2004-11-11 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020
JB
73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74int hppa_instruction_nullified (void);
c906108c 75
537987fc
AC
76/* Handle 32/64-bit struct return conventions. */
77
78static enum return_value_convention
79hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82{
537987fc
AC
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
34f75cc1 88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
537987fc
AC
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116}
117
118static enum return_value_convention
119hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122{
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
449e1137
AC
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
537987fc
AC
129 {
130 /* Floats are right aligned? */
34f75cc1 131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc 132 if (readbuf != NULL)
34f75cc1 133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
34f75cc1 136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
34f75cc1 143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc
AC
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
449e1137 158 int part = min (8, TYPE_LENGTH (type) - b);
537987fc 159 if (readbuf != NULL)
449e1137 160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
161 (char *) readbuf + b);
162 if (writebuf != NULL)
449e1137 163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
164 (const char *) writebuf + b);
165 }
449e1137 166 return RETURN_VALUE_REGISTER_CONVENTION;
537987fc
AC
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170}
171
c906108c
SS
172/* Routines to extract various sized constants out of hppa
173 instructions. */
174
175/* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
abc485a1
RC
178int
179hppa_sign_extend (unsigned val, unsigned bits)
c906108c 180{
c5aa993b 181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
182}
183
184/* For many immediate values the sign bit is the low bit! */
185
abc485a1
RC
186int
187hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 188{
c5aa993b 189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
190}
191
e2ac8128
JB
192/* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
abc485a1
RC
195int
196hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
197{
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199}
200
c906108c
SS
201/* extract the immediate field from a ld{bhw}s instruction */
202
abc485a1
RC
203int
204hppa_extract_5_load (unsigned word)
c906108c 205{
abc485a1 206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
207}
208
c906108c
SS
209/* extract the immediate field from a break instruction */
210
abc485a1
RC
211unsigned
212hppa_extract_5r_store (unsigned word)
c906108c
SS
213{
214 return (word & MASK_5);
215}
216
217/* extract the immediate field from a {sr}sm instruction */
218
abc485a1
RC
219unsigned
220hppa_extract_5R_store (unsigned word)
c906108c
SS
221{
222 return (word >> 16 & MASK_5);
223}
224
c906108c
SS
225/* extract a 14 bit immediate field */
226
abc485a1
RC
227int
228hppa_extract_14 (unsigned word)
c906108c 229{
abc485a1 230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
231}
232
c906108c
SS
233/* extract a 21 bit constant */
234
abc485a1
RC
235int
236hppa_extract_21 (unsigned word)
c906108c
SS
237{
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
abc485a1 242 val = hppa_get_field (word, 20, 20);
c906108c 243 val <<= 11;
abc485a1 244 val |= hppa_get_field (word, 9, 19);
c906108c 245 val <<= 2;
abc485a1 246 val |= hppa_get_field (word, 5, 6);
c906108c 247 val <<= 5;
abc485a1 248 val |= hppa_get_field (word, 0, 4);
c906108c 249 val <<= 2;
abc485a1
RC
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
252}
253
c906108c
SS
254/* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
abc485a1
RC
257int
258hppa_extract_17 (unsigned word)
c906108c 259{
abc485a1
RC
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
263 (word & 0x1) << 16, 17) << 2;
264}
3388d7ff
RC
265
266CORE_ADDR
267hppa_symbol_address(const char *sym)
268{
269 struct minimal_symbol *minsym;
270
271 minsym = lookup_minimal_symbol (sym, NULL, NULL);
272 if (minsym)
273 return SYMBOL_VALUE_ADDRESS (minsym);
274 else
275 return (CORE_ADDR)-1;
276}
c906108c
SS
277\f
278
279/* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283static int
fba45db2 284compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
285{
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295}
296
53a5351d 297static void
fdd72f95 298record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 299{
fdd72f95 300 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 301 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
302 {
303 bfd_vma value = section->vma - section->filepos;
304 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
305
306 if (value < *low_text_segment_address)
307 *low_text_segment_address = value;
308 }
53a5351d
JM
309}
310
c906108c 311static void
fba45db2
KB
312internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 asection *section, unsigned int entries, unsigned int size,
314 CORE_ADDR text_offset)
c906108c
SS
315{
316 /* We will read the unwind entries into temporary memory, then
317 fill in the actual unwind table. */
fdd72f95 318
c906108c
SS
319 if (size > 0)
320 {
321 unsigned long tmp;
322 unsigned i;
323 char *buf = alloca (size);
fdd72f95 324 CORE_ADDR low_text_segment_address;
c906108c 325
fdd72f95 326 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
327 be segment relative offsets instead of absolute addresses.
328
329 Note that when loading a shared library (text_offset != 0) the
330 unwinds are already relative to the text_offset that will be
331 passed in. */
fdd72f95 332 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 333 {
fdd72f95
RC
334 low_text_segment_address = -1;
335
53a5351d 336 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
337 record_text_segment_lowaddr,
338 &low_text_segment_address);
53a5351d 339
fdd72f95 340 text_offset = low_text_segment_address;
53a5351d
JM
341 }
342
c906108c
SS
343 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
344
345 /* Now internalize the information being careful to handle host/target
c5aa993b 346 endian issues. */
c906108c
SS
347 for (i = 0; i < entries; i++)
348 {
349 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 350 (bfd_byte *) buf);
c906108c
SS
351 table[i].region_start += text_offset;
352 buf += 4;
c5aa993b 353 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
354 table[i].region_end += text_offset;
355 buf += 4;
c5aa993b 356 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
357 buf += 4;
358 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 table[i].Millicode = (tmp >> 30) & 0x1;
360 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 table[i].Region_description = (tmp >> 27) & 0x3;
362 table[i].reserved1 = (tmp >> 26) & 0x1;
363 table[i].Entry_SR = (tmp >> 25) & 0x1;
364 table[i].Entry_FR = (tmp >> 21) & 0xf;
365 table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 table[i].Args_stored = (tmp >> 15) & 0x1;
367 table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 table[i].Ada_Region = (tmp >> 9) & 0x1;
373 table[i].cxx_info = (tmp >> 8) & 0x1;
374 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 table[i].reserved2 = (tmp >> 5) & 0x1;
377 table[i].Save_SP = (tmp >> 4) & 0x1;
378 table[i].Save_RP = (tmp >> 3) & 0x1;
379 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 382 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
383 buf += 4;
384 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 table[i].Large_frame = (tmp >> 29) & 0x1;
387 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 table[i].reserved4 = (tmp >> 27) & 0x1;
389 table[i].Total_frame_size = tmp & 0x7ffffff;
390
c5aa993b 391 /* Stub unwinds are handled elsewhere. */
c906108c
SS
392 table[i].stub_unwind.stub_type = 0;
393 table[i].stub_unwind.padding = 0;
394 }
395 }
396}
397
398/* Read in the backtrace information stored in the `$UNWIND_START$' section of
399 the object file. This info is used mainly by find_unwind_entry() to find
400 out the stack frame size and frame pointer used by procedures. We put
401 everything on the psymbol obstack in the objfile so that it automatically
402 gets freed when the objfile is destroyed. */
403
404static void
fba45db2 405read_unwind_info (struct objfile *objfile)
c906108c 406{
d4f3574e
SS
407 asection *unwind_sec, *stub_unwind_sec;
408 unsigned unwind_size, stub_unwind_size, total_size;
409 unsigned index, unwind_entries;
c906108c
SS
410 unsigned stub_entries, total_entries;
411 CORE_ADDR text_offset;
7c46b9fb
RC
412 struct hppa_unwind_info *ui;
413 struct hppa_objfile_private *obj_private;
c906108c
SS
414
415 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
416 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 sizeof (struct hppa_unwind_info));
c906108c
SS
418
419 ui->table = NULL;
420 ui->cache = NULL;
421 ui->last = -1;
422
d4f3574e
SS
423 /* For reasons unknown the HP PA64 tools generate multiple unwinder
424 sections in a single executable. So we just iterate over every
425 section in the BFD looking for unwinder sections intead of trying
426 to do a lookup with bfd_get_section_by_name.
c906108c 427
d4f3574e
SS
428 First determine the total size of the unwind tables so that we
429 can allocate memory in a nice big hunk. */
430 total_entries = 0;
431 for (unwind_sec = objfile->obfd->sections;
432 unwind_sec;
433 unwind_sec = unwind_sec->next)
c906108c 434 {
d4f3574e
SS
435 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
437 {
438 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 440
d4f3574e
SS
441 total_entries += unwind_entries;
442 }
c906108c
SS
443 }
444
d4f3574e
SS
445 /* Now compute the size of the stub unwinds. Note the ELF tools do not
446 use stub unwinds at the curren time. */
447 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
448
c906108c
SS
449 if (stub_unwind_sec)
450 {
451 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
453 }
454 else
455 {
456 stub_unwind_size = 0;
457 stub_entries = 0;
458 }
459
460 /* Compute total number of unwind entries and their total size. */
d4f3574e 461 total_entries += stub_entries;
c906108c
SS
462 total_size = total_entries * sizeof (struct unwind_table_entry);
463
464 /* Allocate memory for the unwind table. */
465 ui->table = (struct unwind_table_entry *)
8b92e4d5 466 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 467 ui->last = total_entries - 1;
c906108c 468
d4f3574e
SS
469 /* Now read in each unwind section and internalize the standard unwind
470 entries. */
c906108c 471 index = 0;
d4f3574e
SS
472 for (unwind_sec = objfile->obfd->sections;
473 unwind_sec;
474 unwind_sec = unwind_sec->next)
475 {
476 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
478 {
479 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
481
482 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 unwind_entries, unwind_size, text_offset);
484 index += unwind_entries;
485 }
486 }
487
488 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
489 if (stub_unwind_size > 0)
490 {
491 unsigned int i;
492 char *buf = alloca (stub_unwind_size);
493
494 /* Read in the stub unwind entries. */
495 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 0, stub_unwind_size);
497
498 /* Now convert them into regular unwind entries. */
499 for (i = 0; i < stub_entries; i++, index++)
500 {
501 /* Clear out the next unwind entry. */
502 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
503
504 /* Convert offset & size into region_start and region_end.
