* ldemul.h: Forward declare struct option.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020 73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
c906108c 74
537987fc
AC
75/* Handle 32/64-bit struct return conventions. */
76
77static enum return_value_convention
78hppa32_return_value (struct gdbarch *gdbarch,
79 struct type *type, struct regcache *regcache,
80 void *readbuf, const void *writebuf)
81{
537987fc
AC
82 if (TYPE_LENGTH (type) <= 2 * 4)
83 {
84 /* The value always lives in the right hand end of the register
85 (or register pair)? */
86 int b;
34f75cc1 87 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
537987fc
AC
88 int part = TYPE_LENGTH (type) % 4;
89 /* The left hand register contains only part of the value,
90 transfer that first so that the rest can be xfered as entire
91 4-byte registers. */
92 if (part > 0)
93 {
94 if (readbuf != NULL)
95 regcache_cooked_read_part (regcache, reg, 4 - part,
96 part, readbuf);
97 if (writebuf != NULL)
98 regcache_cooked_write_part (regcache, reg, 4 - part,
99 part, writebuf);
100 reg++;
101 }
102 /* Now transfer the remaining register values. */
103 for (b = part; b < TYPE_LENGTH (type); b += 4)
104 {
105 if (readbuf != NULL)
106 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
107 if (writebuf != NULL)
108 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
109 reg++;
110 }
111 return RETURN_VALUE_REGISTER_CONVENTION;
112 }
113 else
114 return RETURN_VALUE_STRUCT_CONVENTION;
115}
116
117static enum return_value_convention
118hppa64_return_value (struct gdbarch *gdbarch,
119 struct type *type, struct regcache *regcache,
120 void *readbuf, const void *writebuf)
121{
122 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
123 are in r28, padded on the left. Aggregates less that 65 bits are
124 in r28, right padded. Aggregates upto 128 bits are in r28 and
125 r29, right padded. */
449e1137
AC
126 if (TYPE_CODE (type) == TYPE_CODE_FLT
127 && TYPE_LENGTH (type) <= 8)
537987fc
AC
128 {
129 /* Floats are right aligned? */
34f75cc1 130 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc 131 if (readbuf != NULL)
34f75cc1 132 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
133 TYPE_LENGTH (type), readbuf);
134 if (writebuf != NULL)
34f75cc1 135 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
136 TYPE_LENGTH (type), writebuf);
137 return RETURN_VALUE_REGISTER_CONVENTION;
138 }
139 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
140 {
141 /* Integrals are right aligned. */
34f75cc1 142 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc
AC
143 if (readbuf != NULL)
144 regcache_cooked_read_part (regcache, 28, offset,
145 TYPE_LENGTH (type), readbuf);
146 if (writebuf != NULL)
147 regcache_cooked_write_part (regcache, 28, offset,
148 TYPE_LENGTH (type), writebuf);
149 return RETURN_VALUE_REGISTER_CONVENTION;
150 }
151 else if (TYPE_LENGTH (type) <= 2 * 8)
152 {
153 /* Composite values are left aligned. */
154 int b;
155 for (b = 0; b < TYPE_LENGTH (type); b += 8)
156 {
449e1137 157 int part = min (8, TYPE_LENGTH (type) - b);
537987fc 158 if (readbuf != NULL)
449e1137 159 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
160 (char *) readbuf + b);
161 if (writebuf != NULL)
449e1137 162 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
163 (const char *) writebuf + b);
164 }
449e1137 165 return RETURN_VALUE_REGISTER_CONVENTION;
537987fc
AC
166 }
167 else
168 return RETURN_VALUE_STRUCT_CONVENTION;
169}
170
c906108c
SS
171/* Routines to extract various sized constants out of hppa
172 instructions. */
173
174/* This assumes that no garbage lies outside of the lower bits of
175 value. */
176
abc485a1
RC
177int
178hppa_sign_extend (unsigned val, unsigned bits)
c906108c 179{
c5aa993b 180 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
181}
182
183/* For many immediate values the sign bit is the low bit! */
184
abc485a1
RC
185int
186hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 187{
c5aa993b 188 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
189}
190
e2ac8128
JB
191/* Extract the bits at positions between FROM and TO, using HP's numbering
192 (MSB = 0). */
193
abc485a1
RC
194int
195hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
196{
197 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
198}
199
c906108c
SS
200/* extract the immediate field from a ld{bhw}s instruction */
201
abc485a1
RC
202int
203hppa_extract_5_load (unsigned word)
c906108c 204{
abc485a1 205 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
206}
207
c906108c
SS
208/* extract the immediate field from a break instruction */
209
abc485a1
RC
210unsigned
211hppa_extract_5r_store (unsigned word)
c906108c
SS
212{
213 return (word & MASK_5);
214}
215
216/* extract the immediate field from a {sr}sm instruction */
217
abc485a1
RC
218unsigned
219hppa_extract_5R_store (unsigned word)
c906108c
SS
220{
221 return (word >> 16 & MASK_5);
222}
223
c906108c
SS
224/* extract a 14 bit immediate field */
225
abc485a1
RC
226int
227hppa_extract_14 (unsigned word)
c906108c 228{
abc485a1 229 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
230}
231
c906108c
SS
232/* extract a 21 bit constant */
233
abc485a1
RC
234int
235hppa_extract_21 (unsigned word)
c906108c
SS
236{
237 int val;
238
239 word &= MASK_21;
240 word <<= 11;
abc485a1 241 val = hppa_get_field (word, 20, 20);
c906108c 242 val <<= 11;
abc485a1 243 val |= hppa_get_field (word, 9, 19);
c906108c 244 val <<= 2;
abc485a1 245 val |= hppa_get_field (word, 5, 6);
c906108c 246 val <<= 5;
abc485a1 247 val |= hppa_get_field (word, 0, 4);
c906108c 248 val <<= 2;
abc485a1
RC
249 val |= hppa_get_field (word, 7, 8);
250 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
251}
252
c906108c
SS
253/* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
abc485a1
RC
256int
257hppa_extract_17 (unsigned word)
c906108c 258{
abc485a1
RC
259 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
260 hppa_get_field (word, 29, 29) << 10 |
261 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
262 (word & 0x1) << 16, 17) << 2;
263}
3388d7ff
RC
264
265CORE_ADDR
266hppa_symbol_address(const char *sym)
267{
268 struct minimal_symbol *minsym;
269
270 minsym = lookup_minimal_symbol (sym, NULL, NULL);
271 if (minsym)
272 return SYMBOL_VALUE_ADDRESS (minsym);
273 else
274 return (CORE_ADDR)-1;
275}
c906108c
SS
276\f
277
278/* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282static int
fba45db2 283compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
284{
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294}
295
53a5351d 296static void
fdd72f95 297record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 298{
fdd72f95 299 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 300 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
301 {
302 bfd_vma value = section->vma - section->filepos;
303 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
304
305 if (value < *low_text_segment_address)
306 *low_text_segment_address = value;
307 }
53a5351d
JM
308}
309
c906108c 310static void
fba45db2
KB
311internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
312 asection *section, unsigned int entries, unsigned int size,
313 CORE_ADDR text_offset)
c906108c
SS
314{
315 /* We will read the unwind entries into temporary memory, then
316 fill in the actual unwind table. */
fdd72f95 317
c906108c
SS
318 if (size > 0)
319 {
320 unsigned long tmp;
321 unsigned i;
322 char *buf = alloca (size);
fdd72f95 323 CORE_ADDR low_text_segment_address;
c906108c 324
fdd72f95 325 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
326 be segment relative offsets instead of absolute addresses.
327
328 Note that when loading a shared library (text_offset != 0) the
329 unwinds are already relative to the text_offset that will be
330 passed in. */
fdd72f95 331 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 332 {
fdd72f95
RC
333 low_text_segment_address = -1;
334
53a5351d 335 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
336 record_text_segment_lowaddr,
337 &low_text_segment_address);
53a5351d 338
fdd72f95 339 text_offset = low_text_segment_address;
53a5351d
JM
340 }
341
c906108c
SS
342 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
343
344 /* Now internalize the information being careful to handle host/target
c5aa993b 345 endian issues. */
c906108c
SS
346 for (i = 0; i < entries; i++)
347 {
348 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 349 (bfd_byte *) buf);
c906108c
SS
350 table[i].region_start += text_offset;
351 buf += 4;
c5aa993b 352 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
353 table[i].region_end += text_offset;
354 buf += 4;
c5aa993b 355 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
356 buf += 4;
357 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
358 table[i].Millicode = (tmp >> 30) & 0x1;
359 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
360 table[i].Region_description = (tmp >> 27) & 0x3;
361 table[i].reserved1 = (tmp >> 26) & 0x1;
362 table[i].Entry_SR = (tmp >> 25) & 0x1;
363 table[i].Entry_FR = (tmp >> 21) & 0xf;
364 table[i].Entry_GR = (tmp >> 16) & 0x1f;
365 table[i].Args_stored = (tmp >> 15) & 0x1;
366 table[i].Variable_Frame = (tmp >> 14) & 0x1;
367 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
368 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
369 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
370 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
371 table[i].Ada_Region = (tmp >> 9) & 0x1;
372 table[i].cxx_info = (tmp >> 8) & 0x1;
373 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
374 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
375 table[i].reserved2 = (tmp >> 5) & 0x1;
376 table[i].Save_SP = (tmp >> 4) & 0x1;
377 table[i].Save_RP = (tmp >> 3) & 0x1;
378 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
379 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
380 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 381 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
382 buf += 4;
383 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
384 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
385 table[i].Large_frame = (tmp >> 29) & 0x1;
386 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
387 table[i].reserved4 = (tmp >> 27) & 0x1;
388 table[i].Total_frame_size = tmp & 0x7ffffff;
389
c5aa993b 390 /* Stub unwinds are handled elsewhere. */
c906108c
SS
391 table[i].stub_unwind.stub_type = 0;
392 table[i].stub_unwind.padding = 0;
393 }
394 }
395}
396
397/* Read in the backtrace information stored in the `$UNWIND_START$' section of
398 the object file. This info is used mainly by find_unwind_entry() to find
399 out the stack frame size and frame pointer used by procedures. We put
400 everything on the psymbol obstack in the objfile so that it automatically
401 gets freed when the objfile is destroyed. */
402
403static void
fba45db2 404read_unwind_info (struct objfile *objfile)
c906108c 405{
d4f3574e
SS
406 asection *unwind_sec, *stub_unwind_sec;
407 unsigned unwind_size, stub_unwind_size, total_size;
408 unsigned index, unwind_entries;
c906108c
SS
409 unsigned stub_entries, total_entries;
410 CORE_ADDR text_offset;
7c46b9fb
RC
411 struct hppa_unwind_info *ui;
412 struct hppa_objfile_private *obj_private;
c906108c
SS
413
414 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
415 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
416 sizeof (struct hppa_unwind_info));
c906108c
SS
417
418 ui->table = NULL;
419 ui->cache = NULL;
420 ui->last = -1;
421
d4f3574e
SS
422 /* For reasons unknown the HP PA64 tools generate multiple unwinder
423 sections in a single executable. So we just iterate over every
424 section in the BFD looking for unwinder sections intead of trying
425 to do a lookup with bfd_get_section_by_name.
