Copy in_reg and in_dyn when resolving NAME/VERSION with NAME/NULL.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
a7aad9aa 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
c906108c
SS
26#include "bfd.h"
27#include "inferior.h"
4e052eda 28#include "regcache.h"
e5d66720 29#include "completer.h"
59623e27 30#include "osabi.h"
a7ff40e7 31#include "gdb_assert.h"
e7b17823 32#include "gdb_stdint.h"
343af405 33#include "arch-utils.h"
c906108c
SS
34/* For argument passing to the inferior */
35#include "symtab.h"
fde2cceb 36#include "dis-asm.h"
26d08f08
AC
37#include "trad-frame.h"
38#include "frame-unwind.h"
39#include "frame-base.h"
c906108c 40
c906108c
SS
41#include "gdbcore.h"
42#include "gdbcmd.h"
e6bb342a 43#include "gdbtypes.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020 73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
c906108c 74
c906108c
SS
75/* Routines to extract various sized constants out of hppa
76 instructions. */
77
78/* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
abc485a1
RC
81int
82hppa_sign_extend (unsigned val, unsigned bits)
c906108c 83{
c5aa993b 84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
85}
86
87/* For many immediate values the sign bit is the low bit! */
88
abc485a1
RC
89int
90hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 91{
c5aa993b 92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
93}
94
e2ac8128
JB
95/* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
abc485a1
RC
98int
99hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
100{
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102}
103
c906108c
SS
104/* extract the immediate field from a ld{bhw}s instruction */
105
abc485a1
RC
106int
107hppa_extract_5_load (unsigned word)
c906108c 108{
abc485a1 109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
110}
111
c906108c
SS
112/* extract the immediate field from a break instruction */
113
abc485a1
RC
114unsigned
115hppa_extract_5r_store (unsigned word)
c906108c
SS
116{
117 return (word & MASK_5);
118}
119
120/* extract the immediate field from a {sr}sm instruction */
121
abc485a1
RC
122unsigned
123hppa_extract_5R_store (unsigned word)
c906108c
SS
124{
125 return (word >> 16 & MASK_5);
126}
127
c906108c
SS
128/* extract a 14 bit immediate field */
129
abc485a1
RC
130int
131hppa_extract_14 (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
134}
135
c906108c
SS
136/* extract a 21 bit constant */
137
abc485a1
RC
138int
139hppa_extract_21 (unsigned word)
c906108c
SS
140{
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
abc485a1 145 val = hppa_get_field (word, 20, 20);
c906108c 146 val <<= 11;
abc485a1 147 val |= hppa_get_field (word, 9, 19);
c906108c 148 val <<= 2;
abc485a1 149 val |= hppa_get_field (word, 5, 6);
c906108c 150 val <<= 5;
abc485a1 151 val |= hppa_get_field (word, 0, 4);
c906108c 152 val <<= 2;
abc485a1
RC
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
155}
156
c906108c
SS
157/* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
abc485a1
RC
160int
161hppa_extract_17 (unsigned word)
c906108c 162{
abc485a1
RC
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
166 (word & 0x1) << 16, 17) << 2;
167}
3388d7ff
RC
168
169CORE_ADDR
170hppa_symbol_address(const char *sym)
171{
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179}
77d18ded
RC
180
181struct hppa_objfile_private *
182hppa_init_objfile_priv_data (struct objfile *objfile)
183{
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193}
c906108c
SS
194\f
195
196/* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200static int
fba45db2 201compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
202{
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212}
213
53a5351d 214static void
fdd72f95 215record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 216{
fdd72f95 217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
53a5351d
JM
226}
227
c906108c 228static void
fba45db2
KB
229internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
c906108c
SS
232{
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
fdd72f95 235
c906108c
SS
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
fdd72f95 241 CORE_ADDR low_text_segment_address;
c906108c 242
fdd72f95 243 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
fdd72f95 249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 250 {
fdd72f95
RC
251 low_text_segment_address = -1;
252
53a5351d 253 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
53a5351d 256
fdd72f95 257 text_offset = low_text_segment_address;
53a5351d 258 }
acf86d54
RC
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
53a5351d 263
c906108c
SS
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
c5aa993b 267 endian issues. */
c906108c
SS
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 271 (bfd_byte *) buf);
c906108c
SS
272 table[i].region_start += text_offset;
273 buf += 4;
c5aa993b 274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
275 table[i].region_end += text_offset;
276 buf += 4;
c5aa993b 277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 283 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 293 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 297 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 301 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 302 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
308 table[i].alloca_frame = (tmp >> 28) & 0x1;
309 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
c5aa993b 312 /* Stub unwinds are handled elsewhere. */
c906108c
SS
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317}
318
319/* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325static void
fba45db2 326read_unwind_info (struct objfile *objfile)
c906108c 327{
d4f3574e
SS
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
c906108c
SS
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
7c46b9fb
RC
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
c906108c
SS
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
c906108c
SS
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
d4f3574e
SS
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
c906108c 348
d4f3574e
SS
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
c906108c 355 {
d4f3574e
SS
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 361
d4f3574e
SS
362 total_entries += unwind_entries;
363 }
c906108c
SS
364 }
365
d4f3574e 366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 367 use stub unwinds at the current time. */
d4f3574e
SS
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
c906108c
SS
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
d4f3574e 382 total_entries += stub_entries;
c906108c
SS
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
8b92e4d5 387 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 388 ui->last = total_entries - 1;
c906108c 389
d4f3574e
SS
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
c906108c 392 index = 0;
d4f3574e
SS
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 432 (bfd_byte *) buf);
c906108c
SS
433 buf += 2;
434 ui->table[index].region_end
c5aa993b
JM
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
77d18ded
RC
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
c906108c
SS
452 obj_private->unwind_info = ui;
453}
454
455/* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460struct unwind_table_entry *
fba45db2 461find_unwind_entry (CORE_ADDR pc)
c906108c
SS
462{
463 int first, middle, last;
464 struct objfile *objfile;
7c46b9fb 465 struct hppa_objfile_private *priv;
c906108c 466
369aa520
RC
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
c906108c
SS
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
369aa520
RC
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
c906108c
SS
478
479 ALL_OBJFILES (objfile)
c5aa993b 480 {
7c46b9fb 481 struct hppa_unwind_info *ui;
c5aa993b 482 ui = NULL;
7c46b9fb
RC
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 486
c5aa993b
JM
487 if (!ui)
488 {
489 read_unwind_info (objfile);
7c46b9fb
RC
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
8a3fe4f8 492 error (_("Internal error reading unwind information."));
7c46b9fb 493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 494 }
c906108c 495
c5aa993b 496 /* First, check the cache */
c906108c 497
c5aa993b
JM
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
369aa520
RC
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
e7b17823 504 paddr_nz ((uintptr_t) ui->cache));
369aa520
RC
505 return ui->cache;
506 }
c906108c 507
c5aa993b 508 /* Not in the cache, do a binary search */
c906108c 509
c5aa993b
JM
510 first = 0;
511 last = ui->last;
c906108c 512
c5aa993b
JM
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
369aa520
RC
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
e7b17823 522 paddr_nz ((uintptr_t) ui->cache));
c5aa993b
JM
523 return &ui->table[middle];
524 }
c906108c 525
c5aa993b
JM
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
369aa520
RC
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
c906108c
SS
536 return NULL;
537}
538
1fb24930
RC
539/* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544static int
545hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546{
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
359a9262 552 status = read_memory_nobpt (pc, buf, 4);
1fb24930
RC
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575}
576
85f4f2d8 577static const unsigned char *
aaab4dba
AC
578hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579{
56132691 580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583}
584
e23457df
AC
585/* Return the name of a register. */
586
4a302917 587static const char *
3ff7cf9e 588hppa32_register_name (int i)
e23457df
AC
589{
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628}
629
4a302917 630static const char *
e23457df
AC
631hppa64_register_name (int i)
632{
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663}
664
1ef7fcb5
RC
665static int
666hppa64_dwarf_reg_to_regnum (int reg)
667{
668 /* r0-r31 and sar map one-to-one. */
669 if (reg <= 32)
670 return reg;
671
672 /* fr4-fr31 are mapped from 72 in steps of 2. */
673 if (reg >= 72 || reg < 72 + 28 * 2)
674 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
675
676 error ("Invalid DWARF register num %d.", reg);
677 return -1;
678}
679
79508e1e
AC
680/* This function pushes a stack frame with arguments as part of the
681 inferior function calling mechanism.
682
683 This is the version of the function for the 32-bit PA machines, in
684 which later arguments appear at lower addresses. (The stack always
685 grows towards higher addresses.)
686
687 We simply allocate the appropriate amount of stack space and put
688 arguments into their proper slots. */
689
4a302917 690static CORE_ADDR
7d9b040b 691hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
692 struct regcache *regcache, CORE_ADDR bp_addr,
693 int nargs, struct value **args, CORE_ADDR sp,
694 int struct_return, CORE_ADDR struct_addr)
695{
79508e1e
AC
696 /* Stack base address at which any pass-by-reference parameters are
697 stored. */
698 CORE_ADDR struct_end = 0;
699 /* Stack base address at which the first parameter is stored. */
700 CORE_ADDR param_end = 0;
701
702 /* The inner most end of the stack after all the parameters have
703 been pushed. */
704 CORE_ADDR new_sp = 0;
705
706 /* Two passes. First pass computes the location of everything,
707 second pass writes the bytes out. */
708 int write_pass;
d49771ef
RC
709
710 /* Global pointer (r19) of the function we are trying to call. */
711 CORE_ADDR gp;
712
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
79508e1e
AC
715 for (write_pass = 0; write_pass < 2; write_pass++)
716 {
1797a8f6 717 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
718 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
719 struct_ptr is adjusted for each argument below, so the first
720 argument will end up at sp-36. */
721 CORE_ADDR param_ptr = 32;
79508e1e 722 int i;
2a6228ef
RC
723 int small_struct = 0;
724
79508e1e
AC
725 for (i = 0; i < nargs; i++)
726 {
727 struct value *arg = args[i];
4991999e 728 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
729 /* The corresponding parameter that is pushed onto the
730 stack, and [possibly] passed in a register. */
731 char param_val[8];
732 int param_len;
733 memset (param_val, 0, sizeof param_val);
734 if (TYPE_LENGTH (type) > 8)
735 {
736 /* Large parameter, pass by reference. Store the value
737 in "struct" area and then pass its address. */
738 param_len = 4;
1797a8f6 739 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 740 if (write_pass)
0fd88904 741 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 742 TYPE_LENGTH (type));
1797a8f6 743 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
744 }
745 else if (TYPE_CODE (type) == TYPE_CODE_INT
746 || TYPE_CODE (type) == TYPE_CODE_ENUM)
747 {
748 /* Integer value store, right aligned. "unpack_long"
749 takes care of any sign-extension problems. */
750 param_len = align_up (TYPE_LENGTH (type), 4);
751 store_unsigned_integer (param_val, param_len,
752 unpack_long (type,
0fd88904 753 value_contents (arg)));
79508e1e 754 }
2a6228ef
RC
755 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
756 {
757 /* Floating point value store, right aligned. */
758 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 759 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 760 }
79508e1e
AC
761 else
762 {
79508e1e 763 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
764
765 /* Small struct value are stored right-aligned. */
79508e1e 766 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 767 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
768
769 /* Structures of size 5, 6 and 7 bytes are special in that
770 the higher-ordered word is stored in the lower-ordered
771 argument, and even though it is a 8-byte quantity the
772 registers need not be 8-byte aligned. */
1b07b470 773 if (param_len > 4 && param_len < 8)
2a6228ef 774 small_struct = 1;
79508e1e 775 }
2a6228ef 776
1797a8f6 777 param_ptr += param_len;
2a6228ef
RC
778 if (param_len == 8 && !small_struct)
779 param_ptr = align_up (param_ptr, 8);
780
781 /* First 4 non-FP arguments are passed in gr26-gr23.
