.abbrev = sections.abbrev;
10088 dwo_file->sections.line = sections.line;
10089 dwo_file->sections.loc = sections.loc;
10090 dwo_file->sections.macinfo = sections.macinfo;
10091 dwo_file->sections.macro = sections.macro;
10092 dwo_file->sections.str_offsets = sections.str_offsets;
10093 /* The "str" section is global to the entire DWP file. */
10094 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10095 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10096 there's no need to record it in dwo_file.
10097 Also, we can't simply record type sections in dwo_file because
10098 we record a pointer into the vector in dwo_unit. As we collect more
10099 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10100 for it, invalidating all copies of pointers into the previous
10101 contents. */
80626a55
DE
10102 *dwo_file_slot = dwo_file;
10103 }
10104 else
10105 {
10106 if (dwarf2_read_debug)
10107 {
10108 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10109 virtual_dwo_name);
10110 }
10111 dwo_file = *dwo_file_slot;
10112 }
10113 do_cleanups (cleanups);
10114
10115 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10116 dwo_unit->dwo_file = dwo_file;
10117 dwo_unit->signature = signature;
8a0459fd
DE
10118 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10119 sizeof (struct dwarf2_section_info));
10120 *dwo_unit->section = sections.info_or_types;
57d63ce2 10121 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10122
10123 return dwo_unit;
10124}
10125
73869dc2
DE
10126/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10127 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10128 piece within that section used by a TU/CU, return a virtual section
10129 of just that piece. */
10130
10131static struct dwarf2_section_info
10132create_dwp_v2_section (struct dwarf2_section_info *section,
10133 bfd_size_type offset, bfd_size_type size)
10134{
10135 struct dwarf2_section_info result;
10136 asection *sectp;
10137
10138 gdb_assert (section != NULL);
10139 gdb_assert (!section->is_virtual);
10140
10141 memset (&result, 0, sizeof (result));
10142 result.s.containing_section = section;
10143 result.is_virtual = 1;
10144
10145 if (size == 0)
10146 return result;
10147
10148 sectp = get_section_bfd_section (section);
10149
10150 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10151 bounds of the real section. This is a pretty-rare event, so just
10152 flag an error (easier) instead of a warning and trying to cope. */
10153 if (sectp == NULL
10154 || offset + size > bfd_get_section_size (sectp))
10155 {
10156 bfd *abfd = sectp->owner;
10157
10158 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10159 " in section %s [in module %s]"),
10160 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10161 objfile_name (dwarf2_per_objfile->objfile));
10162 }
10163
10164 result.virtual_offset = offset;
10165 result.size = size;
10166 return result;
10167}
10168
10169/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10170 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10171 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10172 This is for DWP version 2 files. */
10173
10174static struct dwo_unit *
10175create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10176 uint32_t unit_index,
10177 const char *comp_dir,
10178 ULONGEST signature, int is_debug_types)
10179{
10180 struct objfile *objfile = dwarf2_per_objfile->objfile;
10181 const struct dwp_hash_table *dwp_htab =
10182 is_debug_types ? dwp_file->tus : dwp_file->cus;
10183 bfd *dbfd = dwp_file->dbfd;
10184 const char *kind = is_debug_types ? "TU" : "CU";
10185 struct dwo_file *dwo_file;
10186 struct dwo_unit *dwo_unit;
10187 struct virtual_v2_dwo_sections sections;
10188 void **dwo_file_slot;
10189 char *virtual_dwo_name;
10190 struct dwarf2_section_info *cutu;
10191 struct cleanup *cleanups;
10192 int i;
10193
10194 gdb_assert (dwp_file->version == 2);
10195
10196 if (dwarf2_read_debug)
10197 {
10198 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10199 kind,
10200 pulongest (unit_index), hex_string (signature),
10201 dwp_file->name);
10202 }
10203
10204 /* Fetch the section offsets of this DWO unit. */
10205
10206 memset (&sections, 0, sizeof (sections));
10207 cleanups = make_cleanup (null_cleanup, 0);
10208
10209 for (i = 0; i < dwp_htab->nr_columns; ++i)
10210 {
10211 uint32_t offset = read_4_bytes (dbfd,
10212 dwp_htab->section_pool.v2.offsets
10213 + (((unit_index - 1) * dwp_htab->nr_columns
10214 + i)
10215 * sizeof (uint32_t)));
10216 uint32_t size = read_4_bytes (dbfd,
10217 dwp_htab->section_pool.v2.sizes
10218 + (((unit_index - 1) * dwp_htab->nr_columns
10219 + i)
10220 * sizeof (uint32_t)));
10221
10222 switch (dwp_htab->section_pool.v2.section_ids[i])
10223 {
10224 case DW_SECT_INFO:
10225 case DW_SECT_TYPES:
10226 sections.info_or_types_offset = offset;
10227 sections.info_or_types_size = size;
10228 break;
10229 case DW_SECT_ABBREV:
10230 sections.abbrev_offset = offset;
10231 sections.abbrev_size = size;
10232 break;
10233 case DW_SECT_LINE:
10234 sections.line_offset = offset;
10235 sections.line_size = size;
10236 break;
10237 case DW_SECT_LOC:
10238 sections.loc_offset = offset;
10239 sections.loc_size = size;
10240 break;
10241 case DW_SECT_STR_OFFSETS:
10242 sections.str_offsets_offset = offset;
10243 sections.str_offsets_size = size;
10244 break;
10245 case DW_SECT_MACINFO:
10246 sections.macinfo_offset = offset;
10247 sections.macinfo_size = size;
10248 break;
10249 case DW_SECT_MACRO:
10250 sections.macro_offset = offset;
10251 sections.macro_size = size;
10252 break;
10253 }
10254 }
10255
10256 /* It's easier for the rest of the code if we fake a struct dwo_file and
10257 have dwo_unit "live" in that. At least for now.
10258
10259 The DWP file can be made up of a random collection of CUs and TUs.
10260 However, for each CU + set of TUs that came from the same original DWO
10261 file, we can combine them back into a virtual DWO file to save space
10262 (fewer struct dwo_file objects to allocate). Remember that for really
10263 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10264
10265 virtual_dwo_name =
10266 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10267 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10268 (long) (sections.line_size ? sections.line_offset : 0),
10269 (long) (sections.loc_size ? sections.loc_offset : 0),
10270 (long) (sections.str_offsets_size
10271 ? sections.str_offsets_offset : 0));
10272 make_cleanup (xfree, virtual_dwo_name);
10273 /* Can we use an existing virtual DWO file? */
10274 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10275 /* Create one if necessary. */
10276 if (*dwo_file_slot == NULL)
10277 {
10278 if (dwarf2_read_debug)
10279 {
10280 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10281 virtual_dwo_name);
10282 }
10283 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10284 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10285 virtual_dwo_name,
10286 strlen (virtual_dwo_name));
10287 dwo_file->comp_dir = comp_dir;
10288 dwo_file->sections.abbrev =
10289 create_dwp_v2_section (&dwp_file->sections.abbrev,
10290 sections.abbrev_offset, sections.abbrev_size);
10291 dwo_file->sections.line =
10292 create_dwp_v2_section (&dwp_file->sections.line,
10293 sections.line_offset, sections.line_size);
10294 dwo_file->sections.loc =
10295 create_dwp_v2_section (&dwp_file->sections.loc,
10296 sections.loc_offset, sections.loc_size);
10297 dwo_file->sections.macinfo =
10298 create_dwp_v2_section (&dwp_file->sections.macinfo,
10299 sections.macinfo_offset, sections.macinfo_size);
10300 dwo_file->sections.macro =
10301 create_dwp_v2_section (&dwp_file->sections.macro,
10302 sections.macro_offset, sections.macro_size);
10303 dwo_file->sections.str_offsets =
10304 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10305 sections.str_offsets_offset,
10306 sections.str_offsets_size);
10307 /* The "str" section is global to the entire DWP file. */
10308 dwo_file->sections.str = dwp_file->sections.str;
10309 /* The info or types section is assigned below to dwo_unit,
10310 there's no need to record it in dwo_file.
10311 Also, we can't simply record type sections in dwo_file because
10312 we record a pointer into the vector in dwo_unit. As we collect more
10313 types we'll grow the vector and eventually have to reallocate space
10314 for it, invalidating all copies of pointers into the previous
10315 contents. */
10316 *dwo_file_slot = dwo_file;
10317 }
10318 else
10319 {
10320 if (dwarf2_read_debug)
10321 {
10322 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10323 virtual_dwo_name);
10324 }
10325 dwo_file = *dwo_file_slot;
10326 }
10327 do_cleanups (cleanups);
10328
10329 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10330 dwo_unit->dwo_file = dwo_file;
10331 dwo_unit->signature = signature;
10332 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10333 sizeof (struct dwarf2_section_info));
10334 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10335 ? &dwp_file->sections.types
10336 : &dwp_file->sections.info,
10337 sections.info_or_types_offset,
10338 sections.info_or_types_size);
10339 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10340
10341 return dwo_unit;
10342}
10343
57d63ce2
DE
10344/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10345 Returns NULL if the signature isn't found. */
80626a55
DE
10346
10347static struct dwo_unit *
57d63ce2
DE
10348lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10349 ULONGEST signature, int is_debug_types)
80626a55 10350{
57d63ce2
DE
10351 const struct dwp_hash_table *dwp_htab =
10352 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10353 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10354 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10355 uint32_t hash = signature & mask;
10356 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10357 unsigned int i;
10358 void **slot;
10359 struct dwo_unit find_dwo_cu, *dwo_cu;
10360
10361 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10362 find_dwo_cu.signature = signature;
19ac8c2e
DE
10363 slot = htab_find_slot (is_debug_types
10364 ? dwp_file->loaded_tus
10365 : dwp_file->loaded_cus,
10366 &find_dwo_cu, INSERT);
80626a55
DE
10367
10368 if (*slot != NULL)
10369 return *slot;
10370
10371 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10372 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10373 {
10374 ULONGEST signature_in_table;
10375
10376 signature_in_table =
57d63ce2 10377 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10378 if (signature_in_table == signature)
10379 {
57d63ce2
DE
10380 uint32_t unit_index =
10381 read_4_bytes (dbfd,
10382 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10383
73869dc2
DE
10384 if (dwp_file->version == 1)
10385 {
10386 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10387 comp_dir, signature,
10388 is_debug_types);
10389 }
10390 else
10391 {
10392 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10393 comp_dir, signature,
10394 is_debug_types);
10395 }
80626a55
DE
10396 return *slot;
10397 }
10398 if (signature_in_table == 0)
10399 return NULL;
10400 hash = (hash + hash2) & mask;
10401 }
10402
10403 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10404 " [in module %s]"),
10405 dwp_file->name);
10406}
10407
ab5088bf 10408/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10409 Open the file specified by FILE_NAME and hand it off to BFD for
10410 preliminary analysis. Return a newly initialized bfd *, which
10411 includes a canonicalized copy of FILE_NAME.
80626a55 10412 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10413 SEARCH_CWD is true if the current directory is to be searched.
10414 It will be searched before debug-file-directory.
13aaf454
DE
10415 If successful, the file is added to the bfd include table of the
10416 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10417 If unable to find/open the file, return NULL.
3019eac3
DE
10418 NOTE: This function is derived from symfile_bfd_open. */
10419
10420static bfd *
6ac97d4c 10421try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10422{
10423 bfd *sym_bfd;
80626a55 10424 int desc, flags;
3019eac3 10425 char *absolute_name;
9c02c129
DE
10426 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10427 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10428 to debug_file_directory. */
10429 char *search_path;
10430 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10431
6ac97d4c
DE
10432 if (search_cwd)
10433 {
10434 if (*debug_file_directory != '\0')
10435 search_path = concat (".", dirname_separator_string,
10436 debug_file_directory, NULL);
10437 else
10438 search_path = xstrdup (".");
10439 }
9c02c129 10440 else
6ac97d4c 10441 search_path = xstrdup (debug_file_directory);
3019eac3 10442
492c0ab7 10443 flags = OPF_RETURN_REALPATH;
80626a55
DE
10444 if (is_dwp)
10445 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10446 desc = openp (search_path, flags, file_name,
3019eac3 10447 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10448 xfree (search_path);
3019eac3
DE
10449 if (desc < 0)
10450 return NULL;
10451
bb397797 10452 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10453 xfree (absolute_name);
9c02c129
DE
10454 if (sym_bfd == NULL)
10455 return NULL;
3019eac3
DE
10456 bfd_set_cacheable (sym_bfd, 1);
10457
10458 if (!bfd_check_format (sym_bfd, bfd_object))
10459 {
cbb099e8 10460 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10461 return NULL;
10462 }
10463
13aaf454
DE
10464 /* Success. Record the bfd as having been included by the objfile's bfd.
10465 This is important because things like demangled_names_hash lives in the
10466 objfile's per_bfd space and may have references to things like symbol
10467 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10469
3019eac3
DE
10470 return sym_bfd;
10471}
10472
ab5088bf 10473/* Try to open DWO file FILE_NAME.
3019eac3
DE
10474 COMP_DIR is the DW_AT_comp_dir attribute.
10475 The result is the bfd handle of the file.
10476 If there is a problem finding or opening the file, return NULL.
10477 Upon success, the canonicalized path of the file is stored in the bfd,
10478 same as symfile_bfd_open. */
10479
10480static bfd *
ab5088bf 10481open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10482{
10483 bfd *abfd;
3019eac3 10484
80626a55 10485 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10486 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10487
10488 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10489
10490 if (comp_dir != NULL)
10491 {
80626a55 10492 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10493
10494 /* NOTE: If comp_dir is a relative path, this will also try the
10495 search path, which seems useful. */
6ac97d4c 10496 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10497 xfree (path_to_try);
10498 if (abfd != NULL)
10499 return abfd;
10500 }
10501
10502 /* That didn't work, try debug-file-directory, which, despite its name,
10503 is a list of paths. */
10504
10505 if (*debug_file_directory == '\0')
10506 return NULL;
10507
6ac97d4c 10508 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10509}
10510
80626a55
DE
10511/* This function is mapped across the sections and remembers the offset and
10512 size of each of the DWO debugging sections we are interested in. */
10513
10514static void
10515dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10516{
10517 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10518 const struct dwop_section_names *names = &dwop_section_names;
10519
10520 if (section_is_p (sectp->name, &names->abbrev_dwo))
10521 {
73869dc2 10522 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10523 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10524 }
10525 else if (section_is_p (sectp->name, &names->info_dwo))
10526 {
73869dc2 10527 dwo_sections->info.s.asection = sectp;
80626a55
DE
10528 dwo_sections->info.size = bfd_get_section_size (sectp);
10529 }
10530 else if (section_is_p (sectp->name, &names->line_dwo))
10531 {
73869dc2 10532 dwo_sections->line.s.asection = sectp;
80626a55
DE
10533 dwo_sections->line.size = bfd_get_section_size (sectp);
10534 }
10535 else if (section_is_p (sectp->name, &names->loc_dwo))
10536 {
73869dc2 10537 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10538 dwo_sections->loc.size = bfd_get_section_size (sectp);
10539 }
10540 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10541 {
73869dc2 10542 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10543 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->macro_dwo))
10546 {
73869dc2 10547 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10548 dwo_sections->macro.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->str_dwo))
10551 {
73869dc2 10552 dwo_sections->str.s.asection = sectp;
80626a55
DE
10553 dwo_sections->str.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10556 {
73869dc2 10557 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10558 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->types_dwo))
10561 {
10562 struct dwarf2_section_info type_section;
10563
10564 memset (&type_section, 0, sizeof (type_section));
73869dc2 10565 type_section.s.asection = sectp;
80626a55
DE
10566 type_section.size = bfd_get_section_size (sectp);
10567 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10568 &type_section);
10569 }
10570}
10571
ab5088bf 10572/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10573 by PER_CU. This is for the non-DWP case.
80626a55 10574 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10575
10576static struct dwo_file *
0ac5b59e
DE
10577open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10578 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10579{
10580 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10581 struct dwo_file *dwo_file;
10582 bfd *dbfd;
3019eac3
DE
10583 struct cleanup *cleanups;
10584
ab5088bf 10585 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10586 if (dbfd == NULL)
10587 {
10588 if (dwarf2_read_debug)
10589 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10590 return NULL;
10591 }
10592 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10593 dwo_file->dwo_name = dwo_name;
10594 dwo_file->comp_dir = comp_dir;
80626a55 10595 dwo_file->dbfd = dbfd;
3019eac3
DE
10596
10597 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10598
80626a55 10599 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10600
19c3d4c9 10601 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10602
10603 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10604 dwo_file->sections.types);
10605
10606 discard_cleanups (cleanups);
10607
80626a55
DE
10608 if (dwarf2_read_debug)
10609 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10610
3019eac3
DE
10611 return dwo_file;
10612}
10613
80626a55 10614/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10615 size of each of the DWP debugging sections common to version 1 and 2 that
10616 we are interested in. */
3019eac3 10617
80626a55 10618static void
73869dc2
DE
10619dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10620 void *dwp_file_ptr)
3019eac3 10621{
80626a55
DE
10622 struct dwp_file *dwp_file = dwp_file_ptr;
10623 const struct dwop_section_names *names = &dwop_section_names;
10624 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10625
80626a55 10626 /* Record the ELF section number for later lookup: this is what the
73869dc2 10627 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10628 gdb_assert (elf_section_nr < dwp_file->num_sections);
10629 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10630
80626a55
DE
10631 /* Look for specific sections that we need. */
10632 if (section_is_p (sectp->name, &names->str_dwo))
10633 {
73869dc2 10634 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10635 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10636 }
10637 else if (section_is_p (sectp->name, &names->cu_index))
10638 {
73869dc2 10639 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10640 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10641 }
10642 else if (section_is_p (sectp->name, &names->tu_index))
10643 {
73869dc2 10644 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10645 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10646 }
10647}
3019eac3 10648
73869dc2
DE
10649/* This function is mapped across the sections and remembers the offset and
10650 size of each of the DWP version 2 debugging sections that we are interested
10651 in. This is split into a separate function because we don't know if we
10652 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10653
10654static void
10655dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10656{
10657 struct dwp_file *dwp_file = dwp_file_ptr;
10658 const struct dwop_section_names *names = &dwop_section_names;
10659 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10660
10661 /* Record the ELF section number for later lookup: this is what the
10662 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10663 gdb_assert (elf_section_nr < dwp_file->num_sections);
10664 dwp_file->elf_sections[elf_section_nr] = sectp;
10665
10666 /* Look for specific sections that we need. */
10667 if (section_is_p (sectp->name, &names->abbrev_dwo))
10668 {
10669 dwp_file->sections.abbrev.s.asection = sectp;
10670 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10671 }
10672 else if (section_is_p (sectp->name, &names->info_dwo))
10673 {
10674 dwp_file->sections.info.s.asection = sectp;
10675 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10676 }
10677 else if (section_is_p (sectp->name, &names->line_dwo))
10678 {
10679 dwp_file->sections.line.s.asection = sectp;
10680 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10681 }
10682 else if (section_is_p (sectp->name, &names->loc_dwo))
10683 {
10684 dwp_file->sections.loc.s.asection = sectp;
10685 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10686 }
10687 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10688 {
10689 dwp_file->sections.macinfo.s.asection = sectp;
10690 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10691 }
10692 else if (section_is_p (sectp->name, &names->macro_dwo))
10693 {
10694 dwp_file->sections.macro.s.asection = sectp;
10695 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10698 {
10699 dwp_file->sections.str_offsets.s.asection = sectp;
10700 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->types_dwo))
10703 {
10704 dwp_file->sections.types.s.asection = sectp;
10705 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10706 }
10707}
10708
80626a55 10709/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10710
80626a55
DE
10711static hashval_t
10712hash_dwp_loaded_cutus (const void *item)
10713{
10714 const struct dwo_unit *dwo_unit = item;
3019eac3 10715
80626a55
DE
10716 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10717 return dwo_unit->signature;
3019eac3
DE
10718}
10719
80626a55 10720/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10721
80626a55
DE
10722static int
10723eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10724{
80626a55
DE
10725 const struct dwo_unit *dua = a;
10726 const struct dwo_unit *dub = b;
3019eac3 10727
80626a55
DE
10728 return dua->signature == dub->signature;
10729}
3019eac3 10730
80626a55 10731/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10732
80626a55
DE
10733static htab_t
10734allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10735{
10736 return htab_create_alloc_ex (3,
10737 hash_dwp_loaded_cutus,
10738 eq_dwp_loaded_cutus,
10739 NULL,
10740 &objfile->objfile_obstack,
10741 hashtab_obstack_allocate,
10742 dummy_obstack_deallocate);
10743}
3019eac3 10744
ab5088bf
DE
10745/* Try to open DWP file FILE_NAME.
10746 The result is the bfd handle of the file.
10747 If there is a problem finding or opening the file, return NULL.
10748 Upon success, the canonicalized path of the file is stored in the bfd,
10749 same as symfile_bfd_open. */
10750
10751static bfd *
10752open_dwp_file (const char *file_name)
10753{
6ac97d4c
DE
10754 bfd *abfd;
10755
10756 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10757 if (abfd != NULL)
10758 return abfd;
10759
10760 /* Work around upstream bug 15652.
10761 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10762 [Whether that's a "bug" is debatable, but it is getting in our way.]
10763 We have no real idea where the dwp file is, because gdb's realpath-ing
10764 of the executable's path may have discarded the needed info.
10765 [IWBN if the dwp file name was recorded in the executable, akin to
10766 .gnu_debuglink, but that doesn't exist yet.]
10767 Strip the directory from FILE_NAME and search again. */
10768 if (*debug_file_directory != '\0')
10769 {
10770 /* Don't implicitly search the current directory here.
10771 If the user wants to search "." to handle this case,
10772 it must be added to debug-file-directory. */
10773 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10774 0 /*search_cwd*/);
10775 }
10776
10777 return NULL;
ab5088bf
DE
10778}
10779
80626a55
DE
10780/* Initialize the use of the DWP file for the current objfile.
10781 By convention the name of the DWP file is ${objfile}.dwp.
10782 The result is NULL if it can't be found. */
a766d390 10783
80626a55 10784static struct dwp_file *
ab5088bf 10785open_and_init_dwp_file (void)
80626a55
DE
10786{
10787 struct objfile *objfile = dwarf2_per_objfile->objfile;
10788 struct dwp_file *dwp_file;
10789 char *dwp_name;
10790 bfd *dbfd;
10791 struct cleanup *cleanups;
10792
82bf32bc
JK
10793 /* Try to find first .dwp for the binary file before any symbolic links
10794 resolving. */
10795 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10796 cleanups = make_cleanup (xfree, dwp_name);
10797
ab5088bf 10798 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10799 if (dbfd == NULL
10800 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10801 {
10802 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10803 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10804 make_cleanup (xfree, dwp_name);
10805 dbfd = open_dwp_file (dwp_name);
10806 }
10807
80626a55
DE
10808 if (dbfd == NULL)
10809 {
10810 if (dwarf2_read_debug)
10811 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10812 do_cleanups (cleanups);
10813 return NULL;
3019eac3 10814 }
80626a55 10815 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10816 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10817 dwp_file->dbfd = dbfd;
10818 do_cleanups (cleanups);
c906108c 10819
80626a55
DE
10820 /* +1: section 0 is unused */
10821 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10822 dwp_file->elf_sections =
10823 OBSTACK_CALLOC (&objfile->objfile_obstack,
10824 dwp_file->num_sections, asection *);
10825
73869dc2 10826 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10827
10828 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10829
10830 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10831
73869dc2
DE
10832 /* The DWP file version is stored in the hash table. Oh well. */
10833 if (dwp_file->cus->version != dwp_file->tus->version)
10834 {
10835 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10836 pretty bizarre. We use pulongest here because that's the established
4d65956b 10837 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10838 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10839 " TU version %s [in DWP file %s]"),
10840 pulongest (dwp_file->cus->version),
10841 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10842 }
10843 dwp_file->version = dwp_file->cus->version;
10844
10845 if (dwp_file->version == 2)
10846 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10847
19ac8c2e
DE
10848 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10849 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10850
80626a55
DE
10851 if (dwarf2_read_debug)
10852 {
10853 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10854 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10855 " %s CUs, %s TUs\n",
10856 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10857 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10858 }
10859
10860 return dwp_file;
3019eac3 10861}
c906108c 10862
ab5088bf
DE
10863/* Wrapper around open_and_init_dwp_file, only open it once. */
10864
10865static struct dwp_file *
10866get_dwp_file (void)
10867{
10868 if (! dwarf2_per_objfile->dwp_checked)
10869 {
10870 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10871 dwarf2_per_objfile->dwp_checked = 1;
10872 }
10873 return dwarf2_per_objfile->dwp_file;
10874}
10875
80626a55
DE
10876/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10877 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10878 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10879 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10880 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10881
10882 This is called, for example, when wanting to read a variable with a
10883 complex location. Therefore we don't want to do file i/o for every call.
10884 Therefore we don't want to look for a DWO file on every call.
10885 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10886 then we check if we've already seen DWO_NAME, and only THEN do we check
10887 for a DWO file.
10888
1c658ad5 10889 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10890 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10891
3019eac3 10892static struct dwo_unit *
80626a55
DE
10893lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10894 const char *dwo_name, const char *comp_dir,
10895 ULONGEST signature, int is_debug_types)
3019eac3
DE
10896{
10897 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10898 const char *kind = is_debug_types ? "TU" : "CU";
10899 void **dwo_file_slot;
3019eac3 10900 struct dwo_file *dwo_file;
80626a55 10901 struct dwp_file *dwp_file;
cb1df416 10902
6a506a2d
DE
10903 /* First see if there's a DWP file.
10904 If we have a DWP file but didn't find the DWO inside it, don't
10905 look for the original DWO file. It makes gdb behave differently
10906 depending on whether one is debugging in the build tree. */
cf2c3c16 10907
ab5088bf 10908 dwp_file = get_dwp_file ();
80626a55 10909 if (dwp_file != NULL)
cf2c3c16 10910 {
80626a55
DE
10911 const struct dwp_hash_table *dwp_htab =
10912 is_debug_types ? dwp_file->tus : dwp_file->cus;
10913
10914 if (dwp_htab != NULL)
10915 {
10916 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10917 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10918 signature, is_debug_types);
80626a55
DE
10919
10920 if (dwo_cutu != NULL)
10921 {
10922 if (dwarf2_read_debug)
10923 {
10924 fprintf_unfiltered (gdb_stdlog,
10925 "Virtual DWO %s %s found: @%s\n",
10926 kind, hex_string (signature),
10927 host_address_to_string (dwo_cutu));
10928 }
10929 return dwo_cutu;
10930 }
10931 }
10932 }
6a506a2d 10933 else
80626a55 10934 {
6a506a2d 10935 /* No DWP file, look for the DWO file. */
80626a55 10936
6a506a2d
DE
10937 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10938 if (*dwo_file_slot == NULL)
80626a55 10939 {
6a506a2d
DE
10940 /* Read in the file and build a table of the CUs/TUs it contains. */
10941 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10942 }
6a506a2d
DE
10943 /* NOTE: This will be NULL if unable to open the file. */
10944 dwo_file = *dwo_file_slot;
3019eac3 10945
6a506a2d 10946 if (dwo_file != NULL)
19c3d4c9 10947 {
6a506a2d
DE
10948 struct dwo_unit *dwo_cutu = NULL;
10949
10950 if (is_debug_types && dwo_file->tus)
10951 {
10952 struct dwo_unit find_dwo_cutu;
10953
10954 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10955 find_dwo_cutu.signature = signature;
10956 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10957 }
10958 else if (!is_debug_types && dwo_file->cu)
80626a55 10959 {
6a506a2d
DE
10960 if (signature == dwo_file->cu->signature)
10961 dwo_cutu = dwo_file->cu;
10962 }
10963
10964 if (dwo_cutu != NULL)
10965 {
10966 if (dwarf2_read_debug)
10967 {
10968 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10969 kind, dwo_name, hex_string (signature),
10970 host_address_to_string (dwo_cutu));
10971 }
10972 return dwo_cutu;
80626a55
DE
10973 }
10974 }
2e276125 10975 }
9cdd5dbd 10976
80626a55
DE
10977 /* We didn't find it. This could mean a dwo_id mismatch, or
10978 someone deleted the DWO/DWP file, or the search path isn't set up
10979 correctly to find the file. */
10980
10981 if (dwarf2_read_debug)
10982 {
10983 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10984 kind, dwo_name, hex_string (signature));
10985 }
3019eac3 10986
6656a72d
DE
10987 /* This is a warning and not a complaint because it can be caused by
10988 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10989 {
10990 /* Print the name of the DWP file if we looked there, helps the user
10991 better diagnose the problem. */
10992 char *dwp_text = NULL;
10993 struct cleanup *cleanups;
10994
10995 if (dwp_file != NULL)
10996 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10997 cleanups = make_cleanup (xfree, dwp_text);
10998
10999 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11000 " [in module %s]"),
11001 kind, dwo_name, hex_string (signature),
11002 dwp_text != NULL ? dwp_text : "",
11003 this_unit->is_debug_types ? "TU" : "CU",
11004 this_unit->offset.sect_off, objfile_name (objfile));
11005
11006 do_cleanups (cleanups);
11007 }
3019eac3 11008 return NULL;
5fb290d7
DJ
11009}
11010
80626a55
DE
11011/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11012 See lookup_dwo_cutu_unit for details. */
11013
11014static struct dwo_unit *
11015lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11016 const char *dwo_name, const char *comp_dir,
11017 ULONGEST signature)
11018{
11019 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11020}
11021
11022/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11023 See lookup_dwo_cutu_unit for details. */
11024
11025static struct dwo_unit *
11026lookup_dwo_type_unit (struct signatured_type *this_tu,
11027 const char *dwo_name, const char *comp_dir)
11028{
11029 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11030}
11031
89e63ee4
DE
11032/* Traversal function for queue_and_load_all_dwo_tus. */
11033
11034static int
11035queue_and_load_dwo_tu (void **slot, void *info)
11036{
11037 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11038 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11039 ULONGEST signature = dwo_unit->signature;
11040 struct signatured_type *sig_type =
11041 lookup_dwo_signatured_type (per_cu->cu, signature);
11042
11043 if (sig_type != NULL)
11044 {
11045 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11046
11047 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11048 a real dependency of PER_CU on SIG_TYPE. That is detected later
11049 while processing PER_CU. */
11050 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11051 load_full_type_unit (sig_cu);
11052 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11053 }
11054
11055 return 1;
11056}
11057
11058/* Queue all TUs contained in the DWO of PER_CU to be read in.
11059 The DWO may have the only definition of the type, though it may not be
11060 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11061 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11062
11063static void
11064queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11065{
11066 struct dwo_unit *dwo_unit;
11067 struct dwo_file *dwo_file;
11068
11069 gdb_assert (!per_cu->is_debug_types);
11070 gdb_assert (get_dwp_file () == NULL);
11071 gdb_assert (per_cu->cu != NULL);
11072
11073 dwo_unit = per_cu->cu->dwo_unit;
11074 gdb_assert (dwo_unit != NULL);
11075
11076 dwo_file = dwo_unit->dwo_file;
11077 if (dwo_file->tus != NULL)
11078 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11079}
11080
3019eac3
DE
11081/* Free all resources associated with DWO_FILE.
11082 Close the DWO file and munmap the sections.
11083 All memory should be on the objfile obstack. */
348e048f
DE
11084
11085static void
3019eac3 11086free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11087{
3019eac3
DE
11088 int ix;
11089 struct dwarf2_section_info *section;
348e048f 11090
5c6fa7ab 11091 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11092 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11093
3019eac3
DE
11094 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11095}
348e048f 11096
3019eac3 11097/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11098
3019eac3
DE
11099static void
11100free_dwo_file_cleanup (void *arg)
11101{
11102 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11103 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11104
3019eac3
DE
11105 free_dwo_file (dwo_file, objfile);
11106}
348e048f 11107
3019eac3 11108/* Traversal function for free_dwo_files. */
2ab95328 11109
3019eac3
DE
11110static int
11111free_dwo_file_from_slot (void **slot, void *info)
11112{
11113 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11114 struct objfile *objfile = (struct objfile *) info;
348e048f 11115
3019eac3 11116 free_dwo_file (dwo_file, objfile);
348e048f 11117
3019eac3
DE
11118 return 1;
11119}
348e048f 11120
3019eac3 11121/* Free all resources associated with DWO_FILES. */
348e048f 11122
3019eac3
DE
11123static void
11124free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11125{
11126 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11127}
3019eac3
DE
11128\f
11129/* Read in various DIEs. */
348e048f 11130
d389af10
JK
11131/* qsort helper for inherit_abstract_dies. */
11132
11133static int
11134unsigned_int_compar (const void *ap, const void *bp)
11135{
11136 unsigned int a = *(unsigned int *) ap;
11137 unsigned int b = *(unsigned int *) bp;
11138
11139 return (a > b) - (b > a);
11140}
11141
11142/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11143 Inherit only the children of the DW_AT_abstract_origin DIE not being
11144 already referenced by DW_AT_abstract_origin from the children of the
11145 current DIE. */
d389af10
JK
11146
11147static void
11148inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11149{
11150 struct die_info *child_die;
11151 unsigned die_children_count;
11152 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11153 sect_offset *offsets;
11154 sect_offset *offsets_end, *offsetp;
d389af10
JK
11155 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11156 struct die_info *origin_die;
11157 /* Iterator of the ORIGIN_DIE children. */
11158 struct die_info *origin_child_die;
11159 struct cleanup *cleanups;
11160 struct attribute *attr;
cd02d79d
PA
11161 struct dwarf2_cu *origin_cu;
11162 struct pending **origin_previous_list_in_scope;
d389af10
JK
11163
11164 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11165 if (!attr)
11166 return;
11167
cd02d79d
PA
11168 /* Note that following die references may follow to a die in a
11169 different cu. */
11170
11171 origin_cu = cu;
11172 origin_die = follow_die_ref (die, attr, &origin_cu);
11173
11174 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11175 symbols in. */
11176 origin_previous_list_in_scope = origin_cu->list_in_scope;
11177 origin_cu->list_in_scope = cu->list_in_scope;
11178
edb3359d
DJ
11179 if (die->tag != origin_die->tag
11180 && !(die->tag == DW_TAG_inlined_subroutine
11181 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11182 complaint (&symfile_complaints,
11183 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11184 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11185
11186 child_die = die->child;
11187 die_children_count = 0;
11188 while (child_die && child_die->tag)
11189 {
11190 child_die = sibling_die (child_die);
11191 die_children_count++;
11192 }
11193 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11194 cleanups = make_cleanup (xfree, offsets);
11195
11196 offsets_end = offsets;
11197 child_die = die->child;
11198 while (child_die && child_die->tag)
11199 {
c38f313d
DJ
11200 /* For each CHILD_DIE, find the corresponding child of
11201 ORIGIN_DIE. If there is more than one layer of
11202 DW_AT_abstract_origin, follow them all; there shouldn't be,
11203 but GCC versions at least through 4.4 generate this (GCC PR
11204 40573). */
11205 struct die_info *child_origin_die = child_die;
cd02d79d 11206 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11207
c38f313d
DJ
11208 while (1)
11209 {
cd02d79d
PA
11210 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11211 child_origin_cu);
c38f313d
DJ
11212 if (attr == NULL)
11213 break;
cd02d79d
PA
11214 child_origin_die = follow_die_ref (child_origin_die, attr,
11215 &child_origin_cu);
c38f313d
DJ
11216 }
11217
d389af10
JK
11218 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11219 counterpart may exist. */
c38f313d 11220 if (child_origin_die != child_die)
d389af10 11221 {
edb3359d
DJ
11222 if (child_die->tag != child_origin_die->tag
11223 && !(child_die->tag == DW_TAG_inlined_subroutine
11224 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11225 complaint (&symfile_complaints,
11226 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11227 "different tags"), child_die->offset.sect_off,
11228 child_origin_die->offset.sect_off);
c38f313d
DJ
11229 if (child_origin_die->parent != origin_die)
11230 complaint (&symfile_complaints,
11231 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11232 "different parents"), child_die->offset.sect_off,
11233 child_origin_die->offset.sect_off);
c38f313d
DJ
11234 else
11235 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11236 }
11237 child_die = sibling_die (child_die);
11238 }
11239 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11240 unsigned_int_compar);
11241 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11242 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11243 complaint (&symfile_complaints,
11244 _("Multiple children of DIE 0x%x refer "
11245 "to DIE 0x%x as their abstract origin"),
b64f50a1 11246 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11247
11248 offsetp = offsets;
11249 origin_child_die = origin_die->child;
11250 while (origin_child_die && origin_child_die->tag)
11251 {
11252 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11253 while (offsetp < offsets_end
11254 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11255 offsetp++;
b64f50a1
JK
11256 if (offsetp >= offsets_end
11257 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11258 {
adde2bff
DE
11259 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11260 Check whether we're already processing ORIGIN_CHILD_DIE.
11261 This can happen with mutually referenced abstract_origins.
11262 PR 16581. */
11263 if (!origin_child_die->in_process)
11264 process_die (origin_child_die, origin_cu);
d389af10
JK
11265 }
11266 origin_child_die = sibling_die (origin_child_die);
11267 }
cd02d79d 11268 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11269
11270 do_cleanups (cleanups);
11271}
11272
c906108c 11273static void
e7c27a73 11274read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11275{
e7c27a73 11276 struct objfile *objfile = cu->objfile;
3e29f34a 11277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11278 struct context_stack *new;
c906108c
SS
11279 CORE_ADDR lowpc;
11280 CORE_ADDR highpc;
11281 struct die_info *child_die;
edb3359d 11282 struct attribute *attr, *call_line, *call_file;
15d034d0 11283 const char *name;
e142c38c 11284 CORE_ADDR baseaddr;
801e3a5b 11285 struct block *block;
edb3359d 11286 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11287 VEC (symbolp) *template_args = NULL;
11288 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11289
11290 if (inlined_func)
11291 {
11292 /* If we do not have call site information, we can't show the
11293 caller of this inlined function. That's too confusing, so
11294 only use the scope for local variables. */
11295 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11296 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11297 if (call_line == NULL || call_file == NULL)
11298 {
11299 read_lexical_block_scope (die, cu);
11300 return;
11301 }
11302 }
c906108c 11303
e142c38c
DJ
11304 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11305
94af9270 11306 name = dwarf2_name (die, cu);
c906108c 11307
e8d05480
JB
11308 /* Ignore functions with missing or empty names. These are actually
11309 illegal according to the DWARF standard. */
11310 if (name == NULL)
11311 {
11312 complaint (&symfile_complaints,
b64f50a1
JK
11313 _("missing name for subprogram DIE at %d"),
11314 die->offset.sect_off);
e8d05480
JB
11315 return;
11316 }
11317
11318 /* Ignore functions with missing or invalid low and high pc attributes. */
11319 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11320 {
ae4d0c03
PM
11321 attr = dwarf2_attr (die, DW_AT_external, cu);
11322 if (!attr || !DW_UNSND (attr))
11323 complaint (&symfile_complaints,
3e43a32a
MS
11324 _("cannot get low and high bounds "
11325 "for subprogram DIE at %d"),
b64f50a1 11326 die->offset.sect_off);
e8d05480
JB
11327 return;
11328 }
c906108c 11329
3e29f34a
MR
11330 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11331 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11332
34eaf542
TT
11333 /* If we have any template arguments, then we must allocate a
11334 different sort of symbol. */
11335 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11336 {
11337 if (child_die->tag == DW_TAG_template_type_param
11338 || child_die->tag == DW_TAG_template_value_param)
11339 {
e623cf5d 11340 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11341 templ_func->base.is_cplus_template_function = 1;
11342 break;
11343 }
11344 }
11345
c906108c 11346 new = push_context (0, lowpc);
34eaf542
TT
11347 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11348 (struct symbol *) templ_func);
4c2df51b 11349
4cecd739
DJ
11350 /* If there is a location expression for DW_AT_frame_base, record
11351 it. */
e142c38c 11352 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11353 if (attr)
f1e6e072 11354 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11355
e142c38c 11356 cu->list_in_scope = &local_symbols;
c906108c 11357
639d11d3 11358 if (die->child != NULL)
c906108c 11359 {
639d11d3 11360 child_die = die->child;
c906108c
SS
11361 while (child_die && child_die->tag)
11362 {
34eaf542
TT
11363 if (child_die->tag == DW_TAG_template_type_param
11364 || child_die->tag == DW_TAG_template_value_param)
11365 {
11366 struct symbol *arg = new_symbol (child_die, NULL, cu);
11367
f1078f66
DJ
11368 if (arg != NULL)
11369 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11370 }
11371 else
11372 process_die (child_die, cu);
c906108c
SS
11373 child_die = sibling_die (child_die);
11374 }
11375 }
11376
d389af10
JK
11377 inherit_abstract_dies (die, cu);
11378
4a811a97
UW
11379 /* If we have a DW_AT_specification, we might need to import using
11380 directives from the context of the specification DIE. See the
11381 comment in determine_prefix. */
11382 if (cu->language == language_cplus
11383 && dwarf2_attr (die, DW_AT_specification, cu))
11384 {
11385 struct dwarf2_cu *spec_cu = cu;
11386 struct die_info *spec_die = die_specification (die, &spec_cu);
11387
11388 while (spec_die)
11389 {
11390 child_die = spec_die->child;
11391 while (child_die && child_die->tag)
11392 {
11393 if (child_die->tag == DW_TAG_imported_module)
11394 process_die (child_die, spec_cu);
11395 child_die = sibling_die (child_die);
11396 }
11397
11398 /* In some cases, GCC generates specification DIEs that
11399 themselves contain DW_AT_specification attributes. */
11400 spec_die = die_specification (spec_die, &spec_cu);
11401 }
11402 }
11403
c906108c
SS
11404 new = pop_context ();
11405 /* Make a block for the local symbols within. */
801e3a5b 11406 block = finish_block (new->name, &local_symbols, new->old_blocks,
4d663531 11407 lowpc, highpc);
801e3a5b 11408
df8a16a1 11409 /* For C++, set the block's scope. */
195a3f6c 11410 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11411 && cu->processing_has_namespace_info)
195a3f6c
TT
11412 block_set_scope (block, determine_prefix (die, cu),
11413 &objfile->objfile_obstack);
df8a16a1 11414
801e3a5b
JB
11415 /* If we have address ranges, record them. */
11416 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11417
3e29f34a
MR
11418 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11419
34eaf542
TT
11420 /* Attach template arguments to function. */
11421 if (! VEC_empty (symbolp, template_args))
11422 {
11423 gdb_assert (templ_func != NULL);
11424
11425 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11426 templ_func->template_arguments
11427 = obstack_alloc (&objfile->objfile_obstack,
11428 (templ_func->n_template_arguments
11429 * sizeof (struct symbol *)));
11430 memcpy (templ_func->template_arguments,
11431 VEC_address (symbolp, template_args),
11432 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11433 VEC_free (symbolp, template_args);
11434 }
11435
208d8187
JB
11436 /* In C++, we can have functions nested inside functions (e.g., when
11437 a function declares a class that has methods). This means that
11438 when we finish processing a function scope, we may need to go
11439 back to building a containing block's symbol lists. */
11440 local_symbols = new->locals;
27aa8d6a 11441 using_directives = new->using_directives;
208d8187 11442
921e78cf
JB
11443 /* If we've finished processing a top-level function, subsequent
11444 symbols go in the file symbol list. */
11445 if (outermost_context_p ())
e142c38c 11446 cu->list_in_scope = &file_symbols;
c906108c
SS
11447}
11448
11449/* Process all the DIES contained within a lexical block scope. Start
11450 a new scope, process the dies, and then close the scope. */
11451
11452static void
e7c27a73 11453read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11454{
e7c27a73 11455 struct objfile *objfile = cu->objfile;
3e29f34a 11456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11457 struct context_stack *new;
c906108c
SS
11458 CORE_ADDR lowpc, highpc;
11459 struct die_info *child_die;
e142c38c
DJ
11460 CORE_ADDR baseaddr;
11461
11462 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11463
11464 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11465 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11466 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11467 be nasty. Might be easier to properly extend generic blocks to
af34e669 11468 describe ranges. */
d85a05f0 11469 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11470 return;
3e29f34a
MR
11471 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11472 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11473
11474 push_context (0, lowpc);
639d11d3 11475 if (die->child != NULL)
c906108c 11476 {
639d11d3 11477 child_die = die->child;
c906108c
SS
11478 while (child_die && child_die->tag)
11479 {
e7c27a73 11480 process_die (child_die, cu);
c906108c
SS
11481 child_die = sibling_die (child_die);
11482 }
11483 }
11484 new = pop_context ();
11485
8540c487 11486 if (local_symbols != NULL || using_directives != NULL)
c906108c 11487 {
801e3a5b
JB
11488 struct block *block
11489 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4d663531 11490 highpc);
801e3a5b
JB
11491
11492 /* Note that recording ranges after traversing children, as we
11493 do here, means that recording a parent's ranges entails
11494 walking across all its children's ranges as they appear in
11495 the address map, which is quadratic behavior.
11496
11497 It would be nicer to record the parent's ranges before
11498 traversing its children, simply overriding whatever you find
11499 there. But since we don't even decide whether to create a
11500 block until after we've traversed its children, that's hard
11501 to do. */
11502 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11503 }
11504 local_symbols = new->locals;
27aa8d6a 11505 using_directives = new->using_directives;
c906108c
SS
11506}
11507
96408a79
SA
11508/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11509
11510static void
11511read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11512{
11513 struct objfile *objfile = cu->objfile;
11514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11515 CORE_ADDR pc, baseaddr;
11516 struct attribute *attr;
11517 struct call_site *call_site, call_site_local;
11518 void **slot;
11519 int nparams;
11520 struct die_info *child_die;
11521
11522 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11523
11524 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11525 if (!attr)
11526 {
11527 complaint (&symfile_complaints,
11528 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11529 "DIE 0x%x [in module %s]"),
4262abfb 11530 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11531 return;
11532 }
31aa7e4e 11533 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11534 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11535
11536 if (cu->call_site_htab == NULL)
11537 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11538 NULL, &objfile->objfile_obstack,
11539 hashtab_obstack_allocate, NULL);
11540 call_site_local.pc = pc;
11541 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11542 if (*slot != NULL)
11543 {
11544 complaint (&symfile_complaints,
11545 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11546 "DIE 0x%x [in module %s]"),
4262abfb
JK
11547 paddress (gdbarch, pc), die->offset.sect_off,
11548 objfile_name (objfile));
96408a79
SA
11549 return;
11550 }
11551
11552 /* Count parameters at the caller. */
11553
11554 nparams = 0;
11555 for (child_die = die->child; child_die && child_die->tag;
11556 child_die = sibling_die (child_die))
11557 {
11558 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11559 {
11560 complaint (&symfile_complaints,
11561 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11562 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11563 child_die->tag, child_die->offset.sect_off,
11564 objfile_name (objfile));
96408a79
SA
11565 continue;
11566 }
11567
11568 nparams++;
11569 }
11570
11571 call_site = obstack_alloc (&objfile->objfile_obstack,
11572 (sizeof (*call_site)
11573 + (sizeof (*call_site->parameter)
11574 * (nparams - 1))));
11575 *slot = call_site;
11576 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11577 call_site->pc = pc;
11578
11579 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11580 {
11581 struct die_info *func_die;
11582
11583 /* Skip also over DW_TAG_inlined_subroutine. */
11584 for (func_die = die->parent;
11585 func_die && func_die->tag != DW_TAG_subprogram
11586 && func_die->tag != DW_TAG_subroutine_type;
11587 func_die = func_die->parent);
11588
11589 /* DW_AT_GNU_all_call_sites is a superset
11590 of DW_AT_GNU_all_tail_call_sites. */
11591 if (func_die
11592 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11593 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11594 {
11595 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11596 not complete. But keep CALL_SITE for look ups via call_site_htab,
11597 both the initial caller containing the real return address PC and
11598 the final callee containing the current PC of a chain of tail
11599 calls do not need to have the tail call list complete. But any
11600 function candidate for a virtual tail call frame searched via
11601 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11602 determined unambiguously. */
11603 }
11604 else
11605 {
11606 struct type *func_type = NULL;
11607
11608 if (func_die)
11609 func_type = get_die_type (func_die, cu);
11610 if (func_type != NULL)
11611 {
11612 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11613
11614 /* Enlist this call site to the function. */
11615 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11616 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11617 }
11618 else
11619 complaint (&symfile_complaints,
11620 _("Cannot find function owning DW_TAG_GNU_call_site "
11621 "DIE 0x%x [in module %s]"),
4262abfb 11622 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11623 }
11624 }
11625
11626 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11627 if (attr == NULL)
11628 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11629 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11630 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11631 /* Keep NULL DWARF_BLOCK. */;
11632 else if (attr_form_is_block (attr))
11633 {
11634 struct dwarf2_locexpr_baton *dlbaton;
11635
11636 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11637 dlbaton->data = DW_BLOCK (attr)->data;
11638 dlbaton->size = DW_BLOCK (attr)->size;
11639 dlbaton->per_cu = cu->per_cu;
11640
11641 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11642 }
7771576e 11643 else if (attr_form_is_ref (attr))
96408a79 11644 {
96408a79
SA
11645 struct dwarf2_cu *target_cu = cu;
11646 struct die_info *target_die;
11647
ac9ec31b 11648 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11649 gdb_assert (target_cu->objfile == objfile);
11650 if (die_is_declaration (target_die, target_cu))
11651 {
9112db09
JK
11652 const char *target_physname = NULL;
11653 struct attribute *target_attr;
11654
11655 /* Prefer the mangled name; otherwise compute the demangled one. */
11656 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11657 if (target_attr == NULL)
11658 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11659 target_cu);
11660 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11661 target_physname = DW_STRING (target_attr);
11662 else
11663 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11664 if (target_physname == NULL)
11665 complaint (&symfile_complaints,
11666 _("DW_AT_GNU_call_site_target target DIE has invalid "
11667 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11668 die->offset.sect_off, objfile_name (objfile));
96408a79 11669 else
7d455152 11670 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11671 }
11672 else
11673 {
11674 CORE_ADDR lowpc;
11675
11676 /* DW_AT_entry_pc should be preferred. */
11677 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11678 complaint (&symfile_complaints,
11679 _("DW_AT_GNU_call_site_target target DIE has invalid "
11680 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11681 die->offset.sect_off, objfile_name (objfile));
96408a79 11682 else
3e29f34a
MR
11683 {
11684 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11685 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11686 }
96408a79
SA
11687 }
11688 }
11689 else
11690 complaint (&symfile_complaints,
11691 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11692 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11693 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11694
11695 call_site->per_cu = cu->per_cu;
11696
11697 for (child_die = die->child;
11698 child_die && child_die->tag;
11699 child_die = sibling_die (child_die))
11700 {
96408a79 11701 struct call_site_parameter *parameter;
1788b2d3 11702 struct attribute *loc, *origin;
96408a79
SA
11703
11704 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11705 {
11706 /* Already printed the complaint above. */
11707 continue;
11708 }
11709
11710 gdb_assert (call_site->parameter_count < nparams);
11711 parameter = &call_site->parameter[call_site->parameter_count];
11712
1788b2d3
JK
11713 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11714 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11715 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11716
24c5c679 11717 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11718 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11719 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11720 {
11721 sect_offset offset;
11722
11723 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11724 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11725 if (!offset_in_cu_p (&cu->header, offset))
11726 {
11727 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11728 binding can be done only inside one CU. Such referenced DIE
11729 therefore cannot be even moved to DW_TAG_partial_unit. */
11730 complaint (&symfile_complaints,
11731 _("DW_AT_abstract_origin offset is not in CU for "
11732 "DW_TAG_GNU_call_site child DIE 0x%x "
11733 "[in module %s]"),
4262abfb 11734 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11735 continue;
11736 }
1788b2d3
JK
11737 parameter->u.param_offset.cu_off = (offset.sect_off
11738 - cu->header.offset.sect_off);
11739 }
11740 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11741 {
11742 complaint (&symfile_complaints,
11743 _("No DW_FORM_block* DW_AT_location for "
11744 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11745 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11746 continue;
11747 }
24c5c679 11748 else
96408a79 11749 {
24c5c679
JK
11750 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11751 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11752 if (parameter->u.dwarf_reg != -1)
11753 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11754 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11755 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11756 &parameter->u.fb_offset))
11757 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11758 else
11759 {
11760 complaint (&symfile_complaints,
11761 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11762 "for DW_FORM_block* DW_AT_location is supported for "
11763 "DW_TAG_GNU_call_site child DIE 0x%x "
11764 "[in module %s]"),
4262abfb 11765 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11766 continue;
11767 }
96408a79
SA
11768 }
11769
11770 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11771 if (!attr_form_is_block (attr))
11772 {
11773 complaint (&symfile_complaints,
11774 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11775 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11776 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11777 continue;
11778 }
11779 parameter->value = DW_BLOCK (attr)->data;
11780 parameter->value_size = DW_BLOCK (attr)->size;
11781
11782 /* Parameters are not pre-cleared by memset above. */
11783 parameter->data_value = NULL;
11784 parameter->data_value_size = 0;
11785 call_site->parameter_count++;
11786
11787 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11788 if (attr)
11789 {
11790 if (!attr_form_is_block (attr))
11791 complaint (&symfile_complaints,
11792 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11793 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11794 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11795 else
11796 {
11797 parameter->data_value = DW_BLOCK (attr)->data;
11798 parameter->data_value_size = DW_BLOCK (attr)->size;
11799 }
11800 }
11801 }
11802}
11803
43039443 11804/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11805 Return 1 if the attributes are present and valid, otherwise, return 0.
