2004-11-12 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020
JB
73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74int hppa_instruction_nullified (void);
c906108c 75
537987fc
AC
76/* Handle 32/64-bit struct return conventions. */
77
78static enum return_value_convention
79hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82{
537987fc
AC
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
34f75cc1 88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
537987fc
AC
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116}
117
118static enum return_value_convention
119hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122{
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
449e1137
AC
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
537987fc
AC
129 {
130 /* Floats are right aligned? */
34f75cc1 131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc 132 if (readbuf != NULL)
34f75cc1 133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
34f75cc1 136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
34f75cc1 143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc
AC
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
449e1137 158 int part = min (8, TYPE_LENGTH (type) - b);
537987fc 159 if (readbuf != NULL)
449e1137 160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
161 (char *) readbuf + b);
162 if (writebuf != NULL)
449e1137 163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
164 (const char *) writebuf + b);
165 }
449e1137 166 return RETURN_VALUE_REGISTER_CONVENTION;
537987fc
AC
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170}
171
c906108c
SS
172/* Routines to extract various sized constants out of hppa
173 instructions. */
174
175/* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
abc485a1
RC
178int
179hppa_sign_extend (unsigned val, unsigned bits)
c906108c 180{
c5aa993b 181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
182}
183
184/* For many immediate values the sign bit is the low bit! */
185
abc485a1
RC
186int
187hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 188{
c5aa993b 189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
190}
191
e2ac8128
JB
192/* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
abc485a1
RC
195int
196hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
197{
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199}
200
c906108c
SS
201/* extract the immediate field from a ld{bhw}s instruction */
202
abc485a1
RC
203int
204hppa_extract_5_load (unsigned word)
c906108c 205{
abc485a1 206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
207}
208
c906108c
SS
209/* extract the immediate field from a break instruction */
210
abc485a1
RC
211unsigned
212hppa_extract_5r_store (unsigned word)
c906108c
SS
213{
214 return (word & MASK_5);
215}
216
217/* extract the immediate field from a {sr}sm instruction */
218
abc485a1
RC
219unsigned
220hppa_extract_5R_store (unsigned word)
c906108c
SS
221{
222 return (word >> 16 & MASK_5);
223}
224
c906108c
SS
225/* extract a 14 bit immediate field */
226
abc485a1
RC
227int
228hppa_extract_14 (unsigned word)
c906108c 229{
abc485a1 230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
231}
232
c906108c
SS
233/* extract a 21 bit constant */
234
abc485a1
RC
235int
236hppa_extract_21 (unsigned word)
c906108c
SS
237{
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
abc485a1 242 val = hppa_get_field (word, 20, 20);
c906108c 243 val <<= 11;
abc485a1 244 val |= hppa_get_field (word, 9, 19);
c906108c 245 val <<= 2;
abc485a1 246 val |= hppa_get_field (word, 5, 6);
c906108c 247 val <<= 5;
abc485a1 248 val |= hppa_get_field (word, 0, 4);
c906108c 249 val <<= 2;
abc485a1
RC
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
252}
253
c906108c
SS
254/* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
abc485a1
RC
257int
258hppa_extract_17 (unsigned word)
c906108c 259{
abc485a1
RC
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
263 (word & 0x1) << 16, 17) << 2;
264}
3388d7ff
RC
265
266CORE_ADDR
267hppa_symbol_address(const char *sym)
268{
269 struct minimal_symbol *minsym;
270
271 minsym = lookup_minimal_symbol (sym, NULL, NULL);
272 if (minsym)
273 return SYMBOL_VALUE_ADDRESS (minsym);
274 else
275 return (CORE_ADDR)-1;
276}
c906108c
SS
277\f
278
279/* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283static int
fba45db2 284compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
285{
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295}
296
53a5351d 297static void
fdd72f95 298record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 299{
fdd72f95 300 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 301 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
302 {
303 bfd_vma value = section->vma - section->filepos;
304 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
305
306 if (value < *low_text_segment_address)
307 *low_text_segment_address = value;
308 }
53a5351d
JM
309}
310
c906108c 311static void
fba45db2
KB
312internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 asection *section, unsigned int entries, unsigned int size,
314 CORE_ADDR text_offset)
c906108c
SS
315{
316 /* We will read the unwind entries into temporary memory, then
317 fill in the actual unwind table. */
fdd72f95 318
c906108c
SS
319 if (size > 0)
320 {
321 unsigned long tmp;
322 unsigned i;
323 char *buf = alloca (size);
fdd72f95 324 CORE_ADDR low_text_segment_address;
c906108c 325
fdd72f95 326 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
327 be segment relative offsets instead of absolute addresses.
328
329 Note that when loading a shared library (text_offset != 0) the
330 unwinds are already relative to the text_offset that will be
331 passed in. */
fdd72f95 332 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 333 {
fdd72f95
RC
334 low_text_segment_address = -1;
335
53a5351d 336 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
337 record_text_segment_lowaddr,
338 &low_text_segment_address);
53a5351d 339
fdd72f95 340 text_offset = low_text_segment_address;
53a5351d
JM
341 }
342
c906108c
SS
343 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
344
345 /* Now internalize the information being careful to handle host/target
c5aa993b 346 endian issues. */
c906108c
SS
347 for (i = 0; i < entries; i++)
348 {
349 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 350 (bfd_byte *) buf);
c906108c
SS
351 table[i].region_start += text_offset;
352 buf += 4;
c5aa993b 353 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
354 table[i].region_end += text_offset;
355 buf += 4;
c5aa993b 356 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
357 buf += 4;
358 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 table[i].Millicode = (tmp >> 30) & 0x1;
360 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 table[i].Region_description = (tmp >> 27) & 0x3;
362 table[i].reserved1 = (tmp >> 26) & 0x1;
363 table[i].Entry_SR = (tmp >> 25) & 0x1;
364 table[i].Entry_FR = (tmp >> 21) & 0xf;
365 table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 table[i].Args_stored = (tmp >> 15) & 0x1;
367 table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 table[i].Ada_Region = (tmp >> 9) & 0x1;
373 table[i].cxx_info = (tmp >> 8) & 0x1;
374 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 table[i].reserved2 = (tmp >> 5) & 0x1;
377 table[i].Save_SP = (tmp >> 4) & 0x1;
378 table[i].Save_RP = (tmp >> 3) & 0x1;
379 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 382 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
383 buf += 4;
384 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 table[i].Large_frame = (tmp >> 29) & 0x1;
387 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 table[i].reserved4 = (tmp >> 27) & 0x1;
389 table[i].Total_frame_size = tmp & 0x7ffffff;
390
c5aa993b 391 /* Stub unwinds are handled elsewhere. */
c906108c
SS
392 table[i].stub_unwind.stub_type = 0;
393 table[i].stub_unwind.padding = 0;
394 }
395 }
396}
397
398/* Read in the backtrace information stored in the `$UNWIND_START$' section of
399 the object file. This info is used mainly by find_unwind_entry() to find
400 out the stack frame size and frame pointer used by procedures. We put
401 everything on the psymbol obstack in the objfile so that it automatically
402 gets freed when the objfile is destroyed. */
403
404static void
fba45db2 405read_unwind_info (struct objfile *objfile)
c906108c 406{
d4f3574e
SS
407 asection *unwind_sec, *stub_unwind_sec;
408 unsigned unwind_size, stub_unwind_size, total_size;
409 unsigned index, unwind_entries;
c906108c
SS
410 unsigned stub_entries, total_entries;
411 CORE_ADDR text_offset;
7c46b9fb
RC
412 struct hppa_unwind_info *ui;
413 struct hppa_objfile_private *obj_private;
c906108c
SS
414
415 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
416 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 sizeof (struct hppa_unwind_info));
c906108c
SS
418
419 ui->table = NULL;
420 ui->cache = NULL;
421 ui->last = -1;
422
d4f3574e
SS
423 /* For reasons unknown the HP PA64 tools generate multiple unwinder
424 sections in a single executable. So we just iterate over every
425 section in the BFD looking for unwinder sections intead of trying
426 to do a lookup with bfd_get_section_by_name.
c906108c 427
d4f3574e
SS
428 First determine the total size of the unwind tables so that we
429 can allocate memory in a nice big hunk. */
430 total_entries = 0;
431 for (unwind_sec = objfile->obfd->sections;
432 unwind_sec;
433 unwind_sec = unwind_sec->next)
c906108c 434 {
d4f3574e
SS
435 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
437 {
438 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 440
d4f3574e
SS
441 total_entries += unwind_entries;
442 }
c906108c
SS
443 }
444
d4f3574e
SS
445 /* Now compute the size of the stub unwinds. Note the ELF tools do not
446 use stub unwinds at the curren time. */
447 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
448
c906108c
SS
449 if (stub_unwind_sec)
450 {
451 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
453 }
454 else
455 {
456 stub_unwind_size = 0;
457 stub_entries = 0;
458 }
459
460 /* Compute total number of unwind entries and their total size. */
d4f3574e 461 total_entries += stub_entries;
c906108c
SS
462 total_size = total_entries * sizeof (struct unwind_table_entry);
463
464 /* Allocate memory for the unwind table. */
465 ui->table = (struct unwind_table_entry *)
8b92e4d5 466 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 467 ui->last = total_entries - 1;
c906108c 468
d4f3574e
SS
469 /* Now read in each unwind section and internalize the standard unwind
470 entries. */
c906108c 471 index = 0;
d4f3574e
SS
472 for (unwind_sec = objfile->obfd->sections;
473 unwind_sec;
474 unwind_sec = unwind_sec->next)
475 {
476 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
478 {
479 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
481
482 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 unwind_entries, unwind_size, text_offset);
484 index += unwind_entries;
485 }
486 }
487
488 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
489 if (stub_unwind_size > 0)
490 {
491 unsigned int i;
492 char *buf = alloca (stub_unwind_size);
493
494 /* Read in the stub unwind entries. */
495 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 0, stub_unwind_size);
497
498 /* Now convert them into regular unwind entries. */
499 for (i = 0; i < stub_entries; i++, index++)
500 {
501 /* Clear out the next unwind entry. */
502 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
503
504 /* Convert offset & size into region_start and region_end.