c906108c 426
d4f3574e
SS
427 First determine the total size of the unwind tables so that we
428 can allocate memory in a nice big hunk. */
429 total_entries = 0;
430 for (unwind_sec = objfile->obfd->sections;
431 unwind_sec;
432 unwind_sec = unwind_sec->next)
c906108c 433 {
d4f3574e
SS
434 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
435 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
436 {
437 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
438 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 439
d4f3574e
SS
440 total_entries += unwind_entries;
441 }
c906108c
SS
442 }
443
d4f3574e
SS
444 /* Now compute the size of the stub unwinds. Note the ELF tools do not
445 use stub unwinds at the curren time. */
446 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
447
c906108c
SS
448 if (stub_unwind_sec)
449 {
450 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
451 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 stub_unwind_size = 0;
456 stub_entries = 0;
457 }
458
459 /* Compute total number of unwind entries and their total size. */
d4f3574e 460 total_entries += stub_entries;
c906108c
SS
461 total_size = total_entries * sizeof (struct unwind_table_entry);
462
463 /* Allocate memory for the unwind table. */
464 ui->table = (struct unwind_table_entry *)
8b92e4d5 465 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 466 ui->last = total_entries - 1;
c906108c 467
d4f3574e
SS
468 /* Now read in each unwind section and internalize the standard unwind
469 entries. */
c906108c 470 index = 0;
d4f3574e
SS
471 for (unwind_sec = objfile->obfd->sections;
472 unwind_sec;
473 unwind_sec = unwind_sec->next)
474 {
475 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
476 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
477 {
478 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
479 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
480
481 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
482 unwind_entries, unwind_size, text_offset);
483 index += unwind_entries;
484 }
485 }
486
487 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
488 if (stub_unwind_size > 0)
489 {
490 unsigned int i;
491 char *buf = alloca (stub_unwind_size);
492
493 /* Read in the stub unwind entries. */
494 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
495 0, stub_unwind_size);
496
497 /* Now convert them into regular unwind entries. */
498 for (i = 0; i < stub_entries; i++, index++)
499 {
500 /* Clear out the next unwind entry. */
501 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
502
503 /* Convert offset & size into region_start and region_end.
504 Stuff away the stub type into "reserved" fields. */
505 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
506 (bfd_byte *) buf);
507 ui->table[index].region_start += text_offset;
508 buf += 4;
509 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 510 (bfd_byte *) buf);
c906108c
SS
511 buf += 2;
512 ui->table[index].region_end
c5aa993b
JM
513 = ui->table[index].region_start + 4 *
514 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
515 buf += 2;
516 }
517
518 }
519
520 /* Unwind table needs to be kept sorted. */
521 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
522 compare_unwind_entries);
523
524 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
525 obj_private = (struct hppa_objfile_private *)
526 objfile_data (objfile, hppa_objfile_priv_data);
527 if (obj_private == NULL)
c906108c 528 {
7c46b9fb
RC
529 obj_private = (struct hppa_objfile_private *)
530 obstack_alloc (&objfile->objfile_obstack,
531 sizeof (struct hppa_objfile_private));
532 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
c906108c 533 obj_private->unwind_info = NULL;
c5aa993b 534 obj_private->so_info = NULL;
53a5351d 535 obj_private->dp = 0;
c906108c 536 }
c906108c
SS
537 obj_private->unwind_info = ui;
538}
539
540/* Lookup the unwind (stack backtrace) info for the given PC. We search all
541 of the objfiles seeking the unwind table entry for this PC. Each objfile
542 contains a sorted list of struct unwind_table_entry. Since we do a binary
543 search of the unwind tables, we depend upon them to be sorted. */
544
545struct unwind_table_entry *
fba45db2 546find_unwind_entry (CORE_ADDR pc)
c906108c
SS
547{
548 int first, middle, last;
549 struct objfile *objfile;
7c46b9fb 550 struct hppa_objfile_private *priv;
c906108c 551
369aa520
RC
552 if (hppa_debug)
553 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
554 paddr_nz (pc));
555
c906108c
SS
556 /* A function at address 0? Not in HP-UX! */
557 if (pc == (CORE_ADDR) 0)
369aa520
RC
558 {
559 if (hppa_debug)
560 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
561 return NULL;
562 }
c906108c
SS
563
564 ALL_OBJFILES (objfile)
c5aa993b 565 {
7c46b9fb 566 struct hppa_unwind_info *ui;
c5aa993b 567 ui = NULL;
7c46b9fb
RC
568 priv = objfile_data (objfile, hppa_objfile_priv_data);
569 if (priv)
570 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 571
c5aa993b
JM
572 if (!ui)
573 {
574 read_unwind_info (objfile);
7c46b9fb
RC
575 priv = objfile_data (objfile, hppa_objfile_priv_data);
576 if (priv == NULL)
104c1213 577 error ("Internal error reading unwind information.");
7c46b9fb 578 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 579 }
c906108c 580
c5aa993b 581 /* First, check the cache */
c906108c 582
c5aa993b
JM
583 if (ui->cache
584 && pc >= ui->cache->region_start
585 && pc <= ui->cache->region_end)
369aa520
RC
586 {
587 if (hppa_debug)
588 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
589 paddr_nz ((CORE_ADDR) ui->cache));
590 return ui->cache;
591 }
c906108c 592
c5aa993b 593 /* Not in the cache, do a binary search */
c906108c 594
c5aa993b
JM
595 first = 0;
596 last = ui->last;
c906108c 597
c5aa993b
JM
598 while (first <= last)
599 {
600 middle = (first + last) / 2;
601 if (pc >= ui->table[middle].region_start
602 && pc <= ui->table[middle].region_end)
603 {
604 ui->cache = &ui->table[middle];
369aa520
RC
605 if (hppa_debug)
606 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
607 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
608 return &ui->table[middle];
609 }
c906108c 610
c5aa993b
JM
611 if (pc < ui->table[middle].region_start)
612 last = middle - 1;
613 else
614 first = middle + 1;
615 }
616 } /* ALL_OBJFILES() */
369aa520
RC
617
618 if (hppa_debug)
619 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
620
c906108c
SS
621 return NULL;
622}
623
85f4f2d8 624static const unsigned char *
aaab4dba
AC
625hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
626{
56132691 627 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
628 (*len) = sizeof (breakpoint);
629 return breakpoint;
630}
631
e23457df
AC
632/* Return the name of a register. */
633
4a302917 634static const char *
3ff7cf9e 635hppa32_register_name (int i)
e23457df
AC
636{
637 static char *names[] = {
638 "flags", "r1", "rp", "r3",
639 "r4", "r5", "r6", "r7",
640 "r8", "r9", "r10", "r11",
641 "r12", "r13", "r14", "r15",
642 "r16", "r17", "r18", "r19",
643 "r20", "r21", "r22", "r23",
644 "r24", "r25", "r26", "dp",
645 "ret0", "ret1", "sp", "r31",
646 "sar", "pcoqh", "pcsqh", "pcoqt",
647 "pcsqt", "eiem", "iir", "isr",
648 "ior", "ipsw", "goto", "sr4",
649 "sr0", "sr1", "sr2", "sr3",
650 "sr5", "sr6", "sr7", "cr0",
651 "cr8", "cr9", "ccr", "cr12",
652 "cr13", "cr24", "cr25", "cr26",
653 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
654 "fpsr", "fpe1", "fpe2", "fpe3",
655 "fpe4", "fpe5", "fpe6", "fpe7",
656 "fr4", "fr4R", "fr5", "fr5R",
657 "fr6", "fr6R", "fr7", "fr7R",
658 "fr8", "fr8R", "fr9", "fr9R",
659 "fr10", "fr10R", "fr11", "fr11R",
660 "fr12", "fr12R", "fr13", "fr13R",
661 "fr14", "fr14R", "fr15", "fr15R",
662 "fr16", "fr16R", "fr17", "fr17R",
663 "fr18", "fr18R", "fr19", "fr19R",
664 "fr20", "fr20R", "fr21", "fr21R",
665 "fr22", "fr22R", "fr23", "fr23R",
666 "fr24", "fr24R", "fr25", "fr25R",
667 "fr26", "fr26R", "fr27", "fr27R",
668 "fr28", "fr28R", "fr29", "fr29R",
669 "fr30", "fr30R", "fr31", "fr31R"
670 };
671 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
672 return NULL;
673 else
674 return names[i];
675}
676
4a302917 677static const char *
e23457df
AC
678hppa64_register_name (int i)
679{
680 static char *names[] = {
681 "flags", "r1", "rp", "r3",
682 "r4", "r5", "r6", "r7",
683 "r8", "r9", "r10", "r11",
684 "r12", "r13", "r14", "r15",
685 "r16", "r17", "r18", "r19",
686 "r20", "r21", "r22", "r23",
687 "r24", "r25", "r26", "dp",
688 "ret0", "ret1", "sp", "r31",
689 "sar", "pcoqh", "pcsqh", "pcoqt",
690 "pcsqt", "eiem", "iir", "isr",
691 "ior", "ipsw", "goto", "sr4",
692 "sr0", "sr1", "sr2", "sr3",
693 "sr5", "sr6", "sr7", "cr0",
694 "cr8", "cr9", "ccr", "cr12",
695 "cr13", "cr24", "cr25", "cr26",
696 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
697 "fpsr", "fpe1", "fpe2", "fpe3",
698 "fr4", "fr5", "fr6", "fr7",
699 "fr8", "fr9", "fr10", "fr11",
700 "fr12", "fr13", "fr14", "fr15",
701 "fr16", "fr17", "fr18", "fr19",
702 "fr20", "fr21", "fr22", "fr23",
703 "fr24", "fr25", "fr26", "fr27",
704 "fr28", "fr29", "fr30", "fr31"
705 };
706 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
707 return NULL;
708 else
709 return names[i];
710}
711
79508e1e
AC
712/* This function pushes a stack frame with arguments as part of the
713 inferior function calling mechanism.