11806 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11807
11808static int
11809dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11810 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11811 struct partial_symtab *ranges_pst)
43039443
JK
11812{
11813 struct objfile *objfile = cu->objfile;
3e29f34a 11814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11815 struct comp_unit_head *cu_header = &cu->header;
11816 bfd *obfd = objfile->obfd;
11817 unsigned int addr_size = cu_header->addr_size;
11818 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11819 /* Base address selection entry. */
11820 CORE_ADDR base;
11821 int found_base;
11822 unsigned int dummy;
d521ce57 11823 const gdb_byte *buffer;
43039443
JK
11824 CORE_ADDR marker;
11825 int low_set;
11826 CORE_ADDR low = 0;
11827 CORE_ADDR high = 0;
ff013f42 11828 CORE_ADDR baseaddr;
43039443 11829
d00adf39
DE
11830 found_base = cu->base_known;
11831 base = cu->base_address;
43039443 11832
be391dca 11833 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11834 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11835 {
11836 complaint (&symfile_complaints,
11837 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11838 offset);
11839 return 0;
11840 }
dce234bc 11841 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11842
11843 /* Read in the largest possible address. */
11844 marker = read_address (obfd, buffer, cu, &dummy);
11845 if ((marker & mask) == mask)
11846 {
11847 /* If we found the largest possible address, then
11848 read the base address. */
11849 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11850 buffer += 2 * addr_size;
11851 offset += 2 * addr_size;
11852 found_base = 1;
11853 }
11854
11855 low_set = 0;
11856
e7030f15 11857 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11858
43039443
JK
11859 while (1)
11860 {
11861 CORE_ADDR range_beginning, range_end;
11862
11863 range_beginning = read_address (obfd, buffer, cu, &dummy);
11864 buffer += addr_size;
11865 range_end = read_address (obfd, buffer, cu, &dummy);
11866 buffer += addr_size;
11867 offset += 2 * addr_size;
11868
11869 /* An end of list marker is a pair of zero addresses. */
11870 if (range_beginning == 0 && range_end == 0)
11871 /* Found the end of list entry. */
11872 break;
11873
11874 /* Each base address selection entry is a pair of 2 values.
11875 The first is the largest possible address, the second is
11876 the base address. Check for a base address here. */
11877 if ((range_beginning & mask) == mask)
11878 {
11879 /* If we found the largest possible address, then
11880 read the base address. */
11881 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11882 found_base = 1;
11883 continue;
11884 }
11885
11886 if (!found_base)
11887 {
11888 /* We have no valid base address for the ranges
11889 data. */
11890 complaint (&symfile_complaints,
11891 _("Invalid .debug_ranges data (no base address)"));
11892 return 0;
11893 }
11894
9277c30c
UW
11895 if (range_beginning > range_end)
11896 {
11897 /* Inverted range entries are invalid. */
11898 complaint (&symfile_complaints,
11899 _("Invalid .debug_ranges data (inverted range)"));
11900 return 0;
11901 }
11902
11903 /* Empty range entries have no effect. */
11904 if (range_beginning == range_end)
11905 continue;
11906
43039443
JK
11907 range_beginning += base;
11908 range_end += base;
11909
01093045
DE
11910 /* A not-uncommon case of bad debug info.
11911 Don't pollute the addrmap with bad data. */
11912 if (range_beginning + baseaddr == 0
11913 && !dwarf2_per_objfile->has_section_at_zero)
11914 {
11915 complaint (&symfile_complaints,
11916 _(".debug_ranges entry has start address of zero"
4262abfb 11917 " [in module %s]"), objfile_name (objfile));
01093045
DE
11918 continue;
11919 }
11920
9277c30c 11921 if (ranges_pst != NULL)
3e29f34a
MR
11922 {
11923 CORE_ADDR lowpc;
11924 CORE_ADDR highpc;
11925
11926 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11927 range_beginning + baseaddr);
11928 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11929 range_end + baseaddr);
11930 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11931 ranges_pst);
11932 }
ff013f42 11933
43039443
JK
11934 /* FIXME: This is recording everything as a low-high
11935 segment of consecutive addresses. We should have a
11936 data structure for discontiguous block ranges
11937 instead. */
11938 if (! low_set)
11939 {
11940 low = range_beginning;
11941 high = range_end;
11942 low_set = 1;
11943 }
11944 else
11945 {
11946 if (range_beginning < low)
11947 low = range_beginning;
11948 if (range_end > high)
11949 high = range_end;
11950 }
11951 }
11952
11953 if (! low_set)
11954 /* If the first entry is an end-of-list marker, the range
11955 describes an empty scope, i.e. no instructions. */
11956 return 0;
11957
11958 if (low_return)
11959 *low_return = low;
11960 if (high_return)
11961 *high_return = high;
11962 return 1;
11963}
11964
af34e669
DJ
11965/* Get low and high pc attributes from a die. Return 1 if the attributes
11966 are present and valid, otherwise, return 0. Return -1 if the range is
11967 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11968
c906108c 11969static int
af34e669 11970dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11971 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11972 struct partial_symtab *pst)
c906108c
SS
11973{
11974 struct attribute *attr;
91da1414 11975 struct attribute *attr_high;
af34e669
DJ
11976 CORE_ADDR low = 0;
11977 CORE_ADDR high = 0;
11978 int ret = 0;
c906108c 11979
91da1414
MW
11980 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11981 if (attr_high)
af34e669 11982 {
e142c38c 11983 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11984 if (attr)
91da1414 11985 {
31aa7e4e
JB
11986 low = attr_value_as_address (attr);
11987 high = attr_value_as_address (attr_high);
11988 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11989 high += low;
91da1414 11990 }
af34e669
DJ
11991 else
11992 /* Found high w/o low attribute. */
11993 return 0;
11994
11995 /* Found consecutive range of addresses. */
11996 ret = 1;
11997 }
c906108c 11998 else
af34e669 11999 {
e142c38c 12000 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12001 if (attr != NULL)
12002 {
ab435259
DE
12003 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12004 We take advantage of the fact that DW_AT_ranges does not appear
12005 in DW_TAG_compile_unit of DWO files. */
12006 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12007 unsigned int ranges_offset = (DW_UNSND (attr)
12008 + (need_ranges_base
12009 ? cu->ranges_base
12010 : 0));
2e3cf129 12011
af34e669 12012 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12013 .debug_ranges section. */
2e3cf129 12014 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12015 return 0;
43039443 12016 /* Found discontinuous range of addresses. */
af34e669
DJ
12017 ret = -1;
12018 }
12019 }
c906108c 12020
9373cf26
JK
12021 /* read_partial_die has also the strict LOW < HIGH requirement. */
12022 if (high <= low)
c906108c
SS
12023 return 0;
12024
12025 /* When using the GNU linker, .gnu.linkonce. sections are used to
12026 eliminate duplicate copies of functions and vtables and such.
12027 The linker will arbitrarily choose one and discard the others.
12028 The AT_*_pc values for such functions refer to local labels in
12029 these sections. If the section from that file was discarded, the
12030 labels are not in the output, so the relocs get a value of 0.
12031 If this is a discarded function, mark the pc bounds as invalid,
12032 so that GDB will ignore it. */
72dca2f5 12033 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12034 return 0;
12035
12036 *lowpc = low;
96408a79
SA
12037 if (highpc)
12038 *highpc = high;
af34e669 12039 return ret;
c906108c
SS
12040}
12041
b084d499
JB
12042/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12043 its low and high PC addresses. Do nothing if these addresses could not
12044 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12045 and HIGHPC to the high address if greater than HIGHPC. */
12046
12047static void
12048dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12049 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12050 struct dwarf2_cu *cu)
12051{
12052 CORE_ADDR low, high;
12053 struct die_info *child = die->child;
12054
d85a05f0 12055 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12056 {
12057 *lowpc = min (*lowpc, low);
12058 *highpc = max (*highpc, high);
12059 }
12060
12061 /* If the language does not allow nested subprograms (either inside
12062 subprograms or lexical blocks), we're done. */
12063 if (cu->language != language_ada)
12064 return;
6e70227d 12065
b084d499
JB
12066 /* Check all the children of the given DIE. If it contains nested
12067 subprograms, then check their pc bounds. Likewise, we need to
12068 check lexical blocks as well, as they may also contain subprogram
12069 definitions. */
12070 while (child && child->tag)
12071 {
12072 if (child->tag == DW_TAG_subprogram
12073 || child->tag == DW_TAG_lexical_block)
12074 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12075 child = sibling_die (child);
12076 }
12077}
12078
fae299cd
DC
12079/* Get the low and high pc's represented by the scope DIE, and store
12080 them in *LOWPC and *HIGHPC. If the correct values can't be
12081 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12082
12083static void
12084get_scope_pc_bounds (struct die_info *die,
12085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12086 struct dwarf2_cu *cu)
12087{
12088 CORE_ADDR best_low = (CORE_ADDR) -1;
12089 CORE_ADDR best_high = (CORE_ADDR) 0;
12090 CORE_ADDR current_low, current_high;
12091
d85a05f0 12092 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12093 {
12094 best_low = current_low;
12095 best_high = current_high;
12096 }
12097 else
12098 {
12099 struct die_info *child = die->child;
12100
12101 while (child && child->tag)
12102 {
12103 switch (child->tag) {
12104 case DW_TAG_subprogram:
b084d499 12105 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12106 break;
12107 case DW_TAG_namespace:
f55ee35c 12108 case DW_TAG_module:
fae299cd
DC
12109 /* FIXME: carlton/2004-01-16: Should we do this for
12110 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12111 that current GCC's always emit the DIEs corresponding
12112 to definitions of methods of classes as children of a
12113 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12114 the DIEs giving the declarations, which could be
12115 anywhere). But I don't see any reason why the
12116 standards says that they have to be there. */
12117 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12118
12119 if (current_low != ((CORE_ADDR) -1))
12120 {
12121 best_low = min (best_low, current_low);
12122 best_high = max (best_high, current_high);
12123 }
12124 break;
12125 default:
0963b4bd 12126 /* Ignore. */
fae299cd
DC
12127 break;
12128 }
12129
12130 child = sibling_die (child);
12131 }
12132 }
12133
12134 *lowpc = best_low;
12135 *highpc = best_high;
12136}
12137
801e3a5b
JB
12138/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12139 in DIE. */
380bca97 12140
801e3a5b
JB
12141static void
12142dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12143 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12144{
bb5ed363 12145 struct objfile *objfile = cu->objfile;
3e29f34a 12146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12147 struct attribute *attr;
91da1414 12148 struct attribute *attr_high;
801e3a5b 12149
91da1414
MW
12150 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12151 if (attr_high)
801e3a5b 12152 {
801e3a5b
JB
12153 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12154 if (attr)
12155 {
31aa7e4e
JB
12156 CORE_ADDR low = attr_value_as_address (attr);
12157 CORE_ADDR high = attr_value_as_address (attr_high);
12158
12159 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12160 high += low;
9a619af0 12161
3e29f34a
MR
12162 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12163 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12164 record_block_range (block, low, high - 1);
801e3a5b
JB
12165 }
12166 }
12167
12168 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12169 if (attr)
12170 {
bb5ed363 12171 bfd *obfd = objfile->obfd;
ab435259
DE
12172 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12173 We take advantage of the fact that DW_AT_ranges does not appear
12174 in DW_TAG_compile_unit of DWO files. */
12175 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12176
12177 /* The value of the DW_AT_ranges attribute is the offset of the
12178 address range list in the .debug_ranges section. */
ab435259
DE
12179 unsigned long offset = (DW_UNSND (attr)
12180 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12181 const gdb_byte *buffer;
801e3a5b
JB
12182
12183 /* For some target architectures, but not others, the
12184 read_address function sign-extends the addresses it returns.
12185 To recognize base address selection entries, we need a
12186 mask. */
12187 unsigned int addr_size = cu->header.addr_size;
12188 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12189
12190 /* The base address, to which the next pair is relative. Note
12191 that this 'base' is a DWARF concept: most entries in a range
12192 list are relative, to reduce the number of relocs against the
12193 debugging information. This is separate from this function's
12194 'baseaddr' argument, which GDB uses to relocate debugging
12195 information from a shared library based on the address at
12196 which the library was loaded. */
d00adf39
DE
12197 CORE_ADDR base = cu->base_address;
12198 int base_known = cu->base_known;
801e3a5b 12199
d62bfeaf 12200 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12201 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12202 {
12203 complaint (&symfile_complaints,
12204 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12205 offset);
12206 return;
12207 }
d62bfeaf 12208 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12209
12210 for (;;)
12211 {
12212 unsigned int bytes_read;
12213 CORE_ADDR start, end;
12214
12215 start = read_address (obfd, buffer, cu, &bytes_read);
12216 buffer += bytes_read;
12217 end = read_address (obfd, buffer, cu, &bytes_read);
12218 buffer += bytes_read;
12219
12220 /* Did we find the end of the range list? */
12221 if (start == 0 && end == 0)
12222 break;
12223
12224 /* Did we find a base address selection entry? */
12225 else if ((start & base_select_mask) == base_select_mask)
12226 {
12227 base = end;
12228 base_known = 1;
12229 }
12230
12231 /* We found an ordinary address range. */
12232 else
12233 {
12234 if (!base_known)
12235 {
12236 complaint (&symfile_complaints,
3e43a32a
MS
12237 _("Invalid .debug_ranges data "
12238 "(no base address)"));
801e3a5b
JB
12239 return;
12240 }
12241
9277c30c
UW
12242 if (start > end)
12243 {
12244 /* Inverted range entries are invalid. */
12245 complaint (&symfile_complaints,
12246 _("Invalid .debug_ranges data "
12247 "(inverted range)"));
12248 return;
12249 }
12250
12251 /* Empty range entries have no effect. */
12252 if (start == end)
12253 continue;
12254
01093045
DE
12255 start += base + baseaddr;
12256 end += base + baseaddr;
12257
12258 /* A not-uncommon case of bad debug info.
12259 Don't pollute the addrmap with bad data. */
12260 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12261 {
12262 complaint (&symfile_complaints,
12263 _(".debug_ranges entry has start address of zero"
4262abfb 12264 " [in module %s]"), objfile_name (objfile));
01093045
DE
12265 continue;
12266 }
12267
3e29f34a
MR
12268 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12269 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12270 record_block_range (block, start, end - 1);
801e3a5b
JB
12271 }
12272 }
12273 }
12274}
12275
685b1105
JK
12276/* Check whether the producer field indicates either of GCC < 4.6, or the
12277 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12278
685b1105
JK
12279static void
12280check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12281{
12282 const char *cs;
38360086 12283 int major, minor;
60d5a603
JK
12284
12285 if (cu->producer == NULL)
12286 {
12287 /* For unknown compilers expect their behavior is DWARF version
12288 compliant.
12289
12290 GCC started to support .debug_types sections by -gdwarf-4 since
12291 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12292 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12293 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12294 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12295 }
b1ffba5a 12296 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12297 {
38360086
MW
12298 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12299 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105
JK
12300 }
12301 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12302 cu->producer_is_icc = 1;
12303 else
12304 {
12305 /* For other non-GCC compilers, expect their behavior is DWARF version
12306 compliant. */
60d5a603
JK
12307 }
12308
ba919b58 12309 cu->checked_producer = 1;
685b1105 12310}
ba919b58 12311
685b1105
JK
12312/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12313 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12314 during 4.6.0 experimental. */
12315
12316static int
12317producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12318{
12319 if (!cu->checked_producer)
12320 check_producer (cu);
12321
12322 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12323}
12324
12325/* Return the default accessibility type if it is not overriden by
12326 DW_AT_accessibility. */
12327
12328static enum dwarf_access_attribute
12329dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12330{
12331 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12332 {
12333 /* The default DWARF 2 accessibility for members is public, the default
12334 accessibility for inheritance is private. */
12335
12336 if (die->tag != DW_TAG_inheritance)
12337 return DW_ACCESS_public;
12338 else
12339 return DW_ACCESS_private;
12340 }
12341 else
12342 {
12343 /* DWARF 3+ defines the default accessibility a different way. The same
12344 rules apply now for DW_TAG_inheritance as for the members and it only
12345 depends on the container kind. */
12346
12347 if (die->parent->tag == DW_TAG_class_type)
12348 return DW_ACCESS_private;
12349 else
12350 return DW_ACCESS_public;
12351 }
12352}
12353
74ac6d43
TT
12354/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12355 offset. If the attribute was not found return 0, otherwise return
12356 1. If it was found but could not properly be handled, set *OFFSET
12357 to 0. */
12358
12359static int
12360handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12361 LONGEST *offset)
12362{
12363 struct attribute *attr;
12364
12365 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12366 if (attr != NULL)
12367 {
12368 *offset = 0;
12369
12370 /* Note that we do not check for a section offset first here.
12371 This is because DW_AT_data_member_location is new in DWARF 4,
12372 so if we see it, we can assume that a constant form is really
12373 a constant and not a section offset. */
12374 if (attr_form_is_constant (attr))
12375 *offset = dwarf2_get_attr_constant_value (attr, 0);
12376 else if (attr_form_is_section_offset (attr))
12377 dwarf2_complex_location_expr_complaint ();
12378 else if (attr_form_is_block (attr))
12379 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12380 else
12381 dwarf2_complex_location_expr_complaint ();
12382
12383 return 1;
12384 }
12385
12386 return 0;
12387}
12388
c906108c
SS
12389/* Add an aggregate field to the field list. */
12390
12391static void
107d2387 12392dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12393 struct dwarf2_cu *cu)
6e70227d 12394{
e7c27a73 12395 struct objfile *objfile = cu->objfile;
5e2b427d 12396 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12397 struct nextfield *new_field;
12398 struct attribute *attr;
12399 struct field *fp;
15d034d0 12400 const char *fieldname = "";
c906108c
SS
12401
12402 /* Allocate a new field list entry and link it in. */
12403 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12404 make_cleanup (xfree, new_field);
c906108c 12405 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12406
12407 if (die->tag == DW_TAG_inheritance)
12408 {
12409 new_field->next = fip->baseclasses;
12410 fip->baseclasses = new_field;
12411 }
12412 else
12413 {
12414 new_field->next = fip->fields;
12415 fip->fields = new_field;
12416 }
c906108c
SS
12417 fip->nfields++;
12418
e142c38c 12419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12420 if (attr)
12421 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12422 else
12423 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12424 if (new_field->accessibility != DW_ACCESS_public)
12425 fip->non_public_fields = 1;
60d5a603 12426
e142c38c 12427 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12428 if (attr)
12429 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12430 else
12431 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12432
12433 fp = &new_field->field;
a9a9bd0f 12434
e142c38c 12435 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12436 {
74ac6d43
TT
12437 LONGEST offset;
12438
a9a9bd0f 12439 /* Data member other than a C++ static data member. */
6e70227d 12440
c906108c 12441 /* Get type of field. */
e7c27a73 12442 fp->type = die_type (die, cu);
c906108c 12443
d6a843b5 12444 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12445
c906108c 12446 /* Get bit size of field (zero if none). */
e142c38c 12447 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12448 if (attr)
12449 {
12450 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12451 }
12452 else
12453 {
12454 FIELD_BITSIZE (*fp) = 0;
12455 }
12456
12457 /* Get bit offset of field. */
74ac6d43
TT
12458 if (handle_data_member_location (die, cu, &offset))
12459 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12460 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12461 if (attr)
12462 {
5e2b427d 12463 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12464 {
12465 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12466 additional bit offset from the MSB of the containing
12467 anonymous object to the MSB of the field. We don't
12468 have to do anything special since we don't need to
12469 know the size of the anonymous object. */
f41f5e61 12470 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12471 }
12472 else
12473 {
12474 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12475 MSB of the anonymous object, subtract off the number of
12476 bits from the MSB of the field to the MSB of the
12477 object, and then subtract off the number of bits of
12478 the field itself. The result is the bit offset of
12479 the LSB of the field. */
c906108c
SS
12480 int anonymous_size;
12481 int bit_offset = DW_UNSND (attr);
12482
e142c38c 12483 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12484 if (attr)
12485 {
12486 /* The size of the anonymous object containing
12487 the bit field is explicit, so use the
12488 indicated size (in bytes). */
12489 anonymous_size = DW_UNSND (attr);
12490 }
12491 else
12492 {
12493 /* The size of the anonymous object containing
12494 the bit field must be inferred from the type
12495 attribute of the data member containing the
12496 bit field. */
12497 anonymous_size = TYPE_LENGTH (fp->type);
12498 }
f41f5e61
PA
12499 SET_FIELD_BITPOS (*fp,
12500 (FIELD_BITPOS (*fp)
12501 + anonymous_size * bits_per_byte
12502 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12503 }
12504 }
12505
12506 /* Get name of field. */
39cbfefa
DJ
12507 fieldname = dwarf2_name (die, cu);
12508 if (fieldname == NULL)
12509 fieldname = "";
d8151005
DJ
12510
12511 /* The name is already allocated along with this objfile, so we don't
12512 need to duplicate it for the type. */
12513 fp->name = fieldname;
c906108c
SS
12514
12515 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12516 pointer or virtual base class pointer) to private. */
e142c38c 12517 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12518 {
d48cc9dd 12519 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12520 new_field->accessibility = DW_ACCESS_private;
12521 fip->non_public_fields = 1;
12522 }
12523 }
a9a9bd0f 12524 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12525 {
a9a9bd0f
DC
12526 /* C++ static member. */
12527
12528 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12529 is a declaration, but all versions of G++ as of this writing
12530 (so through at least 3.2.1) incorrectly generate
12531 DW_TAG_variable tags. */
6e70227d 12532
ff355380 12533 const char *physname;
c906108c 12534
a9a9bd0f 12535 /* Get name of field. */
39cbfefa
DJ
12536 fieldname = dwarf2_name (die, cu);
12537 if (fieldname == NULL)
c906108c
SS
12538 return;
12539
254e6b9e 12540 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12541 if (attr
12542 /* Only create a symbol if this is an external value.
12543 new_symbol checks this and puts the value in the global symbol
12544 table, which we want. If it is not external, new_symbol
12545 will try to put the value in cu->list_in_scope which is wrong. */
12546 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12547 {
12548 /* A static const member, not much different than an enum as far as
12549 we're concerned, except that we can support more types. */
12550 new_symbol (die, NULL, cu);
12551 }
12552
2df3850c 12553 /* Get physical name. */
ff355380 12554 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12555
d8151005
DJ
12556 /* The name is already allocated along with this objfile, so we don't
12557 need to duplicate it for the type. */
12558 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12559 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12560 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12561 }
12562 else if (die->tag == DW_TAG_inheritance)
12563 {
74ac6d43 12564 LONGEST offset;
d4b96c9a 12565
74ac6d43
TT
12566 /* C++ base class field. */
12567 if (handle_data_member_location (die, cu, &offset))
12568 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12569 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12570 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12571 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12572 fip->nbaseclasses++;
12573 }
12574}
12575
98751a41
JK
12576/* Add a typedef defined in the scope of the FIP's class. */
12577
12578static void
12579dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12580 struct dwarf2_cu *cu)
6e70227d 12581{
98751a41 12582 struct objfile *objfile = cu->objfile;
98751a41
JK
12583 struct typedef_field_list *new_field;
12584 struct attribute *attr;
12585 struct typedef_field *fp;
12586 char *fieldname = "";
12587
12588 /* Allocate a new field list entry and link it in. */
12589 new_field = xzalloc (sizeof (*new_field));
12590 make_cleanup (xfree, new_field);
12591
12592 gdb_assert (die->tag == DW_TAG_typedef);
12593
12594 fp = &new_field->field;
12595
12596 /* Get name of field. */
12597 fp->name = dwarf2_name (die, cu);
12598 if (fp->name == NULL)
12599 return;
12600
12601 fp->type = read_type_die (die, cu);
12602
12603 new_field->next = fip->typedef_field_list;
12604 fip->typedef_field_list = new_field;
12605 fip->typedef_field_list_count++;
12606}
12607
c906108c
SS
12608/* Create the vector of fields, and attach it to the type. */
12609
12610static void
fba45db2 12611dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12612 struct dwarf2_cu *cu)
c906108c
SS
12613{
12614 int nfields = fip->nfields;
12615
12616 /* Record the field count, allocate space for the array of fields,
12617 and create blank accessibility bitfields if necessary. */
12618 TYPE_NFIELDS (type) = nfields;
12619 TYPE_FIELDS (type) = (struct field *)
12620 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12621 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12622
b4ba55a1 12623 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12624 {
12625 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12626
12627 TYPE_FIELD_PRIVATE_BITS (type) =
12628 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12629 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12630
12631 TYPE_FIELD_PROTECTED_BITS (type) =
12632 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12633 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12634
774b6a14
TT
12635 TYPE_FIELD_IGNORE_BITS (type) =
12636 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12637 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12638 }
12639
12640 /* If the type has baseclasses, allocate and clear a bit vector for
12641 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12642 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12643 {
12644 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12645 unsigned char *pointer;
c906108c
SS
12646
12647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12648 pointer = TYPE_ALLOC (type, num_bytes);
12649 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12650 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12651 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12652 }
12653
3e43a32a
MS
12654 /* Copy the saved-up fields into the field vector. Start from the head of
12655 the list, adding to the tail of the field array, so that they end up in
12656 the same order in the array in which they were added to the list. */
c906108c
SS
12657 while (nfields-- > 0)
12658 {
7d0ccb61
DJ
12659 struct nextfield *fieldp;
12660
12661 if (fip->fields)
12662 {
12663 fieldp = fip->fields;
12664 fip->fields = fieldp->next;
12665 }
12666 else
12667 {
12668 fieldp = fip->baseclasses;
12669 fip->baseclasses = fieldp->next;
12670 }
12671
12672 TYPE_FIELD (type, nfields) = fieldp->field;
12673 switch (fieldp->accessibility)
c906108c 12674 {
c5aa993b 12675 case DW_ACCESS_private:
b4ba55a1
JB
12676 if (cu->language != language_ada)
12677 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12678 break;
c906108c 12679
c5aa993b 12680 case DW_ACCESS_protected:
b4ba55a1
JB
12681 if (cu->language != language_ada)
12682 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12683 break;
c906108c 12684
c5aa993b
JM
12685 case DW_ACCESS_public:
12686 break;
c906108c 12687
c5aa993b
JM
12688 default:
12689 /* Unknown accessibility. Complain and treat it as public. */
12690 {
e2e0b3e5 12691 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12692 fieldp->accessibility);
c5aa993b
JM
12693 }
12694 break;
c906108c
SS
12695 }
12696 if (nfields < fip->nbaseclasses)
12697 {
7d0ccb61 12698 switch (fieldp->virtuality)
c906108c 12699 {
c5aa993b
JM
12700 case DW_VIRTUALITY_virtual:
12701 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12702 if (cu->language == language_ada)
a73c6dcd 12703 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12704 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12705 break;
c906108c
SS
12706 }
12707 }
c906108c
SS
12708 }
12709}
12710
7d27a96d
TT
12711/* Return true if this member function is a constructor, false
12712 otherwise. */
12713
12714static int
12715dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12716{
12717 const char *fieldname;
12718 const char *typename;
12719 int len;
12720
12721 if (die->parent == NULL)
12722 return 0;
12723
12724 if (die->parent->tag != DW_TAG_structure_type
12725 && die->parent->tag != DW_TAG_union_type
12726 && die->parent->tag != DW_TAG_class_type)
12727 return 0;
12728
12729 fieldname = dwarf2_name (die, cu);
12730 typename = dwarf2_name (die->parent, cu);
12731 if (fieldname == NULL || typename == NULL)
12732 return 0;
12733
12734 len = strlen (fieldname);
12735 return (strncmp (fieldname, typename, len) == 0
12736 && (typename[len] == '\0' || typename[len] == '<'));
12737}
12738
c906108c
SS
12739/* Add a member function to the proper fieldlist. */
12740
12741static void
107d2387 12742dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12743 struct type *type, struct dwarf2_cu *cu)
c906108c 12744{
e7c27a73 12745 struct objfile *objfile = cu->objfile;
c906108c
SS
12746 struct attribute *attr;
12747 struct fnfieldlist *flp;
12748 int i;
12749 struct fn_field *fnp;
15d034d0 12750 const char *fieldname;
c906108c 12751 struct nextfnfield *new_fnfield;
f792889a 12752 struct type *this_type;
60d5a603 12753 enum dwarf_access_attribute accessibility;
c906108c 12754
b4ba55a1 12755 if (cu->language == language_ada)
a73c6dcd 12756 error (_("unexpected member function in Ada type"));
b4ba55a1 12757
2df3850c 12758 /* Get name of member function. */
39cbfefa
DJ
12759 fieldname = dwarf2_name (die, cu);
12760 if (fieldname == NULL)
2df3850c 12761 return;
c906108c 12762
c906108c
SS
12763 /* Look up member function name in fieldlist. */
12764 for (i = 0; i < fip->nfnfields; i++)
12765 {
27bfe10e 12766 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12767 break;
12768 }
12769
12770 /* Create new list element if necessary. */
12771 if (i < fip->nfnfields)
12772 flp = &fip->fnfieldlists[i];
12773 else
12774 {
12775 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12776 {
12777 fip->fnfieldlists = (struct fnfieldlist *)
12778 xrealloc (fip->fnfieldlists,
12779 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12780 * sizeof (struct fnfieldlist));
c906108c 12781 if (fip->nfnfields == 0)
c13c43fd 12782 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12783 }
12784 flp = &fip->fnfieldlists[fip->nfnfields];
12785 flp->name = fieldname;
12786 flp->length = 0;
12787 flp->head = NULL;
3da10d80 12788 i = fip->nfnfields++;
c906108c
SS
12789 }
12790
12791 /* Create a new member function field and chain it to the field list
0963b4bd 12792 entry. */
c906108c 12793 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12794 make_cleanup (xfree, new_fnfield);
c906108c
SS
12795 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12796 new_fnfield->next = flp->head;
12797 flp->head = new_fnfield;
12798 flp->length++;
12799
12800 /* Fill in the member function field info. */
12801 fnp = &new_fnfield->fnfield;
3da10d80
KS
12802
12803 /* Delay processing of the physname until later. */
12804 if (cu->language == language_cplus || cu->language == language_java)
12805 {
12806 add_to_method_list (type, i, flp->length - 1, fieldname,
12807 die, cu);
12808 }
12809 else
12810 {
1d06ead6 12811 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12812 fnp->physname = physname ? physname : "";
12813 }
12814
c906108c 12815 fnp->type = alloc_type (objfile);
f792889a
DJ
12816 this_type = read_type_die (die, cu);
12817 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12818 {
f792889a 12819 int nparams = TYPE_NFIELDS (this_type);
c906108c 12820
f792889a 12821 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12822 of the method itself (TYPE_CODE_METHOD). */
12823 smash_to_method_type (fnp->type, type,
f792889a
DJ
12824 TYPE_TARGET_TYPE (this_type),
12825 TYPE_FIELDS (this_type),
12826 TYPE_NFIELDS (this_type),
12827 TYPE_VARARGS (this_type));
c906108c
SS
12828
12829 /* Handle static member functions.
c5aa993b 12830 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12831 member functions. G++ helps GDB by marking the first
12832 parameter for non-static member functions (which is the this
12833 pointer) as artificial. We obtain this information from
12834 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12835 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12836 fnp->voffset = VOFFSET_STATIC;
12837 }
12838 else
e2e0b3e5 12839 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12840 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12841
12842 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12843 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12844 fnp->fcontext = die_containing_type (die, cu);
c906108c 12845
3e43a32a
MS
12846 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12847 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12848
12849 /* Get accessibility. */
e142c38c 12850 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12851 if (attr)
60d5a603
JK
12852 accessibility = DW_UNSND (attr);
12853 else
12854 accessibility = dwarf2_default_access_attribute (die, cu);
12855 switch (accessibility)
c906108c 12856 {
60d5a603
JK
12857 case DW_ACCESS_private:
12858 fnp->is_private = 1;
12859 break;
12860 case DW_ACCESS_protected:
12861 fnp->is_protected = 1;
12862 break;
c906108c
SS
12863 }
12864
b02dede2 12865 /* Check for artificial methods. */
e142c38c 12866 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12867 if (attr && DW_UNSND (attr) != 0)
12868 fnp->is_artificial = 1;
12869
7d27a96d
TT
12870 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12871
0d564a31 12872 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12873 function. For older versions of GCC, this is an offset in the
12874 appropriate virtual table, as specified by DW_AT_containing_type.
12875 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12876 to the object address. */
12877
e142c38c 12878 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12879 if (attr)
8e19ed76 12880 {
aec5aa8b 12881 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12882 {
aec5aa8b
TT
12883 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12884 {
12885 /* Old-style GCC. */
12886 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12887 }
12888 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12889 || (DW_BLOCK (attr)->size > 1
12890 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12891 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12892 {
12893 struct dwarf_block blk;
12894 int offset;
12895
12896 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12897 ? 1 : 2);
12898 blk.size = DW_BLOCK (attr)->size - offset;
12899 blk.data = DW_BLOCK (attr)->data + offset;
12900 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12901 if ((fnp->voffset % cu->header.addr_size) != 0)
12902 dwarf2_complex_location_expr_complaint ();
12903 else
12904 fnp->voffset /= cu->header.addr_size;
12905 fnp->voffset += 2;
12906 }
12907 else
12908 dwarf2_complex_location_expr_complaint ();
12909
12910 if (!fnp->fcontext)
12911 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12912 }
3690dd37 12913 else if (attr_form_is_section_offset (attr))
8e19ed76 12914 {
4d3c2250 12915 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12916 }
12917 else
12918 {
4d3c2250
KB
12919 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12920 fieldname);
8e19ed76 12921 }
0d564a31 12922 }
d48cc9dd
DJ
12923 else
12924 {
12925 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12926 if (attr && DW_UNSND (attr))
12927 {
12928 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12929 complaint (&symfile_complaints,
3e43a32a
MS
12930 _("Member function \"%s\" (offset %d) is virtual "
12931 "but the vtable offset is not specified"),
b64f50a1 12932 fieldname, die->offset.sect_off);
9655fd1a 12933 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12934 TYPE_CPLUS_DYNAMIC (type) = 1;
12935 }
12936 }
c906108c
SS
12937}
12938
12939/* Create the vector of member function fields, and attach it to the type. */
12940
12941static void
fba45db2 12942dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12943 struct dwarf2_cu *cu)
c906108c
SS
12944{
12945 struct fnfieldlist *flp;
c906108c
SS
12946 int i;
12947
b4ba55a1 12948 if (cu->language == language_ada)
a73c6dcd 12949 error (_("unexpected member functions in Ada type"));
b4ba55a1 12950
c906108c
SS
12951 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12952 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12953 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12954
12955 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12956 {
12957 struct nextfnfield *nfp = flp->head;
12958 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12959 int k;
12960
12961 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12962 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12963 fn_flp->fn_fields = (struct fn_field *)
12964 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12965 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12966 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12967 }
12968
12969 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12970}
12971
1168df01
JB
12972/* Returns non-zero if NAME is the name of a vtable member in CU's
12973 language, zero otherwise. */
12974static int
12975is_vtable_name (const char *name, struct dwarf2_cu *cu)
12976{
12977 static const char vptr[] = "_vptr";
987504bb 12978 static const char vtable[] = "vtable";
1168df01 12979
987504bb
JJ
12980 /* Look for the C++ and Java forms of the vtable. */
12981 if ((cu->language == language_java
12982 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12983 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12984 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12985 return 1;
12986
12987 return 0;
12988}
12989
c0dd20ea 12990/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12991 functions, with the ABI-specified layout. If TYPE describes
12992 such a structure, smash it into a member function type.
61049d3b
DJ
12993
12994 GCC shouldn't do this; it should just output pointer to member DIEs.
12995 This is GCC PR debug/28767. */
c0dd20ea 12996
0b92b5bb
TT
12997static void
12998quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12999{
09e2d7c7 13000 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13001
13002 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13003 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13004 return;
c0dd20ea
DJ
13005
13006 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13007 if (TYPE_FIELD_NAME (type, 0) == NULL
13008 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13009 || TYPE_FIELD_NAME (type, 1) == NULL
13010 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13011 return;
c0dd20ea
DJ
13012
13013 /* Find the type of the method. */
0b92b5bb 13014 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13015 if (pfn_type == NULL
13016 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13017 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13018 return;
c0dd20ea
DJ
13019
13020 /* Look for the "this" argument. */
13021 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13022 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13023 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13024 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13025 return;
c0dd20ea 13026
09e2d7c7 13027 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13028 new_type = alloc_type (objfile);
09e2d7c7 13029 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13030 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13031 TYPE_VARARGS (pfn_type));
0b92b5bb 13032 smash_to_methodptr_type (type, new_type);
c0dd20ea 13033}
1168df01 13034
685b1105
JK
13035/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13036 (icc). */
13037
13038static int
13039producer_is_icc (struct dwarf2_cu *cu)
13040{
13041 if (!cu->checked_producer)
13042 check_producer (cu);
13043
13044 return cu->producer_is_icc;
13045}
13046
c906108c 13047/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13048 (definition) to create a type for the structure or union. Fill in
13049 the type's name and general properties; the members will not be
83655187
DE
13050 processed until process_structure_scope. A symbol table entry for
13051 the type will also not be done until process_structure_scope (assuming
13052 the type has a name).
c906108c 13053
c767944b
DJ
13054 NOTE: we need to call these functions regardless of whether or not the
13055 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13056 structure or union. This gets the type entered into our set of
83655187 13057 user defined types. */
c906108c 13058
f792889a 13059static struct type *
134d01f1 13060read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13061{
e7c27a73 13062 struct objfile *objfile = cu->objfile;
c906108c
SS
13063 struct type *type;
13064 struct attribute *attr;
15d034d0 13065 const char *name;
c906108c 13066
348e048f
DE
13067 /* If the definition of this type lives in .debug_types, read that type.
13068 Don't follow DW_AT_specification though, that will take us back up
13069 the chain and we want to go down. */
45e58e77 13070 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13071 if (attr)
13072 {
ac9ec31b 13073 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13074
ac9ec31b 13075 /* The type's CU may not be the same as CU.
02142a6c 13076 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13077 return set_die_type (die, type, cu);
13078 }
13079
c0dd20ea 13080 type = alloc_type (objfile);
c906108c 13081 INIT_CPLUS_SPECIFIC (type);
93311388 13082
39cbfefa
DJ
13083 name = dwarf2_name (die, cu);
13084 if (name != NULL)
c906108c 13085 {
987504bb
JJ
13086 if (cu->language == language_cplus
13087 || cu->language == language_java)
63d06c5c 13088 {
15d034d0 13089 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13090
13091 /* dwarf2_full_name might have already finished building the DIE's
13092 type. If so, there is no need to continue. */
13093 if (get_die_type (die, cu) != NULL)
13094 return get_die_type (die, cu);
13095
13096 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13097 if (die->tag == DW_TAG_structure_type
13098 || die->tag == DW_TAG_class_type)
13099 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13100 }
13101 else
13102 {
d8151005
DJ
13103 /* The name is already allocated along with this objfile, so
13104 we don't need to duplicate it for the type. */
7d455152 13105 TYPE_TAG_NAME (type) = name;
94af9270
KS
13106 if (die->tag == DW_TAG_class_type)
13107 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13108 }
c906108c
SS
13109 }
13110
13111 if (die->tag == DW_TAG_structure_type)
13112 {
13113 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13114 }
13115 else if (die->tag == DW_TAG_union_type)
13116 {
13117 TYPE_CODE (type) = TYPE_CODE_UNION;
13118 }
13119 else
13120 {
4753d33b 13121 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13122 }
13123
0cc2414c
TT
13124 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13125 TYPE_DECLARED_CLASS (type) = 1;
13126
e142c38c 13127 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13128 if (attr)
13129 {
13130 TYPE_LENGTH (type) = DW_UNSND (attr);
13131 }
13132 else
13133 {
13134 TYPE_LENGTH (type) = 0;
13135 }
13136
422b1cb0 13137 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13138 {
13139 /* ICC does not output the required DW_AT_declaration
13140 on incomplete types, but gives them a size of zero. */
422b1cb0 13141 TYPE_STUB (type) = 1;
685b1105
JK
13142 }
13143 else
13144 TYPE_STUB_SUPPORTED (type) = 1;
13145
dc718098 13146 if (die_is_declaration (die, cu))
876cecd0 13147 TYPE_STUB (type) = 1;
a6c727b2
DJ
13148 else if (attr == NULL && die->child == NULL
13149 && producer_is_realview (cu->producer))
13150 /* RealView does not output the required DW_AT_declaration
13151 on incomplete types. */
13152 TYPE_STUB (type) = 1;
dc718098 13153
c906108c
SS
13154 /* We need to add the type field to the die immediately so we don't
13155 infinitely recurse when dealing with pointers to the structure
0963b4bd 13156 type within the structure itself. */
1c379e20 13157 set_die_type (die, type, cu);
c906108c 13158
7e314c57
JK
13159 /* set_die_type should be already done. */
13160 set_descriptive_type (type, die, cu);
13161
c767944b
DJ
13162 return type;
13163}
13164
13165/* Finish creating a structure or union type, including filling in
13166 its members and creating a symbol for it. */
13167
13168static void
13169process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13170{
13171 struct objfile *objfile = cu->objfile;
ca040673 13172 struct die_info *child_die;
c767944b
DJ
13173 struct type *type;
13174
13175 type = get_die_type (die, cu);
13176 if (type == NULL)
13177 type = read_structure_type (die, cu);
13178
e142c38c 13179 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13180 {
13181 struct field_info fi;
34eaf542 13182 VEC (symbolp) *template_args = NULL;
c767944b 13183 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13184
13185 memset (&fi, 0, sizeof (struct field_info));
13186
639d11d3 13187 child_die = die->child;
c906108c
SS
13188
13189 while (child_die && child_die->tag)
13190 {
a9a9bd0f
DC
13191 if (child_die->tag == DW_TAG_member
13192 || child_die->tag == DW_TAG_variable)
c906108c 13193 {
a9a9bd0f
DC
13194 /* NOTE: carlton/2002-11-05: A C++ static data member
13195 should be a DW_TAG_member that is a declaration, but
13196 all versions of G++ as of this writing (so through at
13197 least 3.2.1) incorrectly generate DW_TAG_variable
13198 tags for them instead. */
e7c27a73 13199 dwarf2_add_field (&fi, child_die, cu);
c906108c 13200 }
8713b1b1 13201 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13202 {
0963b4bd 13203 /* C++ member function. */
e7c27a73 13204 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13205 }
13206 else if (child_die->tag == DW_TAG_inheritance)
13207 {
13208 /* C++ base class field. */
e7c27a73 13209 dwarf2_add_field (&fi, child_die, cu);
c906108c 13210 }
98751a41
JK
13211 else if (child_die->tag == DW_TAG_typedef)
13212 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13213 else if (child_die->tag == DW_TAG_template_type_param
13214 || child_die->tag == DW_TAG_template_value_param)
13215 {
13216 struct symbol *arg = new_symbol (child_die, NULL, cu);
13217
f1078f66
DJ
13218 if (arg != NULL)
13219 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13220 }
13221
c906108c
SS
13222 child_die = sibling_die (child_die);
13223 }
13224
34eaf542
TT
13225 /* Attach template arguments to type. */
13226 if (! VEC_empty (symbolp, template_args))
13227 {
13228 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13229 TYPE_N_TEMPLATE_ARGUMENTS (type)
13230 = VEC_length (symbolp, template_args);
13231 TYPE_TEMPLATE_ARGUMENTS (type)
13232 = obstack_alloc (&objfile->objfile_obstack,
13233 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13234 * sizeof (struct symbol *)));
13235 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13236 VEC_address (symbolp, template_args),
13237 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13238 * sizeof (struct symbol *)));
13239 VEC_free (symbolp, template_args);
13240 }
13241
c906108c
SS
13242 /* Attach fields and member functions to the type. */
13243 if (fi.nfields)
e7c27a73 13244 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13245 if (fi.nfnfields)
13246 {
e7c27a73 13247 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13248
c5aa993b 13249 /* Get the type which refers to the base class (possibly this
c906108c 13250 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13251 class from the DW_AT_containing_type attribute. This use of
13252 DW_AT_containing_type is a GNU extension. */
c906108c 13253
e142c38c 13254 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13255 {
e7c27a73 13256 struct type *t = die_containing_type (die, cu);
c906108c 13257
ae6ae975 13258 set_type_vptr_basetype (type, t);
c906108c
SS
13259 if (type == t)
13260 {
c906108c
SS
13261 int i;
13262
13263 /* Our own class provides vtbl ptr. */
13264 for (i = TYPE_NFIELDS (t) - 1;
13265 i >= TYPE_N_BASECLASSES (t);
13266 --i)
13267 {
0d5cff50 13268 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13269
1168df01 13270 if (is_vtable_name (fieldname, cu))
c906108c 13271 {
ae6ae975 13272 set_type_vptr_fieldno (type, i);
c906108c
SS
13273 break;
13274 }
13275 }
13276
13277 /* Complain if virtual function table field not found. */
13278 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13279 complaint (&symfile_complaints,
3e43a32a
MS
13280 _("virtual function table pointer "
13281 "not found when defining class '%s'"),
4d3c2250
KB
13282 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13283 "");
c906108c
SS
13284 }
13285 else
13286 {
ae6ae975 13287 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13288 }
13289 }
f6235d4c
EZ
13290 else if (cu->producer
13291 && strncmp (cu->producer,
13292 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13293 {
13294 /* The IBM XLC compiler does not provide direct indication
13295 of the containing type, but the vtable pointer is
13296 always named __vfp. */
13297
13298 int i;
13299
13300 for (i = TYPE_NFIELDS (type) - 1;
13301 i >= TYPE_N_BASECLASSES (type);
13302 --i)
13303 {
13304 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13305 {
ae6ae975
DE
13306 set_type_vptr_fieldno (type, i);
13307 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13308 break;
13309 }
13310 }
13311 }
c906108c 13312 }
98751a41
JK
13313
13314 /* Copy fi.typedef_field_list linked list elements content into the
13315 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13316 if (fi.typedef_field_list)
13317 {
13318 int i = fi.typedef_field_list_count;
13319
a0d7a4ff 13320 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13321 TYPE_TYPEDEF_FIELD_ARRAY (type)
13322 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13323 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13324
13325 /* Reverse the list order to keep the debug info elements order. */
13326 while (--i >= 0)
13327 {
13328 struct typedef_field *dest, *src;
6e70227d 13329
98751a41
JK
13330 dest = &TYPE_TYPEDEF_FIELD (type, i);
13331 src = &fi.typedef_field_list->field;
13332 fi.typedef_field_list = fi.typedef_field_list->next;
13333 *dest = *src;
13334 }
13335 }
c767944b
DJ
13336
13337 do_cleanups (back_to);
eb2a6f42
TT
13338
13339 if (HAVE_CPLUS_STRUCT (type))
13340 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13341 }
63d06c5c 13342
bb5ed363 13343 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13344
90aeadfc
DC
13345 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13346 snapshots) has been known to create a die giving a declaration
13347 for a class that has, as a child, a die giving a definition for a
13348 nested class. So we have to process our children even if the
13349 current die is a declaration. Normally, of course, a declaration
13350 won't have any children at all. */
134d01f1 13351
ca040673
DE
13352 child_die = die->child;
13353
90aeadfc
DC
13354 while (child_die != NULL && child_die->tag)
13355 {
13356 if (child_die->tag == DW_TAG_member
13357 || child_die->tag == DW_TAG_variable
34eaf542
TT
13358 || child_die->tag == DW_TAG_inheritance
13359 || child_die->tag == DW_TAG_template_value_param
13360 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13361 {
90aeadfc 13362 /* Do nothing. */
134d01f1 13363 }
90aeadfc
DC
13364 else
13365 process_die (child_die, cu);
134d01f1 13366
90aeadfc 13367 child_die = sibling_die (child_die);
134d01f1
DJ
13368 }
13369
fa4028e9
JB
13370 /* Do not consider external references. According to the DWARF standard,
13371 these DIEs are identified by the fact that they have no byte_size
13372 attribute, and a declaration attribute. */
13373 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13374 || !die_is_declaration (die, cu))
c767944b 13375 new_symbol (die, type, cu);
134d01f1
DJ
13376}
13377
55426c9d
JB
13378/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13379 update TYPE using some information only available in DIE's children. */
13380
13381static void
13382update_enumeration_type_from_children (struct die_info *die,
13383 struct type *type,
13384 struct dwarf2_cu *cu)
13385{
13386 struct obstack obstack;
60f7655a 13387 struct die_info *child_die;
55426c9d
JB
13388 int unsigned_enum = 1;
13389 int flag_enum = 1;
13390 ULONGEST mask = 0;
13391 struct cleanup *old_chain;
13392
13393 obstack_init (&obstack);
13394 old_chain = make_cleanup_obstack_free (&obstack);
13395
60f7655a
DE
13396 for (child_die = die->child;
13397 child_die != NULL && child_die->tag;
13398 child_die = sibling_die (child_die))
55426c9d
JB
13399 {
13400 struct attribute *attr;
13401 LONGEST value;
13402 const gdb_byte *bytes;
13403 struct dwarf2_locexpr_baton *baton;
13404 const char *name;
60f7655a 13405
55426c9d
JB
13406 if (child_die->tag != DW_TAG_enumerator)
13407 continue;
13408
13409 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13410 if (attr == NULL)
13411 continue;
13412
13413 name = dwarf2_name (child_die, cu);
13414 if (name == NULL)
13415 name = "<anonymous enumerator>";
13416
13417 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13418 &value, &bytes, &baton);
13419 if (value < 0)
13420 {
13421 unsigned_enum = 0;
13422 flag_enum = 0;
13423 }
13424 else if ((mask & value) != 0)
13425 flag_enum = 0;
13426 else
13427 mask |= value;
13428
13429 /* If we already know that the enum type is neither unsigned, nor
13430 a flag type, no need to look at the rest of the enumerates. */
13431 if (!unsigned_enum && !flag_enum)
13432 break;
55426c9d
JB
13433 }
13434
13435 if (unsigned_enum)
13436 TYPE_UNSIGNED (type) = 1;
13437 if (flag_enum)
13438 TYPE_FLAG_ENUM (type) = 1;
13439
13440 do_cleanups (old_chain);
13441}
13442
134d01f1
DJ
13443/* Given a DW_AT_enumeration_type die, set its type. We do not
13444 complete the type's fields yet, or create any symbols. */
c906108c 13445
f792889a 13446static struct type *
134d01f1 13447read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13448{
e7c27a73 13449 struct objfile *objfile = cu->objfile;
c906108c 13450 struct type *type;
c906108c 13451 struct attribute *attr;
0114d602 13452 const char *name;
134d01f1 13453
348e048f
DE
13454 /* If the definition of this type lives in .debug_types, read that type.
13455 Don't follow DW_AT_specification though, that will take us back up
13456 the chain and we want to go down. */
45e58e77 13457 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13458 if (attr)
13459 {
ac9ec31b 13460 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13461
ac9ec31b 13462 /* The type's CU may not be the same as CU.
02142a6c 13463 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13464 return set_die_type (die, type, cu);
13465 }
13466
c906108c
SS
13467 type = alloc_type (objfile);
13468
13469 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13470 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13471 if (name != NULL)
7d455152 13472 TYPE_TAG_NAME (type) = name;
c906108c 13473
0626fc76
TT
13474 attr = dwarf2_attr (die, DW_AT_type, cu);
13475 if (attr != NULL)
13476 {
13477 struct type *underlying_type = die_type (die, cu);
13478
13479 TYPE_TARGET_TYPE (type) = underlying_type;
13480 }
13481
e142c38c 13482 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13483 if (attr)
13484 {
13485 TYPE_LENGTH (type) = DW_UNSND (attr);
13486 }
13487 else
13488 {
13489 TYPE_LENGTH (type) = 0;
13490 }
13491
137033e9
JB
13492 /* The enumeration DIE can be incomplete. In Ada, any type can be
13493 declared as private in the package spec, and then defined only
13494 inside the package body. Such types are known as Taft Amendment
13495 Types. When another package uses such a type, an incomplete DIE
13496 may be generated by the compiler. */
02eb380e 13497 if (die_is_declaration (die, cu))
876cecd0 13498 TYPE_STUB (type) = 1;
02eb380e 13499
0626fc76
TT
13500 /* Finish the creation of this type by using the enum's children.