505 Stuff away the stub type into "reserved" fields. */
506 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
507 (bfd_byte *) buf);
508 ui->table[index].region_start += text_offset;
509 buf += 4;
510 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 511 (bfd_byte *) buf);
c906108c
SS
512 buf += 2;
513 ui->table[index].region_end
c5aa993b
JM
514 = ui->table[index].region_start + 4 *
515 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
516 buf += 2;
517 }
518
519 }
520
521 /* Unwind table needs to be kept sorted. */
522 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 compare_unwind_entries);
524
525 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
526 obj_private = (struct hppa_objfile_private *)
527 objfile_data (objfile, hppa_objfile_priv_data);
528 if (obj_private == NULL)
c906108c 529 {
7c46b9fb
RC
530 obj_private = (struct hppa_objfile_private *)
531 obstack_alloc (&objfile->objfile_obstack,
532 sizeof (struct hppa_objfile_private));
533 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
c906108c 534 obj_private->unwind_info = NULL;
c5aa993b 535 obj_private->so_info = NULL;
53a5351d 536 obj_private->dp = 0;
c906108c 537 }
c906108c
SS
538 obj_private->unwind_info = ui;
539}
540
541/* Lookup the unwind (stack backtrace) info for the given PC. We search all
542 of the objfiles seeking the unwind table entry for this PC. Each objfile
543 contains a sorted list of struct unwind_table_entry. Since we do a binary
544 search of the unwind tables, we depend upon them to be sorted. */
545
546struct unwind_table_entry *
fba45db2 547find_unwind_entry (CORE_ADDR pc)
c906108c
SS
548{
549 int first, middle, last;
550 struct objfile *objfile;
7c46b9fb 551 struct hppa_objfile_private *priv;
c906108c 552
369aa520
RC
553 if (hppa_debug)
554 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
555 paddr_nz (pc));
556
c906108c
SS
557 /* A function at address 0? Not in HP-UX! */
558 if (pc == (CORE_ADDR) 0)
369aa520
RC
559 {
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
562 return NULL;
563 }
c906108c
SS
564
565 ALL_OBJFILES (objfile)
c5aa993b 566 {
7c46b9fb 567 struct hppa_unwind_info *ui;
c5aa993b 568 ui = NULL;
7c46b9fb
RC
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
570 if (priv)
571 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 572
c5aa993b
JM
573 if (!ui)
574 {
575 read_unwind_info (objfile);
7c46b9fb
RC
576 priv = objfile_data (objfile, hppa_objfile_priv_data);
577 if (priv == NULL)
104c1213 578 error ("Internal error reading unwind information.");
7c46b9fb 579 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 580 }
c906108c 581
c5aa993b 582 /* First, check the cache */
c906108c 583
c5aa993b
JM
584 if (ui->cache
585 && pc >= ui->cache->region_start
586 && pc <= ui->cache->region_end)
369aa520
RC
587 {
588 if (hppa_debug)
589 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590 paddr_nz ((CORE_ADDR) ui->cache));
591 return ui->cache;
592 }
c906108c 593
c5aa993b 594 /* Not in the cache, do a binary search */
c906108c 595
c5aa993b
JM
596 first = 0;
597 last = ui->last;
c906108c 598
c5aa993b
JM
599 while (first <= last)
600 {
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
604 {
605 ui->cache = &ui->table[middle];
369aa520
RC
606 if (hppa_debug)
607 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
609 return &ui->table[middle];
610 }
c906108c 611
c5aa993b
JM
612 if (pc < ui->table[middle].region_start)
613 last = middle - 1;
614 else
615 first = middle + 1;
616 }
617 } /* ALL_OBJFILES() */
369aa520
RC
618
619 if (hppa_debug)
620 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
621
c906108c
SS
622 return NULL;
623}
624
85f4f2d8 625static const unsigned char *
aaab4dba
AC
626hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
627{
56132691 628 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
629 (*len) = sizeof (breakpoint);
630 return breakpoint;
631}
632
e23457df
AC
633/* Return the name of a register. */
634
4a302917 635static const char *
3ff7cf9e 636hppa32_register_name (int i)
e23457df
AC
637{
638 static char *names[] = {
639 "flags", "r1", "rp", "r3",
640 "r4", "r5", "r6", "r7",
641 "r8", "r9", "r10", "r11",
642 "r12", "r13", "r14", "r15",
643 "r16", "r17", "r18", "r19",
644 "r20", "r21", "r22", "r23",
645 "r24", "r25", "r26", "dp",
646 "ret0", "ret1", "sp", "r31",
647 "sar", "pcoqh", "pcsqh", "pcoqt",
648 "pcsqt", "eiem", "iir", "isr",
649 "ior", "ipsw", "goto", "sr4",
650 "sr0", "sr1", "sr2", "sr3",
651 "sr5", "sr6", "sr7", "cr0",
652 "cr8", "cr9", "ccr", "cr12",
653 "cr13", "cr24", "cr25", "cr26",
654 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655 "fpsr", "fpe1", "fpe2", "fpe3",
656 "fpe4", "fpe5", "fpe6", "fpe7",
657 "fr4", "fr4R", "fr5", "fr5R",
658 "fr6", "fr6R", "fr7", "fr7R",
659 "fr8", "fr8R", "fr9", "fr9R",
660 "fr10", "fr10R", "fr11", "fr11R",
661 "fr12", "fr12R", "fr13", "fr13R",
662 "fr14", "fr14R", "fr15", "fr15R",
663 "fr16", "fr16R", "fr17", "fr17R",
664 "fr18", "fr18R", "fr19", "fr19R",
665 "fr20", "fr20R", "fr21", "fr21R",
666 "fr22", "fr22R", "fr23", "fr23R",
667 "fr24", "fr24R", "fr25", "fr25R",
668 "fr26", "fr26R", "fr27", "fr27R",
669 "fr28", "fr28R", "fr29", "fr29R",
670 "fr30", "fr30R", "fr31", "fr31R"
671 };
672 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
673 return NULL;
674 else
675 return names[i];
676}
677
4a302917 678static const char *
e23457df
AC
679hppa64_register_name (int i)
680{
681 static char *names[] = {
682 "flags", "r1", "rp", "r3",
683 "r4", "r5", "r6", "r7",
684 "r8", "r9", "r10", "r11",
685 "r12", "r13", "r14", "r15",
686 "r16", "r17", "r18", "r19",
687 "r20", "r21", "r22", "r23",
688 "r24", "r25", "r26", "dp",
689 "ret0", "ret1", "sp", "r31",
690 "sar", "pcoqh", "pcsqh", "pcoqt",
691 "pcsqt", "eiem", "iir", "isr",
692 "ior", "ipsw", "goto", "sr4",
693 "sr0", "sr1", "sr2", "sr3",
694 "sr5", "sr6", "sr7", "cr0",
695 "cr8", "cr9", "ccr", "cr12",
696 "cr13", "cr24", "cr25", "cr26",
697 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698 "fpsr", "fpe1", "fpe2", "fpe3",
699 "fr4", "fr5", "fr6", "fr7",
700 "fr8", "fr9", "fr10", "fr11",
701 "fr12", "fr13", "fr14", "fr15",
702 "fr16", "fr17", "fr18", "fr19",
703 "fr20", "fr21", "fr22", "fr23",
704 "fr24", "fr25", "fr26", "fr27",
705 "fr28", "fr29", "fr30", "fr31"
706 };
707 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
708 return NULL;
709 else
710 return names[i];
711}
712
79508e1e
AC
713/* This function pushes a stack frame with arguments as part of the
714 inferior function calling mechanism.
715
716 This is the version of the function for the 32-bit PA machines, in
717 which later arguments appear at lower addresses. (The stack always
718 grows towards higher addresses.)
719
720 We simply allocate the appropriate amount of stack space and put
721 arguments into their proper slots. */
722
4a302917 723static CORE_ADDR
7d9b040b 724hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
725 struct regcache *regcache, CORE_ADDR bp_addr,
726 int nargs, struct value **args, CORE_ADDR sp,
727 int struct_return, CORE_ADDR struct_addr)
728{
79508e1e
AC
729 /* Stack base address at which any pass-by-reference parameters are
730 stored. */
731 CORE_ADDR struct_end = 0;
732 /* Stack base address at which the first parameter is stored. */
733 CORE_ADDR param_end = 0;
734
735 /* The inner most end of the stack after all the parameters have
736 been pushed. */
737 CORE_ADDR new_sp = 0;
738
739 /* Two passes. First pass computes the location of everything,
740 second pass writes the bytes out. */
741 int write_pass;
d49771ef
RC
742
743 /* Global pointer (r19) of the function we are trying to call. */
744 CORE_ADDR gp;
745
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747
79508e1e
AC
748 for (write_pass = 0; write_pass < 2; write_pass++)
749 {
1797a8f6 750 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
751 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752 struct_ptr is adjusted for each argument below, so the first
753 argument will end up at sp-36. */
754 CORE_ADDR param_ptr = 32;
79508e1e 755 int i;
2a6228ef
RC
756 int small_struct = 0;
757
79508e1e
AC
758 for (i = 0; i < nargs; i++)
759 {
760 struct value *arg = args[i];
761 struct type *type = check_typedef (VALUE_TYPE (arg));
762 /* The corresponding parameter that is pushed onto the
763 stack, and [possibly] passed in a register. */
764 char param_val[8];
765 int param_len;
766 memset (param_val, 0, sizeof param_val);
767 if (TYPE_LENGTH (type) > 8)
768 {
769 /* Large parameter, pass by reference. Store the value
770 in "struct" area and then pass its address. */
771 param_len = 4;
1797a8f6 772 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 773 if (write_pass)
1797a8f6 774 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
79508e1e 775 TYPE_LENGTH (type));
1797a8f6 776 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
777 }
778 else if (TYPE_CODE (type) == TYPE_CODE_INT
779 || TYPE_CODE (type) == TYPE_CODE_ENUM)
780 {
781 /* Integer value store, right aligned. "unpack_long"
782 takes care of any sign-extension problems. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 store_unsigned_integer (param_val, param_len,
785 unpack_long (type,
786 VALUE_CONTENTS (arg)));
787 }
2a6228ef
RC
788 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
789 {
790 /* Floating point value store, right aligned. */
791 param_len = align_up (TYPE_LENGTH (type), 4);
792 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
793 }
79508e1e
AC
794 else
795 {
79508e1e 796 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
797
798 /* Small struct value are stored right-aligned. */
79508e1e
AC
799 memcpy (param_val + param_len - TYPE_LENGTH (type),
800 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2a6228ef
RC
801
802 /* Structures of size 5, 6 and 7 bytes are special in that
803 the higher-ordered word is stored in the lower-ordered
804 argument, and even though it is a 8-byte quantity the
805 registers need not be 8-byte aligned. */
1b07b470 806 if (param_len > 4 && param_len < 8)
2a6228ef 807 small_struct = 1;
79508e1e 808 }
2a6228ef 809
1797a8f6 810 param_ptr += param_len;
2a6228ef
RC
811 if (param_len == 8 && !small_struct)
812 param_ptr = align_up (param_ptr, 8);
813
814 /* First 4 non-FP arguments are passed in gr26-gr23.