505 Stuff away the stub type into "reserved" fields. */
506 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
507 (bfd_byte *) buf);
508 ui->table[index].region_start += text_offset;
509 buf += 4;
510 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 511 (bfd_byte *) buf);
c906108c
SS
512 buf += 2;
513 ui->table[index].region_end
c5aa993b
JM
514 = ui->table[index].region_start + 4 *
515 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
516 buf += 2;
517 }
518
519 }
520
521 /* Unwind table needs to be kept sorted. */
522 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 compare_unwind_entries);
524
525 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
526 obj_private = (struct hppa_objfile_private *)
527 objfile_data (objfile, hppa_objfile_priv_data);
528 if (obj_private == NULL)
c906108c 529 {
7c46b9fb
RC
530 obj_private = (struct hppa_objfile_private *)
531 obstack_alloc (&objfile->objfile_obstack,
532 sizeof (struct hppa_objfile_private));
533 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
c906108c 534 obj_private->unwind_info = NULL;
c5aa993b 535 obj_private->so_info = NULL;
53a5351d 536 obj_private->dp = 0;
c906108c 537 }
c906108c
SS
538 obj_private->unwind_info = ui;
539}
540
541/* Lookup the unwind (stack backtrace) info for the given PC. We search all
542 of the objfiles seeking the unwind table entry for this PC. Each objfile
543 contains a sorted list of struct unwind_table_entry. Since we do a binary
544 search of the unwind tables, we depend upon them to be sorted. */
545
546struct unwind_table_entry *
fba45db2 547find_unwind_entry (CORE_ADDR pc)
c906108c
SS
548{
549 int first, middle, last;
550 struct objfile *objfile;
7c46b9fb 551 struct hppa_objfile_private *priv;
c906108c 552
369aa520
RC
553 if (hppa_debug)
554 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
555 paddr_nz (pc));
556
c906108c
SS
557 /* A function at address 0? Not in HP-UX! */
558 if (pc == (CORE_ADDR) 0)
369aa520
RC
559 {
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
562 return NULL;
563 }
c906108c
SS
564
565 ALL_OBJFILES (objfile)
c5aa993b 566 {
7c46b9fb 567 struct hppa_unwind_info *ui;
c5aa993b 568 ui = NULL;
7c46b9fb
RC
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
570 if (priv)
571 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 572
c5aa993b
JM
573 if (!ui)
574 {
575 read_unwind_info (objfile);
7c46b9fb
RC
576 priv = objfile_data (objfile, hppa_objfile_priv_data);
577 if (priv == NULL)
104c1213 578 error ("Internal error reading unwind information.");
7c46b9fb 579 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 580 }
c906108c 581
c5aa993b 582 /* First, check the cache */
c906108c 583
c5aa993b
JM
584 if (ui->cache
585 && pc >= ui->cache->region_start
586 && pc <= ui->cache->region_end)
369aa520
RC
587 {
588 if (hppa_debug)
589 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590 paddr_nz ((CORE_ADDR) ui->cache));
591 return ui->cache;
592 }
c906108c 593
c5aa993b 594 /* Not in the cache, do a binary search */
c906108c 595
c5aa993b
JM
596 first = 0;
597 last = ui->last;
c906108c 598
c5aa993b
JM
599 while (first <= last)
600 {
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
604 {
605 ui->cache = &ui->table[middle];
369aa520
RC
606 if (hppa_debug)
607 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
609 return &ui->table[middle];
610 }
c906108c 611
c5aa993b
JM
612 if (pc < ui->table[middle].region_start)
613 last = middle - 1;
614 else
615 first = middle + 1;
616 }
617 } /* ALL_OBJFILES() */
369aa520
RC
618
619 if (hppa_debug)
620 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
621
c906108c
SS
622 return NULL;
623}
624
85f4f2d8 625static const unsigned char *
aaab4dba
AC
626hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
627{
56132691 628 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
629 (*len) = sizeof (breakpoint);
630 return breakpoint;
631}
632
e23457df
AC
633/* Return the name of a register. */
634
4a302917 635static const char *
3ff7cf9e 636hppa32_register_name (int i)
e23457df
AC
637{
638 static char *names[] = {
639 "flags", "r1", "rp", "r3",
640 "r4", "r5", "r6", "r7",
641 "r8", "r9", "r10", "r11",
642 "r12", "r13", "r14", "r15",
643 "r16", "r17", "r18", "r19",
644 "r20", "r21", "r22", "r23",
645 "r24", "r25", "r26", "dp",
646 "ret0", "ret1", "sp", "r31",
647 "sar", "pcoqh", "pcsqh", "pcoqt",
648 "pcsqt", "eiem", "iir", "isr",
649 "ior", "ipsw", "goto", "sr4",
650 "sr0", "sr1", "sr2", "sr3",
651 "sr5", "sr6", "sr7", "cr0",
652 "cr8", "cr9", "ccr", "cr12",
653 "cr13", "cr24", "cr25", "cr26",
654 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655 "fpsr", "fpe1", "fpe2", "fpe3",
656 "fpe4", "fpe5", "fpe6", "fpe7",
657 "fr4", "fr4R", "fr5", "fr5R",
658 "fr6", "fr6R", "fr7", "fr7R",
659 "fr8", "fr8R", "fr9", "fr9R",
660 "fr10", "fr10R", "fr11", "fr11R",
661 "fr12", "fr12R", "fr13", "fr13R",
662 "fr14", "fr14R", "fr15", "fr15R",
663 "fr16", "fr16R", "fr17", "fr17R",
664 "fr18", "fr18R", "fr19", "fr19R",
665 "fr20", "fr20R", "fr21", "fr21R",
666 "fr22", "fr22R", "fr23", "fr23R",
667 "fr24", "fr24R", "fr25", "fr25R",
668 "fr26", "fr26R", "fr27", "fr27R",
669 "fr28", "fr28R", "fr29", "fr29R",
670 "fr30", "fr30R", "fr31", "fr31R"
671 };
672 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
673 return NULL;
674 else
675 return names[i];
676}
677
4a302917 678static const char *
e23457df
AC
679hppa64_register_name (int i)
680{
681 static char *names[] = {
682 "flags", "r1", "rp", "r3",
683 "r4", "r5", "r6", "r7",
684 "r8", "r9", "r10", "r11",
685 "r12", "r13", "r14", "r15",
686 "r16", "r17", "r18", "r19",
687 "r20", "r21", "r22", "r23",
688 "r24", "r25", "r26", "dp",
689 "ret0", "ret1", "sp", "r31",
690 "sar", "pcoqh", "pcsqh", "pcoqt",
691 "pcsqt", "eiem", "iir", "isr",
692 "ior", "ipsw", "goto", "sr4",
693 "sr0", "sr1", "sr2", "sr3",
694 "sr5", "sr6", "sr7", "cr0",
695 "cr8", "cr9", "ccr", "cr12",
696 "cr13", "cr24", "cr25", "cr26",
697 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698 "fpsr", "fpe1", "fpe2", "fpe3",
699 "fr4", "fr5", "fr6", "fr7",
700 "fr8", "fr9", "fr10", "fr11",
701 "fr12", "fr13", "fr14", "fr15",
702 "fr16", "fr17", "fr18", "fr19",
703 "fr20", "fr21", "fr22", "fr23",
704 "fr24", "fr25", "fr26", "fr27",
705 "fr28", "fr29", "fr30", "fr31"
706 };
707 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
708 return NULL;
709 else
710 return names[i];
711}
712
79508e1e
AC
713/* This function pushes a stack frame with arguments as part of the
714 inferior function calling mechanism.
715
716 This is the version of the function for the 32-bit PA machines, in
717 which later arguments appear at lower addresses. (The stack always
718 grows towards higher addresses.)
719
720 We simply allocate the appropriate amount of stack space and put
721 arguments into their proper slots. */
722
4a302917 723static CORE_ADDR
7d9b040b 724hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
725 struct regcache *regcache, CORE_ADDR bp_addr,
726 int nargs, struct value **args, CORE_ADDR sp,
727 int struct_return, CORE_ADDR struct_addr)
728{
79508e1e
AC
729 /* Stack base address at which any pass-by-reference parameters are
730 stored. */
731 CORE_ADDR struct_end = 0;
732 /* Stack base address at which the first parameter is stored. */
733 CORE_ADDR param_end = 0;
734
735 /* The inner most end of the stack after all the parameters have
736 been pushed. */
737 CORE_ADDR new_sp = 0;
738
739 /* Two passes. First pass computes the location of everything,
740 second pass writes the bytes out. */
741 int write_pass;
d49771ef
RC
742
743 /* Global pointer (r19) of the function we are trying to call. */
744 CORE_ADDR gp;
745
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747
79508e1e
AC
748 for (write_pass = 0; write_pass < 2; write_pass++)
749 {
1797a8f6 750 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
751 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752 struct_ptr is adjusted for each argument below, so the first
753 argument will end up at sp-36. */
754 CORE_ADDR param_ptr = 32;
79508e1e 755 int i;
2a6228ef
RC
756 int small_struct = 0;
757
79508e1e
AC
758 for (i = 0; i < nargs; i++)
759 {
760 struct value *arg = args[i];
761 struct type *type = check_typedef (VALUE_TYPE (arg));
762 /* The corresponding parameter that is pushed onto the
763 stack, and [possibly] passed in a register. */
764 char param_val[8];
765 int param_len;
766 memset (param_val, 0, sizeof param_val);
767 if (TYPE_LENGTH (type) > 8)
768 {
769 /* Large parameter, pass by reference. Store the value
770 in "struct" area and then pass its address. */
771 param_len = 4;
1797a8f6 772 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 773 if (write_pass)
1797a8f6 774 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
79508e1e 775 TYPE_LENGTH (type));
1797a8f6 776 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
777 }
778 else if (TYPE_CODE (type) == TYPE_CODE_INT
779 || TYPE_CODE (type) == TYPE_CODE_ENUM)
780 {
781 /* Integer value store, right aligned. "unpack_long"
782 takes care of any sign-extension problems. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 store_unsigned_integer (param_val, param_len,
785 unpack_long (type,
786 VALUE_CONTENTS (arg)));
787 }
2a6228ef
RC
788 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
789 {
790 /* Floating point value store, right aligned. */
791 param_len = align_up (TYPE_LENGTH (type), 4);
792 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
793 }
79508e1e
AC
794 else
795 {
79508e1e 796 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
797
798 /* Small struct value are stored right-aligned. */
79508e1e
AC
799 memcpy (param_val + param_len - TYPE_LENGTH (type),
800 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2a6228ef
RC
801
802 /* Structures of size 5, 6 and 7 bytes are special in that
803 the higher-ordered word is stored in the lower-ordered
804 argument, and even though it is a 8-byte quantity the
805 registers need not be 8-byte aligned. */
1b07b470 806 if (param_len > 4 && param_len < 8)
2a6228ef 807 small_struct = 1;
79508e1e 808 }
2a6228ef 809
1797a8f6 810 param_ptr += param_len;
2a6228ef
RC
811 if (param_len == 8 && !small_struct)
812 param_ptr = align_up (param_ptr, 8);
813
814 /* First 4 non-FP arguments are passed in gr26-gr23.