714
715 This is the version of the function for the 32-bit PA machines, in
716 which later arguments appear at lower addresses. (The stack always
717 grows towards higher addresses.)
718
719 We simply allocate the appropriate amount of stack space and put
720 arguments into their proper slots. */
721
4a302917 722static CORE_ADDR
7d9b040b 723hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
724 struct regcache *regcache, CORE_ADDR bp_addr,
725 int nargs, struct value **args, CORE_ADDR sp,
726 int struct_return, CORE_ADDR struct_addr)
727{
79508e1e
AC
728 /* Stack base address at which any pass-by-reference parameters are
729 stored. */
730 CORE_ADDR struct_end = 0;
731 /* Stack base address at which the first parameter is stored. */
732 CORE_ADDR param_end = 0;
733
734 /* The inner most end of the stack after all the parameters have
735 been pushed. */
736 CORE_ADDR new_sp = 0;
737
738 /* Two passes. First pass computes the location of everything,
739 second pass writes the bytes out. */
740 int write_pass;
d49771ef
RC
741
742 /* Global pointer (r19) of the function we are trying to call. */
743 CORE_ADDR gp;
744
745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
746
79508e1e
AC
747 for (write_pass = 0; write_pass < 2; write_pass++)
748 {
1797a8f6 749 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
750 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
751 struct_ptr is adjusted for each argument below, so the first
752 argument will end up at sp-36. */
753 CORE_ADDR param_ptr = 32;
79508e1e 754 int i;
2a6228ef
RC
755 int small_struct = 0;
756
79508e1e
AC
757 for (i = 0; i < nargs; i++)
758 {
759 struct value *arg = args[i];
4991999e 760 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
761 /* The corresponding parameter that is pushed onto the
762 stack, and [possibly] passed in a register. */
763 char param_val[8];
764 int param_len;
765 memset (param_val, 0, sizeof param_val);
766 if (TYPE_LENGTH (type) > 8)
767 {
768 /* Large parameter, pass by reference. Store the value
769 in "struct" area and then pass its address. */
770 param_len = 4;
1797a8f6 771 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 772 if (write_pass)
1797a8f6 773 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
79508e1e 774 TYPE_LENGTH (type));
1797a8f6 775 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_INT
778 || TYPE_CODE (type) == TYPE_CODE_ENUM)
779 {
780 /* Integer value store, right aligned. "unpack_long"
781 takes care of any sign-extension problems. */
782 param_len = align_up (TYPE_LENGTH (type), 4);
783 store_unsigned_integer (param_val, param_len,
784 unpack_long (type,
785 VALUE_CONTENTS (arg)));
786 }
2a6228ef
RC
787 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
788 {
789 /* Floating point value store, right aligned. */
790 param_len = align_up (TYPE_LENGTH (type), 4);
791 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
792 }
79508e1e
AC
793 else
794 {
79508e1e 795 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
796
797 /* Small struct value are stored right-aligned. */
79508e1e
AC
798 memcpy (param_val + param_len - TYPE_LENGTH (type),
799 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2a6228ef
RC
800
801 /* Structures of size 5, 6 and 7 bytes are special in that
802 the higher-ordered word is stored in the lower-ordered
803 argument, and even though it is a 8-byte quantity the
804 registers need not be 8-byte aligned. */
1b07b470 805 if (param_len > 4 && param_len < 8)
2a6228ef 806 small_struct = 1;
79508e1e 807 }
2a6228ef 808
1797a8f6 809 param_ptr += param_len;
2a6228ef
RC
810 if (param_len == 8 && !small_struct)
811 param_ptr = align_up (param_ptr, 8);
812
813 /* First 4 non-FP arguments are passed in gr26-gr23.
814 First 4 32-bit FP arguments are passed in fr4L-fr7L.
815 First 2 64-bit FP arguments are passed in fr5 and fr7.
816
817 The rest go on the stack, starting at sp-36, towards lower
818 addresses. 8-byte arguments must be aligned to a 8-byte
819 stack boundary. */
79508e1e
AC
820 if (write_pass)
821 {
1797a8f6 822 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
823
824 /* There are some cases when we don't know the type
825 expected by the callee (e.g. for variadic functions), so
826 pass the parameters in both general and fp regs. */
827 if (param_ptr <= 48)
79508e1e 828 {
2a6228ef
RC
829 int grreg = 26 - (param_ptr - 36) / 4;
830 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
831 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
832
833 regcache_cooked_write (regcache, grreg, param_val);
834 regcache_cooked_write (regcache, fpLreg, param_val);
835
79508e1e 836 if (param_len > 4)
2a6228ef
RC
837 {
838 regcache_cooked_write (regcache, grreg + 1,
839 param_val + 4);
840
841 regcache_cooked_write (regcache, fpreg, param_val);
842 regcache_cooked_write (regcache, fpreg + 1,
843 param_val + 4);
844 }
79508e1e
AC
845 }
846 }
847 }
848
849 /* Update the various stack pointers. */
850 if (!write_pass)
851 {
2a6228ef 852 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
853 /* PARAM_PTR already accounts for all the arguments passed
854 by the user. However, the ABI mandates minimum stack
855 space allocations for outgoing arguments. The ABI also
856 mandates minimum stack alignments which we must
857 preserve. */
2a6228ef 858 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
859 }
860 }
861
862 /* If a structure has to be returned, set up register 28 to hold its
863 address */
864 if (struct_return)
865 write_register (28, struct_addr);
866
d49771ef
RC
867 gp = tdep->find_global_pointer (function);
868
869 if (gp != 0)
870 write_register (19, gp);
871
79508e1e 872 /* Set the return address. */
34f75cc1 873 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 874
c4557624 875 /* Update the Stack Pointer. */
34f75cc1 876 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 877
2a6228ef 878 return param_end;
79508e1e
AC
879}
880
2f690297
AC
881/* This function pushes a stack frame with arguments as part of the
882 inferior function calling mechanism.
883
884 This is the version for the PA64, in which later arguments appear
885 at higher addresses. (The stack always grows towards higher
886 addresses.)
887
888 We simply allocate the appropriate amount of stack space and put
889 arguments into their proper slots.
890
891 This ABI also requires that the caller provide an argument pointer
892 to the callee, so we do that too. */
893
4a302917 894static CORE_ADDR
7d9b040b 895hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
896 struct regcache *regcache, CORE_ADDR bp_addr,
897 int nargs, struct value **args, CORE_ADDR sp,
898 int struct_return, CORE_ADDR struct_addr)
899{
449e1137
AC
900 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
901 reverse engineering testsuite failures. */
2f690297 902
449e1137
AC
903 /* Stack base address at which any pass-by-reference parameters are
904 stored. */
905 CORE_ADDR struct_end = 0;
906 /* Stack base address at which the first parameter is stored. */
907 CORE_ADDR param_end = 0;
2f690297 908
449e1137
AC
909 /* The inner most end of the stack after all the parameters have
910 been pushed. */
911 CORE_ADDR new_sp = 0;
2f690297 912
449e1137
AC
913 /* Two passes. First pass computes the location of everything,
914 second pass writes the bytes out. */
915 int write_pass;
916 for (write_pass = 0; write_pass < 2; write_pass++)
2f690297 917 {
449e1137
AC
918 CORE_ADDR struct_ptr = 0;
919 CORE_ADDR param_ptr = 0;
920 int i;
921 for (i = 0; i < nargs; i++)
2f690297 922 {
449e1137 923 struct value *arg = args[i];
4991999e 924 struct type *type = check_typedef (value_type (arg));
449e1137
AC
925 if ((TYPE_CODE (type) == TYPE_CODE_INT
926 || TYPE_CODE (type) == TYPE_CODE_ENUM)
927 && TYPE_LENGTH (type) <= 8)
928 {
929 /* Integer value store, right aligned. "unpack_long"
930 takes care of any sign-extension problems. */
931 param_ptr += 8;
932 if (write_pass)
933 {
934 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
935 int reg = 27 - param_ptr / 8;
936 write_memory_unsigned_integer (param_end - param_ptr,
937 val, 8);
938 if (reg >= 19)
939 regcache_cooked_write_unsigned (regcache, reg, val);
940 }
941 }
942 else
943 {
944 /* Small struct value, store left aligned? */
945 int reg;
946 if (TYPE_LENGTH (type) > 8)
947 {
948 param_ptr = align_up (param_ptr, 16);
949 reg = 26 - param_ptr / 8;
950 param_ptr += align_up (TYPE_LENGTH (type), 16);
951 }
952 else
953 {
954 param_ptr = align_up (param_ptr, 8);
955 reg = 26 - param_ptr / 8;
956 param_ptr += align_up (TYPE_LENGTH (type), 8);
957 }
958 if (write_pass)
959 {
960 int byte;
961 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
962 TYPE_LENGTH (type));
963 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
964 {
965 if (reg >= 19)
966 {
967 int len = min (8, TYPE_LENGTH (type) - byte);
968 regcache_cooked_write_part (regcache, reg, 0, len,
969 VALUE_CONTENTS (arg) + byte);
970 }
971 reg--;
972 }
973 }
974 }
2f690297 975 }
449e1137
AC
976 /* Update the various stack pointers. */
977 if (!write_pass)
2f690297 978 {
449e1137
AC
979 struct_end = sp + struct_ptr;
980 /* PARAM_PTR already accounts for all the arguments passed
981 by the user. However, the ABI mandates minimum stack
982 space allocations for outgoing arguments. The ABI also
983 mandates minimum stack alignments which we must
984 preserve. */
d0bd2d18 985 param_end = struct_end + max (align_up (param_ptr, 16), 64);
2f690297 986 }
2f690297
AC
987 }
988
2f690297
AC
989 /* If a structure has to be returned, set up register 28 to hold its
990 address */
991 if (struct_return)
992 write_register (28, struct_addr);
993
2f690297 994 /* Set the return address. */
34f75cc1 995 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 996
c4557624 997 /* Update the Stack Pointer. */
34f75cc1 998 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
c4557624 999
449e1137
AC
1000 /* The stack will have 32 bytes of additional space for a frame marker. */
1001 return param_end + 64;
2f690297
AC
1002}
1003
d49771ef
RC
1004static CORE_ADDR