815 First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 First 2 64-bit FP arguments are passed in fr5 and fr7.
817
818 The rest go on the stack, starting at sp-36, towards lower
819 addresses. 8-byte arguments must be aligned to a 8-byte
820 stack boundary. */
79508e1e
AC
821 if (write_pass)
822 {
1797a8f6 823 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
824
825 /* There are some cases when we don't know the type
826 expected by the callee (e.g. for variadic functions), so
827 pass the parameters in both general and fp regs. */
828 if (param_ptr <= 48)
79508e1e 829 {
2a6228ef
RC
830 int grreg = 26 - (param_ptr - 36) / 4;
831 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
833
834 regcache_cooked_write (regcache, grreg, param_val);
835 regcache_cooked_write (regcache, fpLreg, param_val);
836
79508e1e 837 if (param_len > 4)
2a6228ef
RC
838 {
839 regcache_cooked_write (regcache, grreg + 1,
840 param_val + 4);
841
842 regcache_cooked_write (regcache, fpreg, param_val);
843 regcache_cooked_write (regcache, fpreg + 1,
844 param_val + 4);
845 }
79508e1e
AC
846 }
847 }
848 }
849
850 /* Update the various stack pointers. */
851 if (!write_pass)
852 {
2a6228ef 853 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
854 /* PARAM_PTR already accounts for all the arguments passed
855 by the user. However, the ABI mandates minimum stack
856 space allocations for outgoing arguments. The ABI also
857 mandates minimum stack alignments which we must
858 preserve. */
2a6228ef 859 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
860 }
861 }
862
863 /* If a structure has to be returned, set up register 28 to hold its
864 address */
865 if (struct_return)
866 write_register (28, struct_addr);
867
d49771ef
RC
868 gp = tdep->find_global_pointer (function);
869
870 if (gp != 0)
871 write_register (19, gp);
872
79508e1e 873 /* Set the return address. */
34f75cc1 874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 875
c4557624 876 /* Update the Stack Pointer. */
34f75cc1 877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 878
2a6228ef 879 return param_end;
79508e1e
AC
880}
881
2f690297
AC
882/* This function pushes a stack frame with arguments as part of the
883 inferior function calling mechanism.
884
885 This is the version for the PA64, in which later arguments appear
886 at higher addresses. (The stack always grows towards higher
887 addresses.)
888
889 We simply allocate the appropriate amount of stack space and put
890 arguments into their proper slots.
891
892 This ABI also requires that the caller provide an argument pointer
893 to the callee, so we do that too. */
894
4a302917 895static CORE_ADDR
7d9b040b 896hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
897 struct regcache *regcache, CORE_ADDR bp_addr,
898 int nargs, struct value **args, CORE_ADDR sp,
899 int struct_return, CORE_ADDR struct_addr)
900{
449e1137
AC
901 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902 reverse engineering testsuite failures. */
2f690297 903
449e1137
AC
904 /* Stack base address at which any pass-by-reference parameters are
905 stored. */
906 CORE_ADDR struct_end = 0;
907 /* Stack base address at which the first parameter is stored. */
908 CORE_ADDR param_end = 0;
2f690297 909
449e1137
AC
910 /* The inner most end of the stack after all the parameters have
911 been pushed. */
912 CORE_ADDR new_sp = 0;
2f690297 913
449e1137
AC
914 /* Two passes. First pass computes the location of everything,
915 second pass writes the bytes out. */
916 int write_pass;
917 for (write_pass = 0; write_pass < 2; write_pass++)
2f690297 918 {
449e1137
AC
919 CORE_ADDR struct_ptr = 0;
920 CORE_ADDR param_ptr = 0;
921 int i;
922 for (i = 0; i < nargs; i++)
2f690297 923 {
449e1137
AC
924 struct value *arg = args[i];
925 struct type *type = check_typedef (VALUE_TYPE (arg));
926 if ((TYPE_CODE (type) == TYPE_CODE_INT
927 || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 && TYPE_LENGTH (type) <= 8)
929 {
930 /* Integer value store, right aligned. "unpack_long"
931 takes care of any sign-extension problems. */
932 param_ptr += 8;
933 if (write_pass)
934 {
935 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 int reg = 27 - param_ptr / 8;
937 write_memory_unsigned_integer (param_end - param_ptr,
938 val, 8);
939 if (reg >= 19)
940 regcache_cooked_write_unsigned (regcache, reg, val);
941 }
942 }
943 else
944 {
945 /* Small struct value, store left aligned? */
946 int reg;
947 if (TYPE_LENGTH (type) > 8)
948 {
949 param_ptr = align_up (param_ptr, 16);
950 reg = 26 - param_ptr / 8;
951 param_ptr += align_up (TYPE_LENGTH (type), 16);
952 }
953 else
954 {
955 param_ptr = align_up (param_ptr, 8);
956 reg = 26 - param_ptr / 8;
957 param_ptr += align_up (TYPE_LENGTH (type), 8);
958 }
959 if (write_pass)
960 {
961 int byte;
962 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
963 TYPE_LENGTH (type));
964 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
965 {
966 if (reg >= 19)
967 {
968 int len = min (8, TYPE_LENGTH (type) - byte);
969 regcache_cooked_write_part (regcache, reg, 0, len,
970 VALUE_CONTENTS (arg) + byte);
971 }
972 reg--;
973 }
974 }
975 }
2f690297 976 }
449e1137
AC
977 /* Update the various stack pointers. */
978 if (!write_pass)
2f690297 979 {
449e1137
AC
980 struct_end = sp + struct_ptr;
981 /* PARAM_PTR already accounts for all the arguments passed
982 by the user. However, the ABI mandates minimum stack
983 space allocations for outgoing arguments. The ABI also
984 mandates minimum stack alignments which we must
985 preserve. */
d0bd2d18 986 param_end = struct_end + max (align_up (param_ptr, 16), 64);
2f690297 987 }
2f690297
AC
988 }
989
2f690297
AC
990 /* If a structure has to be returned, set up register 28 to hold its
991 address */
992 if (struct_return)
993 write_register (28, struct_addr);
994
2f690297 995 /* Set the return address. */
34f75cc1 996 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 997
c4557624 998 /* Update the Stack Pointer. */
34f75cc1 999 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
c4557624 1000
449e1137
AC
1001 /* The stack will have 32 bytes of additional space for a frame marker. */
1002 return param_end + 64;
2f690297
AC
1003}
1004
d49771ef
RC
1005static CORE_ADDR
1006hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1007 CORE_ADDR addr,
1008 struct target_ops *targ)
1009{
1010 if (addr & 2)
1011 {
1012 CORE_ADDR plabel;
1013
1014 plabel = addr & ~3;
1015 target_read_memory(plabel, (char *)&addr, 4);
1016 }
1017
1018 return addr;
1019}
1020
1797a8f6
AC
1021static CORE_ADDR
1022hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1023{
1024 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1025 and not _bit_)! */
1026 return align_up (addr, 64);
1027}
1028
2f690297
AC
1029/* Force all frames to 16-byte alignment. Better safe than sorry. */
1030
1031static CORE_ADDR
1797a8f6 1032hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1033{
1034 /* Just always 16-byte align. */
1035 return align_up (addr, 16);
1036}
1037
1038
c906108c
SS
1039/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1040 bits. */
1041
8d153463 1042static CORE_ADDR
60383d10 1043hppa_target_read_pc (ptid_t ptid)
c906108c 1044{
34f75cc1 1045 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1046
1047 /* The following test does not belong here. It is OS-specific, and belongs
1048 in native code. */
1049 /* Test SS_INSYSCALL */
1050 if (flags & 2)
39f77062 1051 return read_register_pid (31, ptid) & ~0x3;
c906108c 1052
34f75cc1 1053 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
c906108c
SS
1054}
1055
1056/* Write out the PC. If currently in a syscall, then also write the new
1057 PC value into %r31. */
1058
8d153463 1059static void
60383d10 1060hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 1061{
34f75cc1 1062 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1063
1064 /* The following test does not belong here. It is OS-specific, and belongs
1065 in native code. */
1066 /* If in a syscall, then set %r31. Also make sure to get the
1067 privilege bits set correctly. */
1068 /* Test SS_INSYSCALL */
1069 if (flags & 2)
39f77062 1070 write_register_pid (31, v | 0x3, ptid);
c906108c 1071
34f75cc1
RC
1072 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
1074}
1075
1076/* return the alignment of a type in bytes. Structures have the maximum
1077 alignment required by their fields. */
1078
1079static int
fba45db2 1080hppa_alignof (struct type *type)
c906108c
SS
1081{
1082 int max_align, align, i;
1083 CHECK_TYPEDEF (type);
1084 switch (TYPE_CODE (type))
1085 {
1086 case TYPE_CODE_PTR:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_FLT:
1089 return TYPE_LENGTH (type);
1090 case TYPE_CODE_ARRAY:
1091 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092 case TYPE_CODE_STRUCT:
1093 case TYPE_CODE_UNION:
1094 max_align = 1;
1095 for (i = 0; i < TYPE_NFIELDS (type); i++)
1096 {
1097 /* Bit fields have no real alignment. */
1098 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1099 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1100 {
1101 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 max_align = max (max_align, align);
1103 }
1104 }
1105 return max_align;
1106 default:
1107 return 4;
1108 }
1109}
1110
c906108c
SS
1111/* For the given instruction (INST), return any adjustment it makes
1112 to the stack pointer or zero for no adjustment.
