* configure.in: Fix help string for --enable-targets option.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
197e01b6 3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
a7aad9aa
MK
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020 73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
c906108c 74
c906108c
SS
75/* Routines to extract various sized constants out of hppa
76 instructions. */
77
78/* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
abc485a1
RC
81int
82hppa_sign_extend (unsigned val, unsigned bits)
c906108c 83{
c5aa993b 84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
85}
86
87/* For many immediate values the sign bit is the low bit! */
88
abc485a1
RC
89int
90hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 91{
c5aa993b 92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
93}
94
e2ac8128
JB
95/* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
abc485a1
RC
98int
99hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
100{
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102}
103
c906108c
SS
104/* extract the immediate field from a ld{bhw}s instruction */
105
abc485a1
RC
106int
107hppa_extract_5_load (unsigned word)
c906108c 108{
abc485a1 109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
110}
111
c906108c
SS
112/* extract the immediate field from a break instruction */
113
abc485a1
RC
114unsigned
115hppa_extract_5r_store (unsigned word)
c906108c
SS
116{
117 return (word & MASK_5);
118}
119
120/* extract the immediate field from a {sr}sm instruction */
121
abc485a1
RC
122unsigned
123hppa_extract_5R_store (unsigned word)
c906108c
SS
124{
125 return (word >> 16 & MASK_5);
126}
127
c906108c
SS
128/* extract a 14 bit immediate field */
129
abc485a1
RC
130int
131hppa_extract_14 (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
134}
135
c906108c
SS
136/* extract a 21 bit constant */
137
abc485a1
RC
138int
139hppa_extract_21 (unsigned word)
c906108c
SS
140{
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
abc485a1 145 val = hppa_get_field (word, 20, 20);
c906108c 146 val <<= 11;
abc485a1 147 val |= hppa_get_field (word, 9, 19);
c906108c 148 val <<= 2;
abc485a1 149 val |= hppa_get_field (word, 5, 6);
c906108c 150 val <<= 5;
abc485a1 151 val |= hppa_get_field (word, 0, 4);
c906108c 152 val <<= 2;
abc485a1
RC
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
155}
156
c906108c
SS
157/* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
abc485a1
RC
160int
161hppa_extract_17 (unsigned word)
c906108c 162{
abc485a1
RC
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
166 (word & 0x1) << 16, 17) << 2;
167}
3388d7ff
RC
168
169CORE_ADDR
170hppa_symbol_address(const char *sym)
171{
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179}
77d18ded
RC
180
181struct hppa_objfile_private *
182hppa_init_objfile_priv_data (struct objfile *objfile)
183{
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193}
c906108c
SS
194\f
195
196/* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200static int
fba45db2 201compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
202{
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212}
213
53a5351d 214static void
fdd72f95 215record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 216{
fdd72f95 217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
53a5351d
JM
226}
227
c906108c 228static void
fba45db2
KB
229internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
c906108c
SS
232{
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
fdd72f95 235
c906108c
SS
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
fdd72f95 241 CORE_ADDR low_text_segment_address;
c906108c 242
fdd72f95 243 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
fdd72f95 249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 250 {
fdd72f95
RC
251 low_text_segment_address = -1;
252
53a5351d 253 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
53a5351d 256
fdd72f95 257 text_offset = low_text_segment_address;
53a5351d 258 }
acf86d54
RC
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
53a5351d 263
c906108c
SS
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
c5aa993b 267 endian issues. */
c906108c
SS
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 271 (bfd_byte *) buf);
c906108c
SS
272 table[i].region_start += text_offset;
273 buf += 4;
c5aa993b 274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
275 table[i].region_end += text_offset;
276 buf += 4;
c5aa993b 277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 283 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 293 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 297 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 301 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 302 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
308 table[i].alloca_frame = (tmp >> 28) & 0x1;
309 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
c5aa993b 312 /* Stub unwinds are handled elsewhere. */
c906108c
SS
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317}
318
319/* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325static void
fba45db2 326read_unwind_info (struct objfile *objfile)
c906108c 327{
d4f3574e
SS
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
c906108c
SS
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
7c46b9fb
RC
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
c906108c
SS
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
c906108c
SS
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
d4f3574e
SS
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
c906108c 348
d4f3574e
SS
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
c906108c 355 {
d4f3574e
SS
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 361
d4f3574e
SS
362 total_entries += unwind_entries;
363 }
c906108c
SS
364 }
365
d4f3574e 366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 367 use stub unwinds at the current time. */
d4f3574e
SS
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
c906108c
SS
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
d4f3574e 382 total_entries += stub_entries;
c906108c
SS
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
8b92e4d5 387 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 388 ui->last = total_entries - 1;
c906108c 389
d4f3574e
SS
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
c906108c 392 index = 0;
d4f3574e
SS
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 432 (bfd_byte *) buf);
c906108c
SS
433 buf += 2;
434 ui->table[index].region_end
c5aa993b
JM
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
77d18ded
RC
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
c906108c
SS
452 obj_private->unwind_info = ui;
453}
454
455/* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460struct unwind_table_entry *
fba45db2 461find_unwind_entry (CORE_ADDR pc)
c906108c
SS
462{
463 int first, middle, last;
464 struct objfile *objfile;
7c46b9fb 465 struct hppa_objfile_private *priv;
c906108c 466
369aa520
RC
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
c906108c
SS
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
369aa520
RC
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
c906108c
SS
478
479 ALL_OBJFILES (objfile)
c5aa993b 480 {
7c46b9fb 481 struct hppa_unwind_info *ui;
c5aa993b 482 ui = NULL;
7c46b9fb
RC
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 486
c5aa993b
JM
487 if (!ui)
488 {
489 read_unwind_info (objfile);
7c46b9fb
RC
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
8a3fe4f8 492 error (_("Internal error reading unwind information."));
7c46b9fb 493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 494 }
c906108c 495
c5aa993b 496 /* First, check the cache */
c906108c 497
c5aa993b
JM
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
369aa520
RC
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
c906108c 507
c5aa993b 508 /* Not in the cache, do a binary search */
c906108c 509
c5aa993b
JM
510 first = 0;
511 last = ui->last;
c906108c 512
c5aa993b
JM
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
369aa520
RC
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
523 return &ui->table[middle];
524 }
c906108c 525
c5aa993b
JM
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
369aa520
RC
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
c906108c
SS
536 return NULL;
537}
538
1fb24930
RC
539/* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544static int
545hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546{
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = deprecated_read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575}
576
85f4f2d8 577static const unsigned char *
aaab4dba
AC
578hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579{
56132691 580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583}
584
e23457df
AC
585/* Return the name of a register. */
586
4a302917 587static const char *
3ff7cf9e 588hppa32_register_name (int i)
e23457df
AC
589{
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628}
629
4a302917 630static const char *
e23457df
AC
631hppa64_register_name (int i)
632{
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663}
664
1ef7fcb5
RC
665static int
666hppa64_dwarf_reg_to_regnum (int reg)
667{
668 /* r0-r31 and sar map one-to-one. */
669 if (reg <= 32)
670 return reg;
671
672 /* fr4-fr31 are mapped from 72 in steps of 2. */
673 if (reg >= 72 || reg < 72 + 28 * 2)
674 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
675
676 error ("Invalid DWARF register num %d.", reg);
677 return -1;
678}
679
79508e1e
AC
680/* This function pushes a stack frame with arguments as part of the
681 inferior function calling mechanism.
682
683 This is the version of the function for the 32-bit PA machines, in
684 which later arguments appear at lower addresses. (The stack always
685 grows towards higher addresses.)
686
687 We simply allocate the appropriate amount of stack space and put
688 arguments into their proper slots. */
689
4a302917 690static CORE_ADDR
7d9b040b 691hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
692 struct regcache *regcache, CORE_ADDR bp_addr,
693 int nargs, struct value **args, CORE_ADDR sp,
694 int struct_return, CORE_ADDR struct_addr)
695{
79508e1e
AC
696 /* Stack base address at which any pass-by-reference parameters are
697 stored. */
698 CORE_ADDR struct_end = 0;
699 /* Stack base address at which the first parameter is stored. */
700 CORE_ADDR param_end = 0;
701
702 /* The inner most end of the stack after all the parameters have
703 been pushed. */
704 CORE_ADDR new_sp = 0;
705
706 /* Two passes. First pass computes the location of everything,
707 second pass writes the bytes out. */
708 int write_pass;
d49771ef
RC
709
710 /* Global pointer (r19) of the function we are trying to call. */
711 CORE_ADDR gp;
712
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
79508e1e
AC
715 for (write_pass = 0; write_pass < 2; write_pass++)
716 {
1797a8f6 717 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
718 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
719 struct_ptr is adjusted for each argument below, so the first
720 argument will end up at sp-36. */
721 CORE_ADDR param_ptr = 32;
79508e1e 722 int i;
2a6228ef
RC
723 int small_struct = 0;
724
79508e1e
AC
725 for (i = 0; i < nargs; i++)
726 {
727 struct value *arg = args[i];
4991999e 728 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
729 /* The corresponding parameter that is pushed onto the
730 stack, and [possibly] passed in a register. */
731 char param_val[8];
732 int param_len;
733 memset (param_val, 0, sizeof param_val);
734 if (TYPE_LENGTH (type) > 8)
735 {
736 /* Large parameter, pass by reference. Store the value
737 in "struct" area and then pass its address. */
738 param_len = 4;
1797a8f6 739 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 740 if (write_pass)
0fd88904 741 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 742 TYPE_LENGTH (type));
1797a8f6 743 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
744 }
745 else if (TYPE_CODE (type) == TYPE_CODE_INT
746 || TYPE_CODE (type) == TYPE_CODE_ENUM)
747 {
748 /* Integer value store, right aligned. "unpack_long"
749 takes care of any sign-extension problems. */
750 param_len = align_up (TYPE_LENGTH (type), 4);
751 store_unsigned_integer (param_val, param_len,
752 unpack_long (type,
0fd88904 753 value_contents (arg)));
79508e1e 754 }
2a6228ef
RC
755 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
756 {
757 /* Floating point value store, right aligned. */
758 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 759 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 760 }
79508e1e
AC
761 else
762 {
79508e1e 763 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
764
765 /* Small struct value are stored right-aligned. */
79508e1e 766 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 767 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
768
769 /* Structures of size 5, 6 and 7 bytes are special in that
770 the higher-ordered word is stored in the lower-ordered
771 argument, and even though it is a 8-byte quantity the
772 registers need not be 8-byte aligned. */
1b07b470 773 if (param_len > 4 && param_len < 8)
2a6228ef 774 small_struct = 1;
79508e1e 775 }
2a6228ef 776
1797a8f6 777 param_ptr += param_len;
2a6228ef
RC
778 if (param_len == 8 && !small_struct)
779 param_ptr = align_up (param_ptr, 8);
780
781 /* First 4 non-FP arguments are passed in gr26-gr23.