1005hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1006 CORE_ADDR addr,
1007 struct target_ops *targ)
1008{
1009 if (addr & 2)
1010 {
1011 CORE_ADDR plabel;
1012
1013 plabel = addr & ~3;
1014 target_read_memory(plabel, (char *)&addr, 4);
1015 }
1016
1017 return addr;
1018}
1019
1797a8f6
AC
1020static CORE_ADDR
1021hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1022{
1023 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1024 and not _bit_)! */
1025 return align_up (addr, 64);
1026}
1027
2f690297
AC
1028/* Force all frames to 16-byte alignment. Better safe than sorry. */
1029
1030static CORE_ADDR
1797a8f6 1031hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1032{
1033 /* Just always 16-byte align. */
1034 return align_up (addr, 16);
1035}
1036
1037
c906108c
SS
1038/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1039 bits. */
1040
8d153463 1041static CORE_ADDR
60383d10 1042hppa_target_read_pc (ptid_t ptid)
c906108c 1043{
34f75cc1 1044 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
fe46cd3a
RC
1045 ULONGEST ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1046 CORE_ADDR pc;
c906108c
SS
1047
1048 /* The following test does not belong here. It is OS-specific, and belongs
1049 in native code. */
1050 /* Test SS_INSYSCALL */
1051 if (flags & 2)
39f77062 1052 return read_register_pid (31, ptid) & ~0x3;
c906108c 1053
fe46cd3a
RC
1054 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1055
1056 /* If the current instruction is nullified, then we are effectively
1057 still executing the previous instruction. Pretend we are still
1058 there. This is needed when single stepping; if the nullified instruction
1059 is on a different line, we don't want gdb to think we've stepped onto
1060 that line. */
1061 if (ipsw & 0x00200000)
1062 pc -= 4;
1063
1064 return pc;
c906108c
SS
1065}
1066
1067/* Write out the PC. If currently in a syscall, then also write the new
1068 PC value into %r31. */
1069
8d153463 1070static void
60383d10 1071hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 1072{
34f75cc1 1073 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1074
1075 /* The following test does not belong here. It is OS-specific, and belongs
1076 in native code. */
1077 /* If in a syscall, then set %r31. Also make sure to get the
1078 privilege bits set correctly. */
1079 /* Test SS_INSYSCALL */
1080 if (flags & 2)
39f77062 1081 write_register_pid (31, v | 0x3, ptid);
c906108c 1082
34f75cc1
RC
1083 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1084 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
1085}
1086
1087/* return the alignment of a type in bytes. Structures have the maximum
1088 alignment required by their fields. */
1089
1090static int
fba45db2 1091hppa_alignof (struct type *type)
c906108c
SS
1092{
1093 int max_align, align, i;
1094 CHECK_TYPEDEF (type);
1095 switch (TYPE_CODE (type))
1096 {
1097 case TYPE_CODE_PTR:
1098 case TYPE_CODE_INT:
1099 case TYPE_CODE_FLT:
1100 return TYPE_LENGTH (type);
1101 case TYPE_CODE_ARRAY:
1102 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1103 case TYPE_CODE_STRUCT:
1104 case TYPE_CODE_UNION:
1105 max_align = 1;
1106 for (i = 0; i < TYPE_NFIELDS (type); i++)
1107 {
1108 /* Bit fields have no real alignment. */
1109 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1110 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1111 {
1112 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1113 max_align = max (max_align, align);
1114 }
1115 }
1116 return max_align;
1117 default:
1118 return 4;
1119 }
1120}
1121
c906108c
SS
1122/* For the given instruction (INST), return any adjustment it makes
1123 to the stack pointer or zero for no adjustment.
1124
1125 This only handles instructions commonly found in prologues. */
1126
1127static int
fba45db2 1128prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1129{
1130 /* This must persist across calls. */
1131 static int save_high21;
1132
1133 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1134 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1135 return hppa_extract_14 (inst);
c906108c
SS
1136
1137 /* stwm X,D(sp) */
1138 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1139 return hppa_extract_14 (inst);
c906108c 1140
104c1213
JM
1141 /* std,ma X,D(sp) */
1142 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1143 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1144
c906108c
SS
1145 /* addil high21,%r1; ldo low11,(%r1),%r30)
1146 save high bits in save_high21 for later use. */
1147 if ((inst & 0xffe00000) == 0x28200000)
1148 {
abc485a1 1149 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1150 return 0;
1151 }
1152
1153 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1154 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1155
1156 /* fstws as used by the HP compilers. */
1157 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1158 return hppa_extract_5_load (inst);
c906108c
SS
1159
1160 /* No adjustment. */
1161 return 0;
1162}
1163
1164/* Return nonzero if INST is a branch of some kind, else return zero. */
1165
1166static int
fba45db2 1167is_branch (unsigned long inst)
c906108c
SS
1168{
1169 switch (inst >> 26)
1170 {
1171 case 0x20:
1172 case 0x21:
1173 case 0x22:
1174 case 0x23:
7be570e7 1175 case 0x27:
c906108c
SS
1176 case 0x28:
1177 case 0x29:
1178 case 0x2a:
1179 case 0x2b:
7be570e7 1180 case 0x2f:
c906108c
SS
1181 case 0x30:
1182 case 0x31:
1183 case 0x32:
1184 case 0x33:
1185 case 0x38:
1186 case 0x39:
1187 case 0x3a:
7be570e7 1188 case 0x3b:
c906108c
SS
1189 return 1;
1190
1191 default:
1192 return 0;
1193 }
1194}
1195
1196/* Return the register number for a GR which is saved by INST or
1197 zero it INST does not save a GR. */
1198
1199static int
fba45db2 1200inst_saves_gr (unsigned long inst)
c906108c
SS
1201{
1202 /* Does it look like a stw? */
7be570e7
JM
1203 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1204 || (inst >> 26) == 0x1f
1205 || ((inst >> 26) == 0x1f
1206 && ((inst >> 6) == 0xa)))
abc485a1 1207 return hppa_extract_5R_store (inst);
7be570e7
JM
1208
1209 /* Does it look like a std? */
1210 if ((inst >> 26) == 0x1c
1211 || ((inst >> 26) == 0x03
1212 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1213 return hppa_extract_5R_store (inst);
c906108c
SS
1214
1215 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1216 if ((inst >> 26) == 0x1b)
abc485a1 1217 return hppa_extract_5R_store (inst);
c906108c
SS
1218
1219 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1220 too. */
7be570e7
JM
1221 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1222 || ((inst >> 26) == 0x3
1223 && (((inst >> 6) & 0xf) == 0x8
1224 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1225 return hppa_extract_5R_store (inst);
c5aa993b 1226
c906108c
SS
1227 return 0;
1228}
1229
1230/* Return the register number for a FR which is saved by INST or
1231 zero it INST does not save a FR.
1232
1233 Note we only care about full 64bit register stores (that's the only
1234 kind of stores the prologue will use).
1235
1236 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1237
1238static int
fba45db2 1239inst_saves_fr (unsigned long inst)
c906108c 1240{
7be570e7 1241 /* is this an FSTD ? */
c906108c 1242 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1243 return hppa_extract_5r_store (inst);
7be570e7 1244 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1245 return hppa_extract_5R_store (inst);
7be570e7 1246 /* is this an FSTW ? */
c906108c 1247 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1248 return hppa_extract_5r_store (inst);
7be570e7 1249 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1250 return hppa_extract_5R_store (inst);
c906108c
SS
1251 return 0;
1252}
1253
1254/* Advance PC across any function entry prologue instructions
1255 to reach some "real" code.
1256
1257 Use information in the unwind table to determine what exactly should
1258 be in the prologue. */
1259
1260
a71f8c30
RC
1261static CORE_ADDR
1262skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1263{
1264 char buf[4];
1265 CORE_ADDR orig_pc = pc;
1266 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1267 unsigned long args_stored, status, i, restart_gr, restart_fr;
1268 struct unwind_table_entry *u;
a71f8c30 1269 int final_iteration;
c906108c
SS
1270
1271 restart_gr = 0;
1272 restart_fr = 0;
1273
1274restart:
1275 u = find_unwind_entry (pc);
1276 if (!u)
1277 return pc;
1278
c5aa993b 1279 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1280 if ((pc & ~0x3) != u->region_start)
1281 return pc;
1282
1283 /* This is how much of a frame adjustment we need to account for. */
1284 stack_remaining = u->Total_frame_size << 3;
1285
1286 /* Magic register saves we want to know about. */
1287 save_rp = u->Save_RP;
1288 save_sp = u->Save_SP;
1289
1290 /* An indication that args may be stored into the stack. Unfortunately
1291 the HPUX compilers tend to set this in cases where no args were
1292 stored too!. */
1293 args_stored = 1;
1294
1295 /* Turn the Entry_GR field into a bitmask. */
1296 save_gr = 0;
1297 for (i = 3; i < u->Entry_GR + 3; i++)
1298 {
1299 /* Frame pointer gets saved into a special location. */
eded0a31 1300 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1301 continue;
1302
1303 save_gr |= (1 << i);
1304 }
1305 save_gr &= ~restart_gr;
1306
1307 /* Turn the Entry_FR field into a bitmask too. */
1308 save_fr = 0;
1309 for (i = 12; i < u->Entry_FR + 12; i++)
1310 save_fr |= (1 << i);
1311 save_fr &= ~restart_fr;
1312
a71f8c30
RC
1313 final_iteration = 0;
1314
c906108c
SS
1315 /* Loop until we find everything of interest or hit a branch.
1316
1317 For unoptimized GCC code and for any HP CC code this will never ever
1318 examine any user instructions.
1319
1320 For optimzied GCC code we're faced with problems. GCC will schedule
1321 its prologue and make prologue instructions available for delay slot
1322 filling. The end result is user code gets mixed in with the prologue
1323 and a prologue instruction may be in the delay slot of the first branch
1324 or call.