13501 We must call this even when the underlying type has been provided
13502 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13503 update_enumeration_type_from_children (die, type, cu);
13504
0626fc76
TT
13505 /* If this type has an underlying type that is not a stub, then we
13506 may use its attributes. We always use the "unsigned" attribute
13507 in this situation, because ordinarily we guess whether the type
13508 is unsigned -- but the guess can be wrong and the underlying type
13509 can tell us the reality. However, we defer to a local size
13510 attribute if one exists, because this lets the compiler override
13511 the underlying type if needed. */
13512 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13513 {
13514 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13515 if (TYPE_LENGTH (type) == 0)
13516 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13517 }
13518
3d567982
TT
13519 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13520
f792889a 13521 return set_die_type (die, type, cu);
134d01f1
DJ
13522}
13523
13524/* Given a pointer to a die which begins an enumeration, process all
13525 the dies that define the members of the enumeration, and create the
13526 symbol for the enumeration type.
13527
13528 NOTE: We reverse the order of the element list. */
13529
13530static void
13531process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13532{
f792889a 13533 struct type *this_type;
134d01f1 13534
f792889a
DJ
13535 this_type = get_die_type (die, cu);
13536 if (this_type == NULL)
13537 this_type = read_enumeration_type (die, cu);
9dc481d3 13538
639d11d3 13539 if (die->child != NULL)
c906108c 13540 {
9dc481d3
DE
13541 struct die_info *child_die;
13542 struct symbol *sym;
13543 struct field *fields = NULL;
13544 int num_fields = 0;
15d034d0 13545 const char *name;
9dc481d3 13546
639d11d3 13547 child_die = die->child;
c906108c
SS
13548 while (child_die && child_die->tag)
13549 {
13550 if (child_die->tag != DW_TAG_enumerator)
13551 {
e7c27a73 13552 process_die (child_die, cu);
c906108c
SS
13553 }
13554 else
13555 {
39cbfefa
DJ
13556 name = dwarf2_name (child_die, cu);
13557 if (name)
c906108c 13558 {
f792889a 13559 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13560
13561 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13562 {
13563 fields = (struct field *)
13564 xrealloc (fields,
13565 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13566 * sizeof (struct field));
c906108c
SS
13567 }
13568
3567439c 13569 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13570 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13571 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13572 FIELD_BITSIZE (fields[num_fields]) = 0;
13573
13574 num_fields++;
13575 }
13576 }
13577
13578 child_die = sibling_die (child_die);
13579 }
13580
13581 if (num_fields)
13582 {
f792889a
DJ
13583 TYPE_NFIELDS (this_type) = num_fields;
13584 TYPE_FIELDS (this_type) = (struct field *)
13585 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13586 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13587 sizeof (struct field) * num_fields);
b8c9b27d 13588 xfree (fields);
c906108c 13589 }
c906108c 13590 }
134d01f1 13591
6c83ed52
TT
13592 /* If we are reading an enum from a .debug_types unit, and the enum
13593 is a declaration, and the enum is not the signatured type in the
13594 unit, then we do not want to add a symbol for it. Adding a
13595 symbol would in some cases obscure the true definition of the
13596 enum, giving users an incomplete type when the definition is
13597 actually available. Note that we do not want to do this for all
13598 enums which are just declarations, because C++0x allows forward
13599 enum declarations. */
3019eac3 13600 if (cu->per_cu->is_debug_types
6c83ed52
TT
13601 && die_is_declaration (die, cu))
13602 {
52dc124a 13603 struct signatured_type *sig_type;
6c83ed52 13604
c0f78cd4 13605 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13606 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13607 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13608 return;
13609 }
13610
f792889a 13611 new_symbol (die, this_type, cu);
c906108c
SS
13612}
13613
13614/* Extract all information from a DW_TAG_array_type DIE and put it in
13615 the DIE's type field. For now, this only handles one dimensional
13616 arrays. */
13617
f792889a 13618static struct type *
e7c27a73 13619read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13620{
e7c27a73 13621 struct objfile *objfile = cu->objfile;
c906108c 13622 struct die_info *child_die;
7e314c57 13623 struct type *type;
c906108c
SS
13624 struct type *element_type, *range_type, *index_type;
13625 struct type **range_types = NULL;
13626 struct attribute *attr;
13627 int ndim = 0;
13628 struct cleanup *back_to;
15d034d0 13629 const char *name;
dc53a7ad 13630 unsigned int bit_stride = 0;
c906108c 13631
e7c27a73 13632 element_type = die_type (die, cu);
c906108c 13633
7e314c57
JK
13634 /* The die_type call above may have already set the type for this DIE. */
13635 type = get_die_type (die, cu);
13636 if (type)
13637 return type;
13638
dc53a7ad
JB
13639 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13640 if (attr != NULL)
13641 bit_stride = DW_UNSND (attr) * 8;
13642
13643 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13644 if (attr != NULL)
13645 bit_stride = DW_UNSND (attr);
13646
c906108c
SS
13647 /* Irix 6.2 native cc creates array types without children for
13648 arrays with unspecified length. */
639d11d3 13649 if (die->child == NULL)
c906108c 13650 {
46bf5051 13651 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13652 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13653 type = create_array_type_with_stride (NULL, element_type, range_type,
13654 bit_stride);
f792889a 13655 return set_die_type (die, type, cu);
c906108c
SS
13656 }
13657
13658 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13659 child_die = die->child;
c906108c
SS
13660 while (child_die && child_die->tag)
13661 {
13662 if (child_die->tag == DW_TAG_subrange_type)
13663 {
f792889a 13664 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13665
f792889a 13666 if (child_type != NULL)
a02abb62 13667 {
0963b4bd
MS
13668 /* The range type was succesfully read. Save it for the
13669 array type creation. */
a02abb62
JB
13670 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13671 {
13672 range_types = (struct type **)
13673 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13674 * sizeof (struct type *));
13675 if (ndim == 0)
13676 make_cleanup (free_current_contents, &range_types);
13677 }
f792889a 13678 range_types[ndim++] = child_type;
a02abb62 13679 }
c906108c
SS
13680 }
13681 child_die = sibling_die (child_die);
13682 }
13683
13684 /* Dwarf2 dimensions are output from left to right, create the
13685 necessary array types in backwards order. */
7ca2d3a3 13686
c906108c 13687 type = element_type;
7ca2d3a3
DL
13688
13689 if (read_array_order (die, cu) == DW_ORD_col_major)
13690 {
13691 int i = 0;
9a619af0 13692
7ca2d3a3 13693 while (i < ndim)
dc53a7ad
JB
13694 type = create_array_type_with_stride (NULL, type, range_types[i++],
13695 bit_stride);
7ca2d3a3
DL
13696 }
13697 else
13698 {
13699 while (ndim-- > 0)
dc53a7ad
JB
13700 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13701 bit_stride);
7ca2d3a3 13702 }
c906108c 13703
f5f8a009
EZ
13704 /* Understand Dwarf2 support for vector types (like they occur on
13705 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13706 array type. This is not part of the Dwarf2/3 standard yet, but a
13707 custom vendor extension. The main difference between a regular
13708 array and the vector variant is that vectors are passed by value
13709 to functions. */
e142c38c 13710 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13711 if (attr)
ea37ba09 13712 make_vector_type (type);
f5f8a009 13713
dbc98a8b
KW
13714 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13715 implementation may choose to implement triple vectors using this
13716 attribute. */
13717 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13718 if (attr)
13719 {
13720 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13721 TYPE_LENGTH (type) = DW_UNSND (attr);
13722 else
3e43a32a
MS
13723 complaint (&symfile_complaints,
13724 _("DW_AT_byte_size for array type smaller "
13725 "than the total size of elements"));
dbc98a8b
KW
13726 }
13727
39cbfefa
DJ
13728 name = dwarf2_name (die, cu);
13729 if (name)
13730 TYPE_NAME (type) = name;
6e70227d 13731
0963b4bd 13732 /* Install the type in the die. */
7e314c57
JK
13733 set_die_type (die, type, cu);
13734
13735 /* set_die_type should be already done. */
b4ba55a1
JB
13736 set_descriptive_type (type, die, cu);
13737
c906108c
SS
13738 do_cleanups (back_to);
13739
7e314c57 13740 return type;
c906108c
SS
13741}
13742
7ca2d3a3 13743static enum dwarf_array_dim_ordering
6e70227d 13744read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13745{
13746 struct attribute *attr;
13747
13748 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13749
13750 if (attr) return DW_SND (attr);
13751
0963b4bd
MS
13752 /* GNU F77 is a special case, as at 08/2004 array type info is the
13753 opposite order to the dwarf2 specification, but data is still
13754 laid out as per normal fortran.
7ca2d3a3 13755
0963b4bd
MS
13756 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13757 version checking. */
7ca2d3a3 13758
905e0470
PM
13759 if (cu->language == language_fortran
13760 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13761 {
13762 return DW_ORD_row_major;
13763 }
13764
6e70227d 13765 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13766 {
13767 case array_column_major:
13768 return DW_ORD_col_major;
13769 case array_row_major:
13770 default:
13771 return DW_ORD_row_major;
13772 };
13773}
13774
72019c9c 13775/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13776 the DIE's type field. */
72019c9c 13777
f792889a 13778static struct type *
72019c9c
GM
13779read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13780{
7e314c57
JK
13781 struct type *domain_type, *set_type;
13782 struct attribute *attr;
f792889a 13783
7e314c57
JK
13784 domain_type = die_type (die, cu);
13785
13786 /* The die_type call above may have already set the type for this DIE. */
13787 set_type = get_die_type (die, cu);
13788 if (set_type)
13789 return set_type;
13790
13791 set_type = create_set_type (NULL, domain_type);
13792
13793 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13794 if (attr)
13795 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13796
f792889a 13797 return set_die_type (die, set_type, cu);
72019c9c 13798}
7ca2d3a3 13799
0971de02
TT
13800/* A helper for read_common_block that creates a locexpr baton.
13801 SYM is the symbol which we are marking as computed.
13802 COMMON_DIE is the DIE for the common block.
13803 COMMON_LOC is the location expression attribute for the common
13804 block itself.
13805 MEMBER_LOC is the location expression attribute for the particular
13806 member of the common block that we are processing.
13807 CU is the CU from which the above come. */
13808
13809static void
13810mark_common_block_symbol_computed (struct symbol *sym,
13811 struct die_info *common_die,
13812 struct attribute *common_loc,
13813 struct attribute *member_loc,
13814 struct dwarf2_cu *cu)
13815{
13816 struct objfile *objfile = dwarf2_per_objfile->objfile;
13817 struct dwarf2_locexpr_baton *baton;
13818 gdb_byte *ptr;
13819 unsigned int cu_off;
13820 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13821 LONGEST offset = 0;
13822
13823 gdb_assert (common_loc && member_loc);
13824 gdb_assert (attr_form_is_block (common_loc));
13825 gdb_assert (attr_form_is_block (member_loc)
13826 || attr_form_is_constant (member_loc));
13827
13828 baton = obstack_alloc (&objfile->objfile_obstack,
13829 sizeof (struct dwarf2_locexpr_baton));
13830 baton->per_cu = cu->per_cu;
13831 gdb_assert (baton->per_cu);
13832
13833 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13834
13835 if (attr_form_is_constant (member_loc))
13836 {
13837 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13838 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13839 }
13840 else
13841 baton->size += DW_BLOCK (member_loc)->size;
13842
13843 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13844 baton->data = ptr;
13845
13846 *ptr++ = DW_OP_call4;
13847 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13848 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13849 ptr += 4;
13850
13851 if (attr_form_is_constant (member_loc))
13852 {
13853 *ptr++ = DW_OP_addr;
13854 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13855 ptr += cu->header.addr_size;
13856 }
13857 else
13858 {
13859 /* We have to copy the data here, because DW_OP_call4 will only
13860 use a DW_AT_location attribute. */
13861 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13862 ptr += DW_BLOCK (member_loc)->size;
13863 }
13864
13865 *ptr++ = DW_OP_plus;
13866 gdb_assert (ptr - baton->data == baton->size);
13867
0971de02 13868 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13869 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13870}
13871
4357ac6c
TT
13872/* Create appropriate locally-scoped variables for all the
13873 DW_TAG_common_block entries. Also create a struct common_block
13874 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13875 is used to sepate the common blocks name namespace from regular
13876 variable names. */
c906108c
SS
13877
13878static void
e7c27a73 13879read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13880{
0971de02
TT
13881 struct attribute *attr;
13882
13883 attr = dwarf2_attr (die, DW_AT_location, cu);
13884 if (attr)
13885 {
13886 /* Support the .debug_loc offsets. */
13887 if (attr_form_is_block (attr))
13888 {
13889 /* Ok. */
13890 }
13891 else if (attr_form_is_section_offset (attr))
13892 {
13893 dwarf2_complex_location_expr_complaint ();
13894 attr = NULL;
13895 }
13896 else
13897 {
13898 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13899 "common block member");
13900 attr = NULL;
13901 }
13902 }
13903
639d11d3 13904 if (die->child != NULL)
c906108c 13905 {
4357ac6c
TT
13906 struct objfile *objfile = cu->objfile;
13907 struct die_info *child_die;
13908 size_t n_entries = 0, size;
13909 struct common_block *common_block;
13910 struct symbol *sym;
74ac6d43 13911
4357ac6c
TT
13912 for (child_die = die->child;
13913 child_die && child_die->tag;
13914 child_die = sibling_die (child_die))
13915 ++n_entries;
13916
13917 size = (sizeof (struct common_block)
13918 + (n_entries - 1) * sizeof (struct symbol *));
13919 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13920 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13921 common_block->n_entries = 0;
13922
13923 for (child_die = die->child;
13924 child_die && child_die->tag;
13925 child_die = sibling_die (child_die))
13926 {
13927 /* Create the symbol in the DW_TAG_common_block block in the current
13928 symbol scope. */
e7c27a73 13929 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13930 if (sym != NULL)
13931 {
13932 struct attribute *member_loc;
13933
13934 common_block->contents[common_block->n_entries++] = sym;
13935
13936 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13937 cu);
13938 if (member_loc)
13939 {
13940 /* GDB has handled this for a long time, but it is
13941 not specified by DWARF. It seems to have been
13942 emitted by gfortran at least as recently as:
13943 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13944 complaint (&symfile_complaints,
13945 _("Variable in common block has "
13946 "DW_AT_data_member_location "
13947 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13948 child_die->offset.sect_off,
13949 objfile_name (cu->objfile));
0971de02
TT
13950
13951 if (attr_form_is_section_offset (member_loc))
13952 dwarf2_complex_location_expr_complaint ();
13953 else if (attr_form_is_constant (member_loc)
13954 || attr_form_is_block (member_loc))
13955 {
13956 if (attr)
13957 mark_common_block_symbol_computed (sym, die, attr,
13958 member_loc, cu);
13959 }
13960 else
13961 dwarf2_complex_location_expr_complaint ();
13962 }
13963 }
c906108c 13964 }
4357ac6c
TT
13965
13966 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13967 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13968 }
13969}
13970
0114d602 13971/* Create a type for a C++ namespace. */
d9fa45fe 13972
0114d602
DJ
13973static struct type *
13974read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13975{
e7c27a73 13976 struct objfile *objfile = cu->objfile;
0114d602 13977 const char *previous_prefix, *name;
9219021c 13978 int is_anonymous;
0114d602
DJ
13979 struct type *type;
13980
13981 /* For extensions, reuse the type of the original namespace. */
13982 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13983 {
13984 struct die_info *ext_die;
13985 struct dwarf2_cu *ext_cu = cu;
9a619af0 13986
0114d602
DJ
13987 ext_die = dwarf2_extension (die, &ext_cu);
13988 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13989
13990 /* EXT_CU may not be the same as CU.
02142a6c 13991 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13992 return set_die_type (die, type, cu);
13993 }
9219021c 13994
e142c38c 13995 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13996
13997 /* Now build the name of the current namespace. */
13998
0114d602
DJ
13999 previous_prefix = determine_prefix (die, cu);
14000 if (previous_prefix[0] != '\0')
14001 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14002 previous_prefix, name, 0, cu);
0114d602
DJ
14003
14004 /* Create the type. */
14005 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14006 objfile);
abee88f2 14007 TYPE_NAME (type) = name;
0114d602
DJ
14008 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14009
60531b24 14010 return set_die_type (die, type, cu);
0114d602
DJ
14011}
14012
14013/* Read a C++ namespace. */
14014
14015static void
14016read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14017{
14018 struct objfile *objfile = cu->objfile;
0114d602 14019 int is_anonymous;
9219021c 14020
5c4e30ca
DC
14021 /* Add a symbol associated to this if we haven't seen the namespace
14022 before. Also, add a using directive if it's an anonymous
14023 namespace. */
9219021c 14024
f2f0e013 14025 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14026 {
14027 struct type *type;
14028
0114d602 14029 type = read_type_die (die, cu);
e7c27a73 14030 new_symbol (die, type, cu);
5c4e30ca 14031
e8e80198 14032 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14033 if (is_anonymous)
0114d602
DJ
14034 {
14035 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14036
c0cc3a76 14037 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 14038 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14039 }
5c4e30ca 14040 }
9219021c 14041
639d11d3 14042 if (die->child != NULL)
d9fa45fe 14043 {
639d11d3 14044 struct die_info *child_die = die->child;
6e70227d 14045
d9fa45fe
DC
14046 while (child_die && child_die->tag)
14047 {
e7c27a73 14048 process_die (child_die, cu);
d9fa45fe
DC
14049 child_die = sibling_die (child_die);
14050 }
14051 }
38d518c9
EZ
14052}
14053
f55ee35c
JK
14054/* Read a Fortran module as type. This DIE can be only a declaration used for
14055 imported module. Still we need that type as local Fortran "use ... only"
14056 declaration imports depend on the created type in determine_prefix. */
14057
14058static struct type *
14059read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14060{
14061 struct objfile *objfile = cu->objfile;
15d034d0 14062 const char *module_name;
f55ee35c
JK
14063 struct type *type;
14064
14065 module_name = dwarf2_name (die, cu);
14066 if (!module_name)
3e43a32a
MS
14067 complaint (&symfile_complaints,
14068 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14069 die->offset.sect_off);
f55ee35c
JK
14070 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14071
14072 /* determine_prefix uses TYPE_TAG_NAME. */
14073 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14074
14075 return set_die_type (die, type, cu);
14076}
14077
5d7cb8df
JK
14078/* Read a Fortran module. */
14079
14080static void
14081read_module (struct die_info *die, struct dwarf2_cu *cu)
14082{
14083 struct die_info *child_die = die->child;
530e8392
KB
14084 struct type *type;
14085
14086 type = read_type_die (die, cu);
14087 new_symbol (die, type, cu);
5d7cb8df 14088
5d7cb8df
JK
14089 while (child_die && child_die->tag)
14090 {
14091 process_die (child_die, cu);
14092 child_die = sibling_die (child_die);
14093 }
14094}
14095
38d518c9
EZ
14096/* Return the name of the namespace represented by DIE. Set
14097 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14098 namespace. */
14099
14100static const char *
e142c38c 14101namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14102{
14103 struct die_info *current_die;
14104 const char *name = NULL;
14105
14106 /* Loop through the extensions until we find a name. */
14107
14108 for (current_die = die;
14109 current_die != NULL;
f2f0e013 14110 current_die = dwarf2_extension (die, &cu))
38d518c9 14111 {
e142c38c 14112 name = dwarf2_name (current_die, cu);
38d518c9
EZ
14113 if (name != NULL)
14114 break;
14115 }
14116
14117 /* Is it an anonymous namespace? */
14118
14119 *is_anonymous = (name == NULL);
14120 if (*is_anonymous)
2b1dbab0 14121 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14122
14123 return name;
d9fa45fe
DC
14124}
14125
c906108c
SS
14126/* Extract all information from a DW_TAG_pointer_type DIE and add to
14127 the user defined type vector. */
14128
f792889a 14129static struct type *
e7c27a73 14130read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14131{
5e2b427d 14132 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14133 struct comp_unit_head *cu_header = &cu->header;
c906108c 14134 struct type *type;
8b2dbe47
KB
14135 struct attribute *attr_byte_size;
14136 struct attribute *attr_address_class;
14137 int byte_size, addr_class;
7e314c57
JK
14138 struct type *target_type;
14139
14140 target_type = die_type (die, cu);
c906108c 14141
7e314c57
JK
14142 /* The die_type call above may have already set the type for this DIE. */
14143 type = get_die_type (die, cu);
14144 if (type)
14145 return type;
14146
14147 type = lookup_pointer_type (target_type);
8b2dbe47 14148
e142c38c 14149 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14150 if (attr_byte_size)
14151 byte_size = DW_UNSND (attr_byte_size);
c906108c 14152 else
8b2dbe47
KB
14153 byte_size = cu_header->addr_size;
14154
e142c38c 14155 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14156 if (attr_address_class)
14157 addr_class = DW_UNSND (attr_address_class);
14158 else
14159 addr_class = DW_ADDR_none;
14160
14161 /* If the pointer size or address class is different than the
14162 default, create a type variant marked as such and set the
14163 length accordingly. */
14164 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14165 {
5e2b427d 14166 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14167 {
14168 int type_flags;
14169
849957d9 14170 type_flags = gdbarch_address_class_type_flags
5e2b427d 14171 (gdbarch, byte_size, addr_class);
876cecd0
TT
14172 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14173 == 0);
8b2dbe47
KB
14174 type = make_type_with_address_space (type, type_flags);
14175 }
14176 else if (TYPE_LENGTH (type) != byte_size)
14177 {
3e43a32a
MS
14178 complaint (&symfile_complaints,
14179 _("invalid pointer size %d"), byte_size);
8b2dbe47 14180 }
6e70227d 14181 else
9a619af0
MS
14182 {
14183 /* Should we also complain about unhandled address classes? */
14184 }
c906108c 14185 }
8b2dbe47
KB
14186
14187 TYPE_LENGTH (type) = byte_size;
f792889a 14188 return set_die_type (die, type, cu);
c906108c
SS
14189}
14190
14191/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14192 the user defined type vector. */
14193
f792889a 14194static struct type *
e7c27a73 14195read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14196{
14197 struct type *type;
14198 struct type *to_type;
14199 struct type *domain;
14200
e7c27a73
DJ
14201 to_type = die_type (die, cu);
14202 domain = die_containing_type (die, cu);
0d5de010 14203
7e314c57
JK
14204 /* The calls above may have already set the type for this DIE. */
14205 type = get_die_type (die, cu);
14206 if (type)
14207 return type;
14208
0d5de010
DJ
14209 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14210 type = lookup_methodptr_type (to_type);
7078baeb
TT
14211 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14212 {
14213 struct type *new_type = alloc_type (cu->objfile);
14214
14215 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14216 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14217 TYPE_VARARGS (to_type));
14218 type = lookup_methodptr_type (new_type);
14219 }
0d5de010
DJ
14220 else
14221 type = lookup_memberptr_type (to_type, domain);
c906108c 14222
f792889a 14223 return set_die_type (die, type, cu);
c906108c
SS
14224}
14225
14226/* Extract all information from a DW_TAG_reference_type DIE and add to
14227 the user defined type vector. */
14228
f792889a 14229static struct type *
e7c27a73 14230read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14231{
e7c27a73 14232 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14233 struct type *type, *target_type;
c906108c
SS
14234 struct attribute *attr;
14235
7e314c57
JK
14236 target_type = die_type (die, cu);
14237
14238 /* The die_type call above may have already set the type for this DIE. */
14239 type = get_die_type (die, cu);
14240 if (type)
14241 return type;
14242
14243 type = lookup_reference_type (target_type);
e142c38c 14244 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14245 if (attr)
14246 {
14247 TYPE_LENGTH (type) = DW_UNSND (attr);
14248 }
14249 else
14250 {
107d2387 14251 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14252 }
f792889a 14253 return set_die_type (die, type, cu);
c906108c
SS
14254}
14255
cf363f18
MW
14256/* Add the given cv-qualifiers to the element type of the array. GCC
14257 outputs DWARF type qualifiers that apply to an array, not the
14258 element type. But GDB relies on the array element type to carry
14259 the cv-qualifiers. This mimics section 6.7.3 of the C99
14260 specification. */
14261
14262static struct type *
14263add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14264 struct type *base_type, int cnst, int voltl)
14265{
14266 struct type *el_type, *inner_array;
14267
14268 base_type = copy_type (base_type);
14269 inner_array = base_type;
14270
14271 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14272 {
14273 TYPE_TARGET_TYPE (inner_array) =
14274 copy_type (TYPE_TARGET_TYPE (inner_array));
14275 inner_array = TYPE_TARGET_TYPE (inner_array);
14276 }
14277
14278 el_type = TYPE_TARGET_TYPE (inner_array);
14279 cnst |= TYPE_CONST (el_type);
14280 voltl |= TYPE_VOLATILE (el_type);
14281 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14282
14283 return set_die_type (die, base_type, cu);
14284}
14285
f792889a 14286static struct type *
e7c27a73 14287read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14288{
f792889a 14289 struct type *base_type, *cv_type;
c906108c 14290
e7c27a73 14291 base_type = die_type (die, cu);
7e314c57
JK
14292
14293 /* The die_type call above may have already set the type for this DIE. */
14294 cv_type = get_die_type (die, cu);
14295 if (cv_type)
14296 return cv_type;
14297
2f608a3a
KW
14298 /* In case the const qualifier is applied to an array type, the element type
14299 is so qualified, not the array type (section 6.7.3 of C99). */
14300 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14301 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14302
f792889a
DJ
14303 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14304 return set_die_type (die, cv_type, cu);
c906108c
SS
14305}
14306
f792889a 14307static struct type *
e7c27a73 14308read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14309{
f792889a 14310 struct type *base_type, *cv_type;
c906108c 14311
e7c27a73 14312 base_type = die_type (die, cu);
7e314c57
JK
14313
14314 /* The die_type call above may have already set the type for this DIE. */
14315 cv_type = get_die_type (die, cu);
14316 if (cv_type)
14317 return cv_type;
14318
cf363f18
MW
14319 /* In case the volatile qualifier is applied to an array type, the
14320 element type is so qualified, not the array type (section 6.7.3
14321 of C99). */
14322 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14323 return add_array_cv_type (die, cu, base_type, 0, 1);
14324
f792889a
DJ
14325 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14326 return set_die_type (die, cv_type, cu);
c906108c
SS
14327}
14328
06d66ee9
TT
14329/* Handle DW_TAG_restrict_type. */
14330
14331static struct type *
14332read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14333{
14334 struct type *base_type, *cv_type;
14335
14336 base_type = die_type (die, cu);
14337
14338 /* The die_type call above may have already set the type for this DIE. */
14339 cv_type = get_die_type (die, cu);
14340 if (cv_type)
14341 return cv_type;
14342
14343 cv_type = make_restrict_type (base_type);
14344 return set_die_type (die, cv_type, cu);
14345}
14346
a2c2acaf
MW
14347/* Handle DW_TAG_atomic_type. */
14348
14349static struct type *
14350read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14351{
14352 struct type *base_type, *cv_type;
14353
14354 base_type = die_type (die, cu);
14355
14356 /* The die_type call above may have already set the type for this DIE. */
14357 cv_type = get_die_type (die, cu);
14358 if (cv_type)
14359 return cv_type;
14360
14361 cv_type = make_atomic_type (base_type);
14362 return set_die_type (die, cv_type, cu);
14363}
14364
c906108c
SS
14365/* Extract all information from a DW_TAG_string_type DIE and add to
14366 the user defined type vector. It isn't really a user defined type,
14367 but it behaves like one, with other DIE's using an AT_user_def_type
14368 attribute to reference it. */
14369
f792889a 14370static struct type *
e7c27a73 14371read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14372{
e7c27a73 14373 struct objfile *objfile = cu->objfile;
3b7538c0 14374 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14375 struct type *type, *range_type, *index_type, *char_type;
14376 struct attribute *attr;
14377 unsigned int length;
14378
e142c38c 14379 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14380 if (attr)
14381 {
14382 length = DW_UNSND (attr);
14383 }
14384 else
14385 {
0963b4bd 14386 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14387 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14388 if (attr)
14389 {
14390 length = DW_UNSND (attr);
14391 }
14392 else
14393 {
14394 length = 1;
14395 }
c906108c 14396 }
6ccb9162 14397
46bf5051 14398 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14399 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14400 char_type = language_string_char_type (cu->language_defn, gdbarch);
14401 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14402
f792889a 14403 return set_die_type (die, type, cu);
c906108c
SS
14404}
14405
4d804846
JB
14406/* Assuming that DIE corresponds to a function, returns nonzero
14407 if the function is prototyped. */
14408
14409static int
14410prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14411{
14412 struct attribute *attr;
14413
14414 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14415 if (attr && (DW_UNSND (attr) != 0))
14416 return 1;
14417
14418 /* The DWARF standard implies that the DW_AT_prototyped attribute
14419 is only meaninful for C, but the concept also extends to other
14420 languages that allow unprototyped functions (Eg: Objective C).
14421 For all other languages, assume that functions are always
14422 prototyped. */
14423 if (cu->language != language_c
14424 && cu->language != language_objc
14425 && cu->language != language_opencl)
14426 return 1;
14427
14428 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14429 prototyped and unprototyped functions; default to prototyped,
14430 since that is more common in modern code (and RealView warns
14431 about unprototyped functions). */
14432 if (producer_is_realview (cu->producer))
14433 return 1;
14434
14435 return 0;
14436}
14437
c906108c
SS
14438/* Handle DIES due to C code like:
14439
14440 struct foo
c5aa993b
JM
14441 {
14442 int (*funcp)(int a, long l);
14443 int b;
14444 };
c906108c 14445
0963b4bd 14446 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14447
f792889a 14448static struct type *
e7c27a73 14449read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14450{
bb5ed363 14451 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14452 struct type *type; /* Type that this function returns. */
14453 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14454 struct attribute *attr;
14455
e7c27a73 14456 type = die_type (die, cu);
7e314c57
JK
14457
14458 /* The die_type call above may have already set the type for this DIE. */
14459 ftype = get_die_type (die, cu);
14460 if (ftype)
14461 return ftype;
14462
0c8b41f1 14463 ftype = lookup_function_type (type);
c906108c 14464
4d804846 14465 if (prototyped_function_p (die, cu))
a6c727b2 14466 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14467
c055b101
CV
14468 /* Store the calling convention in the type if it's available in
14469 the subroutine die. Otherwise set the calling convention to
14470 the default value DW_CC_normal. */
14471 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14472 if (attr)
14473 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14474 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14475 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14476 else
14477 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14478
743649fd
MW
14479 /* Record whether the function returns normally to its caller or not
14480 if the DWARF producer set that information. */
14481 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14482 if (attr && (DW_UNSND (attr) != 0))
14483 TYPE_NO_RETURN (ftype) = 1;
14484
76c10ea2
GM
14485 /* We need to add the subroutine type to the die immediately so
14486 we don't infinitely recurse when dealing with parameters
0963b4bd 14487 declared as the same subroutine type. */
76c10ea2 14488 set_die_type (die, ftype, cu);
6e70227d 14489
639d11d3 14490 if (die->child != NULL)
c906108c 14491 {
bb5ed363 14492 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14493 struct die_info *child_die;
8072405b 14494 int nparams, iparams;
c906108c
SS
14495
14496 /* Count the number of parameters.
14497 FIXME: GDB currently ignores vararg functions, but knows about
14498 vararg member functions. */
8072405b 14499 nparams = 0;
639d11d3 14500 child_die = die->child;
c906108c
SS
14501 while (child_die && child_die->tag)
14502 {
14503 if (child_die->tag == DW_TAG_formal_parameter)
14504 nparams++;
14505 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14506 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14507 child_die = sibling_die (child_die);
14508 }
14509
14510 /* Allocate storage for parameters and fill them in. */
14511 TYPE_NFIELDS (ftype) = nparams;
14512 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14513 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14514
8072405b
JK
14515 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14516 even if we error out during the parameters reading below. */
14517 for (iparams = 0; iparams < nparams; iparams++)
14518 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14519
14520 iparams = 0;
639d11d3 14521 child_die = die->child;
c906108c
SS
14522 while (child_die && child_die->tag)
14523 {
14524 if (child_die->tag == DW_TAG_formal_parameter)
14525 {
3ce3b1ba
PA
14526 struct type *arg_type;
14527
14528 /* DWARF version 2 has no clean way to discern C++
14529 static and non-static member functions. G++ helps
14530 GDB by marking the first parameter for non-static
14531 member functions (which is the this pointer) as
14532 artificial. We pass this information to
14533 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14534
14535 DWARF version 3 added DW_AT_object_pointer, which GCC
14536 4.5 does not yet generate. */
e142c38c 14537 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14538 if (attr)
14539 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14540 else
418835cc
KS
14541 {
14542 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14543
14544 /* GCC/43521: In java, the formal parameter
14545 "this" is sometimes not marked with DW_AT_artificial. */
14546 if (cu->language == language_java)
14547 {
14548 const char *name = dwarf2_name (child_die, cu);
9a619af0 14549
418835cc
KS
14550 if (name && !strcmp (name, "this"))
14551 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14552 }
14553 }
3ce3b1ba
PA
14554 arg_type = die_type (child_die, cu);
14555
14556 /* RealView does not mark THIS as const, which the testsuite
14557 expects. GCC marks THIS as const in method definitions,
14558 but not in the class specifications (GCC PR 43053). */
14559 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14560 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14561 {
14562 int is_this = 0;
14563 struct dwarf2_cu *arg_cu = cu;
14564 const char *name = dwarf2_name (child_die, cu);
14565
14566 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14567 if (attr)
14568 {
14569 /* If the compiler emits this, use it. */
14570 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14571 is_this = 1;
14572 }
14573 else if (name && strcmp (name, "this") == 0)
14574 /* Function definitions will have the argument names. */
14575 is_this = 1;
14576 else if (name == NULL && iparams == 0)
14577 /* Declarations may not have the names, so like
14578 elsewhere in GDB, assume an artificial first
14579 argument is "this". */
14580 is_this = 1;
14581
14582 if (is_this)
14583 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14584 arg_type, 0);
14585 }
14586
14587 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14588 iparams++;
14589 }
14590 child_die = sibling_die (child_die);
14591 }
14592 }
14593
76c10ea2 14594 return ftype;
c906108c
SS
14595}
14596
f792889a 14597static struct type *
e7c27a73 14598read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14599{
e7c27a73 14600 struct objfile *objfile = cu->objfile;
0114d602 14601 const char *name = NULL;
3c8e0968 14602 struct type *this_type, *target_type;
c906108c 14603
94af9270 14604 name = dwarf2_full_name (NULL, die, cu);
f792889a 14605 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14606 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14607 TYPE_NAME (this_type) = name;
f792889a 14608 set_die_type (die, this_type, cu);
3c8e0968
DE
14609 target_type = die_type (die, cu);
14610 if (target_type != this_type)
14611 TYPE_TARGET_TYPE (this_type) = target_type;
14612 else
14613 {
14614 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14615 spec and cause infinite loops in GDB. */
14616 complaint (&symfile_complaints,
14617 _("Self-referential DW_TAG_typedef "
14618 "- DIE at 0x%x [in module %s]"),
4262abfb 14619 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14620 TYPE_TARGET_TYPE (this_type) = NULL;
14621 }
f792889a 14622 return this_type;
c906108c
SS
14623}
14624
14625/* Find a representation of a given base type and install
14626 it in the TYPE field of the die. */
14627
f792889a 14628static struct type *
e7c27a73 14629read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14630{
e7c27a73 14631 struct objfile *objfile = cu->objfile;
c906108c
SS
14632 struct type *type;
14633 struct attribute *attr;
14634 int encoding = 0, size = 0;
15d034d0 14635 const char *name;
6ccb9162
UW
14636 enum type_code code = TYPE_CODE_INT;
14637 int type_flags = 0;
14638 struct type *target_type = NULL;
c906108c 14639
e142c38c 14640 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14641 if (attr)
14642 {
14643 encoding = DW_UNSND (attr);
14644 }
e142c38c 14645 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14646 if (attr)
14647 {
14648 size = DW_UNSND (attr);
14649 }
39cbfefa 14650 name = dwarf2_name (die, cu);
6ccb9162 14651 if (!name)
c906108c 14652 {
6ccb9162
UW
14653 complaint (&symfile_complaints,
14654 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14655 }
6ccb9162
UW
14656
14657 switch (encoding)
c906108c 14658 {
6ccb9162
UW
14659 case DW_ATE_address:
14660 /* Turn DW_ATE_address into a void * pointer. */
14661 code = TYPE_CODE_PTR;
14662 type_flags |= TYPE_FLAG_UNSIGNED;
14663 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14664 break;
14665 case DW_ATE_boolean:
14666 code = TYPE_CODE_BOOL;
14667 type_flags |= TYPE_FLAG_UNSIGNED;
14668 break;
14669 case DW_ATE_complex_float:
14670 code = TYPE_CODE_COMPLEX;
14671 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14672 break;
14673 case DW_ATE_decimal_float:
14674 code = TYPE_CODE_DECFLOAT;
14675 break;
14676 case DW_ATE_float:
14677 code = TYPE_CODE_FLT;
14678 break;
14679 case DW_ATE_signed:
14680 break;
14681 case DW_ATE_unsigned:
14682 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14683 if (cu->language == language_fortran
14684 && name
14685 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14686 code = TYPE_CODE_CHAR;
6ccb9162
UW
14687 break;
14688 case DW_ATE_signed_char:
6e70227d 14689 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14690 || cu->language == language_pascal
14691 || cu->language == language_fortran)
6ccb9162
UW
14692 code = TYPE_CODE_CHAR;
14693 break;
14694 case DW_ATE_unsigned_char:
868a0084 14695 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14696 || cu->language == language_pascal
14697 || cu->language == language_fortran)
6ccb9162
UW
14698 code = TYPE_CODE_CHAR;
14699 type_flags |= TYPE_FLAG_UNSIGNED;
14700 break;
75079b2b
TT
14701 case DW_ATE_UTF:
14702 /* We just treat this as an integer and then recognize the
14703 type by name elsewhere. */
14704 break;
14705
6ccb9162
UW
14706 default:
14707 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14708 dwarf_type_encoding_name (encoding));
14709 break;
c906108c 14710 }
6ccb9162 14711
0114d602
DJ
14712 type = init_type (code, size, type_flags, NULL, objfile);
14713 TYPE_NAME (type) = name;
6ccb9162
UW
14714 TYPE_TARGET_TYPE (type) = target_type;
14715
0114d602 14716 if (name && strcmp (name, "char") == 0)
876cecd0 14717 TYPE_NOSIGN (type) = 1;
0114d602 14718
f792889a 14719 return set_die_type (die, type, cu);
c906108c
SS
14720}
14721
80180f79
SA
14722/* Parse dwarf attribute if it's a block, reference or constant and put the
14723 resulting value of the attribute into struct bound_prop.
14724 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14725
14726static int
14727attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14728 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14729{
14730 struct dwarf2_property_baton *baton;
14731 struct obstack *obstack = &cu->objfile->objfile_obstack;
14732
14733 if (attr == NULL || prop == NULL)
14734 return 0;
14735
14736 if (attr_form_is_block (attr))
14737 {
14738 baton = obstack_alloc (obstack, sizeof (*baton));
14739 baton->referenced_type = NULL;
14740 baton->locexpr.per_cu = cu->per_cu;
14741 baton->locexpr.size = DW_BLOCK (attr)->size;
14742 baton->locexpr.data = DW_BLOCK (attr)->data;
14743 prop->data.baton = baton;
14744 prop->kind = PROP_LOCEXPR;
14745 gdb_assert (prop->data.baton != NULL);
14746 }
14747 else if (attr_form_is_ref (attr))
14748 {
14749 struct dwarf2_cu *target_cu = cu;
14750 struct die_info *target_die;
14751 struct attribute *target_attr;
14752
14753 target_die = follow_die_ref (die, attr, &target_cu);
14754 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14755 if (target_attr == NULL)
14756 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14757 target_cu);
80180f79
SA
14758 if (target_attr == NULL)
14759 return 0;
14760
df25ebbd 14761 switch (target_attr->name)
80180f79 14762 {
df25ebbd
JB
14763 case DW_AT_location:
14764 if (attr_form_is_section_offset (target_attr))
14765 {
14766 baton = obstack_alloc (obstack, sizeof (*baton));
14767 baton->referenced_type = die_type (target_die, target_cu);
14768 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14769 prop->data.baton = baton;
14770 prop->kind = PROP_LOCLIST;
14771 gdb_assert (prop->data.baton != NULL);
14772 }
14773 else if (attr_form_is_block (target_attr))
14774 {
14775 baton = obstack_alloc (obstack, sizeof (*baton));
14776 baton->referenced_type = die_type (target_die, target_cu);
14777 baton->locexpr.per_cu = cu->per_cu;
14778 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14779 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14780 prop->data.baton = baton;
14781 prop->kind = PROP_LOCEXPR;
14782 gdb_assert (prop->data.baton != NULL);
14783 }
14784 else
14785 {
14786 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14787 "dynamic property");
14788 return 0;
14789 }
14790 break;
14791 case DW_AT_data_member_location:
14792 {
14793 LONGEST offset;
14794
14795 if (!handle_data_member_location (target_die, target_cu,
14796 &offset))
14797 return 0;
14798
14799 baton = obstack_alloc (obstack, sizeof (*baton));
14800 baton->referenced_type = get_die_type (target_die->parent,
14801 target_cu);
14802 baton->offset_info.offset = offset;
14803 baton->offset_info.type = die_type (target_die, target_cu);
14804 prop->data.baton = baton;
14805 prop->kind = PROP_ADDR_OFFSET;
14806 break;
14807 }
80180f79
SA
14808 }
14809 }
14810 else if (attr_form_is_constant (attr))
14811 {
14812 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14813 prop->kind = PROP_CONST;
14814 }
14815 else
14816 {
14817 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14818 dwarf2_name (die, cu));
14819 return 0;
14820 }
14821
14822 return 1;
14823}
14824
a02abb62
JB
14825/* Read the given DW_AT_subrange DIE. */
14826
f792889a 14827static struct type *
a02abb62
JB
14828read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14829{
4c9ad8c2 14830 struct type *base_type, *orig_base_type;
a02abb62
JB
14831 struct type *range_type;
14832 struct attribute *attr;
729efb13 14833 struct dynamic_prop low, high;
4fae6e18 14834 int low_default_is_valid;
c451ebe5 14835 int high_bound_is_count = 0;
15d034d0 14836 const char *name;
43bbcdc2 14837 LONGEST negative_mask;
e77813c8 14838
4c9ad8c2
TT
14839 orig_base_type = die_type (die, cu);
14840 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14841 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14842 creating the range type, but we use the result of check_typedef
14843 when examining properties of the type. */
14844 base_type = check_typedef (orig_base_type);
a02abb62 14845
7e314c57
JK
14846 /* The die_type call above may have already set the type for this DIE. */
14847 range_type = get_die_type (die, cu);
14848 if (range_type)
14849 return range_type;
14850
729efb13
SA
14851 low.kind = PROP_CONST;
14852 high.kind = PROP_CONST;
14853 high.data.const_val = 0;
14854
4fae6e18
JK
14855 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14856 omitting DW_AT_lower_bound. */
14857 switch (cu->language)
6e70227d 14858 {
4fae6e18
JK
14859 case language_c:
14860 case language_cplus:
729efb13 14861 low.data.const_val = 0;
4fae6e18
JK
14862 low_default_is_valid = 1;
14863 break;
14864 case language_fortran:
729efb13 14865 low.data.const_val = 1;
4fae6e18
JK
14866 low_default_is_valid = 1;
14867 break;
14868 case language_d:
14869 case language_java:
14870 case language_objc:
729efb13 14871 low.data.const_val = 0;
4fae6e18
JK
14872 low_default_is_valid = (cu->header.version >= 4);
14873 break;
14874 case language_ada:
14875 case language_m2:
14876 case language_pascal:
729efb13 14877 low.data.const_val = 1;
4fae6e18
JK
14878 low_default_is_valid = (cu->header.version >= 4);
14879 break;
14880 default:
729efb13 14881 low.data.const_val = 0;
4fae6e18
JK
14882 low_default_is_valid = 0;
14883 break;
a02abb62
JB
14884 }
14885
e142c38c 14886 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14887 if (attr)
11c1ba78 14888 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14889 else if (!low_default_is_valid)
14890 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14891 "- DIE at 0x%x [in module %s]"),
4262abfb 14892 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14893
e142c38c 14894 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14895 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14896 {
14897 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14898 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14899 {
c451ebe5
SA
14900 /* If bounds are constant do the final calculation here. */
14901 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14902 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14903 else
14904 high_bound_is_count = 1;
c2ff108b 14905 }
e77813c8
PM
14906 }
14907
14908 /* Dwarf-2 specifications explicitly allows to create subrange types
14909 without specifying a base type.
14910 In that case, the base type must be set to the type of
14911 the lower bound, upper bound or count, in that order, if any of these
14912 three attributes references an object that has a type.
14913 If no base type is found, the Dwarf-2 specifications say that
14914 a signed integer type of size equal to the size of an address should
14915 be used.
14916 For the following C code: `extern char gdb_int [];'
14917 GCC produces an empty range DIE.
14918 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14919 high bound or count are not yet handled by this code. */
e77813c8
PM
14920 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14921 {
14922 struct objfile *objfile = cu->objfile;
14923 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14924 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14925 struct type *int_type = objfile_type (objfile)->builtin_int;
14926
14927 /* Test "int", "long int", and "long long int" objfile types,
14928 and select the first one having a size above or equal to the
14929 architecture address size. */
14930 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14931 base_type = int_type;
14932 else
14933 {
14934 int_type = objfile_type (objfile)->builtin_long;
14935 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14936 base_type = int_type;
14937 else
14938 {
14939 int_type = objfile_type (objfile)->builtin_long_long;
14940 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14941 base_type = int_type;
14942 }
14943 }
14944 }
a02abb62 14945
dbb9c2b1
JB
14946 /* Normally, the DWARF producers are expected to use a signed
14947 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14948 But this is unfortunately not always the case, as witnessed
14949 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14950 is used instead. To work around that ambiguity, we treat
14951 the bounds as signed, and thus sign-extend their values, when
14952 the base type is signed. */
6e70227d 14953 negative_mask =
43bbcdc2 14954 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14955 if (low.kind == PROP_CONST
14956 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14957 low.data.const_val |= negative_mask;
14958 if (high.kind == PROP_CONST
14959 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14960 high.data.const_val |= negative_mask;
43bbcdc2 14961
729efb13 14962 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14963
c451ebe5
SA
14964 if (high_bound_is_count)
14965 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14966
c2ff108b
JK
14967 /* Ada expects an empty array on no boundary attributes. */
14968 if (attr == NULL && cu->language != language_ada)
729efb13 14969 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14970
39cbfefa
DJ
14971 name = dwarf2_name (die, cu);
14972 if (name)
14973 TYPE_NAME (range_type) = name;
6e70227d 14974
e142c38c 14975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14976 if (attr)
14977 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14978
7e314c57
JK
14979 set_die_type (die, range_type, cu);
14980
14981 /* set_die_type should be already done. */
b4ba55a1
JB
14982 set_descriptive_type (range_type, die, cu);
14983
7e314c57 14984 return range_type;
a02abb62 14985}
6e70227d 14986
f792889a 14987static struct type *
81a17f79
JB
14988read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14989{
14990 struct type *type;
81a17f79 14991
81a17f79
JB
14992 /* For now, we only support the C meaning of an unspecified type: void. */
14993
0114d602
DJ
14994 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14995 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14996
f792889a 14997 return set_die_type (die, type, cu);
81a17f79 14998}
a02abb62 14999
639d11d3
DC
15000/* Read a single die and all its descendents. Set the die's sibling
15001 field to NULL; set other fields in the die correctly, and set all
15002 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15003 location of the info_ptr after reading all of those dies. PARENT
15004 is the parent of the die in question. */
15005
15006static struct die_info *
dee91e82 15007read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15008 const gdb_byte *info_ptr,
15009 const gdb_byte **new_info_ptr,
dee91e82 15010 struct die_info *parent)
639d11d3
DC
15011{
15012 struct die_info *die;
d521ce57 15013 const gdb_byte *cur_ptr;
639d11d3
DC
15014 int has_children;
15015
bf6af496 15016 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15017 if (die == NULL)
15018 {
15019 *new_info_ptr = cur_ptr;
15020 return NULL;
15021 }
93311388 15022 store_in_ref_table (die, reader->cu);
639d11d3
DC
15023
15024 if (has_children)
bf6af496 15025 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15026 else
15027 {
15028 die->child = NULL;
15029 *new_info_ptr = cur_ptr;
15030 }
15031
15032 die->sibling = NULL;
15033 die->parent = parent;
15034 return die;
15035}
15036
15037/* Read a die, all of its descendents, and all of its siblings; set
15038 all of the fields of all of the dies correctly. Arguments are as
15039 in read_die_and_children. */
15040
15041static struct die_info *
bf6af496 15042read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15043 const gdb_byte *info_ptr,
15044 const gdb_byte **new_info_ptr,
bf6af496 15045 struct die_info *parent)
639d11d3
DC
15046{
15047 struct die_info *first_die, *last_sibling;
d521ce57 15048 const gdb_byte *cur_ptr;
639d11d3 15049
c906108c 15050 cur_ptr = info_ptr;
639d11d3
DC
15051 first_die = last_sibling = NULL;
15052
15053 while (1)
c906108c 15054 {
639d11d3 15055 struct die_info *die
dee91e82 15056 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15057
1d325ec1 15058 if (die == NULL)
c906108c 15059 {
639d11d3
DC
15060 *new_info_ptr = cur_ptr;
15061 return first_die;
c906108c 15062 }
1d325ec1
DJ
15063
15064 if (!first_die)
15065 first_die = die;
c906108c 15066 else
1d325ec1
DJ
15067 last_sibling->sibling = die;
15068
15069 last_sibling = die;
c906108c 15070 }
c906108c
SS
15071}
15072
bf6af496
DE
15073/* Read a die, all of its descendents, and all of its siblings; set
15074 all of the fields of all of the dies correctly. Arguments are as
15075 in read_die_and_children.
15076 This the main entry point for reading a DIE and all its children. */
15077
15078static struct die_info *
15079read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15080 const gdb_byte *info_ptr,
15081 const gdb_byte **new_info_ptr,
bf6af496
DE
15082 struct die_info *parent)
15083{
15084 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15085 new_info_ptr, parent);
15086
15087 if (dwarf2_die_debug)
15088 {
15089 fprintf_unfiltered (gdb_stdlog,
15090 "Read die from %s@0x%x of %s:\n",
a32a8923 15091 get_section_name (reader->die_section),
bf6af496
DE
15092 (unsigned) (info_ptr - reader->die_section->buffer),
15093 bfd_get_filename (reader->abfd));
15094 dump_die (die, dwarf2_die_debug);
15095 }
15096
15097 return die;
15098}
15099
3019eac3
DE
15100/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15101 attributes.
15102 The caller is responsible for filling in the extra attributes
15103 and updating (*DIEP)->num_attrs.
15104 Set DIEP to point to a newly allocated die with its information,
15105 except for its child, sibling, and parent fields.
15106 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15107
d521ce57 15108static const gdb_byte *
3019eac3 15109read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15110 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15111 int *has_children, int num_extra_attrs)
93311388 15112{
b64f50a1
JK
15113 unsigned int abbrev_number, bytes_read, i;
15114 sect_offset offset;
93311388
DE
15115 struct abbrev_info *abbrev;
15116 struct die_info *die;
15117 struct dwarf2_cu *cu = reader->cu;
15118 bfd *abfd = reader->abfd;
15119
b64f50a1 15120 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15121 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15122 info_ptr += bytes_read;
15123 if (!abbrev_number)
15124 {
15125 *diep = NULL;
15126 *has_children = 0;
15127 return info_ptr;
15128 }
15129
433df2d4 15130 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15131 if (!abbrev)
348e048f
DE
15132 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15133 abbrev_number,
15134 bfd_get_filename (abfd));
15135
3019eac3 15136 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15137 die->offset = offset;
15138 die->tag = abbrev->tag;
15139 die->abbrev = abbrev_number;
15140
3019eac3
DE
15141 /* Make the result usable.
15142 The caller needs to update num_attrs after adding the extra
15143 attributes. */
93311388
DE
15144 die->num_attrs = abbrev->num_attrs;
15145
15146 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15147 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15148 info_ptr);
93311388
DE
15149
15150 *diep = die;
15151 *has_children = abbrev->has_children;
15152 return info_ptr;
15153}
15154
3019eac3
DE
15155/* Read a die and all its attributes.
15156 Set DIEP to point to a newly allocated die with its information,
15157 except for its child, sibling, and parent fields.