1113
1114 This only handles instructions commonly found in prologues. */
1115
1116static int
fba45db2 1117prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1118{
1119 /* This must persist across calls. */
1120 static int save_high21;
1121
1122 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1124 return hppa_extract_14 (inst);
c906108c
SS
1125
1126 /* stwm X,D(sp) */
1127 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1128 return hppa_extract_14 (inst);
c906108c 1129
104c1213
JM
1130 /* std,ma X,D(sp) */
1131 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1132 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1133
c906108c
SS
1134 /* addil high21,%r1; ldo low11,(%r1),%r30)
1135 save high bits in save_high21 for later use. */
1136 if ((inst & 0xffe00000) == 0x28200000)
1137 {
abc485a1 1138 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1139 return 0;
1140 }
1141
1142 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1143 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1144
1145 /* fstws as used by the HP compilers. */
1146 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1147 return hppa_extract_5_load (inst);
c906108c
SS
1148
1149 /* No adjustment. */
1150 return 0;
1151}
1152
1153/* Return nonzero if INST is a branch of some kind, else return zero. */
1154
1155static int
fba45db2 1156is_branch (unsigned long inst)
c906108c
SS
1157{
1158 switch (inst >> 26)
1159 {
1160 case 0x20:
1161 case 0x21:
1162 case 0x22:
1163 case 0x23:
7be570e7 1164 case 0x27:
c906108c
SS
1165 case 0x28:
1166 case 0x29:
1167 case 0x2a:
1168 case 0x2b:
7be570e7 1169 case 0x2f:
c906108c
SS
1170 case 0x30:
1171 case 0x31:
1172 case 0x32:
1173 case 0x33:
1174 case 0x38:
1175 case 0x39:
1176 case 0x3a:
7be570e7 1177 case 0x3b:
c906108c
SS
1178 return 1;
1179
1180 default:
1181 return 0;
1182 }
1183}
1184
1185/* Return the register number for a GR which is saved by INST or
1186 zero it INST does not save a GR. */
1187
1188static int
fba45db2 1189inst_saves_gr (unsigned long inst)
c906108c
SS
1190{
1191 /* Does it look like a stw? */
7be570e7
JM
1192 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193 || (inst >> 26) == 0x1f
1194 || ((inst >> 26) == 0x1f
1195 && ((inst >> 6) == 0xa)))
abc485a1 1196 return hppa_extract_5R_store (inst);
7be570e7
JM
1197
1198 /* Does it look like a std? */
1199 if ((inst >> 26) == 0x1c
1200 || ((inst >> 26) == 0x03
1201 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1202 return hppa_extract_5R_store (inst);
c906108c
SS
1203
1204 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1205 if ((inst >> 26) == 0x1b)
abc485a1 1206 return hppa_extract_5R_store (inst);
c906108c
SS
1207
1208 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1209 too. */
7be570e7
JM
1210 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211 || ((inst >> 26) == 0x3
1212 && (((inst >> 6) & 0xf) == 0x8
1213 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1214 return hppa_extract_5R_store (inst);
c5aa993b 1215
c906108c
SS
1216 return 0;
1217}
1218
1219/* Return the register number for a FR which is saved by INST or
1220 zero it INST does not save a FR.
1221
1222 Note we only care about full 64bit register stores (that's the only
1223 kind of stores the prologue will use).
1224
1225 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1226
1227static int
fba45db2 1228inst_saves_fr (unsigned long inst)
c906108c 1229{
7be570e7 1230 /* is this an FSTD ? */
c906108c 1231 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1232 return hppa_extract_5r_store (inst);
7be570e7 1233 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1234 return hppa_extract_5R_store (inst);
7be570e7 1235 /* is this an FSTW ? */
c906108c 1236 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1237 return hppa_extract_5r_store (inst);
7be570e7 1238 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1239 return hppa_extract_5R_store (inst);
c906108c
SS
1240 return 0;
1241}
1242
1243/* Advance PC across any function entry prologue instructions
1244 to reach some "real" code.
1245
1246 Use information in the unwind table to determine what exactly should
1247 be in the prologue. */
1248
1249
a71f8c30
RC
1250static CORE_ADDR
1251skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1252{
1253 char buf[4];
1254 CORE_ADDR orig_pc = pc;
1255 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256 unsigned long args_stored, status, i, restart_gr, restart_fr;
1257 struct unwind_table_entry *u;
a71f8c30 1258 int final_iteration;
c906108c
SS
1259
1260 restart_gr = 0;
1261 restart_fr = 0;
1262
1263restart:
1264 u = find_unwind_entry (pc);
1265 if (!u)
1266 return pc;
1267
c5aa993b 1268 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1269 if ((pc & ~0x3) != u->region_start)
1270 return pc;
1271
1272 /* This is how much of a frame adjustment we need to account for. */
1273 stack_remaining = u->Total_frame_size << 3;
1274
1275 /* Magic register saves we want to know about. */
1276 save_rp = u->Save_RP;
1277 save_sp = u->Save_SP;
1278
1279 /* An indication that args may be stored into the stack. Unfortunately
1280 the HPUX compilers tend to set this in cases where no args were
1281 stored too!. */
1282 args_stored = 1;
1283
1284 /* Turn the Entry_GR field into a bitmask. */
1285 save_gr = 0;
1286 for (i = 3; i < u->Entry_GR + 3; i++)
1287 {
1288 /* Frame pointer gets saved into a special location. */
eded0a31 1289 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1290 continue;
1291
1292 save_gr |= (1 << i);
1293 }
1294 save_gr &= ~restart_gr;
1295
1296 /* Turn the Entry_FR field into a bitmask too. */
1297 save_fr = 0;
1298 for (i = 12; i < u->Entry_FR + 12; i++)
1299 save_fr |= (1 << i);
1300 save_fr &= ~restart_fr;
1301
a71f8c30
RC
1302 final_iteration = 0;
1303
c906108c
SS
1304 /* Loop until we find everything of interest or hit a branch.
1305
1306 For unoptimized GCC code and for any HP CC code this will never ever
1307 examine any user instructions.
1308
1309 For optimzied GCC code we're faced with problems. GCC will schedule
1310 its prologue and make prologue instructions available for delay slot
1311 filling. The end result is user code gets mixed in with the prologue
1312 and a prologue instruction may be in the delay slot of the first branch
1313 or call.
1314
1315 Some unexpected things are expected with debugging optimized code, so
1316 we allow this routine to walk past user instructions in optimized
1317 GCC code. */
1318 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1319 || args_stored)
1320 {
1321 unsigned int reg_num;
1322 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1323 unsigned long old_save_rp, old_save_sp, next_inst;
1324
1325 /* Save copies of all the triggers so we can compare them later
c5aa993b 1326 (only for HPC). */
c906108c
SS
1327 old_save_gr = save_gr;
1328 old_save_fr = save_fr;
1329 old_save_rp = save_rp;
1330 old_save_sp = save_sp;
1331 old_stack_remaining = stack_remaining;
1332
1f602b35 1333 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1334 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1335
c906108c
SS
1336 /* Yow! */
1337 if (status != 0)
1338 return pc;
1339
1340 /* Note the interesting effects of this instruction. */
1341 stack_remaining -= prologue_inst_adjust_sp (inst);
1342
7be570e7
JM
1343 /* There are limited ways to store the return pointer into the
1344 stack. */
1345 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
1346 save_rp = 0;
1347
104c1213 1348 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1349 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1350 if ((inst & 0xffffc000) == 0x6fc10000
1351 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1352 save_sp = 0;
1353
6426a772
JM
1354 /* Are we loading some register with an offset from the argument
1355 pointer? */
1356 if ((inst & 0xffe00000) == 0x37a00000
1357 || (inst & 0xffffffe0) == 0x081d0240)
1358 {
1359 pc += 4;
1360 continue;
1361 }
1362
c906108c
SS
1363 /* Account for general and floating-point register saves. */
1364 reg_num = inst_saves_gr (inst);
1365 save_gr &= ~(1 << reg_num);
1366
1367 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1368 Unfortunately args_stored only tells us that some arguments
1369 where stored into the stack. Not how many or what kind!
c906108c 1370
c5aa993b
JM
1371 This is a kludge as on the HP compiler sets this bit and it
1372 never does prologue scheduling. So once we see one, skip past
1373 all of them. We have similar code for the fp arg stores below.
c906108c 1374
c5aa993b
JM
1375 FIXME. Can still die if we have a mix of GR and FR argument
1376 stores! */
6426a772 1377 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1378 {
6426a772 1379 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1380 {
1381 pc += 4;
1f602b35 1382 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1383 inst = extract_unsigned_integer (buf, 4);
1384 if (status != 0)
1385 return pc;
1386 reg_num = inst_saves_gr (inst);
1387 }
1388 args_stored = 0;
1389 continue;
1390 }
1391
1392 reg_num = inst_saves_fr (inst);
1393 save_fr &= ~(1 << reg_num);
1394
1f602b35 1395 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1396 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1397
c906108c
SS
1398 /* Yow! */
1399 if (status != 0)
1400 return pc;
1401
1402 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1403 save. */
c906108c
SS
1404 if ((inst & 0xfc000000) == 0x34000000
1405 && inst_saves_fr (next_inst) >= 4
6426a772 1406 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1407 {
1408 /* So we drop into the code below in a reasonable state. */
1409 reg_num = inst_saves_fr (next_inst);
1410 pc -= 4;
1411 }
1412
1413 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1414 This is a kludge as on the HP compiler sets this bit and it
1415 never does prologue scheduling. So once we see one, skip past
1416 all of them. */
6426a772 1417 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1418 {
6426a772 1419 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1420 {
1421 pc += 8;
1f602b35 1422 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1423 inst = extract_unsigned_integer (buf, 4);
1424 if (status != 0)
1425 return pc;
1426 if ((inst & 0xfc000000) != 0x34000000)
1427 break;
1f602b35 1428 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1429 next_inst = extract_unsigned_integer (buf, 4);
1430 if (status != 0)
1431 return pc;
1432 reg_num = inst_saves_fr (next_inst);
1433 }
1434 args_stored = 0;
1435 continue;
1436 }
1437
1438 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1439 instruction is in the delay slot of the first call/branch. */
a71f8c30 1440 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1441 break;
1442
1443 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1444 arguments were stored into the stack (boo hiss). This could
1445 cause this code to then skip a bunch of user insns (up to the
1446 first branch).