1325
1326 Some unexpected things are expected with debugging optimized code, so
1327 we allow this routine to walk past user instructions in optimized
1328 GCC code. */
1329 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1330 || args_stored)
1331 {
1332 unsigned int reg_num;
1333 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1334 unsigned long old_save_rp, old_save_sp, next_inst;
1335
1336 /* Save copies of all the triggers so we can compare them later
c5aa993b 1337 (only for HPC). */
c906108c
SS
1338 old_save_gr = save_gr;
1339 old_save_fr = save_fr;
1340 old_save_rp = save_rp;
1341 old_save_sp = save_sp;
1342 old_stack_remaining = stack_remaining;
1343
1f602b35 1344 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1345 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1346
c906108c
SS
1347 /* Yow! */
1348 if (status != 0)
1349 return pc;
1350
1351 /* Note the interesting effects of this instruction. */
1352 stack_remaining -= prologue_inst_adjust_sp (inst);
1353
7be570e7
JM
1354 /* There are limited ways to store the return pointer into the
1355 stack. */
1356 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
1357 save_rp = 0;
1358
104c1213 1359 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1360 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1361 if ((inst & 0xffffc000) == 0x6fc10000
1362 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1363 save_sp = 0;
1364
6426a772
JM
1365 /* Are we loading some register with an offset from the argument
1366 pointer? */
1367 if ((inst & 0xffe00000) == 0x37a00000
1368 || (inst & 0xffffffe0) == 0x081d0240)
1369 {
1370 pc += 4;
1371 continue;
1372 }
1373
c906108c
SS
1374 /* Account for general and floating-point register saves. */
1375 reg_num = inst_saves_gr (inst);
1376 save_gr &= ~(1 << reg_num);
1377
1378 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1379 Unfortunately args_stored only tells us that some arguments
1380 where stored into the stack. Not how many or what kind!
c906108c 1381
c5aa993b
JM
1382 This is a kludge as on the HP compiler sets this bit and it
1383 never does prologue scheduling. So once we see one, skip past
1384 all of them. We have similar code for the fp arg stores below.
c906108c 1385
c5aa993b
JM
1386 FIXME. Can still die if we have a mix of GR and FR argument
1387 stores! */
6426a772 1388 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1389 {
6426a772 1390 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1391 {
1392 pc += 4;
1f602b35 1393 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1394 inst = extract_unsigned_integer (buf, 4);
1395 if (status != 0)
1396 return pc;
1397 reg_num = inst_saves_gr (inst);
1398 }
1399 args_stored = 0;
1400 continue;
1401 }
1402
1403 reg_num = inst_saves_fr (inst);
1404 save_fr &= ~(1 << reg_num);
1405
1f602b35 1406 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1407 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1408
c906108c
SS
1409 /* Yow! */
1410 if (status != 0)
1411 return pc;
1412
1413 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1414 save. */
c906108c
SS
1415 if ((inst & 0xfc000000) == 0x34000000
1416 && inst_saves_fr (next_inst) >= 4
6426a772 1417 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1418 {
1419 /* So we drop into the code below in a reasonable state. */
1420 reg_num = inst_saves_fr (next_inst);
1421 pc -= 4;
1422 }
1423
1424 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1425 This is a kludge as on the HP compiler sets this bit and it
1426 never does prologue scheduling. So once we see one, skip past
1427 all of them. */
6426a772 1428 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1429 {
6426a772 1430 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1431 {
1432 pc += 8;
1f602b35 1433 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1434 inst = extract_unsigned_integer (buf, 4);
1435 if (status != 0)
1436 return pc;
1437 if ((inst & 0xfc000000) != 0x34000000)
1438 break;
1f602b35 1439 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1440 next_inst = extract_unsigned_integer (buf, 4);
1441 if (status != 0)
1442 return pc;
1443 reg_num = inst_saves_fr (next_inst);
1444 }
1445 args_stored = 0;
1446 continue;
1447 }
1448
1449 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1450 instruction is in the delay slot of the first call/branch. */
a71f8c30 1451 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1452 break;
1453
1454 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1455 arguments were stored into the stack (boo hiss). This could
1456 cause this code to then skip a bunch of user insns (up to the
1457 first branch).
1458
1459 To combat this we try to identify when args_stored was bogusly
1460 set and clear it. We only do this when args_stored is nonzero,
1461 all other resources are accounted for, and nothing changed on
1462 this pass. */
c906108c 1463 if (args_stored
c5aa993b 1464 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1465 && old_save_gr == save_gr && old_save_fr == save_fr
1466 && old_save_rp == save_rp && old_save_sp == save_sp
1467 && old_stack_remaining == stack_remaining)
1468 break;
c5aa993b 1469
c906108c
SS
1470 /* Bump the PC. */
1471 pc += 4;
a71f8c30
RC
1472
1473 /* !stop_before_branch, so also look at the insn in the delay slot
1474 of the branch. */
1475 if (final_iteration)
1476 break;
1477 if (is_branch (inst))
1478 final_iteration = 1;
c906108c
SS
1479 }
1480
1481 /* We've got a tenative location for the end of the prologue. However
1482 because of limitations in the unwind descriptor mechanism we may
1483 have went too far into user code looking for the save of a register
1484 that does not exist. So, if there registers we expected to be saved
1485 but never were, mask them out and restart.
1486
1487 This should only happen in optimized code, and should be very rare. */
c5aa993b 1488 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1489 {
1490 pc = orig_pc;
1491 restart_gr = save_gr;
1492 restart_fr = save_fr;
1493 goto restart;
1494 }
1495
1496 return pc;
1497}
1498
1499
7be570e7
JM
1500/* Return the address of the PC after the last prologue instruction if
1501 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1502
1503static CORE_ADDR
fba45db2 1504after_prologue (CORE_ADDR pc)
c906108c
SS
1505{
1506 struct symtab_and_line sal;
1507 CORE_ADDR func_addr, func_end;
1508 struct symbol *f;
1509
7be570e7
JM
1510 /* If we can not find the symbol in the partial symbol table, then
1511 there is no hope we can determine the function's start address
1512 with this code. */
c906108c 1513 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1514 return 0;
c906108c 1515
7be570e7 1516 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1517 sal = find_pc_line (func_addr, 0);
1518
7be570e7
JM
1519 /* There are only two cases to consider. First, the end of the source line
1520 is within the function bounds. In that case we return the end of the
1521 source line. Second is the end of the source line extends beyond the
1522 bounds of the current function. We need to use the slow code to
1523 examine instructions in that case.
c906108c 1524
7be570e7
JM
1525 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1526 the wrong thing to do. In fact, it should be entirely possible for this
1527 function to always return zero since the slow instruction scanning code
1528 is supposed to *always* work. If it does not, then it is a bug. */
1529 if (sal.end < func_end)
1530 return sal.end;
c5aa993b 1531 else
7be570e7 1532 return 0;
c906108c
SS
1533}
1534
1535/* To skip prologues, I use this predicate. Returns either PC itself
1536 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1537 returns an address that (if we're lucky) follows the prologue.
1538
1539 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1540 It doesn't necessarily skips all the insns in the prologue. In fact
1541 we might not want to skip all the insns because a prologue insn may
1542 appear in the delay slot of the first branch, and we don't want to
1543 skip over the branch in that case. */
c906108c 1544
8d153463 1545static CORE_ADDR
fba45db2 1546hppa_skip_prologue (CORE_ADDR pc)
c906108c 1547{
c5aa993b
JM
1548 unsigned long inst;
1549 int offset;
1550 CORE_ADDR post_prologue_pc;
1551 char buf[4];
c906108c 1552
c5aa993b
JM
1553 /* See if we can determine the end of the prologue via the symbol table.
1554 If so, then return either PC, or the PC after the prologue, whichever
1555 is greater. */
c906108c 1556
c5aa993b 1557 post_prologue_pc = after_prologue (pc);
c906108c 1558
7be570e7
JM
1559 /* If after_prologue returned a useful address, then use it. Else
1560 fall back on the instruction skipping code.
1561
1562 Some folks have claimed this causes problems because the breakpoint
1563 may be the first instruction of the prologue. If that happens, then
1564 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1565 if (post_prologue_pc != 0)
1566 return max (pc, post_prologue_pc);
c5aa993b 1567 else
a71f8c30 1568 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1569}
1570
26d08f08
AC
1571struct hppa_frame_cache
1572{
1573 CORE_ADDR base;
1574 struct trad_frame_saved_reg *saved_regs;
1575};
1576
1577static struct hppa_frame_cache *
1578hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1579{
1580 struct hppa_frame_cache *cache;
1581 long saved_gr_mask;
1582 long saved_fr_mask;
1583 CORE_ADDR this_sp;
1584 long frame_size;
1585 struct unwind_table_entry *u;
9f7194c3 1586 CORE_ADDR prologue_end;
50b2f48a 1587 int fp_in_r1 = 0;
26d08f08
AC
1588 int i;
1589
369aa520
RC
1590 if (hppa_debug)
1591 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1592 frame_relative_level(next_frame));
1593
26d08f08 1594 if ((*this_cache) != NULL)
369aa520
RC
1595 {
1596 if (hppa_debug)
1597 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1598 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1599 return (*this_cache);
1600 }
26d08f08
AC
1601 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1602 (*this_cache) = cache;
1603 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1604
1605 /* Yow! */
d5c27f81 1606 u = find_unwind_entry (frame_pc_unwind (next_frame));
26d08f08 1607 if (!u)
369aa520
RC
1608 {
1609 if (hppa_debug)
1610 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1611 return (*this_cache);
1612 }
26d08f08
AC
1613
1614 /* Turn the Entry_GR field into a bitmask. */
1615 saved_gr_mask = 0;
1616 for (i = 3; i < u->Entry_GR + 3; i++)
1617 {
1618 /* Frame pointer gets saved into a special location. */
eded0a31 1619 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1620 continue;
1621
1622 saved_gr_mask |= (1 << i);
1623 }
1624
1625 /* Turn the Entry_FR field into a bitmask too. */
1626 saved_fr_mask = 0;
1627 for (i = 12; i < u->Entry_FR + 12; i++)
1628 saved_fr_mask |= (1 << i);
1629
1630 /* Loop until we find everything of interest or hit a branch.
1631
1632 For unoptimized GCC code and for any HP CC code this will never ever
1633 examine any user instructions.
1634
1635 For optimized GCC code we're faced with problems. GCC will schedule
1636 its prologue and make prologue instructions available for delay slot
1637 filling. The end result is user code gets mixed in with the prologue
1638 and a prologue instruction may be in the delay slot of the first branch
1639 or call.
1640
1641 Some unexpected things are expected with debugging optimized code, so
1642 we allow this routine to walk past user instructions in optimized
1643 GCC code. */
1644 {
1645 int final_iteration = 0;
9f7194c3 1646 CORE_ADDR pc, end_pc;
26d08f08
AC
1647 int looking_for_sp = u->Save_SP;
1648 int looking_for_rp = u->Save_RP;
1649 int fp_loc = -1;
9f7194c3 1650
a71f8c30 1651 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1652 skip_prologue_using_sal, in case we stepped into a function without
1653 symbol information. hppa_skip_prologue also bounds the returned
1654 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1655 function.