815 First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 First 2 64-bit FP arguments are passed in fr5 and fr7.
817
818 The rest go on the stack, starting at sp-36, towards lower
819 addresses. 8-byte arguments must be aligned to a 8-byte
820 stack boundary. */
79508e1e
AC
821 if (write_pass)
822 {
1797a8f6 823 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
824
825 /* There are some cases when we don't know the type
826 expected by the callee (e.g. for variadic functions), so
827 pass the parameters in both general and fp regs. */
828 if (param_ptr <= 48)
79508e1e 829 {
2a6228ef
RC
830 int grreg = 26 - (param_ptr - 36) / 4;
831 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
833
834 regcache_cooked_write (regcache, grreg, param_val);
835 regcache_cooked_write (regcache, fpLreg, param_val);
836
79508e1e 837 if (param_len > 4)
2a6228ef
RC
838 {
839 regcache_cooked_write (regcache, grreg + 1,
840 param_val + 4);
841
842 regcache_cooked_write (regcache, fpreg, param_val);
843 regcache_cooked_write (regcache, fpreg + 1,
844 param_val + 4);
845 }
79508e1e
AC
846 }
847 }
848 }
849
850 /* Update the various stack pointers. */
851 if (!write_pass)
852 {
2a6228ef 853 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
854 /* PARAM_PTR already accounts for all the arguments passed
855 by the user. However, the ABI mandates minimum stack
856 space allocations for outgoing arguments. The ABI also
857 mandates minimum stack alignments which we must
858 preserve. */
2a6228ef 859 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
860 }
861 }
862
863 /* If a structure has to be returned, set up register 28 to hold its
864 address */
865 if (struct_return)
866 write_register (28, struct_addr);
867
d49771ef
RC
868 gp = tdep->find_global_pointer (function);
869
870 if (gp != 0)
871 write_register (19, gp);
872
79508e1e 873 /* Set the return address. */
34f75cc1 874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 875
c4557624 876 /* Update the Stack Pointer. */
34f75cc1 877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 878
2a6228ef 879 return param_end;
79508e1e
AC
880}
881
2f690297
AC
882/* This function pushes a stack frame with arguments as part of the
883 inferior function calling mechanism.
884
885 This is the version for the PA64, in which later arguments appear
886 at higher addresses. (The stack always grows towards higher
887 addresses.)
888
889 We simply allocate the appropriate amount of stack space and put
890 arguments into their proper slots.
891
892 This ABI also requires that the caller provide an argument pointer
893 to the callee, so we do that too. */
894
4a302917 895static CORE_ADDR
7d9b040b 896hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
897 struct regcache *regcache, CORE_ADDR bp_addr,
898 int nargs, struct value **args, CORE_ADDR sp,
899 int struct_return, CORE_ADDR struct_addr)
900{
449e1137
AC
901 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902 reverse engineering testsuite failures. */
2f690297 903
449e1137
AC
904 /* Stack base address at which any pass-by-reference parameters are
905 stored. */
906 CORE_ADDR struct_end = 0;
907 /* Stack base address at which the first parameter is stored. */
908 CORE_ADDR param_end = 0;
2f690297 909
449e1137
AC
910 /* The inner most end of the stack after all the parameters have
911 been pushed. */
912 CORE_ADDR new_sp = 0;
2f690297 913
449e1137
AC
914 /* Two passes. First pass computes the location of everything,
915 second pass writes the bytes out. */
916 int write_pass;
917 for (write_pass = 0; write_pass < 2; write_pass++)
2f690297 918 {
449e1137
AC
919 CORE_ADDR struct_ptr = 0;
920 CORE_ADDR param_ptr = 0;
921 int i;
922 for (i = 0; i < nargs; i++)
2f690297 923 {
449e1137
AC
924 struct value *arg = args[i];
925 struct type *type = check_typedef (VALUE_TYPE (arg));
926 if ((TYPE_CODE (type) == TYPE_CODE_INT
927 || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 && TYPE_LENGTH (type) <= 8)
929 {
930 /* Integer value store, right aligned. "unpack_long"
931 takes care of any sign-extension problems. */
932 param_ptr += 8;
933 if (write_pass)
934 {
935 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 int reg = 27 - param_ptr / 8;
937 write_memory_unsigned_integer (param_end - param_ptr,
938 val, 8);
939 if (reg >= 19)
940 regcache_cooked_write_unsigned (regcache, reg, val);
941 }
942 }
943 else
944 {
945 /* Small struct value, store left aligned? */
946 int reg;
947 if (TYPE_LENGTH (type) > 8)
948 {
949 param_ptr = align_up (param_ptr, 16);
950 reg = 26 - param_ptr / 8;
951 param_ptr += align_up (TYPE_LENGTH (type), 16);
952 }
953 else
954 {
955 param_ptr = align_up (param_ptr, 8);
956 reg = 26 - param_ptr / 8;
957 param_ptr += align_up (TYPE_LENGTH (type), 8);
958 }
959 if (write_pass)
960 {
961 int byte;
962 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
963 TYPE_LENGTH (type));
964 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
965 {
966 if (reg >= 19)
967 {
968 int len = min (8, TYPE_LENGTH (type) - byte);
969 regcache_cooked_write_part (regcache, reg, 0, len,
970 VALUE_CONTENTS (arg) + byte);
971 }
972 reg--;
973 }
974 }
975 }
2f690297 976 }
449e1137
AC
977 /* Update the various stack pointers. */
978 if (!write_pass)
2f690297 979 {
449e1137
AC
980 struct_end = sp + struct_ptr;
981 /* PARAM_PTR already accounts for all the arguments passed
982 by the user. However, the ABI mandates minimum stack
983 space allocations for outgoing arguments. The ABI also
984 mandates minimum stack alignments which we must
985 preserve. */
d0bd2d18 986 param_end = struct_end + max (align_up (param_ptr, 16), 64);
2f690297 987 }
2f690297
AC
988 }
989
2f690297
AC
990 /* If a structure has to be returned, set up register 28 to hold its
991 address */
992 if (struct_return)
993 write_register (28, struct_addr);
994
2f690297 995 /* Set the return address. */
34f75cc1 996 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 997
c4557624 998 /* Update the Stack Pointer. */
34f75cc1 999 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
c4557624 1000
449e1137
AC
1001 /* The stack will have 32 bytes of additional space for a frame marker. */
1002 return param_end + 64;
2f690297
AC
1003}
1004
d49771ef
RC
1005static CORE_ADDR
1006hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1007 CORE_ADDR addr,
1008 struct target_ops *targ)
1009{
1010 if (addr & 2)
1011 {
1012 CORE_ADDR plabel;
1013
1014 plabel = addr & ~3;
1015 target_read_memory(plabel, (char *)&addr, 4);
1016 }
1017
1018 return addr;
1019}
1020
1797a8f6
AC
1021static CORE_ADDR
1022hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1023{
1024 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1025 and not _bit_)! */
1026 return align_up (addr, 64);
1027}
1028
2f690297
AC
1029/* Force all frames to 16-byte alignment. Better safe than sorry. */
1030
1031static CORE_ADDR
1797a8f6 1032hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1033{
1034 /* Just always 16-byte align. */
1035 return align_up (addr, 16);
1036}
1037
1038
c906108c
SS
1039/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1040 bits. */
1041
8d153463 1042static CORE_ADDR
60383d10 1043hppa_target_read_pc (ptid_t ptid)
c906108c 1044{
34f75cc1 1045 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1046
1047 /* The following test does not belong here. It is OS-specific, and belongs
1048 in native code. */
1049 /* Test SS_INSYSCALL */
1050 if (flags & 2)
39f77062 1051 return read_register_pid (31, ptid) & ~0x3;
c906108c 1052
34f75cc1 1053 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
c906108c
SS
1054}
1055
1056/* Write out the PC. If currently in a syscall, then also write the new
1057 PC value into %r31. */
1058
8d153463 1059static void
60383d10 1060hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 1061{
34f75cc1 1062 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1063
1064 /* The following test does not belong here. It is OS-specific, and belongs
1065 in native code. */
1066 /* If in a syscall, then set %r31. Also make sure to get the
1067 privilege bits set correctly. */
1068 /* Test SS_INSYSCALL */
1069 if (flags & 2)
39f77062 1070 write_register_pid (31, v | 0x3, ptid);
c906108c 1071
34f75cc1
RC
1072 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
1074}
1075
1076/* return the alignment of a type in bytes. Structures have the maximum
1077 alignment required by their fields. */
1078
1079static int
fba45db2 1080hppa_alignof (struct type *type)
c906108c
SS
1081{
1082 int max_align, align, i;
1083 CHECK_TYPEDEF (type);
1084 switch (TYPE_CODE (type))
1085 {
1086 case TYPE_CODE_PTR:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_FLT:
1089 return TYPE_LENGTH (type);
1090 case TYPE_CODE_ARRAY:
1091 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092 case TYPE_CODE_STRUCT:
1093 case TYPE_CODE_UNION:
1094 max_align = 1;
1095 for (i = 0; i < TYPE_NFIELDS (type); i++)
1096 {
1097 /* Bit fields have no real alignment. */
1098 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1099 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1100 {
1101 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 max_align = max (max_align, align);
1103 }
1104 }
1105 return max_align;
1106 default:
1107 return 4;
1108 }
1109}
1110
c906108c
SS
1111/* For the given instruction (INST), return any adjustment it makes
1112 to the stack pointer or zero for no adjustment.