782 First 4 32-bit FP arguments are passed in fr4L-fr7L.
783 First 2 64-bit FP arguments are passed in fr5 and fr7.
784
785 The rest go on the stack, starting at sp-36, towards lower
786 addresses. 8-byte arguments must be aligned to a 8-byte
787 stack boundary. */
79508e1e
AC
788 if (write_pass)
789 {
1797a8f6 790 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
791
792 /* There are some cases when we don't know the type
793 expected by the callee (e.g. for variadic functions), so
794 pass the parameters in both general and fp regs. */
795 if (param_ptr <= 48)
79508e1e 796 {
2a6228ef
RC
797 int grreg = 26 - (param_ptr - 36) / 4;
798 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
799 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
800
801 regcache_cooked_write (regcache, grreg, param_val);
802 regcache_cooked_write (regcache, fpLreg, param_val);
803
79508e1e 804 if (param_len > 4)
2a6228ef
RC
805 {
806 regcache_cooked_write (regcache, grreg + 1,
807 param_val + 4);
808
809 regcache_cooked_write (regcache, fpreg, param_val);
810 regcache_cooked_write (regcache, fpreg + 1,
811 param_val + 4);
812 }
79508e1e
AC
813 }
814 }
815 }
816
817 /* Update the various stack pointers. */
818 if (!write_pass)
819 {
2a6228ef 820 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
821 /* PARAM_PTR already accounts for all the arguments passed
822 by the user. However, the ABI mandates minimum stack
823 space allocations for outgoing arguments. The ABI also
824 mandates minimum stack alignments which we must
825 preserve. */
2a6228ef 826 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
827 }
828 }
829
830 /* If a structure has to be returned, set up register 28 to hold its
831 address */
832 if (struct_return)
9c9acae0 833 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 834
d49771ef
RC
835 gp = tdep->find_global_pointer (function);
836
837 if (gp != 0)
9c9acae0 838 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 839
79508e1e 840 /* Set the return address. */
77d18ded
RC
841 if (!gdbarch_push_dummy_code_p (gdbarch))
842 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 843
c4557624 844 /* Update the Stack Pointer. */
34f75cc1 845 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 846
2a6228ef 847 return param_end;
79508e1e
AC
848}
849
38ca4e0c
MK
850/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
851 Runtime Architecture for PA-RISC 2.0", which is distributed as part
852 as of the HP-UX Software Transition Kit (STK). This implementation
853 is based on version 3.3, dated October 6, 1997. */
2f690297 854
38ca4e0c 855/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 856
38ca4e0c
MK
857static int
858hppa64_integral_or_pointer_p (const struct type *type)
859{
860 switch (TYPE_CODE (type))
861 {
862 case TYPE_CODE_INT:
863 case TYPE_CODE_BOOL:
864 case TYPE_CODE_CHAR:
865 case TYPE_CODE_ENUM:
866 case TYPE_CODE_RANGE:
867 {
868 int len = TYPE_LENGTH (type);
869 return (len == 1 || len == 2 || len == 4 || len == 8);
870 }
871 case TYPE_CODE_PTR:
872 case TYPE_CODE_REF:
873 return (TYPE_LENGTH (type) == 8);
874 default:
875 break;
876 }
877
878 return 0;
879}
880
881/* Check whether TYPE is a "Floating Scalar Type". */
882
883static int
884hppa64_floating_p (const struct type *type)
885{
886 switch (TYPE_CODE (type))
887 {
888 case TYPE_CODE_FLT:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 4 || len == 8 || len == 16);
892 }
893 default:
894 break;
895 }
896
897 return 0;
898}
2f690297 899
1218e655
RC
900/* If CODE points to a function entry address, try to look up the corresponding
901 function descriptor and return its address instead. If CODE is not a
902 function entry address, then just return it unchanged. */
903static CORE_ADDR
904hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
905{
906 struct obj_section *sec, *opd;
907
908 sec = find_pc_section (code);
909
910 if (!sec)
911 return code;
912
913 /* If CODE is in a data section, assume it's already a fptr. */
914 if (!(sec->the_bfd_section->flags & SEC_CODE))
915 return code;
916
917 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
918 {
919 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
920 break;
921 }
922
923 if (opd < sec->objfile->sections_end)
924 {
925 CORE_ADDR addr;
926
927 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
928 {
929 ULONGEST opdaddr;
930 char tmp[8];
931
932 if (target_read_memory (addr, tmp, sizeof (tmp)))
933 break;
934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
935
936 if (opdaddr == code)
937 return addr - 16;
938 }
939 }
940
941 return code;
942}
943
4a302917 944static CORE_ADDR
7d9b040b 945hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
946 struct regcache *regcache, CORE_ADDR bp_addr,
947 int nargs, struct value **args, CORE_ADDR sp,
948 int struct_return, CORE_ADDR struct_addr)
949{
38ca4e0c
MK
950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
951 int i, offset = 0;
952 CORE_ADDR gp;
2f690297 953
38ca4e0c
MK
954 /* "The outgoing parameter area [...] must be aligned at a 16-byte
955 boundary." */
956 sp = align_up (sp, 16);
2f690297 957
38ca4e0c
MK
958 for (i = 0; i < nargs; i++)
959 {
960 struct value *arg = args[i];
961 struct type *type = value_type (arg);
962 int len = TYPE_LENGTH (type);
0fd88904 963 const bfd_byte *valbuf;
1218e655 964 bfd_byte fptrbuf[8];
38ca4e0c 965 int regnum;
2f690297 966
38ca4e0c
MK
967 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
968 offset = align_up (offset, 8);
77d18ded 969
38ca4e0c 970 if (hppa64_integral_or_pointer_p (type))
2f690297 971 {
38ca4e0c
MK
972 /* "Integral scalar parameters smaller than 64 bits are
973 padded on the left (i.e., the value is in the
974 least-significant bits of the 64-bit storage unit, and
975 the high-order bits are undefined)." Therefore we can
976 safely sign-extend them. */
977 if (len < 8)
449e1137 978 {
38ca4e0c
MK
979 arg = value_cast (builtin_type_int64, arg);
980 len = 8;
981 }
982 }
983 else if (hppa64_floating_p (type))
984 {
985 if (len > 8)
986 {
987 /* "Quad-precision (128-bit) floating-point scalar
988 parameters are aligned on a 16-byte boundary." */
989 offset = align_up (offset, 16);
990
991 /* "Double-extended- and quad-precision floating-point
992 parameters within the first 64 bytes of the parameter
993 list are always passed in general registers." */
449e1137
AC
994 }
995 else
996 {
38ca4e0c 997 if (len == 4)
449e1137 998 {
38ca4e0c
MK
999 /* "Single-precision (32-bit) floating-point scalar
1000 parameters are padded on the left with 32 bits of
1001 garbage (i.e., the floating-point value is in the
1002 least-significant 32 bits of a 64-bit storage
1003 unit)." */
1004 offset += 4;
449e1137 1005 }
38ca4e0c
MK
1006
1007 /* "Single- and double-precision floating-point
1008 parameters in this area are passed according to the
1009 available formal parameter information in a function
1010 prototype. [...] If no prototype is in scope,
1011 floating-point parameters must be passed both in the
1012 corresponding general registers and in the
1013 corresponding floating-point registers." */
1014 regnum = HPPA64_FP4_REGNUM + offset / 8;
1015
1016 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1017 {
38ca4e0c
MK
1018 /* "Single-precision floating-point parameters, when
1019 passed in floating-point registers, are passed in
1020 the right halves of the floating point registers;
1021 the left halves are unused." */
1022 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1023 len, value_contents (arg));
449e1137
AC
1024 }
1025 }
2f690297 1026 }
38ca4e0c 1027 else
2f690297 1028 {
38ca4e0c
MK
1029 if (len > 8)
1030 {
1031 /* "Aggregates larger than 8 bytes are aligned on a
1032 16-byte boundary, possibly leaving an unused argument
1033 slot, which is filled with garbage. If necessary,
1034 they are padded on the right (with garbage), to a
1035 multiple of 8 bytes." */
1036 offset = align_up (offset, 16);
1037 }
1038 }
1039
1218e655
RC
1040 /* If we are passing a function pointer, make sure we pass a function
1041 descriptor instead of the function entry address. */
1042 if (TYPE_CODE (type) == TYPE_CODE_PTR
1043 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1044 {
1045 ULONGEST codeptr, fptr;
1046
1047 codeptr = unpack_long (type, value_contents (arg));
1048 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1049 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1050 valbuf = fptrbuf;
1051 }
1052 else
1053 {
1054 valbuf = value_contents (arg);
1055 }
1056
38ca4e0c 1057 /* Always store the argument in memory. */
1218e655 1058 write_memory (sp + offset, valbuf, len);
38ca4e0c 1059
38ca4e0c
MK
1060 regnum = HPPA_ARG0_REGNUM - offset / 8;
1061 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1062 {
1063 regcache_cooked_write_part (regcache, regnum,
1064 offset % 8, min (len, 8), valbuf);
1065 offset += min (len, 8);
1066 valbuf += min (len, 8);
1067 len -= min (len, 8);
1068 regnum--;
2f690297 1069 }
38ca4e0c
MK
1070
1071 offset += len;
2f690297
AC
1072 }
1073
38ca4e0c
MK
1074 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1075 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1076
1077 /* Allocate the outgoing parameter area. Make sure the outgoing
1078 parameter area is multiple of 16 bytes in length. */
1079 sp += max (align_up (offset, 16), 64);
1080
1081 /* Allocate 32-bytes of scratch space. The documentation doesn't
1082 mention this, but it seems to be needed. */
1083 sp += 32;
1084
1085 /* Allocate the frame marker area. */
1086 sp += 16;
1087
1088 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1089 its address. */
2f690297 1090 if (struct_return)
38ca4e0c 1091 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1092
38ca4e0c 1093 /* Set up GR27 (%dp) to hold the global pointer (gp). */
77d18ded 1094 gp = tdep->find_global_pointer (function);
77d18ded 1095 if (gp != 0)
38ca4e0c 1096 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1097
38ca4e0c 1098 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1099 if (!gdbarch_push_dummy_code_p (gdbarch))
1100 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1101
38ca4e0c
MK
1102 /* Set up GR30 to hold the stack pointer (sp). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1104
38ca4e0c 1105 return sp;
2f690297 1106}
38ca4e0c 1107\f
2f690297 1108
08a27113
MK
1109/* Handle 32/64-bit struct return conventions. */
1110
1111static enum return_value_convention
1112hppa32_return_value (struct gdbarch *gdbarch,
1113 struct type *type, struct regcache *regcache,
e127f0db 1114 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1115{
1116 if (TYPE_LENGTH (type) <= 2 * 4)
1117 {
1118 /* The value always lives in the right hand end of the register
1119 (or register pair)? */
1120 int b;
1121 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1122 int part = TYPE_LENGTH (type) % 4;
1123 /* The left hand register contains only part of the value,
1124 transfer that first so that the rest can be xfered as entire
1125 4-byte registers. */
1126 if (part > 0)
1127 {
1128 if (readbuf != NULL)
1129 regcache_cooked_read_part (regcache, reg, 4 - part,
1130 part, readbuf);
1131 if (writebuf != NULL)
1132 regcache_cooked_write_part (regcache, reg, 4 - part,
1133 part, writebuf);
1134 reg++;
1135 }
1136 /* Now transfer the remaining register values. */
1137 for (b = part; b < TYPE_LENGTH (type); b += 4)
1138 {
1139 if (readbuf != NULL)
e127f0db 1140 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1141 if (writebuf != NULL)
e127f0db 1142 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1143 reg++;
1144 }
1145 return RETURN_VALUE_REGISTER_CONVENTION;
1146 }
1147 else
1148 return RETURN_VALUE_STRUCT_CONVENTION;
1149}
1150
1151static enum return_value_convention
1152hppa64_return_value (struct gdbarch *gdbarch,
1153 struct type *type, struct regcache *regcache,
e127f0db 1154 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1155{
1156 int len = TYPE_LENGTH (type);
1157 int regnum, offset;
1158
1159 if (len > 16)
1160 {
1161 /* All return values larget than 128 bits must be aggregate
1162 return values. */
9738b034
MK
1163 gdb_assert (!hppa64_integral_or_pointer_p (type));
1164 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1165
1166 /* "Aggregate return values larger than 128 bits are returned in
1167 a buffer allocated by the caller. The address of the buffer
1168 must be passed in GR 28." */
1169 return RETURN_VALUE_STRUCT_CONVENTION;
1170 }
1171
1172 if (hppa64_integral_or_pointer_p (type))
1173 {
1174 /* "Integral return values are returned in GR 28. Values
1175 smaller than 64 bits are padded on the left (with garbage)." */
1176 regnum = HPPA_RET0_REGNUM;
1177 offset = 8 - len;
1178 }
1179 else if (hppa64_floating_p (type))
1180 {
1181 if (len > 8)
1182 {
1183 /* "Double-extended- and quad-precision floating-point
1184 values are returned in GRs 28 and 29. The sign,
1185 exponent, and most-significant bits of the mantissa are
1186 returned in GR 28; the least-significant bits of the
1187 mantissa are passed in GR 29. For double-extended
1188 precision values, GR 29 is padded on the right with 48
1189 bits of garbage." */
1190 regnum = HPPA_RET0_REGNUM;
1191 offset = 0;
1192 }
1193 else
1194 {
1195 /* "Single-precision and double-precision floating-point
1196 return values are returned in FR 4R (single precision) or
1197 FR 4 (double-precision)." */
1198 regnum = HPPA64_FP4_REGNUM;
1199 offset = 8 - len;
1200 }
1201 }
1202 else
1203 {
1204 /* "Aggregate return values up to 64 bits in size are returned
1205 in GR 28. Aggregates smaller than 64 bits are left aligned
1206 in the register; the pad bits on the right are undefined."