15158 Set HAS_CHILDREN to tell whether the die has children or not. */
15159
d521ce57 15160static const gdb_byte *
3019eac3 15161read_full_die (const struct die_reader_specs *reader,
d521ce57 15162 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15163 int *has_children)
15164{
d521ce57 15165 const gdb_byte *result;
bf6af496
DE
15166
15167 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15168
15169 if (dwarf2_die_debug)
15170 {
15171 fprintf_unfiltered (gdb_stdlog,
15172 "Read die from %s@0x%x of %s:\n",
a32a8923 15173 get_section_name (reader->die_section),
bf6af496
DE
15174 (unsigned) (info_ptr - reader->die_section->buffer),
15175 bfd_get_filename (reader->abfd));
15176 dump_die (*diep, dwarf2_die_debug);
15177 }
15178
15179 return result;
3019eac3 15180}
433df2d4
DE
15181\f
15182/* Abbreviation tables.
3019eac3 15183
433df2d4 15184 In DWARF version 2, the description of the debugging information is
c906108c
SS
15185 stored in a separate .debug_abbrev section. Before we read any
15186 dies from a section we read in all abbreviations and install them
433df2d4
DE
15187 in a hash table. */
15188
15189/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15190
15191static struct abbrev_info *
15192abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15193{
15194 struct abbrev_info *abbrev;
15195
15196 abbrev = (struct abbrev_info *)
15197 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15198 memset (abbrev, 0, sizeof (struct abbrev_info));
15199 return abbrev;
15200}
15201
15202/* Add an abbreviation to the table. */
c906108c
SS
15203
15204static void
433df2d4
DE
15205abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15206 unsigned int abbrev_number,
15207 struct abbrev_info *abbrev)
15208{
15209 unsigned int hash_number;
15210
15211 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15212 abbrev->next = abbrev_table->abbrevs[hash_number];
15213 abbrev_table->abbrevs[hash_number] = abbrev;
15214}
dee91e82 15215
433df2d4
DE
15216/* Look up an abbrev in the table.
15217 Returns NULL if the abbrev is not found. */
15218
15219static struct abbrev_info *
15220abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15221 unsigned int abbrev_number)
c906108c 15222{
433df2d4
DE
15223 unsigned int hash_number;
15224 struct abbrev_info *abbrev;
15225
15226 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15227 abbrev = abbrev_table->abbrevs[hash_number];
15228
15229 while (abbrev)
15230 {
15231 if (abbrev->number == abbrev_number)
15232 return abbrev;
15233 abbrev = abbrev->next;
15234 }
15235 return NULL;
15236}
15237
15238/* Read in an abbrev table. */
15239
15240static struct abbrev_table *
15241abbrev_table_read_table (struct dwarf2_section_info *section,
15242 sect_offset offset)
15243{
15244 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15245 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15246 struct abbrev_table *abbrev_table;
d521ce57 15247 const gdb_byte *abbrev_ptr;
c906108c
SS
15248 struct abbrev_info *cur_abbrev;
15249 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15250 unsigned int abbrev_form;
f3dd6933
DJ
15251 struct attr_abbrev *cur_attrs;
15252 unsigned int allocated_attrs;
c906108c 15253
70ba0933 15254 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15255 abbrev_table->offset = offset;
433df2d4
DE
15256 obstack_init (&abbrev_table->abbrev_obstack);
15257 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15258 (ABBREV_HASH_SIZE
15259 * sizeof (struct abbrev_info *)));
15260 memset (abbrev_table->abbrevs, 0,
15261 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15262
433df2d4
DE
15263 dwarf2_read_section (objfile, section);
15264 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15265 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15266 abbrev_ptr += bytes_read;
15267
f3dd6933
DJ
15268 allocated_attrs = ATTR_ALLOC_CHUNK;
15269 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15270
0963b4bd 15271 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15272 while (abbrev_number)
15273 {
433df2d4 15274 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15275
15276 /* read in abbrev header */
15277 cur_abbrev->number = abbrev_number;
15278 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15279 abbrev_ptr += bytes_read;
15280 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15281 abbrev_ptr += 1;
15282
15283 /* now read in declarations */
15284 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15285 abbrev_ptr += bytes_read;
15286 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15287 abbrev_ptr += bytes_read;
15288 while (abbrev_name)
15289 {
f3dd6933 15290 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15291 {
f3dd6933
DJ
15292 allocated_attrs += ATTR_ALLOC_CHUNK;
15293 cur_attrs
15294 = xrealloc (cur_attrs, (allocated_attrs
15295 * sizeof (struct attr_abbrev)));
c906108c 15296 }
ae038cb0 15297
f3dd6933
DJ
15298 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15299 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15300 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15301 abbrev_ptr += bytes_read;
15302 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15303 abbrev_ptr += bytes_read;
15304 }
15305
433df2d4 15306 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15307 (cur_abbrev->num_attrs
15308 * sizeof (struct attr_abbrev)));
15309 memcpy (cur_abbrev->attrs, cur_attrs,
15310 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15311
433df2d4 15312 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15313
15314 /* Get next abbreviation.
15315 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15316 always properly terminated with an abbrev number of 0.
15317 Exit loop if we encounter an abbreviation which we have
15318 already read (which means we are about to read the abbreviations
15319 for the next compile unit) or if the end of the abbreviation
15320 table is reached. */
433df2d4 15321 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15322 break;
15323 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15324 abbrev_ptr += bytes_read;
433df2d4 15325 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15326 break;
15327 }
f3dd6933
DJ
15328
15329 xfree (cur_attrs);
433df2d4 15330 return abbrev_table;
c906108c
SS
15331}
15332
433df2d4 15333/* Free the resources held by ABBREV_TABLE. */
c906108c 15334
c906108c 15335static void
433df2d4 15336abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15337{
433df2d4
DE
15338 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15339 xfree (abbrev_table);
c906108c
SS
15340}
15341
f4dc4d17
DE
15342/* Same as abbrev_table_free but as a cleanup.
15343 We pass in a pointer to the pointer to the table so that we can
15344 set the pointer to NULL when we're done. It also simplifies
73051182 15345 build_type_psymtabs_1. */
f4dc4d17
DE
15346
15347static void
15348abbrev_table_free_cleanup (void *table_ptr)
15349{
15350 struct abbrev_table **abbrev_table_ptr = table_ptr;
15351
15352 if (*abbrev_table_ptr != NULL)
15353 abbrev_table_free (*abbrev_table_ptr);
15354 *abbrev_table_ptr = NULL;
15355}
15356
433df2d4
DE
15357/* Read the abbrev table for CU from ABBREV_SECTION. */
15358
15359static void
15360dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15361 struct dwarf2_section_info *abbrev_section)
c906108c 15362{
433df2d4
DE
15363 cu->abbrev_table =
15364 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15365}
c906108c 15366
433df2d4 15367/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15368
433df2d4
DE
15369static void
15370dwarf2_free_abbrev_table (void *ptr_to_cu)
15371{
15372 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15373
a2ce51a0
DE
15374 if (cu->abbrev_table != NULL)
15375 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15376 /* Set this to NULL so that we SEGV if we try to read it later,
15377 and also because free_comp_unit verifies this is NULL. */
15378 cu->abbrev_table = NULL;
15379}
15380\f
72bf9492
DJ
15381/* Returns nonzero if TAG represents a type that we might generate a partial
15382 symbol for. */
15383
15384static int
15385is_type_tag_for_partial (int tag)
15386{
15387 switch (tag)
15388 {
15389#if 0
15390 /* Some types that would be reasonable to generate partial symbols for,
15391 that we don't at present. */
15392 case DW_TAG_array_type:
15393 case DW_TAG_file_type:
15394 case DW_TAG_ptr_to_member_type:
15395 case DW_TAG_set_type:
15396 case DW_TAG_string_type:
15397 case DW_TAG_subroutine_type:
15398#endif
15399 case DW_TAG_base_type:
15400 case DW_TAG_class_type:
680b30c7 15401 case DW_TAG_interface_type:
72bf9492
DJ
15402 case DW_TAG_enumeration_type:
15403 case DW_TAG_structure_type:
15404 case DW_TAG_subrange_type:
15405 case DW_TAG_typedef:
15406 case DW_TAG_union_type:
15407 return 1;
15408 default:
15409 return 0;
15410 }
15411}
15412
15413/* Load all DIEs that are interesting for partial symbols into memory. */
15414
15415static struct partial_die_info *
dee91e82 15416load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15417 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15418{
dee91e82 15419 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15420 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15421 struct partial_die_info *part_die;
15422 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15423 struct abbrev_info *abbrev;
15424 unsigned int bytes_read;
5afb4e99 15425 unsigned int load_all = 0;
72bf9492
DJ
15426 int nesting_level = 1;
15427
15428 parent_die = NULL;
15429 last_die = NULL;
15430
7adf1e79
DE
15431 gdb_assert (cu->per_cu != NULL);
15432 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15433 load_all = 1;
15434
72bf9492
DJ
15435 cu->partial_dies
15436 = htab_create_alloc_ex (cu->header.length / 12,
15437 partial_die_hash,
15438 partial_die_eq,
15439 NULL,
15440 &cu->comp_unit_obstack,
15441 hashtab_obstack_allocate,
15442 dummy_obstack_deallocate);
15443
15444 part_die = obstack_alloc (&cu->comp_unit_obstack,
15445 sizeof (struct partial_die_info));
15446
15447 while (1)
15448 {
15449 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15450
15451 /* A NULL abbrev means the end of a series of children. */
15452 if (abbrev == NULL)
15453 {
15454 if (--nesting_level == 0)
15455 {
15456 /* PART_DIE was probably the last thing allocated on the
15457 comp_unit_obstack, so we could call obstack_free
15458 here. We don't do that because the waste is small,
15459 and will be cleaned up when we're done with this
15460 compilation unit. This way, we're also more robust
15461 against other users of the comp_unit_obstack. */
15462 return first_die;
15463 }
15464 info_ptr += bytes_read;
15465 last_die = parent_die;
15466 parent_die = parent_die->die_parent;
15467 continue;
15468 }
15469
98bfdba5
PA
15470 /* Check for template arguments. We never save these; if
15471 they're seen, we just mark the parent, and go on our way. */
15472 if (parent_die != NULL
15473 && cu->language == language_cplus
15474 && (abbrev->tag == DW_TAG_template_type_param
15475 || abbrev->tag == DW_TAG_template_value_param))
15476 {
15477 parent_die->has_template_arguments = 1;
15478
15479 if (!load_all)
15480 {
15481 /* We don't need a partial DIE for the template argument. */
dee91e82 15482 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15483 continue;
15484 }
15485 }
15486
0d99eb77 15487 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15488 Skip their other children. */
15489 if (!load_all
15490 && cu->language == language_cplus
15491 && parent_die != NULL
15492 && parent_die->tag == DW_TAG_subprogram)
15493 {
dee91e82 15494 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15495 continue;
15496 }
15497
5afb4e99
DJ
15498 /* Check whether this DIE is interesting enough to save. Normally
15499 we would not be interested in members here, but there may be
15500 later variables referencing them via DW_AT_specification (for
15501 static members). */
15502 if (!load_all
15503 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15504 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15505 && abbrev->tag != DW_TAG_enumerator
15506 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15507 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15508 && abbrev->tag != DW_TAG_variable
5afb4e99 15509 && abbrev->tag != DW_TAG_namespace
f55ee35c 15510 && abbrev->tag != DW_TAG_module
95554aad 15511 && abbrev->tag != DW_TAG_member
74921315
KS
15512 && abbrev->tag != DW_TAG_imported_unit
15513 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15514 {
15515 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15516 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15517 continue;
15518 }
15519
dee91e82
DE
15520 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15521 info_ptr);
72bf9492
DJ
15522
15523 /* This two-pass algorithm for processing partial symbols has a
15524 high cost in cache pressure. Thus, handle some simple cases
15525 here which cover the majority of C partial symbols. DIEs
15526 which neither have specification tags in them, nor could have
15527 specification tags elsewhere pointing at them, can simply be
15528 processed and discarded.
15529
15530 This segment is also optional; scan_partial_symbols and
15531 add_partial_symbol will handle these DIEs if we chain
15532 them in normally. When compilers which do not emit large
15533 quantities of duplicate debug information are more common,
15534 this code can probably be removed. */
15535
15536 /* Any complete simple types at the top level (pretty much all
15537 of them, for a language without namespaces), can be processed
15538 directly. */
15539 if (parent_die == NULL
15540 && part_die->has_specification == 0
15541 && part_die->is_declaration == 0
d8228535 15542 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15543 || part_die->tag == DW_TAG_base_type
15544 || part_die->tag == DW_TAG_subrange_type))
15545 {
15546 if (building_psymtab && part_die->name != NULL)
04a679b8 15547 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15548 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15549 &objfile->static_psymbols,
15550 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15551 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15552 continue;
15553 }
15554
d8228535
JK
15555 /* The exception for DW_TAG_typedef with has_children above is
15556 a workaround of GCC PR debug/47510. In the case of this complaint
15557 type_name_no_tag_or_error will error on such types later.
15558
15559 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15560 it could not find the child DIEs referenced later, this is checked
15561 above. In correct DWARF DW_TAG_typedef should have no children. */
15562
15563 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15564 complaint (&symfile_complaints,
15565 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15566 "- DIE at 0x%x [in module %s]"),
4262abfb 15567 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15568
72bf9492
DJ
15569 /* If we're at the second level, and we're an enumerator, and
15570 our parent has no specification (meaning possibly lives in a
15571 namespace elsewhere), then we can add the partial symbol now
15572 instead of queueing it. */
15573 if (part_die->tag == DW_TAG_enumerator
15574 && parent_die != NULL
15575 && parent_die->die_parent == NULL
15576 && parent_die->tag == DW_TAG_enumeration_type
15577 && parent_die->has_specification == 0)
15578 {
15579 if (part_die->name == NULL)
3e43a32a
MS
15580 complaint (&symfile_complaints,
15581 _("malformed enumerator DIE ignored"));
72bf9492 15582 else if (building_psymtab)
04a679b8 15583 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15584 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15585 (cu->language == language_cplus
15586 || cu->language == language_java)
bb5ed363
DE
15587 ? &objfile->global_psymbols
15588 : &objfile->static_psymbols,
15589 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15590
dee91e82 15591 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15592 continue;
15593 }
15594
15595 /* We'll save this DIE so link it in. */
15596 part_die->die_parent = parent_die;
15597 part_die->die_sibling = NULL;
15598 part_die->die_child = NULL;
15599
15600 if (last_die && last_die == parent_die)
15601 last_die->die_child = part_die;
15602 else if (last_die)
15603 last_die->die_sibling = part_die;
15604
15605 last_die = part_die;
15606
15607 if (first_die == NULL)
15608 first_die = part_die;
15609
15610 /* Maybe add the DIE to the hash table. Not all DIEs that we
15611 find interesting need to be in the hash table, because we
15612 also have the parent/sibling/child chains; only those that we
15613 might refer to by offset later during partial symbol reading.
15614
15615 For now this means things that might have be the target of a
15616 DW_AT_specification, DW_AT_abstract_origin, or
15617 DW_AT_extension. DW_AT_extension will refer only to
15618 namespaces; DW_AT_abstract_origin refers to functions (and
15619 many things under the function DIE, but we do not recurse
15620 into function DIEs during partial symbol reading) and
15621 possibly variables as well; DW_AT_specification refers to
15622 declarations. Declarations ought to have the DW_AT_declaration
15623 flag. It happens that GCC forgets to put it in sometimes, but
15624 only for functions, not for types.
15625
15626 Adding more things than necessary to the hash table is harmless
15627 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15628 wasted time in find_partial_die, when we reread the compilation
15629 unit with load_all_dies set. */
72bf9492 15630
5afb4e99 15631 if (load_all
72929c62 15632 || abbrev->tag == DW_TAG_constant
5afb4e99 15633 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15634 || abbrev->tag == DW_TAG_variable
15635 || abbrev->tag == DW_TAG_namespace
15636 || part_die->is_declaration)
15637 {
15638 void **slot;
15639
15640 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15641 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15642 *slot = part_die;
15643 }
15644
15645 part_die = obstack_alloc (&cu->comp_unit_obstack,
15646 sizeof (struct partial_die_info));
15647
15648 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15649 we have no reason to follow the children of structures; for other
98bfdba5
PA
15650 languages we have to, so that we can get at method physnames
15651 to infer fully qualified class names, for DW_AT_specification,
15652 and for C++ template arguments. For C++, we also look one level
15653 inside functions to find template arguments (if the name of the
15654 function does not already contain the template arguments).
bc30ff58
JB
15655
15656 For Ada, we need to scan the children of subprograms and lexical
15657 blocks as well because Ada allows the definition of nested
15658 entities that could be interesting for the debugger, such as
15659 nested subprograms for instance. */
72bf9492 15660 if (last_die->has_children
5afb4e99
DJ
15661 && (load_all
15662 || last_die->tag == DW_TAG_namespace
f55ee35c 15663 || last_die->tag == DW_TAG_module
72bf9492 15664 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15665 || (cu->language == language_cplus
15666 && last_die->tag == DW_TAG_subprogram
15667 && (last_die->name == NULL
15668 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15669 || (cu->language != language_c
15670 && (last_die->tag == DW_TAG_class_type
680b30c7 15671 || last_die->tag == DW_TAG_interface_type
72bf9492 15672 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15673 || last_die->tag == DW_TAG_union_type))
15674 || (cu->language == language_ada
15675 && (last_die->tag == DW_TAG_subprogram
15676 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15677 {
15678 nesting_level++;
15679 parent_die = last_die;
15680 continue;
15681 }
15682
15683 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15684 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15685
15686 /* Back to the top, do it again. */
15687 }
15688}
15689
c906108c
SS
15690/* Read a minimal amount of information into the minimal die structure. */
15691
d521ce57 15692static const gdb_byte *
dee91e82
DE
15693read_partial_die (const struct die_reader_specs *reader,
15694 struct partial_die_info *part_die,
15695 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15696 const gdb_byte *info_ptr)
c906108c 15697{
dee91e82 15698 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15699 struct objfile *objfile = cu->objfile;
d521ce57 15700 const gdb_byte *buffer = reader->buffer;
fa238c03 15701 unsigned int i;
c906108c 15702 struct attribute attr;
c5aa993b 15703 int has_low_pc_attr = 0;
c906108c 15704 int has_high_pc_attr = 0;
91da1414 15705 int high_pc_relative = 0;
c906108c 15706
72bf9492 15707 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15708
b64f50a1 15709 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15710
15711 info_ptr += abbrev_len;
15712
15713 if (abbrev == NULL)
15714 return info_ptr;
15715
c906108c
SS
15716 part_die->tag = abbrev->tag;
15717 part_die->has_children = abbrev->has_children;
c906108c
SS
15718
15719 for (i = 0; i < abbrev->num_attrs; ++i)
15720 {
dee91e82 15721 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15722
15723 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15724 partial symbol table. */
c906108c
SS
15725 switch (attr.name)
15726 {
15727 case DW_AT_name:
71c25dea
TT
15728 switch (part_die->tag)
15729 {
15730 case DW_TAG_compile_unit:
95554aad 15731 case DW_TAG_partial_unit:
348e048f 15732 case DW_TAG_type_unit:
71c25dea
TT
15733 /* Compilation units have a DW_AT_name that is a filename, not
15734 a source language identifier. */
15735 case DW_TAG_enumeration_type:
15736 case DW_TAG_enumerator:
15737 /* These tags always have simple identifiers already; no need
15738 to canonicalize them. */
15739 part_die->name = DW_STRING (&attr);
15740 break;
15741 default:
15742 part_die->name
15743 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15744 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15745 break;
15746 }
c906108c 15747 break;
31ef98ae 15748 case DW_AT_linkage_name:
c906108c 15749 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15750 /* Note that both forms of linkage name might appear. We
15751 assume they will be the same, and we only store the last
15752 one we see. */
94af9270
KS
15753 if (cu->language == language_ada)
15754 part_die->name = DW_STRING (&attr);
abc72ce4 15755 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15756 break;
15757 case DW_AT_low_pc:
15758 has_low_pc_attr = 1;
31aa7e4e 15759 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15760 break;
15761 case DW_AT_high_pc:
15762 has_high_pc_attr = 1;
31aa7e4e
JB
15763 part_die->highpc = attr_value_as_address (&attr);
15764 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15765 high_pc_relative = 1;
c906108c
SS
15766 break;
15767 case DW_AT_location:
0963b4bd 15768 /* Support the .debug_loc offsets. */
8e19ed76
PS
15769 if (attr_form_is_block (&attr))
15770 {
95554aad 15771 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15772 }
3690dd37 15773 else if (attr_form_is_section_offset (&attr))
8e19ed76 15774 {
4d3c2250 15775 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15776 }
15777 else
15778 {
4d3c2250
KB
15779 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15780 "partial symbol information");
8e19ed76 15781 }
c906108c 15782 break;
c906108c
SS
15783 case DW_AT_external:
15784 part_die->is_external = DW_UNSND (&attr);
15785 break;
15786 case DW_AT_declaration:
15787 part_die->is_declaration = DW_UNSND (&attr);
15788 break;
15789 case DW_AT_type:
15790 part_die->has_type = 1;
15791 break;
15792 case DW_AT_abstract_origin:
15793 case DW_AT_specification:
72bf9492
DJ
15794 case DW_AT_extension:
15795 part_die->has_specification = 1;
c764a876 15796 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15797 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15798 || cu->per_cu->is_dwz);
c906108c
SS
15799 break;
15800 case DW_AT_sibling:
15801 /* Ignore absolute siblings, they might point outside of
15802 the current compile unit. */
15803 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15804 complaint (&symfile_complaints,
15805 _("ignoring absolute DW_AT_sibling"));
c906108c 15806 else
b9502d3f
WN
15807 {
15808 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15809 const gdb_byte *sibling_ptr = buffer + off;
15810
15811 if (sibling_ptr < info_ptr)
15812 complaint (&symfile_complaints,
15813 _("DW_AT_sibling points backwards"));
22869d73
KS
15814 else if (sibling_ptr > reader->buffer_end)
15815 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15816 else
15817 part_die->sibling = sibling_ptr;
15818 }
c906108c 15819 break;
fa4028e9
JB
15820 case DW_AT_byte_size:
15821 part_die->has_byte_size = 1;
15822 break;
68511cec
CES
15823 case DW_AT_calling_convention:
15824 /* DWARF doesn't provide a way to identify a program's source-level
15825 entry point. DW_AT_calling_convention attributes are only meant
15826 to describe functions' calling conventions.
15827
15828 However, because it's a necessary piece of information in
15829 Fortran, and because DW_CC_program is the only piece of debugging
15830 information whose definition refers to a 'main program' at all,
15831 several compilers have begun marking Fortran main programs with
15832 DW_CC_program --- even when those functions use the standard
15833 calling conventions.
15834
15835 So until DWARF specifies a way to provide this information and
15836 compilers pick up the new representation, we'll support this
15837 practice. */
15838 if (DW_UNSND (&attr) == DW_CC_program
15839 && cu->language == language_fortran)
3d548a53 15840 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15841 break;
481860b3
GB
15842 case DW_AT_inline:
15843 if (DW_UNSND (&attr) == DW_INL_inlined
15844 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15845 part_die->may_be_inlined = 1;
15846 break;
95554aad
TT
15847
15848 case DW_AT_import:
15849 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15850 {
15851 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15852 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15853 || cu->per_cu->is_dwz);
15854 }
95554aad
TT
15855 break;
15856
c906108c
SS
15857 default:
15858 break;
15859 }
15860 }
15861
91da1414
MW
15862 if (high_pc_relative)
15863 part_die->highpc += part_die->lowpc;
15864
9373cf26
JK
15865 if (has_low_pc_attr && has_high_pc_attr)
15866 {
15867 /* When using the GNU linker, .gnu.linkonce. sections are used to
15868 eliminate duplicate copies of functions and vtables and such.
15869 The linker will arbitrarily choose one and discard the others.
15870 The AT_*_pc values for such functions refer to local labels in
15871 these sections. If the section from that file was discarded, the
15872 labels are not in the output, so the relocs get a value of 0.
15873 If this is a discarded function, mark the pc bounds as invalid,
15874 so that GDB will ignore it. */
15875 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15876 {
bb5ed363 15877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15878
15879 complaint (&symfile_complaints,
15880 _("DW_AT_low_pc %s is zero "
15881 "for DIE at 0x%x [in module %s]"),
15882 paddress (gdbarch, part_die->lowpc),
4262abfb 15883 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15884 }
15885 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15886 else if (part_die->lowpc >= part_die->highpc)
15887 {
bb5ed363 15888 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15889
15890 complaint (&symfile_complaints,
15891 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15892 "for DIE at 0x%x [in module %s]"),
15893 paddress (gdbarch, part_die->lowpc),
15894 paddress (gdbarch, part_die->highpc),
4262abfb 15895 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15896 }
15897 else
15898 part_die->has_pc_info = 1;
15899 }
85cbf3d3 15900
c906108c
SS
15901 return info_ptr;
15902}
15903
72bf9492
DJ
15904/* Find a cached partial DIE at OFFSET in CU. */
15905
15906static struct partial_die_info *
b64f50a1 15907find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15908{
15909 struct partial_die_info *lookup_die = NULL;
15910 struct partial_die_info part_die;
15911
15912 part_die.offset = offset;
b64f50a1
JK
15913 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15914 offset.sect_off);
72bf9492 15915
72bf9492
DJ
15916 return lookup_die;
15917}
15918
348e048f
DE
15919/* Find a partial DIE at OFFSET, which may or may not be in CU,
15920 except in the case of .debug_types DIEs which do not reference
15921 outside their CU (they do however referencing other types via
55f1336d 15922 DW_FORM_ref_sig8). */
72bf9492
DJ
15923
15924static struct partial_die_info *
36586728 15925find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15926{
bb5ed363 15927 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15928 struct dwarf2_per_cu_data *per_cu = NULL;
15929 struct partial_die_info *pd = NULL;
72bf9492 15930
36586728
TT
15931 if (offset_in_dwz == cu->per_cu->is_dwz
15932 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15933 {
15934 pd = find_partial_die_in_comp_unit (offset, cu);
15935 if (pd != NULL)
15936 return pd;
0d99eb77
DE
15937 /* We missed recording what we needed.
15938 Load all dies and try again. */
15939 per_cu = cu->per_cu;
5afb4e99 15940 }
0d99eb77
DE
15941 else
15942 {
15943 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15944 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15945 {
15946 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15947 " external reference to offset 0x%lx [in module %s].\n"),
15948 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15949 bfd_get_filename (objfile->obfd));
15950 }
36586728
TT
15951 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15952 objfile);
72bf9492 15953
0d99eb77
DE
15954 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15955 load_partial_comp_unit (per_cu);
ae038cb0 15956
0d99eb77
DE
15957 per_cu->cu->last_used = 0;
15958 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15959 }
5afb4e99 15960
dee91e82
DE
15961 /* If we didn't find it, and not all dies have been loaded,
15962 load them all and try again. */
15963
5afb4e99
DJ
15964 if (pd == NULL && per_cu->load_all_dies == 0)
15965 {
5afb4e99 15966 per_cu->load_all_dies = 1;
fd820528
DE
15967
15968 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15969 THIS_CU->cu may already be in use. So we can't just free it and
15970 replace its DIEs with the ones we read in. Instead, we leave those
15971 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15972 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15973 set. */
dee91e82 15974 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15975
15976 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15977 }
15978
15979 if (pd == NULL)
15980 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15981 _("could not find partial DIE 0x%x "
15982 "in cache [from module %s]\n"),
b64f50a1 15983 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15984 return pd;
72bf9492
DJ
15985}
15986
abc72ce4
DE
15987/* See if we can figure out if the class lives in a namespace. We do
15988 this by looking for a member function; its demangled name will
15989 contain namespace info, if there is any. */
15990
15991static void
15992guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15993 struct dwarf2_cu *cu)
15994{
15995 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15996 what template types look like, because the demangler
15997 frequently doesn't give the same name as the debug info. We
15998 could fix this by only using the demangled name to get the
15999 prefix (but see comment in read_structure_type). */
16000
16001 struct partial_die_info *real_pdi;
16002 struct partial_die_info *child_pdi;
16003
16004 /* If this DIE (this DIE's specification, if any) has a parent, then
16005 we should not do this. We'll prepend the parent's fully qualified
16006 name when we create the partial symbol. */
16007
16008 real_pdi = struct_pdi;
16009 while (real_pdi->has_specification)
36586728
TT
16010 real_pdi = find_partial_die (real_pdi->spec_offset,
16011 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16012
16013 if (real_pdi->die_parent != NULL)
16014 return;
16015
16016 for (child_pdi = struct_pdi->die_child;
16017 child_pdi != NULL;
16018 child_pdi = child_pdi->die_sibling)
16019 {
16020 if (child_pdi->tag == DW_TAG_subprogram
16021 && child_pdi->linkage_name != NULL)
16022 {
16023 char *actual_class_name
16024 = language_class_name_from_physname (cu->language_defn,
16025 child_pdi->linkage_name);
16026 if (actual_class_name != NULL)
16027 {
16028 struct_pdi->name
34a68019 16029 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
16030 actual_class_name,
16031 strlen (actual_class_name));
abc72ce4
DE
16032 xfree (actual_class_name);
16033 }
16034 break;
16035 }
16036 }
16037}
16038
72bf9492
DJ
16039/* Adjust PART_DIE before generating a symbol for it. This function
16040 may set the is_external flag or change the DIE's name. */
16041
16042static void
16043fixup_partial_die (struct partial_die_info *part_die,
16044 struct dwarf2_cu *cu)
16045{
abc72ce4
DE
16046 /* Once we've fixed up a die, there's no point in doing so again.
16047 This also avoids a memory leak if we were to call
16048 guess_partial_die_structure_name multiple times. */
16049 if (part_die->fixup_called)
16050 return;
16051
72bf9492
DJ
16052 /* If we found a reference attribute and the DIE has no name, try
16053 to find a name in the referred to DIE. */
16054
16055 if (part_die->name == NULL && part_die->has_specification)
16056 {
16057 struct partial_die_info *spec_die;
72bf9492 16058
36586728
TT
16059 spec_die = find_partial_die (part_die->spec_offset,
16060 part_die->spec_is_dwz, cu);
72bf9492 16061
10b3939b 16062 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16063
16064 if (spec_die->name)
16065 {
16066 part_die->name = spec_die->name;
16067
16068 /* Copy DW_AT_external attribute if it is set. */
16069 if (spec_die->is_external)
16070 part_die->is_external = spec_die->is_external;
16071 }
16072 }
16073
16074 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16075
16076 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16077 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16078
abc72ce4
DE
16079 /* If there is no parent die to provide a namespace, and there are
16080 children, see if we can determine the namespace from their linkage
122d1940 16081 name. */
abc72ce4 16082 if (cu->language == language_cplus
8b70b953 16083 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16084 && part_die->die_parent == NULL
16085 && part_die->has_children
16086 && (part_die->tag == DW_TAG_class_type
16087 || part_die->tag == DW_TAG_structure_type
16088 || part_die->tag == DW_TAG_union_type))
16089 guess_partial_die_structure_name (part_die, cu);
16090
53832f31
TT
16091 /* GCC might emit a nameless struct or union that has a linkage
16092 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16093 if (part_die->name == NULL
96408a79
SA
16094 && (part_die->tag == DW_TAG_class_type
16095 || part_die->tag == DW_TAG_interface_type
16096 || part_die->tag == DW_TAG_structure_type
16097 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16098 && part_die->linkage_name != NULL)
16099 {
16100 char *demangled;
16101
8de20a37 16102 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16103 if (demangled)
16104 {
96408a79
SA
16105 const char *base;
16106
16107 /* Strip any leading namespaces/classes, keep only the base name.
16108 DW_AT_name for named DIEs does not contain the prefixes. */
16109 base = strrchr (demangled, ':');
16110 if (base && base > demangled && base[-1] == ':')
16111 base++;
16112 else
16113 base = demangled;
16114
34a68019
TT
16115 part_die->name
16116 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16117 base, strlen (base));
53832f31
TT
16118 xfree (demangled);
16119 }
16120 }
16121
abc72ce4 16122 part_die->fixup_called = 1;
72bf9492
DJ
16123}
16124
a8329558 16125/* Read an attribute value described by an attribute form. */
c906108c 16126
d521ce57 16127static const gdb_byte *
dee91e82
DE
16128read_attribute_value (const struct die_reader_specs *reader,
16129 struct attribute *attr, unsigned form,
d521ce57 16130 const gdb_byte *info_ptr)
c906108c 16131{
dee91e82 16132 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16133 struct objfile *objfile = cu->objfile;
16134 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16135 bfd *abfd = reader->abfd;
e7c27a73 16136 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16137 unsigned int bytes_read;
16138 struct dwarf_block *blk;
16139
a8329558
KW
16140 attr->form = form;
16141 switch (form)
c906108c 16142 {
c906108c 16143 case DW_FORM_ref_addr:
ae411497 16144 if (cu->header.version == 2)
4568ecf9 16145 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16146 else
4568ecf9
DE
16147 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16148 &cu->header, &bytes_read);
ae411497
TT
16149 info_ptr += bytes_read;
16150 break;
36586728
TT
16151 case DW_FORM_GNU_ref_alt:
16152 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16153 info_ptr += bytes_read;
16154 break;
ae411497 16155 case DW_FORM_addr:
e7c27a73 16156 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16157 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16158 info_ptr += bytes_read;
c906108c
SS
16159 break;
16160 case DW_FORM_block2:
7b5a2f43 16161 blk = dwarf_alloc_block (cu);
c906108c
SS
16162 blk->size = read_2_bytes (abfd, info_ptr);
16163 info_ptr += 2;
16164 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16165 info_ptr += blk->size;
16166 DW_BLOCK (attr) = blk;
16167 break;
16168 case DW_FORM_block4:
7b5a2f43 16169 blk = dwarf_alloc_block (cu);
c906108c
SS
16170 blk->size = read_4_bytes (abfd, info_ptr);
16171 info_ptr += 4;
16172 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16173 info_ptr += blk->size;
16174 DW_BLOCK (attr) = blk;
16175 break;
16176 case DW_FORM_data2:
16177 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16178 info_ptr += 2;
16179 break;
16180 case DW_FORM_data4:
16181 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16182 info_ptr += 4;
16183 break;
16184 case DW_FORM_data8:
16185 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16186 info_ptr += 8;
16187 break;
2dc7f7b3
TT
16188 case DW_FORM_sec_offset:
16189 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16190 info_ptr += bytes_read;
16191 break;
c906108c 16192 case DW_FORM_string:
9b1c24c8 16193 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16194 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16195 info_ptr += bytes_read;
16196 break;
4bdf3d34 16197 case DW_FORM_strp:
36586728
TT
16198 if (!cu->per_cu->is_dwz)
16199 {
16200 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16201 &bytes_read);
16202 DW_STRING_IS_CANONICAL (attr) = 0;
16203 info_ptr += bytes_read;
16204 break;
16205 }
16206 /* FALLTHROUGH */
16207 case DW_FORM_GNU_strp_alt:
16208 {
16209 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16210 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16211 &bytes_read);
16212
16213 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16214 DW_STRING_IS_CANONICAL (attr) = 0;
16215 info_ptr += bytes_read;
16216 }
4bdf3d34 16217 break;
2dc7f7b3 16218 case DW_FORM_exprloc:
c906108c 16219 case DW_FORM_block:
7b5a2f43 16220 blk = dwarf_alloc_block (cu);
c906108c
SS
16221 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16222 info_ptr += bytes_read;
16223 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16224 info_ptr += blk->size;
16225 DW_BLOCK (attr) = blk;
16226 break;
16227 case DW_FORM_block1:
7b5a2f43 16228 blk = dwarf_alloc_block (cu);
c906108c
SS
16229 blk->size = read_1_byte (abfd, info_ptr);
16230 info_ptr += 1;
16231 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16232 info_ptr += blk->size;
16233 DW_BLOCK (attr) = blk;
16234 break;
16235 case DW_FORM_data1:
16236 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16237 info_ptr += 1;
16238 break;
16239 case DW_FORM_flag:
16240 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16241 info_ptr += 1;
16242 break;
2dc7f7b3
TT
16243 case DW_FORM_flag_present:
16244 DW_UNSND (attr) = 1;
16245 break;
c906108c
SS
16246 case DW_FORM_sdata:
16247 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16248 info_ptr += bytes_read;
16249 break;
16250 case DW_FORM_udata:
16251 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16252 info_ptr += bytes_read;
16253 break;
16254 case DW_FORM_ref1:
4568ecf9
DE
16255 DW_UNSND (attr) = (cu->header.offset.sect_off
16256 + read_1_byte (abfd, info_ptr));
c906108c
SS
16257 info_ptr += 1;
16258 break;
16259 case DW_FORM_ref2:
4568ecf9
DE
16260 DW_UNSND (attr) = (cu->header.offset.sect_off
16261 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16262 info_ptr += 2;
16263 break;
16264 case DW_FORM_ref4:
4568ecf9
DE
16265 DW_UNSND (attr) = (cu->header.offset.sect_off
16266 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16267 info_ptr += 4;
16268 break;
613e1657 16269 case DW_FORM_ref8:
4568ecf9
DE
16270 DW_UNSND (attr) = (cu->header.offset.sect_off
16271 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16272 info_ptr += 8;
16273 break;
55f1336d 16274 case DW_FORM_ref_sig8:
ac9ec31b 16275 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16276 info_ptr += 8;
16277 break;
c906108c 16278 case DW_FORM_ref_udata:
4568ecf9
DE
16279 DW_UNSND (attr) = (cu->header.offset.sect_off
16280 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16281 info_ptr += bytes_read;
16282 break;
c906108c 16283 case DW_FORM_indirect:
a8329558
KW
16284 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16285 info_ptr += bytes_read;
dee91e82 16286 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16287 break;
3019eac3
DE
16288 case DW_FORM_GNU_addr_index:
16289 if (reader->dwo_file == NULL)
16290 {
16291 /* For now flag a hard error.
16292 Later we can turn this into a complaint. */
16293 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16294 dwarf_form_name (form),
16295 bfd_get_filename (abfd));
16296 }
16297 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16298 info_ptr += bytes_read;
16299 break;
16300 case DW_FORM_GNU_str_index:
16301 if (reader->dwo_file == NULL)
16302 {
16303 /* For now flag a hard error.
16304 Later we can turn this into a complaint if warranted. */
16305 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16306 dwarf_form_name (form),
16307 bfd_get_filename (abfd));
16308 }
16309 {
16310 ULONGEST str_index =
16311 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16312
342587c4 16313 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16314 DW_STRING_IS_CANONICAL (attr) = 0;
16315 info_ptr += bytes_read;
16316 }
16317 break;
c906108c 16318 default:
8a3fe4f8 16319 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16320 dwarf_form_name (form),
16321 bfd_get_filename (abfd));
c906108c 16322 }
28e94949 16323
36586728 16324 /* Super hack. */
7771576e 16325 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16326 attr->form = DW_FORM_GNU_ref_alt;
16327
28e94949
JB
16328 /* We have seen instances where the compiler tried to emit a byte
16329 size attribute of -1 which ended up being encoded as an unsigned
16330 0xffffffff. Although 0xffffffff is technically a valid size value,
16331 an object of this size seems pretty unlikely so we can relatively
16332 safely treat these cases as if the size attribute was invalid and
16333 treat them as zero by default. */
16334 if (attr->name == DW_AT_byte_size
16335 && form == DW_FORM_data4
16336 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16337 {
16338 complaint
16339 (&symfile_complaints,
43bbcdc2
PH
16340 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16341 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16342 DW_UNSND (attr) = 0;
16343 }
28e94949 16344
c906108c
SS
16345 return info_ptr;
16346}
16347
a8329558
KW
16348/* Read an attribute described by an abbreviated attribute. */
16349
d521ce57 16350static const gdb_byte *
dee91e82
DE
16351read_attribute (const struct die_reader_specs *reader,
16352 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16353 const gdb_byte *info_ptr)
a8329558
KW
16354{
16355 attr->name = abbrev->name;
dee91e82 16356 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16357}
16358
0963b4bd 16359/* Read dwarf information from a buffer. */
c906108c
SS
16360
16361static unsigned int
a1855c1d 16362read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16363{
fe1b8b76 16364 return bfd_get_8 (abfd, buf);
c906108c
SS
16365}
16366
16367static int
a1855c1d 16368read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16369{
fe1b8b76 16370 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16371}
16372
16373static unsigned int
a1855c1d 16374read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16375{
fe1b8b76 16376 return bfd_get_16 (abfd, buf);
c906108c
SS
16377}
16378
21ae7a4d 16379static int
a1855c1d 16380read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16381{
16382 return bfd_get_signed_16 (abfd, buf);
16383}
16384
c906108c 16385static unsigned int
a1855c1d 16386read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16387{
fe1b8b76 16388 return bfd_get_32 (abfd, buf);
c906108c
SS
16389}
16390
21ae7a4d 16391static int
a1855c1d 16392read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16393{
16394 return bfd_get_signed_32 (abfd, buf);
16395}
16396
93311388 16397static ULONGEST
a1855c1d 16398read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16399{
fe1b8b76 16400 return bfd_get_64 (abfd, buf);
c906108c
SS
16401}
16402
16403static CORE_ADDR
d521ce57 16404read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16405 unsigned int *bytes_read)
c906108c 16406{
e7c27a73 16407 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16408 CORE_ADDR retval = 0;
16409
107d2387 16410 if (cu_header->signed_addr_p)
c906108c 16411 {
107d2387
AC
16412 switch (cu_header->addr_size)
16413 {
16414 case 2:
fe1b8b76 16415 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16416 break;
16417 case 4:
fe1b8b76 16418 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16419 break;
16420 case 8:
fe1b8b76 16421 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16422 break;
16423 default:
8e65ff28 16424 internal_error (__FILE__, __LINE__,
e2e0b3e5 16425 _("read_address: bad switch, signed [in module %s]"),
659b0389 16426 bfd_get_filename (abfd));
107d2387
AC
16427 }
16428 }
16429 else
16430 {
16431 switch (cu_header->addr_size)
16432 {
16433 case 2:
fe1b8b76 16434 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16435 break;
16436 case 4:
fe1b8b76 16437 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16438 break;
16439 case 8:
fe1b8b76 16440 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16441 break;
16442 default:
8e65ff28 16443 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16444 _("read_address: bad switch, "
16445 "unsigned [in module %s]"),
659b0389 16446 bfd_get_filename (abfd));
107d2387 16447 }
c906108c 16448 }
64367e0a 16449
107d2387
AC
16450 *bytes_read = cu_header->addr_size;
16451 return retval;
c906108c
SS
16452}
16453
f7ef9339 16454/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16455 specification allows the initial length to take up either 4 bytes
16456 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16457 bytes describe the length and all offsets will be 8 bytes in length
16458 instead of 4.
16459
f7ef9339
KB
16460 An older, non-standard 64-bit format is also handled by this
16461 function. The older format in question stores the initial length
16462 as an 8-byte quantity without an escape value. Lengths greater
16463 than 2^32 aren't very common which means that the initial 4 bytes
16464 is almost always zero. Since a length value of zero doesn't make
16465 sense for the 32-bit format, this initial zero can be considered to
16466 be an escape value which indicates the presence of the older 64-bit
16467 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16468 greater than 4GB. If it becomes necessary to handle lengths
16469 somewhat larger than 4GB, we could allow other small values (such
16470 as the non-sensical values of 1, 2, and 3) to also be used as
16471 escape values indicating the presence of the old format.
f7ef9339 16472
917c78fc
MK
16473 The value returned via bytes_read should be used to increment the
16474 relevant pointer after calling read_initial_length().
c764a876 16475
613e1657
KB
16476 [ Note: read_initial_length() and read_offset() are based on the
16477 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16478 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16479 from:
16480
f7ef9339 16481 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16482
613e1657
KB
16483 This document is only a draft and is subject to change. (So beware.)
16484
f7ef9339 16485 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16486 determined empirically by examining 64-bit ELF files produced by
16487 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16488
16489 - Kevin, July 16, 2002
613e1657
KB
16490 ] */
16491
16492static LONGEST
d521ce57 16493read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16494{
fe1b8b76 16495 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16496
dd373385 16497 if (length == 0xffffffff)
613e1657 16498 {
fe1b8b76 16499 length = bfd_get_64 (abfd, buf + 4);
613e1657 16500 *bytes_read = 12;
613e1657 16501 }
dd373385 16502 else if (length == 0)
f7ef9339 16503 {
dd373385 16504 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16505 length = bfd_get_64 (abfd, buf);
f7ef9339 16506 *bytes_read = 8;
f7ef9339 16507 }
613e1657
KB
16508 else
16509 {
16510 *bytes_read = 4;
613e1657
KB
16511 }
16512
c764a876
DE
16513 return length;
16514}
dd373385 16515
c764a876
DE
16516/* Cover function for read_initial_length.
16517 Returns the length of the object at BUF, and stores the size of the
16518 initial length in *BYTES_READ and stores the size that offsets will be in
16519 *OFFSET_SIZE.
16520 If the initial length size is not equivalent to that specified in
16521 CU_HEADER then issue a complaint.
16522 This is useful when reading non-comp-unit headers. */
dd373385 16523
c764a876 16524static LONGEST
d521ce57 16525read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16526 const struct comp_unit_head *cu_header,
16527 unsigned int *bytes_read,
16528 unsigned int *offset_size)
16529{
16530 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16531
16532 gdb_assert (cu_header->initial_length_size == 4
16533 || cu_header->initial_length_size == 8
16534 || cu_header->initial_length_size == 12);
16535
16536 if (cu_header->initial_length_size != *bytes_read)
16537 complaint (&symfile_complaints,
16538 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16539
c764a876 16540 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16541 return length;
613e1657
KB
16542}
16543
16544/* Read an offset from the data stream. The size of the offset is
917c78fc 16545 given by cu_header->offset_size. */
613e1657
KB
16546
16547static LONGEST
d521ce57
TT
16548read_offset (bfd *abfd, const gdb_byte *buf,
16549 const struct comp_unit_head *cu_header,
891d2f0b 16550 unsigned int *bytes_read)
c764a876
DE
16551{
16552 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16553
c764a876
DE
16554 *bytes_read = cu_header->offset_size;
16555 return offset;
16556}
16557
16558/* Read an offset from the data stream. */
16559
16560static LONGEST
d521ce57 16561read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16562{
16563 LONGEST retval = 0;
16564
c764a876 16565 switch (offset_size)
613e1657
KB
16566 {
16567 case 4:
fe1b8b76 16568 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16569 break;
16570 case 8:
fe1b8b76 16571 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16572 break;
16573 default:
8e65ff28 16574 internal_error (__FILE__, __LINE__,
c764a876 16575 _("read_offset_1: bad switch [in module %s]"),
659b0389 16576 bfd_get_filename (abfd));
613e1657
KB
16577 }
16578
917c78fc 16579 return retval;
613e1657
KB
16580}
16581
d521ce57
TT
16582static const gdb_byte *
16583read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16584{
16585 /* If the size of a host char is 8 bits, we can return a pointer
16586 to the buffer, otherwise we have to copy the data to a buffer
16587 allocated on the temporary obstack. */
4bdf3d34 16588 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16589 return buf;
c906108c
SS
16590}
16591
d521ce57
TT
16592static const char *
16593read_direct_string (bfd *abfd, const gdb_byte *buf,
16594 unsigned int *bytes_read_ptr)
c906108c
SS
16595{
16596 /* If the size of a host char is 8 bits, we can return a pointer
16597 to the string, otherwise we have to copy the string to a buffer
16598 allocated on the temporary obstack. */
4bdf3d34 16599 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16600 if (*buf == '\0')
16601 {
16602 *bytes_read_ptr = 1;
16603 return NULL;
16604 }
d521ce57
TT
16605 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16606 return (const char *) buf;
4bdf3d34
JJ
16607}
16608
d521ce57 16609static const char *
cf2c3c16 16610read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16611{
be391dca 16612 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16613 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16614 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16615 bfd_get_filename (abfd));
dce234bc 16616 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16617 error (_("DW_FORM_strp pointing outside of "
16618 ".debug_str section [in module %s]"),
16619 bfd_get_filename (abfd));
4bdf3d34 16620 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16621 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16622 return NULL;
d521ce57 16623 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16624}
16625
36586728
TT
16626/* Read a string at offset STR_OFFSET in the .debug_str section from
16627 the .dwz file DWZ. Throw an error if the offset is too large. If
16628 the string consists of a single NUL byte, return NULL; otherwise
16629 return a pointer to the string. */
16630
d521ce57 16631static const char *
36586728
TT
16632read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16633{
16634 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16635
16636 if (dwz->str.buffer == NULL)
16637 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16638 "section [in module %s]"),
16639 bfd_get_filename (dwz->dwz_bfd));
16640 if (str_offset >= dwz->str.size)
16641 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16642 ".debug_str section [in module %s]"),
16643 bfd_get_filename (dwz->dwz_bfd));
16644 gdb_assert (HOST_CHAR_BIT == 8);
16645 if (dwz->str.buffer[str_offset] == '\0')
16646 return NULL;
d521ce57 16647 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16648}
16649
d521ce57
TT
16650static const char *
16651read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16652 const struct comp_unit_head *cu_header,
16653 unsigned int *bytes_read_ptr)
16654{
16655 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16656
16657 return read_indirect_string_at_offset (abfd, str_offset);
16658}
16659
12df843f 16660static ULONGEST
d521ce57
TT
16661read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16662 unsigned int *bytes_read_ptr)
c906108c 16663{
12df843f 16664 ULONGEST result;
ce5d95e1 16665 unsigned int num_read;
c906108c
SS
16666 int i, shift;
16667 unsigned char byte;
16668
16669 result = 0;
16670 shift = 0;
16671 num_read = 0;
16672 i = 0;
16673 while (1)
16674 {
fe1b8b76 16675 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16676 buf++;
16677 num_read++;
12df843f 16678 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16679 if ((byte & 128) == 0)
16680 {
16681 break;
16682 }
16683 shift += 7;
16684 }
16685 *bytes_read_ptr = num_read;
16686 return result;
16687}
16688
12df843f 16689static LONGEST
d521ce57
TT
16690read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16691 unsigned int *bytes_read_ptr)
c906108c 16692{
12df843f 16693 LONGEST result;
77e0b926 16694 int i, shift, num_read;
c906108c
SS
16695 unsigned char byte;
16696
16697 result = 0;
16698 shift = 0;
c906108c
SS
16699 num_read = 0;
16700 i = 0;
16701 while (1)
16702 {
fe1b8b76 16703 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16704 buf++;
16705 num_read++;
12df843f 16706 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16707 shift += 7;
16708 if ((byte & 128) == 0)
16709 {
16710 break;
16711 }
16712 }
77e0b926 16713 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16714 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16715 *bytes_read_ptr = num_read;
16716 return result;
16717}
16718
3019eac3
DE
16719/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16720 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16721 ADDR_SIZE is the size of addresses from the CU header. */
16722
16723static CORE_ADDR
16724read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16725{
16726 struct objfile *objfile = dwarf2_per_objfile->objfile;
16727 bfd *abfd = objfile->obfd;
16728 const gdb_byte *info_ptr;
16729
16730 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16731 if (dwarf2_per_objfile->addr.buffer == NULL)
16732 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16733 objfile_name (objfile));
3019eac3
DE
16734 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16735 error (_("DW_FORM_addr_index pointing outside of "
16736 ".debug_addr section [in module %s]"),
4262abfb 16737 objfile_name (objfile));
3019eac3
DE
16738 info_ptr = (dwarf2_per_objfile->addr.buffer
16739 + addr_base + addr_index * addr_size);
16740 if (addr_size == 4)
16741 return bfd_get_32 (abfd, info_ptr);
16742 else
16743 return bfd_get_64 (abfd, info_ptr);
16744}
16745
16746/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16747
16748static CORE_ADDR
16749read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16750{
16751 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16752}
16753
16754/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16755
16756static CORE_ADDR
d521ce57 16757read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16758 unsigned int *bytes_read)
16759{
16760 bfd *abfd = cu->objfile->obfd;
16761 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16762
16763 return read_addr_index (cu, addr_index);
16764}
16765
16766/* Data structure to pass results from dwarf2_read_addr_index_reader
16767 back to dwarf2_read_addr_index. */
16768
16769struct dwarf2_read_addr_index_data
16770{
16771 ULONGEST addr_base;
16772 int addr_size;
16773};
16774
16775/* die_reader_func for dwarf2_read_addr_index. */
16776
16777static void
16778dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16779 const gdb_byte *info_ptr,
3019eac3
DE
16780 struct die_info *comp_unit_die,
16781 int has_children,
16782 void *data)
16783{
16784 struct dwarf2_cu *cu = reader->cu;
16785 struct dwarf2_read_addr_index_data *aidata =
16786 (struct dwarf2_read_addr_index_data *) data;
16787
16788 aidata->addr_base = cu->addr_base;
16789 aidata->addr_size = cu->header.addr_size;
16790}
16791
16792/* Given an index in .debug_addr, fetch the value.