782 First 4 32-bit FP arguments are passed in fr4L-fr7L.
783 First 2 64-bit FP arguments are passed in fr5 and fr7.
784
785 The rest go on the stack, starting at sp-36, towards lower
786 addresses. 8-byte arguments must be aligned to a 8-byte
787 stack boundary. */
79508e1e
AC
788 if (write_pass)
789 {
1797a8f6 790 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
791
792 /* There are some cases when we don't know the type
793 expected by the callee (e.g. for variadic functions), so
794 pass the parameters in both general and fp regs. */
795 if (param_ptr <= 48)
79508e1e 796 {
2a6228ef
RC
797 int grreg = 26 - (param_ptr - 36) / 4;
798 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
799 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
800
801 regcache_cooked_write (regcache, grreg, param_val);
802 regcache_cooked_write (regcache, fpLreg, param_val);
803
79508e1e 804 if (param_len > 4)
2a6228ef
RC
805 {
806 regcache_cooked_write (regcache, grreg + 1,
807 param_val + 4);
808
809 regcache_cooked_write (regcache, fpreg, param_val);
810 regcache_cooked_write (regcache, fpreg + 1,
811 param_val + 4);
812 }
79508e1e
AC
813 }
814 }
815 }
816
817 /* Update the various stack pointers. */
818 if (!write_pass)
819 {
2a6228ef 820 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
821 /* PARAM_PTR already accounts for all the arguments passed
822 by the user. However, the ABI mandates minimum stack
823 space allocations for outgoing arguments. The ABI also
824 mandates minimum stack alignments which we must
825 preserve. */
2a6228ef 826 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
827 }
828 }
829
830 /* If a structure has to be returned, set up register 28 to hold its
831 address */
832 if (struct_return)
833 write_register (28, struct_addr);
834
d49771ef
RC
835 gp = tdep->find_global_pointer (function);
836
837 if (gp != 0)
838 write_register (19, gp);
839
79508e1e 840 /* Set the return address. */
77d18ded
RC
841 if (!gdbarch_push_dummy_code_p (gdbarch))
842 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 843
c4557624 844 /* Update the Stack Pointer. */
34f75cc1 845 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 846
2a6228ef 847 return param_end;
79508e1e
AC
848}
849
38ca4e0c
MK
850/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
851 Runtime Architecture for PA-RISC 2.0", which is distributed as part
852 as of the HP-UX Software Transition Kit (STK). This implementation
853 is based on version 3.3, dated October 6, 1997. */
2f690297 854
38ca4e0c 855/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 856
38ca4e0c
MK
857static int
858hppa64_integral_or_pointer_p (const struct type *type)
859{
860 switch (TYPE_CODE (type))
861 {
862 case TYPE_CODE_INT:
863 case TYPE_CODE_BOOL:
864 case TYPE_CODE_CHAR:
865 case TYPE_CODE_ENUM:
866 case TYPE_CODE_RANGE:
867 {
868 int len = TYPE_LENGTH (type);
869 return (len == 1 || len == 2 || len == 4 || len == 8);
870 }
871 case TYPE_CODE_PTR:
872 case TYPE_CODE_REF:
873 return (TYPE_LENGTH (type) == 8);
874 default:
875 break;
876 }
877
878 return 0;
879}
880
881/* Check whether TYPE is a "Floating Scalar Type". */
882
883static int
884hppa64_floating_p (const struct type *type)
885{
886 switch (TYPE_CODE (type))
887 {
888 case TYPE_CODE_FLT:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 4 || len == 8 || len == 16);
892 }
893 default:
894 break;
895 }
896
897 return 0;
898}
2f690297 899
1218e655
RC
900/* If CODE points to a function entry address, try to look up the corresponding
901 function descriptor and return its address instead. If CODE is not a
902 function entry address, then just return it unchanged. */
903static CORE_ADDR
904hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
905{
906 struct obj_section *sec, *opd;
907
908 sec = find_pc_section (code);
909
910 if (!sec)
911 return code;
912
913 /* If CODE is in a data section, assume it's already a fptr. */
914 if (!(sec->the_bfd_section->flags & SEC_CODE))
915 return code;
916
917 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
918 {
919 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
920 break;
921 }
922
923 if (opd < sec->objfile->sections_end)
924 {
925 CORE_ADDR addr;
926
927 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
928 {
929 ULONGEST opdaddr;
930 char tmp[8];
931
932 if (target_read_memory (addr, tmp, sizeof (tmp)))
933 break;
934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
935
936 if (opdaddr == code)
937 return addr - 16;
938 }
939 }
940
941 return code;
942}
943
4a302917 944static CORE_ADDR
7d9b040b 945hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
946 struct regcache *regcache, CORE_ADDR bp_addr,
947 int nargs, struct value **args, CORE_ADDR sp,
948 int struct_return, CORE_ADDR struct_addr)
949{
38ca4e0c
MK
950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
951 int i, offset = 0;
952 CORE_ADDR gp;
2f690297 953
38ca4e0c
MK
954 /* "The outgoing parameter area [...] must be aligned at a 16-byte
955 boundary." */
956 sp = align_up (sp, 16);
2f690297 957
38ca4e0c
MK
958 for (i = 0; i < nargs; i++)
959 {
960 struct value *arg = args[i];
961 struct type *type = value_type (arg);
962 int len = TYPE_LENGTH (type);
0fd88904 963 const bfd_byte *valbuf;
1218e655 964 bfd_byte fptrbuf[8];
38ca4e0c 965 int regnum;
2f690297 966
38ca4e0c
MK
967 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
968 offset = align_up (offset, 8);
77d18ded 969
38ca4e0c 970 if (hppa64_integral_or_pointer_p (type))
2f690297 971 {
38ca4e0c
MK
972 /* "Integral scalar parameters smaller than 64 bits are
973 padded on the left (i.e., the value is in the
974 least-significant bits of the 64-bit storage unit, and
975 the high-order bits are undefined)." Therefore we can
976 safely sign-extend them. */
977 if (len < 8)
449e1137 978 {
38ca4e0c
MK
979 arg = value_cast (builtin_type_int64, arg);
980 len = 8;
981 }
982 }
983 else if (hppa64_floating_p (type))
984 {
985 if (len > 8)
986 {
987 /* "Quad-precision (128-bit) floating-point scalar
988 parameters are aligned on a 16-byte boundary." */
989 offset = align_up (offset, 16);
990
991 /* "Double-extended- and quad-precision floating-point
992 parameters within the first 64 bytes of the parameter
993 list are always passed in general registers." */
449e1137
AC
994 }
995 else
996 {
38ca4e0c 997 if (len == 4)
449e1137 998 {
38ca4e0c
MK
999 /* "Single-precision (32-bit) floating-point scalar
1000 parameters are padded on the left with 32 bits of
1001 garbage (i.e., the floating-point value is in the
1002 least-significant 32 bits of a 64-bit storage
1003 unit)." */
1004 offset += 4;
449e1137 1005 }
38ca4e0c
MK
1006
1007 /* "Single- and double-precision floating-point
1008 parameters in this area are passed according to the
1009 available formal parameter information in a function
1010 prototype. [...] If no prototype is in scope,
1011 floating-point parameters must be passed both in the
1012 corresponding general registers and in the
1013 corresponding floating-point registers." */
1014 regnum = HPPA64_FP4_REGNUM + offset / 8;
1015
1016 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1017 {
38ca4e0c
MK
1018 /* "Single-precision floating-point parameters, when
1019 passed in floating-point registers, are passed in
1020 the right halves of the floating point registers;
1021 the left halves are unused." */
1022 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1023 len, value_contents (arg));
449e1137
AC
1024 }
1025 }
2f690297 1026 }
38ca4e0c 1027 else
2f690297 1028 {
38ca4e0c
MK
1029 if (len > 8)
1030 {
1031 /* "Aggregates larger than 8 bytes are aligned on a
1032 16-byte boundary, possibly leaving an unused argument
1033 slot, which is filled with garbage. If necessary,
1034 they are padded on the right (with garbage), to a
1035 multiple of 8 bytes." */
1036 offset = align_up (offset, 16);
1037 }
1038 }
1039
1218e655
RC
1040 /* If we are passing a function pointer, make sure we pass a function
1041 descriptor instead of the function entry address. */
1042 if (TYPE_CODE (type) == TYPE_CODE_PTR
1043 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1044 {
1045 ULONGEST codeptr, fptr;
1046
1047 codeptr = unpack_long (type, value_contents (arg));
1048 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1049 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1050 valbuf = fptrbuf;
1051 }
1052 else
1053 {
1054 valbuf = value_contents (arg);
1055 }
1056
38ca4e0c 1057 /* Always store the argument in memory. */
1218e655 1058 write_memory (sp + offset, valbuf, len);
38ca4e0c 1059
38ca4e0c
MK
1060 regnum = HPPA_ARG0_REGNUM - offset / 8;
1061 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1062 {
1063 regcache_cooked_write_part (regcache, regnum,
1064 offset % 8, min (len, 8), valbuf);
1065 offset += min (len, 8);
1066 valbuf += min (len, 8);
1067 len -= min (len, 8);
1068 regnum--;
2f690297 1069 }
38ca4e0c
MK
1070
1071 offset += len;
2f690297
AC
1072 }
1073
38ca4e0c
MK
1074 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1075 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1076
1077 /* Allocate the outgoing parameter area. Make sure the outgoing
1078 parameter area is multiple of 16 bytes in length. */
1079 sp += max (align_up (offset, 16), 64);
1080
1081 /* Allocate 32-bytes of scratch space. The documentation doesn't
1082 mention this, but it seems to be needed. */
1083 sp += 32;
1084
1085 /* Allocate the frame marker area. */
1086 sp += 16;
1087
1088 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1089 its address. */
2f690297 1090 if (struct_return)
38ca4e0c 1091 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1092
38ca4e0c 1093 /* Set up GR27 (%dp) to hold the global pointer (gp). */
77d18ded 1094 gp = tdep->find_global_pointer (function);
77d18ded 1095 if (gp != 0)
38ca4e0c 1096 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1097
38ca4e0c 1098 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1099 if (!gdbarch_push_dummy_code_p (gdbarch))
1100 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1101
38ca4e0c
MK
1102 /* Set up GR30 to hold the stack pointer (sp). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1104
38ca4e0c 1105 return sp;
2f690297 1106}
38ca4e0c 1107\f
2f690297 1108
08a27113
MK
1109/* Handle 32/64-bit struct return conventions. */
1110
1111static enum return_value_convention
1112hppa32_return_value (struct gdbarch *gdbarch,
1113 struct type *type, struct regcache *regcache,
e127f0db 1114 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1115{
1116 if (TYPE_LENGTH (type) <= 2 * 4)
1117 {
1118 /* The value always lives in the right hand end of the register
1119 (or register pair)? */
1120 int b;
1121 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1122 int part = TYPE_LENGTH (type) % 4;
1123 /* The left hand register contains only part of the value,
1124 transfer that first so that the rest can be xfered as entire
1125 4-byte registers. */
1126 if (part > 0)
1127 {
1128 if (readbuf != NULL)
1129 regcache_cooked_read_part (regcache, reg, 4 - part,
1130 part, readbuf);
1131 if (writebuf != NULL)
1132 regcache_cooked_write_part (regcache, reg, 4 - part,
1133 part, writebuf);
1134 reg++;
1135 }
1136 /* Now transfer the remaining register values. */
1137 for (b = part; b < TYPE_LENGTH (type); b += 4)
1138 {
1139 if (readbuf != NULL)
e127f0db 1140 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1141 if (writebuf != NULL)
e127f0db 1142 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1143 reg++;
1144 }
1145 return RETURN_VALUE_REGISTER_CONVENTION;
1146 }
1147 else
1148 return RETURN_VALUE_STRUCT_CONVENTION;
1149}
1150
1151static enum return_value_convention
1152hppa64_return_value (struct gdbarch *gdbarch,
1153 struct type *type, struct regcache *regcache,
e127f0db 1154 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1155{
1156 int len = TYPE_LENGTH (type);
1157 int regnum, offset;
1158
1159 if (len > 16)
1160 {
1161 /* All return values larget than 128 bits must be aggregate
1162 return values. */
9738b034
MK
1163 gdb_assert (!hppa64_integral_or_pointer_p (type));
1164 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1165
1166 /* "Aggregate return values larger than 128 bits are returned in
1167 a buffer allocated by the caller. The address of the buffer
1168 must be passed in GR 28." */
1169 return RETURN_VALUE_STRUCT_CONVENTION;
1170 }
1171
1172 if (hppa64_integral_or_pointer_p (type))
1173 {
1174 /* "Integral return values are returned in GR 28. Values
1175 smaller than 64 bits are padded on the left (with garbage)." */
1176 regnum = HPPA_RET0_REGNUM;
1177 offset = 8 - len;
1178 }
1179 else if (hppa64_floating_p (type))
1180 {
1181 if (len > 8)
1182 {
1183 /* "Double-extended- and quad-precision floating-point
1184 values are returned in GRs 28 and 29. The sign,
1185 exponent, and most-significant bits of the mantissa are
1186 returned in GR 28; the least-significant bits of the
1187 mantissa are passed in GR 29. For double-extended
1188 precision values, GR 29 is padded on the right with 48
1189 bits of garbage." */
1190 regnum = HPPA_RET0_REGNUM;
1191 offset = 0;
1192 }
1193 else
1194 {
1195 /* "Single-precision and double-precision floating-point
1196 return values are returned in FR 4R (single precision) or
1197 FR 4 (double-precision)." */
1198 regnum = HPPA64_FP4_REGNUM;
1199 offset = 8 - len;
1200 }
1201 }
1202 else
1203 {
1204 /* "Aggregate return values up to 64 bits in size are returned
1205 in GR 28. Aggregates smaller than 64 bits are left aligned
1206 in the register; the pad bits on the right are undefined."