1656
1657 We used to call hppa_skip_prologue to find the end of the prologue,
1658 but if some non-prologue instructions get scheduled into the prologue,
1659 and the program is compiled with debug information, the "easy" way
1660 in hppa_skip_prologue will return a prologue end that is too early
1661 for us to notice any potential frame adjustments. */
d5c27f81
RC
1662
1663 /* We used to use frame_func_unwind () to locate the beginning of the
1664 function to pass to skip_prologue (). However, when objects are
1665 compiled without debug symbols, frame_func_unwind can return the wrong
1666 function (or 0). We can do better than that by using unwind records. */
1667
a71f8c30 1668 prologue_end = skip_prologue_hard_way (u->region_start, 0);
9f7194c3
RC
1669 end_pc = frame_pc_unwind (next_frame);
1670
1671 if (prologue_end != 0 && end_pc > prologue_end)
1672 end_pc = prologue_end;
1673
26d08f08 1674 frame_size = 0;
9f7194c3 1675
d5c27f81 1676 for (pc = u->region_start;
26d08f08
AC
1677 ((saved_gr_mask || saved_fr_mask
1678 || looking_for_sp || looking_for_rp
1679 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1680 && pc < end_pc);
26d08f08
AC
1681 pc += 4)
1682 {
1683 int reg;
1684 char buf4[4];
4a302917
RC
1685 long inst;
1686
1687 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1688 sizeof buf4))
1689 {
1690 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1691 return (*this_cache);
1692 }
1693
1694 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1695
26d08f08
AC
1696 /* Note the interesting effects of this instruction. */
1697 frame_size += prologue_inst_adjust_sp (inst);
1698
1699 /* There are limited ways to store the return pointer into the
1700 stack. */
1701 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1702 {
1703 looking_for_rp = 0;
34f75cc1 1704 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1705 }
dfaf8edb
MK
1706 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1707 {
1708 looking_for_rp = 0;
1709 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1710 }
26d08f08
AC
1711 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1712 {
1713 looking_for_rp = 0;
34f75cc1 1714 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1715 }
1716
1717 /* Check to see if we saved SP into the stack. This also
1718 happens to indicate the location of the saved frame
1719 pointer. */
1720 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1721 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1722 {
1723 looking_for_sp = 0;
eded0a31 1724 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1725 }
50b2f48a
RC
1726 else if (inst == 0x08030241) /* copy %r3, %r1 */
1727 {
1728 fp_in_r1 = 1;
1729 }
26d08f08
AC
1730
1731 /* Account for general and floating-point register saves. */
1732 reg = inst_saves_gr (inst);
1733 if (reg >= 3 && reg <= 18
eded0a31 1734 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1735 {
1736 saved_gr_mask &= ~(1 << reg);
abc485a1 1737 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1738 /* stwm with a positive displacement is a _post_
1739 _modify_. */
1740 cache->saved_regs[reg].addr = 0;
1741 else if ((inst & 0xfc00000c) == 0x70000008)
1742 /* A std has explicit post_modify forms. */
1743 cache->saved_regs[reg].addr = 0;
1744 else
1745 {
1746 CORE_ADDR offset;
1747
1748 if ((inst >> 26) == 0x1c)
1749 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1750 else if ((inst >> 26) == 0x03)
abc485a1 1751 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1752 else
abc485a1 1753 offset = hppa_extract_14 (inst);
26d08f08
AC
1754
1755 /* Handle code with and without frame pointers. */
1756 if (u->Save_SP)
1757 cache->saved_regs[reg].addr = offset;
1758 else
1759 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1760 }
1761 }
1762
1763 /* GCC handles callee saved FP regs a little differently.
1764
1765 It emits an instruction to put the value of the start of
1766 the FP store area into %r1. It then uses fstds,ma with a
1767 basereg of %r1 for the stores.
1768
1769 HP CC emits them at the current stack pointer modifying the
1770 stack pointer as it stores each register. */
1771
1772 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1773 if ((inst & 0xffffc000) == 0x34610000
1774 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1775 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1776
1777 reg = inst_saves_fr (inst);
1778 if (reg >= 12 && reg <= 21)
1779 {
1780 /* Note +4 braindamage below is necessary because the FP
1781 status registers are internally 8 registers rather than
1782 the expected 4 registers. */
1783 saved_fr_mask &= ~(1 << reg);
1784 if (fp_loc == -1)
1785 {
1786 /* 1st HP CC FP register store. After this
1787 instruction we've set enough state that the GCC and
1788 HPCC code are both handled in the same manner. */
34f75cc1 1789 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1790 fp_loc = 8;
1791 }
1792 else
1793 {
eded0a31 1794 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1795 fp_loc += 8;
1796 }
1797 }
1798
1799 /* Quit if we hit any kind of branch the previous iteration. */
1800 if (final_iteration)
1801 break;
1802 /* We want to look precisely one instruction beyond the branch
1803 if we have not found everything yet. */
1804 if (is_branch (inst))
1805 final_iteration = 1;
1806 }
1807 }
1808
1809 {
1810 /* The frame base always represents the value of %sp at entry to
1811 the current function (and is thus equivalent to the "saved"
1812 stack pointer. */
eded0a31 1813 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 1814 CORE_ADDR fp;
9f7194c3
RC
1815
1816 if (hppa_debug)
1817 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1818 "prologue_end=0x%s) ",
1819 paddr_nz (this_sp),
1820 paddr_nz (frame_pc_unwind (next_frame)),
1821 paddr_nz (prologue_end));
1822
ed70ba00
RC
1823 /* Check to see if a frame pointer is available, and use it for
1824 frame unwinding if it is.
1825
1826 There are some situations where we need to rely on the frame
1827 pointer to do stack unwinding. For example, if a function calls
1828 alloca (), the stack pointer can get adjusted inside the body of
1829 the function. In this case, the ABI requires that the compiler
1830 maintain a frame pointer for the function.
1831
1832 The unwind record has a flag (alloca_frame) that indicates that
1833 a function has a variable frame; unfortunately, gcc/binutils
1834 does not set this flag. Instead, whenever a frame pointer is used
1835 and saved on the stack, the Save_SP flag is set. We use this to
1836 decide whether to use the frame pointer for unwinding.
1837
ed70ba00
RC
1838 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1839 instead of Save_SP. */
1840
1841 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1842
1843 if (frame_pc_unwind (next_frame) >= prologue_end
1844 && u->Save_SP && fp != 0)
1845 {
1846 cache->base = fp;
1847
1848 if (hppa_debug)
1849 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1850 paddr_nz (cache->base));
1851 }
1658da49
RC
1852 else if (u->Save_SP
1853 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 1854 {
9f7194c3
RC
1855 /* Both we're expecting the SP to be saved and the SP has been
1856 saved. The entry SP value is saved at this frame's SP
1857 address. */
1858 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1859
1860 if (hppa_debug)
1861 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1862 paddr_nz (cache->base));
9f7194c3 1863 }
26d08f08 1864 else
9f7194c3 1865 {
1658da49
RC
1866 /* The prologue has been slowly allocating stack space. Adjust
1867 the SP back. */
1868 cache->base = this_sp - frame_size;
9f7194c3 1869 if (hppa_debug)
1658da49 1870 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
9f7194c3
RC
1871 paddr_nz (cache->base));
1872
1873 }
eded0a31 1874 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
1875 }
1876
412275d5
AC
1877 /* The PC is found in the "return register", "Millicode" uses "r31"
1878 as the return register while normal code uses "rp". */
26d08f08 1879 if (u->Millicode)
9f7194c3 1880 {
5859efe5 1881 if (trad_frame_addr_p (cache->saved_regs, 31))
34f75cc1 1882 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
9f7194c3
RC
1883 else
1884 {
1885 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 1886 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9f7194c3
RC
1887 }
1888 }
26d08f08 1889 else
9f7194c3 1890 {
34f75cc1
RC
1891 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1892 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
9f7194c3
RC
1893 else
1894 {
34f75cc1
RC
1895 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1896 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9f7194c3
RC
1897 }
1898 }
26d08f08 1899
50b2f48a
RC
1900 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1901 frame. However, there is a one-insn window where we haven't saved it
1902 yet, but we've already clobbered it. Detect this case and fix it up.