16793 NOTE: This can be called during dwarf expression evaluation,
16794 long after the debug information has been read, and thus per_cu->cu
16795 may no longer exist. */
16796
16797CORE_ADDR
16798dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16799 unsigned int addr_index)
16800{
16801 struct objfile *objfile = per_cu->objfile;
16802 struct dwarf2_cu *cu = per_cu->cu;
16803 ULONGEST addr_base;
16804 int addr_size;
16805
16806 /* This is intended to be called from outside this file. */
16807 dw2_setup (objfile);
16808
16809 /* We need addr_base and addr_size.
16810 If we don't have PER_CU->cu, we have to get it.
16811 Nasty, but the alternative is storing the needed info in PER_CU,
16812 which at this point doesn't seem justified: it's not clear how frequently
16813 it would get used and it would increase the size of every PER_CU.
16814 Entry points like dwarf2_per_cu_addr_size do a similar thing
16815 so we're not in uncharted territory here.
16816 Alas we need to be a bit more complicated as addr_base is contained
16817 in the DIE.
16818
16819 We don't need to read the entire CU(/TU).
16820 We just need the header and top level die.
a1b64ce1 16821
3019eac3 16822 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16823 For now we skip this optimization. */
3019eac3
DE
16824
16825 if (cu != NULL)
16826 {
16827 addr_base = cu->addr_base;
16828 addr_size = cu->header.addr_size;
16829 }
16830 else
16831 {
16832 struct dwarf2_read_addr_index_data aidata;
16833
a1b64ce1
DE
16834 /* Note: We can't use init_cutu_and_read_dies_simple here,
16835 we need addr_base. */
16836 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16837 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16838 addr_base = aidata.addr_base;
16839 addr_size = aidata.addr_size;
16840 }
16841
16842 return read_addr_index_1 (addr_index, addr_base, addr_size);
16843}
16844
57d63ce2
DE
16845/* Given a DW_FORM_GNU_str_index, fetch the string.
16846 This is only used by the Fission support. */
3019eac3 16847
d521ce57 16848static const char *
342587c4 16849read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16850{
16851 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16852 const char *objf_name = objfile_name (objfile);
3019eac3 16853 bfd *abfd = objfile->obfd;
342587c4 16854 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16855 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16856 struct dwarf2_section_info *str_offsets_section =
16857 &reader->dwo_file->sections.str_offsets;
d521ce57 16858 const gdb_byte *info_ptr;
3019eac3 16859 ULONGEST str_offset;
57d63ce2 16860 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16861
73869dc2
DE
16862 dwarf2_read_section (objfile, str_section);
16863 dwarf2_read_section (objfile, str_offsets_section);
16864 if (str_section->buffer == NULL)
57d63ce2 16865 error (_("%s used without .debug_str.dwo section"
3019eac3 16866 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16867 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16868 if (str_offsets_section->buffer == NULL)
57d63ce2 16869 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16870 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16871 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16872 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16873 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16874 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16875 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16876 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16877 + str_index * cu->header.offset_size);
16878 if (cu->header.offset_size == 4)
16879 str_offset = bfd_get_32 (abfd, info_ptr);
16880 else
16881 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16882 if (str_offset >= str_section->size)
57d63ce2 16883 error (_("Offset from %s pointing outside of"
3019eac3 16884 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16885 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16886 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16887}
16888
3019eac3
DE
16889/* Return the length of an LEB128 number in BUF. */
16890
16891static int
16892leb128_size (const gdb_byte *buf)
16893{
16894 const gdb_byte *begin = buf;
16895 gdb_byte byte;
16896
16897 while (1)
16898 {
16899 byte = *buf++;
16900 if ((byte & 128) == 0)
16901 return buf - begin;
16902 }
16903}
16904
c906108c 16905static void
e142c38c 16906set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16907{
16908 switch (lang)
16909 {
16910 case DW_LANG_C89:
76bee0cc 16911 case DW_LANG_C99:
0cfd832f 16912 case DW_LANG_C11:
c906108c 16913 case DW_LANG_C:
d1be3247 16914 case DW_LANG_UPC:
e142c38c 16915 cu->language = language_c;
c906108c
SS
16916 break;
16917 case DW_LANG_C_plus_plus:
0cfd832f
MW
16918 case DW_LANG_C_plus_plus_11:
16919 case DW_LANG_C_plus_plus_14:
e142c38c 16920 cu->language = language_cplus;
c906108c 16921 break;
6aecb9c2
JB
16922 case DW_LANG_D:
16923 cu->language = language_d;
16924 break;
c906108c
SS
16925 case DW_LANG_Fortran77:
16926 case DW_LANG_Fortran90:
b21b22e0 16927 case DW_LANG_Fortran95:
f7de9aab
MW
16928 case DW_LANG_Fortran03:
16929 case DW_LANG_Fortran08:
e142c38c 16930 cu->language = language_fortran;
c906108c 16931 break;
a766d390
DE
16932 case DW_LANG_Go:
16933 cu->language = language_go;
16934 break;
c906108c 16935 case DW_LANG_Mips_Assembler:
e142c38c 16936 cu->language = language_asm;
c906108c 16937 break;
bebd888e 16938 case DW_LANG_Java:
e142c38c 16939 cu->language = language_java;
bebd888e 16940 break;
c906108c 16941 case DW_LANG_Ada83:
8aaf0b47 16942 case DW_LANG_Ada95:
bc5f45f8
JB
16943 cu->language = language_ada;
16944 break;
72019c9c
GM
16945 case DW_LANG_Modula2:
16946 cu->language = language_m2;
16947 break;
fe8e67fd
PM
16948 case DW_LANG_Pascal83:
16949 cu->language = language_pascal;
16950 break;
22566fbd
DJ
16951 case DW_LANG_ObjC:
16952 cu->language = language_objc;
16953 break;
c906108c
SS
16954 case DW_LANG_Cobol74:
16955 case DW_LANG_Cobol85:
c906108c 16956 default:
e142c38c 16957 cu->language = language_minimal;
c906108c
SS
16958 break;
16959 }
e142c38c 16960 cu->language_defn = language_def (cu->language);
c906108c
SS
16961}
16962
16963/* Return the named attribute or NULL if not there. */
16964
16965static struct attribute *
e142c38c 16966dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16967{
a48e046c 16968 for (;;)
c906108c 16969 {
a48e046c
TT
16970 unsigned int i;
16971 struct attribute *spec = NULL;
16972
16973 for (i = 0; i < die->num_attrs; ++i)
16974 {
16975 if (die->attrs[i].name == name)
16976 return &die->attrs[i];
16977 if (die->attrs[i].name == DW_AT_specification
16978 || die->attrs[i].name == DW_AT_abstract_origin)
16979 spec = &die->attrs[i];
16980 }
16981
16982 if (!spec)
16983 break;
c906108c 16984
f2f0e013 16985 die = follow_die_ref (die, spec, &cu);
f2f0e013 16986 }
c5aa993b 16987
c906108c
SS
16988 return NULL;
16989}
16990
348e048f
DE
16991/* Return the named attribute or NULL if not there,
16992 but do not follow DW_AT_specification, etc.
16993 This is for use in contexts where we're reading .debug_types dies.
16994 Following DW_AT_specification, DW_AT_abstract_origin will take us
16995 back up the chain, and we want to go down. */
16996
16997static struct attribute *
45e58e77 16998dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16999{
17000 unsigned int i;
17001
17002 for (i = 0; i < die->num_attrs; ++i)
17003 if (die->attrs[i].name == name)
17004 return &die->attrs[i];
17005
17006 return NULL;
17007}
17008
05cf31d1
JB
17009/* Return non-zero iff the attribute NAME is defined for the given DIE,
17010 and holds a non-zero value. This function should only be used for
2dc7f7b3 17011 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17012
17013static int
17014dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17015{
17016 struct attribute *attr = dwarf2_attr (die, name, cu);
17017
17018 return (attr && DW_UNSND (attr));
17019}
17020
3ca72b44 17021static int
e142c38c 17022die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17023{
05cf31d1
JB
17024 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17025 which value is non-zero. However, we have to be careful with
17026 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17027 (via dwarf2_flag_true_p) follows this attribute. So we may
17028 end up accidently finding a declaration attribute that belongs
17029 to a different DIE referenced by the specification attribute,
17030 even though the given DIE does not have a declaration attribute. */
17031 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17032 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17033}
17034
63d06c5c 17035/* Return the die giving the specification for DIE, if there is
f2f0e013 17036 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17037 containing the return value on output. If there is no
17038 specification, but there is an abstract origin, that is
17039 returned. */
63d06c5c
DC
17040
17041static struct die_info *
f2f0e013 17042die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17043{
f2f0e013
DJ
17044 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17045 *spec_cu);
63d06c5c 17046
edb3359d
DJ
17047 if (spec_attr == NULL)
17048 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17049
63d06c5c
DC
17050 if (spec_attr == NULL)
17051 return NULL;
17052 else
f2f0e013 17053 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17054}
c906108c 17055
debd256d 17056/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17057 refers to.
17058 NOTE: This is also used as a "cleanup" function. */
17059
debd256d
JB
17060static void
17061free_line_header (struct line_header *lh)
17062{
17063 if (lh->standard_opcode_lengths)
a8bc7b56 17064 xfree (lh->standard_opcode_lengths);
debd256d
JB
17065
17066 /* Remember that all the lh->file_names[i].name pointers are
17067 pointers into debug_line_buffer, and don't need to be freed. */
17068 if (lh->file_names)
a8bc7b56 17069 xfree (lh->file_names);
debd256d
JB
17070
17071 /* Similarly for the include directory names. */
17072 if (lh->include_dirs)
a8bc7b56 17073 xfree (lh->include_dirs);
debd256d 17074
a8bc7b56 17075 xfree (lh);
debd256d
JB
17076}
17077
527f3840
JK
17078/* Stub for free_line_header to match void * callback types. */
17079
17080static void
17081free_line_header_voidp (void *arg)
17082{
17083 struct line_header *lh = arg;
17084
17085 free_line_header (lh);
17086}
17087
debd256d 17088/* Add an entry to LH's include directory table. */
ae2de4f8 17089
debd256d 17090static void
d521ce57 17091add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17092{
debd256d
JB
17093 /* Grow the array if necessary. */
17094 if (lh->include_dirs_size == 0)
c5aa993b 17095 {
debd256d
JB
17096 lh->include_dirs_size = 1; /* for testing */
17097 lh->include_dirs = xmalloc (lh->include_dirs_size
17098 * sizeof (*lh->include_dirs));
17099 }
17100 else if (lh->num_include_dirs >= lh->include_dirs_size)
17101 {
17102 lh->include_dirs_size *= 2;
17103 lh->include_dirs = xrealloc (lh->include_dirs,
17104 (lh->include_dirs_size
17105 * sizeof (*lh->include_dirs)));
c5aa993b 17106 }
c906108c 17107
debd256d
JB
17108 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17109}
6e70227d 17110
debd256d 17111/* Add an entry to LH's file name table. */
ae2de4f8 17112
debd256d
JB
17113static void
17114add_file_name (struct line_header *lh,
d521ce57 17115 const char *name,
debd256d
JB
17116 unsigned int dir_index,
17117 unsigned int mod_time,
17118 unsigned int length)
17119{
17120 struct file_entry *fe;
17121
17122 /* Grow the array if necessary. */
17123 if (lh->file_names_size == 0)
17124 {
17125 lh->file_names_size = 1; /* for testing */
17126 lh->file_names = xmalloc (lh->file_names_size
17127 * sizeof (*lh->file_names));
17128 }
17129 else if (lh->num_file_names >= lh->file_names_size)
17130 {
17131 lh->file_names_size *= 2;
17132 lh->file_names = xrealloc (lh->file_names,
17133 (lh->file_names_size
17134 * sizeof (*lh->file_names)));
17135 }
17136
17137 fe = &lh->file_names[lh->num_file_names++];
17138 fe->name = name;
17139 fe->dir_index = dir_index;
17140 fe->mod_time = mod_time;
17141 fe->length = length;
aaa75496 17142 fe->included_p = 0;
cb1df416 17143 fe->symtab = NULL;
debd256d 17144}
6e70227d 17145
36586728
TT
17146/* A convenience function to find the proper .debug_line section for a
17147 CU. */
17148
17149static struct dwarf2_section_info *
17150get_debug_line_section (struct dwarf2_cu *cu)
17151{
17152 struct dwarf2_section_info *section;
17153
17154 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17155 DWO file. */
17156 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17157 section = &cu->dwo_unit->dwo_file->sections.line;
17158 else if (cu->per_cu->is_dwz)
17159 {
17160 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17161
17162 section = &dwz->line;
17163 }
17164 else
17165 section = &dwarf2_per_objfile->line;
17166
17167 return section;
17168}
17169
debd256d 17170/* Read the statement program header starting at OFFSET in
3019eac3 17171 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17172 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17173 Returns NULL if there is a problem reading the header, e.g., if it
17174 has a version we don't understand.
debd256d
JB
17175
17176 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17177 the returned object point into the dwarf line section buffer,
17178 and must not be freed. */
ae2de4f8 17179
debd256d 17180static struct line_header *
3019eac3 17181dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17182{
17183 struct cleanup *back_to;
17184 struct line_header *lh;
d521ce57 17185 const gdb_byte *line_ptr;
c764a876 17186 unsigned int bytes_read, offset_size;
debd256d 17187 int i;
d521ce57 17188 const char *cur_dir, *cur_file;
3019eac3
DE
17189 struct dwarf2_section_info *section;
17190 bfd *abfd;
17191
36586728 17192 section = get_debug_line_section (cu);
3019eac3
DE
17193 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17194 if (section->buffer == NULL)
debd256d 17195 {
3019eac3
DE
17196 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17197 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17198 else
17199 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17200 return 0;
17201 }
17202
fceca515
DE
17203 /* We can't do this until we know the section is non-empty.
17204 Only then do we know we have such a section. */
a32a8923 17205 abfd = get_section_bfd_owner (section);
fceca515 17206
a738430d
MK
17207 /* Make sure that at least there's room for the total_length field.
17208 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17209 if (offset + 4 >= section->size)
debd256d 17210 {
4d3c2250 17211 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17212 return 0;
17213 }
17214
17215 lh = xmalloc (sizeof (*lh));
17216 memset (lh, 0, sizeof (*lh));
17217 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17218 (void *) lh);
17219
527f3840
JK
17220 lh->offset.sect_off = offset;
17221 lh->offset_in_dwz = cu->per_cu->is_dwz;
17222
3019eac3 17223 line_ptr = section->buffer + offset;
debd256d 17224
a738430d 17225 /* Read in the header. */
6e70227d 17226 lh->total_length =
c764a876
DE
17227 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17228 &bytes_read, &offset_size);
debd256d 17229 line_ptr += bytes_read;
3019eac3 17230 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17231 {
4d3c2250 17232 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17233 do_cleanups (back_to);
debd256d
JB
17234 return 0;
17235 }
17236 lh->statement_program_end = line_ptr + lh->total_length;
17237 lh->version = read_2_bytes (abfd, line_ptr);
17238 line_ptr += 2;
cd366ee8
DE
17239 if (lh->version > 4)
17240 {
17241 /* This is a version we don't understand. The format could have
17242 changed in ways we don't handle properly so just punt. */
17243 complaint (&symfile_complaints,
17244 _("unsupported version in .debug_line section"));
17245 return NULL;
17246 }
c764a876
DE
17247 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17248 line_ptr += offset_size;
debd256d
JB
17249 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17250 line_ptr += 1;
2dc7f7b3
TT
17251 if (lh->version >= 4)
17252 {
17253 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17254 line_ptr += 1;
17255 }
17256 else
17257 lh->maximum_ops_per_instruction = 1;
17258
17259 if (lh->maximum_ops_per_instruction == 0)
17260 {
17261 lh->maximum_ops_per_instruction = 1;
17262 complaint (&symfile_complaints,
3e43a32a
MS
17263 _("invalid maximum_ops_per_instruction "
17264 "in `.debug_line' section"));
2dc7f7b3
TT
17265 }
17266
debd256d
JB
17267 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17268 line_ptr += 1;
17269 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17270 line_ptr += 1;
17271 lh->line_range = read_1_byte (abfd, line_ptr);
17272 line_ptr += 1;
17273 lh->opcode_base = read_1_byte (abfd, line_ptr);
17274 line_ptr += 1;
17275 lh->standard_opcode_lengths
fe1b8b76 17276 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17277
17278 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17279 for (i = 1; i < lh->opcode_base; ++i)
17280 {
17281 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17282 line_ptr += 1;
17283 }
17284
a738430d 17285 /* Read directory table. */
9b1c24c8 17286 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17287 {
17288 line_ptr += bytes_read;
17289 add_include_dir (lh, cur_dir);
17290 }
17291 line_ptr += bytes_read;
17292
a738430d 17293 /* Read file name table. */
9b1c24c8 17294 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17295 {
17296 unsigned int dir_index, mod_time, length;
17297
17298 line_ptr += bytes_read;
17299 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17300 line_ptr += bytes_read;
17301 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17302 line_ptr += bytes_read;
17303 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17304 line_ptr += bytes_read;
17305
17306 add_file_name (lh, cur_file, dir_index, mod_time, length);
17307 }
17308 line_ptr += bytes_read;
6e70227d 17309 lh->statement_program_start = line_ptr;
debd256d 17310
3019eac3 17311 if (line_ptr > (section->buffer + section->size))
4d3c2250 17312 complaint (&symfile_complaints,
3e43a32a
MS
17313 _("line number info header doesn't "
17314 "fit in `.debug_line' section"));
debd256d
JB
17315
17316 discard_cleanups (back_to);
17317 return lh;
17318}
c906108c 17319
c6da4cef
DE
17320/* Subroutine of dwarf_decode_lines to simplify it.
17321 Return the file name of the psymtab for included file FILE_INDEX
17322 in line header LH of PST.
17323 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17324 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17325 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17326
17327 The function creates dangling cleanup registration. */
c6da4cef 17328
d521ce57 17329static const char *
c6da4cef
DE
17330psymtab_include_file_name (const struct line_header *lh, int file_index,
17331 const struct partial_symtab *pst,
17332 const char *comp_dir)
17333{
17334 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17335 const char *include_name = fe.name;
17336 const char *include_name_to_compare = include_name;
17337 const char *dir_name = NULL;
72b9f47f
TT
17338 const char *pst_filename;
17339 char *copied_name = NULL;
c6da4cef
DE
17340 int file_is_pst;
17341
17342 if (fe.dir_index)
17343 dir_name = lh->include_dirs[fe.dir_index - 1];
17344
17345 if (!IS_ABSOLUTE_PATH (include_name)
17346 && (dir_name != NULL || comp_dir != NULL))
17347 {
17348 /* Avoid creating a duplicate psymtab for PST.
17349 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17350 Before we do the comparison, however, we need to account
17351 for DIR_NAME and COMP_DIR.
17352 First prepend dir_name (if non-NULL). If we still don't
17353 have an absolute path prepend comp_dir (if non-NULL).
17354 However, the directory we record in the include-file's
17355 psymtab does not contain COMP_DIR (to match the
17356 corresponding symtab(s)).
17357
17358 Example:
17359
17360 bash$ cd /tmp
17361 bash$ gcc -g ./hello.c
17362 include_name = "hello.c"
17363 dir_name = "."
17364 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17365 DW_AT_name = "./hello.c"
17366
17367 */
c6da4cef
DE
17368
17369 if (dir_name != NULL)
17370 {
d521ce57
TT
17371 char *tem = concat (dir_name, SLASH_STRING,
17372 include_name, (char *)NULL);
17373
17374 make_cleanup (xfree, tem);
17375 include_name = tem;
c6da4cef 17376 include_name_to_compare = include_name;
c6da4cef
DE
17377 }
17378 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17379 {
d521ce57
TT
17380 char *tem = concat (comp_dir, SLASH_STRING,
17381 include_name, (char *)NULL);
17382
17383 make_cleanup (xfree, tem);
17384 include_name_to_compare = tem;
c6da4cef
DE
17385 }
17386 }
17387
17388 pst_filename = pst->filename;
17389 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17390 {
72b9f47f
TT
17391 copied_name = concat (pst->dirname, SLASH_STRING,
17392 pst_filename, (char *)NULL);
17393 pst_filename = copied_name;
c6da4cef
DE
17394 }
17395
1e3fad37 17396 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17397
72b9f47f
TT
17398 if (copied_name != NULL)
17399 xfree (copied_name);
c6da4cef
DE
17400
17401 if (file_is_pst)
17402 return NULL;
17403 return include_name;
17404}
17405
c91513d8
PP
17406/* Ignore this record_line request. */
17407
17408static void
17409noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17410{
17411 return;
17412}
17413
a05a36a5
DE
17414/* Return non-zero if we should add LINE to the line number table.
17415 LINE is the line to add, LAST_LINE is the last line that was added,
17416 LAST_SUBFILE is the subfile for LAST_LINE.
17417 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17418 had a non-zero discriminator.
17419
17420 We have to be careful in the presence of discriminators.
17421 E.g., for this line:
17422
17423 for (i = 0; i < 100000; i++);
17424
17425 clang can emit four line number entries for that one line,
17426 each with a different discriminator.
17427 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17428
17429 However, we want gdb to coalesce all four entries into one.
17430 Otherwise the user could stepi into the middle of the line and
17431 gdb would get confused about whether the pc really was in the
17432 middle of the line.
17433
17434 Things are further complicated by the fact that two consecutive
17435 line number entries for the same line is a heuristic used by gcc
17436 to denote the end of the prologue. So we can't just discard duplicate
17437 entries, we have to be selective about it. The heuristic we use is
17438 that we only collapse consecutive entries for the same line if at least
17439 one of those entries has a non-zero discriminator. PR 17276.
17440
17441 Note: Addresses in the line number state machine can never go backwards
17442 within one sequence, thus this coalescing is ok. */
17443
17444static int
17445dwarf_record_line_p (unsigned int line, unsigned int last_line,
17446 int line_has_non_zero_discriminator,
17447 struct subfile *last_subfile)
17448{
17449 if (current_subfile != last_subfile)
17450 return 1;
17451 if (line != last_line)
17452 return 1;
17453 /* Same line for the same file that we've seen already.
17454 As a last check, for pr 17276, only record the line if the line
17455 has never had a non-zero discriminator. */
17456 if (!line_has_non_zero_discriminator)
17457 return 1;
17458 return 0;
17459}
17460
252a6764
DE
17461/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17462 in the line table of subfile SUBFILE. */
17463
17464static void
17465dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17466 unsigned int line, CORE_ADDR address,
17467 record_line_ftype p_record_line)
17468{
17469 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17470
d5962de5 17471 (*p_record_line) (subfile, line, addr);
252a6764
DE
17472}
17473
17474/* Subroutine of dwarf_decode_lines_1 to simplify it.
17475 Mark the end of a set of line number records.
17476 The arguments are the same as for dwarf_record_line.
17477 If SUBFILE is NULL the request is ignored. */
17478
17479static void
17480dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17481 CORE_ADDR address, record_line_ftype p_record_line)
17482{
17483 if (subfile != NULL)
17484 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17485}
17486
f3f5162e
DE
17487/* Subroutine of dwarf_decode_lines to simplify it.
17488 Process the line number information in LH. */
debd256d 17489
c906108c 17490static void
43f3e411
DE
17491dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17492 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17493{
d521ce57
TT
17494 const gdb_byte *line_ptr, *extended_end;
17495 const gdb_byte *line_end;
a8c50c1f 17496 unsigned int bytes_read, extended_len;
699ca60a 17497 unsigned char op_code, extended_op;
e142c38c
DJ
17498 CORE_ADDR baseaddr;
17499 struct objfile *objfile = cu->objfile;
f3f5162e 17500 bfd *abfd = objfile->obfd;
fbf65064 17501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17502 struct subfile *last_subfile = NULL;
c91513d8
PP
17503 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17504 = record_line;
e142c38c
DJ
17505
17506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17507
debd256d
JB
17508 line_ptr = lh->statement_program_start;
17509 line_end = lh->statement_program_end;
c906108c
SS
17510
17511 /* Read the statement sequences until there's nothing left. */
17512 while (line_ptr < line_end)
17513 {
3e29f34a
MR
17514 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17515 on the initial 0 address as if there was a line entry for it
17516 so that the backend has a chance to adjust it and also record
17517 it in case it needs it. This is currently used by MIPS code,
17518 cf. `mips_adjust_dwarf2_line'. */
17519 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
c906108c
SS
17520 unsigned int file = 1;
17521 unsigned int line = 1;
debd256d 17522 int is_stmt = lh->default_is_stmt;
c906108c 17523 int end_sequence = 0;
2dc7f7b3 17524 unsigned char op_index = 0;
a05a36a5
DE
17525 unsigned int discriminator = 0;
17526 /* The last line number that was recorded, used to coalesce
17527 consecutive entries for the same line. This can happen, for
17528 example, when discriminators are present. PR 17276. */
17529 unsigned int last_line = 0;
17530 int line_has_non_zero_discriminator = 0;
c906108c 17531
aaa75496 17532 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17533 {
aaa75496 17534 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17535 /* lh->include_dirs and lh->file_names are 0-based, but the
17536 directory and file name numbers in the statement program
17537 are 1-based. */
17538 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17539 const char *dir = NULL;
a738430d 17540
debd256d
JB
17541 if (fe->dir_index)
17542 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17543
4d663531 17544 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17545 }
17546
a738430d 17547 /* Decode the table. */
c5aa993b 17548 while (!end_sequence)
c906108c
SS
17549 {
17550 op_code = read_1_byte (abfd, line_ptr);
17551 line_ptr += 1;
59205f5a
JB
17552 if (line_ptr > line_end)
17553 {
17554 dwarf2_debug_line_missing_end_sequence_complaint ();
17555 break;
17556 }
9aa1fe7e 17557
debd256d 17558 if (op_code >= lh->opcode_base)
6e70227d 17559 {
8e07a239 17560 /* Special opcode. */
699ca60a 17561 unsigned char adj_opcode;
3e29f34a 17562 CORE_ADDR addr_adj;
a05a36a5 17563 int line_delta;
8e07a239 17564
debd256d 17565 adj_opcode = op_code - lh->opcode_base;
3e29f34a 17566 addr_adj = (((op_index + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17567 / lh->maximum_ops_per_instruction)
17568 * lh->minimum_instruction_length);
3e29f34a 17569 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17570 op_index = ((op_index + (adj_opcode / lh->line_range))
17571 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17572 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17573 line += line_delta;
17574 if (line_delta != 0)
17575 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17576 if (lh->num_file_names < file || file == 0)
25e43795 17577 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17578 /* For now we ignore lines not starting on an
17579 instruction boundary. */
17580 else if (op_index == 0)
25e43795
DJ
17581 {
17582 lh->file_names[file - 1].included_p = 1;
ca5f395d 17583 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17584 {
17585 if (last_subfile != current_subfile)
17586 {
252a6764
DE
17587 dwarf_finish_line (gdbarch, last_subfile,
17588 address, p_record_line);
fbf65064 17589 }
a05a36a5
DE
17590 if (dwarf_record_line_p (line, last_line,
17591 line_has_non_zero_discriminator,
17592 last_subfile))
17593 {
17594 dwarf_record_line (gdbarch, current_subfile,
17595 line, address, p_record_line);
17596 }
17597 last_subfile = current_subfile;
17598 last_line = line;
366da635 17599 }
25e43795 17600 }
a05a36a5 17601 discriminator = 0;
9aa1fe7e
GK
17602 }
17603 else switch (op_code)
c906108c
SS
17604 {
17605 case DW_LNS_extended_op:
3e43a32a
MS
17606 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17607 &bytes_read);
473b7be6 17608 line_ptr += bytes_read;
a8c50c1f 17609 extended_end = line_ptr + extended_len;
c906108c
SS
17610 extended_op = read_1_byte (abfd, line_ptr);
17611 line_ptr += 1;
17612 switch (extended_op)
17613 {
17614 case DW_LNE_end_sequence:
c91513d8 17615 p_record_line = record_line;
c906108c 17616 end_sequence = 1;
c906108c
SS
17617 break;
17618 case DW_LNE_set_address:
e7c27a73 17619 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17620
c3b7b696
YQ
17621 /* If address < lowpc then it's not a usable value, it's
17622 outside the pc range of the CU. However, we restrict
17623 the test to only address values of zero to preserve
17624 GDB's previous behaviour which is to handle the specific
17625 case of a function being GC'd by the linker. */
17626 if (address == 0 && address < lowpc)
c91513d8
PP
17627 {
17628 /* This line table is for a function which has been
17629 GCd by the linker. Ignore it. PR gdb/12528 */
17630
17631 long line_offset
36586728 17632 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17633
17634 complaint (&symfile_complaints,
17635 _(".debug_line address at offset 0x%lx is 0 "
17636 "[in module %s]"),
4262abfb 17637 line_offset, objfile_name (objfile));
c91513d8 17638 p_record_line = noop_record_line;
37780ee5
DE
17639 /* Note: p_record_line is left as noop_record_line
17640 until we see DW_LNE_end_sequence. */
c91513d8
PP
17641 }
17642
2dc7f7b3 17643 op_index = 0;
107d2387
AC
17644 line_ptr += bytes_read;
17645 address += baseaddr;
3e29f34a 17646 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
c906108c
SS
17647 break;
17648 case DW_LNE_define_file:
debd256d 17649 {
d521ce57 17650 const char *cur_file;
debd256d 17651 unsigned int dir_index, mod_time, length;
6e70227d 17652
3e43a32a
MS
17653 cur_file = read_direct_string (abfd, line_ptr,
17654 &bytes_read);
debd256d
JB
17655 line_ptr += bytes_read;
17656 dir_index =
17657 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17658 line_ptr += bytes_read;
17659 mod_time =
17660 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17661 line_ptr += bytes_read;
17662 length =
17663 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17664 line_ptr += bytes_read;
17665 add_file_name (lh, cur_file, dir_index, mod_time, length);
17666 }
c906108c 17667 break;
d0c6ba3d
CC
17668 case DW_LNE_set_discriminator:
17669 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17670 just ignore it. We still need to check its value though:
17671 if there are consecutive entries for the same
17672 (non-prologue) line we want to coalesce them.
17673 PR 17276. */
17674 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17675 &bytes_read);
17676 line_has_non_zero_discriminator |= discriminator != 0;
17677 line_ptr += bytes_read;
d0c6ba3d 17678 break;
c906108c 17679 default:
4d3c2250 17680 complaint (&symfile_complaints,
e2e0b3e5 17681 _("mangled .debug_line section"));
debd256d 17682 return;
c906108c 17683 }
a8c50c1f
DJ
17684 /* Make sure that we parsed the extended op correctly. If e.g.
17685 we expected a different address size than the producer used,
17686 we may have read the wrong number of bytes. */
17687 if (line_ptr != extended_end)
17688 {
17689 complaint (&symfile_complaints,
17690 _("mangled .debug_line section"));
17691 return;
17692 }
c906108c
SS
17693 break;
17694 case DW_LNS_copy:
59205f5a 17695 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17696 dwarf2_debug_line_missing_file_complaint ();
17697 else
366da635 17698 {
25e43795 17699 lh->file_names[file - 1].included_p = 1;
ca5f395d 17700 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17701 {
17702 if (last_subfile != current_subfile)
17703 {
252a6764
DE
17704 dwarf_finish_line (gdbarch, last_subfile,
17705 address, p_record_line);
fbf65064 17706 }
a05a36a5
DE
17707 if (dwarf_record_line_p (line, last_line,
17708 line_has_non_zero_discriminator,
17709 last_subfile))
17710 {
17711 dwarf_record_line (gdbarch, current_subfile,
17712 line, address, p_record_line);
17713 }
17714 last_subfile = current_subfile;
17715 last_line = line;
fbf65064 17716 }
366da635 17717 }
a05a36a5 17718 discriminator = 0;
c906108c
SS
17719 break;
17720 case DW_LNS_advance_pc:
2dc7f7b3
TT
17721 {
17722 CORE_ADDR adjust
17723 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17724 CORE_ADDR addr_adj;
2dc7f7b3 17725
3e29f34a 17726 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17727 / lh->maximum_ops_per_instruction)
17728 * lh->minimum_instruction_length);
3e29f34a 17729 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17730 op_index = ((op_index + adjust)
17731 % lh->maximum_ops_per_instruction);
17732 line_ptr += bytes_read;
17733 }
c906108c
SS
17734 break;
17735 case DW_LNS_advance_line:
a05a36a5
DE
17736 {
17737 int line_delta
17738 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17739
17740 line += line_delta;
17741 if (line_delta != 0)
17742 line_has_non_zero_discriminator = discriminator != 0;
17743 line_ptr += bytes_read;
17744 }
c906108c
SS
17745 break;
17746 case DW_LNS_set_file:
debd256d 17747 {
a738430d
MK
17748 /* The arrays lh->include_dirs and lh->file_names are
17749 0-based, but the directory and file name numbers in
17750 the statement program are 1-based. */
debd256d 17751 struct file_entry *fe;
d521ce57 17752 const char *dir = NULL;
a738430d 17753
debd256d
JB
17754 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17755 line_ptr += bytes_read;
59205f5a 17756 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17757 dwarf2_debug_line_missing_file_complaint ();
17758 else
17759 {
17760 fe = &lh->file_names[file - 1];
17761 if (fe->dir_index)
17762 dir = lh->include_dirs[fe->dir_index - 1];
17763 if (!decode_for_pst_p)
17764 {
17765 last_subfile = current_subfile;
a05a36a5 17766 line_has_non_zero_discriminator = discriminator != 0;
4d663531 17767 dwarf2_start_subfile (fe->name, dir);
25e43795
DJ
17768 }
17769 }
debd256d 17770 }
c906108c
SS
17771 break;
17772 case DW_LNS_set_column:
0ad93d4f 17773 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17774 line_ptr += bytes_read;
17775 break;
17776 case DW_LNS_negate_stmt:
17777 is_stmt = (!is_stmt);
17778 break;
17779 case DW_LNS_set_basic_block:
c906108c 17780 break;
c2c6d25f
JM
17781 /* Add to the address register of the state machine the
17782 address increment value corresponding to special opcode
a738430d
MK
17783 255. I.e., this value is scaled by the minimum
17784 instruction length since special opcode 255 would have
b021a221 17785 scaled the increment. */
c906108c 17786 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17787 {
17788 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 17789 CORE_ADDR addr_adj;
2dc7f7b3 17790
3e29f34a 17791 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17792 / lh->maximum_ops_per_instruction)
17793 * lh->minimum_instruction_length);
3e29f34a 17794 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17795 op_index = ((op_index + adjust)
17796 % lh->maximum_ops_per_instruction);
17797 }
c906108c
SS
17798 break;
17799 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
17800 {
17801 CORE_ADDR addr_adj;
17802
17803 addr_adj = read_2_bytes (abfd, line_ptr);
17804 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17805 op_index = 0;
17806 line_ptr += 2;
17807 }
c906108c 17808 break;
9aa1fe7e 17809 default:
a738430d
MK
17810 {
17811 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17812 int i;
a738430d 17813
debd256d 17814 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17815 {
17816 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17817 line_ptr += bytes_read;
17818 }
17819 }
c906108c
SS
17820 }
17821 }
59205f5a
JB
17822 if (lh->num_file_names < file || file == 0)
17823 dwarf2_debug_line_missing_file_complaint ();
17824 else
17825 {
17826 lh->file_names[file - 1].included_p = 1;
17827 if (!decode_for_pst_p)
fbf65064 17828 {
252a6764
DE
17829 dwarf_finish_line (gdbarch, current_subfile, address,
17830 p_record_line);
fbf65064 17831 }
59205f5a 17832 }
c906108c 17833 }
f3f5162e
DE
17834}
17835
17836/* Decode the Line Number Program (LNP) for the given line_header
17837 structure and CU. The actual information extracted and the type
17838 of structures created from the LNP depends on the value of PST.
17839
17840 1. If PST is NULL, then this procedure uses the data from the program
17841 to create all necessary symbol tables, and their linetables.
17842
17843 2. If PST is not NULL, this procedure reads the program to determine
17844 the list of files included by the unit represented by PST, and
17845 builds all the associated partial symbol tables.
17846
17847 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17848 It is used for relative paths in the line table.
17849 NOTE: When processing partial symtabs (pst != NULL),
17850 comp_dir == pst->dirname.
17851
17852 NOTE: It is important that psymtabs have the same file name (via strcmp)
17853 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17854 symtab we don't use it in the name of the psymtabs we create.
17855 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17856 A good testcase for this is mb-inline.exp.
17857
527f3840
JK
17858 LOWPC is the lowest address in CU (or 0 if not known).
17859
17860 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17861 for its PC<->lines mapping information. Otherwise only the filename
17862 table is read in. */
f3f5162e
DE
17863
17864static void
17865dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 17866 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 17867 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
17868{
17869 struct objfile *objfile = cu->objfile;
17870 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17871
527f3840
JK
17872 if (decode_mapping)
17873 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17874
17875 if (decode_for_pst_p)
17876 {
17877 int file_index;
17878
17879 /* Now that we're done scanning the Line Header Program, we can
17880 create the psymtab of each included file. */
17881 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17882 if (lh->file_names[file_index].included_p == 1)
17883 {
d521ce57 17884 const char *include_name =
c6da4cef
DE
17885 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17886 if (include_name != NULL)
aaa75496
JB
17887 dwarf2_create_include_psymtab (include_name, pst, objfile);
17888 }
17889 }
cb1df416
DJ
17890 else
17891 {
17892 /* Make sure a symtab is created for every file, even files
17893 which contain only variables (i.e. no code with associated
17894 line numbers). */
43f3e411 17895 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 17896 int i;
cb1df416
DJ
17897
17898 for (i = 0; i < lh->num_file_names; i++)
17899 {
d521ce57 17900 const char *dir = NULL;
f3f5162e 17901 struct file_entry *fe;
9a619af0 17902
cb1df416
DJ
17903 fe = &lh->file_names[i];
17904 if (fe->dir_index)
17905 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 17906 dwarf2_start_subfile (fe->name, dir);
cb1df416 17907
cb1df416 17908 if (current_subfile->symtab == NULL)
43f3e411
DE
17909 {
17910 current_subfile->symtab
17911 = allocate_symtab (cust, current_subfile->name);
17912 }
cb1df416
DJ
17913 fe->symtab = current_subfile->symtab;
17914 }
17915 }
c906108c
SS
17916}
17917
17918/* Start a subfile for DWARF. FILENAME is the name of the file and
17919 DIRNAME the name of the source directory which contains FILENAME
4d663531 17920 or NULL if not known.
c906108c
SS
17921 This routine tries to keep line numbers from identical absolute and
17922 relative file names in a common subfile.
17923
17924 Using the `list' example from the GDB testsuite, which resides in
17925 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17926 of /srcdir/list0.c yields the following debugging information for list0.c:
17927
c5aa993b 17928 DW_AT_name: /srcdir/list0.c
4d663531 17929 DW_AT_comp_dir: /compdir
357e46e7 17930 files.files[0].name: list0.h
c5aa993b 17931 files.files[0].dir: /srcdir
357e46e7 17932 files.files[1].name: list0.c
c5aa993b 17933 files.files[1].dir: /srcdir
c906108c
SS
17934
17935 The line number information for list0.c has to end up in a single
4f1520fb
FR
17936 subfile, so that `break /srcdir/list0.c:1' works as expected.
17937 start_subfile will ensure that this happens provided that we pass the
17938 concatenation of files.files[1].dir and files.files[1].name as the
17939 subfile's name. */
c906108c
SS
17940
17941static void
4d663531 17942dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 17943{
d521ce57 17944 char *copy = NULL;
4f1520fb 17945
4d663531 17946 /* In order not to lose the line information directory,
4f1520fb
FR
17947 we concatenate it to the filename when it makes sense.
17948 Note that the Dwarf3 standard says (speaking of filenames in line
17949 information): ``The directory index is ignored for file names
17950 that represent full path names''. Thus ignoring dirname in the
17951 `else' branch below isn't an issue. */
c906108c 17952
d5166ae1 17953 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17954 {
17955 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17956 filename = copy;
17957 }
c906108c 17958
4d663531 17959 start_subfile (filename);
4f1520fb 17960
d521ce57
TT
17961 if (copy != NULL)
17962 xfree (copy);
c906108c
SS
17963}
17964
f4dc4d17
DE
17965/* Start a symtab for DWARF.
17966 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17967
43f3e411 17968static struct compunit_symtab *
f4dc4d17 17969dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17970 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 17971{
43f3e411
DE
17972 struct compunit_symtab *cust
17973 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17974
f4dc4d17
DE
17975 record_debugformat ("DWARF 2");
17976 record_producer (cu->producer);
17977
17978 /* We assume that we're processing GCC output. */
17979 processing_gcc_compilation = 2;
17980
4d4ec4e5 17981 cu->processing_has_namespace_info = 0;
43f3e411
DE
17982
17983 return cust;
f4dc4d17
DE
17984}
17985
4c2df51b
DJ
17986static void
17987var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17988 struct dwarf2_cu *cu)
4c2df51b 17989{
e7c27a73
DJ
17990 struct objfile *objfile = cu->objfile;
17991 struct comp_unit_head *cu_header = &cu->header;
17992
4c2df51b
DJ
17993 /* NOTE drow/2003-01-30: There used to be a comment and some special
17994 code here to turn a symbol with DW_AT_external and a
17995 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17996 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17997 with some versions of binutils) where shared libraries could have
17998 relocations against symbols in their debug information - the
17999 minimal symbol would have the right address, but the debug info
18000 would not. It's no longer necessary, because we will explicitly
18001 apply relocations when we read in the debug information now. */
18002
18003 /* A DW_AT_location attribute with no contents indicates that a
18004 variable has been optimized away. */
18005 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18006 {
f1e6e072 18007 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18008 return;
18009 }
18010
18011 /* Handle one degenerate form of location expression specially, to
18012 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18013 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18014 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18015
18016 if (attr_form_is_block (attr)
3019eac3
DE
18017 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18018 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18019 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18020 && (DW_BLOCK (attr)->size
18021 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18022 {
891d2f0b 18023 unsigned int dummy;
4c2df51b 18024
3019eac3
DE
18025 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18026 SYMBOL_VALUE_ADDRESS (sym) =
18027 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18028 else
18029 SYMBOL_VALUE_ADDRESS (sym) =
18030 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18031 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18032 fixup_symbol_section (sym, objfile);
18033 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18034 SYMBOL_SECTION (sym));
4c2df51b
DJ
18035 return;
18036 }
18037
18038 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18039 expression evaluator, and use LOC_COMPUTED only when necessary
18040 (i.e. when the value of a register or memory location is
18041 referenced, or a thread-local block, etc.). Then again, it might
18042 not be worthwhile. I'm assuming that it isn't unless performance
18043 or memory numbers show me otherwise. */
18044
f1e6e072 18045 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18046
f1e6e072 18047 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18048 cu->has_loclist = 1;
4c2df51b
DJ
18049}
18050
c906108c
SS
18051/* Given a pointer to a DWARF information entry, figure out if we need
18052 to make a symbol table entry for it, and if so, create a new entry
18053 and return a pointer to it.
18054 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18055 used the passed type.
18056 If SPACE is not NULL, use it to hold the new symbol. If it is
18057 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18058
18059static struct symbol *
34eaf542
TT
18060new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18061 struct symbol *space)
c906108c 18062{
e7c27a73 18063 struct objfile *objfile = cu->objfile;
3e29f34a 18064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18065 struct symbol *sym = NULL;
15d034d0 18066 const char *name;
c906108c
SS
18067 struct attribute *attr = NULL;
18068 struct attribute *attr2 = NULL;
e142c38c 18069 CORE_ADDR baseaddr;
e37fd15a
SW
18070 struct pending **list_to_add = NULL;
18071
edb3359d 18072 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18073
18074 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18075
94af9270 18076 name = dwarf2_name (die, cu);
c906108c
SS
18077 if (name)
18078 {
94af9270 18079 const char *linkagename;
34eaf542 18080 int suppress_add = 0;
94af9270 18081
34eaf542
TT
18082 if (space)
18083 sym = space;
18084 else
e623cf5d 18085 sym = allocate_symbol (objfile);
c906108c 18086 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18087
18088 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18089 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18090 linkagename = dwarf2_physname (name, die, cu);
18091 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18092
f55ee35c
JK
18093 /* Fortran does not have mangling standard and the mangling does differ
18094 between gfortran, iFort etc. */
18095 if (cu->language == language_fortran
b250c185 18096 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18097 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18098 dwarf2_full_name (name, die, cu),
29df156d 18099 NULL);
f55ee35c 18100
c906108c 18101 /* Default assumptions.
c5aa993b 18102 Use the passed type or decode it from the die. */
176620f1 18103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18104 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18105 if (type != NULL)
18106 SYMBOL_TYPE (sym) = type;
18107 else
e7c27a73 18108 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18109 attr = dwarf2_attr (die,
18110 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18111 cu);
c906108c
SS
18112 if (attr)
18113 {
18114 SYMBOL_LINE (sym) = DW_UNSND (attr);
18115 }
cb1df416 18116
edb3359d
DJ
18117 attr = dwarf2_attr (die,
18118 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18119 cu);
cb1df416
DJ
18120 if (attr)
18121 {
18122 int file_index = DW_UNSND (attr);
9a619af0 18123
cb1df416
DJ
18124 if (cu->line_header == NULL
18125 || file_index > cu->line_header->num_file_names)
18126 complaint (&symfile_complaints,
18127 _("file index out of range"));
1c3d648d 18128 else if (file_index > 0)
cb1df416
DJ
18129 {
18130 struct file_entry *fe;
9a619af0 18131
cb1df416 18132 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18133 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18134 }
18135 }
18136
c906108c
SS
18137 switch (die->tag)
18138 {
18139 case DW_TAG_label:
e142c38c 18140 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18141 if (attr)
3e29f34a
MR
18142 {
18143 CORE_ADDR addr;
18144
18145 addr = attr_value_as_address (attr);
18146 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18147 SYMBOL_VALUE_ADDRESS (sym) = addr;
18148 }
0f5238ed
TT
18149 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18150 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18151 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18152 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18153 break;
18154 case DW_TAG_subprogram:
18155 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18156 finish_block. */
f1e6e072 18157 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18158 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18159 if ((attr2 && (DW_UNSND (attr2) != 0))
18160 || cu->language == language_ada)
c906108c 18161 {
2cfa0c8d
JB
18162 /* Subprograms marked external are stored as a global symbol.
18163 Ada subprograms, whether marked external or not, are always
18164 stored as a global symbol, because we want to be able to
18165 access them globally. For instance, we want to be able
18166 to break on a nested subprogram without having to
18167 specify the context. */
e37fd15a 18168 list_to_add = &global_symbols;
c906108c
SS
18169 }
18170 else
18171 {
e37fd15a 18172 list_to_add = cu->list_in_scope;
c906108c
SS
18173 }
18174 break;
edb3359d
DJ
18175 case DW_TAG_inlined_subroutine:
18176 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18177 finish_block. */
f1e6e072 18178 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18179 SYMBOL_INLINED (sym) = 1;
481860b3 18180 list_to_add = cu->list_in_scope;
edb3359d 18181 break;
34eaf542
TT
18182 case DW_TAG_template_value_param:
18183 suppress_add = 1;
18184 /* Fall through. */
72929c62 18185 case DW_TAG_constant:
c906108c 18186 case DW_TAG_variable:
254e6b9e 18187 case DW_TAG_member:
0963b4bd
MS
18188 /* Compilation with minimal debug info may result in
18189 variables with missing type entries. Change the
18190 misleading `void' type to something sensible. */
c906108c 18191 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18192 SYMBOL_TYPE (sym)
46bf5051 18193 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18194
e142c38c 18195 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18196 /* In the case of DW_TAG_member, we should only be called for
18197 static const members. */
18198 if (die->tag == DW_TAG_member)
18199 {
3863f96c
DE
18200 /* dwarf2_add_field uses die_is_declaration,
18201 so we do the same. */
254e6b9e
DE
18202 gdb_assert (die_is_declaration (die, cu));
18203 gdb_assert (attr);
18204 }
c906108c
SS
18205 if (attr)
18206 {
e7c27a73 18207 dwarf2_const_value (attr, sym, cu);
e142c38c 18208 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18209 if (!suppress_add)
34eaf542
TT
18210 {
18211 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18212 list_to_add = &global_symbols;
34eaf542 18213 else
e37fd15a 18214 list_to_add = cu->list_in_scope;
34eaf542 18215 }
c906108c
SS
18216 break;
18217 }
e142c38c 18218 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18219 if (attr)
18220 {
e7c27a73 18221 var_decode_location (attr, sym, cu);
e142c38c 18222 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18223
18224 /* Fortran explicitly imports any global symbols to the local
18225 scope by DW_TAG_common_block. */
18226 if (cu->language == language_fortran && die->parent
18227 && die->parent->tag == DW_TAG_common_block)
18228 attr2 = NULL;
18229
caac4577
JG
18230 if (SYMBOL_CLASS (sym) == LOC_STATIC
18231 && SYMBOL_VALUE_ADDRESS (sym) == 0
18232 && !dwarf2_per_objfile->has_section_at_zero)
18233 {
18234 /* When a static variable is eliminated by the linker,
18235 the corresponding debug information is not stripped
18236 out, but the variable address is set to null;
18237 do not add such variables into symbol table. */
18238 }
18239 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18240 {
f55ee35c
JK
18241 /* Workaround gfortran PR debug/40040 - it uses
18242 DW_AT_location for variables in -fPIC libraries which may
18243 get overriden by other libraries/executable and get
18244 a different address. Resolve it by the minimal symbol
18245 which may come from inferior's executable using copy
18246 relocation. Make this workaround only for gfortran as for
18247 other compilers GDB cannot guess the minimal symbol
18248 Fortran mangling kind. */
18249 if (cu->language == language_fortran && die->parent
18250 && die->parent->tag == DW_TAG_module
18251 && cu->producer
18252 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 18253 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18254
1c809c68
TT
18255 /* A variable with DW_AT_external is never static,
18256 but it may be block-scoped. */
18257 list_to_add = (cu->list_in_scope == &file_symbols
18258 ? &global_symbols : cu->list_in_scope);
1c809c68 18259 }
c906108c 18260 else
e37fd15a 18261 list_to_add = cu->list_in_scope;
c906108c
SS
18262 }
18263 else
18264 {
18265 /* We do not know the address of this symbol.
c5aa993b
JM
18266 If it is an external symbol and we have type information
18267 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18268 The address of the variable will then be determined from
18269 the minimal symbol table whenever the variable is
18270 referenced. */
e142c38c 18271 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18272
18273 /* Fortran explicitly imports any global symbols to the local
18274 scope by DW_TAG_common_block. */
18275 if (cu->language == language_fortran && die->parent
18276 && die->parent->tag == DW_TAG_common_block)
18277 {
18278 /* SYMBOL_CLASS doesn't matter here because
18279 read_common_block is going to reset it. */
18280 if (!suppress_add)
18281 list_to_add = cu->list_in_scope;
18282 }
18283 else if (attr2 && (DW_UNSND (attr2) != 0)
18284 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18285 {
0fe7935b
DJ
18286 /* A variable with DW_AT_external is never static, but it
18287 may be block-scoped. */
18288 list_to_add = (cu->list_in_scope == &file_symbols
18289 ? &global_symbols : cu->list_in_scope);
18290
f1e6e072 18291 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18292 }
442ddf59
JK
18293 else if (!die_is_declaration (die, cu))
18294 {
18295 /* Use the default LOC_OPTIMIZED_OUT class. */
18296 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18297 if (!suppress_add)
18298 list_to_add = cu->list_in_scope;
442ddf59 18299 }
c906108c
SS
18300 }
18301 break;
18302 case DW_TAG_formal_parameter:
edb3359d
DJ
18303 /* If we are inside a function, mark this as an argument. If
18304 not, we might be looking at an argument to an inlined function
18305 when we do not have enough information to show inlined frames;
18306 pretend it's a local variable in that case so that the user can
18307 still see it. */
18308 if (context_stack_depth > 0
18309 && context_stack[context_stack_depth - 1].name != NULL)
18310 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18311 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18312 if (attr)
18313 {
e7c27a73 18314 var_decode_location (attr, sym, cu);
c906108c 18315 }
e142c38c 18316 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18317 if (attr)
18318 {
e7c27a73 18319 dwarf2_const_value (attr, sym, cu);
c906108c 18320 }
f346a30d 18321
e37fd15a 18322 list_to_add = cu->list_in_scope;
c906108c
SS
18323 break;
18324 case DW_TAG_unspecified_parameters:
18325 /* From varargs functions; gdb doesn't seem to have any
18326 interest in this information, so just ignore it for now.