1447
1448 To combat this we try to identify when args_stored was bogusly
1449 set and clear it. We only do this when args_stored is nonzero,
1450 all other resources are accounted for, and nothing changed on
1451 this pass. */
c906108c 1452 if (args_stored
c5aa993b 1453 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1454 && old_save_gr == save_gr && old_save_fr == save_fr
1455 && old_save_rp == save_rp && old_save_sp == save_sp
1456 && old_stack_remaining == stack_remaining)
1457 break;
c5aa993b 1458
c906108c
SS
1459 /* Bump the PC. */
1460 pc += 4;
a71f8c30
RC
1461
1462 /* !stop_before_branch, so also look at the insn in the delay slot
1463 of the branch. */
1464 if (final_iteration)
1465 break;
1466 if (is_branch (inst))
1467 final_iteration = 1;
c906108c
SS
1468 }
1469
1470 /* We've got a tenative location for the end of the prologue. However
1471 because of limitations in the unwind descriptor mechanism we may
1472 have went too far into user code looking for the save of a register
1473 that does not exist. So, if there registers we expected to be saved
1474 but never were, mask them out and restart.
1475
1476 This should only happen in optimized code, and should be very rare. */
c5aa993b 1477 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1478 {
1479 pc = orig_pc;
1480 restart_gr = save_gr;
1481 restart_fr = save_fr;
1482 goto restart;
1483 }
1484
1485 return pc;
1486}
1487
1488
7be570e7
JM
1489/* Return the address of the PC after the last prologue instruction if
1490 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1491
1492static CORE_ADDR
fba45db2 1493after_prologue (CORE_ADDR pc)
c906108c
SS
1494{
1495 struct symtab_and_line sal;
1496 CORE_ADDR func_addr, func_end;
1497 struct symbol *f;
1498
7be570e7
JM
1499 /* If we can not find the symbol in the partial symbol table, then
1500 there is no hope we can determine the function's start address
1501 with this code. */
c906108c 1502 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1503 return 0;
c906108c 1504
7be570e7 1505 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1506 sal = find_pc_line (func_addr, 0);
1507
7be570e7
JM
1508 /* There are only two cases to consider. First, the end of the source line
1509 is within the function bounds. In that case we return the end of the
1510 source line. Second is the end of the source line extends beyond the
1511 bounds of the current function. We need to use the slow code to
1512 examine instructions in that case.
c906108c 1513
7be570e7
JM
1514 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1515 the wrong thing to do. In fact, it should be entirely possible for this
1516 function to always return zero since the slow instruction scanning code
1517 is supposed to *always* work. If it does not, then it is a bug. */
1518 if (sal.end < func_end)
1519 return sal.end;
c5aa993b 1520 else
7be570e7 1521 return 0;
c906108c
SS
1522}
1523
1524/* To skip prologues, I use this predicate. Returns either PC itself
1525 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1526 returns an address that (if we're lucky) follows the prologue.
1527
1528 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1529 It doesn't necessarily skips all the insns in the prologue. In fact
1530 we might not want to skip all the insns because a prologue insn may
1531 appear in the delay slot of the first branch, and we don't want to
1532 skip over the branch in that case. */
c906108c 1533
8d153463 1534static CORE_ADDR
fba45db2 1535hppa_skip_prologue (CORE_ADDR pc)
c906108c 1536{
c5aa993b
JM
1537 unsigned long inst;
1538 int offset;
1539 CORE_ADDR post_prologue_pc;
1540 char buf[4];
c906108c 1541
c5aa993b
JM
1542 /* See if we can determine the end of the prologue via the symbol table.
1543 If so, then return either PC, or the PC after the prologue, whichever
1544 is greater. */
c906108c 1545
c5aa993b 1546 post_prologue_pc = after_prologue (pc);
c906108c 1547
7be570e7
JM
1548 /* If after_prologue returned a useful address, then use it. Else
1549 fall back on the instruction skipping code.
1550
1551 Some folks have claimed this causes problems because the breakpoint
1552 may be the first instruction of the prologue. If that happens, then
1553 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1554 if (post_prologue_pc != 0)
1555 return max (pc, post_prologue_pc);
c5aa993b 1556 else
a71f8c30 1557 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1558}
1559
26d08f08
AC
1560struct hppa_frame_cache
1561{
1562 CORE_ADDR base;
1563 struct trad_frame_saved_reg *saved_regs;
1564};
1565
1566static struct hppa_frame_cache *
1567hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1568{
1569 struct hppa_frame_cache *cache;
1570 long saved_gr_mask;
1571 long saved_fr_mask;
1572 CORE_ADDR this_sp;
1573 long frame_size;
1574 struct unwind_table_entry *u;
9f7194c3 1575 CORE_ADDR prologue_end;
50b2f48a 1576 int fp_in_r1 = 0;
26d08f08
AC
1577 int i;
1578
369aa520
RC
1579 if (hppa_debug)
1580 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1581 frame_relative_level(next_frame));
1582
26d08f08 1583 if ((*this_cache) != NULL)
369aa520
RC
1584 {
1585 if (hppa_debug)
1586 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1587 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1588 return (*this_cache);
1589 }
26d08f08
AC
1590 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1591 (*this_cache) = cache;
1592 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1593
1594 /* Yow! */
d5c27f81 1595 u = find_unwind_entry (frame_pc_unwind (next_frame));
26d08f08 1596 if (!u)
369aa520
RC
1597 {
1598 if (hppa_debug)
1599 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1600 return (*this_cache);
1601 }
26d08f08
AC
1602
1603 /* Turn the Entry_GR field into a bitmask. */
1604 saved_gr_mask = 0;
1605 for (i = 3; i < u->Entry_GR + 3; i++)
1606 {
1607 /* Frame pointer gets saved into a special location. */
eded0a31 1608 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1609 continue;
1610
1611 saved_gr_mask |= (1 << i);
1612 }
1613
1614 /* Turn the Entry_FR field into a bitmask too. */
1615 saved_fr_mask = 0;
1616 for (i = 12; i < u->Entry_FR + 12; i++)
1617 saved_fr_mask |= (1 << i);
1618
1619 /* Loop until we find everything of interest or hit a branch.
1620
1621 For unoptimized GCC code and for any HP CC code this will never ever
1622 examine any user instructions.
1623
1624 For optimized GCC code we're faced with problems. GCC will schedule
1625 its prologue and make prologue instructions available for delay slot
1626 filling. The end result is user code gets mixed in with the prologue
1627 and a prologue instruction may be in the delay slot of the first branch
1628 or call.
1629
1630 Some unexpected things are expected with debugging optimized code, so
1631 we allow this routine to walk past user instructions in optimized
1632 GCC code. */
1633 {
1634 int final_iteration = 0;
9f7194c3 1635 CORE_ADDR pc, end_pc;
26d08f08
AC
1636 int looking_for_sp = u->Save_SP;
1637 int looking_for_rp = u->Save_RP;
1638 int fp_loc = -1;
9f7194c3 1639
a71f8c30 1640 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1641 skip_prologue_using_sal, in case we stepped into a function without
1642 symbol information. hppa_skip_prologue also bounds the returned
1643 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1644 function.