1207
1208 "Aggregate return values between 65 and 128 bits are returned
1209 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1210 the remaining bits are placed, left aligned, in GR 29. The
1211 pad bits on the right of GR 29 (if any) are undefined." */
1212 regnum = HPPA_RET0_REGNUM;
1213 offset = 0;
1214 }
1215
1216 if (readbuf)
1217 {
08a27113
MK
1218 while (len > 0)
1219 {
1220 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1221 min (len, 8), readbuf);
1222 readbuf += min (len, 8);
08a27113
MK
1223 len -= min (len, 8);
1224 regnum++;
1225 }
1226 }
1227
1228 if (writebuf)
1229 {
08a27113
MK
1230 while (len > 0)
1231 {
1232 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1233 min (len, 8), writebuf);
1234 writebuf += min (len, 8);
08a27113
MK
1235 len -= min (len, 8);
1236 regnum++;
1237 }
1238 }
1239
1240 return RETURN_VALUE_REGISTER_CONVENTION;
1241}
1242\f
1243
d49771ef 1244static CORE_ADDR
a7aad9aa 1245hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1246 struct target_ops *targ)
1247{
1248 if (addr & 2)
1249 {
a7aad9aa
MK
1250 CORE_ADDR plabel = addr & ~3;
1251 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
d49771ef
RC
1252 }
1253
1254 return addr;
1255}
1256
1797a8f6
AC
1257static CORE_ADDR
1258hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1259{
1260 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1261 and not _bit_)! */
1262 return align_up (addr, 64);
1263}
1264
2f690297
AC
1265/* Force all frames to 16-byte alignment. Better safe than sorry. */
1266
1267static CORE_ADDR
1797a8f6 1268hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1269{
1270 /* Just always 16-byte align. */
1271 return align_up (addr, 16);
1272}
1273
cc72850f
MK
1274CORE_ADDR
1275hppa_read_pc (ptid_t ptid)
c906108c 1276{
cc72850f 1277 ULONGEST ipsw;
fe46cd3a 1278 CORE_ADDR pc;
c906108c 1279
cc72850f
MK
1280 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1281 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
fe46cd3a
RC
1282
1283 /* If the current instruction is nullified, then we are effectively
1284 still executing the previous instruction. Pretend we are still
cc72850f
MK
1285 there. This is needed when single stepping; if the nullified
1286 instruction is on a different line, we don't want GDB to think
1287 we've stepped onto that line. */
fe46cd3a
RC
1288 if (ipsw & 0x00200000)
1289 pc -= 4;
1290
cc72850f 1291 return pc & ~0x3;
c906108c
SS
1292}
1293
cc72850f
MK
1294void
1295hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
c906108c 1296{
cc72850f
MK
1297 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1298 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
c906108c
SS
1299}
1300
1301/* return the alignment of a type in bytes. Structures have the maximum
1302 alignment required by their fields. */
1303
1304static int
fba45db2 1305hppa_alignof (struct type *type)
c906108c
SS
1306{
1307 int max_align, align, i;
1308 CHECK_TYPEDEF (type);
1309 switch (TYPE_CODE (type))
1310 {
1311 case TYPE_CODE_PTR:
1312 case TYPE_CODE_INT:
1313 case TYPE_CODE_FLT:
1314 return TYPE_LENGTH (type);
1315 case TYPE_CODE_ARRAY:
1316 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1317 case TYPE_CODE_STRUCT:
1318 case TYPE_CODE_UNION:
1319 max_align = 1;
1320 for (i = 0; i < TYPE_NFIELDS (type); i++)
1321 {
1322 /* Bit fields have no real alignment. */
1323 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1324 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1325 {
1326 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1327 max_align = max (max_align, align);
1328 }
1329 }
1330 return max_align;
1331 default:
1332 return 4;
1333 }
1334}
1335
c906108c
SS
1336/* For the given instruction (INST), return any adjustment it makes
1337 to the stack pointer or zero for no adjustment.
1338
1339 This only handles instructions commonly found in prologues. */
1340
1341static int
fba45db2 1342prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1343{
1344 /* This must persist across calls. */
1345 static int save_high21;
1346
1347 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1348 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1349 return hppa_extract_14 (inst);
c906108c
SS
1350
1351 /* stwm X,D(sp) */
1352 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1353 return hppa_extract_14 (inst);
c906108c 1354
104c1213
JM
1355 /* std,ma X,D(sp) */
1356 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1357 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1358
e22b26cb 1359 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1360 save high bits in save_high21 for later use. */
e22b26cb 1361 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1362 {
abc485a1 1363 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1364 return 0;
1365 }
1366
1367 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1368 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1369
1370 /* fstws as used by the HP compilers. */
1371 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1372 return hppa_extract_5_load (inst);
c906108c
SS
1373
1374 /* No adjustment. */
1375 return 0;
1376}
1377
1378/* Return nonzero if INST is a branch of some kind, else return zero. */
1379
1380static int
fba45db2 1381is_branch (unsigned long inst)
c906108c
SS
1382{
1383 switch (inst >> 26)
1384 {
1385 case 0x20:
1386 case 0x21:
1387 case 0x22:
1388 case 0x23:
7be570e7 1389 case 0x27:
c906108c
SS
1390 case 0x28:
1391 case 0x29:
1392 case 0x2a:
1393 case 0x2b:
7be570e7 1394 case 0x2f:
c906108c
SS
1395 case 0x30:
1396 case 0x31:
1397 case 0x32:
1398 case 0x33:
1399 case 0x38:
1400 case 0x39:
1401 case 0x3a:
7be570e7 1402 case 0x3b:
c906108c
SS
1403 return 1;
1404
1405 default:
1406 return 0;
1407 }
1408}
1409
1410/* Return the register number for a GR which is saved by INST or
1411 zero it INST does not save a GR. */
1412
1413static int
fba45db2 1414inst_saves_gr (unsigned long inst)
c906108c
SS
1415{
1416 /* Does it look like a stw? */
7be570e7
JM
1417 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1418 || (inst >> 26) == 0x1f
1419 || ((inst >> 26) == 0x1f
1420 && ((inst >> 6) == 0xa)))
abc485a1 1421 return hppa_extract_5R_store (inst);
7be570e7
JM
1422
1423 /* Does it look like a std? */
1424 if ((inst >> 26) == 0x1c
1425 || ((inst >> 26) == 0x03
1426 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1427 return hppa_extract_5R_store (inst);
c906108c
SS
1428
1429 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1430 if ((inst >> 26) == 0x1b)
abc485a1 1431 return hppa_extract_5R_store (inst);
c906108c
SS
1432
1433 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1434 too. */
7be570e7
JM
1435 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1436 || ((inst >> 26) == 0x3
1437 && (((inst >> 6) & 0xf) == 0x8
1438 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1439 return hppa_extract_5R_store (inst);
c5aa993b 1440
c906108c
SS
1441 return 0;
1442}
1443
1444/* Return the register number for a FR which is saved by INST or
1445 zero it INST does not save a FR.
1446
1447 Note we only care about full 64bit register stores (that's the only
1448 kind of stores the prologue will use).
1449
1450 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1451
1452static int
fba45db2 1453inst_saves_fr (unsigned long inst)
c906108c 1454{
7be570e7 1455 /* is this an FSTD ? */
c906108c 1456 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1457 return hppa_extract_5r_store (inst);
7be570e7 1458 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1459 return hppa_extract_5R_store (inst);
7be570e7 1460 /* is this an FSTW ? */
c906108c 1461 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1462 return hppa_extract_5r_store (inst);
7be570e7 1463 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1464 return hppa_extract_5R_store (inst);
c906108c
SS
1465 return 0;
1466}
1467
1468/* Advance PC across any function entry prologue instructions
1469 to reach some "real" code.
