2005-12-09 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
a7aad9aa
MK
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020 73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
c906108c 74
c906108c
SS
75/* Routines to extract various sized constants out of hppa
76 instructions. */
77
78/* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
abc485a1
RC
81int
82hppa_sign_extend (unsigned val, unsigned bits)
c906108c 83{
c5aa993b 84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
85}
86
87/* For many immediate values the sign bit is the low bit! */
88
abc485a1
RC
89int
90hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 91{
c5aa993b 92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
93}
94
e2ac8128
JB
95/* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
abc485a1
RC
98int
99hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
100{
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102}
103
c906108c
SS
104/* extract the immediate field from a ld{bhw}s instruction */
105
abc485a1
RC
106int
107hppa_extract_5_load (unsigned word)
c906108c 108{
abc485a1 109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
110}
111
c906108c
SS
112/* extract the immediate field from a break instruction */
113
abc485a1
RC
114unsigned
115hppa_extract_5r_store (unsigned word)
c906108c
SS
116{
117 return (word & MASK_5);
118}
119
120/* extract the immediate field from a {sr}sm instruction */
121
abc485a1
RC
122unsigned
123hppa_extract_5R_store (unsigned word)
c906108c
SS
124{
125 return (word >> 16 & MASK_5);
126}
127
c906108c
SS
128/* extract a 14 bit immediate field */
129
abc485a1
RC
130int
131hppa_extract_14 (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
134}
135
c906108c
SS
136/* extract a 21 bit constant */
137
abc485a1
RC
138int
139hppa_extract_21 (unsigned word)
c906108c
SS
140{
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
abc485a1 145 val = hppa_get_field (word, 20, 20);
c906108c 146 val <<= 11;
abc485a1 147 val |= hppa_get_field (word, 9, 19);
c906108c 148 val <<= 2;
abc485a1 149 val |= hppa_get_field (word, 5, 6);
c906108c 150 val <<= 5;
abc485a1 151 val |= hppa_get_field (word, 0, 4);
c906108c 152 val <<= 2;
abc485a1
RC
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
155}
156
c906108c
SS
157/* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
abc485a1
RC
160int
161hppa_extract_17 (unsigned word)
c906108c 162{
abc485a1
RC
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
166 (word & 0x1) << 16, 17) << 2;
167}
3388d7ff
RC
168
169CORE_ADDR
170hppa_symbol_address(const char *sym)
171{
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179}
77d18ded
RC
180
181struct hppa_objfile_private *
182hppa_init_objfile_priv_data (struct objfile *objfile)
183{
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193}
c906108c
SS
194\f
195
196/* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200static int
fba45db2 201compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
202{
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212}
213
53a5351d 214static void
fdd72f95 215record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 216{
fdd72f95 217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
53a5351d
JM
226}
227
c906108c 228static void
fba45db2
KB
229internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
c906108c
SS
232{
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
fdd72f95 235
c906108c
SS
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
fdd72f95 241 CORE_ADDR low_text_segment_address;
c906108c 242
fdd72f95 243 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
fdd72f95 249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 250 {
fdd72f95
RC
251 low_text_segment_address = -1;
252
53a5351d 253 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
53a5351d 256
fdd72f95 257 text_offset = low_text_segment_address;
53a5351d 258 }
acf86d54
RC
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
53a5351d 263
c906108c
SS
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
c5aa993b 267 endian issues. */
c906108c
SS
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 271 (bfd_byte *) buf);
c906108c
SS
272 table[i].region_start += text_offset;
273 buf += 4;
c5aa993b 274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
275 table[i].region_end += text_offset;
276 buf += 4;
c5aa993b 277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved1 = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].Ada_Region = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved2 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
309 table[i].reserved4 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
c5aa993b 312 /* Stub unwinds are handled elsewhere. */
c906108c
SS
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317}
318
319/* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325static void
fba45db2 326read_unwind_info (struct objfile *objfile)
c906108c 327{
d4f3574e
SS
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
c906108c
SS
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
7c46b9fb
RC
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
c906108c
SS
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
c906108c
SS
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
d4f3574e
SS
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
c906108c 348
d4f3574e
SS
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
c906108c 355 {
d4f3574e
SS
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 361
d4f3574e
SS
362 total_entries += unwind_entries;
363 }
c906108c
SS
364 }
365
d4f3574e 366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 367 use stub unwinds at the current time. */
d4f3574e
SS
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
c906108c
SS
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
d4f3574e 382 total_entries += stub_entries;
c906108c
SS
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
8b92e4d5 387 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 388 ui->last = total_entries - 1;
c906108c 389
d4f3574e
SS
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
c906108c 392 index = 0;
d4f3574e
SS
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 432 (bfd_byte *) buf);
c906108c
SS
433 buf += 2;
434 ui->table[index].region_end
c5aa993b
JM
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
77d18ded
RC
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
c906108c
SS
452 obj_private->unwind_info = ui;
453}
454
455/* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460struct unwind_table_entry *
fba45db2 461find_unwind_entry (CORE_ADDR pc)
c906108c
SS
462{
463 int first, middle, last;
464 struct objfile *objfile;
7c46b9fb 465 struct hppa_objfile_private *priv;
c906108c 466
369aa520
RC
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
c906108c
SS
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
369aa520
RC
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
c906108c
SS
478
479 ALL_OBJFILES (objfile)
c5aa993b 480 {
7c46b9fb 481 struct hppa_unwind_info *ui;
c5aa993b 482 ui = NULL;
7c46b9fb
RC
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 486
c5aa993b
JM
487 if (!ui)
488 {
489 read_unwind_info (objfile);
7c46b9fb
RC
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
8a3fe4f8 492 error (_("Internal error reading unwind information."));
7c46b9fb 493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 494 }
c906108c 495
c5aa993b 496 /* First, check the cache */
c906108c 497
c5aa993b
JM
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
369aa520
RC
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
c906108c 507
c5aa993b 508 /* Not in the cache, do a binary search */
c906108c 509
c5aa993b
JM
510 first = 0;
511 last = ui->last;
c906108c 512
c5aa993b
JM
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
369aa520
RC
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
523 return &ui->table[middle];
524 }
c906108c 525
c5aa993b
JM
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
369aa520
RC
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
c906108c
SS
536 return NULL;
537}
538
1fb24930
RC
539/* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544static int
545hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546{
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = deprecated_read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575}
576
85f4f2d8 577static const unsigned char *
aaab4dba
AC
578hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579{
56132691 580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583}
584
e23457df
AC
585/* Return the name of a register. */
586
4a302917 587static const char *
3ff7cf9e 588hppa32_register_name (int i)
e23457df
AC
589{
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628}
629
4a302917 630static const char *
e23457df
AC
631hppa64_register_name (int i)
632{
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663}
664
1ef7fcb5
RC
665static int
666hppa64_dwarf_reg_to_regnum (int reg)
667{
668 /* r0-r31 and sar map one-to-one. */
669 if (reg <= 32)
670 return reg;
671
672 /* fr4-fr31 are mapped from 72 in steps of 2. */
673 if (reg >= 72 || reg < 72 + 28 * 2)
674 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
675
676 error ("Invalid DWARF register num %d.", reg);
677 return -1;
678}
679
79508e1e
AC
680/* This function pushes a stack frame with arguments as part of the
681 inferior function calling mechanism.
682
683 This is the version of the function for the 32-bit PA machines, in
684 which later arguments appear at lower addresses. (The stack always
685 grows towards higher addresses.)
686
687 We simply allocate the appropriate amount of stack space and put
688 arguments into their proper slots. */
689
4a302917 690static CORE_ADDR
7d9b040b 691hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
692 struct regcache *regcache, CORE_ADDR bp_addr,
693 int nargs, struct value **args, CORE_ADDR sp,
694 int struct_return, CORE_ADDR struct_addr)
695{
79508e1e
AC
696 /* Stack base address at which any pass-by-reference parameters are
697 stored. */
698 CORE_ADDR struct_end = 0;
699 /* Stack base address at which the first parameter is stored. */
700 CORE_ADDR param_end = 0;
701
702 /* The inner most end of the stack after all the parameters have
703 been pushed. */
704 CORE_ADDR new_sp = 0;
705
706 /* Two passes. First pass computes the location of everything,
707 second pass writes the bytes out. */
708 int write_pass;
d49771ef
RC
709
710 /* Global pointer (r19) of the function we are trying to call. */
711 CORE_ADDR gp;
712
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
79508e1e
AC
715 for (write_pass = 0; write_pass < 2; write_pass++)
716 {
1797a8f6 717 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
718 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
719 struct_ptr is adjusted for each argument below, so the first
720 argument will end up at sp-36. */
721 CORE_ADDR param_ptr = 32;
79508e1e 722 int i;
2a6228ef
RC
723 int small_struct = 0;
724
79508e1e
AC
725 for (i = 0; i < nargs; i++)
726 {
727 struct value *arg = args[i];
4991999e 728 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
729 /* The corresponding parameter that is pushed onto the
730 stack, and [possibly] passed in a register. */
731 char param_val[8];
732 int param_len;
733 memset (param_val, 0, sizeof param_val);
734 if (TYPE_LENGTH (type) > 8)
735 {
736 /* Large parameter, pass by reference. Store the value
737 in "struct" area and then pass its address. */
738 param_len = 4;
1797a8f6 739 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 740 if (write_pass)
0fd88904 741 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 742 TYPE_LENGTH (type));
1797a8f6 743 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
744 }
745 else if (TYPE_CODE (type) == TYPE_CODE_INT
746 || TYPE_CODE (type) == TYPE_CODE_ENUM)
747 {
748 /* Integer value store, right aligned. "unpack_long"
749 takes care of any sign-extension problems. */
750 param_len = align_up (TYPE_LENGTH (type), 4);
751 store_unsigned_integer (param_val, param_len,
752 unpack_long (type,
0fd88904 753 value_contents (arg)));
79508e1e 754 }
2a6228ef
RC
755 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
756 {
757 /* Floating point value store, right aligned. */
758 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 759 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 760 }
79508e1e
AC
761 else
762 {
79508e1e 763 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
764
765 /* Small struct value are stored right-aligned. */
79508e1e 766 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 767 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
768
769 /* Structures of size 5, 6 and 7 bytes are special in that
770 the higher-ordered word is stored in the lower-ordered
771 argument, and even though it is a 8-byte quantity the
772 registers need not be 8-byte aligned. */
1b07b470 773 if (param_len > 4 && param_len < 8)
2a6228ef 774 small_struct = 1;
79508e1e 775 }
2a6228ef 776
1797a8f6 777 param_ptr += param_len;
2a6228ef
RC
778 if (param_len == 8 && !small_struct)
779 param_ptr = align_up (param_ptr, 8);
780
781 /* First 4 non-FP arguments are passed in gr26-gr23.