18327 (FIXME?) */
18328 break;
34eaf542
TT
18329 case DW_TAG_template_type_param:
18330 suppress_add = 1;
18331 /* Fall through. */
c906108c 18332 case DW_TAG_class_type:
680b30c7 18333 case DW_TAG_interface_type:
c906108c
SS
18334 case DW_TAG_structure_type:
18335 case DW_TAG_union_type:
72019c9c 18336 case DW_TAG_set_type:
c906108c 18337 case DW_TAG_enumeration_type:
f1e6e072 18338 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18339 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18340
63d06c5c 18341 {
987504bb 18342 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18343 really ever be static objects: otherwise, if you try
18344 to, say, break of a class's method and you're in a file
18345 which doesn't mention that class, it won't work unless
18346 the check for all static symbols in lookup_symbol_aux
18347 saves you. See the OtherFileClass tests in
18348 gdb.c++/namespace.exp. */
18349
e37fd15a 18350 if (!suppress_add)
34eaf542 18351 {
34eaf542
TT
18352 list_to_add = (cu->list_in_scope == &file_symbols
18353 && (cu->language == language_cplus
18354 || cu->language == language_java)
18355 ? &global_symbols : cu->list_in_scope);
63d06c5c 18356
64382290
TT
18357 /* The semantics of C++ state that "struct foo {
18358 ... }" also defines a typedef for "foo". A Java
18359 class declaration also defines a typedef for the
18360 class. */
18361 if (cu->language == language_cplus
18362 || cu->language == language_java
18363 || cu->language == language_ada)
18364 {
18365 /* The symbol's name is already allocated along
18366 with this objfile, so we don't need to
18367 duplicate it for the type. */
18368 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18369 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18370 }
63d06c5c
DC
18371 }
18372 }
c906108c
SS
18373 break;
18374 case DW_TAG_typedef:
f1e6e072 18375 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18377 list_to_add = cu->list_in_scope;
63d06c5c 18378 break;
c906108c 18379 case DW_TAG_base_type:
a02abb62 18380 case DW_TAG_subrange_type:
f1e6e072 18381 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18382 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18383 list_to_add = cu->list_in_scope;
c906108c
SS
18384 break;
18385 case DW_TAG_enumerator:
e142c38c 18386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18387 if (attr)
18388 {
e7c27a73 18389 dwarf2_const_value (attr, sym, cu);
c906108c 18390 }
63d06c5c
DC
18391 {
18392 /* NOTE: carlton/2003-11-10: See comment above in the
18393 DW_TAG_class_type, etc. block. */
18394
e142c38c 18395 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18396 && (cu->language == language_cplus
18397 || cu->language == language_java)
e142c38c 18398 ? &global_symbols : cu->list_in_scope);
63d06c5c 18399 }
c906108c 18400 break;
74921315 18401 case DW_TAG_imported_declaration:
5c4e30ca 18402 case DW_TAG_namespace:
f1e6e072 18403 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18404 list_to_add = &global_symbols;
5c4e30ca 18405 break;
530e8392
KB
18406 case DW_TAG_module:
18407 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18408 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18409 list_to_add = &global_symbols;
18410 break;
4357ac6c 18411 case DW_TAG_common_block:
f1e6e072 18412 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18413 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18414 add_symbol_to_list (sym, cu->list_in_scope);
18415 break;
c906108c
SS
18416 default:
18417 /* Not a tag we recognize. Hopefully we aren't processing
18418 trash data, but since we must specifically ignore things
18419 we don't recognize, there is nothing else we should do at
0963b4bd 18420 this point. */
e2e0b3e5 18421 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18422 dwarf_tag_name (die->tag));
c906108c
SS
18423 break;
18424 }
df8a16a1 18425
e37fd15a
SW
18426 if (suppress_add)
18427 {
18428 sym->hash_next = objfile->template_symbols;
18429 objfile->template_symbols = sym;
18430 list_to_add = NULL;
18431 }
18432
18433 if (list_to_add != NULL)
18434 add_symbol_to_list (sym, list_to_add);
18435
df8a16a1
DJ
18436 /* For the benefit of old versions of GCC, check for anonymous
18437 namespaces based on the demangled name. */
4d4ec4e5 18438 if (!cu->processing_has_namespace_info
94af9270 18439 && cu->language == language_cplus)
a10964d1 18440 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18441 }
18442 return (sym);
18443}
18444
34eaf542
TT
18445/* A wrapper for new_symbol_full that always allocates a new symbol. */
18446
18447static struct symbol *
18448new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18449{
18450 return new_symbol_full (die, type, cu, NULL);
18451}
18452
98bfdba5
PA
18453/* Given an attr with a DW_FORM_dataN value in host byte order,
18454 zero-extend it as appropriate for the symbol's type. The DWARF
18455 standard (v4) is not entirely clear about the meaning of using
18456 DW_FORM_dataN for a constant with a signed type, where the type is
18457 wider than the data. The conclusion of a discussion on the DWARF
18458 list was that this is unspecified. We choose to always zero-extend
18459 because that is the interpretation long in use by GCC. */
c906108c 18460
98bfdba5 18461static gdb_byte *
ff39bb5e 18462dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18463 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18464{
e7c27a73 18465 struct objfile *objfile = cu->objfile;
e17a4113
UW
18466 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18467 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18468 LONGEST l = DW_UNSND (attr);
18469
18470 if (bits < sizeof (*value) * 8)
18471 {
18472 l &= ((LONGEST) 1 << bits) - 1;
18473 *value = l;
18474 }
18475 else if (bits == sizeof (*value) * 8)
18476 *value = l;
18477 else
18478 {
18479 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18480 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18481 return bytes;
18482 }
18483
18484 return NULL;
18485}
18486
18487/* Read a constant value from an attribute. Either set *VALUE, or if
18488 the value does not fit in *VALUE, set *BYTES - either already
18489 allocated on the objfile obstack, or newly allocated on OBSTACK,
18490 or, set *BATON, if we translated the constant to a location
18491 expression. */
18492
18493static void
ff39bb5e 18494dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18495 const char *name, struct obstack *obstack,
18496 struct dwarf2_cu *cu,
d521ce57 18497 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18498 struct dwarf2_locexpr_baton **baton)
18499{
18500 struct objfile *objfile = cu->objfile;
18501 struct comp_unit_head *cu_header = &cu->header;
c906108c 18502 struct dwarf_block *blk;
98bfdba5
PA
18503 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18504 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18505
18506 *value = 0;
18507 *bytes = NULL;
18508 *baton = NULL;
c906108c
SS
18509
18510 switch (attr->form)
18511 {
18512 case DW_FORM_addr:
3019eac3 18513 case DW_FORM_GNU_addr_index:
ac56253d 18514 {
ac56253d
TT
18515 gdb_byte *data;
18516
98bfdba5
PA
18517 if (TYPE_LENGTH (type) != cu_header->addr_size)
18518 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18519 cu_header->addr_size,
98bfdba5 18520 TYPE_LENGTH (type));
ac56253d
TT
18521 /* Symbols of this form are reasonably rare, so we just
18522 piggyback on the existing location code rather than writing
18523 a new implementation of symbol_computed_ops. */
7919a973 18524 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18525 (*baton)->per_cu = cu->per_cu;
18526 gdb_assert ((*baton)->per_cu);
ac56253d 18527
98bfdba5 18528 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18529 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18530 (*baton)->data = data;
ac56253d
TT
18531
18532 data[0] = DW_OP_addr;
18533 store_unsigned_integer (&data[1], cu_header->addr_size,
18534 byte_order, DW_ADDR (attr));
18535 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18536 }
c906108c 18537 break;
4ac36638 18538 case DW_FORM_string:
93b5768b 18539 case DW_FORM_strp:
3019eac3 18540 case DW_FORM_GNU_str_index:
36586728 18541 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18542 /* DW_STRING is already allocated on the objfile obstack, point
18543 directly to it. */
d521ce57 18544 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18545 break;
c906108c
SS
18546 case DW_FORM_block1:
18547 case DW_FORM_block2:
18548 case DW_FORM_block4:
18549 case DW_FORM_block:
2dc7f7b3 18550 case DW_FORM_exprloc:
c906108c 18551 blk = DW_BLOCK (attr);
98bfdba5
PA
18552 if (TYPE_LENGTH (type) != blk->size)
18553 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18554 TYPE_LENGTH (type));
18555 *bytes = blk->data;
c906108c 18556 break;
2df3850c
JM
18557
18558 /* The DW_AT_const_value attributes are supposed to carry the
18559 symbol's value "represented as it would be on the target
18560 architecture." By the time we get here, it's already been
18561 converted to host endianness, so we just need to sign- or
18562 zero-extend it as appropriate. */
18563 case DW_FORM_data1:
3aef2284 18564 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18565 break;
c906108c 18566 case DW_FORM_data2:
3aef2284 18567 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18568 break;
c906108c 18569 case DW_FORM_data4:
3aef2284 18570 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18571 break;
c906108c 18572 case DW_FORM_data8:
3aef2284 18573 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18574 break;
18575
c906108c 18576 case DW_FORM_sdata:
98bfdba5 18577 *value = DW_SND (attr);
2df3850c
JM
18578 break;
18579
c906108c 18580 case DW_FORM_udata:
98bfdba5 18581 *value = DW_UNSND (attr);
c906108c 18582 break;
2df3850c 18583
c906108c 18584 default:
4d3c2250 18585 complaint (&symfile_complaints,
e2e0b3e5 18586 _("unsupported const value attribute form: '%s'"),
4d3c2250 18587 dwarf_form_name (attr->form));
98bfdba5 18588 *value = 0;
c906108c
SS
18589 break;
18590 }
18591}
18592
2df3850c 18593
98bfdba5
PA
18594/* Copy constant value from an attribute to a symbol. */
18595
2df3850c 18596static void
ff39bb5e 18597dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18598 struct dwarf2_cu *cu)
2df3850c 18599{
98bfdba5
PA
18600 struct objfile *objfile = cu->objfile;
18601 struct comp_unit_head *cu_header = &cu->header;
12df843f 18602 LONGEST value;
d521ce57 18603 const gdb_byte *bytes;
98bfdba5 18604 struct dwarf2_locexpr_baton *baton;
2df3850c 18605
98bfdba5
PA
18606 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18607 SYMBOL_PRINT_NAME (sym),
18608 &objfile->objfile_obstack, cu,
18609 &value, &bytes, &baton);
2df3850c 18610
98bfdba5
PA
18611 if (baton != NULL)
18612 {
98bfdba5 18613 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18614 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18615 }
18616 else if (bytes != NULL)
18617 {
18618 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18619 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18620 }
18621 else
18622 {
18623 SYMBOL_VALUE (sym) = value;
f1e6e072 18624 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18625 }
2df3850c
JM
18626}
18627
c906108c
SS
18628/* Return the type of the die in question using its DW_AT_type attribute. */
18629
18630static struct type *
e7c27a73 18631die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18632{
c906108c 18633 struct attribute *type_attr;
c906108c 18634
e142c38c 18635 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18636 if (!type_attr)
18637 {
18638 /* A missing DW_AT_type represents a void type. */
46bf5051 18639 return objfile_type (cu->objfile)->builtin_void;
c906108c 18640 }
348e048f 18641
673bfd45 18642 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18643}
18644
b4ba55a1
JB
18645/* True iff CU's producer generates GNAT Ada auxiliary information
18646 that allows to find parallel types through that information instead
18647 of having to do expensive parallel lookups by type name. */
18648
18649static int
18650need_gnat_info (struct dwarf2_cu *cu)
18651{
18652 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18653 of GNAT produces this auxiliary information, without any indication
18654 that it is produced. Part of enhancing the FSF version of GNAT
18655 to produce that information will be to put in place an indicator
18656 that we can use in order to determine whether the descriptive type
18657 info is available or not. One suggestion that has been made is
18658 to use a new attribute, attached to the CU die. For now, assume
18659 that the descriptive type info is not available. */
18660 return 0;
18661}
18662
b4ba55a1
JB
18663/* Return the auxiliary type of the die in question using its
18664 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18665 attribute is not present. */
18666
18667static struct type *
18668die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18669{
b4ba55a1 18670 struct attribute *type_attr;
b4ba55a1
JB
18671
18672 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18673 if (!type_attr)
18674 return NULL;
18675
673bfd45 18676 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18677}
18678
18679/* If DIE has a descriptive_type attribute, then set the TYPE's
18680 descriptive type accordingly. */
18681
18682static void
18683set_descriptive_type (struct type *type, struct die_info *die,
18684 struct dwarf2_cu *cu)
18685{
18686 struct type *descriptive_type = die_descriptive_type (die, cu);
18687
18688 if (descriptive_type)
18689 {
18690 ALLOCATE_GNAT_AUX_TYPE (type);
18691 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18692 }
18693}
18694
c906108c
SS
18695/* Return the containing type of the die in question using its
18696 DW_AT_containing_type attribute. */
18697
18698static struct type *
e7c27a73 18699die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18700{
c906108c 18701 struct attribute *type_attr;
c906108c 18702
e142c38c 18703 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18704 if (!type_attr)
18705 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18706 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18707
673bfd45 18708 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18709}
18710
ac9ec31b
DE
18711/* Return an error marker type to use for the ill formed type in DIE/CU. */
18712
18713static struct type *
18714build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18715{
18716 struct objfile *objfile = dwarf2_per_objfile->objfile;
18717 char *message, *saved;
18718
18719 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18720 objfile_name (objfile),
ac9ec31b
DE
18721 cu->header.offset.sect_off,
18722 die->offset.sect_off);
18723 saved = obstack_copy0 (&objfile->objfile_obstack,
18724 message, strlen (message));
18725 xfree (message);
18726
18727 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18728}
18729
673bfd45 18730/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18731 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18732 DW_AT_containing_type.
673bfd45
DE
18733 If there is no type substitute an error marker. */
18734
c906108c 18735static struct type *
ff39bb5e 18736lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18737 struct dwarf2_cu *cu)
c906108c 18738{
bb5ed363 18739 struct objfile *objfile = cu->objfile;
f792889a
DJ
18740 struct type *this_type;
18741
ac9ec31b
DE
18742 gdb_assert (attr->name == DW_AT_type
18743 || attr->name == DW_AT_GNAT_descriptive_type
18744 || attr->name == DW_AT_containing_type);
18745
673bfd45
DE
18746 /* First see if we have it cached. */
18747
36586728
TT
18748 if (attr->form == DW_FORM_GNU_ref_alt)
18749 {
18750 struct dwarf2_per_cu_data *per_cu;
18751 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18752
18753 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18754 this_type = get_die_type_at_offset (offset, per_cu);
18755 }
7771576e 18756 else if (attr_form_is_ref (attr))
673bfd45 18757 {
b64f50a1 18758 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18759
18760 this_type = get_die_type_at_offset (offset, cu->per_cu);
18761 }
55f1336d 18762 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18763 {
ac9ec31b 18764 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18765
ac9ec31b 18766 return get_signatured_type (die, signature, cu);
673bfd45
DE
18767 }
18768 else
18769 {
ac9ec31b
DE
18770 complaint (&symfile_complaints,
18771 _("Dwarf Error: Bad type attribute %s in DIE"
18772 " at 0x%x [in module %s]"),
18773 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18774 objfile_name (objfile));
ac9ec31b 18775 return build_error_marker_type (cu, die);
673bfd45
DE
18776 }
18777
18778 /* If not cached we need to read it in. */
18779
18780 if (this_type == NULL)
18781 {
ac9ec31b 18782 struct die_info *type_die = NULL;
673bfd45
DE
18783 struct dwarf2_cu *type_cu = cu;
18784
7771576e 18785 if (attr_form_is_ref (attr))
ac9ec31b
DE
18786 type_die = follow_die_ref (die, attr, &type_cu);
18787 if (type_die == NULL)
18788 return build_error_marker_type (cu, die);
18789 /* If we find the type now, it's probably because the type came
3019eac3
DE
18790 from an inter-CU reference and the type's CU got expanded before
18791 ours. */
ac9ec31b 18792 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18793 }
18794
18795 /* If we still don't have a type use an error marker. */
18796
18797 if (this_type == NULL)
ac9ec31b 18798 return build_error_marker_type (cu, die);
673bfd45 18799
f792889a 18800 return this_type;
c906108c
SS
18801}
18802
673bfd45
DE
18803/* Return the type in DIE, CU.
18804 Returns NULL for invalid types.
18805
02142a6c 18806 This first does a lookup in die_type_hash,
673bfd45
DE
18807 and only reads the die in if necessary.
18808
18809 NOTE: This can be called when reading in partial or full symbols. */
18810
f792889a 18811static struct type *
e7c27a73 18812read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18813{
f792889a
DJ
18814 struct type *this_type;
18815
18816 this_type = get_die_type (die, cu);
18817 if (this_type)
18818 return this_type;
18819
673bfd45
DE
18820 return read_type_die_1 (die, cu);
18821}
18822
18823/* Read the type in DIE, CU.
18824 Returns NULL for invalid types. */
18825
18826static struct type *
18827read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18828{
18829 struct type *this_type = NULL;
18830
c906108c
SS
18831 switch (die->tag)
18832 {
18833 case DW_TAG_class_type:
680b30c7 18834 case DW_TAG_interface_type:
c906108c
SS
18835 case DW_TAG_structure_type:
18836 case DW_TAG_union_type:
f792889a 18837 this_type = read_structure_type (die, cu);
c906108c
SS
18838 break;
18839 case DW_TAG_enumeration_type:
f792889a 18840 this_type = read_enumeration_type (die, cu);
c906108c
SS
18841 break;
18842 case DW_TAG_subprogram:
18843 case DW_TAG_subroutine_type:
edb3359d 18844 case DW_TAG_inlined_subroutine:
f792889a 18845 this_type = read_subroutine_type (die, cu);
c906108c
SS
18846 break;
18847 case DW_TAG_array_type:
f792889a 18848 this_type = read_array_type (die, cu);
c906108c 18849 break;
72019c9c 18850 case DW_TAG_set_type:
f792889a 18851 this_type = read_set_type (die, cu);
72019c9c 18852 break;
c906108c 18853 case DW_TAG_pointer_type:
f792889a 18854 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18855 break;
18856 case DW_TAG_ptr_to_member_type:
f792889a 18857 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18858 break;
18859 case DW_TAG_reference_type:
f792889a 18860 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18861 break;
18862 case DW_TAG_const_type:
f792889a 18863 this_type = read_tag_const_type (die, cu);
c906108c
SS
18864 break;
18865 case DW_TAG_volatile_type:
f792889a 18866 this_type = read_tag_volatile_type (die, cu);
c906108c 18867 break;
06d66ee9
TT
18868 case DW_TAG_restrict_type:
18869 this_type = read_tag_restrict_type (die, cu);
18870 break;
c906108c 18871 case DW_TAG_string_type:
f792889a 18872 this_type = read_tag_string_type (die, cu);
c906108c
SS
18873 break;
18874 case DW_TAG_typedef:
f792889a 18875 this_type = read_typedef (die, cu);
c906108c 18876 break;
a02abb62 18877 case DW_TAG_subrange_type:
f792889a 18878 this_type = read_subrange_type (die, cu);
a02abb62 18879 break;
c906108c 18880 case DW_TAG_base_type:
f792889a 18881 this_type = read_base_type (die, cu);
c906108c 18882 break;
81a17f79 18883 case DW_TAG_unspecified_type:
f792889a 18884 this_type = read_unspecified_type (die, cu);
81a17f79 18885 break;
0114d602
DJ
18886 case DW_TAG_namespace:
18887 this_type = read_namespace_type (die, cu);
18888 break;
f55ee35c
JK
18889 case DW_TAG_module:
18890 this_type = read_module_type (die, cu);
18891 break;
a2c2acaf
MW
18892 case DW_TAG_atomic_type:
18893 this_type = read_tag_atomic_type (die, cu);
18894 break;
c906108c 18895 default:
3e43a32a
MS
18896 complaint (&symfile_complaints,
18897 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18898 dwarf_tag_name (die->tag));
c906108c
SS
18899 break;
18900 }
63d06c5c 18901
f792889a 18902 return this_type;
63d06c5c
DC
18903}
18904
abc72ce4
DE
18905/* See if we can figure out if the class lives in a namespace. We do
18906 this by looking for a member function; its demangled name will
18907 contain namespace info, if there is any.
18908 Return the computed name or NULL.
18909 Space for the result is allocated on the objfile's obstack.
18910 This is the full-die version of guess_partial_die_structure_name.
18911 In this case we know DIE has no useful parent. */
18912
18913static char *
18914guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18915{
18916 struct die_info *spec_die;
18917 struct dwarf2_cu *spec_cu;
18918 struct die_info *child;
18919
18920 spec_cu = cu;
18921 spec_die = die_specification (die, &spec_cu);
18922 if (spec_die != NULL)
18923 {
18924 die = spec_die;
18925 cu = spec_cu;
18926 }
18927
18928 for (child = die->child;
18929 child != NULL;
18930 child = child->sibling)
18931 {
18932 if (child->tag == DW_TAG_subprogram)
18933 {
18934 struct attribute *attr;
18935
18936 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18937 if (attr == NULL)
18938 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18939 if (attr != NULL)
18940 {
18941 char *actual_name
18942 = language_class_name_from_physname (cu->language_defn,
18943 DW_STRING (attr));
18944 char *name = NULL;
18945
18946 if (actual_name != NULL)
18947 {
15d034d0 18948 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18949
18950 if (die_name != NULL
18951 && strcmp (die_name, actual_name) != 0)
18952 {
18953 /* Strip off the class name from the full name.
18954 We want the prefix. */
18955 int die_name_len = strlen (die_name);
18956 int actual_name_len = strlen (actual_name);
18957
18958 /* Test for '::' as a sanity check. */
18959 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18960 && actual_name[actual_name_len
18961 - die_name_len - 1] == ':')
abc72ce4 18962 name =
34a68019 18963 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18964 actual_name,
18965 actual_name_len - die_name_len - 2);
abc72ce4
DE
18966 }
18967 }
18968 xfree (actual_name);
18969 return name;
18970 }
18971 }
18972 }
18973
18974 return NULL;
18975}
18976
96408a79
SA
18977/* GCC might emit a nameless typedef that has a linkage name. Determine the
18978 prefix part in such case. See
18979 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18980
18981static char *
18982anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18983{
18984 struct attribute *attr;
18985 char *base;
18986
18987 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18988 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18989 return NULL;
18990
18991 attr = dwarf2_attr (die, DW_AT_name, cu);
18992 if (attr != NULL && DW_STRING (attr) != NULL)
18993 return NULL;
18994
18995 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18996 if (attr == NULL)
18997 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18998 if (attr == NULL || DW_STRING (attr) == NULL)
18999 return NULL;
19000
19001 /* dwarf2_name had to be already called. */
19002 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19003
19004 /* Strip the base name, keep any leading namespaces/classes. */
19005 base = strrchr (DW_STRING (attr), ':');
19006 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19007 return "";
19008
34a68019 19009 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 19010 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
19011}
19012
fdde2d81 19013/* Return the name of the namespace/class that DIE is defined within,
0114d602 19014 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19015
0114d602
DJ
19016 For example, if we're within the method foo() in the following
19017 code:
19018
19019 namespace N {
19020 class C {
19021 void foo () {
19022 }
19023 };
19024 }
19025
19026 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19027
0d5cff50 19028static const char *
e142c38c 19029determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19030{
0114d602
DJ
19031 struct die_info *parent, *spec_die;
19032 struct dwarf2_cu *spec_cu;
19033 struct type *parent_type;
96408a79 19034 char *retval;
63d06c5c 19035
f55ee35c
JK
19036 if (cu->language != language_cplus && cu->language != language_java
19037 && cu->language != language_fortran)
0114d602
DJ
19038 return "";
19039
96408a79
SA
19040 retval = anonymous_struct_prefix (die, cu);
19041 if (retval)
19042 return retval;
19043
0114d602
DJ
19044 /* We have to be careful in the presence of DW_AT_specification.
19045 For example, with GCC 3.4, given the code
19046
19047 namespace N {
19048 void foo() {
19049 // Definition of N::foo.
19050 }
19051 }
19052
19053 then we'll have a tree of DIEs like this:
19054
19055 1: DW_TAG_compile_unit
19056 2: DW_TAG_namespace // N
19057 3: DW_TAG_subprogram // declaration of N::foo
19058 4: DW_TAG_subprogram // definition of N::foo
19059 DW_AT_specification // refers to die #3
19060
19061 Thus, when processing die #4, we have to pretend that we're in
19062 the context of its DW_AT_specification, namely the contex of die
19063 #3. */
19064 spec_cu = cu;
19065 spec_die = die_specification (die, &spec_cu);
19066 if (spec_die == NULL)
19067 parent = die->parent;
19068 else
63d06c5c 19069 {
0114d602
DJ
19070 parent = spec_die->parent;
19071 cu = spec_cu;
63d06c5c 19072 }
0114d602
DJ
19073
19074 if (parent == NULL)
19075 return "";
98bfdba5
PA
19076 else if (parent->building_fullname)
19077 {
19078 const char *name;
19079 const char *parent_name;
19080
19081 /* It has been seen on RealView 2.2 built binaries,
19082 DW_TAG_template_type_param types actually _defined_ as
19083 children of the parent class:
19084
19085 enum E {};
19086 template class <class Enum> Class{};
19087 Class<enum E> class_e;
19088
19089 1: DW_TAG_class_type (Class)
19090 2: DW_TAG_enumeration_type (E)
19091 3: DW_TAG_enumerator (enum1:0)
19092 3: DW_TAG_enumerator (enum2:1)
19093 ...
19094 2: DW_TAG_template_type_param
19095 DW_AT_type DW_FORM_ref_udata (E)
19096
19097 Besides being broken debug info, it can put GDB into an
19098 infinite loop. Consider:
19099
19100 When we're building the full name for Class<E>, we'll start
19101 at Class, and go look over its template type parameters,
19102 finding E. We'll then try to build the full name of E, and
19103 reach here. We're now trying to build the full name of E,
19104 and look over the parent DIE for containing scope. In the
19105 broken case, if we followed the parent DIE of E, we'd again
19106 find Class, and once again go look at its template type
19107 arguments, etc., etc. Simply don't consider such parent die
19108 as source-level parent of this die (it can't be, the language
19109 doesn't allow it), and break the loop here. */
19110 name = dwarf2_name (die, cu);
19111 parent_name = dwarf2_name (parent, cu);
19112 complaint (&symfile_complaints,
19113 _("template param type '%s' defined within parent '%s'"),
19114 name ? name : "<unknown>",
19115 parent_name ? parent_name : "<unknown>");
19116 return "";
19117 }
63d06c5c 19118 else
0114d602
DJ
19119 switch (parent->tag)
19120 {
63d06c5c 19121 case DW_TAG_namespace:
0114d602 19122 parent_type = read_type_die (parent, cu);
acebe513
UW
19123 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19124 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19125 Work around this problem here. */
19126 if (cu->language == language_cplus
19127 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19128 return "";
0114d602
DJ
19129 /* We give a name to even anonymous namespaces. */
19130 return TYPE_TAG_NAME (parent_type);
63d06c5c 19131 case DW_TAG_class_type:
680b30c7 19132 case DW_TAG_interface_type:
63d06c5c 19133 case DW_TAG_structure_type:
0114d602 19134 case DW_TAG_union_type:
f55ee35c 19135 case DW_TAG_module:
0114d602
DJ
19136 parent_type = read_type_die (parent, cu);
19137 if (TYPE_TAG_NAME (parent_type) != NULL)
19138 return TYPE_TAG_NAME (parent_type);
19139 else
19140 /* An anonymous structure is only allowed non-static data
19141 members; no typedefs, no member functions, et cetera.
19142 So it does not need a prefix. */
19143 return "";
abc72ce4 19144 case DW_TAG_compile_unit:
95554aad 19145 case DW_TAG_partial_unit:
abc72ce4
DE
19146 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19147 if (cu->language == language_cplus
8b70b953 19148 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19149 && die->child != NULL
19150 && (die->tag == DW_TAG_class_type
19151 || die->tag == DW_TAG_structure_type
19152 || die->tag == DW_TAG_union_type))
19153 {
19154 char *name = guess_full_die_structure_name (die, cu);
19155 if (name != NULL)
19156 return name;
19157 }
19158 return "";
3d567982
TT
19159 case DW_TAG_enumeration_type:
19160 parent_type = read_type_die (parent, cu);
19161 if (TYPE_DECLARED_CLASS (parent_type))
19162 {
19163 if (TYPE_TAG_NAME (parent_type) != NULL)
19164 return TYPE_TAG_NAME (parent_type);
19165 return "";
19166 }
19167 /* Fall through. */
63d06c5c 19168 default:
8176b9b8 19169 return determine_prefix (parent, cu);
63d06c5c 19170 }
63d06c5c
DC
19171}
19172
3e43a32a
MS
19173/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19174 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19175 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19176 an obconcat, otherwise allocate storage for the result. The CU argument is
19177 used to determine the language and hence, the appropriate separator. */
987504bb 19178
f55ee35c 19179#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19180
19181static char *
f55ee35c
JK
19182typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19183 int physname, struct dwarf2_cu *cu)
63d06c5c 19184{
f55ee35c 19185 const char *lead = "";
5c315b68 19186 const char *sep;
63d06c5c 19187
3e43a32a
MS
19188 if (suffix == NULL || suffix[0] == '\0'
19189 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19190 sep = "";
19191 else if (cu->language == language_java)
19192 sep = ".";
f55ee35c
JK
19193 else if (cu->language == language_fortran && physname)
19194 {
19195 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19196 DW_AT_MIPS_linkage_name is preferred and used instead. */
19197
19198 lead = "__";
19199 sep = "_MOD_";
19200 }
987504bb
JJ
19201 else
19202 sep = "::";
63d06c5c 19203
6dd47d34
DE
19204 if (prefix == NULL)
19205 prefix = "";
19206 if (suffix == NULL)
19207 suffix = "";
19208
987504bb
JJ
19209 if (obs == NULL)
19210 {
3e43a32a
MS
19211 char *retval
19212 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19213
f55ee35c
JK
19214 strcpy (retval, lead);
19215 strcat (retval, prefix);
6dd47d34
DE
19216 strcat (retval, sep);
19217 strcat (retval, suffix);
63d06c5c
DC
19218 return retval;
19219 }
987504bb
JJ
19220 else
19221 {
19222 /* We have an obstack. */
f55ee35c 19223 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19224 }
63d06c5c
DC
19225}
19226
c906108c
SS
19227/* Return sibling of die, NULL if no sibling. */
19228
f9aca02d 19229static struct die_info *
fba45db2 19230sibling_die (struct die_info *die)
c906108c 19231{
639d11d3 19232 return die->sibling;
c906108c
SS
19233}
19234
71c25dea
TT
19235/* Get name of a die, return NULL if not found. */
19236
15d034d0
TT
19237static const char *
19238dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19239 struct obstack *obstack)
19240{
19241 if (name && cu->language == language_cplus)
19242 {
19243 char *canon_name = cp_canonicalize_string (name);
19244
19245 if (canon_name != NULL)
19246 {
19247 if (strcmp (canon_name, name) != 0)
10f0c4bb 19248 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19249 xfree (canon_name);
19250 }
19251 }
19252
19253 return name;
c906108c
SS
19254}
19255
9219021c
DC
19256/* Get name of a die, return NULL if not found. */
19257
15d034d0 19258static const char *
e142c38c 19259dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19260{
19261 struct attribute *attr;
19262
e142c38c 19263 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
19264 if ((!attr || !DW_STRING (attr))
19265 && die->tag != DW_TAG_class_type
19266 && die->tag != DW_TAG_interface_type
19267 && die->tag != DW_TAG_structure_type
19268 && die->tag != DW_TAG_union_type)
71c25dea
TT
19269 return NULL;
19270
19271 switch (die->tag)
19272 {
19273 case DW_TAG_compile_unit:
95554aad 19274 case DW_TAG_partial_unit:
71c25dea
TT
19275 /* Compilation units have a DW_AT_name that is a filename, not
19276 a source language identifier. */
19277 case DW_TAG_enumeration_type:
19278 case DW_TAG_enumerator:
19279 /* These tags always have simple identifiers already; no need
19280 to canonicalize them. */
19281 return DW_STRING (attr);
907af001 19282
418835cc
KS
19283 case DW_TAG_subprogram:
19284 /* Java constructors will all be named "<init>", so return
19285 the class name when we see this special case. */
19286 if (cu->language == language_java
19287 && DW_STRING (attr) != NULL
19288 && strcmp (DW_STRING (attr), "<init>") == 0)
19289 {
19290 struct dwarf2_cu *spec_cu = cu;
19291 struct die_info *spec_die;
19292
19293 /* GCJ will output '<init>' for Java constructor names.
19294 For this special case, return the name of the parent class. */
19295
cdc07690 19296 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19297 If so, use the name of the specified DIE. */
19298 spec_die = die_specification (die, &spec_cu);
19299 if (spec_die != NULL)
19300 return dwarf2_name (spec_die, spec_cu);
19301
19302 do
19303 {
19304 die = die->parent;
19305 if (die->tag == DW_TAG_class_type)
19306 return dwarf2_name (die, cu);
19307 }
95554aad
TT
19308 while (die->tag != DW_TAG_compile_unit
19309 && die->tag != DW_TAG_partial_unit);
418835cc 19310 }
907af001
UW
19311 break;
19312
19313 case DW_TAG_class_type:
19314 case DW_TAG_interface_type:
19315 case DW_TAG_structure_type:
19316 case DW_TAG_union_type:
19317 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19318 structures or unions. These were of the form "._%d" in GCC 4.1,
19319 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19320 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19321 if (attr && DW_STRING (attr)
19322 && (strncmp (DW_STRING (attr), "._", 2) == 0
19323 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19324 return NULL;
53832f31
TT
19325
19326 /* GCC might emit a nameless typedef that has a linkage name. See
19327 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19328 if (!attr || DW_STRING (attr) == NULL)
19329 {
df5c6c50 19330 char *demangled = NULL;
53832f31
TT
19331
19332 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19333 if (attr == NULL)
19334 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19335
19336 if (attr == NULL || DW_STRING (attr) == NULL)
19337 return NULL;
19338
df5c6c50
JK
19339 /* Avoid demangling DW_STRING (attr) the second time on a second
19340 call for the same DIE. */
19341 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19342 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19343
19344 if (demangled)
19345 {
96408a79
SA
19346 char *base;
19347
53832f31 19348 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19349 DW_STRING (attr)
19350 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19351 demangled, strlen (demangled));
53832f31
TT
19352 DW_STRING_IS_CANONICAL (attr) = 1;
19353 xfree (demangled);
96408a79
SA
19354
19355 /* Strip any leading namespaces/classes, keep only the base name.
19356 DW_AT_name for named DIEs does not contain the prefixes. */
19357 base = strrchr (DW_STRING (attr), ':');
19358 if (base && base > DW_STRING (attr) && base[-1] == ':')
19359 return &base[1];
19360 else
19361 return DW_STRING (attr);
53832f31
TT
19362 }
19363 }
907af001
UW
19364 break;
19365
71c25dea 19366 default:
907af001
UW
19367 break;
19368 }
19369
19370 if (!DW_STRING_IS_CANONICAL (attr))
19371 {
19372 DW_STRING (attr)
19373 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19374 &cu->objfile->per_bfd->storage_obstack);
907af001 19375 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19376 }
907af001 19377 return DW_STRING (attr);
9219021c
DC
19378}
19379
19380/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19381 is none. *EXT_CU is the CU containing DIE on input, and the CU
19382 containing the return value on output. */
9219021c
DC
19383
19384static struct die_info *
f2f0e013 19385dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19386{
19387 struct attribute *attr;
9219021c 19388
f2f0e013 19389 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19390 if (attr == NULL)
19391 return NULL;
19392
f2f0e013 19393 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19394}
19395
c906108c
SS
19396/* Convert a DIE tag into its string name. */
19397
f39c6ffd 19398static const char *
aa1ee363 19399dwarf_tag_name (unsigned tag)
c906108c 19400{
f39c6ffd
TT
19401 const char *name = get_DW_TAG_name (tag);
19402
19403 if (name == NULL)
19404 return "DW_TAG_<unknown>";
19405
19406 return name;
c906108c
SS
19407}
19408
19409/* Convert a DWARF attribute code into its string name. */
19410
f39c6ffd 19411static const char *
aa1ee363 19412dwarf_attr_name (unsigned attr)
c906108c 19413{
f39c6ffd
TT
19414 const char *name;
19415
c764a876 19416#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19417 if (attr == DW_AT_MIPS_fde)
19418 return "DW_AT_MIPS_fde";
19419#else
19420 if (attr == DW_AT_HP_block_index)
19421 return "DW_AT_HP_block_index";
c764a876 19422#endif
f39c6ffd
TT
19423
19424 name = get_DW_AT_name (attr);
19425
19426 if (name == NULL)
19427 return "DW_AT_<unknown>";
19428
19429 return name;
c906108c
SS
19430}
19431
19432/* Convert a DWARF value form code into its string name. */
19433
f39c6ffd 19434static const char *
aa1ee363 19435dwarf_form_name (unsigned form)
c906108c 19436{
f39c6ffd
TT
19437 const char *name = get_DW_FORM_name (form);
19438
19439 if (name == NULL)
19440 return "DW_FORM_<unknown>";
19441
19442 return name;
c906108c
SS
19443}
19444
19445static char *
fba45db2 19446dwarf_bool_name (unsigned mybool)
c906108c
SS
19447{
19448 if (mybool)
19449 return "TRUE";
19450 else
19451 return "FALSE";
19452}
19453
19454/* Convert a DWARF type code into its string name. */
19455
f39c6ffd 19456static const char *
aa1ee363 19457dwarf_type_encoding_name (unsigned enc)
c906108c 19458{
f39c6ffd 19459 const char *name = get_DW_ATE_name (enc);
c906108c 19460
f39c6ffd
TT
19461 if (name == NULL)
19462 return "DW_ATE_<unknown>";
c906108c 19463
f39c6ffd 19464 return name;
c906108c 19465}
c906108c 19466
f9aca02d 19467static void
d97bc12b 19468dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19469{
19470 unsigned int i;
19471
d97bc12b
DE
19472 print_spaces (indent, f);
19473 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19474 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19475
19476 if (die->parent != NULL)
19477 {
19478 print_spaces (indent, f);
19479 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19480 die->parent->offset.sect_off);
d97bc12b
DE
19481 }
19482
19483 print_spaces (indent, f);
19484 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19485 dwarf_bool_name (die->child != NULL));
c906108c 19486
d97bc12b
DE
19487 print_spaces (indent, f);
19488 fprintf_unfiltered (f, " attributes:\n");
19489
c906108c
SS
19490 for (i = 0; i < die->num_attrs; ++i)
19491 {
d97bc12b
DE
19492 print_spaces (indent, f);
19493 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19494 dwarf_attr_name (die->attrs[i].name),
19495 dwarf_form_name (die->attrs[i].form));
d97bc12b 19496
c906108c
SS
19497 switch (die->attrs[i].form)
19498 {
c906108c 19499 case DW_FORM_addr:
3019eac3 19500 case DW_FORM_GNU_addr_index:
d97bc12b 19501 fprintf_unfiltered (f, "address: ");
5af949e3 19502 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19503 break;
19504 case DW_FORM_block2:
19505 case DW_FORM_block4:
19506 case DW_FORM_block:
19507 case DW_FORM_block1:
56eb65bd
SP
19508 fprintf_unfiltered (f, "block: size %s",
19509 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19510 break;
2dc7f7b3 19511 case DW_FORM_exprloc:
56eb65bd
SP
19512 fprintf_unfiltered (f, "expression: size %s",
19513 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19514 break;
4568ecf9
DE
19515 case DW_FORM_ref_addr:
19516 fprintf_unfiltered (f, "ref address: ");
19517 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19518 break;
36586728
TT
19519 case DW_FORM_GNU_ref_alt:
19520 fprintf_unfiltered (f, "alt ref address: ");
19521 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19522 break;
10b3939b
DJ
19523 case DW_FORM_ref1:
19524 case DW_FORM_ref2:
19525 case DW_FORM_ref4:
4568ecf9
DE
19526 case DW_FORM_ref8:
19527 case DW_FORM_ref_udata:
d97bc12b 19528 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19529 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19530 break;
c906108c
SS
19531 case DW_FORM_data1:
19532 case DW_FORM_data2:
19533 case DW_FORM_data4:
ce5d95e1 19534 case DW_FORM_data8:
c906108c
SS
19535 case DW_FORM_udata:
19536 case DW_FORM_sdata:
43bbcdc2
PH
19537 fprintf_unfiltered (f, "constant: %s",
19538 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19539 break;
2dc7f7b3
TT
19540 case DW_FORM_sec_offset:
19541 fprintf_unfiltered (f, "section offset: %s",
19542 pulongest (DW_UNSND (&die->attrs[i])));
19543 break;
55f1336d 19544 case DW_FORM_ref_sig8:
ac9ec31b
DE
19545 fprintf_unfiltered (f, "signature: %s",
19546 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19547 break;
c906108c 19548 case DW_FORM_string:
4bdf3d34 19549 case DW_FORM_strp:
3019eac3 19550 case DW_FORM_GNU_str_index:
36586728 19551 case DW_FORM_GNU_strp_alt:
8285870a 19552 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19553 DW_STRING (&die->attrs[i])
8285870a
JK
19554 ? DW_STRING (&die->attrs[i]) : "",
19555 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19556 break;
19557 case DW_FORM_flag:
19558 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19559 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19560 else
d97bc12b 19561 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19562 break;
2dc7f7b3
TT
19563 case DW_FORM_flag_present:
19564 fprintf_unfiltered (f, "flag: TRUE");
19565 break;
a8329558 19566 case DW_FORM_indirect:
0963b4bd
MS
19567 /* The reader will have reduced the indirect form to
19568 the "base form" so this form should not occur. */
3e43a32a
MS
19569 fprintf_unfiltered (f,
19570 "unexpected attribute form: DW_FORM_indirect");
a8329558 19571 break;
c906108c 19572 default:
d97bc12b 19573 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19574 die->attrs[i].form);
d97bc12b 19575 break;
c906108c 19576 }
d97bc12b 19577 fprintf_unfiltered (f, "\n");
c906108c
SS
19578 }
19579}
19580
f9aca02d 19581static void
d97bc12b 19582dump_die_for_error (struct die_info *die)
c906108c 19583{
d97bc12b
DE
19584 dump_die_shallow (gdb_stderr, 0, die);
19585}
19586
19587static void
19588dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19589{
19590 int indent = level * 4;
19591
19592 gdb_assert (die != NULL);
19593
19594 if (level >= max_level)
19595 return;
19596
19597 dump_die_shallow (f, indent, die);
19598
19599 if (die->child != NULL)
c906108c 19600 {
d97bc12b
DE
19601 print_spaces (indent, f);
19602 fprintf_unfiltered (f, " Children:");
19603 if (level + 1 < max_level)
19604 {
19605 fprintf_unfiltered (f, "\n");
19606 dump_die_1 (f, level + 1, max_level, die->child);
19607 }
19608 else
19609 {
3e43a32a
MS
19610 fprintf_unfiltered (f,
19611 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19612 }
19613 }
19614
19615 if (die->sibling != NULL && level > 0)
19616 {
19617 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19618 }
19619}
19620
d97bc12b
DE
19621/* This is called from the pdie macro in gdbinit.in.
19622 It's not static so gcc will keep a copy callable from gdb. */
19623
19624void
19625dump_die (struct die_info *die, int max_level)
19626{
19627 dump_die_1 (gdb_stdlog, 0, max_level, die);
19628}
19629
f9aca02d 19630static void
51545339 19631store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19632{
51545339 19633 void **slot;
c906108c 19634
b64f50a1
JK
19635 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19636 INSERT);
51545339
DJ
19637
19638 *slot = die;
c906108c
SS
19639}
19640
b64f50a1
JK
19641/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19642 required kind. */
19643
19644static sect_offset
ff39bb5e 19645dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19646{
4568ecf9 19647 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19648
7771576e 19649 if (attr_form_is_ref (attr))
b64f50a1 19650 return retval;
93311388 19651
b64f50a1 19652 retval.sect_off = 0;
93311388
DE
19653 complaint (&symfile_complaints,
19654 _("unsupported die ref attribute form: '%s'"),
19655 dwarf_form_name (attr->form));
b64f50a1 19656 return retval;
c906108c
SS
19657}
19658
43bbcdc2
PH
19659/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19660 * the value held by the attribute is not constant. */
a02abb62 19661
43bbcdc2 19662static LONGEST
ff39bb5e 19663dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19664{
19665 if (attr->form == DW_FORM_sdata)
19666 return DW_SND (attr);
19667 else if (attr->form == DW_FORM_udata
19668 || attr->form == DW_FORM_data1
19669 || attr->form == DW_FORM_data2
19670 || attr->form == DW_FORM_data4
19671 || attr->form == DW_FORM_data8)
19672 return DW_UNSND (attr);
19673 else
19674 {
3e43a32a
MS
19675 complaint (&symfile_complaints,
19676 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19677 dwarf_form_name (attr->form));
19678 return default_value;
19679 }
19680}
19681
348e048f
DE
19682/* Follow reference or signature attribute ATTR of SRC_DIE.
19683 On entry *REF_CU is the CU of SRC_DIE.
19684 On exit *REF_CU is the CU of the result. */
19685
19686static struct die_info *
ff39bb5e 19687follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19688 struct dwarf2_cu **ref_cu)
19689{
19690 struct die_info *die;
19691
7771576e 19692 if (attr_form_is_ref (attr))
348e048f 19693 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19694 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19695 die = follow_die_sig (src_die, attr, ref_cu);
19696 else
19697 {
19698 dump_die_for_error (src_die);
19699 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19700 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19701 }
19702
19703 return die;
03dd20cc
DJ
19704}
19705
5c631832 19706/* Follow reference OFFSET.
673bfd45
DE
19707 On entry *REF_CU is the CU of the source die referencing OFFSET.
19708 On exit *REF_CU is the CU of the result.
19709 Returns NULL if OFFSET is invalid. */
f504f079 19710
f9aca02d 19711static struct die_info *
36586728
TT
19712follow_die_offset (sect_offset offset, int offset_in_dwz,
19713 struct dwarf2_cu **ref_cu)
c906108c 19714{
10b3939b 19715 struct die_info temp_die;
f2f0e013 19716 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19717
348e048f
DE
19718 gdb_assert (cu->per_cu != NULL);
19719
98bfdba5
PA
19720 target_cu = cu;
19721
3019eac3 19722 if (cu->per_cu->is_debug_types)
348e048f
DE
19723 {
19724 /* .debug_types CUs cannot reference anything outside their CU.
19725 If they need to, they have to reference a signatured type via
55f1336d 19726 DW_FORM_ref_sig8. */
348e048f 19727 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19728 return NULL;
348e048f 19729 }
36586728
TT
19730 else if (offset_in_dwz != cu->per_cu->is_dwz
19731 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19732 {
19733 struct dwarf2_per_cu_data *per_cu;
9a619af0 19734
36586728
TT
19735 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19736 cu->objfile);
03dd20cc
DJ
19737
19738 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19739 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19740 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19741
10b3939b
DJ
19742 target_cu = per_cu->cu;
19743 }
98bfdba5
PA
19744 else if (cu->dies == NULL)
19745 {
19746 /* We're loading full DIEs during partial symbol reading. */
19747 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19748 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19749 }
c906108c 19750
f2f0e013 19751 *ref_cu = target_cu;
51545339 19752 temp_die.offset = offset;
b64f50a1 19753 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19754}
10b3939b 19755
5c631832
JK
19756/* Follow reference attribute ATTR of SRC_DIE.
19757 On entry *REF_CU is the CU of SRC_DIE.
19758 On exit *REF_CU is the CU of the result. */
19759
19760static struct die_info *
ff39bb5e 19761follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19762 struct dwarf2_cu **ref_cu)
19763{
b64f50a1 19764 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19765 struct dwarf2_cu *cu = *ref_cu;
19766 struct die_info *die;
19767
36586728
TT
19768 die = follow_die_offset (offset,
19769 (attr->form == DW_FORM_GNU_ref_alt
19770 || cu->per_cu->is_dwz),
19771 ref_cu);
5c631832
JK
19772 if (!die)
19773 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19774 "at 0x%x [in module %s]"),
4262abfb
JK
19775 offset.sect_off, src_die->offset.sect_off,
19776 objfile_name (cu->objfile));
348e048f 19777
5c631832
JK
19778 return die;
19779}
19780
d83e736b
JK
19781/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19782 Returned value is intended for DW_OP_call*. Returned
19783 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19784
19785struct dwarf2_locexpr_baton
8b9737bf
TT
19786dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19787 struct dwarf2_per_cu_data *per_cu,
19788 CORE_ADDR (*get_frame_pc) (void *baton),
19789 void *baton)
5c631832 19790{
918dd910 19791 struct dwarf2_cu *cu;
5c631832
JK
19792 struct die_info *die;
19793 struct attribute *attr;
19794 struct dwarf2_locexpr_baton retval;
19795
8cf6f0b1
TT
19796 dw2_setup (per_cu->objfile);
19797
918dd910
JK
19798 if (per_cu->cu == NULL)
19799 load_cu (per_cu);
19800 cu = per_cu->cu;
19801
36586728 19802 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19803 if (!die)
19804 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19805 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19806
19807 attr = dwarf2_attr (die, DW_AT_location, cu);
19808 if (!attr)
19809 {
e103e986
JK
19810 /* DWARF: "If there is no such attribute, then there is no effect.".
19811 DATA is ignored if SIZE is 0. */
5c631832 19812
e103e986 19813 retval.data = NULL;
5c631832
JK
19814 retval.size = 0;
19815 }
8cf6f0b1
TT
19816 else if (attr_form_is_section_offset (attr))
19817 {
19818 struct dwarf2_loclist_baton loclist_baton;
19819 CORE_ADDR pc = (*get_frame_pc) (baton);
19820 size_t size;
19821
19822 fill_in_loclist_baton (cu, &loclist_baton, attr);
19823
19824 retval.data = dwarf2_find_location_expression (&loclist_baton,
19825 &size, pc);
19826 retval.size = size;
19827 }
5c631832
JK
19828 else
19829 {
19830 if (!attr_form_is_block (attr))
19831 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19832 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19833 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19834
19835 retval.data = DW_BLOCK (attr)->data;
19836 retval.size = DW_BLOCK (attr)->size;
19837 }
19838 retval.per_cu = cu->per_cu;
918dd910 19839
918dd910
JK
19840 age_cached_comp_units ();
19841
5c631832 19842 return retval;
348e048f
DE
19843}
19844
8b9737bf
TT
19845/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19846 offset. */
19847
19848struct dwarf2_locexpr_baton
19849dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19850 struct dwarf2_per_cu_data *per_cu,
19851 CORE_ADDR (*get_frame_pc) (void *baton),
19852 void *baton)
19853{
19854 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19855
19856 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19857}
19858
b6807d98
TT
19859/* Write a constant of a given type as target-ordered bytes into
19860 OBSTACK. */
19861
19862static const gdb_byte *
19863write_constant_as_bytes (struct obstack *obstack,
19864 enum bfd_endian byte_order,
19865 struct type *type,
19866 ULONGEST value,
19867 LONGEST *len)
19868{
19869 gdb_byte *result;
19870
19871 *len = TYPE_LENGTH (type);
19872 result = obstack_alloc (obstack, *len);
19873 store_unsigned_integer (result, *len, byte_order, value);
19874
19875 return result;
19876}
19877
19878/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19879 pointer to the constant bytes and set LEN to the length of the
19880 data. If memory is needed, allocate it on OBSTACK. If the DIE
19881 does not have a DW_AT_const_value, return NULL. */
19882
19883const gdb_byte *
19884dwarf2_fetch_constant_bytes (sect_offset offset,
19885 struct dwarf2_per_cu_data *per_cu,
19886 struct obstack *obstack,
19887 LONGEST *len)
19888{
19889 struct dwarf2_cu *cu;
19890 struct die_info *die;
19891 struct attribute *attr;
19892 const gdb_byte *result = NULL;
19893 struct type *type;
19894 LONGEST value;
19895 enum bfd_endian byte_order;
19896
19897 dw2_setup (per_cu->objfile);
19898
19899 if (per_cu->cu == NULL)
19900 load_cu (per_cu);
19901 cu = per_cu->cu;
19902
19903 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19904 if (!die)
19905 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19906 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19907
19908
19909 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19910 if (attr == NULL)
19911 return NULL;
19912
19913 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19914 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19915
19916 switch (attr->form)
19917 {
19918 case DW_FORM_addr:
19919 case DW_FORM_GNU_addr_index:
19920 {
19921 gdb_byte *tem;
19922
19923 *len = cu->header.addr_size;
19924 tem = obstack_alloc (obstack, *len);
19925 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19926 result = tem;
19927 }
19928 break;
19929 case DW_FORM_string:
19930 case DW_FORM_strp:
19931 case DW_FORM_GNU_str_index:
19932 case DW_FORM_GNU_strp_alt:
19933 /* DW_STRING is already allocated on the objfile obstack, point
19934 directly to it. */
19935 result = (const gdb_byte *) DW_STRING (attr);
19936 *len = strlen (DW_STRING (attr));
19937 break;
19938 case DW_FORM_block1:
19939 case DW_FORM_block2:
19940 case DW_FORM_block4:
19941 case DW_FORM_block:
19942 case DW_FORM_exprloc:
19943 result = DW_BLOCK (attr)->data;
19944 *len = DW_BLOCK (attr)->size;
19945 break;
19946
19947 /* The DW_AT_const_value attributes are supposed to carry the
19948 symbol's value "represented as it would be on the target
19949 architecture." By the time we get here, it's already been
19950 converted to host endianness, so we just need to sign- or
19951 zero-extend it as appropriate. */
19952 case DW_FORM_data1:
19953 type = die_type (die, cu);
19954 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19955 if (result == NULL)
19956 result = write_constant_as_bytes (obstack, byte_order,
19957 type, value, len);
19958 break;
19959 case DW_FORM_data2:
19960 type = die_type (die, cu);
19961 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19962 if (result == NULL)
19963 result = write_constant_as_bytes (obstack, byte_order,
19964 type, value, len);
19965 break;
19966 case DW_FORM_data4:
19967 type = die_type (die, cu);
19968 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19969 if (result == NULL)
19970 result = write_constant_as_bytes (obstack, byte_order,
19971 type, value, len);
19972 break;
19973 case DW_FORM_data8:
19974 type = die_type (die, cu);
19975 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19976 if (result == NULL)
19977 result = write_constant_as_bytes (obstack, byte_order,
19978 type, value, len);
19979 break;
19980
19981 case DW_FORM_sdata:
19982 type = die_type (die, cu);
19983 result = write_constant_as_bytes (obstack, byte_order,
19984 type, DW_SND (attr), len);
19985 break;
19986
19987 case DW_FORM_udata:
19988 type = die_type (die, cu);
19989 result = write_constant_as_bytes (obstack, byte_order,
19990 type, DW_UNSND (attr), len);
19991 break;
19992
19993 default:
19994 complaint (&symfile_complaints,
19995 _("unsupported const value attribute form: '%s'"),
19996 dwarf_form_name (attr->form));
19997 break;
19998 }
19999
20000 return result;
20001}
20002
8a9b8146
TT
20003/* Return the type of the DIE at DIE_OFFSET in the CU named by
20004 PER_CU. */
20005
20006struct type *
b64f50a1 20007dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20008 struct dwarf2_per_cu_data *per_cu)
20009{
b64f50a1
JK
20010 sect_offset die_offset_sect;
20011
8a9b8146 20012 dw2_setup (per_cu->objfile);
b64f50a1
JK
20013
20014 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20015 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20016}
20017
ac9ec31b 20018/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20019 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20020 On exit *REF_CU is the CU of the result.