1470
1471 Use information in the unwind table to determine what exactly should
1472 be in the prologue. */
1473
1474
a71f8c30
RC
1475static CORE_ADDR
1476skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1477{
1478 char buf[4];
1479 CORE_ADDR orig_pc = pc;
1480 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1481 unsigned long args_stored, status, i, restart_gr, restart_fr;
1482 struct unwind_table_entry *u;
a71f8c30 1483 int final_iteration;
c906108c
SS
1484
1485 restart_gr = 0;
1486 restart_fr = 0;
1487
1488restart:
1489 u = find_unwind_entry (pc);
1490 if (!u)
1491 return pc;
1492
c5aa993b 1493 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1494 if ((pc & ~0x3) != u->region_start)
1495 return pc;
1496
1497 /* This is how much of a frame adjustment we need to account for. */
1498 stack_remaining = u->Total_frame_size << 3;
1499
1500 /* Magic register saves we want to know about. */
1501 save_rp = u->Save_RP;
1502 save_sp = u->Save_SP;
1503
1504 /* An indication that args may be stored into the stack. Unfortunately
1505 the HPUX compilers tend to set this in cases where no args were
1506 stored too!. */
1507 args_stored = 1;
1508
1509 /* Turn the Entry_GR field into a bitmask. */
1510 save_gr = 0;
1511 for (i = 3; i < u->Entry_GR + 3; i++)
1512 {
1513 /* Frame pointer gets saved into a special location. */
eded0a31 1514 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1515 continue;
1516
1517 save_gr |= (1 << i);
1518 }
1519 save_gr &= ~restart_gr;
1520
1521 /* Turn the Entry_FR field into a bitmask too. */
1522 save_fr = 0;
1523 for (i = 12; i < u->Entry_FR + 12; i++)
1524 save_fr |= (1 << i);
1525 save_fr &= ~restart_fr;
1526
a71f8c30
RC
1527 final_iteration = 0;
1528
c906108c
SS
1529 /* Loop until we find everything of interest or hit a branch.
1530
1531 For unoptimized GCC code and for any HP CC code this will never ever
1532 examine any user instructions.
1533
1534 For optimzied GCC code we're faced with problems. GCC will schedule
1535 its prologue and make prologue instructions available for delay slot
1536 filling. The end result is user code gets mixed in with the prologue
1537 and a prologue instruction may be in the delay slot of the first branch
1538 or call.
1539
1540 Some unexpected things are expected with debugging optimized code, so
1541 we allow this routine to walk past user instructions in optimized
1542 GCC code. */
1543 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1544 || args_stored)
1545 {
1546 unsigned int reg_num;
1547 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1548 unsigned long old_save_rp, old_save_sp, next_inst;
1549
1550 /* Save copies of all the triggers so we can compare them later
c5aa993b 1551 (only for HPC). */
c906108c
SS
1552 old_save_gr = save_gr;
1553 old_save_fr = save_fr;
1554 old_save_rp = save_rp;
1555 old_save_sp = save_sp;
1556 old_stack_remaining = stack_remaining;
1557
1f602b35 1558 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1559 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1560
c906108c
SS
1561 /* Yow! */
1562 if (status != 0)
1563 return pc;
1564
1565 /* Note the interesting effects of this instruction. */
1566 stack_remaining -= prologue_inst_adjust_sp (inst);
1567
7be570e7
JM
1568 /* There are limited ways to store the return pointer into the
1569 stack. */
c4c79048 1570 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1571 save_rp = 0;
1572
104c1213 1573 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1574 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1575 if ((inst & 0xffffc000) == 0x6fc10000
1576 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1577 save_sp = 0;
1578
6426a772
JM
1579 /* Are we loading some register with an offset from the argument
1580 pointer? */
1581 if ((inst & 0xffe00000) == 0x37a00000
1582 || (inst & 0xffffffe0) == 0x081d0240)
1583 {
1584 pc += 4;
1585 continue;
1586 }
1587
c906108c
SS
1588 /* Account for general and floating-point register saves. */
1589 reg_num = inst_saves_gr (inst);
1590 save_gr &= ~(1 << reg_num);
1591
1592 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1593 Unfortunately args_stored only tells us that some arguments
1594 where stored into the stack. Not how many or what kind!
c906108c 1595
c5aa993b
JM
1596 This is a kludge as on the HP compiler sets this bit and it
1597 never does prologue scheduling. So once we see one, skip past
1598 all of them. We have similar code for the fp arg stores below.
c906108c 1599
c5aa993b
JM
1600 FIXME. Can still die if we have a mix of GR and FR argument
1601 stores! */
6426a772 1602 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1603 {
6426a772 1604 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1605 {
1606 pc += 4;
1f602b35 1607 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1608 inst = extract_unsigned_integer (buf, 4);
1609 if (status != 0)
1610 return pc;
1611 reg_num = inst_saves_gr (inst);
1612 }
1613 args_stored = 0;
1614 continue;
1615 }
1616
1617 reg_num = inst_saves_fr (inst);
1618 save_fr &= ~(1 << reg_num);
1619
1f602b35 1620 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1621 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1622
c906108c
SS
1623 /* Yow! */
1624 if (status != 0)
1625 return pc;
1626
1627 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1628 save. */
c906108c
SS
1629 if ((inst & 0xfc000000) == 0x34000000
1630 && inst_saves_fr (next_inst) >= 4
6426a772 1631 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1632 {
1633 /* So we drop into the code below in a reasonable state. */
1634 reg_num = inst_saves_fr (next_inst);
1635 pc -= 4;
1636 }
1637
1638 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1639 This is a kludge as on the HP compiler sets this bit and it
1640 never does prologue scheduling. So once we see one, skip past
1641 all of them. */
6426a772 1642 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1643 {
6426a772 1644 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1645 {
1646 pc += 8;
1f602b35 1647 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1648 inst = extract_unsigned_integer (buf, 4);
1649 if (status != 0)
1650 return pc;
1651 if ((inst & 0xfc000000) != 0x34000000)
1652 break;
1f602b35 1653 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1654 next_inst = extract_unsigned_integer (buf, 4);
1655 if (status != 0)
1656 return pc;
1657 reg_num = inst_saves_fr (next_inst);
1658 }
1659 args_stored = 0;
1660 continue;
1661 }
1662
1663 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1664 instruction is in the delay slot of the first call/branch. */
a71f8c30 1665 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1666 break;
1667
1668 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1669 arguments were stored into the stack (boo hiss). This could
1670 cause this code to then skip a bunch of user insns (up to the
1671 first branch).
1672
1673 To combat this we try to identify when args_stored was bogusly
1674 set and clear it. We only do this when args_stored is nonzero,
1675 all other resources are accounted for, and nothing changed on
1676 this pass. */
c906108c 1677 if (args_stored
c5aa993b 1678 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1679 && old_save_gr == save_gr && old_save_fr == save_fr
1680 && old_save_rp == save_rp && old_save_sp == save_sp
1681 && old_stack_remaining == stack_remaining)
1682 break;
c5aa993b 1683
c906108c
SS
1684 /* Bump the PC. */
1685 pc += 4;
a71f8c30
RC
1686
1687 /* !stop_before_branch, so also look at the insn in the delay slot
1688 of the branch. */
1689 if (final_iteration)
1690 break;
1691 if (is_branch (inst))
1692 final_iteration = 1;
c906108c
SS
1693 }
1694
1695 /* We've got a tenative location for the end of the prologue. However
1696 because of limitations in the unwind descriptor mechanism we may
1697 have went too far into user code looking for the save of a register
1698 that does not exist. So, if there registers we expected to be saved
1699 but never were, mask them out and restart.
1700
1701 This should only happen in optimized code, and should be very rare. */
c5aa993b 1702 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1703 {
1704 pc = orig_pc;
1705 restart_gr = save_gr;
1706 restart_fr = save_fr;
1707 goto restart;
1708 }
1709
1710 return pc;
1711}
1712
1713
7be570e7
JM
1714/* Return the address of the PC after the last prologue instruction if
1715 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1716
1717static CORE_ADDR
fba45db2 1718after_prologue (CORE_ADDR pc)
c906108c
SS
1719{
1720 struct symtab_and_line sal;
1721 CORE_ADDR func_addr, func_end;
1722 struct symbol *f;
1723
7be570e7
JM
1724 /* If we can not find the symbol in the partial symbol table, then
1725 there is no hope we can determine the function's start address
1726 with this code. */
c906108c 1727 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1728 return 0;
c906108c 1729
7be570e7 1730 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1731 sal = find_pc_line (func_addr, 0);
1732
7be570e7
JM
1733 /* There are only two cases to consider. First, the end of the source line
1734 is within the function bounds. In that case we return the end of the
1735 source line. Second is the end of the source line extends beyond the
1736 bounds of the current function. We need to use the slow code to
1737 examine instructions in that case.
c906108c 1738
7be570e7
JM
1739 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1740 the wrong thing to do. In fact, it should be entirely possible for this
1741 function to always return zero since the slow instruction scanning code
1742 is supposed to *always* work. If it does not, then it is a bug. */
1743 if (sal.end < func_end)
1744 return sal.end;
c5aa993b 1745 else
7be570e7 1746 return 0;
c906108c
SS
1747}
1748
1749/* To skip prologues, I use this predicate. Returns either PC itself
1750 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1751 returns an address that (if we're lucky) follows the prologue.
1752
1753 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1754 It doesn't necessarily skips all the insns in the prologue. In fact
1755 we might not want to skip all the insns because a prologue insn may
1756 appear in the delay slot of the first branch, and we don't want to
1757 skip over the branch in that case. */
c906108c 1758
8d153463 1759static CORE_ADDR
fba45db2 1760hppa_skip_prologue (CORE_ADDR pc)
c906108c 1761{
c5aa993b
JM
1762 unsigned long inst;
1763 int offset;
1764 CORE_ADDR post_prologue_pc;
1765 char buf[4];
c906108c 1766
c5aa993b
JM
1767 /* See if we can determine the end of the prologue via the symbol table.
1768 If so, then return either PC, or the PC after the prologue, whichever
1769 is greater. */
c906108c 1770
c5aa993b 1771 post_prologue_pc = after_prologue (pc);
c906108c 1772
7be570e7
JM
1773 /* If after_prologue returned a useful address, then use it. Else
1774 fall back on the instruction skipping code.