782 First 4 32-bit FP arguments are passed in fr4L-fr7L.
783 First 2 64-bit FP arguments are passed in fr5 and fr7.
784
785 The rest go on the stack, starting at sp-36, towards lower
786 addresses. 8-byte arguments must be aligned to a 8-byte
787 stack boundary. */
79508e1e
AC
788 if (write_pass)
789 {
1797a8f6 790 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
791
792 /* There are some cases when we don't know the type
793 expected by the callee (e.g. for variadic functions), so
794 pass the parameters in both general and fp regs. */
795 if (param_ptr <= 48)
79508e1e 796 {
2a6228ef
RC
797 int grreg = 26 - (param_ptr - 36) / 4;
798 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
799 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
800
801 regcache_cooked_write (regcache, grreg, param_val);
802 regcache_cooked_write (regcache, fpLreg, param_val);
803
79508e1e 804 if (param_len > 4)
2a6228ef
RC
805 {
806 regcache_cooked_write (regcache, grreg + 1,
807 param_val + 4);
808
809 regcache_cooked_write (regcache, fpreg, param_val);
810 regcache_cooked_write (regcache, fpreg + 1,
811 param_val + 4);
812 }
79508e1e
AC
813 }
814 }
815 }
816
817 /* Update the various stack pointers. */
818 if (!write_pass)
819 {
2a6228ef 820 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
821 /* PARAM_PTR already accounts for all the arguments passed
822 by the user. However, the ABI mandates minimum stack
823 space allocations for outgoing arguments. The ABI also
824 mandates minimum stack alignments which we must
825 preserve. */
2a6228ef 826 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
827 }
828 }
829
830 /* If a structure has to be returned, set up register 28 to hold its
831 address */
832 if (struct_return)
833 write_register (28, struct_addr);
834
d49771ef
RC
835 gp = tdep->find_global_pointer (function);
836
837 if (gp != 0)
838 write_register (19, gp);
839
79508e1e 840 /* Set the return address. */
77d18ded
RC
841 if (!gdbarch_push_dummy_code_p (gdbarch))
842 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 843
c4557624 844 /* Update the Stack Pointer. */
34f75cc1 845 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 846
2a6228ef 847 return param_end;
79508e1e
AC
848}
849
38ca4e0c
MK
850/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
851 Runtime Architecture for PA-RISC 2.0", which is distributed as part
852 as of the HP-UX Software Transition Kit (STK). This implementation
853 is based on version 3.3, dated October 6, 1997. */
2f690297 854
38ca4e0c 855/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 856
38ca4e0c
MK
857static int
858hppa64_integral_or_pointer_p (const struct type *type)
859{
860 switch (TYPE_CODE (type))
861 {
862 case TYPE_CODE_INT:
863 case TYPE_CODE_BOOL:
864 case TYPE_CODE_CHAR:
865 case TYPE_CODE_ENUM:
866 case TYPE_CODE_RANGE:
867 {
868 int len = TYPE_LENGTH (type);
869 return (len == 1 || len == 2 || len == 4 || len == 8);
870 }
871 case TYPE_CODE_PTR:
872 case TYPE_CODE_REF:
873 return (TYPE_LENGTH (type) == 8);
874 default:
875 break;
876 }
877
878 return 0;
879}
880
881/* Check whether TYPE is a "Floating Scalar Type". */
882
883static int
884hppa64_floating_p (const struct type *type)
885{
886 switch (TYPE_CODE (type))
887 {
888 case TYPE_CODE_FLT:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 4 || len == 8 || len == 16);
892 }
893 default:
894 break;
895 }
896
897 return 0;
898}
2f690297 899
4a302917 900static CORE_ADDR
7d9b040b 901hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
902 struct regcache *regcache, CORE_ADDR bp_addr,
903 int nargs, struct value **args, CORE_ADDR sp,
904 int struct_return, CORE_ADDR struct_addr)
905{
38ca4e0c
MK
906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
907 int i, offset = 0;
908 CORE_ADDR gp;
2f690297 909
38ca4e0c
MK
910 /* "The outgoing parameter area [...] must be aligned at a 16-byte
911 boundary." */
912 sp = align_up (sp, 16);
2f690297 913
38ca4e0c
MK
914 for (i = 0; i < nargs; i++)
915 {
916 struct value *arg = args[i];
917 struct type *type = value_type (arg);
918 int len = TYPE_LENGTH (type);
0fd88904 919 const bfd_byte *valbuf;
38ca4e0c 920 int regnum;
2f690297 921
38ca4e0c
MK
922 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
923 offset = align_up (offset, 8);
77d18ded 924
38ca4e0c 925 if (hppa64_integral_or_pointer_p (type))
2f690297 926 {
38ca4e0c
MK
927 /* "Integral scalar parameters smaller than 64 bits are
928 padded on the left (i.e., the value is in the
929 least-significant bits of the 64-bit storage unit, and
930 the high-order bits are undefined)." Therefore we can
931 safely sign-extend them. */
932 if (len < 8)
449e1137 933 {
38ca4e0c
MK
934 arg = value_cast (builtin_type_int64, arg);
935 len = 8;
936 }
937 }
938 else if (hppa64_floating_p (type))
939 {
940 if (len > 8)
941 {
942 /* "Quad-precision (128-bit) floating-point scalar
943 parameters are aligned on a 16-byte boundary." */
944 offset = align_up (offset, 16);
945
946 /* "Double-extended- and quad-precision floating-point
947 parameters within the first 64 bytes of the parameter
948 list are always passed in general registers." */
449e1137
AC
949 }
950 else
951 {
38ca4e0c 952 if (len == 4)
449e1137 953 {
38ca4e0c
MK
954 /* "Single-precision (32-bit) floating-point scalar
955 parameters are padded on the left with 32 bits of
956 garbage (i.e., the floating-point value is in the
957 least-significant 32 bits of a 64-bit storage
958 unit)." */
959 offset += 4;
449e1137 960 }
38ca4e0c
MK
961
962 /* "Single- and double-precision floating-point
963 parameters in this area are passed according to the
964 available formal parameter information in a function
965 prototype. [...] If no prototype is in scope,
966 floating-point parameters must be passed both in the
967 corresponding general registers and in the
968 corresponding floating-point registers." */
969 regnum = HPPA64_FP4_REGNUM + offset / 8;
970
971 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 972 {
38ca4e0c
MK
973 /* "Single-precision floating-point parameters, when
974 passed in floating-point registers, are passed in
975 the right halves of the floating point registers;
976 the left halves are unused." */
977 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 978 len, value_contents (arg));
449e1137
AC
979 }
980 }
2f690297 981 }
38ca4e0c 982 else
2f690297 983 {
38ca4e0c
MK
984 if (len > 8)
985 {
986 /* "Aggregates larger than 8 bytes are aligned on a
987 16-byte boundary, possibly leaving an unused argument
988 slot, which is filled with garbage. If necessary,
989 they are padded on the right (with garbage), to a
990 multiple of 8 bytes." */
991 offset = align_up (offset, 16);
992 }
993 }
994
995 /* Always store the argument in memory. */
0fd88904 996 write_memory (sp + offset, value_contents (arg), len);
38ca4e0c 997
0fd88904 998 valbuf = value_contents (arg);
38ca4e0c
MK
999 regnum = HPPA_ARG0_REGNUM - offset / 8;
1000 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1001 {
1002 regcache_cooked_write_part (regcache, regnum,
1003 offset % 8, min (len, 8), valbuf);
1004 offset += min (len, 8);
1005 valbuf += min (len, 8);
1006 len -= min (len, 8);
1007 regnum--;
2f690297 1008 }
38ca4e0c
MK
1009
1010 offset += len;
2f690297
AC
1011 }
1012
38ca4e0c
MK
1013 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1014 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1015
1016 /* Allocate the outgoing parameter area. Make sure the outgoing
1017 parameter area is multiple of 16 bytes in length. */
1018 sp += max (align_up (offset, 16), 64);
1019
1020 /* Allocate 32-bytes of scratch space. The documentation doesn't
1021 mention this, but it seems to be needed. */
1022 sp += 32;
1023
1024 /* Allocate the frame marker area. */
1025 sp += 16;
1026
1027 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1028 its address. */
2f690297 1029 if (struct_return)
38ca4e0c 1030 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1031
38ca4e0c 1032 /* Set up GR27 (%dp) to hold the global pointer (gp). */
77d18ded 1033 gp = tdep->find_global_pointer (function);
77d18ded 1034 if (gp != 0)
38ca4e0c 1035 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1036
38ca4e0c 1037 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1038 if (!gdbarch_push_dummy_code_p (gdbarch))
1039 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1040
38ca4e0c
MK
1041 /* Set up GR30 to hold the stack pointer (sp). */
1042 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1043
38ca4e0c 1044 return sp;
2f690297 1045}
38ca4e0c 1046\f
2f690297 1047
08a27113
MK
1048/* Handle 32/64-bit struct return conventions. */
1049
1050static enum return_value_convention
1051hppa32_return_value (struct gdbarch *gdbarch,
1052 struct type *type, struct regcache *regcache,
e127f0db 1053 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1054{
1055 if (TYPE_LENGTH (type) <= 2 * 4)
1056 {
1057 /* The value always lives in the right hand end of the register
1058 (or register pair)? */
1059 int b;
1060 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1061 int part = TYPE_LENGTH (type) % 4;
1062 /* The left hand register contains only part of the value,
1063 transfer that first so that the rest can be xfered as entire
1064 4-byte registers. */
1065 if (part > 0)
1066 {
1067 if (readbuf != NULL)
1068 regcache_cooked_read_part (regcache, reg, 4 - part,
1069 part, readbuf);
1070 if (writebuf != NULL)
1071 regcache_cooked_write_part (regcache, reg, 4 - part,