20021 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20022
20023static struct die_info *
ac9ec31b
DE
20024follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20025 struct dwarf2_cu **ref_cu)
348e048f
DE
20026{
20027 struct objfile *objfile = (*ref_cu)->objfile;
20028 struct die_info temp_die;
348e048f
DE
20029 struct dwarf2_cu *sig_cu;
20030 struct die_info *die;
20031
ac9ec31b
DE
20032 /* While it might be nice to assert sig_type->type == NULL here,
20033 we can get here for DW_AT_imported_declaration where we need
20034 the DIE not the type. */
348e048f
DE
20035
20036 /* If necessary, add it to the queue and load its DIEs. */
20037
95554aad 20038 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20039 read_signatured_type (sig_type);
348e048f 20040
348e048f 20041 sig_cu = sig_type->per_cu.cu;
69d751e3 20042 gdb_assert (sig_cu != NULL);
3019eac3
DE
20043 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20044 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20045 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20046 temp_die.offset.sect_off);
348e048f
DE
20047 if (die)
20048 {
796a7ff8
DE
20049 /* For .gdb_index version 7 keep track of included TUs.
20050 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20051 if (dwarf2_per_objfile->index_table != NULL
20052 && dwarf2_per_objfile->index_table->version <= 7)
20053 {
20054 VEC_safe_push (dwarf2_per_cu_ptr,
20055 (*ref_cu)->per_cu->imported_symtabs,
20056 sig_cu->per_cu);
20057 }
20058
348e048f
DE
20059 *ref_cu = sig_cu;
20060 return die;
20061 }
20062
ac9ec31b
DE
20063 return NULL;
20064}
20065
20066/* Follow signatured type referenced by ATTR in SRC_DIE.
20067 On entry *REF_CU is the CU of SRC_DIE.
20068 On exit *REF_CU is the CU of the result.
20069 The result is the DIE of the type.
20070 If the referenced type cannot be found an error is thrown. */
20071
20072static struct die_info *
ff39bb5e 20073follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20074 struct dwarf2_cu **ref_cu)
20075{
20076 ULONGEST signature = DW_SIGNATURE (attr);
20077 struct signatured_type *sig_type;
20078 struct die_info *die;
20079
20080 gdb_assert (attr->form == DW_FORM_ref_sig8);
20081
a2ce51a0 20082 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20083 /* sig_type will be NULL if the signatured type is missing from
20084 the debug info. */
20085 if (sig_type == NULL)
20086 {
20087 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20088 " from DIE at 0x%x [in module %s]"),
20089 hex_string (signature), src_die->offset.sect_off,
4262abfb 20090 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20091 }
20092
20093 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20094 if (die == NULL)
20095 {
20096 dump_die_for_error (src_die);
20097 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20098 " from DIE at 0x%x [in module %s]"),
20099 hex_string (signature), src_die->offset.sect_off,
4262abfb 20100 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20101 }
20102
20103 return die;
20104}
20105
20106/* Get the type specified by SIGNATURE referenced in DIE/CU,
20107 reading in and processing the type unit if necessary. */
20108
20109static struct type *
20110get_signatured_type (struct die_info *die, ULONGEST signature,
20111 struct dwarf2_cu *cu)
20112{
20113 struct signatured_type *sig_type;
20114 struct dwarf2_cu *type_cu;
20115 struct die_info *type_die;
20116 struct type *type;
20117
a2ce51a0 20118 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20119 /* sig_type will be NULL if the signatured type is missing from
20120 the debug info. */
20121 if (sig_type == NULL)
20122 {
20123 complaint (&symfile_complaints,
20124 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20125 " from DIE at 0x%x [in module %s]"),
20126 hex_string (signature), die->offset.sect_off,
4262abfb 20127 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20128 return build_error_marker_type (cu, die);
20129 }
20130
20131 /* If we already know the type we're done. */
20132 if (sig_type->type != NULL)
20133 return sig_type->type;
20134
20135 type_cu = cu;
20136 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20137 if (type_die != NULL)
20138 {
20139 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20140 is created. This is important, for example, because for c++ classes
20141 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20142 type = read_type_die (type_die, type_cu);
20143 if (type == NULL)
20144 {
20145 complaint (&symfile_complaints,
20146 _("Dwarf Error: Cannot build signatured type %s"
20147 " referenced from DIE at 0x%x [in module %s]"),
20148 hex_string (signature), die->offset.sect_off,
4262abfb 20149 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20150 type = build_error_marker_type (cu, die);
20151 }
20152 }
20153 else
20154 {
20155 complaint (&symfile_complaints,
20156 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20157 " from DIE at 0x%x [in module %s]"),
20158 hex_string (signature), die->offset.sect_off,
4262abfb 20159 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20160 type = build_error_marker_type (cu, die);
20161 }
20162 sig_type->type = type;
20163
20164 return type;
20165}
20166
20167/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20168 reading in and processing the type unit if necessary. */
20169
20170static struct type *
ff39bb5e 20171get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20172 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20173{
20174 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20175 if (attr_form_is_ref (attr))
ac9ec31b
DE
20176 {
20177 struct dwarf2_cu *type_cu = cu;
20178 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20179
20180 return read_type_die (type_die, type_cu);
20181 }
20182 else if (attr->form == DW_FORM_ref_sig8)
20183 {
20184 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20185 }
20186 else
20187 {
20188 complaint (&symfile_complaints,
20189 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20190 " at 0x%x [in module %s]"),
20191 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20192 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20193 return build_error_marker_type (cu, die);
20194 }
348e048f
DE
20195}
20196
e5fe5e75 20197/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20198
20199static void
e5fe5e75 20200load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20201{
52dc124a 20202 struct signatured_type *sig_type;
348e048f 20203
f4dc4d17
DE
20204 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20205 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20206
6721b2ec
DE
20207 /* We have the per_cu, but we need the signatured_type.
20208 Fortunately this is an easy translation. */
20209 gdb_assert (per_cu->is_debug_types);
20210 sig_type = (struct signatured_type *) per_cu;
348e048f 20211
6721b2ec 20212 gdb_assert (per_cu->cu == NULL);
348e048f 20213
52dc124a 20214 read_signatured_type (sig_type);
348e048f 20215
6721b2ec 20216 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20217}
20218
dee91e82
DE
20219/* die_reader_func for read_signatured_type.
20220 This is identical to load_full_comp_unit_reader,
20221 but is kept separate for now. */
348e048f
DE
20222
20223static void
dee91e82 20224read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20225 const gdb_byte *info_ptr,
dee91e82
DE
20226 struct die_info *comp_unit_die,
20227 int has_children,
20228 void *data)
348e048f 20229{
dee91e82 20230 struct dwarf2_cu *cu = reader->cu;
348e048f 20231
dee91e82
DE
20232 gdb_assert (cu->die_hash == NULL);
20233 cu->die_hash =
20234 htab_create_alloc_ex (cu->header.length / 12,
20235 die_hash,
20236 die_eq,
20237 NULL,
20238 &cu->comp_unit_obstack,
20239 hashtab_obstack_allocate,
20240 dummy_obstack_deallocate);
348e048f 20241
dee91e82
DE
20242 if (has_children)
20243 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20244 &info_ptr, comp_unit_die);
20245 cu->dies = comp_unit_die;
20246 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20247
20248 /* We try not to read any attributes in this function, because not
9cdd5dbd 20249 all CUs needed for references have been loaded yet, and symbol
348e048f 20250 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20251 or we won't be able to build types correctly.
20252 Similarly, if we do not read the producer, we can not apply
20253 producer-specific interpretation. */
95554aad 20254 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20255}
348e048f 20256
3019eac3
DE
20257/* Read in a signatured type and build its CU and DIEs.
20258 If the type is a stub for the real type in a DWO file,
20259 read in the real type from the DWO file as well. */
dee91e82
DE
20260
20261static void
20262read_signatured_type (struct signatured_type *sig_type)
20263{
20264 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20265
3019eac3 20266 gdb_assert (per_cu->is_debug_types);
dee91e82 20267 gdb_assert (per_cu->cu == NULL);
348e048f 20268
f4dc4d17
DE
20269 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20270 read_signatured_type_reader, NULL);
7ee85ab1 20271 sig_type->per_cu.tu_read = 1;
c906108c
SS
20272}
20273
c906108c
SS
20274/* Decode simple location descriptions.
20275 Given a pointer to a dwarf block that defines a location, compute
20276 the location and return the value.
20277
4cecd739
DJ
20278 NOTE drow/2003-11-18: This function is called in two situations
20279 now: for the address of static or global variables (partial symbols
20280 only) and for offsets into structures which are expected to be
20281 (more or less) constant. The partial symbol case should go away,
20282 and only the constant case should remain. That will let this
20283 function complain more accurately. A few special modes are allowed
20284 without complaint for global variables (for instance, global
20285 register values and thread-local values).
c906108c
SS
20286
20287 A location description containing no operations indicates that the
4cecd739 20288 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20289 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20290 callers will only want a very basic result and this can become a
21ae7a4d
JK
20291 complaint.
20292
20293 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20294
20295static CORE_ADDR
e7c27a73 20296decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20297{
e7c27a73 20298 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20299 size_t i;
20300 size_t size = blk->size;
d521ce57 20301 const gdb_byte *data = blk->data;
21ae7a4d
JK
20302 CORE_ADDR stack[64];
20303 int stacki;
20304 unsigned int bytes_read, unsnd;
20305 gdb_byte op;
c906108c 20306
21ae7a4d
JK
20307 i = 0;
20308 stacki = 0;
20309 stack[stacki] = 0;
20310 stack[++stacki] = 0;
20311
20312 while (i < size)
20313 {
20314 op = data[i++];
20315 switch (op)
20316 {
20317 case DW_OP_lit0:
20318 case DW_OP_lit1:
20319 case DW_OP_lit2:
20320 case DW_OP_lit3:
20321 case DW_OP_lit4:
20322 case DW_OP_lit5:
20323 case DW_OP_lit6:
20324 case DW_OP_lit7:
20325 case DW_OP_lit8:
20326 case DW_OP_lit9:
20327 case DW_OP_lit10:
20328 case DW_OP_lit11:
20329 case DW_OP_lit12:
20330 case DW_OP_lit13:
20331 case DW_OP_lit14:
20332 case DW_OP_lit15:
20333 case DW_OP_lit16:
20334 case DW_OP_lit17:
20335 case DW_OP_lit18:
20336 case DW_OP_lit19:
20337 case DW_OP_lit20:
20338 case DW_OP_lit21:
20339 case DW_OP_lit22:
20340 case DW_OP_lit23:
20341 case DW_OP_lit24:
20342 case DW_OP_lit25:
20343 case DW_OP_lit26:
20344 case DW_OP_lit27:
20345 case DW_OP_lit28:
20346 case DW_OP_lit29:
20347 case DW_OP_lit30:
20348 case DW_OP_lit31:
20349 stack[++stacki] = op - DW_OP_lit0;
20350 break;
f1bea926 20351
21ae7a4d
JK
20352 case DW_OP_reg0:
20353 case DW_OP_reg1:
20354 case DW_OP_reg2:
20355 case DW_OP_reg3:
20356 case DW_OP_reg4:
20357 case DW_OP_reg5:
20358 case DW_OP_reg6:
20359 case DW_OP_reg7:
20360 case DW_OP_reg8:
20361 case DW_OP_reg9:
20362 case DW_OP_reg10:
20363 case DW_OP_reg11:
20364 case DW_OP_reg12:
20365 case DW_OP_reg13:
20366 case DW_OP_reg14:
20367 case DW_OP_reg15:
20368 case DW_OP_reg16:
20369 case DW_OP_reg17:
20370 case DW_OP_reg18:
20371 case DW_OP_reg19:
20372 case DW_OP_reg20:
20373 case DW_OP_reg21:
20374 case DW_OP_reg22:
20375 case DW_OP_reg23:
20376 case DW_OP_reg24:
20377 case DW_OP_reg25:
20378 case DW_OP_reg26:
20379 case DW_OP_reg27:
20380 case DW_OP_reg28:
20381 case DW_OP_reg29:
20382 case DW_OP_reg30:
20383 case DW_OP_reg31:
20384 stack[++stacki] = op - DW_OP_reg0;
20385 if (i < size)
20386 dwarf2_complex_location_expr_complaint ();
20387 break;
c906108c 20388
21ae7a4d
JK
20389 case DW_OP_regx:
20390 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20391 i += bytes_read;
20392 stack[++stacki] = unsnd;
20393 if (i < size)
20394 dwarf2_complex_location_expr_complaint ();
20395 break;
c906108c 20396
21ae7a4d
JK
20397 case DW_OP_addr:
20398 stack[++stacki] = read_address (objfile->obfd, &data[i],
20399 cu, &bytes_read);
20400 i += bytes_read;
20401 break;
d53d4ac5 20402
21ae7a4d
JK
20403 case DW_OP_const1u:
20404 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20405 i += 1;
20406 break;
20407
20408 case DW_OP_const1s:
20409 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20410 i += 1;
20411 break;
20412
20413 case DW_OP_const2u:
20414 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20415 i += 2;
20416 break;
20417
20418 case DW_OP_const2s:
20419 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20420 i += 2;
20421 break;
d53d4ac5 20422
21ae7a4d
JK
20423 case DW_OP_const4u:
20424 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20425 i += 4;
20426 break;
20427
20428 case DW_OP_const4s:
20429 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20430 i += 4;
20431 break;
20432
585861ea
JK
20433 case DW_OP_const8u:
20434 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20435 i += 8;
20436 break;
20437
21ae7a4d
JK
20438 case DW_OP_constu:
20439 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20440 &bytes_read);
20441 i += bytes_read;
20442 break;
20443
20444 case DW_OP_consts:
20445 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20446 i += bytes_read;
20447 break;
20448
20449 case DW_OP_dup:
20450 stack[stacki + 1] = stack[stacki];
20451 stacki++;
20452 break;
20453
20454 case DW_OP_plus:
20455 stack[stacki - 1] += stack[stacki];
20456 stacki--;
20457 break;
20458
20459 case DW_OP_plus_uconst:
20460 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20461 &bytes_read);
20462 i += bytes_read;
20463 break;
20464
20465 case DW_OP_minus:
20466 stack[stacki - 1] -= stack[stacki];
20467 stacki--;
20468 break;
20469
20470 case DW_OP_deref:
20471 /* If we're not the last op, then we definitely can't encode
20472 this using GDB's address_class enum. This is valid for partial
20473 global symbols, although the variable's address will be bogus
20474 in the psymtab. */
20475 if (i < size)
20476 dwarf2_complex_location_expr_complaint ();
20477 break;
20478
20479 case DW_OP_GNU_push_tls_address:
20480 /* The top of the stack has the offset from the beginning
20481 of the thread control block at which the variable is located. */
20482 /* Nothing should follow this operator, so the top of stack would
20483 be returned. */
20484 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20485 address will be bogus in the psymtab. Make it always at least
20486 non-zero to not look as a variable garbage collected by linker
20487 which have DW_OP_addr 0. */
21ae7a4d
JK
20488 if (i < size)
20489 dwarf2_complex_location_expr_complaint ();
585861ea 20490 stack[stacki]++;
21ae7a4d
JK
20491 break;
20492
20493 case DW_OP_GNU_uninit:
20494 break;
20495
3019eac3 20496 case DW_OP_GNU_addr_index:
49f6c839 20497 case DW_OP_GNU_const_index:
3019eac3
DE
20498 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20499 &bytes_read);
20500 i += bytes_read;
20501 break;
20502
21ae7a4d
JK
20503 default:
20504 {
f39c6ffd 20505 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20506
20507 if (name)
20508 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20509 name);
20510 else
20511 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20512 op);
20513 }
20514
20515 return (stack[stacki]);
d53d4ac5 20516 }
3c6e0cb3 20517
21ae7a4d
JK
20518 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20519 outside of the allocated space. Also enforce minimum>0. */
20520 if (stacki >= ARRAY_SIZE (stack) - 1)
20521 {
20522 complaint (&symfile_complaints,
20523 _("location description stack overflow"));
20524 return 0;
20525 }
20526
20527 if (stacki <= 0)
20528 {
20529 complaint (&symfile_complaints,
20530 _("location description stack underflow"));
20531 return 0;
20532 }
20533 }
20534 return (stack[stacki]);
c906108c
SS
20535}
20536
20537/* memory allocation interface */
20538
c906108c 20539static struct dwarf_block *
7b5a2f43 20540dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20541{
20542 struct dwarf_block *blk;
20543
20544 blk = (struct dwarf_block *)
7b5a2f43 20545 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20546 return (blk);
20547}
20548
c906108c 20549static struct die_info *
b60c80d6 20550dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20551{
20552 struct die_info *die;
b60c80d6
DJ
20553 size_t size = sizeof (struct die_info);
20554
20555 if (num_attrs > 1)
20556 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20557
b60c80d6 20558 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20559 memset (die, 0, sizeof (struct die_info));
20560 return (die);
20561}
2e276125
JB
20562
20563\f
20564/* Macro support. */
20565
233d95b5
JK
20566/* Return file name relative to the compilation directory of file number I in
20567 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20568 responsible for freeing it. */
233d95b5 20569
2e276125 20570static char *
233d95b5 20571file_file_name (int file, struct line_header *lh)
2e276125 20572{
6a83a1e6
EZ
20573 /* Is the file number a valid index into the line header's file name
20574 table? Remember that file numbers start with one, not zero. */
20575 if (1 <= file && file <= lh->num_file_names)
20576 {
20577 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20578
233d95b5 20579 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20580 return xstrdup (fe->name);
233d95b5
JK
20581 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20582 fe->name, NULL);
6a83a1e6 20583 }
2e276125
JB
20584 else
20585 {
6a83a1e6
EZ
20586 /* The compiler produced a bogus file number. We can at least
20587 record the macro definitions made in the file, even if we
20588 won't be able to find the file by name. */
20589 char fake_name[80];
9a619af0 20590
8c042590
PM
20591 xsnprintf (fake_name, sizeof (fake_name),
20592 "<bad macro file number %d>", file);
2e276125 20593
6e70227d 20594 complaint (&symfile_complaints,
6a83a1e6
EZ
20595 _("bad file number in macro information (%d)"),
20596 file);
2e276125 20597
6a83a1e6 20598 return xstrdup (fake_name);
2e276125
JB
20599 }
20600}
20601
233d95b5
JK
20602/* Return the full name of file number I in *LH's file name table.
20603 Use COMP_DIR as the name of the current directory of the
20604 compilation. The result is allocated using xmalloc; the caller is
20605 responsible for freeing it. */
20606static char *
20607file_full_name (int file, struct line_header *lh, const char *comp_dir)
20608{
20609 /* Is the file number a valid index into the line header's file name
20610 table? Remember that file numbers start with one, not zero. */
20611 if (1 <= file && file <= lh->num_file_names)
20612 {
20613 char *relative = file_file_name (file, lh);
20614
20615 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20616 return relative;
20617 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20618 }
20619 else
20620 return file_file_name (file, lh);
20621}
20622
2e276125
JB
20623
20624static struct macro_source_file *
20625macro_start_file (int file, int line,
20626 struct macro_source_file *current_file,
43f3e411 20627 struct line_header *lh)
2e276125 20628{
233d95b5
JK
20629 /* File name relative to the compilation directory of this source file. */
20630 char *file_name = file_file_name (file, lh);
2e276125 20631
2e276125 20632 if (! current_file)
abc9d0dc 20633 {
fc474241
DE
20634 /* Note: We don't create a macro table for this compilation unit
20635 at all until we actually get a filename. */
43f3e411 20636 struct macro_table *macro_table = get_macro_table ();
fc474241 20637
abc9d0dc
TT
20638 /* If we have no current file, then this must be the start_file
20639 directive for the compilation unit's main source file. */
fc474241
DE
20640 current_file = macro_set_main (macro_table, file_name);
20641 macro_define_special (macro_table);
abc9d0dc 20642 }
2e276125 20643 else
233d95b5 20644 current_file = macro_include (current_file, line, file_name);
2e276125 20645
233d95b5 20646 xfree (file_name);
6e70227d 20647
2e276125
JB
20648 return current_file;
20649}
20650
20651
20652/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20653 followed by a null byte. */
20654static char *
20655copy_string (const char *buf, int len)
20656{
20657 char *s = xmalloc (len + 1);
9a619af0 20658
2e276125
JB
20659 memcpy (s, buf, len);
20660 s[len] = '\0';
2e276125
JB
20661 return s;
20662}
20663
20664
20665static const char *
20666consume_improper_spaces (const char *p, const char *body)
20667{
20668 if (*p == ' ')
20669 {
4d3c2250 20670 complaint (&symfile_complaints,
3e43a32a
MS
20671 _("macro definition contains spaces "
20672 "in formal argument list:\n`%s'"),
4d3c2250 20673 body);
2e276125
JB
20674
20675 while (*p == ' ')
20676 p++;
20677 }
20678
20679 return p;
20680}
20681
20682
20683static void
20684parse_macro_definition (struct macro_source_file *file, int line,
20685 const char *body)
20686{
20687 const char *p;
20688
20689 /* The body string takes one of two forms. For object-like macro
20690 definitions, it should be:
20691
20692 <macro name> " " <definition>
20693
20694 For function-like macro definitions, it should be:
20695
20696 <macro name> "() " <definition>
20697 or
20698 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20699
20700 Spaces may appear only where explicitly indicated, and in the
20701 <definition>.
20702
20703 The Dwarf 2 spec says that an object-like macro's name is always
20704 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20705 the space when the macro's definition is the empty string.
2e276125
JB
20706
20707 The Dwarf 2 spec says that there should be no spaces between the
20708 formal arguments in a function-like macro's formal argument list,
20709 but versions of GCC around March 2002 include spaces after the
20710 commas. */
20711
20712
20713 /* Find the extent of the macro name. The macro name is terminated
20714 by either a space or null character (for an object-like macro) or
20715 an opening paren (for a function-like macro). */
20716 for (p = body; *p; p++)
20717 if (*p == ' ' || *p == '(')
20718 break;
20719
20720 if (*p == ' ' || *p == '\0')
20721 {
20722 /* It's an object-like macro. */
20723 int name_len = p - body;
20724 char *name = copy_string (body, name_len);
20725 const char *replacement;
20726
20727 if (*p == ' ')
20728 replacement = body + name_len + 1;
20729 else
20730 {
4d3c2250 20731 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20732 replacement = body + name_len;
20733 }
6e70227d 20734
2e276125
JB
20735 macro_define_object (file, line, name, replacement);
20736
20737 xfree (name);
20738 }
20739 else if (*p == '(')
20740 {
20741 /* It's a function-like macro. */
20742 char *name = copy_string (body, p - body);
20743 int argc = 0;
20744 int argv_size = 1;
20745 char **argv = xmalloc (argv_size * sizeof (*argv));
20746
20747 p++;
20748
20749 p = consume_improper_spaces (p, body);
20750
20751 /* Parse the formal argument list. */
20752 while (*p && *p != ')')
20753 {
20754 /* Find the extent of the current argument name. */
20755 const char *arg_start = p;
20756
20757 while (*p && *p != ',' && *p != ')' && *p != ' ')
20758 p++;
20759
20760 if (! *p || p == arg_start)
4d3c2250 20761 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20762 else
20763 {
20764 /* Make sure argv has room for the new argument. */
20765 if (argc >= argv_size)
20766 {
20767 argv_size *= 2;
20768 argv = xrealloc (argv, argv_size * sizeof (*argv));
20769 }
20770
20771 argv[argc++] = copy_string (arg_start, p - arg_start);
20772 }
20773
20774 p = consume_improper_spaces (p, body);
20775
20776 /* Consume the comma, if present. */
20777 if (*p == ',')
20778 {
20779 p++;
20780
20781 p = consume_improper_spaces (p, body);
20782 }
20783 }
20784
20785 if (*p == ')')
20786 {
20787 p++;
20788
20789 if (*p == ' ')
20790 /* Perfectly formed definition, no complaints. */
20791 macro_define_function (file, line, name,
6e70227d 20792 argc, (const char **) argv,
2e276125
JB
20793 p + 1);
20794 else if (*p == '\0')
20795 {
20796 /* Complain, but do define it. */
4d3c2250 20797 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20798 macro_define_function (file, line, name,
6e70227d 20799 argc, (const char **) argv,
2e276125
JB
20800 p);
20801 }
20802 else
20803 /* Just complain. */
4d3c2250 20804 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20805 }
20806 else
20807 /* Just complain. */
4d3c2250 20808 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20809
20810 xfree (name);
20811 {
20812 int i;
20813
20814 for (i = 0; i < argc; i++)
20815 xfree (argv[i]);
20816 }
20817 xfree (argv);
20818 }
20819 else
4d3c2250 20820 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20821}
20822
cf2c3c16
TT
20823/* Skip some bytes from BYTES according to the form given in FORM.
20824 Returns the new pointer. */
2e276125 20825
d521ce57
TT
20826static const gdb_byte *
20827skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20828 enum dwarf_form form,
20829 unsigned int offset_size,
20830 struct dwarf2_section_info *section)
2e276125 20831{
cf2c3c16 20832 unsigned int bytes_read;
2e276125 20833
cf2c3c16 20834 switch (form)
2e276125 20835 {
cf2c3c16
TT
20836 case DW_FORM_data1:
20837 case DW_FORM_flag:
20838 ++bytes;
20839 break;
20840
20841 case DW_FORM_data2:
20842 bytes += 2;
20843 break;
20844
20845 case DW_FORM_data4:
20846 bytes += 4;
20847 break;
20848
20849 case DW_FORM_data8:
20850 bytes += 8;
20851 break;
20852
20853 case DW_FORM_string:
20854 read_direct_string (abfd, bytes, &bytes_read);
20855 bytes += bytes_read;
20856 break;
20857
20858 case DW_FORM_sec_offset:
20859 case DW_FORM_strp:
36586728 20860 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20861 bytes += offset_size;
20862 break;
20863
20864 case DW_FORM_block:
20865 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20866 bytes += bytes_read;
20867 break;
20868
20869 case DW_FORM_block1:
20870 bytes += 1 + read_1_byte (abfd, bytes);
20871 break;
20872 case DW_FORM_block2:
20873 bytes += 2 + read_2_bytes (abfd, bytes);
20874 break;
20875 case DW_FORM_block4:
20876 bytes += 4 + read_4_bytes (abfd, bytes);
20877 break;
20878
20879 case DW_FORM_sdata:
20880 case DW_FORM_udata:
3019eac3
DE
20881 case DW_FORM_GNU_addr_index:
20882 case DW_FORM_GNU_str_index:
d521ce57 20883 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20884 if (bytes == NULL)
20885 {
20886 dwarf2_section_buffer_overflow_complaint (section);
20887 return NULL;
20888 }
cf2c3c16
TT
20889 break;
20890
20891 default:
20892 {
20893 complain:
20894 complaint (&symfile_complaints,
20895 _("invalid form 0x%x in `%s'"),
a32a8923 20896 form, get_section_name (section));
cf2c3c16
TT
20897 return NULL;
20898 }
2e276125
JB
20899 }
20900
cf2c3c16
TT
20901 return bytes;
20902}
757a13d0 20903
cf2c3c16
TT
20904/* A helper for dwarf_decode_macros that handles skipping an unknown
20905 opcode. Returns an updated pointer to the macro data buffer; or,
20906 on error, issues a complaint and returns NULL. */
757a13d0 20907
d521ce57 20908static const gdb_byte *
cf2c3c16 20909skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20910 const gdb_byte **opcode_definitions,
20911 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20912 bfd *abfd,
20913 unsigned int offset_size,
20914 struct dwarf2_section_info *section)
20915{
20916 unsigned int bytes_read, i;
20917 unsigned long arg;
d521ce57 20918 const gdb_byte *defn;
2e276125 20919
cf2c3c16 20920 if (opcode_definitions[opcode] == NULL)
2e276125 20921 {
cf2c3c16
TT
20922 complaint (&symfile_complaints,
20923 _("unrecognized DW_MACFINO opcode 0x%x"),
20924 opcode);
20925 return NULL;
20926 }
2e276125 20927
cf2c3c16
TT
20928 defn = opcode_definitions[opcode];
20929 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20930 defn += bytes_read;
2e276125 20931
cf2c3c16
TT
20932 for (i = 0; i < arg; ++i)
20933 {
f664829e
DE
20934 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20935 section);
cf2c3c16
TT
20936 if (mac_ptr == NULL)
20937 {
20938 /* skip_form_bytes already issued the complaint. */
20939 return NULL;
20940 }
20941 }
757a13d0 20942
cf2c3c16
TT
20943 return mac_ptr;
20944}
757a13d0 20945
cf2c3c16
TT
20946/* A helper function which parses the header of a macro section.
20947 If the macro section is the extended (for now called "GNU") type,
20948 then this updates *OFFSET_SIZE. Returns a pointer to just after
20949 the header, or issues a complaint and returns NULL on error. */
757a13d0 20950
d521ce57
TT
20951static const gdb_byte *
20952dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20953 bfd *abfd,
d521ce57 20954 const gdb_byte *mac_ptr,
cf2c3c16
TT
20955 unsigned int *offset_size,
20956 int section_is_gnu)
20957{
20958 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20959
cf2c3c16
TT
20960 if (section_is_gnu)
20961 {
20962 unsigned int version, flags;
757a13d0 20963
cf2c3c16
TT
20964 version = read_2_bytes (abfd, mac_ptr);
20965 if (version != 4)
20966 {
20967 complaint (&symfile_complaints,
20968 _("unrecognized version `%d' in .debug_macro section"),
20969 version);
20970 return NULL;
20971 }
20972 mac_ptr += 2;
757a13d0 20973
cf2c3c16
TT
20974 flags = read_1_byte (abfd, mac_ptr);
20975 ++mac_ptr;
20976 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20977
cf2c3c16
TT
20978 if ((flags & 2) != 0)
20979 /* We don't need the line table offset. */
20980 mac_ptr += *offset_size;
757a13d0 20981
cf2c3c16
TT
20982 /* Vendor opcode descriptions. */
20983 if ((flags & 4) != 0)
20984 {
20985 unsigned int i, count;
757a13d0 20986
cf2c3c16
TT
20987 count = read_1_byte (abfd, mac_ptr);
20988 ++mac_ptr;
20989 for (i = 0; i < count; ++i)
20990 {
20991 unsigned int opcode, bytes_read;
20992 unsigned long arg;
20993
20994 opcode = read_1_byte (abfd, mac_ptr);
20995 ++mac_ptr;
20996 opcode_definitions[opcode] = mac_ptr;
20997 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20998 mac_ptr += bytes_read;
20999 mac_ptr += arg;
21000 }
757a13d0 21001 }
cf2c3c16 21002 }
757a13d0 21003
cf2c3c16
TT
21004 return mac_ptr;
21005}
757a13d0 21006
cf2c3c16 21007/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21008 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21009
21010static void
d521ce57
TT
21011dwarf_decode_macro_bytes (bfd *abfd,
21012 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21013 struct macro_source_file *current_file,
43f3e411 21014 struct line_header *lh,
cf2c3c16 21015 struct dwarf2_section_info *section,
36586728 21016 int section_is_gnu, int section_is_dwz,
cf2c3c16 21017 unsigned int offset_size,
8fc3fc34 21018 htab_t include_hash)
cf2c3c16 21019{
4d663531 21020 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21021 enum dwarf_macro_record_type macinfo_type;
21022 int at_commandline;
d521ce57 21023 const gdb_byte *opcode_definitions[256];
757a13d0 21024
cf2c3c16
TT
21025 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21026 &offset_size, section_is_gnu);
21027 if (mac_ptr == NULL)
21028 {
21029 /* We already issued a complaint. */
21030 return;
21031 }
757a13d0
JK
21032
21033 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21034 GDB is still reading the definitions from command line. First
21035 DW_MACINFO_start_file will need to be ignored as it was already executed
21036 to create CURRENT_FILE for the main source holding also the command line
21037 definitions. On first met DW_MACINFO_start_file this flag is reset to
21038 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21039
21040 at_commandline = 1;
21041
21042 do
21043 {
21044 /* Do we at least have room for a macinfo type byte? */
21045 if (mac_ptr >= mac_end)
21046 {
f664829e 21047 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21048 break;
21049 }
21050
21051 macinfo_type = read_1_byte (abfd, mac_ptr);
21052 mac_ptr++;
21053
cf2c3c16
TT
21054 /* Note that we rely on the fact that the corresponding GNU and
21055 DWARF constants are the same. */
757a13d0
JK
21056 switch (macinfo_type)
21057 {
21058 /* A zero macinfo type indicates the end of the macro
21059 information. */
21060 case 0:
21061 break;
2e276125 21062
cf2c3c16
TT
21063 case DW_MACRO_GNU_define:
21064 case DW_MACRO_GNU_undef:
21065 case DW_MACRO_GNU_define_indirect:
21066 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21067 case DW_MACRO_GNU_define_indirect_alt:
21068 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21069 {
891d2f0b 21070 unsigned int bytes_read;
2e276125 21071 int line;
d521ce57 21072 const char *body;
cf2c3c16 21073 int is_define;
2e276125 21074
cf2c3c16
TT
21075 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21076 mac_ptr += bytes_read;
21077
21078 if (macinfo_type == DW_MACRO_GNU_define
21079 || macinfo_type == DW_MACRO_GNU_undef)
21080 {
21081 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21082 mac_ptr += bytes_read;
21083 }
21084 else
21085 {
21086 LONGEST str_offset;
21087
21088 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21089 mac_ptr += offset_size;
2e276125 21090
36586728 21091 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21092 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21093 || section_is_dwz)
36586728
TT
21094 {
21095 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21096
21097 body = read_indirect_string_from_dwz (dwz, str_offset);
21098 }
21099 else
21100 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21101 }
21102
21103 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21104 || macinfo_type == DW_MACRO_GNU_define_indirect
21105 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21106 if (! current_file)
757a13d0
JK
21107 {
21108 /* DWARF violation as no main source is present. */
21109 complaint (&symfile_complaints,
21110 _("debug info with no main source gives macro %s "
21111 "on line %d: %s"),
cf2c3c16
TT
21112 is_define ? _("definition") : _("undefinition"),
21113 line, body);
757a13d0
JK
21114 break;
21115 }
3e43a32a
MS
21116 if ((line == 0 && !at_commandline)
21117 || (line != 0 && at_commandline))
4d3c2250 21118 complaint (&symfile_complaints,
757a13d0
JK
21119 _("debug info gives %s macro %s with %s line %d: %s"),
21120 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21121 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21122 line == 0 ? _("zero") : _("non-zero"), line, body);
21123
cf2c3c16 21124 if (is_define)
757a13d0 21125 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21126 else
21127 {
21128 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21129 || macinfo_type == DW_MACRO_GNU_undef_indirect
21130 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21131 macro_undef (current_file, line, body);
21132 }
2e276125
JB
21133 }
21134 break;
21135
cf2c3c16 21136 case DW_MACRO_GNU_start_file:
2e276125 21137 {
891d2f0b 21138 unsigned int bytes_read;
2e276125
JB
21139 int line, file;
21140
21141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21142 mac_ptr += bytes_read;
21143 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21144 mac_ptr += bytes_read;
21145
3e43a32a
MS
21146 if ((line == 0 && !at_commandline)
21147 || (line != 0 && at_commandline))
757a13d0
JK
21148 complaint (&symfile_complaints,
21149 _("debug info gives source %d included "
21150 "from %s at %s line %d"),
21151 file, at_commandline ? _("command-line") : _("file"),
21152 line == 0 ? _("zero") : _("non-zero"), line);
21153
21154 if (at_commandline)
21155 {
cf2c3c16
TT
21156 /* This DW_MACRO_GNU_start_file was executed in the
21157 pass one. */
757a13d0
JK
21158 at_commandline = 0;
21159 }
21160 else
43f3e411 21161 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21162 }
21163 break;
21164
cf2c3c16 21165 case DW_MACRO_GNU_end_file:
2e276125 21166 if (! current_file)
4d3c2250 21167 complaint (&symfile_complaints,
3e43a32a
MS
21168 _("macro debug info has an unmatched "
21169 "`close_file' directive"));
2e276125
JB
21170 else
21171 {
21172 current_file = current_file->included_by;
21173 if (! current_file)
21174 {
cf2c3c16 21175 enum dwarf_macro_record_type next_type;
2e276125
JB
21176
21177 /* GCC circa March 2002 doesn't produce the zero
21178 type byte marking the end of the compilation
21179 unit. Complain if it's not there, but exit no
21180 matter what. */
21181
21182 /* Do we at least have room for a macinfo type byte? */
21183 if (mac_ptr >= mac_end)
21184 {
f664829e 21185 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21186 return;
21187 }
21188
21189 /* We don't increment mac_ptr here, so this is just
21190 a look-ahead. */
21191 next_type = read_1_byte (abfd, mac_ptr);
21192 if (next_type != 0)
4d3c2250 21193 complaint (&symfile_complaints,
3e43a32a
MS
21194 _("no terminating 0-type entry for "
21195 "macros in `.debug_macinfo' section"));
2e276125
JB
21196
21197 return;
21198 }
21199 }
21200 break;
21201
cf2c3c16 21202 case DW_MACRO_GNU_transparent_include:
36586728 21203 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21204 {
21205 LONGEST offset;
8fc3fc34 21206 void **slot;
a036ba48
TT
21207 bfd *include_bfd = abfd;
21208 struct dwarf2_section_info *include_section = section;
21209 struct dwarf2_section_info alt_section;
d521ce57 21210 const gdb_byte *include_mac_end = mac_end;
a036ba48 21211 int is_dwz = section_is_dwz;
d521ce57 21212 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21213
21214 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21215 mac_ptr += offset_size;
21216
a036ba48
TT
21217 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21218 {
21219 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21220
4d663531 21221 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21222
a036ba48 21223 include_section = &dwz->macro;
a32a8923 21224 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21225 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21226 is_dwz = 1;
21227 }
21228
21229 new_mac_ptr = include_section->buffer + offset;
21230 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21231
8fc3fc34
TT
21232 if (*slot != NULL)
21233 {
21234 /* This has actually happened; see
21235 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21236 complaint (&symfile_complaints,
21237 _("recursive DW_MACRO_GNU_transparent_include in "
21238 ".debug_macro section"));
21239 }
21240 else
21241 {
d521ce57 21242 *slot = (void *) new_mac_ptr;
36586728 21243
a036ba48 21244 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21245 include_mac_end, current_file, lh,
36586728 21246 section, section_is_gnu, is_dwz,
4d663531 21247 offset_size, include_hash);
8fc3fc34 21248
d521ce57 21249 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21250 }
cf2c3c16
TT
21251 }
21252 break;
21253
2e276125 21254 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21255 if (!section_is_gnu)
21256 {
21257 unsigned int bytes_read;
21258 int constant;
2e276125 21259
cf2c3c16
TT
21260 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21261 mac_ptr += bytes_read;
21262 read_direct_string (abfd, mac_ptr, &bytes_read);
21263 mac_ptr += bytes_read;
2e276125 21264
cf2c3c16
TT
21265 /* We don't recognize any vendor extensions. */
21266 break;
21267 }
21268 /* FALLTHROUGH */
21269
21270 default:
21271 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21272 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21273 section);
21274 if (mac_ptr == NULL)
21275 return;
21276 break;
2e276125 21277 }
757a13d0 21278 } while (macinfo_type != 0);
2e276125 21279}
8e19ed76 21280
cf2c3c16 21281static void
09262596 21282dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21283 int section_is_gnu)
cf2c3c16 21284{
bb5ed363 21285 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21286 struct line_header *lh = cu->line_header;
21287 bfd *abfd;
d521ce57 21288 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21289 struct macro_source_file *current_file = 0;
21290 enum dwarf_macro_record_type macinfo_type;
21291 unsigned int offset_size = cu->header.offset_size;
d521ce57 21292 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21293 struct cleanup *cleanup;
21294 htab_t include_hash;
21295 void **slot;
09262596
DE
21296 struct dwarf2_section_info *section;
21297 const char *section_name;
21298
21299 if (cu->dwo_unit != NULL)
21300 {
21301 if (section_is_gnu)
21302 {
21303 section = &cu->dwo_unit->dwo_file->sections.macro;
21304 section_name = ".debug_macro.dwo";
21305 }
21306 else
21307 {
21308 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21309 section_name = ".debug_macinfo.dwo";
21310 }
21311 }
21312 else
21313 {
21314 if (section_is_gnu)
21315 {
21316 section = &dwarf2_per_objfile->macro;
21317 section_name = ".debug_macro";
21318 }
21319 else
21320 {
21321 section = &dwarf2_per_objfile->macinfo;
21322 section_name = ".debug_macinfo";
21323 }
21324 }
cf2c3c16 21325
bb5ed363 21326 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21327 if (section->buffer == NULL)
21328 {
fceca515 21329 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21330 return;
21331 }
a32a8923 21332 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21333
21334 /* First pass: Find the name of the base filename.
21335 This filename is needed in order to process all macros whose definition
21336 (or undefinition) comes from the command line. These macros are defined
21337 before the first DW_MACINFO_start_file entry, and yet still need to be
21338 associated to the base file.
21339
21340 To determine the base file name, we scan the macro definitions until we
21341 reach the first DW_MACINFO_start_file entry. We then initialize
21342 CURRENT_FILE accordingly so that any macro definition found before the
21343 first DW_MACINFO_start_file can still be associated to the base file. */
21344
21345 mac_ptr = section->buffer + offset;
21346 mac_end = section->buffer + section->size;
21347
21348 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21349 &offset_size, section_is_gnu);
21350 if (mac_ptr == NULL)
21351 {
21352 /* We already issued a complaint. */
21353 return;
21354 }
21355
21356 do
21357 {
21358 /* Do we at least have room for a macinfo type byte? */
21359 if (mac_ptr >= mac_end)
21360 {
21361 /* Complaint is printed during the second pass as GDB will probably
21362 stop the first pass earlier upon finding
21363 DW_MACINFO_start_file. */
21364 break;
21365 }
21366
21367 macinfo_type = read_1_byte (abfd, mac_ptr);
21368 mac_ptr++;
21369
21370 /* Note that we rely on the fact that the corresponding GNU and
21371 DWARF constants are the same. */
21372 switch (macinfo_type)
21373 {
21374 /* A zero macinfo type indicates the end of the macro
21375 information. */
21376 case 0:
21377 break;
21378
21379 case DW_MACRO_GNU_define:
21380 case DW_MACRO_GNU_undef:
21381 /* Only skip the data by MAC_PTR. */
21382 {
21383 unsigned int bytes_read;
21384
21385 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21386 mac_ptr += bytes_read;
21387 read_direct_string (abfd, mac_ptr, &bytes_read);
21388 mac_ptr += bytes_read;
21389 }
21390 break;
21391
21392 case DW_MACRO_GNU_start_file:
21393 {
21394 unsigned int bytes_read;
21395 int line, file;
21396
21397 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21398 mac_ptr += bytes_read;
21399 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21400 mac_ptr += bytes_read;
21401
43f3e411 21402 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21403 }
21404 break;
21405
21406 case DW_MACRO_GNU_end_file:
21407 /* No data to skip by MAC_PTR. */
21408 break;
21409
21410 case DW_MACRO_GNU_define_indirect:
21411 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21412 case DW_MACRO_GNU_define_indirect_alt:
21413 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21414 {
21415 unsigned int bytes_read;
21416
21417 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21418 mac_ptr += bytes_read;
21419 mac_ptr += offset_size;
21420 }
21421 break;
21422
21423 case DW_MACRO_GNU_transparent_include:
f7a35f02 21424 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21425 /* Note that, according to the spec, a transparent include
21426 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21427 skip this opcode. */
21428 mac_ptr += offset_size;
21429 break;
21430
21431 case DW_MACINFO_vendor_ext:
21432 /* Only skip the data by MAC_PTR. */
21433 if (!section_is_gnu)
21434 {
21435 unsigned int bytes_read;
21436
21437 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21438 mac_ptr += bytes_read;
21439 read_direct_string (abfd, mac_ptr, &bytes_read);
21440 mac_ptr += bytes_read;
21441 }
21442 /* FALLTHROUGH */
21443
21444 default:
21445 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21446 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21447 section);
21448 if (mac_ptr == NULL)
21449 return;
21450 break;
21451 }
21452 } while (macinfo_type != 0 && current_file == NULL);
21453
21454 /* Second pass: Process all entries.
21455
21456 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21457 command-line macro definitions/undefinitions. This flag is unset when we
21458 reach the first DW_MACINFO_start_file entry. */
21459
8fc3fc34
TT
21460 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21461 NULL, xcalloc, xfree);
21462 cleanup = make_cleanup_htab_delete (include_hash);
21463 mac_ptr = section->buffer + offset;
21464 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21465 *slot = (void *) mac_ptr;
8fc3fc34 21466 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21467 current_file, lh, section,
4d663531 21468 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21469 do_cleanups (cleanup);
cf2c3c16
TT
21470}
21471
8e19ed76 21472/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21473 if so return true else false. */
380bca97 21474
8e19ed76 21475static int
6e5a29e1 21476attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21477{
21478 return (attr == NULL ? 0 :
21479 attr->form == DW_FORM_block1
21480 || attr->form == DW_FORM_block2
21481 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21482 || attr->form == DW_FORM_block
21483 || attr->form == DW_FORM_exprloc);
8e19ed76 21484}
4c2df51b 21485
c6a0999f
JB
21486/* Return non-zero if ATTR's value is a section offset --- classes
21487 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21488 You may use DW_UNSND (attr) to retrieve such offsets.
21489
21490 Section 7.5.4, "Attribute Encodings", explains that no attribute
21491 may have a value that belongs to more than one of these classes; it
21492 would be ambiguous if we did, because we use the same forms for all
21493 of them. */
380bca97 21494
3690dd37 21495static int
6e5a29e1 21496attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21497{
21498 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21499 || attr->form == DW_FORM_data8
21500 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21501}
21502
3690dd37
JB
21503/* Return non-zero if ATTR's value falls in the 'constant' class, or
21504 zero otherwise. When this function returns true, you can apply
21505 dwarf2_get_attr_constant_value to it.
21506
21507 However, note that for some attributes you must check
21508 attr_form_is_section_offset before using this test. DW_FORM_data4
21509 and DW_FORM_data8 are members of both the constant class, and of
21510 the classes that contain offsets into other debug sections
21511 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21512 that, if an attribute's can be either a constant or one of the
21513 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21514 taken as section offsets, not constants. */
380bca97 21515
3690dd37 21516static int
6e5a29e1 21517attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21518{
21519 switch (attr->form)
21520 {
21521 case DW_FORM_sdata:
21522 case DW_FORM_udata:
21523 case DW_FORM_data1:
21524 case DW_FORM_data2:
21525 case DW_FORM_data4:
21526 case DW_FORM_data8:
21527 return 1;
21528 default:
21529 return 0;
21530 }
21531}
21532
7771576e
SA
21533
21534/* DW_ADDR is always stored already as sect_offset; despite for the forms
21535 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21536
21537static int
6e5a29e1 21538attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21539{
21540 switch (attr->form)
21541 {
21542 case DW_FORM_ref_addr:
21543 case DW_FORM_ref1:
21544 case DW_FORM_ref2:
21545 case DW_FORM_ref4:
21546 case DW_FORM_ref8:
21547 case DW_FORM_ref_udata:
21548 case DW_FORM_GNU_ref_alt:
21549 return 1;
21550 default:
21551 return 0;
21552 }
21553}
21554
3019eac3
DE
21555/* Return the .debug_loc section to use for CU.