1903
1904 The prologue sequence for frame-pointer functions is:
1905 0: stw %rp, -20(%sp)
1906 4: copy %r3, %r1
1907 8: copy %sp, %r3
1908 c: stw,ma %r1, XX(%sp)
1909
1910 So if we are at offset c, the r3 value that we want is not yet saved
1911 on the stack, but it's been overwritten. The prologue analyzer will
1912 set fp_in_r1 when it sees the copy insn so we know to get the value
1913 from r1 instead. */
1914 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1915 && fp_in_r1)
1916 {
1917 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1918 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1919 }
1658da49 1920
26d08f08
AC
1921 {
1922 /* Convert all the offsets into addresses. */
1923 int reg;
1924 for (reg = 0; reg < NUM_REGS; reg++)
1925 {
1926 if (trad_frame_addr_p (cache->saved_regs, reg))
1927 cache->saved_regs[reg].addr += cache->base;
1928 }
1929 }
1930
369aa520
RC
1931 if (hppa_debug)
1932 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1933 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
1934 return (*this_cache);
1935}
1936
1937static void
1938hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1939 struct frame_id *this_id)
1940{
d5c27f81
RC
1941 struct hppa_frame_cache *info;
1942 CORE_ADDR pc = frame_pc_unwind (next_frame);
1943 struct unwind_table_entry *u;
1944
1945 info = hppa_frame_cache (next_frame, this_cache);
1946 u = find_unwind_entry (pc);
1947
1948 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
1949}
1950
1951static void
1952hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
1953 void **this_cache,
1954 int regnum, int *optimizedp,
1955 enum lval_type *lvalp, CORE_ADDR *addrp,
1956 int *realnump, void *valuep)
26d08f08
AC
1957{
1958 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
1959 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1960 optimizedp, lvalp, addrp, realnump, valuep);
1961}
1962
1963static const struct frame_unwind hppa_frame_unwind =
1964{
1965 NORMAL_FRAME,
1966 hppa_frame_this_id,
1967 hppa_frame_prev_register
1968};
1969
1970static const struct frame_unwind *
1971hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1972{
1973 CORE_ADDR pc = frame_pc_unwind (next_frame);
1974
1975 if (find_unwind_entry (pc))
1976 return &hppa_frame_unwind;
1977
1978 return NULL;
1979}
1980
1981/* This is a generic fallback frame unwinder that kicks in if we fail all
1982 the other ones. Normally we would expect the stub and regular unwinder
1983 to work, but in some cases we might hit a function that just doesn't
1984 have any unwind information available. In this case we try to do
1985 unwinding solely based on code reading. This is obviously going to be
1986 slow, so only use this as a last resort. Currently this will only
1987 identify the stack and pc for the frame. */
1988
1989static struct hppa_frame_cache *
1990hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1991{
1992 struct hppa_frame_cache *cache;
6d1be3f1 1993 unsigned int frame_size;
d5c27f81 1994 int found_rp;
0da28f8a
RC
1995 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1996
d5c27f81
RC
1997 if (hppa_debug)
1998 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1999 frame_relative_level(next_frame));
2000
0da28f8a
RC
2001 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2002 (*this_cache) = cache;
2003 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2004
2005 pc = frame_func_unwind (next_frame);
2006 cur_pc = frame_pc_unwind (next_frame);
6d1be3f1 2007 frame_size = 0;
d5c27f81 2008 found_rp = 0;
0da28f8a
RC
2009
2010 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2011
2012 if (start_pc == 0 || end_pc == 0)
412275d5 2013 {
0da28f8a
RC
2014 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2015 "fail.", paddr_nz (pc));
2016 return cache;
2017 }
2018
2019 if (end_pc > cur_pc)
2020 end_pc = cur_pc;
2021
2022 for (pc = start_pc; pc < end_pc; pc += 4)
2023 {
2024 unsigned int insn;
2025
2026 insn = read_memory_unsigned_integer (pc, 4);
2027
6d1be3f1
RC
2028 frame_size += prologue_inst_adjust_sp (insn);
2029
0da28f8a
RC
2030 /* There are limited ways to store the return pointer into the
2031 stack. */
2032 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
d5c27f81
RC
2033 {
2034 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2035 found_rp = 1;
2036 }
0da28f8a 2037 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
d5c27f81
RC
2038 {
2039 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2040 found_rp = 1;
2041 }
412275d5 2042 }
0da28f8a 2043
d5c27f81
RC
2044 if (hppa_debug)
2045 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2046 frame_size, found_rp);
2047
6d1be3f1
RC
2048 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2049 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2050
2051 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2052 {
2053 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2054 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2055 }
412275d5
AC
2056 else
2057 {
0da28f8a
RC
2058 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2059 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2060 }
0da28f8a
RC
2061
2062 return cache;
26d08f08
AC
2063}
2064
0da28f8a
RC
2065static void
2066hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2067 struct frame_id *this_id)
2068{
2069 struct hppa_frame_cache *info =
2070 hppa_fallback_frame_cache (next_frame, this_cache);
2071 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2072}
2073
2074static void
2075hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2076 void **this_cache,
2077 int regnum, int *optimizedp,
2078 enum lval_type *lvalp, CORE_ADDR *addrp,
2079 int *realnump, void *valuep)
2080{
2081 struct hppa_frame_cache *info =
2082 hppa_fallback_frame_cache (next_frame, this_cache);
2083 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2084 optimizedp, lvalp, addrp, realnump, valuep);
2085}
2086
2087static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2088{
2089 NORMAL_FRAME,
0da28f8a
RC
2090 hppa_fallback_frame_this_id,
2091 hppa_fallback_frame_prev_register
26d08f08
AC
2092};
2093
2094static const struct frame_unwind *
0da28f8a 2095hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2096{
0da28f8a 2097 return &hppa_fallback_frame_unwind;
26d08f08
AC
2098}
2099
7f07c5b6
RC
2100/* Stub frames, used for all kinds of call stubs. */
2101struct hppa_stub_unwind_cache
2102{
2103 CORE_ADDR base;
2104 struct trad_frame_saved_reg *saved_regs;
2105};
2106
2107static struct hppa_stub_unwind_cache *
2108hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2109 void **this_cache)
2110{
2111 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2112 struct hppa_stub_unwind_cache *info;
22b0923d 2113 struct unwind_table_entry *u;
7f07c5b6
RC
2114
2115 if (*this_cache)
2116 return *this_cache;
2117
2118 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2119 *this_cache = info;
2120 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2121
7f07c5b6
RC
2122 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2123
090ccbb7 2124 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2125 {
2126 /* HPUX uses export stubs in function calls; the export stub clobbers
2127 the return value of the caller, and, later restores it from the
2128 stack. */
2129 u = find_unwind_entry (frame_pc_unwind (next_frame));
2130
2131 if (u && u->stub_unwind.stub_type == EXPORT)
2132 {
2133 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2134
2135 return info;
2136 }
2137 }
2138
2139 /* By default we assume that stubs do not change the rp. */
2140 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2141
7f07c5b6
RC
2142 return info;
2143}
2144
2145static void
2146hppa_stub_frame_this_id (struct frame_info *next_frame,
2147 void **this_prologue_cache,
2148 struct frame_id *this_id)
2149{
2150 struct hppa_stub_unwind_cache *info
2151 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2152 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2153}
2154
2155static void
2156hppa_stub_frame_prev_register (struct frame_info *next_frame,
2157 void **this_prologue_cache,
2158 int regnum, int *optimizedp,
2159 enum lval_type *lvalp, CORE_ADDR *addrp,
0da28f8a 2160 int *realnump, void *valuep)
7f07c5b6
RC
2161{
2162 struct hppa_stub_unwind_cache *info
2163 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
0da28f8a
RC
2164 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2165 optimizedp, lvalp, addrp, realnump, valuep);
7f07c5b6
RC
2166}
2167
2168static const struct frame_unwind hppa_stub_frame_unwind = {
2169 NORMAL_FRAME,
2170 hppa_stub_frame_this_id,
2171 hppa_stub_frame_prev_register
2172};
2173
2174static const struct frame_unwind *
2175hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2176{
2177 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2178 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2180
6d1be3f1 2181 if (pc == 0
84674fe1
AC
2182 || (tdep->in_solib_call_trampoline != NULL
2183 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2184 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2185 return &hppa_stub_frame_unwind;
2186 return NULL;
2187}
2188
26d08f08
AC
2189static struct frame_id
2190hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2191{
2192 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2193 HPPA_SP_REGNUM),
26d08f08
AC
2194 frame_pc_unwind (next_frame));
2195}
2196
2197static CORE_ADDR
2198hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2199{
fe46cd3a
RC
2200 ULONGEST ipsw;
2201 CORE_ADDR pc;
2202
2203 ipsw = frame_unwind_register_signed (next_frame, HPPA_IPSW_REGNUM);
2204 pc = frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2205
2206 /* If the current instruction is nullified, then we are effectively
2207 still executing the previous instruction. Pretend we are still
2208 there. This is needed when single stepping; if the nullified instruction
2209 is on a different line, we don't want gdb to think we've stepped onto
2210 that line. */
2211 if (ipsw & 0x00200000)
2212 pc -= 4;
2213
2214 return pc;
26d08f08
AC
2215}
2216
9a043c1d
AC
2217/* Instead of this nasty cast, add a method pvoid() that prints out a
2218 host VOID data type (remember %p isn't portable). */
2219
2220static CORE_ADDR
2221hppa_pointer_to_address_hack (void *ptr)
2222{
2223 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2224 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2225}
2226
c906108c 2227static void
fba45db2 2228unwind_command (char *exp, int from_tty)
c906108c
SS
2229{
2230 CORE_ADDR address;
2231 struct unwind_table_entry *u;
2232
2233 /* If we have an expression, evaluate it and use it as the address. */
2234
2235 if (exp != 0 && *exp != 0)
2236 address = parse_and_eval_address (exp);
2237 else
2238 return;
2239
2240 u = find_unwind_entry (address);
2241
2242 if (!u)
2243 {
2244 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2245 return;
2246 }
2247
ce414844 2248 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 2249 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
2250
2251 printf_unfiltered ("\tregion_start = ");
2252 print_address (u->region_start, gdb_stdout);
d5c27f81 2253 gdb_flush (gdb_stdout);
c906108c
SS
2254
2255 printf_unfiltered ("\n\tregion_end = ");
2256 print_address (u->region_end, gdb_stdout);
d5c27f81 2257 gdb_flush (gdb_stdout);
c906108c 2258
c906108c 2259#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2260
2261 printf_unfiltered ("\n\tflags =");
2262 pif (Cannot_unwind);
2263 pif (Millicode);
2264 pif (Millicode_save_sr0);
2265 pif (Entry_SR);
2266 pif (Args_stored);
2267 pif (Variable_Frame);
2268 pif (Separate_Package_Body);
2269 pif (Frame_Extension_Millicode);
2270 pif (Stack_Overflow_Check);
2271 pif (Two_Instruction_SP_Increment);
2272 pif (Ada_Region);
2273 pif (Save_SP);
2274 pif (Save_RP);
2275 pif (Save_MRP_in_frame);
2276 pif (extn_ptr_defined);
2277 pif (Cleanup_defined);
2278 pif (MPE_XL_interrupt_marker);
2279 pif (HP_UX_interrupt_marker);
2280 pif (Large_frame);
2281
2282 putchar_unfiltered ('\n');
2283
c906108c 2284#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2285
2286 pin (Region_description);
2287 pin (Entry_FR);
2288 pin (Entry_GR);
2289 pin (Total_frame_size);
57dac9e1
RC
2290
2291 if (u->stub_unwind.stub_type)
2292 {
2293 printf_unfiltered ("\tstub type = ");
2294 switch (u->stub_unwind.stub_type)
2295 {
2296 case LONG_BRANCH:
2297 printf_unfiltered ("long branch\n");
2298 break;
2299 case PARAMETER_RELOCATION:
2300 printf_unfiltered ("parameter relocation\n");
2301 break;
2302 case EXPORT:
2303 printf_unfiltered ("export\n");
2304 break;
2305 case IMPORT:
2306 printf_unfiltered ("import\n");
2307 break;
2308 case IMPORT_SHLIB:
2309 printf_unfiltered ("import shlib\n");
2310 break;
2311 default:
2312 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2313 }
2314 }
c906108c 2315}
c906108c 2316
d709c020
JB
2317int
2318hppa_pc_requires_run_before_use (CORE_ADDR pc)
2319{
2320 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2321
2322 An example of this occurs when an a.out is linked against a foo.sl.
2323 The foo.sl defines a global bar(), and the a.out declares a signature
2324 for bar(). However, the a.out doesn't directly call bar(), but passes
2325 its address in another call.