1775
1776 Some folks have claimed this causes problems because the breakpoint
1777 may be the first instruction of the prologue. If that happens, then
1778 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1779 if (post_prologue_pc != 0)
1780 return max (pc, post_prologue_pc);
c5aa993b 1781 else
a71f8c30 1782 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1783}
1784
26d08f08
AC
1785struct hppa_frame_cache
1786{
1787 CORE_ADDR base;
1788 struct trad_frame_saved_reg *saved_regs;
1789};
1790
1791static struct hppa_frame_cache *
1792hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1793{
1794 struct hppa_frame_cache *cache;
1795 long saved_gr_mask;
1796 long saved_fr_mask;
1797 CORE_ADDR this_sp;
1798 long frame_size;
1799 struct unwind_table_entry *u;
9f7194c3 1800 CORE_ADDR prologue_end;
50b2f48a 1801 int fp_in_r1 = 0;
26d08f08
AC
1802 int i;
1803
369aa520
RC
1804 if (hppa_debug)
1805 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1806 frame_relative_level(next_frame));
1807
26d08f08 1808 if ((*this_cache) != NULL)
369aa520
RC
1809 {
1810 if (hppa_debug)
1811 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1812 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1813 return (*this_cache);
1814 }
26d08f08
AC
1815 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1816 (*this_cache) = cache;
1817 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1818
1819 /* Yow! */
d5c27f81 1820 u = find_unwind_entry (frame_pc_unwind (next_frame));
26d08f08 1821 if (!u)
369aa520
RC
1822 {
1823 if (hppa_debug)
1824 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1825 return (*this_cache);
1826 }
26d08f08
AC
1827
1828 /* Turn the Entry_GR field into a bitmask. */
1829 saved_gr_mask = 0;
1830 for (i = 3; i < u->Entry_GR + 3; i++)
1831 {
1832 /* Frame pointer gets saved into a special location. */
eded0a31 1833 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1834 continue;
1835
1836 saved_gr_mask |= (1 << i);
1837 }
1838
1839 /* Turn the Entry_FR field into a bitmask too. */
1840 saved_fr_mask = 0;
1841 for (i = 12; i < u->Entry_FR + 12; i++)
1842 saved_fr_mask |= (1 << i);
1843
1844 /* Loop until we find everything of interest or hit a branch.
1845
1846 For unoptimized GCC code and for any HP CC code this will never ever
1847 examine any user instructions.
1848
1849 For optimized GCC code we're faced with problems. GCC will schedule
1850 its prologue and make prologue instructions available for delay slot
1851 filling. The end result is user code gets mixed in with the prologue
1852 and a prologue instruction may be in the delay slot of the first branch
1853 or call.
1854
1855 Some unexpected things are expected with debugging optimized code, so
1856 we allow this routine to walk past user instructions in optimized
1857 GCC code. */
1858 {
1859 int final_iteration = 0;
46acf081 1860 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1861 int looking_for_sp = u->Save_SP;
1862 int looking_for_rp = u->Save_RP;
1863 int fp_loc = -1;
9f7194c3 1864
a71f8c30 1865 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1866 skip_prologue_using_sal, in case we stepped into a function without
1867 symbol information. hppa_skip_prologue also bounds the returned
1868 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1869 function.
1870
1871 We used to call hppa_skip_prologue to find the end of the prologue,
1872 but if some non-prologue instructions get scheduled into the prologue,
1873 and the program is compiled with debug information, the "easy" way
1874 in hppa_skip_prologue will return a prologue end that is too early
1875 for us to notice any potential frame adjustments. */
d5c27f81
RC
1876
1877 /* We used to use frame_func_unwind () to locate the beginning of the
1878 function to pass to skip_prologue (). However, when objects are
1879 compiled without debug symbols, frame_func_unwind can return the wrong
46acf081
RC
1880 function (or 0). We can do better than that by using unwind records.
1881 This only works if the Region_description of the unwind record
1882 indicates that it includes the entry point of the function.
1883 HP compilers sometimes generate unwind records for regions that
1884 do not include the entry or exit point of a function. GNU tools
1885 do not do this. */
1886
1887 if ((u->Region_description & 0x2) == 0)
1888 start_pc = u->region_start;
1889 else
1890 start_pc = frame_func_unwind (next_frame);
d5c27f81 1891
46acf081 1892 prologue_end = skip_prologue_hard_way (start_pc, 0);
9f7194c3
RC
1893 end_pc = frame_pc_unwind (next_frame);
1894
1895 if (prologue_end != 0 && end_pc > prologue_end)
1896 end_pc = prologue_end;
1897
26d08f08 1898 frame_size = 0;
9f7194c3 1899
46acf081 1900 for (pc = start_pc;
26d08f08
AC
1901 ((saved_gr_mask || saved_fr_mask
1902 || looking_for_sp || looking_for_rp
1903 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1904 && pc < end_pc);
26d08f08
AC
1905 pc += 4)
1906 {
1907 int reg;
1908 char buf4[4];
4a302917
RC
1909 long inst;
1910
1911 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1912 sizeof buf4))
1913 {
8a3fe4f8 1914 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
4a302917
RC
1915 return (*this_cache);
1916 }
1917
1918 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1919
26d08f08
AC
1920 /* Note the interesting effects of this instruction. */
1921 frame_size += prologue_inst_adjust_sp (inst);
1922
1923 /* There are limited ways to store the return pointer into the
1924 stack. */
1925 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1926 {
1927 looking_for_rp = 0;
34f75cc1 1928 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1929 }
dfaf8edb
MK
1930 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1931 {
1932 looking_for_rp = 0;
1933 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1934 }
c4c79048
RC
1935 else if (inst == 0x0fc212c1
1936 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
1937 {
1938 looking_for_rp = 0;
34f75cc1 1939 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1940 }
1941
1942 /* Check to see if we saved SP into the stack. This also
1943 happens to indicate the location of the saved frame
1944 pointer. */
1945 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1946 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1947 {
1948 looking_for_sp = 0;
eded0a31 1949 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1950 }
50b2f48a
RC
1951 else if (inst == 0x08030241) /* copy %r3, %r1 */
1952 {
1953 fp_in_r1 = 1;
1954 }
26d08f08
AC
1955
1956 /* Account for general and floating-point register saves. */
1957 reg = inst_saves_gr (inst);
1958 if (reg >= 3 && reg <= 18
eded0a31 1959 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1960 {
1961 saved_gr_mask &= ~(1 << reg);
abc485a1 1962 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1963 /* stwm with a positive displacement is a _post_
1964 _modify_. */
1965 cache->saved_regs[reg].addr = 0;
1966 else if ((inst & 0xfc00000c) == 0x70000008)
1967 /* A std has explicit post_modify forms. */
1968 cache->saved_regs[reg].addr = 0;
1969 else
1970 {
1971 CORE_ADDR offset;
1972
1973 if ((inst >> 26) == 0x1c)
1974 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1975 else if ((inst >> 26) == 0x03)
abc485a1 1976 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1977 else
abc485a1 1978 offset = hppa_extract_14 (inst);
26d08f08
AC
1979
1980 /* Handle code with and without frame pointers. */
1981 if (u->Save_SP)
1982 cache->saved_regs[reg].addr = offset;
1983 else
1984 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1985 }
1986 }
1987
1988 /* GCC handles callee saved FP regs a little differently.
1989
1990 It emits an instruction to put the value of the start of
1991 the FP store area into %r1. It then uses fstds,ma with a
1992 basereg of %r1 for the stores.
1993
1994 HP CC emits them at the current stack pointer modifying the
1995 stack pointer as it stores each register. */
1996
1997 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1998 if ((inst & 0xffffc000) == 0x34610000
1999 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2000 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2001
2002 reg = inst_saves_fr (inst);
2003 if (reg >= 12 && reg <= 21)
2004 {
2005 /* Note +4 braindamage below is necessary because the FP
2006 status registers are internally 8 registers rather than
2007 the expected 4 registers. */
2008 saved_fr_mask &= ~(1 << reg);
2009 if (fp_loc == -1)
2010 {
2011 /* 1st HP CC FP register store. After this
2012 instruction we've set enough state that the GCC and
2013 HPCC code are both handled in the same manner. */
34f75cc1 2014 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2015 fp_loc = 8;
2016 }
2017 else
2018 {
eded0a31 2019 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2020 fp_loc += 8;
2021 }
2022 }
2023
2024 /* Quit if we hit any kind of branch the previous iteration. */
2025 if (final_iteration)
2026 break;
2027 /* We want to look precisely one instruction beyond the branch
2028 if we have not found everything yet. */
2029 if (is_branch (inst))
2030 final_iteration = 1;
2031 }
2032 }
2033
2034 {
2035 /* The frame base always represents the value of %sp at entry to
2036 the current function (and is thus equivalent to the "saved"
2037 stack pointer. */
eded0a31 2038 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 2039 CORE_ADDR fp;
9f7194c3
RC
2040
2041 if (hppa_debug)
2042 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2043 "prologue_end=0x%s) ",
2044 paddr_nz (this_sp),
2045 paddr_nz (frame_pc_unwind (next_frame)),
2046 paddr_nz (prologue_end));
2047
ed70ba00
RC
2048 /* Check to see if a frame pointer is available, and use it for
2049 frame unwinding if it is.
2050
2051 There are some situations where we need to rely on the frame
2052 pointer to do stack unwinding. For example, if a function calls
2053 alloca (), the stack pointer can get adjusted inside the body of
2054 the function. In this case, the ABI requires that the compiler
2055 maintain a frame pointer for the function.
2056
2057 The unwind record has a flag (alloca_frame) that indicates that
2058 a function has a variable frame; unfortunately, gcc/binutils
2059 does not set this flag. Instead, whenever a frame pointer is used
2060 and saved on the stack, the Save_SP flag is set. We use this to
2061 decide whether to use the frame pointer for unwinding.
2062
ed70ba00
RC
2063 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2064 instead of Save_SP. */
2065
2066 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
46acf081 2067
6fcecea0 2068 if (u->alloca_frame)
46acf081 2069 fp -= u->Total_frame_size << 3;
ed70ba00
RC
2070
2071 if (frame_pc_unwind (next_frame) >= prologue_end
6fcecea0 2072 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2073 {
2074 cache->base = fp;
2075
2076 if (hppa_debug)
9ed5ba24 2077 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
ed70ba00
RC
2078 paddr_nz (cache->base));
2079 }
1658da49
RC
2080 else if (u->Save_SP
2081 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2082 {
9f7194c3
RC
2083 /* Both we're expecting the SP to be saved and the SP has been
2084 saved. The entry SP value is saved at this frame's SP
2085 address. */
2086 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2087
2088 if (hppa_debug)
9ed5ba24 2089 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
9f7194c3 2090 paddr_nz (cache->base));
9f7194c3 2091 }
26d08f08 2092 else
9f7194c3 2093 {
1658da49
RC
2094 /* The prologue has been slowly allocating stack space. Adjust
2095 the SP back. */
2096 cache->base = this_sp - frame_size;
9f7194c3 2097 if (hppa_debug)
9ed5ba24 2098 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
9f7194c3
RC
2099 paddr_nz (cache->base));
2100
2101 }
eded0a31 2102 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2103 }
2104
412275d5
AC
2105 /* The PC is found in the "return register", "Millicode" uses "r31"
2106 as the return register while normal code uses "rp". */
26d08f08 2107 if (u->Millicode)
9f7194c3 2108 {
5859efe5 2109 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2110 {
2111 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2112 if (hppa_debug)
2113 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2114 }
9f7194c3
RC
2115 else
2116 {
2117 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 2118 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2119 if (hppa_debug)
2120 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2121 }
2122 }
26d08f08 2123 else
9f7194c3 2124 {
34f75cc1 2125 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2126 {
2127 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2128 cache->saved_regs[HPPA_RP_REGNUM];
2129 if (hppa_debug)
2130 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2131 }
9f7194c3
RC
2132 else
2133 {
34f75cc1
RC
2134 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2135 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2136 if (hppa_debug)
2137 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2138 }
2139 }
26d08f08 2140
50b2f48a
RC
2141 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2142 frame. However, there is a one-insn window where we haven't saved it
2143 yet, but we've already clobbered it. Detect this case and fix it up.