1113
1114 This only handles instructions commonly found in prologues. */
1115
1116static int
fba45db2 1117prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1118{
1119 /* This must persist across calls. */
1120 static int save_high21;
1121
1122 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1124 return hppa_extract_14 (inst);
c906108c
SS
1125
1126 /* stwm X,D(sp) */
1127 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1128 return hppa_extract_14 (inst);
c906108c 1129
104c1213
JM
1130 /* std,ma X,D(sp) */
1131 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1132 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1133
c906108c
SS
1134 /* addil high21,%r1; ldo low11,(%r1),%r30)
1135 save high bits in save_high21 for later use. */
1136 if ((inst & 0xffe00000) == 0x28200000)
1137 {
abc485a1 1138 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1139 return 0;
1140 }
1141
1142 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1143 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1144
1145 /* fstws as used by the HP compilers. */
1146 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1147 return hppa_extract_5_load (inst);
c906108c
SS
1148
1149 /* No adjustment. */
1150 return 0;
1151}
1152
1153/* Return nonzero if INST is a branch of some kind, else return zero. */
1154
1155static int
fba45db2 1156is_branch (unsigned long inst)
c906108c
SS
1157{
1158 switch (inst >> 26)
1159 {
1160 case 0x20:
1161 case 0x21:
1162 case 0x22:
1163 case 0x23:
7be570e7 1164 case 0x27:
c906108c
SS
1165 case 0x28:
1166 case 0x29:
1167 case 0x2a:
1168 case 0x2b:
7be570e7 1169 case 0x2f:
c906108c
SS
1170 case 0x30:
1171 case 0x31:
1172 case 0x32:
1173 case 0x33:
1174 case 0x38:
1175 case 0x39:
1176 case 0x3a:
7be570e7 1177 case 0x3b:
c906108c
SS
1178 return 1;
1179
1180 default:
1181 return 0;
1182 }
1183}
1184
1185/* Return the register number for a GR which is saved by INST or
1186 zero it INST does not save a GR. */
1187
1188static int
fba45db2 1189inst_saves_gr (unsigned long inst)
c906108c
SS
1190{
1191 /* Does it look like a stw? */
7be570e7
JM
1192 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193 || (inst >> 26) == 0x1f
1194 || ((inst >> 26) == 0x1f
1195 && ((inst >> 6) == 0xa)))
abc485a1 1196 return hppa_extract_5R_store (inst);
7be570e7
JM
1197
1198 /* Does it look like a std? */
1199 if ((inst >> 26) == 0x1c
1200 || ((inst >> 26) == 0x03
1201 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1202 return hppa_extract_5R_store (inst);
c906108c
SS
1203
1204 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1205 if ((inst >> 26) == 0x1b)
abc485a1 1206 return hppa_extract_5R_store (inst);
c906108c
SS
1207
1208 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1209 too. */
7be570e7
JM
1210 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211 || ((inst >> 26) == 0x3
1212 && (((inst >> 6) & 0xf) == 0x8
1213 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1214 return hppa_extract_5R_store (inst);
c5aa993b 1215
c906108c
SS
1216 return 0;
1217}
1218
1219/* Return the register number for a FR which is saved by INST or
1220 zero it INST does not save a FR.
1221
1222 Note we only care about full 64bit register stores (that's the only
1223 kind of stores the prologue will use).
1224
1225 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1226
1227static int
fba45db2 1228inst_saves_fr (unsigned long inst)
c906108c 1229{
7be570e7 1230 /* is this an FSTD ? */
c906108c 1231 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1232 return hppa_extract_5r_store (inst);
7be570e7 1233 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1234 return hppa_extract_5R_store (inst);
7be570e7 1235 /* is this an FSTW ? */
c906108c 1236 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1237 return hppa_extract_5r_store (inst);
7be570e7 1238 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1239 return hppa_extract_5R_store (inst);
c906108c
SS
1240 return 0;
1241}
1242
1243/* Advance PC across any function entry prologue instructions
1244 to reach some "real" code.
1245
1246 Use information in the unwind table to determine what exactly should
1247 be in the prologue. */
1248
1249
1250CORE_ADDR
fba45db2 1251skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
1252{
1253 char buf[4];
1254 CORE_ADDR orig_pc = pc;
1255 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256 unsigned long args_stored, status, i, restart_gr, restart_fr;
1257 struct unwind_table_entry *u;
1258
1259 restart_gr = 0;
1260 restart_fr = 0;
1261
1262restart:
1263 u = find_unwind_entry (pc);
1264 if (!u)
1265 return pc;
1266
c5aa993b 1267 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1268 if ((pc & ~0x3) != u->region_start)
1269 return pc;
1270
1271 /* This is how much of a frame adjustment we need to account for. */
1272 stack_remaining = u->Total_frame_size << 3;
1273
1274 /* Magic register saves we want to know about. */
1275 save_rp = u->Save_RP;
1276 save_sp = u->Save_SP;
1277
1278 /* An indication that args may be stored into the stack. Unfortunately
1279 the HPUX compilers tend to set this in cases where no args were
1280 stored too!. */
1281 args_stored = 1;
1282
1283 /* Turn the Entry_GR field into a bitmask. */
1284 save_gr = 0;
1285 for (i = 3; i < u->Entry_GR + 3; i++)
1286 {
1287 /* Frame pointer gets saved into a special location. */
eded0a31 1288 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1289 continue;
1290
1291 save_gr |= (1 << i);
1292 }
1293 save_gr &= ~restart_gr;
1294
1295 /* Turn the Entry_FR field into a bitmask too. */
1296 save_fr = 0;
1297 for (i = 12; i < u->Entry_FR + 12; i++)
1298 save_fr |= (1 << i);
1299 save_fr &= ~restart_fr;
1300
1301 /* Loop until we find everything of interest or hit a branch.
1302
1303 For unoptimized GCC code and for any HP CC code this will never ever
1304 examine any user instructions.
1305
1306 For optimzied GCC code we're faced with problems. GCC will schedule
1307 its prologue and make prologue instructions available for delay slot
1308 filling. The end result is user code gets mixed in with the prologue
1309 and a prologue instruction may be in the delay slot of the first branch
1310 or call.
1311
1312 Some unexpected things are expected with debugging optimized code, so
1313 we allow this routine to walk past user instructions in optimized
1314 GCC code. */
1315 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1316 || args_stored)
1317 {
1318 unsigned int reg_num;
1319 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1320 unsigned long old_save_rp, old_save_sp, next_inst;
1321
1322 /* Save copies of all the triggers so we can compare them later
c5aa993b 1323 (only for HPC). */
c906108c
SS
1324 old_save_gr = save_gr;
1325 old_save_fr = save_fr;
1326 old_save_rp = save_rp;
1327 old_save_sp = save_sp;
1328 old_stack_remaining = stack_remaining;
1329
1f602b35 1330 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1331 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1332
c906108c
SS
1333 /* Yow! */
1334 if (status != 0)
1335 return pc;
1336
1337 /* Note the interesting effects of this instruction. */
1338 stack_remaining -= prologue_inst_adjust_sp (inst);
1339
7be570e7
JM
1340 /* There are limited ways to store the return pointer into the
1341 stack. */
1342 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
1343 save_rp = 0;
1344
104c1213 1345 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1346 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1347 if ((inst & 0xffffc000) == 0x6fc10000
1348 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1349 save_sp = 0;
1350
6426a772
JM
1351 /* Are we loading some register with an offset from the argument
1352 pointer? */
1353 if ((inst & 0xffe00000) == 0x37a00000
1354 || (inst & 0xffffffe0) == 0x081d0240)
1355 {
1356 pc += 4;
1357 continue;
1358 }
1359
c906108c
SS
1360 /* Account for general and floating-point register saves. */
1361 reg_num = inst_saves_gr (inst);
1362 save_gr &= ~(1 << reg_num);
1363
1364 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1365 Unfortunately args_stored only tells us that some arguments
1366 where stored into the stack. Not how many or what kind!
c906108c 1367
c5aa993b
JM
1368 This is a kludge as on the HP compiler sets this bit and it
1369 never does prologue scheduling. So once we see one, skip past
1370 all of them. We have similar code for the fp arg stores below.
c906108c 1371
c5aa993b
JM
1372 FIXME. Can still die if we have a mix of GR and FR argument
1373 stores! */
6426a772 1374 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1375 {
6426a772 1376 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1377 {
1378 pc += 4;
1f602b35 1379 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1380 inst = extract_unsigned_integer (buf, 4);
1381 if (status != 0)
1382 return pc;
1383 reg_num = inst_saves_gr (inst);
1384 }
1385 args_stored = 0;
1386 continue;
1387 }
1388
1389 reg_num = inst_saves_fr (inst);
1390 save_fr &= ~(1 << reg_num);
1391
1f602b35 1392 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1393 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1394
c906108c
SS
1395 /* Yow! */
1396 if (status != 0)
1397 return pc;
1398
1399 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1400 save. */
c906108c
SS
1401 if ((inst & 0xfc000000) == 0x34000000
1402 && inst_saves_fr (next_inst) >= 4
6426a772 1403 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1404 {
1405 /* So we drop into the code below in a reasonable state. */
1406 reg_num = inst_saves_fr (next_inst);
1407 pc -= 4;
1408 }
1409
1410 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1411 This is a kludge as on the HP compiler sets this bit and it
1412 never does prologue scheduling. So once we see one, skip past
1413 all of them. */
6426a772 1414 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1415 {
6426a772 1416 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1417 {
1418 pc += 8;
1f602b35 1419 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1420 inst = extract_unsigned_integer (buf, 4);
1421 if (status != 0)
1422 return pc;
1423 if ((inst & 0xfc000000) != 0x34000000)
1424 break;
1f602b35 1425 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1426 next_inst = extract_unsigned_integer (buf, 4);
1427 if (status != 0)
1428 return pc;
1429 reg_num = inst_saves_fr (next_inst);
1430 }
1431 args_stored = 0;
1432 continue;
1433 }
1434
1435 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1436 instruction is in the delay slot of the first call/branch. */
c906108c
SS
1437 if (is_branch (inst))
1438 break;
1439
1440 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1441 arguments were stored into the stack (boo hiss). This could
1442 cause this code to then skip a bunch of user insns (up to the
1443 first branch).