1207
1208 "Aggregate return values between 65 and 128 bits are returned
1209 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1210 the remaining bits are placed, left aligned, in GR 29. The
1211 pad bits on the right of GR 29 (if any) are undefined." */
1212 regnum = HPPA_RET0_REGNUM;
1213 offset = 0;
1214 }
1215
1216 if (readbuf)
1217 {
08a27113
MK
1218 while (len > 0)
1219 {
1220 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1221 min (len, 8), readbuf);
1222 readbuf += min (len, 8);
08a27113
MK
1223 len -= min (len, 8);
1224 regnum++;
1225 }
1226 }
1227
1228 if (writebuf)
1229 {
08a27113
MK
1230 while (len > 0)
1231 {
1232 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1233 min (len, 8), writebuf);
1234 writebuf += min (len, 8);
08a27113
MK
1235 len -= min (len, 8);
1236 regnum++;
1237 }
1238 }
1239
1240 return RETURN_VALUE_REGISTER_CONVENTION;
1241}
1242\f
1243
d49771ef 1244static CORE_ADDR
a7aad9aa 1245hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1246 struct target_ops *targ)
1247{
1248 if (addr & 2)
1249 {
a7aad9aa
MK
1250 CORE_ADDR plabel = addr & ~3;
1251 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
d49771ef
RC
1252 }
1253
1254 return addr;
1255}
1256
1797a8f6
AC
1257static CORE_ADDR
1258hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1259{
1260 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1261 and not _bit_)! */
1262 return align_up (addr, 64);
1263}
1264
2f690297
AC
1265/* Force all frames to 16-byte alignment. Better safe than sorry. */
1266
1267static CORE_ADDR
1797a8f6 1268hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1269{
1270 /* Just always 16-byte align. */
1271 return align_up (addr, 16);
1272}
1273
cc72850f 1274CORE_ADDR
61a1198a 1275hppa_read_pc (struct regcache *regcache)
c906108c 1276{
cc72850f 1277 ULONGEST ipsw;
61a1198a 1278 ULONGEST pc;
c906108c 1279
61a1198a
UW
1280 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1281 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1282
1283 /* If the current instruction is nullified, then we are effectively
1284 still executing the previous instruction. Pretend we are still
cc72850f
MK
1285 there. This is needed when single stepping; if the nullified
1286 instruction is on a different line, we don't want GDB to think
1287 we've stepped onto that line. */
fe46cd3a
RC
1288 if (ipsw & 0x00200000)
1289 pc -= 4;
1290
cc72850f 1291 return pc & ~0x3;
c906108c
SS
1292}
1293
cc72850f 1294void
61a1198a 1295hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1296{
61a1198a
UW
1297 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1298 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1299}
1300
1301/* return the alignment of a type in bytes. Structures have the maximum
1302 alignment required by their fields. */
1303
1304static int
fba45db2 1305hppa_alignof (struct type *type)
c906108c
SS
1306{
1307 int max_align, align, i;
1308 CHECK_TYPEDEF (type);
1309 switch (TYPE_CODE (type))
1310 {
1311 case TYPE_CODE_PTR:
1312 case TYPE_CODE_INT:
1313 case TYPE_CODE_FLT:
1314 return TYPE_LENGTH (type);
1315 case TYPE_CODE_ARRAY:
1316 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1317 case TYPE_CODE_STRUCT:
1318 case TYPE_CODE_UNION:
1319 max_align = 1;
1320 for (i = 0; i < TYPE_NFIELDS (type); i++)
1321 {
1322 /* Bit fields have no real alignment. */
1323 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1324 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1325 {
1326 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1327 max_align = max (max_align, align);
1328 }
1329 }
1330 return max_align;
1331 default:
1332 return 4;
1333 }
1334}
1335
c906108c
SS
1336/* For the given instruction (INST), return any adjustment it makes
1337 to the stack pointer or zero for no adjustment.
1338
1339 This only handles instructions commonly found in prologues. */
1340
1341static int
fba45db2 1342prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1343{
1344 /* This must persist across calls. */
1345 static int save_high21;
1346
1347 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1348 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1349 return hppa_extract_14 (inst);
c906108c
SS
1350
1351 /* stwm X,D(sp) */
1352 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1353 return hppa_extract_14 (inst);
c906108c 1354
104c1213
JM
1355 /* std,ma X,D(sp) */
1356 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1357 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1358
e22b26cb 1359 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1360 save high bits in save_high21 for later use. */
e22b26cb 1361 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1362 {
abc485a1 1363 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1364 return 0;
1365 }
1366
1367 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1368 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1369
1370 /* fstws as used by the HP compilers. */
1371 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1372 return hppa_extract_5_load (inst);
c906108c
SS
1373
1374 /* No adjustment. */
1375 return 0;
1376}
1377
1378/* Return nonzero if INST is a branch of some kind, else return zero. */
1379
1380static int
fba45db2 1381is_branch (unsigned long inst)
c906108c
SS
1382{
1383 switch (inst >> 26)
1384 {
1385 case 0x20:
1386 case 0x21:
1387 case 0x22:
1388 case 0x23:
7be570e7 1389 case 0x27:
c906108c
SS
1390 case 0x28:
1391 case 0x29:
1392 case 0x2a:
1393 case 0x2b:
7be570e7 1394 case 0x2f:
c906108c
SS
1395 case 0x30:
1396 case 0x31:
1397 case 0x32:
1398 case 0x33:
1399 case 0x38:
1400 case 0x39:
1401 case 0x3a:
7be570e7 1402 case 0x3b:
c906108c
SS
1403 return 1;
1404
1405 default:
1406 return 0;
1407 }
1408}
1409
1410/* Return the register number for a GR which is saved by INST or
1411 zero it INST does not save a GR. */
1412
1413static int
fba45db2 1414inst_saves_gr (unsigned long inst)
c906108c
SS
1415{
1416 /* Does it look like a stw? */
7be570e7
JM
1417 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1418 || (inst >> 26) == 0x1f
1419 || ((inst >> 26) == 0x1f
1420 && ((inst >> 6) == 0xa)))
abc485a1 1421 return hppa_extract_5R_store (inst);
7be570e7
JM
1422
1423 /* Does it look like a std? */
1424 if ((inst >> 26) == 0x1c
1425 || ((inst >> 26) == 0x03
1426 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1427 return hppa_extract_5R_store (inst);
c906108c
SS
1428
1429 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1430 if ((inst >> 26) == 0x1b)
abc485a1 1431 return hppa_extract_5R_store (inst);
c906108c
SS
1432
1433 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1434 too. */
7be570e7
JM
1435 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1436 || ((inst >> 26) == 0x3
1437 && (((inst >> 6) & 0xf) == 0x8
1438 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1439 return hppa_extract_5R_store (inst);
c5aa993b 1440
c906108c
SS
1441 return 0;
1442}
1443
1444/* Return the register number for a FR which is saved by INST or
1445 zero it INST does not save a FR.
1446
1447 Note we only care about full 64bit register stores (that's the only
1448 kind of stores the prologue will use).
1449
1450 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1451
1452static int
fba45db2 1453inst_saves_fr (unsigned long inst)
c906108c 1454{
7be570e7 1455 /* is this an FSTD ? */
c906108c 1456 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1457 return hppa_extract_5r_store (inst);
7be570e7 1458 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1459 return hppa_extract_5R_store (inst);
7be570e7 1460 /* is this an FSTW ? */
c906108c 1461 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1462 return hppa_extract_5r_store (inst);
7be570e7 1463 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1464 return hppa_extract_5R_store (inst);
c906108c
SS
1465 return 0;
1466}
1467
1468/* Advance PC across any function entry prologue instructions
1469 to reach some "real" code.