2326
2327 If you have this scenario and attempt to "break bar" before running,
2328 gdb will find a minimal symbol for bar() in the a.out. But that
2329 symbol's address will be negative. What this appears to denote is
2330 an index backwards from the base of the procedure linkage table (PLT)
2331 into the data linkage table (DLT), the end of which is contiguous
2332 with the start of the PLT. This is clearly not a valid address for
2333 us to set a breakpoint on.
2334
2335 Note that one must be careful in how one checks for a negative address.
2336 0xc0000000 is a legitimate address of something in a shared text
2337 segment, for example. Since I don't know what the possible range
2338 is of these "really, truly negative" addresses that come from the
2339 minimal symbols, I'm resorting to the gross hack of checking the
2340 top byte of the address for all 1's. Sigh. */
2341
2342 return (!target_has_stack && (pc & 0xFF000000));
2343}
2344
d709c020
JB
2345/* Return the GDB type object for the "standard" data type of data
2346 in register N. */
2347
eded0a31
AC
2348static struct type *
2349hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
d709c020 2350{
34f75cc1 2351 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2352 return builtin_type_uint32;
d709c020 2353 else
eded0a31 2354 return builtin_type_ieee_single_big;
d709c020
JB
2355}
2356
3ff7cf9e
JB
2357/* Return the GDB type object for the "standard" data type of data
2358 in register N. hppa64 version. */
2359
eded0a31
AC
2360static struct type *
2361hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
3ff7cf9e 2362{
34f75cc1 2363 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2364 return builtin_type_uint64;
3ff7cf9e 2365 else
eded0a31 2366 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2367}
2368
d709c020
JB
2369/* Return True if REGNUM is not a register available to the user
2370 through ptrace(). */
2371
8d153463 2372static int
d709c020
JB
2373hppa_cannot_store_register (int regnum)
2374{
2375 return (regnum == 0
34f75cc1
RC
2376 || regnum == HPPA_PCSQ_HEAD_REGNUM
2377 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2378 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
d709c020
JB
2379
2380}
2381
8d153463 2382static CORE_ADDR
d709c020
JB
2383hppa_smash_text_address (CORE_ADDR addr)
2384{
2385 /* The low two bits of the PC on the PA contain the privilege level.
2386 Some genius implementing a (non-GCC) compiler apparently decided
2387 this means that "addresses" in a text section therefore include a
2388 privilege level, and thus symbol tables should contain these bits.
2389 This seems like a bonehead thing to do--anyway, it seems to work
2390 for our purposes to just ignore those bits. */
2391
2392 return (addr &= ~0x3);
2393}
2394
143985b7 2395/* Get the ith function argument for the current function. */
4a302917 2396static CORE_ADDR
143985b7
AF
2397hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2398 struct type *type)
2399{
2400 CORE_ADDR addr;
34f75cc1 2401 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
143985b7
AF
2402 return addr;
2403}
2404
0f8d9d59
RC
2405static void
2406hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2407 int regnum, void *buf)
2408{
2409 ULONGEST tmp;
2410
2411 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2412 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59
RC
2413 tmp &= ~0x3;
2414 store_unsigned_integer (buf, sizeof(tmp), tmp);
2415}
2416
d49771ef
RC
2417static CORE_ADDR
2418hppa_find_global_pointer (struct value *function)
2419{
2420 return 0;
2421}
2422
0da28f8a
RC
2423void
2424hppa_frame_prev_register_helper (struct frame_info *next_frame,
2425 struct trad_frame_saved_reg saved_regs[],
2426 int regnum, int *optimizedp,
2427 enum lval_type *lvalp, CORE_ADDR *addrp,
2428 int *realnump, void *valuep)
2429{
8693c419
MK
2430 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2431 {
2432 if (valuep)
2433 {
2434 CORE_ADDR pc;
0da28f8a 2435
1f67027d
AC
2436 trad_frame_get_prev_register (next_frame, saved_regs,
2437 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2438 lvalp, addrp, realnump, valuep);
8693c419
MK
2439
2440 pc = extract_unsigned_integer (valuep, 4);
2441 store_unsigned_integer (valuep, 4, pc + 4);
2442 }
2443
2444 /* It's a computed value. */
2445 *optimizedp = 0;
2446 *lvalp = not_lval;
2447 *addrp = 0;
2448 *realnump = -1;
2449 return;
2450 }
0da28f8a 2451
1f67027d
AC
2452 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2453 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2454}
8693c419 2455\f
0da28f8a 2456
8e8b2dba
MC
2457/* Here is a table of C type sizes on hppa with various compiles
2458 and options. I measured this on PA 9000/800 with HP-UX 11.11
2459 and these compilers:
2460
2461 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2462 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2463 /opt/aCC/bin/aCC B3910B A.03.45
2464 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2465
2466 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2467 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2468 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2469 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2470 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2471 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2472 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2473 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2474
2475 Each line is:
2476
2477 compiler and options
2478 char, short, int, long, long long
2479 float, double, long double
2480 char *, void (*)()
2481
2482 So all these compilers use either ILP32 or LP64 model.
2483 TODO: gcc has more options so it needs more investigation.
2484
a2379359
MC
2485 For floating point types, see:
2486
2487 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2488 HP-UX floating-point guide, hpux 11.00
2489
8e8b2dba
MC
2490 -- chastain 2003-12-18 */
2491
e6e68f1f
JB
2492static struct gdbarch *
2493hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2494{
3ff7cf9e 2495 struct gdbarch_tdep *tdep;
e6e68f1f 2496 struct gdbarch *gdbarch;
59623e27
JB
2497
2498 /* Try to determine the ABI of the object we are loading. */
4be87837 2499 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2500 {
4be87837
DJ
2501 /* If it's a SOM file, assume it's HP/UX SOM. */
2502 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2503 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2504 }
e6e68f1f
JB
2505
2506 /* find a candidate among the list of pre-declared architectures. */
2507 arches = gdbarch_list_lookup_by_info (arches, &info);
2508 if (arches != NULL)
2509 return (arches->gdbarch);
2510
2511 /* If none found, then allocate and initialize one. */
fdd72f95 2512 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2513 gdbarch = gdbarch_alloc (&info, tdep);
2514
2515 /* Determine from the bfd_arch_info structure if we are dealing with
2516 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2517 then default to a 32bit machine. */
2518 if (info.bfd_arch_info != NULL)
2519 tdep->bytes_per_address =
2520 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2521 else
2522 tdep->bytes_per_address = 4;
2523
d49771ef
RC
2524 tdep->find_global_pointer = hppa_find_global_pointer;
2525
3ff7cf9e
JB
2526 /* Some parts of the gdbarch vector depend on whether we are running
2527 on a 32 bits or 64 bits target. */
2528 switch (tdep->bytes_per_address)
2529 {
2530 case 4:
2531 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2532 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2533 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3ff7cf9e
JB
2534 break;
2535 case 8:
2536 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2537 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2538 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3ff7cf9e
JB
2539 break;
2540 default:
2541 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2542 tdep->bytes_per_address);
2543 }
2544
3ff7cf9e 2545 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2546 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2547
8e8b2dba
MC
2548 /* The following gdbarch vector elements are the same in both ILP32
2549 and LP64, but might show differences some day. */
2550 set_gdbarch_long_long_bit (gdbarch, 64);
2551 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2552 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2553
3ff7cf9e
JB
2554 /* The following gdbarch vector elements do not depend on the address
2555 size, or in any other gdbarch element previously set. */
60383d10 2556 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
a2a84a72 2557 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2558 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2559 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
60383d10 2560 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
50306a9d 2561 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 2562 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2563 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2564 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2565 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2566 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
60383d10 2567
143985b7
AF
2568 /* Helper for function argument information. */
2569 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2570
36482093
AC
2571 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2572
3a3bc038
AC
2573 /* When a hardware watchpoint triggers, we'll move the inferior past
2574 it by removing all eventpoints; stepping past the instruction
2575 that caused the trigger; reinserting eventpoints; and checking
2576 whether any watched location changed. */
2577 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2578
5979bc46 2579 /* Inferior function call methods. */
fca7aa43 2580 switch (tdep->bytes_per_address)
5979bc46 2581 {
fca7aa43
AC
2582 case 4:
2583 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2584 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
2585 set_gdbarch_convert_from_func_ptr_addr
2586 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
2587 break;
2588 case 8:
782eae8b
AC
2589 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2590 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2591 break;
782eae8b
AC
2592 default:
2593 internal_error (__FILE__, __LINE__, "bad switch");
fad850b2
AC
2594 }
2595
2596 /* Struct return methods. */
fca7aa43 2597 switch (tdep->bytes_per_address)
fad850b2 2598 {
fca7aa43
AC
2599 case 4:
2600 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2601 break;
2602 case 8:
782eae8b 2603 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2604 break;
fca7aa43
AC
2605 default:
2606 internal_error (__FILE__, __LINE__, "bad switch");
e963316f 2607 }
7f07c5b6 2608
85f4f2d8 2609 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2610 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2611
5979bc46 2612 /* Frame unwind methods. */
782eae8b
AC
2613 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2614 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2615
50306a9d
RC
2616 /* Hook in ABI-specific overrides, if they have been registered. */
2617 gdbarch_init_osabi (info, gdbarch);
2618
7f07c5b6
RC
2619 /* Hook in the default unwinders. */
2620 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2621 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2622 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 2623
e6e68f1f
JB
2624 return gdbarch;
2625}
2626
2627static void
2628hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2629{
fdd72f95
RC
2630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2631
2632 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2633 tdep->bytes_per_address);
2634 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2635}
2636
4facf7e8
JB
2637void
2638_initialize_hppa_tdep (void)
2639{
2640 struct cmd_list_element *c;
4facf7e8 2641
e6e68f1f 2642 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2643
7c46b9fb
RC
2644 hppa_objfile_priv_data = register_objfile_data ();
2645
4facf7e8
JB
2646 add_cmd ("unwind", class_maintenance, unwind_command,
2647 "Print unwind table entry at given address.",
2648 &maintenanceprintlist);
2649
369aa520 2650 /* Debug this files internals. */
4a302917
RC
2651 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2652Set whether hppa target specific debugging information should be displayed.", "\
2653Show whether hppa target specific debugging information is displayed.", "\
2654This flag controls whether hppa target specific debugging information is\n\
2655displayed. This information is particularly useful for debugging frame\n\
2656unwinding problems.", "hppa debug flag is %s.",
2657 NULL, NULL, &setdebuglist, &showdebuglist);
4facf7e8 2658}
This page took 0.885406 seconds and 4 git commands to generate.