1645
1646 We used to call hppa_skip_prologue to find the end of the prologue,
1647 but if some non-prologue instructions get scheduled into the prologue,
1648 and the program is compiled with debug information, the "easy" way
1649 in hppa_skip_prologue will return a prologue end that is too early
1650 for us to notice any potential frame adjustments. */
d5c27f81
RC
1651
1652 /* We used to use frame_func_unwind () to locate the beginning of the
1653 function to pass to skip_prologue (). However, when objects are
1654 compiled without debug symbols, frame_func_unwind can return the wrong
1655 function (or 0). We can do better than that by using unwind records. */
1656
a71f8c30 1657 prologue_end = skip_prologue_hard_way (u->region_start, 0);
9f7194c3
RC
1658 end_pc = frame_pc_unwind (next_frame);
1659
1660 if (prologue_end != 0 && end_pc > prologue_end)
1661 end_pc = prologue_end;
1662
26d08f08 1663 frame_size = 0;
9f7194c3 1664
d5c27f81 1665 for (pc = u->region_start;
26d08f08
AC
1666 ((saved_gr_mask || saved_fr_mask
1667 || looking_for_sp || looking_for_rp
1668 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1669 && pc < end_pc);
26d08f08
AC
1670 pc += 4)
1671 {
1672 int reg;
1673 char buf4[4];
4a302917
RC
1674 long inst;
1675
1676 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1677 sizeof buf4))
1678 {
1679 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1680 return (*this_cache);
1681 }
1682
1683 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1684
26d08f08
AC
1685 /* Note the interesting effects of this instruction. */
1686 frame_size += prologue_inst_adjust_sp (inst);
1687
1688 /* There are limited ways to store the return pointer into the
1689 stack. */
1690 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1691 {
1692 looking_for_rp = 0;
34f75cc1 1693 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1694 }
dfaf8edb
MK
1695 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1696 {
1697 looking_for_rp = 0;
1698 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1699 }
26d08f08
AC
1700 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1701 {
1702 looking_for_rp = 0;
34f75cc1 1703 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1704 }
1705
1706 /* Check to see if we saved SP into the stack. This also
1707 happens to indicate the location of the saved frame
1708 pointer. */
1709 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1710 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1711 {
1712 looking_for_sp = 0;
eded0a31 1713 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1714 }
50b2f48a
RC
1715 else if (inst == 0x08030241) /* copy %r3, %r1 */
1716 {
1717 fp_in_r1 = 1;
1718 }
26d08f08
AC
1719
1720 /* Account for general and floating-point register saves. */
1721 reg = inst_saves_gr (inst);
1722 if (reg >= 3 && reg <= 18
eded0a31 1723 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1724 {
1725 saved_gr_mask &= ~(1 << reg);
abc485a1 1726 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1727 /* stwm with a positive displacement is a _post_
1728 _modify_. */
1729 cache->saved_regs[reg].addr = 0;
1730 else if ((inst & 0xfc00000c) == 0x70000008)
1731 /* A std has explicit post_modify forms. */
1732 cache->saved_regs[reg].addr = 0;
1733 else
1734 {
1735 CORE_ADDR offset;
1736
1737 if ((inst >> 26) == 0x1c)
1738 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1739 else if ((inst >> 26) == 0x03)
abc485a1 1740 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1741 else
abc485a1 1742 offset = hppa_extract_14 (inst);
26d08f08
AC
1743
1744 /* Handle code with and without frame pointers. */
1745 if (u->Save_SP)
1746 cache->saved_regs[reg].addr = offset;
1747 else
1748 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1749 }
1750 }
1751
1752 /* GCC handles callee saved FP regs a little differently.
1753
1754 It emits an instruction to put the value of the start of
1755 the FP store area into %r1. It then uses fstds,ma with a
1756 basereg of %r1 for the stores.
1757
1758 HP CC emits them at the current stack pointer modifying the
1759 stack pointer as it stores each register. */
1760
1761 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1762 if ((inst & 0xffffc000) == 0x34610000
1763 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1764 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1765
1766 reg = inst_saves_fr (inst);
1767 if (reg >= 12 && reg <= 21)
1768 {
1769 /* Note +4 braindamage below is necessary because the FP
1770 status registers are internally 8 registers rather than
1771 the expected 4 registers. */
1772 saved_fr_mask &= ~(1 << reg);
1773 if (fp_loc == -1)
1774 {
1775 /* 1st HP CC FP register store. After this
1776 instruction we've set enough state that the GCC and
1777 HPCC code are both handled in the same manner. */
34f75cc1 1778 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1779 fp_loc = 8;
1780 }
1781 else
1782 {
eded0a31 1783 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1784 fp_loc += 8;
1785 }
1786 }
1787
1788 /* Quit if we hit any kind of branch the previous iteration. */
1789 if (final_iteration)
1790 break;
1791 /* We want to look precisely one instruction beyond the branch
1792 if we have not found everything yet. */
1793 if (is_branch (inst))
1794 final_iteration = 1;
1795 }
1796 }
1797
1798 {
1799 /* The frame base always represents the value of %sp at entry to
1800 the current function (and is thus equivalent to the "saved"
1801 stack pointer. */
eded0a31 1802 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 1803 CORE_ADDR fp;
9f7194c3
RC
1804
1805 if (hppa_debug)
1806 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1807 "prologue_end=0x%s) ",
1808 paddr_nz (this_sp),
1809 paddr_nz (frame_pc_unwind (next_frame)),
1810 paddr_nz (prologue_end));
1811
ed70ba00
RC
1812 /* Check to see if a frame pointer is available, and use it for
1813 frame unwinding if it is.
1814
1815 There are some situations where we need to rely on the frame
1816 pointer to do stack unwinding. For example, if a function calls
1817 alloca (), the stack pointer can get adjusted inside the body of
1818 the function. In this case, the ABI requires that the compiler
1819 maintain a frame pointer for the function.
1820
1821 The unwind record has a flag (alloca_frame) that indicates that
1822 a function has a variable frame; unfortunately, gcc/binutils
1823 does not set this flag. Instead, whenever a frame pointer is used
1824 and saved on the stack, the Save_SP flag is set. We use this to
1825 decide whether to use the frame pointer for unwinding.
1826
ed70ba00
RC
1827 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1828 instead of Save_SP. */
1829
1830 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1831
1832 if (frame_pc_unwind (next_frame) >= prologue_end
1833 && u->Save_SP && fp != 0)
1834 {
1835 cache->base = fp;
1836
1837 if (hppa_debug)
1838 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1839 paddr_nz (cache->base));
1840 }
1658da49
RC
1841 else if (u->Save_SP
1842 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 1843 {
9f7194c3
RC
1844 /* Both we're expecting the SP to be saved and the SP has been
1845 saved. The entry SP value is saved at this frame's SP
1846 address. */
1847 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1848
1849 if (hppa_debug)
1850 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1851 paddr_nz (cache->base));
9f7194c3 1852 }
26d08f08 1853 else
9f7194c3 1854 {
1658da49
RC
1855 /* The prologue has been slowly allocating stack space. Adjust
1856 the SP back. */
1857 cache->base = this_sp - frame_size;
9f7194c3 1858 if (hppa_debug)
1658da49 1859 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
9f7194c3
RC
1860 paddr_nz (cache->base));
1861
1862 }
eded0a31 1863 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
1864 }
1865
412275d5
AC
1866 /* The PC is found in the "return register", "Millicode" uses "r31"
1867 as the return register while normal code uses "rp". */
26d08f08 1868 if (u->Millicode)
9f7194c3 1869 {
5859efe5 1870 if (trad_frame_addr_p (cache->saved_regs, 31))
34f75cc1 1871 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
9f7194c3
RC
1872 else
1873 {
1874 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 1875 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9f7194c3
RC
1876 }
1877 }
26d08f08 1878 else
9f7194c3 1879 {
34f75cc1
RC
1880 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1881 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
9f7194c3
RC
1882 else
1883 {
34f75cc1
RC
1884 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1885 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9f7194c3
RC
1886 }
1887 }
26d08f08 1888
50b2f48a
RC
1889 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1890 frame. However, there is a one-insn window where we haven't saved it
1891 yet, but we've already clobbered it. Detect this case and fix it up.
1892
1893 The prologue sequence for frame-pointer functions is:
1894 0: stw %rp, -20(%sp)
1895 4: copy %r3, %r1
1896 8: copy %sp, %r3
1897 c: stw,ma %r1, XX(%sp)
1898
1899 So if we are at offset c, the r3 value that we want is not yet saved
1900 on the stack, but it's been overwritten. The prologue analyzer will
1901 set fp_in_r1 when it sees the copy insn so we know to get the value
1902 from r1 instead. */
1903 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1904 && fp_in_r1)
1905 {
1906 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1907 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1908 }
1658da49 1909
26d08f08
AC
1910 {
1911 /* Convert all the offsets into addresses. */
1912 int reg;
1913 for (reg = 0; reg < NUM_REGS; reg++)
1914 {
1915 if (trad_frame_addr_p (cache->saved_regs, reg))
1916 cache->saved_regs[reg].addr += cache->base;
1917 }
1918 }
1919
369aa520
RC
1920 if (hppa_debug)
1921 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1922 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
1923 return (*this_cache);
1924}
1925
1926static void
1927hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1928 struct frame_id *this_id)
1929{
d5c27f81
RC
1930 struct hppa_frame_cache *info;
1931 CORE_ADDR pc = frame_pc_unwind (next_frame);
1932 struct unwind_table_entry *u;
1933
1934 info = hppa_frame_cache (next_frame, this_cache);
1935 u = find_unwind_entry (pc);
1936
1937 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
1938}
1939
1940static void
1941hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
1942 void **this_cache,
1943 int regnum, int *optimizedp,
1944 enum lval_type *lvalp, CORE_ADDR *addrp,
1945 int *realnump, void *valuep)
26d08f08
AC
1946{
1947 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
1948 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1949 optimizedp, lvalp, addrp, realnump, valuep);
1950}
1951
1952static const struct frame_unwind hppa_frame_unwind =
1953{
1954 NORMAL_FRAME,
1955 hppa_frame_this_id,
1956 hppa_frame_prev_register
1957};
1958
1959static const struct frame_unwind *
1960hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1961{
1962 CORE_ADDR pc = frame_pc_unwind (next_frame);
1963
1964 if (find_unwind_entry (pc))
1965 return &hppa_frame_unwind;
1966
1967 return NULL;
1968}
1969
1970/* This is a generic fallback frame unwinder that kicks in if we fail all
1971 the other ones. Normally we would expect the stub and regular unwinder
1972 to work, but in some cases we might hit a function that just doesn't
1973 have any unwind information available. In this case we try to do
1974 unwinding solely based on code reading. This is obviously going to be
1975 slow, so only use this as a last resort. Currently this will only
1976 identify the stack and pc for the frame. */
1977
1978static struct hppa_frame_cache *
1979hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1980{
1981 struct hppa_frame_cache *cache;
6d1be3f1 1982 unsigned int frame_size;