1470
1471 Use information in the unwind table to determine what exactly should
1472 be in the prologue. */
1473
1474
a71f8c30
RC
1475static CORE_ADDR
1476skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1477{
1478 char buf[4];
1479 CORE_ADDR orig_pc = pc;
1480 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1481 unsigned long args_stored, status, i, restart_gr, restart_fr;
1482 struct unwind_table_entry *u;
a71f8c30 1483 int final_iteration;
c906108c
SS
1484
1485 restart_gr = 0;
1486 restart_fr = 0;
1487
1488restart:
1489 u = find_unwind_entry (pc);
1490 if (!u)
1491 return pc;
1492
c5aa993b 1493 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1494 if ((pc & ~0x3) != u->region_start)
1495 return pc;
1496
1497 /* This is how much of a frame adjustment we need to account for. */
1498 stack_remaining = u->Total_frame_size << 3;
1499
1500 /* Magic register saves we want to know about. */
1501 save_rp = u->Save_RP;
1502 save_sp = u->Save_SP;
1503
1504 /* An indication that args may be stored into the stack. Unfortunately
1505 the HPUX compilers tend to set this in cases where no args were
1506 stored too!. */
1507 args_stored = 1;
1508
1509 /* Turn the Entry_GR field into a bitmask. */
1510 save_gr = 0;
1511 for (i = 3; i < u->Entry_GR + 3; i++)
1512 {
1513 /* Frame pointer gets saved into a special location. */
eded0a31 1514 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1515 continue;
1516
1517 save_gr |= (1 << i);
1518 }
1519 save_gr &= ~restart_gr;
1520
1521 /* Turn the Entry_FR field into a bitmask too. */
1522 save_fr = 0;
1523 for (i = 12; i < u->Entry_FR + 12; i++)
1524 save_fr |= (1 << i);
1525 save_fr &= ~restart_fr;
1526
a71f8c30
RC
1527 final_iteration = 0;
1528
c906108c
SS
1529 /* Loop until we find everything of interest or hit a branch.
1530
1531 For unoptimized GCC code and for any HP CC code this will never ever
1532 examine any user instructions.
1533
1534 For optimzied GCC code we're faced with problems. GCC will schedule
1535 its prologue and make prologue instructions available for delay slot
1536 filling. The end result is user code gets mixed in with the prologue
1537 and a prologue instruction may be in the delay slot of the first branch
1538 or call.
1539
1540 Some unexpected things are expected with debugging optimized code, so
1541 we allow this routine to walk past user instructions in optimized
1542 GCC code. */
1543 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1544 || args_stored)
1545 {
1546 unsigned int reg_num;
1547 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1548 unsigned long old_save_rp, old_save_sp, next_inst;
1549
1550 /* Save copies of all the triggers so we can compare them later
c5aa993b 1551 (only for HPC). */
c906108c
SS
1552 old_save_gr = save_gr;
1553 old_save_fr = save_fr;
1554 old_save_rp = save_rp;
1555 old_save_sp = save_sp;
1556 old_stack_remaining = stack_remaining;
1557
359a9262 1558 status = read_memory_nobpt (pc, buf, 4);
c906108c 1559 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1560
c906108c
SS
1561 /* Yow! */
1562 if (status != 0)
1563 return pc;
1564
1565 /* Note the interesting effects of this instruction. */
1566 stack_remaining -= prologue_inst_adjust_sp (inst);
1567
7be570e7
JM
1568 /* There are limited ways to store the return pointer into the
1569 stack. */
c4c79048 1570 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1571 save_rp = 0;
1572
104c1213 1573 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1574 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1575 if ((inst & 0xffffc000) == 0x6fc10000
1576 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1577 save_sp = 0;
1578
6426a772
JM
1579 /* Are we loading some register with an offset from the argument
1580 pointer? */
1581 if ((inst & 0xffe00000) == 0x37a00000
1582 || (inst & 0xffffffe0) == 0x081d0240)
1583 {
1584 pc += 4;
1585 continue;
1586 }
1587
c906108c
SS
1588 /* Account for general and floating-point register saves. */
1589 reg_num = inst_saves_gr (inst);
1590 save_gr &= ~(1 << reg_num);
1591
1592 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1593 Unfortunately args_stored only tells us that some arguments
1594 where stored into the stack. Not how many or what kind!
c906108c 1595
c5aa993b
JM
1596 This is a kludge as on the HP compiler sets this bit and it
1597 never does prologue scheduling. So once we see one, skip past
1598 all of them. We have similar code for the fp arg stores below.
c906108c 1599
c5aa993b
JM
1600 FIXME. Can still die if we have a mix of GR and FR argument
1601 stores! */
819844ad
UW
1602 if (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1603 && reg_num <= 26)
c906108c 1604 {
819844ad
UW
1605 while (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1606 && reg_num <= 26)
c906108c
SS
1607 {
1608 pc += 4;
359a9262 1609 status = read_memory_nobpt (pc, buf, 4);
c906108c
SS
1610 inst = extract_unsigned_integer (buf, 4);
1611 if (status != 0)
1612 return pc;
1613 reg_num = inst_saves_gr (inst);
1614 }
1615 args_stored = 0;
1616 continue;
1617 }
1618
1619 reg_num = inst_saves_fr (inst);
1620 save_fr &= ~(1 << reg_num);
1621
359a9262 1622 status = read_memory_nobpt (pc + 4, buf, 4);
c906108c 1623 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1624
c906108c
SS
1625 /* Yow! */
1626 if (status != 0)
1627 return pc;
1628
1629 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1630 save. */
c906108c
SS
1631 if ((inst & 0xfc000000) == 0x34000000
1632 && inst_saves_fr (next_inst) >= 4
819844ad
UW
1633 && inst_saves_fr (next_inst)
1634 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
c906108c
SS
1635 {
1636 /* So we drop into the code below in a reasonable state. */
1637 reg_num = inst_saves_fr (next_inst);
1638 pc -= 4;
1639 }
1640
1641 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1642 This is a kludge as on the HP compiler sets this bit and it
1643 never does prologue scheduling. So once we see one, skip past
1644 all of them. */
819844ad
UW
1645 if (reg_num >= 4
1646 && reg_num <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
c906108c 1647 {
819844ad
UW
1648 while (reg_num >= 4
1649 && reg_num
1650 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
c906108c
SS
1651 {
1652 pc += 8;
359a9262 1653 status = read_memory_nobpt (pc, buf, 4);
c906108c
SS
1654 inst = extract_unsigned_integer (buf, 4);
1655 if (status != 0)
1656 return pc;
1657 if ((inst & 0xfc000000) != 0x34000000)
1658 break;
359a9262 1659 status = read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1660 next_inst = extract_unsigned_integer (buf, 4);
1661 if (status != 0)
1662 return pc;
1663 reg_num = inst_saves_fr (next_inst);
1664 }
1665 args_stored = 0;
1666 continue;
1667 }
1668
1669 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1670 instruction is in the delay slot of the first call/branch. */
a71f8c30 1671 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1672 break;
1673
1674 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1675 arguments were stored into the stack (boo hiss). This could
1676 cause this code to then skip a bunch of user insns (up to the
1677 first branch).
1678
1679 To combat this we try to identify when args_stored was bogusly
1680 set and clear it. We only do this when args_stored is nonzero,
1681 all other resources are accounted for, and nothing changed on
1682 this pass. */
c906108c 1683 if (args_stored
c5aa993b 1684 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1685 && old_save_gr == save_gr && old_save_fr == save_fr
1686 && old_save_rp == save_rp && old_save_sp == save_sp
1687 && old_stack_remaining == stack_remaining)
1688 break;
c5aa993b 1689
c906108c
SS
1690 /* Bump the PC. */
1691 pc += 4;
a71f8c30
RC
1692
1693 /* !stop_before_branch, so also look at the insn in the delay slot
1694 of the branch. */
1695 if (final_iteration)
1696 break;
1697 if (is_branch (inst))
1698 final_iteration = 1;
c906108c
SS
1699 }
1700
1701 /* We've got a tenative location for the end of the prologue. However
1702 because of limitations in the unwind descriptor mechanism we may
1703 have went too far into user code looking for the save of a register
1704 that does not exist. So, if there registers we expected to be saved
1705 but never were, mask them out and restart.
1706
1707 This should only happen in optimized code, and should be very rare. */
c5aa993b 1708 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1709 {
1710 pc = orig_pc;
1711 restart_gr = save_gr;
1712 restart_fr = save_fr;
1713 goto restart;
1714 }
1715
1716 return pc;
1717}
1718
1719
7be570e7
JM
1720/* Return the address of the PC after the last prologue instruction if
1721 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1722
1723static CORE_ADDR
fba45db2 1724after_prologue (CORE_ADDR pc)
c906108c
SS
1725{
1726 struct symtab_and_line sal;
1727 CORE_ADDR func_addr, func_end;
1728 struct symbol *f;
1729
7be570e7
JM
1730 /* If we can not find the symbol in the partial symbol table, then
1731 there is no hope we can determine the function's start address
1732 with this code. */
c906108c 1733 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1734 return 0;
c906108c 1735
7be570e7 1736 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1737 sal = find_pc_line (func_addr, 0);
1738
7be570e7
JM
1739 /* There are only two cases to consider. First, the end of the source line
1740 is within the function bounds. In that case we return the end of the
1741 source line. Second is the end of the source line extends beyond the
1742 bounds of the current function. We need to use the slow code to
1743 examine instructions in that case.
c906108c 1744
7be570e7
JM
1745 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1746 the wrong thing to do. In fact, it should be entirely possible for this
1747 function to always return zero since the slow instruction scanning code
1748 is supposed to *always* work. If it does not, then it is a bug. */
1749 if (sal.end < func_end)
1750 return sal.end;
c5aa993b 1751 else
7be570e7 1752 return 0;
c906108c
SS
1753}
1754
1755/* To skip prologues, I use this predicate. Returns either PC itself
1756 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1757 returns an address that (if we're lucky) follows the prologue.
1758
1759 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1760 It doesn't necessarily skips all the insns in the prologue. In fact
1761 we might not want to skip all the insns because a prologue insn may
1762 appear in the delay slot of the first branch, and we don't want to
1763 skip over the branch in that case. */
c906108c 1764
8d153463 1765static CORE_ADDR
fba45db2 1766hppa_skip_prologue (CORE_ADDR pc)
c906108c 1767{
c5aa993b
JM
1768 unsigned long inst;
1769 int offset;
1770 CORE_ADDR post_prologue_pc;
1771 char buf[4];
c906108c 1772
c5aa993b
JM
1773 /* See if we can determine the end of the prologue via the symbol table.
1774 If so, then return either PC, or the PC after the prologue, whichever
1775 is greater. */
c906108c 1776
c5aa993b 1777 post_prologue_pc = after_prologue (pc);
c906108c 1778
7be570e7
JM
1779 /* If after_prologue returned a useful address, then use it. Else
1780 fall back on the instruction skipping code.
1781
1782 Some folks have claimed this causes problems because the breakpoint
1783 may be the first instruction of the prologue. If that happens, then
1784 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1785 if (post_prologue_pc != 0)
1786 return max (pc, post_prologue_pc);
c5aa993b 1787 else
a71f8c30 1788 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1789}
1790
29d375ac
RC
1791/* Return an unwind entry that falls within the frame's code block. */
1792static struct unwind_table_entry *
1793hppa_find_unwind_entry_in_block (struct frame_info *f)
1794{
93d42b30
DJ
1795 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1796
1797 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1798 result of frame_unwind_address_in_block implies a problem.