1072 part, writebuf);
1073 reg++;
1074 }
1075 /* Now transfer the remaining register values. */
1076 for (b = part; b < TYPE_LENGTH (type); b += 4)
1077 {
1078 if (readbuf != NULL)
e127f0db 1079 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1080 if (writebuf != NULL)
e127f0db 1081 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1082 reg++;
1083 }
1084 return RETURN_VALUE_REGISTER_CONVENTION;
1085 }
1086 else
1087 return RETURN_VALUE_STRUCT_CONVENTION;
1088}
1089
1090static enum return_value_convention
1091hppa64_return_value (struct gdbarch *gdbarch,
1092 struct type *type, struct regcache *regcache,
e127f0db 1093 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1094{
1095 int len = TYPE_LENGTH (type);
1096 int regnum, offset;
1097
1098 if (len > 16)
1099 {
1100 /* All return values larget than 128 bits must be aggregate
1101 return values. */
9738b034
MK
1102 gdb_assert (!hppa64_integral_or_pointer_p (type));
1103 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1104
1105 /* "Aggregate return values larger than 128 bits are returned in
1106 a buffer allocated by the caller. The address of the buffer
1107 must be passed in GR 28." */
1108 return RETURN_VALUE_STRUCT_CONVENTION;
1109 }
1110
1111 if (hppa64_integral_or_pointer_p (type))
1112 {
1113 /* "Integral return values are returned in GR 28. Values
1114 smaller than 64 bits are padded on the left (with garbage)." */
1115 regnum = HPPA_RET0_REGNUM;
1116 offset = 8 - len;
1117 }
1118 else if (hppa64_floating_p (type))
1119 {
1120 if (len > 8)
1121 {
1122 /* "Double-extended- and quad-precision floating-point
1123 values are returned in GRs 28 and 29. The sign,
1124 exponent, and most-significant bits of the mantissa are
1125 returned in GR 28; the least-significant bits of the
1126 mantissa are passed in GR 29. For double-extended
1127 precision values, GR 29 is padded on the right with 48
1128 bits of garbage." */
1129 regnum = HPPA_RET0_REGNUM;
1130 offset = 0;
1131 }
1132 else
1133 {
1134 /* "Single-precision and double-precision floating-point
1135 return values are returned in FR 4R (single precision) or
1136 FR 4 (double-precision)." */
1137 regnum = HPPA64_FP4_REGNUM;
1138 offset = 8 - len;
1139 }
1140 }
1141 else
1142 {
1143 /* "Aggregate return values up to 64 bits in size are returned
1144 in GR 28. Aggregates smaller than 64 bits are left aligned
1145 in the register; the pad bits on the right are undefined."
1146
1147 "Aggregate return values between 65 and 128 bits are returned
1148 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1149 the remaining bits are placed, left aligned, in GR 29. The
1150 pad bits on the right of GR 29 (if any) are undefined." */
1151 regnum = HPPA_RET0_REGNUM;
1152 offset = 0;
1153 }
1154
1155 if (readbuf)
1156 {
08a27113
MK
1157 while (len > 0)
1158 {
1159 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1160 min (len, 8), readbuf);
1161 readbuf += min (len, 8);
08a27113
MK
1162 len -= min (len, 8);
1163 regnum++;
1164 }
1165 }
1166
1167 if (writebuf)
1168 {
08a27113
MK
1169 while (len > 0)
1170 {
1171 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1172 min (len, 8), writebuf);
1173 writebuf += min (len, 8);
08a27113
MK
1174 len -= min (len, 8);
1175 regnum++;
1176 }
1177 }
1178
1179 return RETURN_VALUE_REGISTER_CONVENTION;
1180}
1181\f
1182
d49771ef 1183static CORE_ADDR
a7aad9aa 1184hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1185 struct target_ops *targ)
1186{
1187 if (addr & 2)
1188 {
a7aad9aa
MK
1189 CORE_ADDR plabel = addr & ~3;
1190 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
d49771ef
RC
1191 }
1192
1193 return addr;
1194}
1195
1797a8f6
AC
1196static CORE_ADDR
1197hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1198{
1199 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1200 and not _bit_)! */
1201 return align_up (addr, 64);
1202}
1203
2f690297
AC
1204/* Force all frames to 16-byte alignment. Better safe than sorry. */
1205
1206static CORE_ADDR
1797a8f6 1207hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1208{
1209 /* Just always 16-byte align. */
1210 return align_up (addr, 16);
1211}
1212
cc72850f
MK
1213CORE_ADDR
1214hppa_read_pc (ptid_t ptid)
c906108c 1215{
cc72850f 1216 ULONGEST ipsw;
fe46cd3a 1217 CORE_ADDR pc;
c906108c 1218
cc72850f
MK
1219 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1220 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
fe46cd3a
RC
1221
1222 /* If the current instruction is nullified, then we are effectively
1223 still executing the previous instruction. Pretend we are still
cc72850f
MK
1224 there. This is needed when single stepping; if the nullified
1225 instruction is on a different line, we don't want GDB to think
1226 we've stepped onto that line. */
fe46cd3a
RC
1227 if (ipsw & 0x00200000)
1228 pc -= 4;
1229
cc72850f 1230 return pc & ~0x3;
c906108c
SS
1231}
1232
cc72850f
MK
1233void
1234hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
c906108c 1235{
cc72850f
MK
1236 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1237 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
c906108c
SS
1238}
1239
1240/* return the alignment of a type in bytes. Structures have the maximum
1241 alignment required by their fields. */
1242
1243static int
fba45db2 1244hppa_alignof (struct type *type)
c906108c
SS
1245{
1246 int max_align, align, i;
1247 CHECK_TYPEDEF (type);
1248 switch (TYPE_CODE (type))
1249 {
1250 case TYPE_CODE_PTR:
1251 case TYPE_CODE_INT:
1252 case TYPE_CODE_FLT:
1253 return TYPE_LENGTH (type);
1254 case TYPE_CODE_ARRAY:
1255 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1256 case TYPE_CODE_STRUCT:
1257 case TYPE_CODE_UNION:
1258 max_align = 1;
1259 for (i = 0; i < TYPE_NFIELDS (type); i++)
1260 {
1261 /* Bit fields have no real alignment. */
1262 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1263 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1264 {
1265 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1266 max_align = max (max_align, align);
1267 }
1268 }
1269 return max_align;
1270 default:
1271 return 4;
1272 }
1273}
1274
c906108c
SS
1275/* For the given instruction (INST), return any adjustment it makes
1276 to the stack pointer or zero for no adjustment.
1277
1278 This only handles instructions commonly found in prologues. */
1279
1280static int
fba45db2 1281prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1282{
1283 /* This must persist across calls. */
1284 static int save_high21;
1285
1286 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1287 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1288 return hppa_extract_14 (inst);
c906108c
SS
1289
1290 /* stwm X,D(sp) */
1291 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1292 return hppa_extract_14 (inst);
c906108c 1293
104c1213
JM
1294 /* std,ma X,D(sp) */
1295 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1296 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1297
e22b26cb 1298 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1299 save high bits in save_high21 for later use. */
e22b26cb 1300 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1301 {
abc485a1 1302 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1303 return 0;
1304 }
1305
1306 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1307 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1308
1309 /* fstws as used by the HP compilers. */
1310 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1311 return hppa_extract_5_load (inst);
c906108c
SS
1312
1313 /* No adjustment. */
1314 return 0;
1315}
1316
1317/* Return nonzero if INST is a branch of some kind, else return zero. */
1318
1319static int
fba45db2 1320is_branch (unsigned long inst)
c906108c
SS
1321{
1322 switch (inst >> 26)
1323 {
1324 case 0x20:
1325 case 0x21:
1326 case 0x22:
1327 case 0x23:
7be570e7 1328 case 0x27:
c906108c
SS
1329 case 0x28:
1330 case 0x29:
1331 case 0x2a:
1332 case 0x2b:
7be570e7 1333 case 0x2f:
c906108c
SS
1334 case 0x30:
1335 case 0x31:
1336 case 0x32:
1337 case 0x33:
1338 case 0x38:
1339 case 0x39:
1340 case 0x3a:
7be570e7 1341 case 0x3b:
c906108c
SS
1342 return 1;
1343
1344 default:
1345 return 0;
1346 }
1347}
1348
1349/* Return the register number for a GR which is saved by INST or
1350 zero it INST does not save a GR. */
1351
1352static int
fba45db2 1353inst_saves_gr (unsigned long inst)
c906108c
SS
1354{
1355 /* Does it look like a stw? */
7be570e7
JM
1356 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1357 || (inst >> 26) == 0x1f
1358 || ((inst >> 26) == 0x1f
1359 && ((inst >> 6) == 0xa)))
abc485a1 1360 return hppa_extract_5R_store (inst);
7be570e7
JM
1361
1362 /* Does it look like a std? */
1363 if ((inst >> 26) == 0x1c
1364 || ((inst >> 26) == 0x03
1365 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1366 return hppa_extract_5R_store (inst);
c906108c
SS
1367
1368 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1369 if ((inst >> 26) == 0x1b)
abc485a1 1370 return hppa_extract_5R_store (inst);
c906108c
SS
1371
1372 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1373 too. */
7be570e7
JM
1374 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1375 || ((inst >> 26) == 0x3
1376 && (((inst >> 6) & 0xf) == 0x8
1377 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1378 return hppa_extract_5R_store (inst);
c5aa993b 1379
c906108c
SS
1380 return 0;
1381}
1382
1383/* Return the register number for a FR which is saved by INST or
1384 zero it INST does not save a FR.