2144
2145 The prologue sequence for frame-pointer functions is:
2146 0: stw %rp, -20(%sp)
2147 4: copy %r3, %r1
2148 8: copy %sp, %r3
2149 c: stw,ma %r1, XX(%sp)
2150
2151 So if we are at offset c, the r3 value that we want is not yet saved
2152 on the stack, but it's been overwritten. The prologue analyzer will
2153 set fp_in_r1 when it sees the copy insn so we know to get the value
2154 from r1 instead. */
2155 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2156 && fp_in_r1)
2157 {
2158 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2159 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2160 }
1658da49 2161
26d08f08
AC
2162 {
2163 /* Convert all the offsets into addresses. */
2164 int reg;
2165 for (reg = 0; reg < NUM_REGS; reg++)
2166 {
2167 if (trad_frame_addr_p (cache->saved_regs, reg))
2168 cache->saved_regs[reg].addr += cache->base;
2169 }
2170 }
2171
f77a2124
RC
2172 {
2173 struct gdbarch *gdbarch;
2174 struct gdbarch_tdep *tdep;
2175
2176 gdbarch = get_frame_arch (next_frame);
2177 tdep = gdbarch_tdep (gdbarch);
2178
2179 if (tdep->unwind_adjust_stub)
2180 {
2181 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2182 }
2183 }
2184
369aa520
RC
2185 if (hppa_debug)
2186 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2187 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2188 return (*this_cache);
2189}
2190
2191static void
2192hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2193 struct frame_id *this_id)
2194{
d5c27f81
RC
2195 struct hppa_frame_cache *info;
2196 CORE_ADDR pc = frame_pc_unwind (next_frame);
2197 struct unwind_table_entry *u;
2198
2199 info = hppa_frame_cache (next_frame, this_cache);
2200 u = find_unwind_entry (pc);
2201
2202 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2203}
2204
2205static void
2206hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
2207 void **this_cache,
2208 int regnum, int *optimizedp,
2209 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2210 int *realnump, gdb_byte *valuep)
26d08f08
AC
2211{
2212 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
2213 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2214 optimizedp, lvalp, addrp, realnump, valuep);
2215}
2216
2217static const struct frame_unwind hppa_frame_unwind =
2218{
2219 NORMAL_FRAME,
2220 hppa_frame_this_id,
2221 hppa_frame_prev_register
2222};
2223
2224static const struct frame_unwind *
2225hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2226{
2227 CORE_ADDR pc = frame_pc_unwind (next_frame);
2228
2229 if (find_unwind_entry (pc))
2230 return &hppa_frame_unwind;
2231
2232 return NULL;
2233}
2234
2235/* This is a generic fallback frame unwinder that kicks in if we fail all
2236 the other ones. Normally we would expect the stub and regular unwinder
2237 to work, but in some cases we might hit a function that just doesn't
2238 have any unwind information available. In this case we try to do
2239 unwinding solely based on code reading. This is obviously going to be
2240 slow, so only use this as a last resort. Currently this will only
2241 identify the stack and pc for the frame. */
2242
2243static struct hppa_frame_cache *
2244hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2245{
2246 struct hppa_frame_cache *cache;
4ba6a975
MK
2247 unsigned int frame_size = 0;
2248 int found_rp = 0;
2249 CORE_ADDR start_pc;
0da28f8a 2250
d5c27f81 2251 if (hppa_debug)
4ba6a975
MK
2252 fprintf_unfiltered (gdb_stdlog,
2253 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2254 frame_relative_level (next_frame));
d5c27f81 2255
0da28f8a
RC
2256 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2257 (*this_cache) = cache;
2258 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2259
4ba6a975
MK
2260 start_pc = frame_func_unwind (next_frame);
2261 if (start_pc)
0da28f8a 2262 {
4ba6a975
MK
2263 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2264 CORE_ADDR pc;
0da28f8a 2265
4ba6a975
MK
2266 for (pc = start_pc; pc < cur_pc; pc += 4)
2267 {
2268 unsigned int insn;
0da28f8a 2269
4ba6a975
MK
2270 insn = read_memory_unsigned_integer (pc, 4);
2271 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2272
4ba6a975
MK
2273 /* There are limited ways to store the return pointer into the
2274 stack. */
2275 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2276 {
2277 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2278 found_rp = 1;
2279 }
c4c79048
RC
2280 else if (insn == 0x0fc212c1
2281 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2282 {
2283 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2284 found_rp = 1;
2285 }
2286 }
412275d5 2287 }
0da28f8a 2288
d5c27f81 2289 if (hppa_debug)
4ba6a975
MK
2290 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2291 frame_size, found_rp);
d5c27f81 2292
4ba6a975
MK
2293 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2294 cache->base -= frame_size;
6d1be3f1 2295 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2296
2297 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2298 {
2299 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2300 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2301 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2302 }
412275d5
AC
2303 else
2304 {
4ba6a975
MK
2305 ULONGEST rp;
2306 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
0da28f8a 2307 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2308 }
0da28f8a
RC
2309
2310 return cache;
26d08f08
AC
2311}
2312
0da28f8a
RC
2313static void
2314hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2315 struct frame_id *this_id)
2316{
2317 struct hppa_frame_cache *info =
2318 hppa_fallback_frame_cache (next_frame, this_cache);
2319 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2320}
2321
2322static void
2323hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2324 void **this_cache,
2325 int regnum, int *optimizedp,
2326 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2327 int *realnump, gdb_byte *valuep)
0da28f8a
RC
2328{
2329 struct hppa_frame_cache *info =
2330 hppa_fallback_frame_cache (next_frame, this_cache);
2331 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2332 optimizedp, lvalp, addrp, realnump, valuep);
2333}
2334
2335static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2336{
2337 NORMAL_FRAME,
0da28f8a
RC
2338 hppa_fallback_frame_this_id,
2339 hppa_fallback_frame_prev_register
26d08f08
AC
2340};
2341
2342static const struct frame_unwind *
0da28f8a 2343hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2344{
0da28f8a 2345 return &hppa_fallback_frame_unwind;
26d08f08
AC
2346}
2347
7f07c5b6
RC
2348/* Stub frames, used for all kinds of call stubs. */
2349struct hppa_stub_unwind_cache
2350{
2351 CORE_ADDR base;
2352 struct trad_frame_saved_reg *saved_regs;
2353};
2354
2355static struct hppa_stub_unwind_cache *
2356hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2357 void **this_cache)
2358{
2359 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2360 struct hppa_stub_unwind_cache *info;
22b0923d 2361 struct unwind_table_entry *u;
7f07c5b6
RC
2362
2363 if (*this_cache)
2364 return *this_cache;
2365
2366 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2367 *this_cache = info;
2368 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2369
7f07c5b6
RC
2370 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2371
090ccbb7 2372 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2373 {
2374 /* HPUX uses export stubs in function calls; the export stub clobbers
2375 the return value of the caller, and, later restores it from the
2376 stack. */
2377 u = find_unwind_entry (frame_pc_unwind (next_frame));
2378
2379 if (u && u->stub_unwind.stub_type == EXPORT)
2380 {
2381 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2382
2383 return info;
2384 }
2385 }
2386
2387 /* By default we assume that stubs do not change the rp. */
2388 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2389
7f07c5b6
RC
2390 return info;
2391}
2392
2393static void
2394hppa_stub_frame_this_id (struct frame_info *next_frame,
2395 void **this_prologue_cache,
2396 struct frame_id *this_id)
2397{
2398 struct hppa_stub_unwind_cache *info
2399 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2400
2401 if (info)
2402 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2403 else
2404 *this_id = null_frame_id;
7f07c5b6
RC
2405}
2406
2407static void
2408hppa_stub_frame_prev_register (struct frame_info *next_frame,
2409 void **this_prologue_cache,
2410 int regnum, int *optimizedp,
2411 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2412 int *realnump, gdb_byte *valuep)
7f07c5b6
RC
2413{
2414 struct hppa_stub_unwind_cache *info
2415 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2416
2417 if (info)
2418 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2419 optimizedp, lvalp, addrp, realnump,
2420 valuep);
2421 else
8a3fe4f8 2422 error (_("Requesting registers from null frame."));
7f07c5b6
RC
2423}
2424
2425static const struct frame_unwind hppa_stub_frame_unwind = {
2426 NORMAL_FRAME,
2427 hppa_stub_frame_this_id,
2428 hppa_stub_frame_prev_register
2429};
2430
2431static const struct frame_unwind *
2432hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2433{
2434 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2435 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2436 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2437
6d1be3f1 2438 if (pc == 0
84674fe1
AC
2439 || (tdep->in_solib_call_trampoline != NULL
2440 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2441 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2442 return &hppa_stub_frame_unwind;
2443 return NULL;
2444}
2445
26d08f08
AC
2446static struct frame_id
2447hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2448{
2449 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2450 HPPA_SP_REGNUM),
26d08f08
AC
2451 frame_pc_unwind (next_frame));
2452}
2453
cc72850f 2454CORE_ADDR
26d08f08
AC
2455hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2456{
fe46cd3a
RC
2457 ULONGEST ipsw;
2458 CORE_ADDR pc;
2459
cc72850f
MK
2460 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2461 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2462
2463 /* If the current instruction is nullified, then we are effectively
2464 still executing the previous instruction. Pretend we are still
cc72850f
MK
2465 there. This is needed when single stepping; if the nullified
2466 instruction is on a different line, we don't want GDB to think
2467 we've stepped onto that line. */
fe46cd3a
RC
2468 if (ipsw & 0x00200000)
2469 pc -= 4;
2470
cc72850f 2471 return pc & ~0x3;
26d08f08
AC
2472}
2473
ff644745
JB
2474/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2475 Return NULL if no such symbol was found. */
2476
2477struct minimal_symbol *
2478hppa_lookup_stub_minimal_symbol (const char *name,
2479 enum unwind_stub_types stub_type)
2480{
2481 struct objfile *objfile;
2482 struct minimal_symbol *msym;
2483
2484 ALL_MSYMBOLS (objfile, msym)
2485 {
2486 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2487 {
2488 struct unwind_table_entry *u;
2489
2490 u = find_unwind_entry (SYMBOL_VALUE (msym));
2491 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2492 return msym;
2493 }
2494 }
2495
2496 return NULL;
2497}
2498
c906108c 2499static void
fba45db2 2500unwind_command (char *exp, int from_tty)
c906108c
SS
2501{
2502 CORE_ADDR address;
2503 struct unwind_table_entry *u;
2504
2505 /* If we have an expression, evaluate it and use it as the address. */
2506
2507 if (exp != 0 && *exp != 0)
2508 address = parse_and_eval_address (exp);
2509 else
2510 return;
2511
2512 u = find_unwind_entry (address);
2513
2514 if (!u)
2515 {
2516 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2517 return;
2518 }
2519
99d64d77 2520 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
c906108c
SS
2521
2522 printf_unfiltered ("\tregion_start = ");
2523 print_address (u->region_start, gdb_stdout);
d5c27f81 2524 gdb_flush (gdb_stdout);
c906108c
SS
2525
2526 printf_unfiltered ("\n\tregion_end = ");
2527 print_address (u->region_end, gdb_stdout);
d5c27f81 2528 gdb_flush (gdb_stdout);
c906108c 2529
c906108c 2530#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2531
2532 printf_unfiltered ("\n\tflags =");
2533 pif (Cannot_unwind);
2534 pif (Millicode);
2535 pif (Millicode_save_sr0);
2536 pif (Entry_SR);
2537 pif (Args_stored);
2538 pif (Variable_Frame);
2539 pif (Separate_Package_Body);
2540 pif (Frame_Extension_Millicode);
2541 pif (Stack_Overflow_Check);
2542 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2543 pif (sr4export);
2544 pif (cxx_info);
2545 pif (cxx_try_catch);
2546 pif (sched_entry_seq);
c906108c
SS
2547 pif (Save_SP);
2548 pif (Save_RP);
2549 pif (Save_MRP_in_frame);
6fcecea0 2550 pif (save_r19);
c906108c
SS
2551 pif (Cleanup_defined);
2552 pif (MPE_XL_interrupt_marker);
2553 pif (HP_UX_interrupt_marker);
2554 pif (Large_frame);
6fcecea0 2555 pif (alloca_frame);
c906108c
SS
2556
2557 putchar_unfiltered ('\n');
2558
c906108c 2559#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2560
2561 pin (Region_description);
2562 pin (Entry_FR);
2563 pin (Entry_GR);
2564 pin (Total_frame_size);
57dac9e1
RC
2565
2566 if (u->stub_unwind.stub_type)
2567 {
2568 printf_unfiltered ("\tstub type = ");
2569 switch (u->stub_unwind.stub_type)
2570 {
2571 case LONG_BRANCH:
2572 printf_unfiltered ("long branch\n");
2573 break;
2574 case PARAMETER_RELOCATION:
2575 printf_unfiltered ("parameter relocation\n");
2576 break;
2577 case EXPORT:
2578 printf_unfiltered ("export\n");
2579 break;
2580 case IMPORT:
2581 printf_unfiltered ("import\n");
2582 break;
2583 case IMPORT_SHLIB:
2584 printf_unfiltered ("import shlib\n");
2585 break;
2586 default:
2587 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2588 }
2589 }
c906108c 2590}
c906108c 2591
d709c020
JB
2592int
2593hppa_pc_requires_run_before_use (CORE_ADDR pc)