1799 The bits should have been removed earlier, before the return
1800 value of frame_pc_unwind. That might be happening already;
1801 if it isn't, it should be fixed. Then this call can be
1802 removed. */
29d375ac
RC
1803 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1804 return find_unwind_entry (pc);
1805}
1806
26d08f08
AC
1807struct hppa_frame_cache
1808{
1809 CORE_ADDR base;
1810 struct trad_frame_saved_reg *saved_regs;
1811};
1812
1813static struct hppa_frame_cache *
1814hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1815{
1816 struct hppa_frame_cache *cache;
1817 long saved_gr_mask;
1818 long saved_fr_mask;
1819 CORE_ADDR this_sp;
1820 long frame_size;
1821 struct unwind_table_entry *u;
9f7194c3 1822 CORE_ADDR prologue_end;
50b2f48a 1823 int fp_in_r1 = 0;
26d08f08
AC
1824 int i;
1825
369aa520
RC
1826 if (hppa_debug)
1827 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1828 frame_relative_level(next_frame));
1829
26d08f08 1830 if ((*this_cache) != NULL)
369aa520
RC
1831 {
1832 if (hppa_debug)
1833 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1834 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1835 return (*this_cache);
1836 }
26d08f08
AC
1837 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1838 (*this_cache) = cache;
1839 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1840
1841 /* Yow! */
29d375ac 1842 u = hppa_find_unwind_entry_in_block (next_frame);
26d08f08 1843 if (!u)
369aa520
RC
1844 {
1845 if (hppa_debug)
1846 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1847 return (*this_cache);
1848 }
26d08f08
AC
1849
1850 /* Turn the Entry_GR field into a bitmask. */
1851 saved_gr_mask = 0;
1852 for (i = 3; i < u->Entry_GR + 3; i++)
1853 {
1854 /* Frame pointer gets saved into a special location. */
eded0a31 1855 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1856 continue;
1857
1858 saved_gr_mask |= (1 << i);
1859 }
1860
1861 /* Turn the Entry_FR field into a bitmask too. */
1862 saved_fr_mask = 0;
1863 for (i = 12; i < u->Entry_FR + 12; i++)
1864 saved_fr_mask |= (1 << i);
1865
1866 /* Loop until we find everything of interest or hit a branch.
1867
1868 For unoptimized GCC code and for any HP CC code this will never ever
1869 examine any user instructions.
1870
1871 For optimized GCC code we're faced with problems. GCC will schedule
1872 its prologue and make prologue instructions available for delay slot
1873 filling. The end result is user code gets mixed in with the prologue
1874 and a prologue instruction may be in the delay slot of the first branch
1875 or call.
1876
1877 Some unexpected things are expected with debugging optimized code, so
1878 we allow this routine to walk past user instructions in optimized
1879 GCC code. */
1880 {
1881 int final_iteration = 0;
46acf081 1882 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1883 int looking_for_sp = u->Save_SP;
1884 int looking_for_rp = u->Save_RP;
1885 int fp_loc = -1;
9f7194c3 1886
a71f8c30 1887 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1888 skip_prologue_using_sal, in case we stepped into a function without
1889 symbol information. hppa_skip_prologue also bounds the returned
1890 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1891 function.
1892
1893 We used to call hppa_skip_prologue to find the end of the prologue,
1894 but if some non-prologue instructions get scheduled into the prologue,
1895 and the program is compiled with debug information, the "easy" way
1896 in hppa_skip_prologue will return a prologue end that is too early
1897 for us to notice any potential frame adjustments. */
d5c27f81
RC
1898
1899 /* We used to use frame_func_unwind () to locate the beginning of the
1900 function to pass to skip_prologue (). However, when objects are
1901 compiled without debug symbols, frame_func_unwind can return the wrong
46acf081
RC
1902 function (or 0). We can do better than that by using unwind records.
1903 This only works if the Region_description of the unwind record
1904 indicates that it includes the entry point of the function.
1905 HP compilers sometimes generate unwind records for regions that
1906 do not include the entry or exit point of a function. GNU tools
1907 do not do this. */
1908
1909 if ((u->Region_description & 0x2) == 0)
1910 start_pc = u->region_start;
1911 else
93d42b30 1912 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
d5c27f81 1913
46acf081 1914 prologue_end = skip_prologue_hard_way (start_pc, 0);
9f7194c3
RC
1915 end_pc = frame_pc_unwind (next_frame);
1916
1917 if (prologue_end != 0 && end_pc > prologue_end)
1918 end_pc = prologue_end;
1919
26d08f08 1920 frame_size = 0;
9f7194c3 1921
46acf081 1922 for (pc = start_pc;
26d08f08
AC
1923 ((saved_gr_mask || saved_fr_mask
1924 || looking_for_sp || looking_for_rp
1925 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1926 && pc < end_pc);
26d08f08
AC
1927 pc += 4)
1928 {
1929 int reg;
1930 char buf4[4];
4a302917
RC
1931 long inst;
1932
1933 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1934 sizeof buf4))
1935 {
8a3fe4f8 1936 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
4a302917
RC
1937 return (*this_cache);
1938 }
1939
1940 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1941
26d08f08
AC
1942 /* Note the interesting effects of this instruction. */
1943 frame_size += prologue_inst_adjust_sp (inst);
1944
1945 /* There are limited ways to store the return pointer into the
1946 stack. */
1947 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1948 {
1949 looking_for_rp = 0;
34f75cc1 1950 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1951 }
dfaf8edb
MK
1952 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1953 {
1954 looking_for_rp = 0;
1955 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1956 }
c4c79048
RC
1957 else if (inst == 0x0fc212c1
1958 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
1959 {
1960 looking_for_rp = 0;
34f75cc1 1961 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1962 }
1963
1964 /* Check to see if we saved SP into the stack. This also
1965 happens to indicate the location of the saved frame
1966 pointer. */
1967 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1968 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1969 {
1970 looking_for_sp = 0;
eded0a31 1971 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1972 }
50b2f48a
RC
1973 else if (inst == 0x08030241) /* copy %r3, %r1 */
1974 {
1975 fp_in_r1 = 1;
1976 }
26d08f08
AC
1977
1978 /* Account for general and floating-point register saves. */
1979 reg = inst_saves_gr (inst);
1980 if (reg >= 3 && reg <= 18
eded0a31 1981 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1982 {
1983 saved_gr_mask &= ~(1 << reg);
abc485a1 1984 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1985 /* stwm with a positive displacement is a _post_
1986 _modify_. */
1987 cache->saved_regs[reg].addr = 0;
1988 else if ((inst & 0xfc00000c) == 0x70000008)
1989 /* A std has explicit post_modify forms. */
1990 cache->saved_regs[reg].addr = 0;
1991 else
1992 {
1993 CORE_ADDR offset;
1994
1995 if ((inst >> 26) == 0x1c)
1996 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1997 else if ((inst >> 26) == 0x03)
abc485a1 1998 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1999 else
abc485a1 2000 offset = hppa_extract_14 (inst);
26d08f08
AC
2001
2002 /* Handle code with and without frame pointers. */
2003 if (u->Save_SP)
2004 cache->saved_regs[reg].addr = offset;
2005 else
2006 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2007 }
2008 }
2009
2010 /* GCC handles callee saved FP regs a little differently.
2011
2012 It emits an instruction to put the value of the start of
2013 the FP store area into %r1. It then uses fstds,ma with a
2014 basereg of %r1 for the stores.
2015
2016 HP CC emits them at the current stack pointer modifying the
2017 stack pointer as it stores each register. */
2018
2019 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2020 if ((inst & 0xffffc000) == 0x34610000
2021 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2022 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2023
2024 reg = inst_saves_fr (inst);
2025 if (reg >= 12 && reg <= 21)
2026 {
2027 /* Note +4 braindamage below is necessary because the FP
2028 status registers are internally 8 registers rather than
2029 the expected 4 registers. */
2030 saved_fr_mask &= ~(1 << reg);
2031 if (fp_loc == -1)
2032 {
2033 /* 1st HP CC FP register store. After this
2034 instruction we've set enough state that the GCC and
2035 HPCC code are both handled in the same manner. */
34f75cc1 2036 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2037 fp_loc = 8;
2038 }
2039 else
2040 {
eded0a31 2041 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2042 fp_loc += 8;
2043 }
2044 }
2045
2046 /* Quit if we hit any kind of branch the previous iteration. */
2047 if (final_iteration)
2048 break;
2049 /* We want to look precisely one instruction beyond the branch
2050 if we have not found everything yet. */
2051 if (is_branch (inst))
2052 final_iteration = 1;
2053 }
2054 }
2055
2056 {
2057 /* The frame base always represents the value of %sp at entry to
2058 the current function (and is thus equivalent to the "saved"
2059 stack pointer. */
eded0a31 2060 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 2061 CORE_ADDR fp;
9f7194c3
RC
2062
2063 if (hppa_debug)
2064 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2065 "prologue_end=0x%s) ",
2066 paddr_nz (this_sp),
2067 paddr_nz (frame_pc_unwind (next_frame)),
2068 paddr_nz (prologue_end));
2069
ed70ba00
RC
2070 /* Check to see if a frame pointer is available, and use it for
2071 frame unwinding if it is.
2072
2073 There are some situations where we need to rely on the frame
2074 pointer to do stack unwinding. For example, if a function calls
2075 alloca (), the stack pointer can get adjusted inside the body of
2076 the function. In this case, the ABI requires that the compiler
2077 maintain a frame pointer for the function.
2078
2079 The unwind record has a flag (alloca_frame) that indicates that
2080 a function has a variable frame; unfortunately, gcc/binutils
2081 does not set this flag. Instead, whenever a frame pointer is used
2082 and saved on the stack, the Save_SP flag is set. We use this to
2083 decide whether to use the frame pointer for unwinding.
2084
ed70ba00
RC
2085 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2086 instead of Save_SP. */
2087
2088 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
46acf081 2089
6fcecea0 2090 if (u->alloca_frame)
46acf081 2091 fp -= u->Total_frame_size << 3;
ed70ba00
RC
2092
2093 if (frame_pc_unwind (next_frame) >= prologue_end
6fcecea0 2094 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2095 {
2096 cache->base = fp;
2097
2098 if (hppa_debug)
9ed5ba24 2099 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
ed70ba00
RC
2100 paddr_nz (cache->base));
2101 }
1658da49
RC
2102 else if (u->Save_SP
2103 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2104 {
9f7194c3
RC
2105 /* Both we're expecting the SP to be saved and the SP has been
2106 saved. The entry SP value is saved at this frame's SP
2107 address. */
819844ad
UW
2108 cache->base = read_memory_integer
2109 (this_sp, gdbarch_ptr_bit (current_gdbarch) / 8);
9f7194c3
RC
2110
2111 if (hppa_debug)
9ed5ba24 2112 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
9f7194c3 2113 paddr_nz (cache->base));
9f7194c3 2114 }
26d08f08 2115 else
9f7194c3 2116 {
1658da49
RC
2117 /* The prologue has been slowly allocating stack space. Adjust
2118 the SP back. */
2119 cache->base = this_sp - frame_size;
9f7194c3 2120 if (hppa_debug)
9ed5ba24 2121 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
9f7194c3
RC
2122 paddr_nz (cache->base));
2123
2124 }
eded0a31 2125 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2126 }
2127
412275d5
AC
2128 /* The PC is found in the "return register", "Millicode" uses "r31"
2129 as the return register while normal code uses "rp". */
26d08f08 2130 if (u->Millicode)
9f7194c3 2131 {
5859efe5 2132 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2133 {
2134 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2135 if (hppa_debug)
2136 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2137 }
9f7194c3
RC
2138 else
2139 {
2140 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 2141 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2142 if (hppa_debug)
2143 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2144 }
2145 }
26d08f08 2146 else
9f7194c3 2147 {
34f75cc1 2148 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2149 {
2150 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2151 cache->saved_regs[HPPA_RP_REGNUM];
2152 if (hppa_debug)
2153 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2154 }
9f7194c3
RC
2155 else
2156 {
34f75cc1
RC
2157 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2158 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2159 if (hppa_debug)
2160 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2161 }
2162 }
26d08f08 2163
50b2f48a
RC
2164 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2165 frame. However, there is a one-insn window where we haven't saved it
2166 yet, but we've already clobbered it. Detect this case and fix it up.