1444
1445 To combat this we try to identify when args_stored was bogusly
1446 set and clear it. We only do this when args_stored is nonzero,
1447 all other resources are accounted for, and nothing changed on
1448 this pass. */
c906108c 1449 if (args_stored
c5aa993b 1450 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1451 && old_save_gr == save_gr && old_save_fr == save_fr
1452 && old_save_rp == save_rp && old_save_sp == save_sp
1453 && old_stack_remaining == stack_remaining)
1454 break;
c5aa993b 1455
c906108c
SS
1456 /* Bump the PC. */
1457 pc += 4;
1458 }
1459
1460 /* We've got a tenative location for the end of the prologue. However
1461 because of limitations in the unwind descriptor mechanism we may
1462 have went too far into user code looking for the save of a register
1463 that does not exist. So, if there registers we expected to be saved
1464 but never were, mask them out and restart.
1465
1466 This should only happen in optimized code, and should be very rare. */
c5aa993b 1467 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1468 {
1469 pc = orig_pc;
1470 restart_gr = save_gr;
1471 restart_fr = save_fr;
1472 goto restart;
1473 }
1474
1475 return pc;
1476}
1477
1478
7be570e7
JM
1479/* Return the address of the PC after the last prologue instruction if
1480 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1481
1482static CORE_ADDR
fba45db2 1483after_prologue (CORE_ADDR pc)
c906108c
SS
1484{
1485 struct symtab_and_line sal;
1486 CORE_ADDR func_addr, func_end;
1487 struct symbol *f;
1488
7be570e7
JM
1489 /* If we can not find the symbol in the partial symbol table, then
1490 there is no hope we can determine the function's start address
1491 with this code. */
c906108c 1492 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1493 return 0;
c906108c 1494
7be570e7 1495 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1496 sal = find_pc_line (func_addr, 0);
1497
7be570e7
JM
1498 /* There are only two cases to consider. First, the end of the source line
1499 is within the function bounds. In that case we return the end of the
1500 source line. Second is the end of the source line extends beyond the
1501 bounds of the current function. We need to use the slow code to
1502 examine instructions in that case.
c906108c 1503
7be570e7
JM
1504 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1505 the wrong thing to do. In fact, it should be entirely possible for this
1506 function to always return zero since the slow instruction scanning code
1507 is supposed to *always* work. If it does not, then it is a bug. */
1508 if (sal.end < func_end)
1509 return sal.end;
c5aa993b 1510 else
7be570e7 1511 return 0;
c906108c
SS
1512}
1513
1514/* To skip prologues, I use this predicate. Returns either PC itself
1515 if the code at PC does not look like a function prologue; otherwise
1516 returns an address that (if we're lucky) follows the prologue. If
1517 LENIENT, then we must skip everything which is involved in setting
1518 up the frame (it's OK to skip more, just so long as we don't skip
1519 anything which might clobber the registers which are being saved.
1520 Currently we must not skip more on the alpha, but we might the lenient
1521 stuff some day. */
1522
8d153463 1523static CORE_ADDR
fba45db2 1524hppa_skip_prologue (CORE_ADDR pc)
c906108c 1525{
c5aa993b
JM
1526 unsigned long inst;
1527 int offset;
1528 CORE_ADDR post_prologue_pc;
1529 char buf[4];
c906108c 1530
c5aa993b
JM
1531 /* See if we can determine the end of the prologue via the symbol table.
1532 If so, then return either PC, or the PC after the prologue, whichever
1533 is greater. */
c906108c 1534
c5aa993b 1535 post_prologue_pc = after_prologue (pc);
c906108c 1536
7be570e7
JM
1537 /* If after_prologue returned a useful address, then use it. Else
1538 fall back on the instruction skipping code.
1539
1540 Some folks have claimed this causes problems because the breakpoint
1541 may be the first instruction of the prologue. If that happens, then
1542 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1543 if (post_prologue_pc != 0)
1544 return max (pc, post_prologue_pc);
c5aa993b
JM
1545 else
1546 return (skip_prologue_hard_way (pc));
c906108c
SS
1547}
1548
26d08f08
AC
1549struct hppa_frame_cache
1550{
1551 CORE_ADDR base;
1552 struct trad_frame_saved_reg *saved_regs;
1553};
1554
1555static struct hppa_frame_cache *
1556hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1557{
1558 struct hppa_frame_cache *cache;
1559 long saved_gr_mask;
1560 long saved_fr_mask;
1561 CORE_ADDR this_sp;
1562 long frame_size;
1563 struct unwind_table_entry *u;
9f7194c3 1564 CORE_ADDR prologue_end;
50b2f48a 1565 int fp_in_r1 = 0;
26d08f08
AC
1566 int i;
1567
369aa520
RC
1568 if (hppa_debug)
1569 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1570 frame_relative_level(next_frame));
1571
26d08f08 1572 if ((*this_cache) != NULL)
369aa520
RC
1573 {
1574 if (hppa_debug)
1575 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1576 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1577 return (*this_cache);
1578 }
26d08f08
AC
1579 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1580 (*this_cache) = cache;
1581 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1582
1583 /* Yow! */
d5c27f81 1584 u = find_unwind_entry (frame_pc_unwind (next_frame));
26d08f08 1585 if (!u)
369aa520
RC
1586 {
1587 if (hppa_debug)
1588 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1589 return (*this_cache);
1590 }
26d08f08
AC
1591
1592 /* Turn the Entry_GR field into a bitmask. */
1593 saved_gr_mask = 0;
1594 for (i = 3; i < u->Entry_GR + 3; i++)
1595 {
1596 /* Frame pointer gets saved into a special location. */
eded0a31 1597 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1598 continue;
1599
1600 saved_gr_mask |= (1 << i);
1601 }
1602
1603 /* Turn the Entry_FR field into a bitmask too. */
1604 saved_fr_mask = 0;
1605 for (i = 12; i < u->Entry_FR + 12; i++)
1606 saved_fr_mask |= (1 << i);
1607
1608 /* Loop until we find everything of interest or hit a branch.
1609
1610 For unoptimized GCC code and for any HP CC code this will never ever
1611 examine any user instructions.
1612
1613 For optimized GCC code we're faced with problems. GCC will schedule
1614 its prologue and make prologue instructions available for delay slot
1615 filling. The end result is user code gets mixed in with the prologue
1616 and a prologue instruction may be in the delay slot of the first branch
1617 or call.
1618
1619 Some unexpected things are expected with debugging optimized code, so
1620 we allow this routine to walk past user instructions in optimized
1621 GCC code. */
1622 {
1623 int final_iteration = 0;
9f7194c3 1624 CORE_ADDR pc, end_pc;
26d08f08
AC
1625 int looking_for_sp = u->Save_SP;
1626 int looking_for_rp = u->Save_RP;
1627 int fp_loc = -1;
9f7194c3
RC
1628
1629 /* We have to use hppa_skip_prologue instead of just
1630 skip_prologue_using_sal, in case we stepped into a function without
1631 symbol information. hppa_skip_prologue also bounds the returned
1632 pc by the passed in pc, so it will not return a pc in the next
1633 function. */
d5c27f81
RC
1634
1635 /* We used to use frame_func_unwind () to locate the beginning of the
1636 function to pass to skip_prologue (). However, when objects are
1637 compiled without debug symbols, frame_func_unwind can return the wrong
1638 function (or 0). We can do better than that by using unwind records. */
1639
1640 prologue_end = hppa_skip_prologue (u->region_start);
9f7194c3
RC
1641 end_pc = frame_pc_unwind (next_frame);
1642
1643 if (prologue_end != 0 && end_pc > prologue_end)
1644 end_pc = prologue_end;
1645
26d08f08 1646 frame_size = 0;
9f7194c3 1647
d5c27f81 1648 for (pc = u->region_start;
26d08f08
AC
1649 ((saved_gr_mask || saved_fr_mask
1650 || looking_for_sp || looking_for_rp
1651 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1652 && pc < end_pc);
26d08f08
AC
1653 pc += 4)
1654 {
1655 int reg;
1656 char buf4[4];
4a302917
RC
1657 long inst;
1658
1659 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1660 sizeof buf4))
1661 {
1662 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1663 return (*this_cache);
1664 }
1665
1666 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1667
26d08f08
AC
1668 /* Note the interesting effects of this instruction. */
1669 frame_size += prologue_inst_adjust_sp (inst);
1670
1671 /* There are limited ways to store the return pointer into the
1672 stack. */
1673 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1674 {
1675 looking_for_rp = 0;
34f75cc1 1676 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1677 }
dfaf8edb
MK
1678 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1679 {
1680 looking_for_rp = 0;
1681 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1682 }
26d08f08
AC
1683 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1684 {
1685 looking_for_rp = 0;
34f75cc1 1686 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1687 }
1688
1689 /* Check to see if we saved SP into the stack. This also
1690 happens to indicate the location of the saved frame
1691 pointer. */
1692 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1693 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1694 {
1695 looking_for_sp = 0;
eded0a31 1696 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1697 }
50b2f48a
RC
1698 else if (inst == 0x08030241) /* copy %r3, %r1 */
1699 {
1700 fp_in_r1 = 1;
1701 }
26d08f08
AC
1702
1703 /* Account for general and floating-point register saves. */
1704 reg = inst_saves_gr (inst);
1705 if (reg >= 3 && reg <= 18
eded0a31 1706 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1707 {
1708 saved_gr_mask &= ~(1 << reg);
abc485a1 1709 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1710 /* stwm with a positive displacement is a _post_
1711 _modify_. */
1712 cache->saved_regs[reg].addr = 0;
1713 else if ((inst & 0xfc00000c) == 0x70000008)
1714 /* A std has explicit post_modify forms. */
1715 cache->saved_regs[reg].addr = 0;
1716 else
1717 {
1718 CORE_ADDR offset;
1719
1720 if ((inst >> 26) == 0x1c)
1721 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1722 else if ((inst >> 26) == 0x03)
abc485a1 1723 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1724 else
abc485a1 1725 offset = hppa_extract_14 (inst);
26d08f08
AC
1726
1727 /* Handle code with and without frame pointers. */
1728 if (u->Save_SP)
1729 cache->saved_regs[reg].addr = offset;
1730 else
1731 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1732 }
1733 }
1734
1735 /* GCC handles callee saved FP regs a little differently.