d5c27f81 1983 int found_rp;
0da28f8a
RC
1984 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1985
d5c27f81
RC
1986 if (hppa_debug)
1987 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1988 frame_relative_level(next_frame));
1989
0da28f8a
RC
1990 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1991 (*this_cache) = cache;
1992 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1993
1994 pc = frame_func_unwind (next_frame);
1995 cur_pc = frame_pc_unwind (next_frame);
6d1be3f1 1996 frame_size = 0;
d5c27f81 1997 found_rp = 0;
0da28f8a
RC
1998
1999 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2000
2001 if (start_pc == 0 || end_pc == 0)
412275d5 2002 {
0da28f8a
RC
2003 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2004 "fail.", paddr_nz (pc));
2005 return cache;
2006 }
2007
2008 if (end_pc > cur_pc)
2009 end_pc = cur_pc;
2010
2011 for (pc = start_pc; pc < end_pc; pc += 4)
2012 {
2013 unsigned int insn;
2014
2015 insn = read_memory_unsigned_integer (pc, 4);
2016
6d1be3f1
RC
2017 frame_size += prologue_inst_adjust_sp (insn);
2018
0da28f8a
RC
2019 /* There are limited ways to store the return pointer into the
2020 stack. */
2021 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
d5c27f81
RC
2022 {
2023 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2024 found_rp = 1;
2025 }
0da28f8a 2026 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
d5c27f81
RC
2027 {
2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2029 found_rp = 1;
2030 }
412275d5 2031 }
0da28f8a 2032
d5c27f81
RC
2033 if (hppa_debug)
2034 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2035 frame_size, found_rp);
2036
6d1be3f1
RC
2037 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2038 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2039
2040 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2041 {
2042 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2043 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2044 }
412275d5
AC
2045 else
2046 {
0da28f8a
RC
2047 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2048 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2049 }
0da28f8a
RC
2050
2051 return cache;
26d08f08
AC
2052}
2053
0da28f8a
RC
2054static void
2055hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2056 struct frame_id *this_id)
2057{
2058 struct hppa_frame_cache *info =
2059 hppa_fallback_frame_cache (next_frame, this_cache);
2060 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2061}
2062
2063static void
2064hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2065 void **this_cache,
2066 int regnum, int *optimizedp,
2067 enum lval_type *lvalp, CORE_ADDR *addrp,
2068 int *realnump, void *valuep)
2069{
2070 struct hppa_frame_cache *info =
2071 hppa_fallback_frame_cache (next_frame, this_cache);
2072 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2073 optimizedp, lvalp, addrp, realnump, valuep);
2074}
2075
2076static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2077{
2078 NORMAL_FRAME,
0da28f8a
RC
2079 hppa_fallback_frame_this_id,
2080 hppa_fallback_frame_prev_register
26d08f08
AC
2081};
2082
2083static const struct frame_unwind *
0da28f8a 2084hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2085{
0da28f8a 2086 return &hppa_fallback_frame_unwind;
26d08f08
AC
2087}
2088
7f07c5b6
RC
2089/* Stub frames, used for all kinds of call stubs. */
2090struct hppa_stub_unwind_cache
2091{
2092 CORE_ADDR base;
2093 struct trad_frame_saved_reg *saved_regs;
2094};
2095
2096static struct hppa_stub_unwind_cache *
2097hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2098 void **this_cache)
2099{
2100 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2101 struct hppa_stub_unwind_cache *info;
22b0923d 2102 struct unwind_table_entry *u;
7f07c5b6
RC
2103
2104 if (*this_cache)
2105 return *this_cache;
2106
2107 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2108 *this_cache = info;
2109 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2110
7f07c5b6
RC
2111 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2112
090ccbb7 2113 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2114 {
2115 /* HPUX uses export stubs in function calls; the export stub clobbers
2116 the return value of the caller, and, later restores it from the
2117 stack. */
2118 u = find_unwind_entry (frame_pc_unwind (next_frame));
2119
2120 if (u && u->stub_unwind.stub_type == EXPORT)
2121 {
2122 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2123
2124 return info;
2125 }
2126 }
2127
2128 /* By default we assume that stubs do not change the rp. */
2129 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2130
7f07c5b6
RC
2131 return info;
2132}
2133
2134static void
2135hppa_stub_frame_this_id (struct frame_info *next_frame,
2136 void **this_prologue_cache,
2137 struct frame_id *this_id)
2138{
2139 struct hppa_stub_unwind_cache *info
2140 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2141 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2142}
2143
2144static void
2145hppa_stub_frame_prev_register (struct frame_info *next_frame,
2146 void **this_prologue_cache,
2147 int regnum, int *optimizedp,
2148 enum lval_type *lvalp, CORE_ADDR *addrp,
0da28f8a 2149 int *realnump, void *valuep)
7f07c5b6
RC
2150{
2151 struct hppa_stub_unwind_cache *info
2152 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
0da28f8a
RC
2153 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2154 optimizedp, lvalp, addrp, realnump, valuep);
7f07c5b6
RC
2155}
2156
2157static const struct frame_unwind hppa_stub_frame_unwind = {
2158 NORMAL_FRAME,
2159 hppa_stub_frame_this_id,
2160 hppa_stub_frame_prev_register
2161};
2162
2163static const struct frame_unwind *
2164hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2165{
2166 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2169
6d1be3f1 2170 if (pc == 0
84674fe1
AC
2171 || (tdep->in_solib_call_trampoline != NULL
2172 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2173 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2174 return &hppa_stub_frame_unwind;
2175 return NULL;
2176}
2177
26d08f08
AC
2178static struct frame_id
2179hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2180{
2181 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2182 HPPA_SP_REGNUM),
26d08f08
AC
2183 frame_pc_unwind (next_frame));
2184}
2185
2186static CORE_ADDR
2187hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2188{
34f75cc1 2189 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
26d08f08
AC
2190}
2191
9a043c1d
AC
2192/* Instead of this nasty cast, add a method pvoid() that prints out a
2193 host VOID data type (remember %p isn't portable). */
2194
2195static CORE_ADDR
2196hppa_pointer_to_address_hack (void *ptr)
2197{
2198 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2199 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2200}
2201
c906108c 2202static void
fba45db2 2203unwind_command (char *exp, int from_tty)
c906108c
SS
2204{
2205 CORE_ADDR address;
2206 struct unwind_table_entry *u;
2207
2208 /* If we have an expression, evaluate it and use it as the address. */
2209
2210 if (exp != 0 && *exp != 0)
2211 address = parse_and_eval_address (exp);
2212 else
2213 return;
2214
2215 u = find_unwind_entry (address);
2216
2217 if (!u)
2218 {
2219 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2220 return;
2221 }
2222
ce414844 2223 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 2224 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
2225
2226 printf_unfiltered ("\tregion_start = ");
2227 print_address (u->region_start, gdb_stdout);
d5c27f81 2228 gdb_flush (gdb_stdout);
c906108c
SS
2229
2230 printf_unfiltered ("\n\tregion_end = ");
2231 print_address (u->region_end, gdb_stdout);
d5c27f81 2232 gdb_flush (gdb_stdout);
c906108c 2233
c906108c 2234#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2235
2236 printf_unfiltered ("\n\tflags =");
2237 pif (Cannot_unwind);
2238 pif (Millicode);
2239 pif (Millicode_save_sr0);
2240 pif (Entry_SR);
2241 pif (Args_stored);
2242 pif (Variable_Frame);
2243 pif (Separate_Package_Body);
2244 pif (Frame_Extension_Millicode);
2245 pif (Stack_Overflow_Check);
2246 pif (Two_Instruction_SP_Increment);
2247 pif (Ada_Region);
2248 pif (Save_SP);
2249 pif (Save_RP);
2250 pif (Save_MRP_in_frame);
2251 pif (extn_ptr_defined);
2252 pif (Cleanup_defined);
2253 pif (MPE_XL_interrupt_marker);
2254 pif (HP_UX_interrupt_marker);
2255 pif (Large_frame);
2256
2257 putchar_unfiltered ('\n');
2258
c906108c 2259#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2260
2261 pin (Region_description);
2262 pin (Entry_FR);
2263 pin (Entry_GR);
2264 pin (Total_frame_size);
2265}
c906108c 2266
d709c020
JB
2267int
2268hppa_pc_requires_run_before_use (CORE_ADDR pc)
2269{
2270 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2271
2272 An example of this occurs when an a.out is linked against a foo.sl.
2273 The foo.sl defines a global bar(), and the a.out declares a signature
2274 for bar(). However, the a.out doesn't directly call bar(), but passes
2275 its address in another call.
2276
2277 If you have this scenario and attempt to "break bar" before running,
2278 gdb will find a minimal symbol for bar() in the a.out. But that
2279 symbol's address will be negative. What this appears to denote is
2280 an index backwards from the base of the procedure linkage table (PLT)
2281 into the data linkage table (DLT), the end of which is contiguous
2282 with the start of the PLT. This is clearly not a valid address for
2283 us to set a breakpoint on.
2284
2285 Note that one must be careful in how one checks for a negative address.
2286 0xc0000000 is a legitimate address of something in a shared text
2287 segment, for example. Since I don't know what the possible range
2288 is of these "really, truly negative" addresses that come from the
2289 minimal symbols, I'm resorting to the gross hack of checking the
2290 top byte of the address for all 1's. Sigh. */
2291
2292 return (!target_has_stack && (pc & 0xFF000000));
2293}
2294
2295int
2296hppa_instruction_nullified (void)
2297{
2298 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2299 avoid the type cast. I'm leaving it as is for now as I'm doing
2300 semi-mechanical multiarching-related changes. */
34f75cc1
RC
2301 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2302 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
d709c020
JB
2303
2304 return ((ipsw & 0x00200000) && !(flags & 0x2));
2305}
2306
d709c020
JB
2307/* Return the GDB type object for the "standard" data type of data
2308 in register N. */
2309
eded0a31
AC
2310static struct type *
2311hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
d709c020 2312{
34f75cc1 2313 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2314 return builtin_type_uint32;
d709c020 2315 else
eded0a31 2316 return builtin_type_ieee_single_big;
d709c020
JB
2317}
2318
3ff7cf9e
JB
2319/* Return the GDB type object for the "standard" data type of data
2320 in register N. hppa64 version. */
2321
eded0a31
AC
2322static struct type *
2323hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
3ff7cf9e 2324{
34f75cc1 2325 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2326 return builtin_type_uint64;
3ff7cf9e 2327 else
eded0a31 2328 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2329}
2330
d709c020
JB
2331/* Return True if REGNUM is not a register available to the user
2332 through ptrace(). */
2333
8d153463 2334static int
d709c020
JB
2335hppa_cannot_store_register (int regnum)
2336{
2337 return (regnum == 0
34f75cc1
RC
2338 || regnum == HPPA_PCSQ_HEAD_REGNUM
2339 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2340 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
d709c020
JB
2341
2342}
2343
8d153463 2344static CORE_ADDR
d709c020
JB
2345hppa_smash_text_address (CORE_ADDR addr)
2346{
2347 /* The low two bits of the PC on the PA contain the privilege level.