2167
2168 The prologue sequence for frame-pointer functions is:
2169 0: stw %rp, -20(%sp)
2170 4: copy %r3, %r1
2171 8: copy %sp, %r3
2172 c: stw,ma %r1, XX(%sp)
2173
2174 So if we are at offset c, the r3 value that we want is not yet saved
2175 on the stack, but it's been overwritten. The prologue analyzer will
2176 set fp_in_r1 when it sees the copy insn so we know to get the value
2177 from r1 instead. */
2178 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2179 && fp_in_r1)
2180 {
2181 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2182 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2183 }
1658da49 2184
26d08f08
AC
2185 {
2186 /* Convert all the offsets into addresses. */
2187 int reg;
f57d151a 2188 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
26d08f08
AC
2189 {
2190 if (trad_frame_addr_p (cache->saved_regs, reg))
2191 cache->saved_regs[reg].addr += cache->base;
2192 }
2193 }
2194
f77a2124
RC
2195 {
2196 struct gdbarch *gdbarch;
2197 struct gdbarch_tdep *tdep;
2198
2199 gdbarch = get_frame_arch (next_frame);
2200 tdep = gdbarch_tdep (gdbarch);
2201
2202 if (tdep->unwind_adjust_stub)
2203 {
2204 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2205 }
2206 }
2207
369aa520
RC
2208 if (hppa_debug)
2209 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2210 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2211 return (*this_cache);
2212}
2213
2214static void
2215hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2216 struct frame_id *this_id)
2217{
d5c27f81
RC
2218 struct hppa_frame_cache *info;
2219 CORE_ADDR pc = frame_pc_unwind (next_frame);
2220 struct unwind_table_entry *u;
2221
2222 info = hppa_frame_cache (next_frame, this_cache);
29d375ac 2223 u = hppa_find_unwind_entry_in_block (next_frame);
d5c27f81
RC
2224
2225 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2226}
2227
2228static void
2229hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
2230 void **this_cache,
2231 int regnum, int *optimizedp,
2232 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2233 int *realnump, gdb_byte *valuep)
26d08f08
AC
2234{
2235 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
2236 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2237 optimizedp, lvalp, addrp, realnump, valuep);
2238}
2239
2240static const struct frame_unwind hppa_frame_unwind =
2241{
2242 NORMAL_FRAME,
2243 hppa_frame_this_id,
2244 hppa_frame_prev_register
2245};
2246
2247static const struct frame_unwind *
2248hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2249{
29d375ac 2250 if (hppa_find_unwind_entry_in_block (next_frame))
0da28f8a
RC
2251 return &hppa_frame_unwind;
2252
2253 return NULL;
2254}
2255
2256/* This is a generic fallback frame unwinder that kicks in if we fail all
2257 the other ones. Normally we would expect the stub and regular unwinder
2258 to work, but in some cases we might hit a function that just doesn't
2259 have any unwind information available. In this case we try to do
2260 unwinding solely based on code reading. This is obviously going to be
2261 slow, so only use this as a last resort. Currently this will only
2262 identify the stack and pc for the frame. */
2263
2264static struct hppa_frame_cache *
2265hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2266{
2267 struct hppa_frame_cache *cache;
4ba6a975
MK
2268 unsigned int frame_size = 0;
2269 int found_rp = 0;
2270 CORE_ADDR start_pc;
0da28f8a 2271
d5c27f81 2272 if (hppa_debug)
4ba6a975
MK
2273 fprintf_unfiltered (gdb_stdlog,
2274 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2275 frame_relative_level (next_frame));
d5c27f81 2276
0da28f8a
RC
2277 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2278 (*this_cache) = cache;
2279 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2280
93d42b30 2281 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
4ba6a975 2282 if (start_pc)
0da28f8a 2283 {
4ba6a975
MK
2284 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2285 CORE_ADDR pc;
0da28f8a 2286
4ba6a975
MK
2287 for (pc = start_pc; pc < cur_pc; pc += 4)
2288 {
2289 unsigned int insn;
0da28f8a 2290
4ba6a975
MK
2291 insn = read_memory_unsigned_integer (pc, 4);
2292 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2293
4ba6a975
MK
2294 /* There are limited ways to store the return pointer into the
2295 stack. */
2296 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2297 {
2298 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2299 found_rp = 1;
2300 }
c4c79048
RC
2301 else if (insn == 0x0fc212c1
2302 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2303 {
2304 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2305 found_rp = 1;
2306 }
2307 }
412275d5 2308 }
0da28f8a 2309
d5c27f81 2310 if (hppa_debug)
4ba6a975
MK
2311 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2312 frame_size, found_rp);
d5c27f81 2313
4ba6a975
MK
2314 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2315 cache->base -= frame_size;
6d1be3f1 2316 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2317
2318 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2319 {
2320 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2321 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2322 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2323 }
412275d5
AC
2324 else
2325 {
4ba6a975
MK
2326 ULONGEST rp;
2327 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
0da28f8a 2328 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2329 }
0da28f8a
RC
2330
2331 return cache;
26d08f08
AC
2332}
2333
0da28f8a
RC
2334static void
2335hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2336 struct frame_id *this_id)
2337{
2338 struct hppa_frame_cache *info =
2339 hppa_fallback_frame_cache (next_frame, this_cache);
93d42b30
DJ
2340 (*this_id) = frame_id_build (info->base,
2341 frame_func_unwind (next_frame, NORMAL_FRAME));
0da28f8a
RC
2342}
2343
2344static void
2345hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2346 void **this_cache,
2347 int regnum, int *optimizedp,
2348 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2349 int *realnump, gdb_byte *valuep)
0da28f8a
RC
2350{
2351 struct hppa_frame_cache *info =
2352 hppa_fallback_frame_cache (next_frame, this_cache);
2353 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2354 optimizedp, lvalp, addrp, realnump, valuep);
2355}
2356
2357static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2358{
2359 NORMAL_FRAME,
0da28f8a
RC
2360 hppa_fallback_frame_this_id,
2361 hppa_fallback_frame_prev_register
26d08f08
AC
2362};
2363
2364static const struct frame_unwind *
0da28f8a 2365hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2366{
0da28f8a 2367 return &hppa_fallback_frame_unwind;
26d08f08
AC
2368}
2369
7f07c5b6
RC
2370/* Stub frames, used for all kinds of call stubs. */
2371struct hppa_stub_unwind_cache
2372{
2373 CORE_ADDR base;
2374 struct trad_frame_saved_reg *saved_regs;
2375};
2376
2377static struct hppa_stub_unwind_cache *
2378hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2379 void **this_cache)
2380{
2381 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2382 struct hppa_stub_unwind_cache *info;
22b0923d 2383 struct unwind_table_entry *u;
7f07c5b6
RC
2384
2385 if (*this_cache)
2386 return *this_cache;
2387
2388 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2389 *this_cache = info;
2390 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2391
7f07c5b6
RC
2392 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2393
090ccbb7 2394 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2395 {
2396 /* HPUX uses export stubs in function calls; the export stub clobbers
2397 the return value of the caller, and, later restores it from the
2398 stack. */
2399 u = find_unwind_entry (frame_pc_unwind (next_frame));
2400
2401 if (u && u->stub_unwind.stub_type == EXPORT)
2402 {
2403 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2404
2405 return info;
2406 }
2407 }
2408
2409 /* By default we assume that stubs do not change the rp. */
2410 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2411
7f07c5b6
RC
2412 return info;
2413}
2414
2415static void
2416hppa_stub_frame_this_id (struct frame_info *next_frame,
2417 void **this_prologue_cache,
2418 struct frame_id *this_id)
2419{
2420 struct hppa_stub_unwind_cache *info
2421 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2422
2423 if (info)
93d42b30
DJ
2424 *this_id = frame_id_build (info->base,
2425 frame_func_unwind (next_frame, NORMAL_FRAME));
f1b38a57
RC
2426 else
2427 *this_id = null_frame_id;
7f07c5b6
RC
2428}
2429
2430static void
2431hppa_stub_frame_prev_register (struct frame_info *next_frame,
2432 void **this_prologue_cache,
2433 int regnum, int *optimizedp,
2434 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2435 int *realnump, gdb_byte *valuep)
7f07c5b6
RC
2436{
2437 struct hppa_stub_unwind_cache *info
2438 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2439
2440 if (info)
2441 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2442 optimizedp, lvalp, addrp, realnump,
2443 valuep);
2444 else
8a3fe4f8 2445 error (_("Requesting registers from null frame."));
7f07c5b6
RC
2446}
2447
2448static const struct frame_unwind hppa_stub_frame_unwind = {
2449 NORMAL_FRAME,
2450 hppa_stub_frame_this_id,
2451 hppa_stub_frame_prev_register
2452};
2453
2454static const struct frame_unwind *
2455hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2456{
93d42b30 2457 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
84674fe1
AC
2458 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2460
6d1be3f1 2461 if (pc == 0
84674fe1
AC
2462 || (tdep->in_solib_call_trampoline != NULL
2463 && tdep->in_solib_call_trampoline (pc, NULL))
e76f05fa 2464 || gdbarch_in_solib_return_trampoline (current_gdbarch, pc, NULL))
7f07c5b6
RC
2465 return &hppa_stub_frame_unwind;
2466 return NULL;
2467}
2468
26d08f08
AC
2469static struct frame_id
2470hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2471{
2472 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2473 HPPA_SP_REGNUM),
26d08f08
AC
2474 frame_pc_unwind (next_frame));
2475}
2476
cc72850f 2477CORE_ADDR
26d08f08
AC
2478hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2479{
fe46cd3a
RC
2480 ULONGEST ipsw;
2481 CORE_ADDR pc;
2482
cc72850f
MK
2483 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2484 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2485
2486 /* If the current instruction is nullified, then we are effectively
2487 still executing the previous instruction. Pretend we are still
cc72850f
MK
2488 there. This is needed when single stepping; if the nullified
2489 instruction is on a different line, we don't want GDB to think
2490 we've stepped onto that line. */
fe46cd3a
RC
2491 if (ipsw & 0x00200000)
2492 pc -= 4;
2493
cc72850f 2494 return pc & ~0x3;
26d08f08
AC
2495}
2496
ff644745
JB
2497/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2498 Return NULL if no such symbol was found. */
2499
2500struct minimal_symbol *
2501hppa_lookup_stub_minimal_symbol (const char *name,
2502 enum unwind_stub_types stub_type)
2503{
2504 struct objfile *objfile;
2505 struct minimal_symbol *msym;
2506
2507 ALL_MSYMBOLS (objfile, msym)