1385
1386 Note we only care about full 64bit register stores (that's the only
1387 kind of stores the prologue will use).
1388
1389 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1390
1391static int
fba45db2 1392inst_saves_fr (unsigned long inst)
c906108c 1393{
7be570e7 1394 /* is this an FSTD ? */
c906108c 1395 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1396 return hppa_extract_5r_store (inst);
7be570e7 1397 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1398 return hppa_extract_5R_store (inst);
7be570e7 1399 /* is this an FSTW ? */
c906108c 1400 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1401 return hppa_extract_5r_store (inst);
7be570e7 1402 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1403 return hppa_extract_5R_store (inst);
c906108c
SS
1404 return 0;
1405}
1406
1407/* Advance PC across any function entry prologue instructions
1408 to reach some "real" code.
1409
1410 Use information in the unwind table to determine what exactly should
1411 be in the prologue. */
1412
1413
a71f8c30
RC
1414static CORE_ADDR
1415skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1416{
1417 char buf[4];
1418 CORE_ADDR orig_pc = pc;
1419 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1420 unsigned long args_stored, status, i, restart_gr, restart_fr;
1421 struct unwind_table_entry *u;
a71f8c30 1422 int final_iteration;
c906108c
SS
1423
1424 restart_gr = 0;
1425 restart_fr = 0;
1426
1427restart:
1428 u = find_unwind_entry (pc);
1429 if (!u)
1430 return pc;
1431
c5aa993b 1432 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1433 if ((pc & ~0x3) != u->region_start)
1434 return pc;
1435
1436 /* This is how much of a frame adjustment we need to account for. */
1437 stack_remaining = u->Total_frame_size << 3;
1438
1439 /* Magic register saves we want to know about. */
1440 save_rp = u->Save_RP;
1441 save_sp = u->Save_SP;
1442
1443 /* An indication that args may be stored into the stack. Unfortunately
1444 the HPUX compilers tend to set this in cases where no args were
1445 stored too!. */
1446 args_stored = 1;
1447
1448 /* Turn the Entry_GR field into a bitmask. */
1449 save_gr = 0;
1450 for (i = 3; i < u->Entry_GR + 3; i++)
1451 {
1452 /* Frame pointer gets saved into a special location. */
eded0a31 1453 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1454 continue;
1455
1456 save_gr |= (1 << i);
1457 }
1458 save_gr &= ~restart_gr;
1459
1460 /* Turn the Entry_FR field into a bitmask too. */
1461 save_fr = 0;
1462 for (i = 12; i < u->Entry_FR + 12; i++)
1463 save_fr |= (1 << i);
1464 save_fr &= ~restart_fr;
1465
a71f8c30
RC
1466 final_iteration = 0;
1467
c906108c
SS
1468 /* Loop until we find everything of interest or hit a branch.
1469
1470 For unoptimized GCC code and for any HP CC code this will never ever
1471 examine any user instructions.
1472
1473 For optimzied GCC code we're faced with problems. GCC will schedule
1474 its prologue and make prologue instructions available for delay slot
1475 filling. The end result is user code gets mixed in with the prologue
1476 and a prologue instruction may be in the delay slot of the first branch
1477 or call.
1478
1479 Some unexpected things are expected with debugging optimized code, so
1480 we allow this routine to walk past user instructions in optimized
1481 GCC code. */
1482 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1483 || args_stored)
1484 {
1485 unsigned int reg_num;
1486 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1487 unsigned long old_save_rp, old_save_sp, next_inst;
1488
1489 /* Save copies of all the triggers so we can compare them later
c5aa993b 1490 (only for HPC). */
c906108c
SS
1491 old_save_gr = save_gr;
1492 old_save_fr = save_fr;
1493 old_save_rp = save_rp;
1494 old_save_sp = save_sp;
1495 old_stack_remaining = stack_remaining;
1496
1f602b35 1497 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1498 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1499
c906108c
SS
1500 /* Yow! */
1501 if (status != 0)
1502 return pc;
1503
1504 /* Note the interesting effects of this instruction. */
1505 stack_remaining -= prologue_inst_adjust_sp (inst);
1506
7be570e7
JM
1507 /* There are limited ways to store the return pointer into the
1508 stack. */
c4c79048 1509 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1510 save_rp = 0;
1511
104c1213 1512 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1513 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1514 if ((inst & 0xffffc000) == 0x6fc10000
1515 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1516 save_sp = 0;
1517
6426a772
JM
1518 /* Are we loading some register with an offset from the argument
1519 pointer? */
1520 if ((inst & 0xffe00000) == 0x37a00000
1521 || (inst & 0xffffffe0) == 0x081d0240)
1522 {
1523 pc += 4;
1524 continue;
1525 }
1526
c906108c
SS
1527 /* Account for general and floating-point register saves. */
1528 reg_num = inst_saves_gr (inst);
1529 save_gr &= ~(1 << reg_num);
1530
1531 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1532 Unfortunately args_stored only tells us that some arguments
1533 where stored into the stack. Not how many or what kind!
c906108c 1534
c5aa993b
JM
1535 This is a kludge as on the HP compiler sets this bit and it
1536 never does prologue scheduling. So once we see one, skip past
1537 all of them. We have similar code for the fp arg stores below.
c906108c 1538
c5aa993b
JM
1539 FIXME. Can still die if we have a mix of GR and FR argument
1540 stores! */
6426a772 1541 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1542 {
6426a772 1543 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1544 {
1545 pc += 4;
1f602b35 1546 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1547 inst = extract_unsigned_integer (buf, 4);
1548 if (status != 0)
1549 return pc;
1550 reg_num = inst_saves_gr (inst);
1551 }
1552 args_stored = 0;
1553 continue;
1554 }
1555
1556 reg_num = inst_saves_fr (inst);
1557 save_fr &= ~(1 << reg_num);
1558
1f602b35 1559 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1560 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1561
c906108c
SS
1562 /* Yow! */
1563 if (status != 0)
1564 return pc;
1565
1566 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1567 save. */
c906108c
SS
1568 if ((inst & 0xfc000000) == 0x34000000
1569 && inst_saves_fr (next_inst) >= 4
6426a772 1570 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1571 {
1572 /* So we drop into the code below in a reasonable state. */
1573 reg_num = inst_saves_fr (next_inst);
1574 pc -= 4;
1575 }
1576
1577 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1578 This is a kludge as on the HP compiler sets this bit and it
1579 never does prologue scheduling. So once we see one, skip past
1580 all of them. */
6426a772 1581 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1582 {
6426a772 1583 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1584 {
1585 pc += 8;
1f602b35 1586 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1587 inst = extract_unsigned_integer (buf, 4);
1588 if (status != 0)
1589 return pc;
1590 if ((inst & 0xfc000000) != 0x34000000)
1591 break;
1f602b35 1592 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1593 next_inst = extract_unsigned_integer (buf, 4);
1594 if (status != 0)
1595 return pc;
1596 reg_num = inst_saves_fr (next_inst);
1597 }
1598 args_stored = 0;
1599 continue;
1600 }
1601
1602 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1603 instruction is in the delay slot of the first call/branch. */
a71f8c30 1604 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1605 break;
1606
1607 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1608 arguments were stored into the stack (boo hiss). This could
1609 cause this code to then skip a bunch of user insns (up to the
1610 first branch).
1611
1612 To combat this we try to identify when args_stored was bogusly
1613 set and clear it. We only do this when args_stored is nonzero,
1614 all other resources are accounted for, and nothing changed on
1615 this pass. */
c906108c 1616 if (args_stored
c5aa993b 1617 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1618 && old_save_gr == save_gr && old_save_fr == save_fr
1619 && old_save_rp == save_rp && old_save_sp == save_sp
1620 && old_stack_remaining == stack_remaining)
1621 break;
c5aa993b 1622
c906108c
SS
1623 /* Bump the PC. */
1624 pc += 4;
a71f8c30
RC
1625
1626 /* !stop_before_branch, so also look at the insn in the delay slot
1627 of the branch. */
1628 if (final_iteration)
1629 break;
1630 if (is_branch (inst))
1631 final_iteration = 1;
c906108c
SS
1632 }
1633
1634 /* We've got a tenative location for the end of the prologue. However
1635 because of limitations in the unwind descriptor mechanism we may
1636 have went too far into user code looking for the save of a register
1637 that does not exist. So, if there registers we expected to be saved
1638 but never were, mask them out and restart.