1736
1737 It emits an instruction to put the value of the start of
1738 the FP store area into %r1. It then uses fstds,ma with a
1739 basereg of %r1 for the stores.
1740
1741 HP CC emits them at the current stack pointer modifying the
1742 stack pointer as it stores each register. */
1743
1744 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1745 if ((inst & 0xffffc000) == 0x34610000
1746 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1747 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1748
1749 reg = inst_saves_fr (inst);
1750 if (reg >= 12 && reg <= 21)
1751 {
1752 /* Note +4 braindamage below is necessary because the FP
1753 status registers are internally 8 registers rather than
1754 the expected 4 registers. */
1755 saved_fr_mask &= ~(1 << reg);
1756 if (fp_loc == -1)
1757 {
1758 /* 1st HP CC FP register store. After this
1759 instruction we've set enough state that the GCC and
1760 HPCC code are both handled in the same manner. */
34f75cc1 1761 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1762 fp_loc = 8;
1763 }
1764 else
1765 {
eded0a31 1766 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1767 fp_loc += 8;
1768 }
1769 }
1770
1771 /* Quit if we hit any kind of branch the previous iteration. */
1772 if (final_iteration)
1773 break;
1774 /* We want to look precisely one instruction beyond the branch
1775 if we have not found everything yet. */
1776 if (is_branch (inst))
1777 final_iteration = 1;
1778 }
1779 }
1780
1781 {
1782 /* The frame base always represents the value of %sp at entry to
1783 the current function (and is thus equivalent to the "saved"
1784 stack pointer. */
eded0a31 1785 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 1786 CORE_ADDR fp;
9f7194c3
RC
1787
1788 if (hppa_debug)
1789 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1790 "prologue_end=0x%s) ",
1791 paddr_nz (this_sp),
1792 paddr_nz (frame_pc_unwind (next_frame)),
1793 paddr_nz (prologue_end));
1794
ed70ba00
RC
1795 /* Check to see if a frame pointer is available, and use it for
1796 frame unwinding if it is.
1797
1798 There are some situations where we need to rely on the frame
1799 pointer to do stack unwinding. For example, if a function calls
1800 alloca (), the stack pointer can get adjusted inside the body of
1801 the function. In this case, the ABI requires that the compiler
1802 maintain a frame pointer for the function.
1803
1804 The unwind record has a flag (alloca_frame) that indicates that
1805 a function has a variable frame; unfortunately, gcc/binutils
1806 does not set this flag. Instead, whenever a frame pointer is used
1807 and saved on the stack, the Save_SP flag is set. We use this to
1808 decide whether to use the frame pointer for unwinding.
1809
ed70ba00
RC
1810 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1811 instead of Save_SP. */
1812
1813 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1814
1815 if (frame_pc_unwind (next_frame) >= prologue_end
1816 && u->Save_SP && fp != 0)
1817 {
1818 cache->base = fp;
1819
1820 if (hppa_debug)
1821 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1822 paddr_nz (cache->base));
1823 }
1658da49
RC
1824 else if (u->Save_SP
1825 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 1826 {
9f7194c3
RC
1827 /* Both we're expecting the SP to be saved and the SP has been
1828 saved. The entry SP value is saved at this frame's SP
1829 address. */
1830 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1831
1832 if (hppa_debug)
1833 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1834 paddr_nz (cache->base));
9f7194c3 1835 }
26d08f08 1836 else
9f7194c3 1837 {
1658da49
RC
1838 /* The prologue has been slowly allocating stack space. Adjust
1839 the SP back. */
1840 cache->base = this_sp - frame_size;
9f7194c3 1841 if (hppa_debug)
1658da49 1842 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
9f7194c3
RC
1843 paddr_nz (cache->base));
1844
1845 }
eded0a31 1846 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
1847 }
1848
412275d5
AC
1849 /* The PC is found in the "return register", "Millicode" uses "r31"
1850 as the return register while normal code uses "rp". */
26d08f08 1851 if (u->Millicode)
9f7194c3 1852 {
5859efe5 1853 if (trad_frame_addr_p (cache->saved_regs, 31))
34f75cc1 1854 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
9f7194c3
RC
1855 else
1856 {
1857 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 1858 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9f7194c3
RC
1859 }
1860 }
26d08f08 1861 else
9f7194c3 1862 {
34f75cc1
RC
1863 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1864 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
9f7194c3
RC
1865 else
1866 {
34f75cc1
RC
1867 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1868 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9f7194c3
RC
1869 }
1870 }
26d08f08 1871
50b2f48a
RC
1872 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1873 frame. However, there is a one-insn window where we haven't saved it
1874 yet, but we've already clobbered it. Detect this case and fix it up.
1875
1876 The prologue sequence for frame-pointer functions is:
1877 0: stw %rp, -20(%sp)
1878 4: copy %r3, %r1
1879 8: copy %sp, %r3
1880 c: stw,ma %r1, XX(%sp)
1881
1882 So if we are at offset c, the r3 value that we want is not yet saved
1883 on the stack, but it's been overwritten. The prologue analyzer will
1884 set fp_in_r1 when it sees the copy insn so we know to get the value
1885 from r1 instead. */
1886 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1887 && fp_in_r1)
1888 {
1889 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1890 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1891 }
1658da49 1892
26d08f08
AC
1893 {
1894 /* Convert all the offsets into addresses. */
1895 int reg;
1896 for (reg = 0; reg < NUM_REGS; reg++)
1897 {
1898 if (trad_frame_addr_p (cache->saved_regs, reg))
1899 cache->saved_regs[reg].addr += cache->base;
1900 }
1901 }
1902
369aa520
RC
1903 if (hppa_debug)
1904 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1905 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
1906 return (*this_cache);
1907}
1908
1909static void
1910hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1911 struct frame_id *this_id)
1912{
d5c27f81
RC
1913 struct hppa_frame_cache *info;
1914 CORE_ADDR pc = frame_pc_unwind (next_frame);
1915 struct unwind_table_entry *u;
1916
1917 info = hppa_frame_cache (next_frame, this_cache);
1918 u = find_unwind_entry (pc);
1919
1920 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
1921}
1922
1923static void
1924hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
1925 void **this_cache,
1926 int regnum, int *optimizedp,
1927 enum lval_type *lvalp, CORE_ADDR *addrp,
1928 int *realnump, void *valuep)
26d08f08
AC
1929{
1930 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
1931 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1932 optimizedp, lvalp, addrp, realnump, valuep);
1933}
1934
1935static const struct frame_unwind hppa_frame_unwind =
1936{
1937 NORMAL_FRAME,
1938 hppa_frame_this_id,
1939 hppa_frame_prev_register
1940};
1941
1942static const struct frame_unwind *
1943hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1944{
1945 CORE_ADDR pc = frame_pc_unwind (next_frame);
1946
1947 if (find_unwind_entry (pc))
1948 return &hppa_frame_unwind;
1949
1950 return NULL;
1951}
1952
1953/* This is a generic fallback frame unwinder that kicks in if we fail all
1954 the other ones. Normally we would expect the stub and regular unwinder
1955 to work, but in some cases we might hit a function that just doesn't
1956 have any unwind information available. In this case we try to do
1957 unwinding solely based on code reading. This is obviously going to be
1958 slow, so only use this as a last resort. Currently this will only
1959 identify the stack and pc for the frame. */
1960
1961static struct hppa_frame_cache *
1962hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1963{
1964 struct hppa_frame_cache *cache;
6d1be3f1 1965 unsigned int frame_size;
d5c27f81 1966 int found_rp;
0da28f8a
RC
1967 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1968
d5c27f81
RC
1969 if (hppa_debug)
1970 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1971 frame_relative_level(next_frame));
1972
0da28f8a
RC
1973 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1974 (*this_cache) = cache;
1975 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1976
1977 pc = frame_func_unwind (next_frame);
1978 cur_pc = frame_pc_unwind (next_frame);
6d1be3f1 1979 frame_size = 0;
d5c27f81 1980 found_rp = 0;
0da28f8a
RC
1981
1982 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1983
1984 if (start_pc == 0 || end_pc == 0)
412275d5 1985 {
0da28f8a
RC
1986 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1987 "fail.", paddr_nz (pc));
1988 return cache;
1989 }
1990
1991 if (end_pc > cur_pc)
1992 end_pc = cur_pc;
1993
1994 for (pc = start_pc; pc < end_pc; pc += 4)
1995 {
1996 unsigned int insn;
1997
1998 insn = read_memory_unsigned_integer (pc, 4);
1999
6d1be3f1
RC
2000 frame_size += prologue_inst_adjust_sp (insn);
2001
0da28f8a
RC
2002 /* There are limited ways to store the return pointer into the
2003 stack. */
2004 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
d5c27f81
RC
2005 {
2006 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2007 found_rp = 1;
2008 }
0da28f8a 2009 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
d5c27f81
RC
2010 {
2011 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2012 found_rp = 1;
2013 }
412275d5 2014 }
0da28f8a 2015
d5c27f81
RC
2016 if (hppa_debug)
2017 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2018 frame_size, found_rp);
2019
6d1be3f1
RC
2020 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2021 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2022
2023 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2024 {
2025 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2026 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2027 }
412275d5
AC
2028 else
2029 {
0da28f8a
RC
2030 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2031 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2032 }
0da28f8a
RC
2033
2034 return cache;
26d08f08
AC
2035}
2036
0da28f8a
RC
2037static void
2038hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2039 struct frame_id *this_id)
2040{
2041 struct hppa_frame_cache *info =
2042 hppa_fallback_frame_cache (next_frame, this_cache);
2043 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2044}
2045
2046static void
2047hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2048 void **this_cache,