2594{
2595 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2596
2597 An example of this occurs when an a.out is linked against a foo.sl.
2598 The foo.sl defines a global bar(), and the a.out declares a signature
2599 for bar(). However, the a.out doesn't directly call bar(), but passes
2600 its address in another call.
2601
2602 If you have this scenario and attempt to "break bar" before running,
2603 gdb will find a minimal symbol for bar() in the a.out. But that
2604 symbol's address will be negative. What this appears to denote is
2605 an index backwards from the base of the procedure linkage table (PLT)
2606 into the data linkage table (DLT), the end of which is contiguous
2607 with the start of the PLT. This is clearly not a valid address for
2608 us to set a breakpoint on.
2609
2610 Note that one must be careful in how one checks for a negative address.
2611 0xc0000000 is a legitimate address of something in a shared text
2612 segment, for example. Since I don't know what the possible range
2613 is of these "really, truly negative" addresses that come from the
2614 minimal symbols, I'm resorting to the gross hack of checking the
2615 top byte of the address for all 1's. Sigh. */
2616
7b5c6b52 2617 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
d709c020
JB
2618}
2619
38ca4e0c
MK
2620/* Return the GDB type object for the "standard" data type of data in
2621 register REGNUM. */
d709c020 2622
eded0a31 2623static struct type *
38ca4e0c 2624hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2625{
38ca4e0c 2626 if (regnum < HPPA_FP4_REGNUM)
eded0a31 2627 return builtin_type_uint32;
d709c020 2628 else
eded0a31 2629 return builtin_type_ieee_single_big;
d709c020
JB
2630}
2631
eded0a31 2632static struct type *
38ca4e0c 2633hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2634{
38ca4e0c 2635 if (regnum < HPPA64_FP4_REGNUM)
eded0a31 2636 return builtin_type_uint64;
3ff7cf9e 2637 else
eded0a31 2638 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2639}
2640
38ca4e0c
MK
2641/* Return non-zero if REGNUM is not a register available to the user
2642 through ptrace/ttrace. */
d709c020 2643
8d153463 2644static int
38ca4e0c 2645hppa32_cannot_store_register (int regnum)
d709c020
JB
2646{
2647 return (regnum == 0
34f75cc1
RC
2648 || regnum == HPPA_PCSQ_HEAD_REGNUM
2649 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2650 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2651}
d709c020 2652
38ca4e0c
MK
2653static int
2654hppa64_cannot_store_register (int regnum)
2655{
2656 return (regnum == 0
2657 || regnum == HPPA_PCSQ_HEAD_REGNUM
2658 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2659 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2660}
2661
8d153463 2662static CORE_ADDR
d709c020
JB
2663hppa_smash_text_address (CORE_ADDR addr)
2664{
2665 /* The low two bits of the PC on the PA contain the privilege level.
2666 Some genius implementing a (non-GCC) compiler apparently decided
2667 this means that "addresses" in a text section therefore include a
2668 privilege level, and thus symbol tables should contain these bits.
2669 This seems like a bonehead thing to do--anyway, it seems to work
2670 for our purposes to just ignore those bits. */
2671
2672 return (addr &= ~0x3);
2673}
2674
e127f0db
MK
2675/* Get the ARGIth function argument for the current function. */
2676
4a302917 2677static CORE_ADDR
143985b7
AF
2678hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2679 struct type *type)
2680{
e127f0db 2681 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2682}
2683
0f8d9d59
RC
2684static void
2685hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2686 int regnum, gdb_byte *buf)
0f8d9d59
RC
2687{
2688 ULONGEST tmp;
2689
2690 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2691 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59 2692 tmp &= ~0x3;
e127f0db 2693 store_unsigned_integer (buf, sizeof tmp, tmp);
0f8d9d59
RC
2694}
2695
d49771ef
RC
2696static CORE_ADDR
2697hppa_find_global_pointer (struct value *function)
2698{
2699 return 0;
2700}
2701
0da28f8a
RC
2702void
2703hppa_frame_prev_register_helper (struct frame_info *next_frame,
2704 struct trad_frame_saved_reg saved_regs[],
2705 int regnum, int *optimizedp,
2706 enum lval_type *lvalp, CORE_ADDR *addrp,
a7aad9aa 2707 int *realnump, gdb_byte *valuep)
0da28f8a 2708{
8f4e467c
MK
2709 struct gdbarch *arch = get_frame_arch (next_frame);
2710
8693c419
MK
2711 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2712 {
2713 if (valuep)
2714 {
8f4e467c 2715 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
8693c419 2716 CORE_ADDR pc;
0da28f8a 2717
1f67027d
AC
2718 trad_frame_get_prev_register (next_frame, saved_regs,
2719 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2720 lvalp, addrp, realnump, valuep);
8693c419 2721
8f4e467c
MK
2722 pc = extract_unsigned_integer (valuep, size);
2723 store_unsigned_integer (valuep, size, pc + 4);
8693c419
MK
2724 }
2725
2726 /* It's a computed value. */
2727 *optimizedp = 0;
2728 *lvalp = not_lval;
2729 *addrp = 0;
2730 *realnump = -1;
2731 return;
2732 }
0da28f8a 2733
cc72850f
MK
2734 /* Make sure the "flags" register is zero in all unwound frames.
2735 The "flags" registers is a HP-UX specific wart, and only the code
2736 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2737 with it here. This shouldn't affect other systems since those
2738 should provide zero for the "flags" register anyway. */
2739 if (regnum == HPPA_FLAGS_REGNUM)
2740 {
2741 if (valuep)
8f4e467c 2742 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
cc72850f
MK
2743
2744 /* It's a computed value. */
2745 *optimizedp = 0;
2746 *lvalp = not_lval;
2747 *addrp = 0;
2748 *realnump = -1;
2749 return;
2750 }
2751
1f67027d
AC
2752 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2753 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2754}
8693c419 2755\f
0da28f8a 2756
34f55018
MK
2757/* An instruction to match. */
2758struct insn_pattern
2759{
2760 unsigned int data; /* See if it matches this.... */
2761 unsigned int mask; /* ... with this mask. */
2762};
2763
2764/* See bfd/elf32-hppa.c */
2765static struct insn_pattern hppa_long_branch_stub[] = {
2766 /* ldil LR'xxx,%r1 */
2767 { 0x20200000, 0xffe00000 },
2768 /* be,n RR'xxx(%sr4,%r1) */
2769 { 0xe0202002, 0xffe02002 },
2770 { 0, 0 }
2771};
2772
2773static struct insn_pattern hppa_long_branch_pic_stub[] = {
2774 /* b,l .+8, %r1 */
2775 { 0xe8200000, 0xffe00000 },
2776 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2777 { 0x28200000, 0xffe00000 },
2778 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2779 { 0xe0202002, 0xffe02002 },
2780 { 0, 0 }
2781};
2782
2783static struct insn_pattern hppa_import_stub[] = {
2784 /* addil LR'xxx, %dp */
2785 { 0x2b600000, 0xffe00000 },
2786 /* ldw RR'xxx(%r1), %r21 */
2787 { 0x48350000, 0xffffb000 },
2788 /* bv %r0(%r21) */
2789 { 0xeaa0c000, 0xffffffff },
2790 /* ldw RR'xxx+4(%r1), %r19 */
2791 { 0x48330000, 0xffffb000 },
2792 { 0, 0 }
2793};
2794
2795static struct insn_pattern hppa_import_pic_stub[] = {
2796 /* addil LR'xxx,%r19 */
2797 { 0x2a600000, 0xffe00000 },
2798 /* ldw RR'xxx(%r1),%r21 */
2799 { 0x48350000, 0xffffb000 },
2800 /* bv %r0(%r21) */
2801 { 0xeaa0c000, 0xffffffff },
2802 /* ldw RR'xxx+4(%r1),%r19 */
2803 { 0x48330000, 0xffffb000 },
2804 { 0, 0 },
2805};
2806
2807static struct insn_pattern hppa_plt_stub[] = {
2808 /* b,l 1b, %r20 - 1b is 3 insns before here */
2809 { 0xea9f1fdd, 0xffffffff },
2810 /* depi 0,31,2,%r20 */
2811 { 0xd6801c1e, 0xffffffff },
2812 { 0, 0 }
2813};
2814
2815static struct insn_pattern hppa_sigtramp[] = {
2816 /* ldi 0, %r25 or ldi 1, %r25 */
2817 { 0x34190000, 0xfffffffd },
2818 /* ldi __NR_rt_sigreturn, %r20 */
2819 { 0x3414015a, 0xffffffff },
2820 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2821 { 0xe4008200, 0xffffffff },
2822 /* nop */
2823 { 0x08000240, 0xffffffff },
2824 { 0, 0 }
2825};
2826
2827/* Maximum number of instructions on the patterns above. */
2828#define HPPA_MAX_INSN_PATTERN_LEN 4
2829
2830/* Return non-zero if the instructions at PC match the series
2831 described in PATTERN, or zero otherwise. PATTERN is an array of
2832 'struct insn_pattern' objects, terminated by an entry whose mask is
2833 zero.