2508 {
2509 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2510 {
2511 struct unwind_table_entry *u;
2512
2513 u = find_unwind_entry (SYMBOL_VALUE (msym));
2514 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2515 return msym;
2516 }
2517 }
2518
2519 return NULL;
2520}
2521
c906108c 2522static void
fba45db2 2523unwind_command (char *exp, int from_tty)
c906108c
SS
2524{
2525 CORE_ADDR address;
2526 struct unwind_table_entry *u;
2527
2528 /* If we have an expression, evaluate it and use it as the address. */
2529
2530 if (exp != 0 && *exp != 0)
2531 address = parse_and_eval_address (exp);
2532 else
2533 return;
2534
2535 u = find_unwind_entry (address);
2536
2537 if (!u)
2538 {
2539 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2540 return;
2541 }
2542
99d64d77 2543 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
c906108c
SS
2544
2545 printf_unfiltered ("\tregion_start = ");
2546 print_address (u->region_start, gdb_stdout);
d5c27f81 2547 gdb_flush (gdb_stdout);
c906108c
SS
2548
2549 printf_unfiltered ("\n\tregion_end = ");
2550 print_address (u->region_end, gdb_stdout);
d5c27f81 2551 gdb_flush (gdb_stdout);
c906108c 2552
c906108c 2553#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2554
2555 printf_unfiltered ("\n\tflags =");
2556 pif (Cannot_unwind);
2557 pif (Millicode);
2558 pif (Millicode_save_sr0);
2559 pif (Entry_SR);
2560 pif (Args_stored);
2561 pif (Variable_Frame);
2562 pif (Separate_Package_Body);
2563 pif (Frame_Extension_Millicode);
2564 pif (Stack_Overflow_Check);
2565 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2566 pif (sr4export);
2567 pif (cxx_info);
2568 pif (cxx_try_catch);
2569 pif (sched_entry_seq);
c906108c
SS
2570 pif (Save_SP);
2571 pif (Save_RP);
2572 pif (Save_MRP_in_frame);
6fcecea0 2573 pif (save_r19);
c906108c
SS
2574 pif (Cleanup_defined);
2575 pif (MPE_XL_interrupt_marker);
2576 pif (HP_UX_interrupt_marker);
2577 pif (Large_frame);
6fcecea0 2578 pif (alloca_frame);
c906108c
SS
2579
2580 putchar_unfiltered ('\n');
2581
c906108c 2582#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2583
2584 pin (Region_description);
2585 pin (Entry_FR);
2586 pin (Entry_GR);
2587 pin (Total_frame_size);
57dac9e1
RC
2588
2589 if (u->stub_unwind.stub_type)
2590 {
2591 printf_unfiltered ("\tstub type = ");
2592 switch (u->stub_unwind.stub_type)
2593 {
2594 case LONG_BRANCH:
2595 printf_unfiltered ("long branch\n");
2596 break;
2597 case PARAMETER_RELOCATION:
2598 printf_unfiltered ("parameter relocation\n");
2599 break;
2600 case EXPORT:
2601 printf_unfiltered ("export\n");
2602 break;
2603 case IMPORT:
2604 printf_unfiltered ("import\n");
2605 break;
2606 case IMPORT_SHLIB:
2607 printf_unfiltered ("import shlib\n");
2608 break;
2609 default:
2610 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2611 }
2612 }
c906108c 2613}
c906108c 2614
d709c020
JB
2615int
2616hppa_pc_requires_run_before_use (CORE_ADDR pc)
2617{
2618 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2619
2620 An example of this occurs when an a.out is linked against a foo.sl.
2621 The foo.sl defines a global bar(), and the a.out declares a signature
2622 for bar(). However, the a.out doesn't directly call bar(), but passes
2623 its address in another call.
2624
2625 If you have this scenario and attempt to "break bar" before running,
2626 gdb will find a minimal symbol for bar() in the a.out. But that
2627 symbol's address will be negative. What this appears to denote is
2628 an index backwards from the base of the procedure linkage table (PLT)
2629 into the data linkage table (DLT), the end of which is contiguous
2630 with the start of the PLT. This is clearly not a valid address for
2631 us to set a breakpoint on.
2632
2633 Note that one must be careful in how one checks for a negative address.
2634 0xc0000000 is a legitimate address of something in a shared text
2635 segment, for example. Since I don't know what the possible range
2636 is of these "really, truly negative" addresses that come from the
2637 minimal symbols, I'm resorting to the gross hack of checking the
2638 top byte of the address for all 1's. Sigh. */
2639
7b5c6b52 2640 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
d709c020
JB
2641}
2642
38ca4e0c
MK
2643/* Return the GDB type object for the "standard" data type of data in
2644 register REGNUM. */
d709c020 2645
eded0a31 2646static struct type *
38ca4e0c 2647hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2648{
38ca4e0c 2649 if (regnum < HPPA_FP4_REGNUM)
eded0a31 2650 return builtin_type_uint32;
d709c020 2651 else
8da61cc4 2652 return builtin_type_ieee_single;
d709c020
JB
2653}
2654
eded0a31 2655static struct type *
38ca4e0c 2656hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2657{
38ca4e0c 2658 if (regnum < HPPA64_FP4_REGNUM)
eded0a31 2659 return builtin_type_uint64;
3ff7cf9e 2660 else
8da61cc4 2661 return builtin_type_ieee_double;
3ff7cf9e
JB
2662}
2663
38ca4e0c
MK
2664/* Return non-zero if REGNUM is not a register available to the user
2665 through ptrace/ttrace. */
d709c020 2666
8d153463 2667static int
38ca4e0c 2668hppa32_cannot_store_register (int regnum)
d709c020
JB
2669{
2670 return (regnum == 0
34f75cc1
RC
2671 || regnum == HPPA_PCSQ_HEAD_REGNUM
2672 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2673 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2674}
d709c020 2675
38ca4e0c
MK
2676static int
2677hppa64_cannot_store_register (int regnum)
2678{
2679 return (regnum == 0
2680 || regnum == HPPA_PCSQ_HEAD_REGNUM
2681 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2682 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2683}
2684
8d153463 2685static CORE_ADDR
d709c020
JB
2686hppa_smash_text_address (CORE_ADDR addr)
2687{
2688 /* The low two bits of the PC on the PA contain the privilege level.
2689 Some genius implementing a (non-GCC) compiler apparently decided
2690 this means that "addresses" in a text section therefore include a
2691 privilege level, and thus symbol tables should contain these bits.
2692 This seems like a bonehead thing to do--anyway, it seems to work
2693 for our purposes to just ignore those bits. */
2694
2695 return (addr &= ~0x3);
2696}
2697
e127f0db
MK
2698/* Get the ARGIth function argument for the current function. */
2699
4a302917 2700static CORE_ADDR
143985b7
AF
2701hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2702 struct type *type)
2703{
e127f0db 2704 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2705}
2706
0f8d9d59
RC
2707static void
2708hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2709 int regnum, gdb_byte *buf)
0f8d9d59
RC
2710{
2711 ULONGEST tmp;
2712
2713 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2714 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59 2715 tmp &= ~0x3;
e127f0db 2716 store_unsigned_integer (buf, sizeof tmp, tmp);
0f8d9d59
RC
2717}
2718
d49771ef
RC
2719static CORE_ADDR
2720hppa_find_global_pointer (struct value *function)
2721{
2722 return 0;
2723}
2724
0da28f8a
RC
2725void
2726hppa_frame_prev_register_helper (struct frame_info *next_frame,
2727 struct trad_frame_saved_reg saved_regs[],
2728 int regnum, int *optimizedp,
2729 enum lval_type *lvalp, CORE_ADDR *addrp,
a7aad9aa 2730 int *realnump, gdb_byte *valuep)
0da28f8a 2731{
8f4e467c
MK
2732 struct gdbarch *arch = get_frame_arch (next_frame);
2733
8693c419
MK
2734 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2735 {
2736 if (valuep)
2737 {
8f4e467c 2738 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
8693c419 2739 CORE_ADDR pc;
0da28f8a 2740
1f67027d
AC
2741 trad_frame_get_prev_register (next_frame, saved_regs,
2742 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2743 lvalp, addrp, realnump, valuep);
8693c419 2744
8f4e467c
MK
2745 pc = extract_unsigned_integer (valuep, size);
2746 store_unsigned_integer (valuep, size, pc + 4);
8693c419
MK
2747 }
2748
2749 /* It's a computed value. */
2750 *optimizedp = 0;
2751 *lvalp = not_lval;
2752 *addrp = 0;
2753 *realnump = -1;
2754 return;
2755 }
0da28f8a 2756
cc72850f
MK
2757 /* Make sure the "flags" register is zero in all unwound frames.
2758 The "flags" registers is a HP-UX specific wart, and only the code
2759 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2760 with it here. This shouldn't affect other systems since those
2761 should provide zero for the "flags" register anyway. */
2762 if (regnum == HPPA_FLAGS_REGNUM)
2763 {
2764 if (valuep)
8f4e467c 2765 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
cc72850f
MK
2766
2767 /* It's a computed value. */
2768 *optimizedp = 0;
2769 *lvalp = not_lval;
2770 *addrp = 0;
2771 *realnump = -1;
2772 return;
2773 }
2774
1f67027d
AC
2775 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2776 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2777}
8693c419 2778\f
0da28f8a 2779
34f55018
MK
2780/* An instruction to match. */
2781struct insn_pattern
2782{
2783 unsigned int data; /* See if it matches this.... */
2784 unsigned int mask; /* ... with this mask. */
2785};
2786
2787/* See bfd/elf32-hppa.c */
2788static struct insn_pattern hppa_long_branch_stub[] = {
2789 /* ldil LR'xxx,%r1 */
2790 { 0x20200000, 0xffe00000 },
2791 /* be,n RR'xxx(%sr4,%r1) */
2792 { 0xe0202002, 0xffe02002 },
2793 { 0, 0 }
2794};
2795
2796static struct insn_pattern hppa_long_branch_pic_stub[] = {
2797 /* b,l .+8, %r1 */
2798 { 0xe8200000, 0xffe00000 },
2799 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2800 { 0x28200000, 0xffe00000 },
2801 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2802 { 0xe0202002, 0xffe02002 },
2803 { 0, 0 }
2804};
2805
2806static struct insn_pattern hppa_import_stub[] = {
2807 /* addil LR'xxx, %dp */
2808 { 0x2b600000, 0xffe00000 },
2809 /* ldw RR'xxx(%r1), %r21 */
2810 { 0x48350000, 0xffffb000 },
2811 /* bv %r0(%r21) */
2812 { 0xeaa0c000, 0xffffffff },
2813 /* ldw RR'xxx+4(%r1), %r19 */
2814 { 0x48330000, 0xffffb000 },
2815 { 0, 0 }
2816};
2817
2818static struct insn_pattern hppa_import_pic_stub[] = {
2819 /* addil LR'xxx,%r19 */
2820 { 0x2a600000, 0xffe00000 },
2821 /* ldw RR'xxx(%r1),%r21 */
2822 { 0x48350000, 0xffffb000 },
2823 /* bv %r0(%r21) */
2824 { 0xeaa0c000, 0xffffffff },
2825 /* ldw RR'xxx+4(%r1),%r19 */
2826 { 0x48330000, 0xffffb000 },
2827 { 0, 0 },
2828};
2829
2830static struct insn_pattern hppa_plt_stub[] = {
2831 /* b,l 1b, %r20 - 1b is 3 insns before here */
2832 { 0xea9f1fdd, 0xffffffff },
2833 /* depi 0,31,2,%r20 */
2834 { 0xd6801c1e, 0xffffffff },
2835 { 0, 0 }
2836};
2837
2838static struct insn_pattern hppa_sigtramp[] = {
2839 /* ldi 0, %r25 or ldi 1, %r25 */
2840 { 0x34190000, 0xfffffffd },
2841 /* ldi __NR_rt_sigreturn, %r20 */
2842 { 0x3414015a, 0xffffffff },
2843 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2844 { 0xe4008200, 0xffffffff },
2845 /* nop */
2846 { 0x08000240, 0xffffffff },
2847 { 0, 0 }
2848};
2849
2850/* Maximum number of instructions on the patterns above. */
2851#define HPPA_MAX_INSN_PATTERN_LEN 4
2852
2853/* Return non-zero if the instructions at PC match the series
2854 described in PATTERN, or zero otherwise. PATTERN is an array of
2855 'struct insn_pattern' objects, terminated by an entry whose mask is
2856 zero.