1639
1640 This should only happen in optimized code, and should be very rare. */
c5aa993b 1641 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1642 {
1643 pc = orig_pc;
1644 restart_gr = save_gr;
1645 restart_fr = save_fr;
1646 goto restart;
1647 }
1648
1649 return pc;
1650}
1651
1652
7be570e7
JM
1653/* Return the address of the PC after the last prologue instruction if
1654 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1655
1656static CORE_ADDR
fba45db2 1657after_prologue (CORE_ADDR pc)
c906108c
SS
1658{
1659 struct symtab_and_line sal;
1660 CORE_ADDR func_addr, func_end;
1661 struct symbol *f;
1662
7be570e7
JM
1663 /* If we can not find the symbol in the partial symbol table, then
1664 there is no hope we can determine the function's start address
1665 with this code. */
c906108c 1666 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1667 return 0;
c906108c 1668
7be570e7 1669 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1670 sal = find_pc_line (func_addr, 0);
1671
7be570e7
JM
1672 /* There are only two cases to consider. First, the end of the source line
1673 is within the function bounds. In that case we return the end of the
1674 source line. Second is the end of the source line extends beyond the
1675 bounds of the current function. We need to use the slow code to
1676 examine instructions in that case.
c906108c 1677
7be570e7
JM
1678 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1679 the wrong thing to do. In fact, it should be entirely possible for this
1680 function to always return zero since the slow instruction scanning code
1681 is supposed to *always* work. If it does not, then it is a bug. */
1682 if (sal.end < func_end)
1683 return sal.end;
c5aa993b 1684 else
7be570e7 1685 return 0;
c906108c
SS
1686}
1687
1688/* To skip prologues, I use this predicate. Returns either PC itself
1689 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1690 returns an address that (if we're lucky) follows the prologue.
1691
1692 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1693 It doesn't necessarily skips all the insns in the prologue. In fact
1694 we might not want to skip all the insns because a prologue insn may
1695 appear in the delay slot of the first branch, and we don't want to
1696 skip over the branch in that case. */
c906108c 1697
8d153463 1698static CORE_ADDR
fba45db2 1699hppa_skip_prologue (CORE_ADDR pc)
c906108c 1700{
c5aa993b
JM
1701 unsigned long inst;
1702 int offset;
1703 CORE_ADDR post_prologue_pc;
1704 char buf[4];
c906108c 1705
c5aa993b
JM
1706 /* See if we can determine the end of the prologue via the symbol table.
1707 If so, then return either PC, or the PC after the prologue, whichever
1708 is greater. */
c906108c 1709
c5aa993b 1710 post_prologue_pc = after_prologue (pc);
c906108c 1711
7be570e7
JM
1712 /* If after_prologue returned a useful address, then use it. Else
1713 fall back on the instruction skipping code.
1714
1715 Some folks have claimed this causes problems because the breakpoint
1716 may be the first instruction of the prologue. If that happens, then
1717 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1718 if (post_prologue_pc != 0)
1719 return max (pc, post_prologue_pc);
c5aa993b 1720 else
a71f8c30 1721 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1722}
1723
26d08f08
AC
1724struct hppa_frame_cache
1725{
1726 CORE_ADDR base;
1727 struct trad_frame_saved_reg *saved_regs;
1728};
1729
1730static struct hppa_frame_cache *
1731hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1732{
1733 struct hppa_frame_cache *cache;
1734 long saved_gr_mask;
1735 long saved_fr_mask;
1736 CORE_ADDR this_sp;
1737 long frame_size;
1738 struct unwind_table_entry *u;
9f7194c3 1739 CORE_ADDR prologue_end;
50b2f48a 1740 int fp_in_r1 = 0;
26d08f08
AC
1741 int i;
1742
369aa520
RC
1743 if (hppa_debug)
1744 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1745 frame_relative_level(next_frame));
1746
26d08f08 1747 if ((*this_cache) != NULL)
369aa520
RC
1748 {
1749 if (hppa_debug)
1750 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1751 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1752 return (*this_cache);
1753 }
26d08f08
AC
1754 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1755 (*this_cache) = cache;
1756 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1757
1758 /* Yow! */
d5c27f81 1759 u = find_unwind_entry (frame_pc_unwind (next_frame));
26d08f08 1760 if (!u)
369aa520
RC
1761 {
1762 if (hppa_debug)
1763 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1764 return (*this_cache);
1765 }
26d08f08
AC
1766
1767 /* Turn the Entry_GR field into a bitmask. */
1768 saved_gr_mask = 0;
1769 for (i = 3; i < u->Entry_GR + 3; i++)
1770 {
1771 /* Frame pointer gets saved into a special location. */
eded0a31 1772 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1773 continue;
1774
1775 saved_gr_mask |= (1 << i);
1776 }
1777
1778 /* Turn the Entry_FR field into a bitmask too. */
1779 saved_fr_mask = 0;
1780 for (i = 12; i < u->Entry_FR + 12; i++)
1781 saved_fr_mask |= (1 << i);
1782
1783 /* Loop until we find everything of interest or hit a branch.
1784
1785 For unoptimized GCC code and for any HP CC code this will never ever
1786 examine any user instructions.
1787
1788 For optimized GCC code we're faced with problems. GCC will schedule
1789 its prologue and make prologue instructions available for delay slot
1790 filling. The end result is user code gets mixed in with the prologue
1791 and a prologue instruction may be in the delay slot of the first branch
1792 or call.
1793
1794 Some unexpected things are expected with debugging optimized code, so
1795 we allow this routine to walk past user instructions in optimized
1796 GCC code. */
1797 {
1798 int final_iteration = 0;
9f7194c3 1799 CORE_ADDR pc, end_pc;
26d08f08
AC
1800 int looking_for_sp = u->Save_SP;
1801 int looking_for_rp = u->Save_RP;
1802 int fp_loc = -1;
9f7194c3 1803
a71f8c30 1804 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1805 skip_prologue_using_sal, in case we stepped into a function without
1806 symbol information. hppa_skip_prologue also bounds the returned
1807 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1808 function.
1809
1810 We used to call hppa_skip_prologue to find the end of the prologue,
1811 but if some non-prologue instructions get scheduled into the prologue,
1812 and the program is compiled with debug information, the "easy" way
1813 in hppa_skip_prologue will return a prologue end that is too early
1814 for us to notice any potential frame adjustments. */
d5c27f81
RC
1815
1816 /* We used to use frame_func_unwind () to locate the beginning of the
1817 function to pass to skip_prologue (). However, when objects are
1818 compiled without debug symbols, frame_func_unwind can return the wrong
1819 function (or 0). We can do better than that by using unwind records. */
1820
a71f8c30 1821 prologue_end = skip_prologue_hard_way (u->region_start, 0);
9f7194c3
RC
1822 end_pc = frame_pc_unwind (next_frame);
1823
1824 if (prologue_end != 0 && end_pc > prologue_end)
1825 end_pc = prologue_end;
1826
26d08f08 1827 frame_size = 0;
9f7194c3 1828
d5c27f81 1829 for (pc = u->region_start;
26d08f08
AC
1830 ((saved_gr_mask || saved_fr_mask
1831 || looking_for_sp || looking_for_rp
1832 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1833 && pc < end_pc);
26d08f08
AC
1834 pc += 4)
1835 {
1836 int reg;
1837 char buf4[4];
4a302917
RC
1838 long inst;
1839
1840 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1841 sizeof buf4))
1842 {
8a3fe4f8 1843 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
4a302917
RC
1844 return (*this_cache);
1845 }
1846
1847 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1848
26d08f08
AC
1849 /* Note the interesting effects of this instruction. */
1850 frame_size += prologue_inst_adjust_sp (inst);
1851
1852 /* There are limited ways to store the return pointer into the
1853 stack. */
1854 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1855 {
1856 looking_for_rp = 0;
34f75cc1 1857 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1858 }
dfaf8edb
MK
1859 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1860 {
1861 looking_for_rp = 0;
1862 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1863 }
c4c79048
RC
1864 else if (inst == 0x0fc212c1
1865 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
1866 {
1867 looking_for_rp = 0;
34f75cc1 1868 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1869 }
1870
1871 /* Check to see if we saved SP into the stack. This also
1872 happens to indicate the location of the saved frame
1873 pointer. */
1874 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1875 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1876 {
1877 looking_for_sp = 0;
eded0a31 1878 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1879 }
50b2f48a
RC
1880 else if (inst == 0x08030241) /* copy %r3, %r1 */
1881 {
1882 fp_in_r1 = 1;
1883 }
26d08f08
AC
1884
1885 /* Account for general and floating-point register saves. */
1886 reg = inst_saves_gr (inst);
1887 if (reg >= 3 && reg <= 18
eded0a31 1888 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1889 {
1890 saved_gr_mask &= ~(1 << reg);
abc485a1 1891 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1892 /* stwm with a positive displacement is a _post_
1893 _modify_. */
1894 cache->saved_regs[reg].addr = 0;
1895 else if ((inst & 0xfc00000c) == 0x70000008)
1896 /* A std has explicit post_modify forms. */
1897 cache->saved_regs[reg].addr = 0;
1898 else
1899 {
1900 CORE_ADDR offset;
1901
1902 if ((inst >> 26) == 0x1c)
1903 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1904 else if ((inst >> 26) == 0x03)
abc485a1 1905 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1906 else
abc485a1 1907 offset = hppa_extract_14 (inst);
26d08f08
AC
1908
1909 /* Handle code with and without frame pointers. */
1910 if (u->Save_SP)
1911 cache->saved_regs[reg].addr = offset;
1912 else
1913 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1914 }
1915 }
1916
1917 /* GCC handles callee saved FP regs a little differently.
1918
1919 It emits an instruction to put the value of the start of
1920 the FP store area into %r1. It then uses fstds,ma with a
1921 basereg of %r1 for the stores.