2834
2835 When the match is successful, fill INSN[i] with what PATTERN[i]
2836 matched. */
2837
2838static int
2839hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2840 unsigned int *insn)
2841{
2842 CORE_ADDR npc = pc;
2843 int i;
2844
2845 for (i = 0; pattern[i].mask; i++)
2846 {
2847 gdb_byte buf[HPPA_INSN_SIZE];
2848
2849 deprecated_read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2850 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2851 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2852 npc += 4;
2853 else
2854 return 0;
2855 }
2856
2857 return 1;
2858}
2859
2860/* This relaxed version of the insstruction matcher allows us to match
2861 from somewhere inside the pattern, by looking backwards in the
2862 instruction scheme. */
2863
2864static int
2865hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2866 unsigned int *insn)
2867{
2868 int offset, len = 0;
2869
2870 while (pattern[len].mask)
2871 len++;
2872
2873 for (offset = 0; offset < len; offset++)
2874 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2875 return 1;
2876
2877 return 0;
2878}
2879
2880static int
2881hppa_in_dyncall (CORE_ADDR pc)
2882{
2883 struct unwind_table_entry *u;
2884
2885 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2886 if (!u)
2887 return 0;
2888
2889 return (pc >= u->region_start && pc <= u->region_end);
2890}
2891
2892int
2893hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2894{
2895 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2896 struct unwind_table_entry *u;
2897
2898 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2899 return 1;
2900
2901 /* The GNU toolchain produces linker stubs without unwind
2902 information. Since the pattern matching for linker stubs can be
2903 quite slow, so bail out if we do have an unwind entry. */
2904
2905 u = find_unwind_entry (pc);
806e23c0 2906 if (u != NULL)
34f55018
MK
2907 return 0;
2908
2909 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2910 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2911 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2912 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2913}
2914
2915/* This code skips several kind of "trampolines" used on PA-RISC
2916 systems: $$dyncall, import stubs and PLT stubs. */
2917
2918CORE_ADDR
2919hppa_skip_trampoline_code (CORE_ADDR pc)
2920{
2921 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2922 int dp_rel;
2923
2924 /* $$dyncall handles both PLABELs and direct addresses. */
2925 if (hppa_in_dyncall (pc))
2926 {
2927 pc = read_register (HPPA_R0_REGNUM + 22);
2928
2929 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2930 if (pc & 0x2)
2931 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2932
2933 return pc;
2934 }
2935
2936 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2937 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2938 {
2939 /* Extract the target address from the addil/ldw sequence. */
2940 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2941
2942 if (dp_rel)
2943 pc += read_register (HPPA_DP_REGNUM);
2944 else
2945 pc += read_register (HPPA_R0_REGNUM + 19);
2946
2947 /* fallthrough */
2948 }
2949
2950 if (in_plt_section (pc, NULL))
2951 {
2952 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2953
2954 /* If the PLT slot has not yet been resolved, the target will be
2955 the PLT stub. */
2956 if (in_plt_section (pc, NULL))
2957 {
2958 /* Sanity check: are we pointing to the PLT stub? */
2959 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2960 {
2961 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2962 return 0;
2963 }
2964
2965 /* This should point to the fixup routine. */
2966 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2967 }
2968 }
2969
2970 return pc;
2971}
2972\f
2973
8e8b2dba
MC
2974/* Here is a table of C type sizes on hppa with various compiles
2975 and options. I measured this on PA 9000/800 with HP-UX 11.11
2976 and these compilers:
2977
2978 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2979 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2980 /opt/aCC/bin/aCC B3910B A.03.45
2981 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2982
2983 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2984 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2985 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2986 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2987 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2988 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2989 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2990 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2991
2992 Each line is:
2993
2994 compiler and options
2995 char, short, int, long, long long
2996 float, double, long double
2997 char *, void (*)()
2998
2999 So all these compilers use either ILP32 or LP64 model.
3000 TODO: gcc has more options so it needs more investigation.
3001
a2379359
MC
3002 For floating point types, see:
3003
3004 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3005 HP-UX floating-point guide, hpux 11.00
3006
8e8b2dba
MC
3007 -- chastain 2003-12-18 */
3008
e6e68f1f
JB
3009static struct gdbarch *
3010hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3011{
3ff7cf9e 3012 struct gdbarch_tdep *tdep;
e6e68f1f 3013 struct gdbarch *gdbarch;
59623e27
JB
3014
3015 /* Try to determine the ABI of the object we are loading. */
4be87837 3016 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 3017 {
4be87837
DJ
3018 /* If it's a SOM file, assume it's HP/UX SOM. */
3019 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3020 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 3021 }
e6e68f1f
JB
3022
3023 /* find a candidate among the list of pre-declared architectures. */
3024 arches = gdbarch_list_lookup_by_info (arches, &info);
3025 if (arches != NULL)
3026 return (arches->gdbarch);
3027
3028 /* If none found, then allocate and initialize one. */
fdd72f95 3029 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
3030 gdbarch = gdbarch_alloc (&info, tdep);
3031
3032 /* Determine from the bfd_arch_info structure if we are dealing with
3033 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3034 then default to a 32bit machine. */
3035 if (info.bfd_arch_info != NULL)
3036 tdep->bytes_per_address =
3037 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3038 else
3039 tdep->bytes_per_address = 4;
3040
d49771ef
RC
3041 tdep->find_global_pointer = hppa_find_global_pointer;
3042
3ff7cf9e
JB
3043 /* Some parts of the gdbarch vector depend on whether we are running
3044 on a 32 bits or 64 bits target. */
3045 switch (tdep->bytes_per_address)
3046 {
3047 case 4:
3048 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3049 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3050 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3051 set_gdbarch_cannot_store_register (gdbarch,
3052 hppa32_cannot_store_register);
3053 set_gdbarch_cannot_fetch_register (gdbarch,
3054 hppa32_cannot_store_register);
3ff7cf9e
JB
3055 break;
3056 case 8:
3057 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3058 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3059 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5
RC
3060 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3061 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3062 set_gdbarch_cannot_store_register (gdbarch,
3063 hppa64_cannot_store_register);
3064 set_gdbarch_cannot_fetch_register (gdbarch,
3065 hppa64_cannot_store_register);
3ff7cf9e
JB
3066 break;
3067 default:
e2e0b3e5 3068 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3069 tdep->bytes_per_address);
3070 }
3071
3ff7cf9e 3072 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3073 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3074
8e8b2dba
MC
3075 /* The following gdbarch vector elements are the same in both ILP32
3076 and LP64, but might show differences some day. */
3077 set_gdbarch_long_long_bit (gdbarch, 64);
3078 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 3079 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 3080
3ff7cf9e
JB
3081 /* The following gdbarch vector elements do not depend on the address
3082 size, or in any other gdbarch element previously set. */
60383d10 3083 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
1fb24930
RC
3084 set_gdbarch_in_function_epilogue_p (gdbarch,
3085 hppa_in_function_epilogue_p);
a2a84a72 3086 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3087 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3088 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
b6fbdd1d 3089 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
3090 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3091 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3092 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3093 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3094
143985b7
AF
3095 /* Helper for function argument information. */
3096 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3097
36482093
AC
3098 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3099
3a3bc038
AC
3100 /* When a hardware watchpoint triggers, we'll move the inferior past
3101 it by removing all eventpoints; stepping past the instruction
3102 that caused the trigger; reinserting eventpoints; and checking
3103 whether any watched location changed. */
3104 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3105
5979bc46 3106 /* Inferior function call methods. */
fca7aa43 3107 switch (tdep->bytes_per_address)
5979bc46 3108 {
fca7aa43
AC
3109 case 4:
3110 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3111 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3112 set_gdbarch_convert_from_func_ptr_addr
3113 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3114 break;
3115 case 8:
782eae8b
AC
3116 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3117 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3118 break;
782eae8b 3119 default:
e2e0b3e5 3120 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3121 }
3122
3123 /* Struct return methods. */
fca7aa43 3124 switch (tdep->bytes_per_address)
fad850b2 3125 {
fca7aa43
AC
3126 case 4:
3127 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3128 break;
3129 case 8:
782eae8b 3130 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3131 break;
fca7aa43 3132 default:
e2e0b3e5 3133 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3134 }
7f07c5b6 3135
85f4f2d8 3136 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3137 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3138
5979bc46 3139 /* Frame unwind methods. */
782eae8b
AC
3140 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3141 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3142
50306a9d
RC
3143 /* Hook in ABI-specific overrides, if they have been registered. */
3144 gdbarch_init_osabi (info, gdbarch);
3145
7f07c5b6
RC
3146 /* Hook in the default unwinders. */
3147 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 3148 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 3149 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 3150
e6e68f1f
JB
3151 return gdbarch;
3152}
3153
3154static void
3155hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3156{
fdd72f95
RC
3157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3158
3159 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3160 tdep->bytes_per_address);
3161 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3162}
3163
4facf7e8
JB
3164void
3165_initialize_hppa_tdep (void)
3166{
3167 struct cmd_list_element *c;
4facf7e8 3168
e6e68f1f 3169 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3170
7c46b9fb
RC
3171 hppa_objfile_priv_data = register_objfile_data ();
3172
4facf7e8 3173 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3174 _("Print unwind table entry at given address."),
4facf7e8
JB
3175 &maintenanceprintlist);
3176
369aa520 3177 /* Debug this files internals. */
7915a72c
AC
3178 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3179Set whether hppa target specific debugging information should be displayed."),
3180 _("\
3181Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3182This flag controls whether hppa target specific debugging information is\n\
3183displayed. This information is particularly useful for debugging frame\n\
7915a72c 3184unwinding problems."),
2c5b56ce 3185 NULL,
7915a72c 3186 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3187 &setdebuglist, &showdebuglist);
4facf7e8 3188}
This page took 0.844391 seconds and 4 git commands to generate.