2857
2858 When the match is successful, fill INSN[i] with what PATTERN[i]
2859 matched. */
2860
2861static int
2862hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2863 unsigned int *insn)
2864{
2865 CORE_ADDR npc = pc;
2866 int i;
2867
2868 for (i = 0; pattern[i].mask; i++)
2869 {
2870 gdb_byte buf[HPPA_INSN_SIZE];
2871
359a9262 2872 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
34f55018
MK
2873 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2874 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2875 npc += 4;
2876 else
2877 return 0;
2878 }
2879
2880 return 1;
2881}
2882
2883/* This relaxed version of the insstruction matcher allows us to match
2884 from somewhere inside the pattern, by looking backwards in the
2885 instruction scheme. */
2886
2887static int
2888hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2889 unsigned int *insn)
2890{
2891 int offset, len = 0;
2892
2893 while (pattern[len].mask)
2894 len++;
2895
2896 for (offset = 0; offset < len; offset++)
2897 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2898 return 1;
2899
2900 return 0;
2901}
2902
2903static int
2904hppa_in_dyncall (CORE_ADDR pc)
2905{
2906 struct unwind_table_entry *u;
2907
2908 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2909 if (!u)
2910 return 0;
2911
2912 return (pc >= u->region_start && pc <= u->region_end);
2913}
2914
2915int
2916hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2917{
2918 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2919 struct unwind_table_entry *u;
2920
2921 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2922 return 1;
2923
2924 /* The GNU toolchain produces linker stubs without unwind
2925 information. Since the pattern matching for linker stubs can be
2926 quite slow, so bail out if we do have an unwind entry. */
2927
2928 u = find_unwind_entry (pc);
806e23c0 2929 if (u != NULL)
34f55018
MK
2930 return 0;
2931
2932 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2933 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2934 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2935 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2936}
2937
2938/* This code skips several kind of "trampolines" used on PA-RISC
2939 systems: $$dyncall, import stubs and PLT stubs. */
2940
2941CORE_ADDR
52f729a7 2942hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018
MK
2943{
2944 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2945 int dp_rel;
2946
2947 /* $$dyncall handles both PLABELs and direct addresses. */
2948 if (hppa_in_dyncall (pc))
2949 {
52f729a7 2950 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2951
2952 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2953 if (pc & 0x2)
2954 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2955
2956 return pc;
2957 }
2958
2959 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2960 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2961 {
2962 /* Extract the target address from the addil/ldw sequence. */
2963 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2964
2965 if (dp_rel)
52f729a7 2966 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2967 else
52f729a7 2968 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2969
2970 /* fallthrough */
2971 }
2972
2973 if (in_plt_section (pc, NULL))
2974 {
2975 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2976
2977 /* If the PLT slot has not yet been resolved, the target will be
2978 the PLT stub. */
2979 if (in_plt_section (pc, NULL))
2980 {
2981 /* Sanity check: are we pointing to the PLT stub? */
2982 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2983 {
2984 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2985 return 0;
2986 }
2987
2988 /* This should point to the fixup routine. */
2989 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2990 }
2991 }
2992
2993 return pc;
2994}
2995\f
2996
8e8b2dba
MC
2997/* Here is a table of C type sizes on hppa with various compiles
2998 and options. I measured this on PA 9000/800 with HP-UX 11.11
2999 and these compilers:
3000
3001 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3002 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3003 /opt/aCC/bin/aCC B3910B A.03.45
3004 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3005
3006 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3007 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3008 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3009 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3010 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3011 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3012 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3013 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3014
3015 Each line is:
3016
3017 compiler and options
3018 char, short, int, long, long long
3019 float, double, long double
3020 char *, void (*)()
3021
3022 So all these compilers use either ILP32 or LP64 model.
3023 TODO: gcc has more options so it needs more investigation.
3024
a2379359
MC
3025 For floating point types, see:
3026
3027 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3028 HP-UX floating-point guide, hpux 11.00
3029
8e8b2dba
MC
3030 -- chastain 2003-12-18 */
3031
e6e68f1f
JB
3032static struct gdbarch *
3033hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3034{
3ff7cf9e 3035 struct gdbarch_tdep *tdep;
e6e68f1f 3036 struct gdbarch *gdbarch;
59623e27
JB
3037
3038 /* Try to determine the ABI of the object we are loading. */
4be87837 3039 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 3040 {
4be87837
DJ
3041 /* If it's a SOM file, assume it's HP/UX SOM. */
3042 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3043 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 3044 }
e6e68f1f
JB
3045
3046 /* find a candidate among the list of pre-declared architectures. */
3047 arches = gdbarch_list_lookup_by_info (arches, &info);
3048 if (arches != NULL)
3049 return (arches->gdbarch);
3050
3051 /* If none found, then allocate and initialize one. */
fdd72f95 3052 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
3053 gdbarch = gdbarch_alloc (&info, tdep);
3054
3055 /* Determine from the bfd_arch_info structure if we are dealing with
3056 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3057 then default to a 32bit machine. */
3058 if (info.bfd_arch_info != NULL)
3059 tdep->bytes_per_address =
3060 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3061 else
3062 tdep->bytes_per_address = 4;
3063
d49771ef
RC
3064 tdep->find_global_pointer = hppa_find_global_pointer;
3065
3ff7cf9e
JB
3066 /* Some parts of the gdbarch vector depend on whether we are running
3067 on a 32 bits or 64 bits target. */
3068 switch (tdep->bytes_per_address)
3069 {
3070 case 4:
3071 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3072 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3073 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3074 set_gdbarch_cannot_store_register (gdbarch,
3075 hppa32_cannot_store_register);
3076 set_gdbarch_cannot_fetch_register (gdbarch,
3077 hppa32_cannot_store_register);
3ff7cf9e
JB
3078 break;
3079 case 8:
3080 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3081 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3082 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5
RC
3083 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3084 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3085 set_gdbarch_cannot_store_register (gdbarch,
3086 hppa64_cannot_store_register);
3087 set_gdbarch_cannot_fetch_register (gdbarch,
3088 hppa64_cannot_store_register);
3ff7cf9e
JB
3089 break;
3090 default:
e2e0b3e5 3091 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3092 tdep->bytes_per_address);
3093 }
3094
3ff7cf9e 3095 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3096 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3097
8e8b2dba
MC
3098 /* The following gdbarch vector elements are the same in both ILP32
3099 and LP64, but might show differences some day. */
3100 set_gdbarch_long_long_bit (gdbarch, 64);
3101 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3102 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3103
3ff7cf9e
JB
3104 /* The following gdbarch vector elements do not depend on the address
3105 size, or in any other gdbarch element previously set. */
60383d10 3106 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
1fb24930
RC
3107 set_gdbarch_in_function_epilogue_p (gdbarch,
3108 hppa_in_function_epilogue_p);
a2a84a72 3109 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3110 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3111 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
b6fbdd1d 3112 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
3113 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3114 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3115 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3116 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3117
143985b7
AF
3118 /* Helper for function argument information. */
3119 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3120
36482093
AC
3121 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3122
3a3bc038
AC
3123 /* When a hardware watchpoint triggers, we'll move the inferior past
3124 it by removing all eventpoints; stepping past the instruction
3125 that caused the trigger; reinserting eventpoints; and checking
3126 whether any watched location changed. */
3127 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3128
5979bc46 3129 /* Inferior function call methods. */
fca7aa43 3130 switch (tdep->bytes_per_address)
5979bc46 3131 {
fca7aa43
AC
3132 case 4:
3133 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3134 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3135 set_gdbarch_convert_from_func_ptr_addr
3136 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3137 break;
3138 case 8:
782eae8b
AC
3139 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3140 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3141 break;
782eae8b 3142 default:
e2e0b3e5 3143 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3144 }
3145
3146 /* Struct return methods. */
fca7aa43 3147 switch (tdep->bytes_per_address)
fad850b2 3148 {
fca7aa43
AC
3149 case 4:
3150 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3151 break;
3152 case 8:
782eae8b 3153 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3154 break;
fca7aa43 3155 default:
e2e0b3e5 3156 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3157 }
7f07c5b6 3158
85f4f2d8 3159 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3160 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3161
5979bc46 3162 /* Frame unwind methods. */
782eae8b
AC
3163 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3164 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3165
50306a9d
RC
3166 /* Hook in ABI-specific overrides, if they have been registered. */
3167 gdbarch_init_osabi (info, gdbarch);
3168
7f07c5b6
RC
3169 /* Hook in the default unwinders. */
3170 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 3171 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 3172 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 3173
e6e68f1f
JB
3174 return gdbarch;
3175}
3176
3177static void
3178hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3179{
fdd72f95
RC
3180 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3181
3182 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3183 tdep->bytes_per_address);
3184 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3185}
3186
4facf7e8
JB
3187void
3188_initialize_hppa_tdep (void)
3189{
3190 struct cmd_list_element *c;
4facf7e8 3191
e6e68f1f 3192 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3193
7c46b9fb
RC
3194 hppa_objfile_priv_data = register_objfile_data ();
3195
4facf7e8 3196 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3197 _("Print unwind table entry at given address."),
4facf7e8
JB
3198 &maintenanceprintlist);
3199
369aa520 3200 /* Debug this files internals. */
7915a72c
AC
3201 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3202Set whether hppa target specific debugging information should be displayed."),
3203 _("\
3204Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3205This flag controls whether hppa target specific debugging information is\n\
3206displayed. This information is particularly useful for debugging frame\n\
7915a72c 3207unwinding problems."),
2c5b56ce 3208 NULL,
7915a72c 3209 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3210 &setdebuglist, &showdebuglist);
4facf7e8 3211}
This page took 0.809274 seconds and 4 git commands to generate.