1922
1923 HP CC emits them at the current stack pointer modifying the
1924 stack pointer as it stores each register. */
1925
1926 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1927 if ((inst & 0xffffc000) == 0x34610000
1928 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1929 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1930
1931 reg = inst_saves_fr (inst);
1932 if (reg >= 12 && reg <= 21)
1933 {
1934 /* Note +4 braindamage below is necessary because the FP
1935 status registers are internally 8 registers rather than
1936 the expected 4 registers. */
1937 saved_fr_mask &= ~(1 << reg);
1938 if (fp_loc == -1)
1939 {
1940 /* 1st HP CC FP register store. After this
1941 instruction we've set enough state that the GCC and
1942 HPCC code are both handled in the same manner. */
34f75cc1 1943 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1944 fp_loc = 8;
1945 }
1946 else
1947 {
eded0a31 1948 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1949 fp_loc += 8;
1950 }
1951 }
1952
1953 /* Quit if we hit any kind of branch the previous iteration. */
1954 if (final_iteration)
1955 break;
1956 /* We want to look precisely one instruction beyond the branch
1957 if we have not found everything yet. */
1958 if (is_branch (inst))
1959 final_iteration = 1;
1960 }
1961 }
1962
1963 {
1964 /* The frame base always represents the value of %sp at entry to
1965 the current function (and is thus equivalent to the "saved"
1966 stack pointer. */
eded0a31 1967 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 1968 CORE_ADDR fp;
9f7194c3
RC
1969
1970 if (hppa_debug)
1971 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1972 "prologue_end=0x%s) ",
1973 paddr_nz (this_sp),
1974 paddr_nz (frame_pc_unwind (next_frame)),
1975 paddr_nz (prologue_end));
1976
ed70ba00
RC
1977 /* Check to see if a frame pointer is available, and use it for
1978 frame unwinding if it is.
1979
1980 There are some situations where we need to rely on the frame
1981 pointer to do stack unwinding. For example, if a function calls
1982 alloca (), the stack pointer can get adjusted inside the body of
1983 the function. In this case, the ABI requires that the compiler
1984 maintain a frame pointer for the function.
1985
1986 The unwind record has a flag (alloca_frame) that indicates that
1987 a function has a variable frame; unfortunately, gcc/binutils
1988 does not set this flag. Instead, whenever a frame pointer is used
1989 and saved on the stack, the Save_SP flag is set. We use this to
1990 decide whether to use the frame pointer for unwinding.
1991
ed70ba00
RC
1992 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1993 instead of Save_SP. */
1994
1995 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1996
1997 if (frame_pc_unwind (next_frame) >= prologue_end
1998 && u->Save_SP && fp != 0)
1999 {
2000 cache->base = fp;
2001
2002 if (hppa_debug)
9ed5ba24 2003 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
ed70ba00
RC
2004 paddr_nz (cache->base));
2005 }
1658da49
RC
2006 else if (u->Save_SP
2007 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2008 {
9f7194c3
RC
2009 /* Both we're expecting the SP to be saved and the SP has been
2010 saved. The entry SP value is saved at this frame's SP
2011 address. */
2012 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2013
2014 if (hppa_debug)
9ed5ba24 2015 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
9f7194c3 2016 paddr_nz (cache->base));
9f7194c3 2017 }
26d08f08 2018 else
9f7194c3 2019 {
1658da49
RC
2020 /* The prologue has been slowly allocating stack space. Adjust
2021 the SP back. */
2022 cache->base = this_sp - frame_size;
9f7194c3 2023 if (hppa_debug)
9ed5ba24 2024 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
9f7194c3
RC
2025 paddr_nz (cache->base));
2026
2027 }
eded0a31 2028 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2029 }
2030
412275d5
AC
2031 /* The PC is found in the "return register", "Millicode" uses "r31"
2032 as the return register while normal code uses "rp". */
26d08f08 2033 if (u->Millicode)
9f7194c3 2034 {
5859efe5 2035 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2036 {
2037 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2038 if (hppa_debug)
2039 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2040 }
9f7194c3
RC
2041 else
2042 {
2043 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 2044 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2045 if (hppa_debug)
2046 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2047 }
2048 }
26d08f08 2049 else
9f7194c3 2050 {
34f75cc1 2051 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2052 {
2053 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2054 cache->saved_regs[HPPA_RP_REGNUM];
2055 if (hppa_debug)
2056 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2057 }
9f7194c3
RC
2058 else
2059 {
34f75cc1
RC
2060 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2061 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2062 if (hppa_debug)
2063 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2064 }
2065 }
26d08f08 2066
50b2f48a
RC
2067 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2068 frame. However, there is a one-insn window where we haven't saved it
2069 yet, but we've already clobbered it. Detect this case and fix it up.
2070
2071 The prologue sequence for frame-pointer functions is:
2072 0: stw %rp, -20(%sp)
2073 4: copy %r3, %r1
2074 8: copy %sp, %r3
2075 c: stw,ma %r1, XX(%sp)
2076
2077 So if we are at offset c, the r3 value that we want is not yet saved
2078 on the stack, but it's been overwritten. The prologue analyzer will
2079 set fp_in_r1 when it sees the copy insn so we know to get the value
2080 from r1 instead. */
2081 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2082 && fp_in_r1)
2083 {
2084 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2085 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2086 }
1658da49 2087
26d08f08
AC
2088 {
2089 /* Convert all the offsets into addresses. */
2090 int reg;
2091 for (reg = 0; reg < NUM_REGS; reg++)
2092 {
2093 if (trad_frame_addr_p (cache->saved_regs, reg))
2094 cache->saved_regs[reg].addr += cache->base;
2095 }
2096 }
2097
f77a2124
RC
2098 {
2099 struct gdbarch *gdbarch;
2100 struct gdbarch_tdep *tdep;
2101
2102 gdbarch = get_frame_arch (next_frame);
2103 tdep = gdbarch_tdep (gdbarch);
2104
2105 if (tdep->unwind_adjust_stub)
2106 {
2107 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2108 }
2109 }
2110
369aa520
RC
2111 if (hppa_debug)
2112 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2113 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2114 return (*this_cache);
2115}
2116
2117static void
2118hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2119 struct frame_id *this_id)
2120{
d5c27f81
RC
2121 struct hppa_frame_cache *info;
2122 CORE_ADDR pc = frame_pc_unwind (next_frame);
2123 struct unwind_table_entry *u;
2124
2125 info = hppa_frame_cache (next_frame, this_cache);
2126 u = find_unwind_entry (pc);
2127
2128 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2129}
2130
2131static void
2132hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
2133 void **this_cache,
2134 int regnum, int *optimizedp,
2135 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2136 int *realnump, gdb_byte *valuep)
26d08f08
AC
2137{
2138 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
2139 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2140 optimizedp, lvalp, addrp, realnump, valuep);
2141}
2142
2143static const struct frame_unwind hppa_frame_unwind =
2144{
2145 NORMAL_FRAME,
2146 hppa_frame_this_id,
2147 hppa_frame_prev_register
2148};
2149
2150static const struct frame_unwind *
2151hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2152{
2153 CORE_ADDR pc = frame_pc_unwind (next_frame);
2154
2155 if (find_unwind_entry (pc))
2156 return &hppa_frame_unwind;
2157
2158 return NULL;
2159}
2160
2161/* This is a generic fallback frame unwinder that kicks in if we fail all
2162 the other ones. Normally we would expect the stub and regular unwinder
2163 to work, but in some cases we might hit a function that just doesn't
2164 have any unwind information available. In this case we try to do
2165 unwinding solely based on code reading. This is obviously going to be
2166 slow, so only use this as a last resort. Currently this will only
2167 identify the stack and pc for the frame. */
2168
2169static struct hppa_frame_cache *
2170hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2171{
2172 struct hppa_frame_cache *cache;
4ba6a975
MK
2173 unsigned int frame_size = 0;
2174 int found_rp = 0;
2175 CORE_ADDR start_pc;
0da28f8a 2176
d5c27f81 2177 if (hppa_debug)
4ba6a975
MK
2178 fprintf_unfiltered (gdb_stdlog,
2179 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2180 frame_relative_level (next_frame));
d5c27f81 2181
0da28f8a
RC
2182 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2183 (*this_cache) = cache;
2184 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2185
4ba6a975
MK
2186 start_pc = frame_func_unwind (next_frame);
2187 if (start_pc)
0da28f8a 2188 {
4ba6a975
MK
2189 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2190 CORE_ADDR pc;
0da28f8a 2191
4ba6a975
MK
2192 for (pc = start_pc; pc < cur_pc; pc += 4)
2193 {
2194 unsigned int insn;
0da28f8a 2195
4ba6a975
MK
2196 insn = read_memory_unsigned_integer (pc, 4);
2197 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2198
4ba6a975
MK
2199 /* There are limited ways to store the return pointer into the
2200 stack. */
2201 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2202 {
2203 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2204 found_rp = 1;
2205 }
c4c79048
RC
2206 else if (insn == 0x0fc212c1
2207 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2208 {
2209 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2210 found_rp = 1;
2211 }
2212 }
412275d5 2213 }
0da28f8a 2214
d5c27f81 2215 if (hppa_debug)
4ba6a975
MK
2216 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2217 frame_size, found_rp);
d5c27f81 2218
4ba6a975
MK
2219 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2220 cache->base -= frame_size;
6d1be3f1 2221 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2222
2223 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2224 {
2225 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2226 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2227 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2228 }
412275d5
AC
2229 else
2230 {
4ba6a975
MK
2231 ULONGEST rp;
2232 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
0da28f8a 2233 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2234 }
0da28f8a
RC
2235
2236 return cache;
26d08f08
AC
2237}
2238
0da28f8a
RC
2239static void
2240hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2241 struct frame_id *this_id)
2242{
2243 struct hppa_frame_cache *info =
2244 hppa_fallback_frame_cache (next_frame, this_cache);