2049 int regnum, int *optimizedp,
2050 enum lval_type *lvalp, CORE_ADDR *addrp,
2051 int *realnump, void *valuep)
2052{
2053 struct hppa_frame_cache *info =
2054 hppa_fallback_frame_cache (next_frame, this_cache);
2055 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2056 optimizedp, lvalp, addrp, realnump, valuep);
2057}
2058
2059static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2060{
2061 NORMAL_FRAME,
0da28f8a
RC
2062 hppa_fallback_frame_this_id,
2063 hppa_fallback_frame_prev_register
26d08f08
AC
2064};
2065
2066static const struct frame_unwind *
0da28f8a 2067hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2068{
0da28f8a 2069 return &hppa_fallback_frame_unwind;
26d08f08
AC
2070}
2071
7f07c5b6
RC
2072/* Stub frames, used for all kinds of call stubs. */
2073struct hppa_stub_unwind_cache
2074{
2075 CORE_ADDR base;
2076 struct trad_frame_saved_reg *saved_regs;
2077};
2078
2079static struct hppa_stub_unwind_cache *
2080hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2081 void **this_cache)
2082{
2083 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2084 struct hppa_stub_unwind_cache *info;
22b0923d 2085 struct unwind_table_entry *u;
7f07c5b6
RC
2086
2087 if (*this_cache)
2088 return *this_cache;
2089
2090 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2091 *this_cache = info;
2092 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2093
7f07c5b6
RC
2094 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2095
090ccbb7 2096 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2097 {
2098 /* HPUX uses export stubs in function calls; the export stub clobbers
2099 the return value of the caller, and, later restores it from the
2100 stack. */
2101 u = find_unwind_entry (frame_pc_unwind (next_frame));
2102
2103 if (u && u->stub_unwind.stub_type == EXPORT)
2104 {
2105 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2106
2107 return info;
2108 }
2109 }
2110
2111 /* By default we assume that stubs do not change the rp. */
2112 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2113
7f07c5b6
RC
2114 return info;
2115}
2116
2117static void
2118hppa_stub_frame_this_id (struct frame_info *next_frame,
2119 void **this_prologue_cache,
2120 struct frame_id *this_id)
2121{
2122 struct hppa_stub_unwind_cache *info
2123 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2124 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2125}
2126
2127static void
2128hppa_stub_frame_prev_register (struct frame_info *next_frame,
2129 void **this_prologue_cache,
2130 int regnum, int *optimizedp,
2131 enum lval_type *lvalp, CORE_ADDR *addrp,
0da28f8a 2132 int *realnump, void *valuep)
7f07c5b6
RC
2133{
2134 struct hppa_stub_unwind_cache *info
2135 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
0da28f8a
RC
2136 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2137 optimizedp, lvalp, addrp, realnump, valuep);
7f07c5b6
RC
2138}
2139
2140static const struct frame_unwind hppa_stub_frame_unwind = {
2141 NORMAL_FRAME,
2142 hppa_stub_frame_this_id,
2143 hppa_stub_frame_prev_register
2144};
2145
2146static const struct frame_unwind *
2147hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2148{
2149 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2150 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2151 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2152
6d1be3f1 2153 if (pc == 0
84674fe1
AC
2154 || (tdep->in_solib_call_trampoline != NULL
2155 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2156 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2157 return &hppa_stub_frame_unwind;
2158 return NULL;
2159}
2160
26d08f08
AC
2161static struct frame_id
2162hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2163{
2164 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2165 HPPA_SP_REGNUM),
26d08f08
AC
2166 frame_pc_unwind (next_frame));
2167}
2168
2169static CORE_ADDR
2170hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2171{
34f75cc1 2172 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
26d08f08
AC
2173}
2174
9a043c1d
AC
2175/* Instead of this nasty cast, add a method pvoid() that prints out a
2176 host VOID data type (remember %p isn't portable). */
2177
2178static CORE_ADDR
2179hppa_pointer_to_address_hack (void *ptr)
2180{
2181 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2182 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2183}
2184
c906108c 2185static void
fba45db2 2186unwind_command (char *exp, int from_tty)
c906108c
SS
2187{
2188 CORE_ADDR address;
2189 struct unwind_table_entry *u;
2190
2191 /* If we have an expression, evaluate it and use it as the address. */
2192
2193 if (exp != 0 && *exp != 0)
2194 address = parse_and_eval_address (exp);
2195 else
2196 return;
2197
2198 u = find_unwind_entry (address);
2199
2200 if (!u)
2201 {
2202 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2203 return;
2204 }
2205
ce414844 2206 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 2207 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
2208
2209 printf_unfiltered ("\tregion_start = ");
2210 print_address (u->region_start, gdb_stdout);
d5c27f81 2211 gdb_flush (gdb_stdout);
c906108c
SS
2212
2213 printf_unfiltered ("\n\tregion_end = ");
2214 print_address (u->region_end, gdb_stdout);
d5c27f81 2215 gdb_flush (gdb_stdout);
c906108c 2216
c906108c 2217#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2218
2219 printf_unfiltered ("\n\tflags =");
2220 pif (Cannot_unwind);
2221 pif (Millicode);
2222 pif (Millicode_save_sr0);
2223 pif (Entry_SR);
2224 pif (Args_stored);
2225 pif (Variable_Frame);
2226 pif (Separate_Package_Body);
2227 pif (Frame_Extension_Millicode);
2228 pif (Stack_Overflow_Check);
2229 pif (Two_Instruction_SP_Increment);
2230 pif (Ada_Region);
2231 pif (Save_SP);
2232 pif (Save_RP);
2233 pif (Save_MRP_in_frame);
2234 pif (extn_ptr_defined);
2235 pif (Cleanup_defined);
2236 pif (MPE_XL_interrupt_marker);
2237 pif (HP_UX_interrupt_marker);
2238 pif (Large_frame);
2239
2240 putchar_unfiltered ('\n');
2241
c906108c 2242#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2243
2244 pin (Region_description);
2245 pin (Entry_FR);
2246 pin (Entry_GR);
2247 pin (Total_frame_size);
2248}
c906108c 2249
c2c6d25f 2250void
fba45db2 2251hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
2252{
2253 /* To step over a breakpoint instruction on the PA takes some
2254 fiddling with the instruction address queue.
2255
2256 When we stop at a breakpoint, the IA queue front (the instruction
2257 we're executing now) points at the breakpoint instruction, and
2258 the IA queue back (the next instruction to execute) points to
2259 whatever instruction we would execute after the breakpoint, if it
2260 were an ordinary instruction. This is the case even if the
2261 breakpoint is in the delay slot of a branch instruction.
2262
2263 Clearly, to step past the breakpoint, we need to set the queue
2264 front to the back. But what do we put in the back? What
2265 instruction comes after that one? Because of the branch delay
2266 slot, the next insn is always at the back + 4. */
34f75cc1
RC
2267 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2268 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
c2c6d25f 2269
34f75cc1 2270 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
c2c6d25f
JM
2271 /* We can leave the tail's space the same, since there's no jump. */
2272}
2273
d709c020
JB
2274int
2275hppa_pc_requires_run_before_use (CORE_ADDR pc)
2276{
2277 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2278
2279 An example of this occurs when an a.out is linked against a foo.sl.
2280 The foo.sl defines a global bar(), and the a.out declares a signature
2281 for bar(). However, the a.out doesn't directly call bar(), but passes
2282 its address in another call.
2283
2284 If you have this scenario and attempt to "break bar" before running,
2285 gdb will find a minimal symbol for bar() in the a.out. But that
2286 symbol's address will be negative. What this appears to denote is
2287 an index backwards from the base of the procedure linkage table (PLT)
2288 into the data linkage table (DLT), the end of which is contiguous
2289 with the start of the PLT. This is clearly not a valid address for
2290 us to set a breakpoint on.
2291
2292 Note that one must be careful in how one checks for a negative address.
2293 0xc0000000 is a legitimate address of something in a shared text
2294 segment, for example. Since I don't know what the possible range
2295 is of these "really, truly negative" addresses that come from the
2296 minimal symbols, I'm resorting to the gross hack of checking the
2297 top byte of the address for all 1's. Sigh. */
2298
2299 return (!target_has_stack && (pc & 0xFF000000));
2300}
2301
2302int
2303hppa_instruction_nullified (void)
2304{
2305 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2306 avoid the type cast. I'm leaving it as is for now as I'm doing
2307 semi-mechanical multiarching-related changes. */
34f75cc1
RC
2308 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2309 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
d709c020
JB
2310
2311 return ((ipsw & 0x00200000) && !(flags & 0x2));
2312}
2313
d709c020
JB
2314/* Return the GDB type object for the "standard" data type of data
2315 in register N. */
2316
eded0a31
AC
2317static struct type *
2318hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
d709c020 2319{
34f75cc1 2320 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2321 return builtin_type_uint32;
d709c020 2322 else
eded0a31 2323 return builtin_type_ieee_single_big;
d709c020
JB
2324}
2325
3ff7cf9e
JB
2326/* Return the GDB type object for the "standard" data type of data
2327 in register N. hppa64 version. */
2328
eded0a31
AC
2329static struct type *
2330hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
3ff7cf9e 2331{
34f75cc1 2332 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2333 return builtin_type_uint64;
3ff7cf9e 2334 else
eded0a31 2335 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2336}
2337
d709c020
JB
2338/* Return True if REGNUM is not a register available to the user
2339 through ptrace(). */
2340
8d153463 2341static int
d709c020
JB
2342hppa_cannot_store_register (int regnum)
2343{
2344 return (regnum == 0
34f75cc1
RC
2345 || regnum == HPPA_PCSQ_HEAD_REGNUM
2346 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2347 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
d709c020
JB
2348
2349}
2350
8d153463 2351static CORE_ADDR
d709c020
JB
2352hppa_smash_text_address (CORE_ADDR addr)
2353{
2354 /* The low two bits of the PC on the PA contain the privilege level.