2348 Some genius implementing a (non-GCC) compiler apparently decided
2349 this means that "addresses" in a text section therefore include a
2350 privilege level, and thus symbol tables should contain these bits.
2351 This seems like a bonehead thing to do--anyway, it seems to work
2352 for our purposes to just ignore those bits. */
2353
2354 return (addr &= ~0x3);
2355}
2356
143985b7 2357/* Get the ith function argument for the current function. */
4a302917 2358static CORE_ADDR
143985b7
AF
2359hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2360 struct type *type)
2361{
2362 CORE_ADDR addr;
34f75cc1 2363 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
143985b7
AF
2364 return addr;
2365}
2366
0f8d9d59
RC
2367static void
2368hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2369 int regnum, void *buf)
2370{
2371 ULONGEST tmp;
2372
2373 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2374 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59
RC
2375 tmp &= ~0x3;
2376 store_unsigned_integer (buf, sizeof(tmp), tmp);
2377}
2378
d49771ef
RC
2379static CORE_ADDR
2380hppa_find_global_pointer (struct value *function)
2381{
2382 return 0;
2383}
2384
0da28f8a
RC
2385void
2386hppa_frame_prev_register_helper (struct frame_info *next_frame,
2387 struct trad_frame_saved_reg saved_regs[],
2388 int regnum, int *optimizedp,
2389 enum lval_type *lvalp, CORE_ADDR *addrp,
2390 int *realnump, void *valuep)
2391{
8693c419
MK
2392 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2393 {
2394 if (valuep)
2395 {
2396 CORE_ADDR pc;
0da28f8a 2397
1f67027d
AC
2398 trad_frame_get_prev_register (next_frame, saved_regs,
2399 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2400 lvalp, addrp, realnump, valuep);
8693c419
MK
2401
2402 pc = extract_unsigned_integer (valuep, 4);
2403 store_unsigned_integer (valuep, 4, pc + 4);
2404 }
2405
2406 /* It's a computed value. */
2407 *optimizedp = 0;
2408 *lvalp = not_lval;
2409 *addrp = 0;
2410 *realnump = -1;
2411 return;
2412 }
0da28f8a 2413
1f67027d
AC
2414 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2415 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2416}
8693c419 2417\f
0da28f8a 2418
8e8b2dba
MC
2419/* Here is a table of C type sizes on hppa with various compiles
2420 and options. I measured this on PA 9000/800 with HP-UX 11.11
2421 and these compilers:
2422
2423 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2424 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2425 /opt/aCC/bin/aCC B3910B A.03.45
2426 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2427
2428 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2429 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2430 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2431 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2432 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2433 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2434 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2435 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2436
2437 Each line is:
2438
2439 compiler and options
2440 char, short, int, long, long long
2441 float, double, long double
2442 char *, void (*)()
2443
2444 So all these compilers use either ILP32 or LP64 model.
2445 TODO: gcc has more options so it needs more investigation.
2446
a2379359
MC
2447 For floating point types, see:
2448
2449 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2450 HP-UX floating-point guide, hpux 11.00
2451
8e8b2dba
MC
2452 -- chastain 2003-12-18 */
2453
e6e68f1f
JB
2454static struct gdbarch *
2455hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2456{
3ff7cf9e 2457 struct gdbarch_tdep *tdep;
e6e68f1f 2458 struct gdbarch *gdbarch;
59623e27
JB
2459
2460 /* Try to determine the ABI of the object we are loading. */
4be87837 2461 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2462 {
4be87837
DJ
2463 /* If it's a SOM file, assume it's HP/UX SOM. */
2464 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2465 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2466 }
e6e68f1f
JB
2467
2468 /* find a candidate among the list of pre-declared architectures. */
2469 arches = gdbarch_list_lookup_by_info (arches, &info);
2470 if (arches != NULL)
2471 return (arches->gdbarch);
2472
2473 /* If none found, then allocate and initialize one. */
fdd72f95 2474 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2475 gdbarch = gdbarch_alloc (&info, tdep);
2476
2477 /* Determine from the bfd_arch_info structure if we are dealing with
2478 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2479 then default to a 32bit machine. */
2480 if (info.bfd_arch_info != NULL)
2481 tdep->bytes_per_address =
2482 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2483 else
2484 tdep->bytes_per_address = 4;
2485
d49771ef
RC
2486 tdep->find_global_pointer = hppa_find_global_pointer;
2487
3ff7cf9e
JB
2488 /* Some parts of the gdbarch vector depend on whether we are running
2489 on a 32 bits or 64 bits target. */
2490 switch (tdep->bytes_per_address)
2491 {
2492 case 4:
2493 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2494 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2495 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3ff7cf9e
JB
2496 break;
2497 case 8:
2498 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2499 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2500 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3ff7cf9e
JB
2501 break;
2502 default:
2503 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2504 tdep->bytes_per_address);
2505 }
2506
3ff7cf9e 2507 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2508 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2509
8e8b2dba
MC
2510 /* The following gdbarch vector elements are the same in both ILP32
2511 and LP64, but might show differences some day. */
2512 set_gdbarch_long_long_bit (gdbarch, 64);
2513 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2514 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2515
3ff7cf9e
JB
2516 /* The following gdbarch vector elements do not depend on the address
2517 size, or in any other gdbarch element previously set. */
60383d10 2518 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
a2a84a72 2519 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2520 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2521 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
60383d10 2522 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
50306a9d 2523 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 2524 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2525 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2526 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2527 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2528 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
60383d10 2529
143985b7
AF
2530 /* Helper for function argument information. */
2531 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2532
36482093
AC
2533 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2534
3a3bc038
AC
2535 /* When a hardware watchpoint triggers, we'll move the inferior past
2536 it by removing all eventpoints; stepping past the instruction
2537 that caused the trigger; reinserting eventpoints; and checking
2538 whether any watched location changed. */
2539 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2540
5979bc46 2541 /* Inferior function call methods. */
fca7aa43 2542 switch (tdep->bytes_per_address)
5979bc46 2543 {
fca7aa43
AC
2544 case 4:
2545 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2546 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
2547 set_gdbarch_convert_from_func_ptr_addr
2548 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
2549 break;
2550 case 8:
782eae8b
AC
2551 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2552 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2553 break;
782eae8b
AC
2554 default:
2555 internal_error (__FILE__, __LINE__, "bad switch");
fad850b2
AC
2556 }
2557
2558 /* Struct return methods. */
fca7aa43 2559 switch (tdep->bytes_per_address)
fad850b2 2560 {
fca7aa43
AC
2561 case 4:
2562 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2563 break;
2564 case 8:
782eae8b 2565 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2566 break;
fca7aa43
AC
2567 default:
2568 internal_error (__FILE__, __LINE__, "bad switch");
e963316f 2569 }
7f07c5b6 2570
85f4f2d8 2571 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2572 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2573
5979bc46 2574 /* Frame unwind methods. */
782eae8b
AC
2575 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2576 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2577
50306a9d
RC
2578 /* Hook in ABI-specific overrides, if they have been registered. */
2579 gdbarch_init_osabi (info, gdbarch);
2580
7f07c5b6
RC
2581 /* Hook in the default unwinders. */
2582 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2583 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2584 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 2585
e6e68f1f
JB
2586 return gdbarch;
2587}
2588
2589static void
2590hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2591{
fdd72f95
RC
2592 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2593
2594 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2595 tdep->bytes_per_address);
2596 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2597}
2598
4facf7e8
JB
2599void
2600_initialize_hppa_tdep (void)
2601{
2602 struct cmd_list_element *c;
2603 void break_at_finish_command (char *arg, int from_tty);
2604 void tbreak_at_finish_command (char *arg, int from_tty);
2605 void break_at_finish_at_depth_command (char *arg, int from_tty);
2606
e6e68f1f 2607 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2608
7c46b9fb
RC
2609 hppa_objfile_priv_data = register_objfile_data ();
2610
4facf7e8
JB
2611 add_cmd ("unwind", class_maintenance, unwind_command,
2612 "Print unwind table entry at given address.",
2613 &maintenanceprintlist);
2614
2615 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2616 break_at_finish_command,
2617 concat ("Set breakpoint at procedure exit. \n\
2618Argument may be function name, or \"*\" and an address.\n\
2619If function is specified, break at end of code for that function.\n\
2620If an address is specified, break at the end of the function that contains \n\
2621that exact address.\n",
2622 "With no arg, uses current execution address of selected stack frame.\n\
2623This is useful for breaking on return to a stack frame.\n\
2624\n\
2625Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2626\n\
2627Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2628 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2629 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2630 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2631 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2632
2633 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2634 tbreak_at_finish_command,
2635"Set temporary breakpoint at procedure exit. Either there should\n\
2636be no argument or the argument must be a depth.\n"), NULL);
2637 set_cmd_completer (c, location_completer);
2638
2639 if (xdb_commands)
2640 deprecate_cmd (add_com ("bx", class_breakpoint,
2641 break_at_finish_at_depth_command,
2642"Set breakpoint at procedure exit. Either there should\n\
2643be no argument or the argument must be a depth.\n"), NULL);
369aa520
RC
2644
2645 /* Debug this files internals. */
4a302917
RC
2646 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2647Set whether hppa target specific debugging information should be displayed.", "\
2648Show whether hppa target specific debugging information is displayed.", "\
2649This flag controls whether hppa target specific debugging information is\n\
2650displayed. This information is particularly useful for debugging frame\n\
2651unwinding problems.", "hppa debug flag is %s.",
2652 NULL, NULL, &setdebuglist, &showdebuglist);
4facf7e8 2653}
This page took 0.595892 seconds and 4 git commands to generate.