2245 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2246}
2247
2248static void
2249hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2250 void **this_cache,
2251 int regnum, int *optimizedp,
2252 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2253 int *realnump, gdb_byte *valuep)
0da28f8a
RC
2254{
2255 struct hppa_frame_cache *info =
2256 hppa_fallback_frame_cache (next_frame, this_cache);
2257 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2258 optimizedp, lvalp, addrp, realnump, valuep);
2259}
2260
2261static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2262{
2263 NORMAL_FRAME,
0da28f8a
RC
2264 hppa_fallback_frame_this_id,
2265 hppa_fallback_frame_prev_register
26d08f08
AC
2266};
2267
2268static const struct frame_unwind *
0da28f8a 2269hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2270{
0da28f8a 2271 return &hppa_fallback_frame_unwind;
26d08f08
AC
2272}
2273
7f07c5b6
RC
2274/* Stub frames, used for all kinds of call stubs. */
2275struct hppa_stub_unwind_cache
2276{
2277 CORE_ADDR base;
2278 struct trad_frame_saved_reg *saved_regs;
2279};
2280
2281static struct hppa_stub_unwind_cache *
2282hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2283 void **this_cache)
2284{
2285 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2286 struct hppa_stub_unwind_cache *info;
22b0923d 2287 struct unwind_table_entry *u;
7f07c5b6
RC
2288
2289 if (*this_cache)
2290 return *this_cache;
2291
2292 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2293 *this_cache = info;
2294 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2295
7f07c5b6
RC
2296 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2297
090ccbb7 2298 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2299 {
2300 /* HPUX uses export stubs in function calls; the export stub clobbers
2301 the return value of the caller, and, later restores it from the
2302 stack. */
2303 u = find_unwind_entry (frame_pc_unwind (next_frame));
2304
2305 if (u && u->stub_unwind.stub_type == EXPORT)
2306 {
2307 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2308
2309 return info;
2310 }
2311 }
2312
2313 /* By default we assume that stubs do not change the rp. */
2314 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2315
7f07c5b6
RC
2316 return info;
2317}
2318
2319static void
2320hppa_stub_frame_this_id (struct frame_info *next_frame,
2321 void **this_prologue_cache,
2322 struct frame_id *this_id)
2323{
2324 struct hppa_stub_unwind_cache *info
2325 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2326
2327 if (info)
2328 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2329 else
2330 *this_id = null_frame_id;
7f07c5b6
RC
2331}
2332
2333static void
2334hppa_stub_frame_prev_register (struct frame_info *next_frame,
2335 void **this_prologue_cache,
2336 int regnum, int *optimizedp,
2337 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2338 int *realnump, gdb_byte *valuep)
7f07c5b6
RC
2339{
2340 struct hppa_stub_unwind_cache *info
2341 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2342
2343 if (info)
2344 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2345 optimizedp, lvalp, addrp, realnump,
2346 valuep);
2347 else
8a3fe4f8 2348 error (_("Requesting registers from null frame."));
7f07c5b6
RC
2349}
2350
2351static const struct frame_unwind hppa_stub_frame_unwind = {
2352 NORMAL_FRAME,
2353 hppa_stub_frame_this_id,
2354 hppa_stub_frame_prev_register
2355};
2356
2357static const struct frame_unwind *
2358hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2359{
2360 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2361 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2363
6d1be3f1 2364 if (pc == 0
84674fe1
AC
2365 || (tdep->in_solib_call_trampoline != NULL
2366 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2367 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2368 return &hppa_stub_frame_unwind;
2369 return NULL;
2370}
2371
26d08f08
AC
2372static struct frame_id
2373hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2374{
2375 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2376 HPPA_SP_REGNUM),
26d08f08
AC
2377 frame_pc_unwind (next_frame));
2378}
2379
cc72850f 2380CORE_ADDR
26d08f08
AC
2381hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2382{
fe46cd3a
RC
2383 ULONGEST ipsw;
2384 CORE_ADDR pc;
2385
cc72850f
MK
2386 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2387 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2388
2389 /* If the current instruction is nullified, then we are effectively
2390 still executing the previous instruction. Pretend we are still
cc72850f
MK
2391 there. This is needed when single stepping; if the nullified
2392 instruction is on a different line, we don't want GDB to think
2393 we've stepped onto that line. */
fe46cd3a
RC
2394 if (ipsw & 0x00200000)
2395 pc -= 4;
2396
cc72850f 2397 return pc & ~0x3;
26d08f08
AC
2398}
2399
ff644745
JB
2400/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2401 Return NULL if no such symbol was found. */
2402
2403struct minimal_symbol *
2404hppa_lookup_stub_minimal_symbol (const char *name,
2405 enum unwind_stub_types stub_type)
2406{
2407 struct objfile *objfile;
2408 struct minimal_symbol *msym;
2409
2410 ALL_MSYMBOLS (objfile, msym)
2411 {
2412 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2413 {
2414 struct unwind_table_entry *u;
2415
2416 u = find_unwind_entry (SYMBOL_VALUE (msym));
2417 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2418 return msym;
2419 }
2420 }
2421
2422 return NULL;
2423}
2424
c906108c 2425static void
fba45db2 2426unwind_command (char *exp, int from_tty)
c906108c
SS
2427{
2428 CORE_ADDR address;
2429 struct unwind_table_entry *u;
2430
2431 /* If we have an expression, evaluate it and use it as the address. */
2432
2433 if (exp != 0 && *exp != 0)
2434 address = parse_and_eval_address (exp);
2435 else
2436 return;
2437
2438 u = find_unwind_entry (address);
2439
2440 if (!u)
2441 {
2442 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2443 return;
2444 }
2445
99d64d77 2446 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
c906108c
SS
2447
2448 printf_unfiltered ("\tregion_start = ");
2449 print_address (u->region_start, gdb_stdout);
d5c27f81 2450 gdb_flush (gdb_stdout);
c906108c
SS
2451
2452 printf_unfiltered ("\n\tregion_end = ");
2453 print_address (u->region_end, gdb_stdout);
d5c27f81 2454 gdb_flush (gdb_stdout);
c906108c 2455
c906108c 2456#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2457
2458 printf_unfiltered ("\n\tflags =");
2459 pif (Cannot_unwind);
2460 pif (Millicode);
2461 pif (Millicode_save_sr0);
2462 pif (Entry_SR);
2463 pif (Args_stored);
2464 pif (Variable_Frame);
2465 pif (Separate_Package_Body);
2466 pif (Frame_Extension_Millicode);
2467 pif (Stack_Overflow_Check);
2468 pif (Two_Instruction_SP_Increment);
2469 pif (Ada_Region);
2470 pif (Save_SP);
2471 pif (Save_RP);
2472 pif (Save_MRP_in_frame);
2473 pif (extn_ptr_defined);
2474 pif (Cleanup_defined);
2475 pif (MPE_XL_interrupt_marker);
2476 pif (HP_UX_interrupt_marker);
2477 pif (Large_frame);
2478
2479 putchar_unfiltered ('\n');
2480
c906108c 2481#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2482
2483 pin (Region_description);
2484 pin (Entry_FR);
2485 pin (Entry_GR);
2486 pin (Total_frame_size);
57dac9e1
RC
2487
2488 if (u->stub_unwind.stub_type)
2489 {
2490 printf_unfiltered ("\tstub type = ");
2491 switch (u->stub_unwind.stub_type)
2492 {
2493 case LONG_BRANCH:
2494 printf_unfiltered ("long branch\n");
2495 break;
2496 case PARAMETER_RELOCATION:
2497 printf_unfiltered ("parameter relocation\n");
2498 break;
2499 case EXPORT:
2500 printf_unfiltered ("export\n");
2501 break;
2502 case IMPORT:
2503 printf_unfiltered ("import\n");
2504 break;
2505 case IMPORT_SHLIB:
2506 printf_unfiltered ("import shlib\n");
2507 break;
2508 default:
2509 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2510 }
2511 }
c906108c 2512}
c906108c 2513
d709c020
JB
2514int
2515hppa_pc_requires_run_before_use (CORE_ADDR pc)
2516{
2517 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2518
2519 An example of this occurs when an a.out is linked against a foo.sl.
2520 The foo.sl defines a global bar(), and the a.out declares a signature
2521 for bar(). However, the a.out doesn't directly call bar(), but passes
2522 its address in another call.
2523
2524 If you have this scenario and attempt to "break bar" before running,
2525 gdb will find a minimal symbol for bar() in the a.out. But that
2526 symbol's address will be negative. What this appears to denote is
2527 an index backwards from the base of the procedure linkage table (PLT)
2528 into the data linkage table (DLT), the end of which is contiguous
2529 with the start of the PLT. This is clearly not a valid address for
2530 us to set a breakpoint on.
2531
2532 Note that one must be careful in how one checks for a negative address.
2533 0xc0000000 is a legitimate address of something in a shared text
2534 segment, for example. Since I don't know what the possible range
2535 is of these "really, truly negative" addresses that come from the
2536 minimal symbols, I'm resorting to the gross hack of checking the
2537 top byte of the address for all 1's. Sigh. */
2538
7b5c6b52 2539 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
d709c020
JB
2540}
2541
38ca4e0c
MK
2542/* Return the GDB type object for the "standard" data type of data in
2543 register REGNUM. */
d709c020 2544
eded0a31 2545static struct type *
38ca4e0c 2546hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2547{
38ca4e0c 2548 if (regnum < HPPA_FP4_REGNUM)
eded0a31 2549 return builtin_type_uint32;
d709c020 2550 else
eded0a31 2551 return builtin_type_ieee_single_big;
d709c020
JB
2552}
2553
eded0a31 2554static struct type *
38ca4e0c 2555hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2556{
38ca4e0c 2557 if (regnum < HPPA64_FP4_REGNUM)
eded0a31 2558 return builtin_type_uint64;
3ff7cf9e 2559 else
eded0a31 2560 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2561}
2562
38ca4e0c
MK
2563/* Return non-zero if REGNUM is not a register available to the user
2564 through ptrace/ttrace. */
d709c020 2565
8d153463 2566static int
38ca4e0c 2567hppa32_cannot_store_register (int regnum)
d709c020
JB
2568{
2569 return (regnum == 0
34f75cc1
RC
2570 || regnum == HPPA_PCSQ_HEAD_REGNUM
2571 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2572 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2573}
d709c020 2574
38ca4e0c
MK
2575static int
2576hppa64_cannot_store_register (int regnum)
2577{
2578 return (regnum == 0
2579 || regnum == HPPA_PCSQ_HEAD_REGNUM
2580 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2581 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2582}
2583
8d153463 2584static CORE_ADDR
d709c020
JB
2585hppa_smash_text_address (CORE_ADDR addr)
2586{
2587 /* The low two bits of the PC on the PA contain the privilege level.