2355 Some genius implementing a (non-GCC) compiler apparently decided
2356 this means that "addresses" in a text section therefore include a
2357 privilege level, and thus symbol tables should contain these bits.
2358 This seems like a bonehead thing to do--anyway, it seems to work
2359 for our purposes to just ignore those bits. */
2360
2361 return (addr &= ~0x3);
2362}
2363
143985b7 2364/* Get the ith function argument for the current function. */
4a302917 2365static CORE_ADDR
143985b7
AF
2366hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2367 struct type *type)
2368{
2369 CORE_ADDR addr;
34f75cc1 2370 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
143985b7
AF
2371 return addr;
2372}
2373
0f8d9d59
RC
2374static void
2375hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2376 int regnum, void *buf)
2377{
2378 ULONGEST tmp;
2379
2380 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2381 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59
RC
2382 tmp &= ~0x3;
2383 store_unsigned_integer (buf, sizeof(tmp), tmp);
2384}
2385
d49771ef
RC
2386static CORE_ADDR
2387hppa_find_global_pointer (struct value *function)
2388{
2389 return 0;
2390}
2391
0da28f8a
RC
2392void
2393hppa_frame_prev_register_helper (struct frame_info *next_frame,
2394 struct trad_frame_saved_reg saved_regs[],
2395 int regnum, int *optimizedp,
2396 enum lval_type *lvalp, CORE_ADDR *addrp,
2397 int *realnump, void *valuep)
2398{
8693c419
MK
2399 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2400 {
2401 if (valuep)
2402 {
2403 CORE_ADDR pc;
0da28f8a 2404
1f67027d
AC
2405 trad_frame_get_prev_register (next_frame, saved_regs,
2406 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2407 lvalp, addrp, realnump, valuep);
8693c419
MK
2408
2409 pc = extract_unsigned_integer (valuep, 4);
2410 store_unsigned_integer (valuep, 4, pc + 4);
2411 }
2412
2413 /* It's a computed value. */
2414 *optimizedp = 0;
2415 *lvalp = not_lval;
2416 *addrp = 0;
2417 *realnump = -1;
2418 return;
2419 }
0da28f8a 2420
1f67027d
AC
2421 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2422 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2423}
8693c419 2424\f
0da28f8a 2425
8e8b2dba
MC
2426/* Here is a table of C type sizes on hppa with various compiles
2427 and options. I measured this on PA 9000/800 with HP-UX 11.11
2428 and these compilers:
2429
2430 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2431 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2432 /opt/aCC/bin/aCC B3910B A.03.45
2433 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2434
2435 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2436 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2437 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2438 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2439 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2440 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2441 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2442 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2443
2444 Each line is:
2445
2446 compiler and options
2447 char, short, int, long, long long
2448 float, double, long double
2449 char *, void (*)()
2450
2451 So all these compilers use either ILP32 or LP64 model.
2452 TODO: gcc has more options so it needs more investigation.
2453
a2379359
MC
2454 For floating point types, see:
2455
2456 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2457 HP-UX floating-point guide, hpux 11.00
2458
8e8b2dba
MC
2459 -- chastain 2003-12-18 */
2460
e6e68f1f
JB
2461static struct gdbarch *
2462hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2463{
3ff7cf9e 2464 struct gdbarch_tdep *tdep;
e6e68f1f 2465 struct gdbarch *gdbarch;
59623e27
JB
2466
2467 /* Try to determine the ABI of the object we are loading. */
4be87837 2468 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2469 {
4be87837
DJ
2470 /* If it's a SOM file, assume it's HP/UX SOM. */
2471 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2472 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2473 }
e6e68f1f
JB
2474
2475 /* find a candidate among the list of pre-declared architectures. */
2476 arches = gdbarch_list_lookup_by_info (arches, &info);
2477 if (arches != NULL)
2478 return (arches->gdbarch);
2479
2480 /* If none found, then allocate and initialize one. */
fdd72f95 2481 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2482 gdbarch = gdbarch_alloc (&info, tdep);
2483
2484 /* Determine from the bfd_arch_info structure if we are dealing with
2485 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2486 then default to a 32bit machine. */
2487 if (info.bfd_arch_info != NULL)
2488 tdep->bytes_per_address =
2489 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2490 else
2491 tdep->bytes_per_address = 4;
2492
d49771ef
RC
2493 tdep->find_global_pointer = hppa_find_global_pointer;
2494
3ff7cf9e
JB
2495 /* Some parts of the gdbarch vector depend on whether we are running
2496 on a 32 bits or 64 bits target. */
2497 switch (tdep->bytes_per_address)
2498 {
2499 case 4:
2500 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2501 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2502 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3ff7cf9e
JB
2503 break;
2504 case 8:
2505 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2506 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2507 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3ff7cf9e
JB
2508 break;
2509 default:
2510 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2511 tdep->bytes_per_address);
2512 }
2513
3ff7cf9e 2514 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2515 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2516
8e8b2dba
MC
2517 /* The following gdbarch vector elements are the same in both ILP32
2518 and LP64, but might show differences some day. */
2519 set_gdbarch_long_long_bit (gdbarch, 64);
2520 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2521 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2522
3ff7cf9e
JB
2523 /* The following gdbarch vector elements do not depend on the address
2524 size, or in any other gdbarch element previously set. */
60383d10 2525 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
a2a84a72 2526 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2527 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2528 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
60383d10 2529 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
50306a9d 2530 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 2531 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2532 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2533 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2534 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2535 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
60383d10 2536
143985b7
AF
2537 /* Helper for function argument information. */
2538 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2539
36482093
AC
2540 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2541
3a3bc038
AC
2542 /* When a hardware watchpoint triggers, we'll move the inferior past
2543 it by removing all eventpoints; stepping past the instruction
2544 that caused the trigger; reinserting eventpoints; and checking
2545 whether any watched location changed. */
2546 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2547
5979bc46 2548 /* Inferior function call methods. */
fca7aa43 2549 switch (tdep->bytes_per_address)
5979bc46 2550 {
fca7aa43
AC
2551 case 4:
2552 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2553 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
2554 set_gdbarch_convert_from_func_ptr_addr
2555 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
2556 break;
2557 case 8:
782eae8b
AC
2558 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2559 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2560 break;
782eae8b
AC
2561 default:
2562 internal_error (__FILE__, __LINE__, "bad switch");
fad850b2
AC
2563 }
2564
2565 /* Struct return methods. */
fca7aa43 2566 switch (tdep->bytes_per_address)
fad850b2 2567 {
fca7aa43
AC
2568 case 4:
2569 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2570 break;
2571 case 8:
782eae8b 2572 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2573 break;
fca7aa43
AC
2574 default:
2575 internal_error (__FILE__, __LINE__, "bad switch");
e963316f 2576 }
7f07c5b6 2577
85f4f2d8 2578 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2579 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2580
5979bc46 2581 /* Frame unwind methods. */
782eae8b
AC
2582 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2583 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2584
50306a9d
RC
2585 /* Hook in ABI-specific overrides, if they have been registered. */
2586 gdbarch_init_osabi (info, gdbarch);
2587
7f07c5b6
RC
2588 /* Hook in the default unwinders. */
2589 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2590 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2591 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 2592
e6e68f1f
JB
2593 return gdbarch;
2594}
2595
2596static void
2597hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2598{
fdd72f95
RC
2599 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2600
2601 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2602 tdep->bytes_per_address);
2603 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2604}
2605
4facf7e8
JB
2606void
2607_initialize_hppa_tdep (void)
2608{
2609 struct cmd_list_element *c;
2610 void break_at_finish_command (char *arg, int from_tty);
2611 void tbreak_at_finish_command (char *arg, int from_tty);
2612 void break_at_finish_at_depth_command (char *arg, int from_tty);
2613
e6e68f1f 2614 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2615
7c46b9fb
RC
2616 hppa_objfile_priv_data = register_objfile_data ();
2617
4facf7e8
JB
2618 add_cmd ("unwind", class_maintenance, unwind_command,
2619 "Print unwind table entry at given address.",
2620 &maintenanceprintlist);
2621
2622 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2623 break_at_finish_command,
2624 concat ("Set breakpoint at procedure exit. \n\
2625Argument may be function name, or \"*\" and an address.\n\
2626If function is specified, break at end of code for that function.\n\
2627If an address is specified, break at the end of the function that contains \n\
2628that exact address.\n",
2629 "With no arg, uses current execution address of selected stack frame.\n\
2630This is useful for breaking on return to a stack frame.\n\
2631\n\
2632Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2633\n\
2634Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2635 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2636 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2637 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2638 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2639
2640 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2641 tbreak_at_finish_command,
2642"Set temporary breakpoint at procedure exit. Either there should\n\
2643be no argument or the argument must be a depth.\n"), NULL);
2644 set_cmd_completer (c, location_completer);
2645
2646 if (xdb_commands)
2647 deprecate_cmd (add_com ("bx", class_breakpoint,
2648 break_at_finish_at_depth_command,
2649"Set breakpoint at procedure exit. Either there should\n\
2650be no argument or the argument must be a depth.\n"), NULL);
369aa520
RC
2651
2652 /* Debug this files internals. */
4a302917
RC
2653 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2654Set whether hppa target specific debugging information should be displayed.", "\
2655Show whether hppa target specific debugging information is displayed.", "\
2656This flag controls whether hppa target specific debugging information is\n\
2657displayed. This information is particularly useful for debugging frame\n\
2658unwinding problems.", "hppa debug flag is %s.",
2659 NULL, NULL, &setdebuglist, &showdebuglist);
4facf7e8 2660}
This page took 0.894228 seconds and 4 git commands to generate.