21556 For DWO files use .debug_loc.dwo. */
21557
21558static struct dwarf2_section_info *
21559cu_debug_loc_section (struct dwarf2_cu *cu)
21560{
21561 if (cu->dwo_unit)
21562 return &cu->dwo_unit->dwo_file->sections.loc;
21563 return &dwarf2_per_objfile->loc;
21564}
21565
8cf6f0b1
TT
21566/* A helper function that fills in a dwarf2_loclist_baton. */
21567
21568static void
21569fill_in_loclist_baton (struct dwarf2_cu *cu,
21570 struct dwarf2_loclist_baton *baton,
ff39bb5e 21571 const struct attribute *attr)
8cf6f0b1 21572{
3019eac3
DE
21573 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21574
21575 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21576
21577 baton->per_cu = cu->per_cu;
21578 gdb_assert (baton->per_cu);
21579 /* We don't know how long the location list is, but make sure we
21580 don't run off the edge of the section. */
3019eac3
DE
21581 baton->size = section->size - DW_UNSND (attr);
21582 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21583 baton->base_address = cu->base_address;
f664829e 21584 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21585}
21586
4c2df51b 21587static void
ff39bb5e 21588dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21589 struct dwarf2_cu *cu, int is_block)
4c2df51b 21590{
bb5ed363 21591 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21592 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21593
3690dd37 21594 if (attr_form_is_section_offset (attr)
3019eac3 21595 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21596 the section. If so, fall through to the complaint in the
21597 other branch. */
3019eac3 21598 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21599 {
0d53c4c4 21600 struct dwarf2_loclist_baton *baton;
4c2df51b 21601
bb5ed363 21602 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21603 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21604
8cf6f0b1 21605 fill_in_loclist_baton (cu, baton, attr);
be391dca 21606
d00adf39 21607 if (cu->base_known == 0)
0d53c4c4 21608 complaint (&symfile_complaints,
3e43a32a
MS
21609 _("Location list used without "
21610 "specifying the CU base address."));
4c2df51b 21611
f1e6e072
TT
21612 SYMBOL_ACLASS_INDEX (sym) = (is_block
21613 ? dwarf2_loclist_block_index
21614 : dwarf2_loclist_index);
0d53c4c4
DJ
21615 SYMBOL_LOCATION_BATON (sym) = baton;
21616 }
21617 else
21618 {
21619 struct dwarf2_locexpr_baton *baton;
21620
bb5ed363 21621 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21622 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21623 baton->per_cu = cu->per_cu;
21624 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21625
21626 if (attr_form_is_block (attr))
21627 {
21628 /* Note that we're just copying the block's data pointer
21629 here, not the actual data. We're still pointing into the
6502dd73
DJ
21630 info_buffer for SYM's objfile; right now we never release
21631 that buffer, but when we do clean up properly this may
21632 need to change. */
0d53c4c4
DJ
21633 baton->size = DW_BLOCK (attr)->size;
21634 baton->data = DW_BLOCK (attr)->data;
21635 }
21636 else
21637 {
21638 dwarf2_invalid_attrib_class_complaint ("location description",
21639 SYMBOL_NATURAL_NAME (sym));
21640 baton->size = 0;
0d53c4c4 21641 }
6e70227d 21642
f1e6e072
TT
21643 SYMBOL_ACLASS_INDEX (sym) = (is_block
21644 ? dwarf2_locexpr_block_index
21645 : dwarf2_locexpr_index);
0d53c4c4
DJ
21646 SYMBOL_LOCATION_BATON (sym) = baton;
21647 }
4c2df51b 21648}
6502dd73 21649
9aa1f1e3
TT
21650/* Return the OBJFILE associated with the compilation unit CU. If CU
21651 came from a separate debuginfo file, then the master objfile is
21652 returned. */
ae0d2f24
UW
21653
21654struct objfile *
21655dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21656{
9291a0cd 21657 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21658
21659 /* Return the master objfile, so that we can report and look up the
21660 correct file containing this variable. */
21661 if (objfile->separate_debug_objfile_backlink)
21662 objfile = objfile->separate_debug_objfile_backlink;
21663
21664 return objfile;
21665}
21666
96408a79
SA
21667/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21668 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21669 CU_HEADERP first. */
21670
21671static const struct comp_unit_head *
21672per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21673 struct dwarf2_per_cu_data *per_cu)
21674{
d521ce57 21675 const gdb_byte *info_ptr;
96408a79
SA
21676
21677 if (per_cu->cu)
21678 return &per_cu->cu->header;
21679
8a0459fd 21680 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21681
21682 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21683 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21684
21685 return cu_headerp;
21686}
21687
ae0d2f24
UW
21688/* Return the address size given in the compilation unit header for CU. */
21689
98714339 21690int
ae0d2f24
UW
21691dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21692{
96408a79
SA
21693 struct comp_unit_head cu_header_local;
21694 const struct comp_unit_head *cu_headerp;
c471e790 21695
96408a79
SA
21696 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21697
21698 return cu_headerp->addr_size;
ae0d2f24
UW
21699}
21700
9eae7c52
TT
21701/* Return the offset size given in the compilation unit header for CU. */
21702
21703int
21704dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21705{
96408a79
SA
21706 struct comp_unit_head cu_header_local;
21707 const struct comp_unit_head *cu_headerp;
9c6c53f7 21708
96408a79
SA
21709 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21710
21711 return cu_headerp->offset_size;
21712}
21713
21714/* See its dwarf2loc.h declaration. */
21715
21716int
21717dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21718{
21719 struct comp_unit_head cu_header_local;
21720 const struct comp_unit_head *cu_headerp;
21721
21722 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21723
21724 if (cu_headerp->version == 2)
21725 return cu_headerp->addr_size;
21726 else
21727 return cu_headerp->offset_size;
181cebd4
JK
21728}
21729
9aa1f1e3
TT
21730/* Return the text offset of the CU. The returned offset comes from
21731 this CU's objfile. If this objfile came from a separate debuginfo
21732 file, then the offset may be different from the corresponding
21733 offset in the parent objfile. */
21734
21735CORE_ADDR
21736dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21737{
bb3fa9d0 21738 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21739
21740 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21741}
21742
348e048f
DE
21743/* Locate the .debug_info compilation unit from CU's objfile which contains
21744 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21745
21746static struct dwarf2_per_cu_data *
b64f50a1 21747dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21748 unsigned int offset_in_dwz,
ae038cb0
DJ
21749 struct objfile *objfile)
21750{
21751 struct dwarf2_per_cu_data *this_cu;
21752 int low, high;
36586728 21753 const sect_offset *cu_off;
ae038cb0 21754
ae038cb0
DJ
21755 low = 0;
21756 high = dwarf2_per_objfile->n_comp_units - 1;
21757 while (high > low)
21758 {
36586728 21759 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21760 int mid = low + (high - low) / 2;
9a619af0 21761
36586728
TT
21762 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21763 cu_off = &mid_cu->offset;
21764 if (mid_cu->is_dwz > offset_in_dwz
21765 || (mid_cu->is_dwz == offset_in_dwz
21766 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21767 high = mid;
21768 else
21769 low = mid + 1;
21770 }
21771 gdb_assert (low == high);
36586728
TT
21772 this_cu = dwarf2_per_objfile->all_comp_units[low];
21773 cu_off = &this_cu->offset;
21774 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21775 {
36586728 21776 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21777 error (_("Dwarf Error: could not find partial DIE containing "
21778 "offset 0x%lx [in module %s]"),
b64f50a1 21779 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21780
b64f50a1
JK
21781 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21782 <= offset.sect_off);
ae038cb0
DJ
21783 return dwarf2_per_objfile->all_comp_units[low-1];
21784 }
21785 else
21786 {
21787 this_cu = dwarf2_per_objfile->all_comp_units[low];
21788 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21789 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21790 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21791 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21792 return this_cu;
21793 }
21794}
21795
23745b47 21796/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21797
9816fde3 21798static void
23745b47 21799init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21800{
9816fde3 21801 memset (cu, 0, sizeof (*cu));
23745b47
DE
21802 per_cu->cu = cu;
21803 cu->per_cu = per_cu;
21804 cu->objfile = per_cu->objfile;
93311388 21805 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21806}
21807
21808/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21809
21810static void
95554aad
TT
21811prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21812 enum language pretend_language)
9816fde3
JK
21813{
21814 struct attribute *attr;
21815
21816 /* Set the language we're debugging. */
21817 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21818 if (attr)
21819 set_cu_language (DW_UNSND (attr), cu);
21820 else
9cded63f 21821 {
95554aad 21822 cu->language = pretend_language;
9cded63f
TT
21823 cu->language_defn = language_def (cu->language);
21824 }
dee91e82
DE
21825
21826 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21827 if (attr)
21828 cu->producer = DW_STRING (attr);
93311388
DE
21829}
21830
ae038cb0
DJ
21831/* Release one cached compilation unit, CU. We unlink it from the tree
21832 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21833 the caller is responsible for that.
21834 NOTE: DATA is a void * because this function is also used as a
21835 cleanup routine. */
ae038cb0
DJ
21836
21837static void
68dc6402 21838free_heap_comp_unit (void *data)
ae038cb0
DJ
21839{
21840 struct dwarf2_cu *cu = data;
21841
23745b47
DE
21842 gdb_assert (cu->per_cu != NULL);
21843 cu->per_cu->cu = NULL;
ae038cb0
DJ
21844 cu->per_cu = NULL;
21845
21846 obstack_free (&cu->comp_unit_obstack, NULL);
21847
21848 xfree (cu);
21849}
21850
72bf9492 21851/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21852 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21853 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21854
21855static void
21856free_stack_comp_unit (void *data)
21857{
21858 struct dwarf2_cu *cu = data;
21859
23745b47
DE
21860 gdb_assert (cu->per_cu != NULL);
21861 cu->per_cu->cu = NULL;
21862 cu->per_cu = NULL;
21863
72bf9492
DJ
21864 obstack_free (&cu->comp_unit_obstack, NULL);
21865 cu->partial_dies = NULL;
ae038cb0
DJ
21866}
21867
21868/* Free all cached compilation units. */
21869
21870static void
21871free_cached_comp_units (void *data)
21872{
21873 struct dwarf2_per_cu_data *per_cu, **last_chain;
21874
21875 per_cu = dwarf2_per_objfile->read_in_chain;
21876 last_chain = &dwarf2_per_objfile->read_in_chain;
21877 while (per_cu != NULL)
21878 {
21879 struct dwarf2_per_cu_data *next_cu;
21880
21881 next_cu = per_cu->cu->read_in_chain;
21882
68dc6402 21883 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21884 *last_chain = next_cu;
21885
21886 per_cu = next_cu;
21887 }
21888}
21889
21890/* Increase the age counter on each cached compilation unit, and free
21891 any that are too old. */
21892
21893static void
21894age_cached_comp_units (void)
21895{
21896 struct dwarf2_per_cu_data *per_cu, **last_chain;
21897
21898 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21899 per_cu = dwarf2_per_objfile->read_in_chain;
21900 while (per_cu != NULL)
21901 {
21902 per_cu->cu->last_used ++;
21903 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21904 dwarf2_mark (per_cu->cu);
21905 per_cu = per_cu->cu->read_in_chain;
21906 }
21907
21908 per_cu = dwarf2_per_objfile->read_in_chain;
21909 last_chain = &dwarf2_per_objfile->read_in_chain;
21910 while (per_cu != NULL)
21911 {
21912 struct dwarf2_per_cu_data *next_cu;
21913
21914 next_cu = per_cu->cu->read_in_chain;
21915
21916 if (!per_cu->cu->mark)
21917 {
68dc6402 21918 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21919 *last_chain = next_cu;
21920 }
21921 else
21922 last_chain = &per_cu->cu->read_in_chain;
21923
21924 per_cu = next_cu;
21925 }
21926}
21927
21928/* Remove a single compilation unit from the cache. */
21929
21930static void
dee91e82 21931free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21932{
21933 struct dwarf2_per_cu_data *per_cu, **last_chain;
21934
21935 per_cu = dwarf2_per_objfile->read_in_chain;
21936 last_chain = &dwarf2_per_objfile->read_in_chain;
21937 while (per_cu != NULL)
21938 {
21939 struct dwarf2_per_cu_data *next_cu;
21940
21941 next_cu = per_cu->cu->read_in_chain;
21942
dee91e82 21943 if (per_cu == target_per_cu)
ae038cb0 21944 {
68dc6402 21945 free_heap_comp_unit (per_cu->cu);
dee91e82 21946 per_cu->cu = NULL;
ae038cb0
DJ
21947 *last_chain = next_cu;
21948 break;
21949 }
21950 else
21951 last_chain = &per_cu->cu->read_in_chain;
21952
21953 per_cu = next_cu;
21954 }
21955}
21956
fe3e1990
DJ
21957/* Release all extra memory associated with OBJFILE. */
21958
21959void
21960dwarf2_free_objfile (struct objfile *objfile)
21961{
21962 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21963
21964 if (dwarf2_per_objfile == NULL)
21965 return;
21966
21967 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21968 free_cached_comp_units (NULL);
21969
7b9f3c50
DE
21970 if (dwarf2_per_objfile->quick_file_names_table)
21971 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21972
527f3840
JK
21973 if (dwarf2_per_objfile->line_header_hash)
21974 htab_delete (dwarf2_per_objfile->line_header_hash);
21975
fe3e1990
DJ
21976 /* Everything else should be on the objfile obstack. */
21977}
21978
dee91e82
DE
21979/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21980 We store these in a hash table separate from the DIEs, and preserve them
21981 when the DIEs are flushed out of cache.
21982
21983 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21984 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21985 or the type may come from a DWO file. Furthermore, while it's more logical
21986 to use per_cu->section+offset, with Fission the section with the data is in
21987 the DWO file but we don't know that section at the point we need it.
21988 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21989 because we can enter the lookup routine, get_die_type_at_offset, from
21990 outside this file, and thus won't necessarily have PER_CU->cu.
21991 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21992
dee91e82 21993struct dwarf2_per_cu_offset_and_type
1c379e20 21994{
dee91e82 21995 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21996 sect_offset offset;
1c379e20
DJ
21997 struct type *type;
21998};
21999
dee91e82 22000/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22001
22002static hashval_t
dee91e82 22003per_cu_offset_and_type_hash (const void *item)
1c379e20 22004{
dee91e82 22005 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 22006
dee91e82 22007 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22008}
22009
dee91e82 22010/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22011
22012static int
dee91e82 22013per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22014{
dee91e82
DE
22015 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22016 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 22017
dee91e82
DE
22018 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22019 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22020}
22021
22022/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22023 table if necessary. For convenience, return TYPE.
22024
22025 The DIEs reading must have careful ordering to:
22026 * Not cause infite loops trying to read in DIEs as a prerequisite for
22027 reading current DIE.
22028 * Not trying to dereference contents of still incompletely read in types
22029 while reading in other DIEs.
22030 * Enable referencing still incompletely read in types just by a pointer to
22031 the type without accessing its fields.
22032
22033 Therefore caller should follow these rules:
22034 * Try to fetch any prerequisite types we may need to build this DIE type
22035 before building the type and calling set_die_type.
e71ec853 22036 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22037 possible before fetching more types to complete the current type.
22038 * Make the type as complete as possible before fetching more types. */
1c379e20 22039
f792889a 22040static struct type *
1c379e20
DJ
22041set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22042{
dee91e82 22043 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22044 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22045 struct attribute *attr;
22046 struct dynamic_prop prop;
1c379e20 22047
b4ba55a1
JB
22048 /* For Ada types, make sure that the gnat-specific data is always
22049 initialized (if not already set). There are a few types where
22050 we should not be doing so, because the type-specific area is
22051 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22052 where the type-specific area is used to store the floatformat).
22053 But this is not a problem, because the gnat-specific information
22054 is actually not needed for these types. */
22055 if (need_gnat_info (cu)
22056 && TYPE_CODE (type) != TYPE_CODE_FUNC
22057 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22058 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22059 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22060 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22061 && !HAVE_GNAT_AUX_INFO (type))
22062 INIT_GNAT_SPECIFIC (type);
22063
3cdcd0ce
JB
22064 /* Read DW_AT_data_location and set in type. */
22065 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22066 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22067 {
22068 TYPE_DATA_LOCATION (type)
22069 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
22070 *TYPE_DATA_LOCATION (type) = prop;
22071 }
22072
dee91e82 22073 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22074 {
dee91e82
DE
22075 dwarf2_per_objfile->die_type_hash =
22076 htab_create_alloc_ex (127,
22077 per_cu_offset_and_type_hash,
22078 per_cu_offset_and_type_eq,
22079 NULL,
22080 &objfile->objfile_obstack,
22081 hashtab_obstack_allocate,
22082 dummy_obstack_deallocate);
f792889a 22083 }
1c379e20 22084
dee91e82 22085 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22086 ofs.offset = die->offset;
22087 ofs.type = type;
dee91e82
DE
22088 slot = (struct dwarf2_per_cu_offset_and_type **)
22089 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22090 if (*slot)
22091 complaint (&symfile_complaints,
22092 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22093 die->offset.sect_off);
673bfd45 22094 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 22095 **slot = ofs;
f792889a 22096 return type;
1c379e20
DJ
22097}
22098
02142a6c
DE
22099/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22100 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22101
22102static struct type *
b64f50a1 22103get_die_type_at_offset (sect_offset offset,
673bfd45 22104 struct dwarf2_per_cu_data *per_cu)
1c379e20 22105{
dee91e82 22106 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22107
dee91e82 22108 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22109 return NULL;
1c379e20 22110
dee91e82 22111 ofs.per_cu = per_cu;
673bfd45 22112 ofs.offset = offset;
dee91e82 22113 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22114 if (slot)
22115 return slot->type;
22116 else
22117 return NULL;
22118}
22119
02142a6c 22120/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22121 or return NULL if DIE does not have a saved type. */
22122
22123static struct type *
22124get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22125{
22126 return get_die_type_at_offset (die->offset, cu->per_cu);
22127}
22128
10b3939b
DJ
22129/* Add a dependence relationship from CU to REF_PER_CU. */
22130
22131static void
22132dwarf2_add_dependence (struct dwarf2_cu *cu,
22133 struct dwarf2_per_cu_data *ref_per_cu)
22134{
22135 void **slot;
22136
22137 if (cu->dependencies == NULL)
22138 cu->dependencies
22139 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22140 NULL, &cu->comp_unit_obstack,
22141 hashtab_obstack_allocate,
22142 dummy_obstack_deallocate);
22143
22144 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22145 if (*slot == NULL)
22146 *slot = ref_per_cu;
22147}
1c379e20 22148
f504f079
DE
22149/* Subroutine of dwarf2_mark to pass to htab_traverse.
22150 Set the mark field in every compilation unit in the
ae038cb0
DJ
22151 cache that we must keep because we are keeping CU. */
22152
10b3939b
DJ
22153static int
22154dwarf2_mark_helper (void **slot, void *data)
22155{
22156 struct dwarf2_per_cu_data *per_cu;
22157
22158 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22159
22160 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22161 reading of the chain. As such dependencies remain valid it is not much
22162 useful to track and undo them during QUIT cleanups. */
22163 if (per_cu->cu == NULL)
22164 return 1;
22165
10b3939b
DJ
22166 if (per_cu->cu->mark)
22167 return 1;
22168 per_cu->cu->mark = 1;
22169
22170 if (per_cu->cu->dependencies != NULL)
22171 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22172
22173 return 1;
22174}
22175
f504f079
DE
22176/* Set the mark field in CU and in every other compilation unit in the
22177 cache that we must keep because we are keeping CU. */
22178
ae038cb0
DJ
22179static void
22180dwarf2_mark (struct dwarf2_cu *cu)
22181{
22182 if (cu->mark)
22183 return;
22184 cu->mark = 1;
10b3939b
DJ
22185 if (cu->dependencies != NULL)
22186 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22187}
22188
22189static void
22190dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22191{
22192 while (per_cu)
22193 {
22194 per_cu->cu->mark = 0;
22195 per_cu = per_cu->cu->read_in_chain;
22196 }
72bf9492
DJ
22197}
22198
72bf9492
DJ
22199/* Trivial hash function for partial_die_info: the hash value of a DIE
22200 is its offset in .debug_info for this objfile. */
22201
22202static hashval_t
22203partial_die_hash (const void *item)
22204{
22205 const struct partial_die_info *part_die = item;
9a619af0 22206
b64f50a1 22207 return part_die->offset.sect_off;
72bf9492
DJ
22208}
22209
22210/* Trivial comparison function for partial_die_info structures: two DIEs
22211 are equal if they have the same offset. */
22212
22213static int
22214partial_die_eq (const void *item_lhs, const void *item_rhs)
22215{
22216 const struct partial_die_info *part_die_lhs = item_lhs;
22217 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22218
b64f50a1 22219 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22220}
22221
ae038cb0
DJ
22222static struct cmd_list_element *set_dwarf2_cmdlist;
22223static struct cmd_list_element *show_dwarf2_cmdlist;
22224
22225static void
22226set_dwarf2_cmd (char *args, int from_tty)
22227{
635c7e8a
TT
22228 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22229 gdb_stdout);
ae038cb0
DJ
22230}
22231
22232static void
22233show_dwarf2_cmd (char *args, int from_tty)
6e70227d 22234{
ae038cb0
DJ
22235 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22236}
22237
4bf44c1c 22238/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22239
22240static void
c1bd65d0 22241dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22242{
22243 struct dwarf2_per_objfile *data = d;
8b70b953 22244 int ix;
8b70b953 22245
626f2d1c
TT
22246 /* Make sure we don't accidentally use dwarf2_per_objfile while
22247 cleaning up. */
22248 dwarf2_per_objfile = NULL;
22249
59b0c7c1
JB
22250 for (ix = 0; ix < data->n_comp_units; ++ix)
22251 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22252
59b0c7c1 22253 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22254 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22255 data->all_type_units[ix]->per_cu.imported_symtabs);
22256 xfree (data->all_type_units);
95554aad 22257
8b70b953 22258 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22259
22260 if (data->dwo_files)
22261 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22262 if (data->dwp_file)
22263 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22264
22265 if (data->dwz_file && data->dwz_file->dwz_bfd)
22266 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22267}
22268
22269\f
ae2de4f8 22270/* The "save gdb-index" command. */
9291a0cd
TT
22271
22272/* The contents of the hash table we create when building the string
22273 table. */
22274struct strtab_entry
22275{
22276 offset_type offset;
22277 const char *str;
22278};
22279
559a7a62
JK
22280/* Hash function for a strtab_entry.
22281
22282 Function is used only during write_hash_table so no index format backward
22283 compatibility is needed. */
b89be57b 22284
9291a0cd
TT
22285static hashval_t
22286hash_strtab_entry (const void *e)
22287{
22288 const struct strtab_entry *entry = e;
559a7a62 22289 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22290}
22291
22292/* Equality function for a strtab_entry. */
b89be57b 22293
9291a0cd
TT
22294static int
22295eq_strtab_entry (const void *a, const void *b)
22296{
22297 const struct strtab_entry *ea = a;
22298 const struct strtab_entry *eb = b;
22299 return !strcmp (ea->str, eb->str);
22300}
22301
22302/* Create a strtab_entry hash table. */
b89be57b 22303
9291a0cd
TT
22304static htab_t
22305create_strtab (void)
22306{
22307 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22308 xfree, xcalloc, xfree);
22309}
22310
22311/* Add a string to the constant pool. Return the string's offset in
22312 host order. */
b89be57b 22313
9291a0cd
TT
22314static offset_type
22315add_string (htab_t table, struct obstack *cpool, const char *str)
22316{
22317 void **slot;
22318 struct strtab_entry entry;
22319 struct strtab_entry *result;
22320
22321 entry.str = str;
22322 slot = htab_find_slot (table, &entry, INSERT);
22323 if (*slot)
22324 result = *slot;
22325 else
22326 {
22327 result = XNEW (struct strtab_entry);
22328 result->offset = obstack_object_size (cpool);
22329 result->str = str;
22330 obstack_grow_str0 (cpool, str);
22331 *slot = result;
22332 }
22333 return result->offset;
22334}
22335
22336/* An entry in the symbol table. */
22337struct symtab_index_entry
22338{
22339 /* The name of the symbol. */
22340 const char *name;
22341 /* The offset of the name in the constant pool. */
22342 offset_type index_offset;
22343 /* A sorted vector of the indices of all the CUs that hold an object
22344 of this name. */
22345 VEC (offset_type) *cu_indices;
22346};
22347
22348/* The symbol table. This is a power-of-2-sized hash table. */
22349struct mapped_symtab
22350{
22351 offset_type n_elements;
22352 offset_type size;
22353 struct symtab_index_entry **data;
22354};
22355
22356/* Hash function for a symtab_index_entry. */
b89be57b 22357
9291a0cd
TT
22358static hashval_t
22359hash_symtab_entry (const void *e)
22360{
22361 const struct symtab_index_entry *entry = e;
22362 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22363 sizeof (offset_type) * VEC_length (offset_type,
22364 entry->cu_indices),
22365 0);
22366}
22367
22368/* Equality function for a symtab_index_entry. */
b89be57b 22369
9291a0cd
TT
22370static int
22371eq_symtab_entry (const void *a, const void *b)
22372{
22373 const struct symtab_index_entry *ea = a;
22374 const struct symtab_index_entry *eb = b;
22375 int len = VEC_length (offset_type, ea->cu_indices);
22376 if (len != VEC_length (offset_type, eb->cu_indices))
22377 return 0;
22378 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22379 VEC_address (offset_type, eb->cu_indices),
22380 sizeof (offset_type) * len);
22381}
22382
22383/* Destroy a symtab_index_entry. */
b89be57b 22384
9291a0cd
TT
22385static void
22386delete_symtab_entry (void *p)
22387{
22388 struct symtab_index_entry *entry = p;
22389 VEC_free (offset_type, entry->cu_indices);
22390 xfree (entry);
22391}
22392
22393/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22394
9291a0cd 22395static htab_t
3876f04e 22396create_symbol_hash_table (void)
9291a0cd
TT
22397{
22398 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22399 delete_symtab_entry, xcalloc, xfree);
22400}
22401
22402/* Create a new mapped symtab object. */
b89be57b 22403
9291a0cd
TT
22404static struct mapped_symtab *
22405create_mapped_symtab (void)
22406{
22407 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22408 symtab->n_elements = 0;
22409 symtab->size = 1024;
22410 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22411 return symtab;
22412}
22413
22414/* Destroy a mapped_symtab. */
b89be57b 22415
9291a0cd
TT
22416static void
22417cleanup_mapped_symtab (void *p)
22418{
22419 struct mapped_symtab *symtab = p;
22420 /* The contents of the array are freed when the other hash table is
22421 destroyed. */
22422 xfree (symtab->data);
22423 xfree (symtab);
22424}
22425
22426/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22427 the slot.
22428
22429 Function is used only during write_hash_table so no index format backward
22430 compatibility is needed. */
b89be57b 22431
9291a0cd
TT
22432static struct symtab_index_entry **
22433find_slot (struct mapped_symtab *symtab, const char *name)
22434{
559a7a62 22435 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22436
22437 index = hash & (symtab->size - 1);
22438 step = ((hash * 17) & (symtab->size - 1)) | 1;
22439
22440 for (;;)
22441 {
22442 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22443 return &symtab->data[index];
22444 index = (index + step) & (symtab->size - 1);
22445 }
22446}
22447
22448/* Expand SYMTAB's hash table. */
b89be57b 22449
9291a0cd
TT
22450static void
22451hash_expand (struct mapped_symtab *symtab)
22452{
22453 offset_type old_size = symtab->size;
22454 offset_type i;
22455 struct symtab_index_entry **old_entries = symtab->data;
22456
22457 symtab->size *= 2;
22458 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22459
22460 for (i = 0; i < old_size; ++i)
22461 {
22462 if (old_entries[i])
22463 {
22464 struct symtab_index_entry **slot = find_slot (symtab,
22465 old_entries[i]->name);
22466 *slot = old_entries[i];
22467 }
22468 }
22469
22470 xfree (old_entries);
22471}
22472
156942c7
DE
22473/* Add an entry to SYMTAB. NAME is the name of the symbol.
22474 CU_INDEX is the index of the CU in which the symbol appears.
22475 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22476
9291a0cd
TT
22477static void
22478add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22479 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22480 offset_type cu_index)
22481{
22482 struct symtab_index_entry **slot;
156942c7 22483 offset_type cu_index_and_attrs;
9291a0cd
TT
22484
22485 ++symtab->n_elements;
22486 if (4 * symtab->n_elements / 3 >= symtab->size)
22487 hash_expand (symtab);
22488
22489 slot = find_slot (symtab, name);
22490 if (!*slot)
22491 {
22492 *slot = XNEW (struct symtab_index_entry);
22493 (*slot)->name = name;
156942c7 22494 /* index_offset is set later. */
9291a0cd
TT
22495 (*slot)->cu_indices = NULL;
22496 }
156942c7
DE
22497
22498 cu_index_and_attrs = 0;
22499 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22500 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22501 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22502
22503 /* We don't want to record an index value twice as we want to avoid the
22504 duplication.
22505 We process all global symbols and then all static symbols
22506 (which would allow us to avoid the duplication by only having to check
22507 the last entry pushed), but a symbol could have multiple kinds in one CU.
22508 To keep things simple we don't worry about the duplication here and
22509 sort and uniqufy the list after we've processed all symbols. */
22510 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22511}
22512
22513/* qsort helper routine for uniquify_cu_indices. */
22514
22515static int
22516offset_type_compare (const void *ap, const void *bp)
22517{
22518 offset_type a = *(offset_type *) ap;
22519 offset_type b = *(offset_type *) bp;
22520
22521 return (a > b) - (b > a);
22522}
22523
22524/* Sort and remove duplicates of all symbols' cu_indices lists. */
22525
22526static void
22527uniquify_cu_indices (struct mapped_symtab *symtab)
22528{
22529 int i;
22530
22531 for (i = 0; i < symtab->size; ++i)
22532 {
22533 struct symtab_index_entry *entry = symtab->data[i];
22534
22535 if (entry
22536 && entry->cu_indices != NULL)
22537 {
22538 unsigned int next_to_insert, next_to_check;
22539 offset_type last_value;
22540
22541 qsort (VEC_address (offset_type, entry->cu_indices),
22542 VEC_length (offset_type, entry->cu_indices),
22543 sizeof (offset_type), offset_type_compare);
22544
22545 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22546 next_to_insert = 1;
22547 for (next_to_check = 1;
22548 next_to_check < VEC_length (offset_type, entry->cu_indices);
22549 ++next_to_check)
22550 {
22551 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22552 != last_value)
22553 {
22554 last_value = VEC_index (offset_type, entry->cu_indices,
22555 next_to_check);
22556 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22557 last_value);
22558 ++next_to_insert;
22559 }
22560 }
22561 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22562 }
22563 }
9291a0cd
TT
22564}
22565
22566/* Add a vector of indices to the constant pool. */
b89be57b 22567
9291a0cd 22568static offset_type
3876f04e 22569add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22570 struct symtab_index_entry *entry)
22571{
22572 void **slot;
22573
3876f04e 22574 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22575 if (!*slot)
22576 {
22577 offset_type len = VEC_length (offset_type, entry->cu_indices);
22578 offset_type val = MAYBE_SWAP (len);
22579 offset_type iter;
22580 int i;
22581
22582 *slot = entry;
22583 entry->index_offset = obstack_object_size (cpool);
22584
22585 obstack_grow (cpool, &val, sizeof (val));
22586 for (i = 0;
22587 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22588 ++i)
22589 {
22590 val = MAYBE_SWAP (iter);
22591 obstack_grow (cpool, &val, sizeof (val));
22592 }
22593 }
22594 else
22595 {
22596 struct symtab_index_entry *old_entry = *slot;
22597 entry->index_offset = old_entry->index_offset;
22598 entry = old_entry;
22599 }
22600 return entry->index_offset;
22601}
22602
22603/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22604 constant pool entries going into the obstack CPOOL. */
b89be57b 22605
9291a0cd
TT
22606static void
22607write_hash_table (struct mapped_symtab *symtab,
22608 struct obstack *output, struct obstack *cpool)
22609{
22610 offset_type i;
3876f04e 22611 htab_t symbol_hash_table;
9291a0cd
TT
22612 htab_t str_table;
22613
3876f04e 22614 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22615 str_table = create_strtab ();
3876f04e 22616
9291a0cd
TT
22617 /* We add all the index vectors to the constant pool first, to
22618 ensure alignment is ok. */
22619 for (i = 0; i < symtab->size; ++i)
22620 {
22621 if (symtab->data[i])
3876f04e 22622 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22623 }
22624
22625 /* Now write out the hash table. */
22626 for (i = 0; i < symtab->size; ++i)
22627 {
22628 offset_type str_off, vec_off;
22629
22630 if (symtab->data[i])
22631 {
22632 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22633 vec_off = symtab->data[i]->index_offset;
22634 }
22635 else
22636 {
22637 /* While 0 is a valid constant pool index, it is not valid
22638 to have 0 for both offsets. */
22639 str_off = 0;
22640 vec_off = 0;
22641 }
22642
22643 str_off = MAYBE_SWAP (str_off);
22644 vec_off = MAYBE_SWAP (vec_off);
22645
22646 obstack_grow (output, &str_off, sizeof (str_off));
22647 obstack_grow (output, &vec_off, sizeof (vec_off));
22648 }
22649
22650 htab_delete (str_table);
3876f04e 22651 htab_delete (symbol_hash_table);
9291a0cd
TT
22652}
22653
0a5429f6
DE
22654/* Struct to map psymtab to CU index in the index file. */
22655struct psymtab_cu_index_map
22656{
22657 struct partial_symtab *psymtab;
22658 unsigned int cu_index;
22659};
22660
22661static hashval_t
22662hash_psymtab_cu_index (const void *item)
22663{
22664 const struct psymtab_cu_index_map *map = item;
22665
22666 return htab_hash_pointer (map->psymtab);
22667}
22668
22669static int
22670eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22671{
22672 const struct psymtab_cu_index_map *lhs = item_lhs;
22673 const struct psymtab_cu_index_map *rhs = item_rhs;
22674
22675 return lhs->psymtab == rhs->psymtab;
22676}
22677
22678/* Helper struct for building the address table. */
22679struct addrmap_index_data
22680{
22681 struct objfile *objfile;
22682 struct obstack *addr_obstack;
22683 htab_t cu_index_htab;
22684
22685 /* Non-zero if the previous_* fields are valid.
22686 We can't write an entry until we see the next entry (since it is only then
22687 that we know the end of the entry). */
22688 int previous_valid;
22689 /* Index of the CU in the table of all CUs in the index file. */
22690 unsigned int previous_cu_index;
0963b4bd 22691 /* Start address of the CU. */
0a5429f6
DE
22692 CORE_ADDR previous_cu_start;
22693};
22694
22695/* Write an address entry to OBSTACK. */
b89be57b 22696
9291a0cd 22697static void
0a5429f6
DE
22698add_address_entry (struct objfile *objfile, struct obstack *obstack,
22699 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22700{
0a5429f6 22701 offset_type cu_index_to_write;
948f8e3d 22702 gdb_byte addr[8];
9291a0cd
TT
22703 CORE_ADDR baseaddr;
22704
22705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22706
0a5429f6
DE
22707 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22708 obstack_grow (obstack, addr, 8);
22709 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22710 obstack_grow (obstack, addr, 8);
22711 cu_index_to_write = MAYBE_SWAP (cu_index);
22712 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22713}
22714
22715/* Worker function for traversing an addrmap to build the address table. */
22716
22717static int
22718add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22719{
22720 struct addrmap_index_data *data = datap;
22721 struct partial_symtab *pst = obj;
0a5429f6
DE
22722
22723 if (data->previous_valid)
22724 add_address_entry (data->objfile, data->addr_obstack,
22725 data->previous_cu_start, start_addr,
22726 data->previous_cu_index);
22727
22728 data->previous_cu_start = start_addr;
22729 if (pst != NULL)
22730 {
22731 struct psymtab_cu_index_map find_map, *map;
22732 find_map.psymtab = pst;
22733 map = htab_find (data->cu_index_htab, &find_map);
22734 gdb_assert (map != NULL);
22735 data->previous_cu_index = map->cu_index;
22736 data->previous_valid = 1;
22737 }
22738 else
22739 data->previous_valid = 0;
22740
22741 return 0;
22742}
22743
22744/* Write OBJFILE's address map to OBSTACK.
22745 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22746 in the index file. */
22747
22748static void
22749write_address_map (struct objfile *objfile, struct obstack *obstack,
22750 htab_t cu_index_htab)
22751{
22752 struct addrmap_index_data addrmap_index_data;
22753
22754 /* When writing the address table, we have to cope with the fact that
22755 the addrmap iterator only provides the start of a region; we have to
22756 wait until the next invocation to get the start of the next region. */
22757
22758 addrmap_index_data.objfile = objfile;
22759 addrmap_index_data.addr_obstack = obstack;
22760 addrmap_index_data.cu_index_htab = cu_index_htab;
22761 addrmap_index_data.previous_valid = 0;
22762
22763 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22764 &addrmap_index_data);
22765
22766 /* It's highly unlikely the last entry (end address = 0xff...ff)
22767 is valid, but we should still handle it.
22768 The end address is recorded as the start of the next region, but that
22769 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22770 anyway. */
22771 if (addrmap_index_data.previous_valid)
22772 add_address_entry (objfile, obstack,
22773 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22774 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22775}
22776
156942c7
DE
22777/* Return the symbol kind of PSYM. */
22778
22779static gdb_index_symbol_kind
22780symbol_kind (struct partial_symbol *psym)
22781{
22782 domain_enum domain = PSYMBOL_DOMAIN (psym);
22783 enum address_class aclass = PSYMBOL_CLASS (psym);
22784
22785 switch (domain)
22786 {
22787 case VAR_DOMAIN:
22788 switch (aclass)
22789 {
22790 case LOC_BLOCK:
22791 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22792 case LOC_TYPEDEF:
22793 return GDB_INDEX_SYMBOL_KIND_TYPE;
22794 case LOC_COMPUTED:
22795 case LOC_CONST_BYTES:
22796 case LOC_OPTIMIZED_OUT:
22797 case LOC_STATIC:
22798 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22799 case LOC_CONST:
22800 /* Note: It's currently impossible to recognize psyms as enum values
22801 short of reading the type info. For now punt. */
22802 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22803 default:
22804 /* There are other LOC_FOO values that one might want to classify
22805 as variables, but dwarf2read.c doesn't currently use them. */
22806 return GDB_INDEX_SYMBOL_KIND_OTHER;
22807 }
22808 case STRUCT_DOMAIN:
22809 return GDB_INDEX_SYMBOL_KIND_TYPE;
22810 default:
22811 return GDB_INDEX_SYMBOL_KIND_OTHER;
22812 }
22813}
22814
9291a0cd 22815/* Add a list of partial symbols to SYMTAB. */
b89be57b 22816
9291a0cd
TT
22817static void
22818write_psymbols (struct mapped_symtab *symtab,
987d643c 22819 htab_t psyms_seen,
9291a0cd
TT
22820 struct partial_symbol **psymp,
22821 int count,
987d643c
TT
22822 offset_type cu_index,
22823 int is_static)
9291a0cd
TT
22824{
22825 for (; count-- > 0; ++psymp)
22826 {
156942c7
DE
22827 struct partial_symbol *psym = *psymp;
22828 void **slot;
987d643c 22829
156942c7 22830 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22831 error (_("Ada is not currently supported by the index"));
987d643c 22832
987d643c 22833 /* Only add a given psymbol once. */
156942c7 22834 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22835 if (!*slot)
22836 {
156942c7
DE
22837 gdb_index_symbol_kind kind = symbol_kind (psym);
22838
22839 *slot = psym;
22840 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22841 is_static, kind, cu_index);
987d643c 22842 }
9291a0cd
TT
22843 }
22844}
22845
22846/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22847 exception if there is an error. */
b89be57b 22848
9291a0cd
TT
22849static void
22850write_obstack (FILE *file, struct obstack *obstack)
22851{
22852 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22853 file)
22854 != obstack_object_size (obstack))
22855 error (_("couldn't data write to file"));
22856}
22857
22858/* Unlink a file if the argument is not NULL. */
b89be57b 22859
9291a0cd
TT
22860static void
22861unlink_if_set (void *p)
22862{
22863 char **filename = p;
22864 if (*filename)
22865 unlink (*filename);
22866}
22867
1fd400ff
TT
22868/* A helper struct used when iterating over debug_types. */
22869struct signatured_type_index_data
22870{
22871 struct objfile *objfile;
22872 struct mapped_symtab *symtab;
22873 struct obstack *types_list;
987d643c 22874 htab_t psyms_seen;
1fd400ff
TT
22875 int cu_index;
22876};
22877
22878/* A helper function that writes a single signatured_type to an
22879 obstack. */
b89be57b 22880
1fd400ff
TT
22881static int
22882write_one_signatured_type (void **slot, void *d)
22883{
22884 struct signatured_type_index_data *info = d;
22885 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22886 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22887 gdb_byte val[8];
22888
22889 write_psymbols (info->symtab,
987d643c 22890 info->psyms_seen,
3e43a32a
MS
22891 info->objfile->global_psymbols.list
22892 + psymtab->globals_offset,
987d643c
TT
22893 psymtab->n_global_syms, info->cu_index,
22894 0);
1fd400ff 22895 write_psymbols (info->symtab,
987d643c 22896 info->psyms_seen,
3e43a32a
MS
22897 info->objfile->static_psymbols.list
22898 + psymtab->statics_offset,
987d643c
TT
22899 psymtab->n_static_syms, info->cu_index,
22900 1);
1fd400ff 22901
b64f50a1
JK
22902 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22903 entry->per_cu.offset.sect_off);
1fd400ff 22904 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22905 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22906 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22907 obstack_grow (info->types_list, val, 8);
22908 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22909 obstack_grow (info->types_list, val, 8);
22910
22911 ++info->cu_index;
22912
22913 return 1;
22914}
22915
95554aad
TT
22916/* Recurse into all "included" dependencies and write their symbols as
22917 if they appeared in this psymtab. */
22918
22919static void
22920recursively_write_psymbols (struct objfile *objfile,
22921 struct partial_symtab *psymtab,
22922 struct mapped_symtab *symtab,
22923 htab_t psyms_seen,
22924 offset_type cu_index)
22925{
22926 int i;
22927
22928 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22929 if (psymtab->dependencies[i]->user != NULL)
22930 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22931 symtab, psyms_seen, cu_index);
22932
22933 write_psymbols (symtab,
22934 psyms_seen,
22935 objfile->global_psymbols.list + psymtab->globals_offset,
22936 psymtab->n_global_syms, cu_index,
22937 0);
22938 write_psymbols (symtab,
22939 psyms_seen,
22940 objfile->static_psymbols.list + psymtab->statics_offset,
22941 psymtab->n_static_syms, cu_index,
22942 1);
22943}
22944
9291a0cd 22945/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22946
9291a0cd
TT
22947static void
22948write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22949{
22950 struct cleanup *cleanup;
22951 char *filename, *cleanup_filename;
1fd400ff
TT
22952 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22953 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22954 int i;
22955 FILE *out_file;
22956 struct mapped_symtab *symtab;
22957 offset_type val, size_of_contents, total_len;
22958 struct stat st;
987d643c 22959 htab_t psyms_seen;
0a5429f6
DE
22960 htab_t cu_index_htab;
22961 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22962
9291a0cd
TT
22963 if (dwarf2_per_objfile->using_index)
22964 error (_("Cannot use an index to create the index"));
22965
8b70b953
TT
22966 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22967 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22968
260b681b
DE
22969 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22970 return;
22971
4262abfb
JK
22972 if (stat (objfile_name (objfile), &st) < 0)
22973 perror_with_name (objfile_name (objfile));
9291a0cd 22974
4262abfb 22975 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22976 INDEX_SUFFIX, (char *) NULL);
22977 cleanup = make_cleanup (xfree, filename);
22978
614c279d 22979 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22980 if (!out_file)
22981 error (_("Can't open `%s' for writing"), filename);
22982
22983 cleanup_filename = filename;
22984 make_cleanup (unlink_if_set, &cleanup_filename);
22985
22986 symtab = create_mapped_symtab ();
22987 make_cleanup (cleanup_mapped_symtab, symtab);
22988
22989 obstack_init (&addr_obstack);
22990 make_cleanup_obstack_free (&addr_obstack);
22991
22992 obstack_init (&cu_list);
22993 make_cleanup_obstack_free (&cu_list);
22994
1fd400ff
TT
22995 obstack_init (&types_cu_list);
22996 make_cleanup_obstack_free (&types_cu_list);
22997
987d643c
TT
22998 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22999 NULL, xcalloc, xfree);
96408a79 23000 make_cleanup_htab_delete (psyms_seen);
987d643c 23001
0a5429f6
DE
23002 /* While we're scanning CU's create a table that maps a psymtab pointer
23003 (which is what addrmap records) to its index (which is what is recorded
23004 in the index file). This will later be needed to write the address
23005 table. */
23006 cu_index_htab = htab_create_alloc (100,
23007 hash_psymtab_cu_index,
23008 eq_psymtab_cu_index,
23009 NULL, xcalloc, xfree);
96408a79 23010 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
23011 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23012 xmalloc (sizeof (struct psymtab_cu_index_map)
23013 * dwarf2_per_objfile->n_comp_units);
23014 make_cleanup (xfree, psymtab_cu_index_map);
23015
23016 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23017 work here. Also, the debug_types entries do not appear in
23018 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23019 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23020 {
3e43a32a
MS
23021 struct dwarf2_per_cu_data *per_cu
23022 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23023 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23024 gdb_byte val[8];
0a5429f6
DE
23025 struct psymtab_cu_index_map *map;
23026 void **slot;
9291a0cd 23027
92fac807
JK
23028 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23029 It may be referenced from a local scope but in such case it does not
23030 need to be present in .gdb_index. */
23031 if (psymtab == NULL)
23032 continue;
23033
95554aad
TT
23034 if (psymtab->user == NULL)
23035 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23036
0a5429f6
DE
23037 map = &psymtab_cu_index_map[i];
23038 map->psymtab = psymtab;
23039 map->cu_index = i;
23040 slot = htab_find_slot (cu_index_htab, map, INSERT);
23041 gdb_assert (slot != NULL);
23042 gdb_assert (*slot == NULL);
23043 *slot = map;
9291a0cd 23044
b64f50a1
JK
23045 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23046 per_cu->offset.sect_off);
9291a0cd 23047 obstack_grow (&cu_list, val, 8);
e254ef6a 23048 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23049 obstack_grow (&cu_list, val, 8);
23050 }
23051
0a5429f6
DE
23052 /* Dump the address map. */
23053 write_address_map (objfile, &addr_obstack, cu_index_htab);
23054
1fd400ff
TT
23055 /* Write out the .debug_type entries, if any. */
23056 if (dwarf2_per_objfile->signatured_types)
23057 {
23058 struct signatured_type_index_data sig_data;
23059
23060 sig_data.objfile = objfile;
23061 sig_data.symtab = symtab;
23062 sig_data.types_list = &types_cu_list;
987d643c 23063 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23064 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23065 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23066 write_one_signatured_type, &sig_data);
23067 }
23068
156942c7
DE
23069 /* Now that we've processed all symbols we can shrink their cu_indices
23070 lists. */
23071 uniquify_cu_indices (symtab);
23072
9291a0cd
TT
23073 obstack_init (&constant_pool);
23074 make_cleanup_obstack_free (&constant_pool);
23075 obstack_init (&symtab_obstack);
23076 make_cleanup_obstack_free (&symtab_obstack);
23077 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23078
23079 obstack_init (&contents);
23080 make_cleanup_obstack_free (&contents);
1fd400ff 23081 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23082 total_len = size_of_contents;
23083
23084 /* The version number. */
796a7ff8 23085 val = MAYBE_SWAP (8);
9291a0cd
TT
23086 obstack_grow (&contents, &val, sizeof (val));
23087
23088 /* The offset of the CU list from the start of the file. */
23089 val = MAYBE_SWAP (total_len);
23090 obstack_grow (&contents, &val, sizeof (val));
23091 total_len += obstack_object_size (&cu_list);
23092
1fd400ff
TT
23093 /* The offset of the types CU list from the start of the file. */
23094 val = MAYBE_SWAP (total_len);
23095 obstack_grow (&contents, &val, sizeof (val));
23096 total_len += obstack_object_size (&types_cu_list);
23097
9291a0cd
TT
23098 /* The offset of the address table from the start of the file. */
23099 val = MAYBE_SWAP (total_len);
23100 obstack_grow (&contents, &val, sizeof (val));
23101 total_len += obstack_object_size (&addr_obstack);
23102
23103 /* The offset of the symbol table from the start of the file. */
23104 val = MAYBE_SWAP (total_len);
23105 obstack_grow (&contents, &val, sizeof (val));
23106 total_len += obstack_object_size (&symtab_obstack);
23107
23108 /* The offset of the constant pool from the start of the file. */
23109 val = MAYBE_SWAP (total_len);
23110 obstack_grow (&contents, &val, sizeof (val));
23111 total_len += obstack_object_size (&constant_pool);
23112
23113 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23114
23115 write_obstack (out_file, &contents);
23116 write_obstack (out_file, &cu_list);
1fd400ff 23117 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23118 write_obstack (out_file, &addr_obstack);
23119 write_obstack (out_file, &symtab_obstack);
23120 write_obstack (out_file, &constant_pool);
23121
23122 fclose (out_file);
23123
23124 /* We want to keep the file, so we set cleanup_filename to NULL
23125 here. See unlink_if_set. */
23126 cleanup_filename = NULL;
23127
23128 do_cleanups (cleanup);
23129}
23130
90476074
TT
23131/* Implementation of the `save gdb-index' command.
23132
23133 Note that the file format used by this command is documented in the
23134 GDB manual. Any changes here must be documented there. */
11570e71 23135
9291a0cd
TT
23136static void
23137save_gdb_index_command (char *arg, int from_tty)
23138{
23139 struct objfile *objfile;
23140
23141 if (!arg || !*arg)
96d19272 23142 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23143
23144 ALL_OBJFILES (objfile)
23145 {
23146 struct stat st;
23147
23148 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23149 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23150 continue;
23151
23152 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23153 if (dwarf2_per_objfile)
23154 {
23155 volatile struct gdb_exception except;
23156
23157 TRY_CATCH (except, RETURN_MASK_ERROR)
23158 {
23159 write_psymtabs_to_index (objfile, arg);
23160 }
23161 if (except.reason < 0)
23162 exception_fprintf (gdb_stderr, except,
23163 _("Error while writing index for `%s': "),
4262abfb 23164 objfile_name (objfile));
9291a0cd
TT
23165 }
23166 }
dce234bc
PP
23167}
23168
9291a0cd
TT
23169\f
23170
9eae7c52
TT
23171int dwarf2_always_disassemble;
23172
23173static void
23174show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23175 struct cmd_list_element *c, const char *value)
23176{
3e43a32a
MS
23177 fprintf_filtered (file,
23178 _("Whether to always disassemble "
23179 "DWARF expressions is %s.\n"),
9eae7c52
TT
23180 value);
23181}
23182
900e11f9
JK
23183static void
23184show_check_physname (struct ui_file *file, int from_tty,
23185 struct cmd_list_element *c, const char *value)
23186{
23187 fprintf_filtered (file,
23188 _("Whether to check \"physname\" is %s.\n"),
23189 value);
23190}
23191
6502dd73
DJ
23192void _initialize_dwarf2_read (void);
23193
23194void
23195_initialize_dwarf2_read (void)
23196{
96d19272
JK
23197 struct cmd_list_element *c;
23198
dce234bc 23199 dwarf2_objfile_data_key
c1bd65d0 23200 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23201
1bedd215
AC
23202 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23203Set DWARF 2 specific variables.\n\
23204Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23205 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23206 0/*allow-unknown*/, &maintenance_set_cmdlist);
23207
1bedd215
AC
23208 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23209Show DWARF 2 specific variables\n\
23210Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23211 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23212 0/*allow-unknown*/, &maintenance_show_cmdlist);
23213
23214 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
23215 &dwarf2_max_cache_age, _("\
23216Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23217Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23218A higher limit means that cached compilation units will be stored\n\
23219in memory longer, and more total memory will be used. Zero disables\n\
23220caching, which can slow down startup."),
2c5b56ce 23221 NULL,
920d2a44 23222 show_dwarf2_max_cache_age,
2c5b56ce 23223 &set_dwarf2_cmdlist,
ae038cb0 23224 &show_dwarf2_cmdlist);
d97bc12b 23225
9eae7c52
TT
23226 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23227 &dwarf2_always_disassemble, _("\
23228Set whether `info address' always disassembles DWARF expressions."), _("\
23229Show whether `info address' always disassembles DWARF expressions."), _("\
23230When enabled, DWARF expressions are always printed in an assembly-like\n\
23231syntax. When disabled, expressions will be printed in a more\n\
23232conversational style, when possible."),
23233 NULL,
23234 show_dwarf2_always_disassemble,
23235 &set_dwarf2_cmdlist,
23236 &show_dwarf2_cmdlist);
23237
73be47f5 23238 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
23239Set debugging of the dwarf2 reader."), _("\
23240Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
23241When enabled (non-zero), debugging messages are printed during dwarf2\n\
23242reading and symtab expansion. A value of 1 (one) provides basic\n\
23243information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23244 NULL,
23245 NULL,
23246 &setdebuglist, &showdebuglist);
23247
ccce17b0 23248 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
23249Set debugging of the dwarf2 DIE reader."), _("\
23250Show debugging of the dwarf2 DIE reader."), _("\
23251When enabled (non-zero), DIEs are dumped after they are read in.\n\
23252The value is the maximum depth to print."),
ccce17b0
YQ
23253 NULL,
23254 NULL,
23255 &setdebuglist, &showdebuglist);
9291a0cd 23256
900e11f9
JK
23257 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23258Set cross-checking of \"physname\" code against demangler."), _("\
23259Show cross-checking of \"physname\" code against demangler."), _("\
23260When enabled, GDB's internal \"physname\" code is checked against\n\
23261the demangler."),
23262 NULL, show_check_physname,
23263 &setdebuglist, &showdebuglist);
23264
e615022a
DE
23265 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23266 no_class, &use_deprecated_index_sections, _("\
23267Set whether to use deprecated gdb_index sections."), _("\
23268Show whether to use deprecated gdb_index sections."), _("\
23269When enabled, deprecated .gdb_index sections are used anyway.\n\
23270Normally they are ignored either because of a missing feature or\n\
23271performance issue.\n\
23272Warning: This option must be enabled before gdb reads the file."),
23273 NULL,
23274 NULL,
23275 &setlist, &showlist);
23276
96d19272 23277 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23278 _("\
fc1a9d6e 23279Save a gdb-index file.\n\
11570e71 23280Usage: save gdb-index DIRECTORY"),
96d19272
JK
23281 &save_cmdlist);
23282 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23283
23284 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23285 &dwarf2_locexpr_funcs);
23286 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23287 &dwarf2_loclist_funcs);
23288
23289 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23290 &dwarf2_block_frame_base_locexpr_funcs);
23291 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23292 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23293}
This page took 3.221351 seconds and 4 git commands to generate.