2588 Some genius implementing a (non-GCC) compiler apparently decided
2589 this means that "addresses" in a text section therefore include a
2590 privilege level, and thus symbol tables should contain these bits.
2591 This seems like a bonehead thing to do--anyway, it seems to work
2592 for our purposes to just ignore those bits. */
2593
2594 return (addr &= ~0x3);
2595}
2596
e127f0db
MK
2597/* Get the ARGIth function argument for the current function. */
2598
4a302917 2599static CORE_ADDR
143985b7
AF
2600hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2601 struct type *type)
2602{
e127f0db 2603 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2604}
2605
0f8d9d59
RC
2606static void
2607hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2608 int regnum, gdb_byte *buf)
0f8d9d59
RC
2609{
2610 ULONGEST tmp;
2611
2612 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2613 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59 2614 tmp &= ~0x3;
e127f0db 2615 store_unsigned_integer (buf, sizeof tmp, tmp);
0f8d9d59
RC
2616}
2617
d49771ef
RC
2618static CORE_ADDR
2619hppa_find_global_pointer (struct value *function)
2620{
2621 return 0;
2622}
2623
0da28f8a
RC
2624void
2625hppa_frame_prev_register_helper (struct frame_info *next_frame,
2626 struct trad_frame_saved_reg saved_regs[],
2627 int regnum, int *optimizedp,
2628 enum lval_type *lvalp, CORE_ADDR *addrp,
a7aad9aa 2629 int *realnump, gdb_byte *valuep)
0da28f8a 2630{
8f4e467c
MK
2631 struct gdbarch *arch = get_frame_arch (next_frame);
2632
8693c419
MK
2633 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2634 {
2635 if (valuep)
2636 {
8f4e467c 2637 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
8693c419 2638 CORE_ADDR pc;
0da28f8a 2639
1f67027d
AC
2640 trad_frame_get_prev_register (next_frame, saved_regs,
2641 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2642 lvalp, addrp, realnump, valuep);
8693c419 2643
8f4e467c
MK
2644 pc = extract_unsigned_integer (valuep, size);
2645 store_unsigned_integer (valuep, size, pc + 4);
8693c419
MK
2646 }
2647
2648 /* It's a computed value. */
2649 *optimizedp = 0;
2650 *lvalp = not_lval;
2651 *addrp = 0;
2652 *realnump = -1;
2653 return;
2654 }
0da28f8a 2655
cc72850f
MK
2656 /* Make sure the "flags" register is zero in all unwound frames.
2657 The "flags" registers is a HP-UX specific wart, and only the code
2658 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2659 with it here. This shouldn't affect other systems since those
2660 should provide zero for the "flags" register anyway. */
2661 if (regnum == HPPA_FLAGS_REGNUM)
2662 {
2663 if (valuep)
8f4e467c 2664 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
cc72850f
MK
2665
2666 /* It's a computed value. */
2667 *optimizedp = 0;
2668 *lvalp = not_lval;
2669 *addrp = 0;
2670 *realnump = -1;
2671 return;
2672 }
2673
1f67027d
AC
2674 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2675 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2676}
8693c419 2677\f
0da28f8a 2678
8e8b2dba
MC
2679/* Here is a table of C type sizes on hppa with various compiles
2680 and options. I measured this on PA 9000/800 with HP-UX 11.11
2681 and these compilers:
2682
2683 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2684 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2685 /opt/aCC/bin/aCC B3910B A.03.45
2686 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2687
2688 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2689 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2690 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2691 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2692 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2693 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2694 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2695 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2696
2697 Each line is:
2698
2699 compiler and options
2700 char, short, int, long, long long
2701 float, double, long double
2702 char *, void (*)()
2703
2704 So all these compilers use either ILP32 or LP64 model.
2705 TODO: gcc has more options so it needs more investigation.
2706
a2379359
MC
2707 For floating point types, see:
2708
2709 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2710 HP-UX floating-point guide, hpux 11.00
2711
8e8b2dba
MC
2712 -- chastain 2003-12-18 */
2713
e6e68f1f
JB
2714static struct gdbarch *
2715hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2716{
3ff7cf9e 2717 struct gdbarch_tdep *tdep;
e6e68f1f 2718 struct gdbarch *gdbarch;
59623e27
JB
2719
2720 /* Try to determine the ABI of the object we are loading. */
4be87837 2721 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2722 {
4be87837
DJ
2723 /* If it's a SOM file, assume it's HP/UX SOM. */
2724 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2725 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2726 }
e6e68f1f
JB
2727
2728 /* find a candidate among the list of pre-declared architectures. */
2729 arches = gdbarch_list_lookup_by_info (arches, &info);
2730 if (arches != NULL)
2731 return (arches->gdbarch);
2732
2733 /* If none found, then allocate and initialize one. */
fdd72f95 2734 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2735 gdbarch = gdbarch_alloc (&info, tdep);
2736
2737 /* Determine from the bfd_arch_info structure if we are dealing with
2738 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2739 then default to a 32bit machine. */
2740 if (info.bfd_arch_info != NULL)
2741 tdep->bytes_per_address =
2742 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2743 else
2744 tdep->bytes_per_address = 4;
2745
d49771ef
RC
2746 tdep->find_global_pointer = hppa_find_global_pointer;
2747
3ff7cf9e
JB
2748 /* Some parts of the gdbarch vector depend on whether we are running
2749 on a 32 bits or 64 bits target. */
2750 switch (tdep->bytes_per_address)
2751 {
2752 case 4:
2753 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2754 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2755 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
2756 set_gdbarch_cannot_store_register (gdbarch,
2757 hppa32_cannot_store_register);
2758 set_gdbarch_cannot_fetch_register (gdbarch,
2759 hppa32_cannot_store_register);
3ff7cf9e
JB
2760 break;
2761 case 8:
2762 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2763 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2764 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5
RC
2765 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
2766 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
2767 set_gdbarch_cannot_store_register (gdbarch,
2768 hppa64_cannot_store_register);
2769 set_gdbarch_cannot_fetch_register (gdbarch,
2770 hppa64_cannot_store_register);
3ff7cf9e
JB
2771 break;
2772 default:
e2e0b3e5 2773 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
2774 tdep->bytes_per_address);
2775 }
2776
3ff7cf9e 2777 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2778 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2779
8e8b2dba
MC
2780 /* The following gdbarch vector elements are the same in both ILP32
2781 and LP64, but might show differences some day. */
2782 set_gdbarch_long_long_bit (gdbarch, 64);
2783 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2784 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2785
3ff7cf9e
JB
2786 /* The following gdbarch vector elements do not depend on the address
2787 size, or in any other gdbarch element previously set. */
60383d10 2788 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
1fb24930
RC
2789 set_gdbarch_in_function_epilogue_p (gdbarch,
2790 hppa_in_function_epilogue_p);
a2a84a72 2791 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2792 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2793 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
b6fbdd1d 2794 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2795 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2796 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
2797 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2798 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 2799
143985b7
AF
2800 /* Helper for function argument information. */
2801 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2802
36482093
AC
2803 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2804
3a3bc038
AC
2805 /* When a hardware watchpoint triggers, we'll move the inferior past
2806 it by removing all eventpoints; stepping past the instruction
2807 that caused the trigger; reinserting eventpoints; and checking
2808 whether any watched location changed. */
2809 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2810
5979bc46 2811 /* Inferior function call methods. */
fca7aa43 2812 switch (tdep->bytes_per_address)
5979bc46 2813 {
fca7aa43
AC
2814 case 4:
2815 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2816 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
2817 set_gdbarch_convert_from_func_ptr_addr
2818 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
2819 break;
2820 case 8:
782eae8b
AC
2821 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2822 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2823 break;
782eae8b 2824 default:
e2e0b3e5 2825 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
2826 }
2827
2828 /* Struct return methods. */
fca7aa43 2829 switch (tdep->bytes_per_address)
fad850b2 2830 {
fca7aa43
AC
2831 case 4:
2832 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2833 break;
2834 case 8:
782eae8b 2835 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2836 break;
fca7aa43 2837 default:
e2e0b3e5 2838 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 2839 }
7f07c5b6 2840
85f4f2d8 2841 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2842 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2843
5979bc46 2844 /* Frame unwind methods. */
782eae8b
AC
2845 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2846 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2847
50306a9d
RC
2848 /* Hook in ABI-specific overrides, if they have been registered. */
2849 gdbarch_init_osabi (info, gdbarch);
2850
7f07c5b6
RC
2851 /* Hook in the default unwinders. */
2852 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2853 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2854 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 2855
e6e68f1f
JB
2856 return gdbarch;
2857}
2858
2859static void
2860hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2861{
fdd72f95
RC
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2863
2864 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2865 tdep->bytes_per_address);
2866 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2867}
2868
4facf7e8
JB
2869void
2870_initialize_hppa_tdep (void)
2871{
2872 struct cmd_list_element *c;
4facf7e8 2873
e6e68f1f 2874 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2875
7c46b9fb
RC
2876 hppa_objfile_priv_data = register_objfile_data ();
2877
4facf7e8 2878 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 2879 _("Print unwind table entry at given address."),
4facf7e8
JB
2880 &maintenanceprintlist);
2881
369aa520 2882 /* Debug this files internals. */
7915a72c
AC
2883 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
2884Set whether hppa target specific debugging information should be displayed."),
2885 _("\
2886Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
2887This flag controls whether hppa target specific debugging information is\n\
2888displayed. This information is particularly useful for debugging frame\n\
7915a72c 2889unwinding problems."),
2c5b56ce 2890 NULL,
7915a72c 2891 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 2892 &setdebuglist, &showdebuglist);
4facf7e8 2893}
This page took 0.821208 seconds and 4 git commands to generate.