Constify some commands in target-descriptions.c
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
325fac50 42#include <algorithm>
c906108c 43
369aa520
RC
44static int hppa_debug = 0;
45
60383d10 46/* Some local constants. */
3ff7cf9e
JB
47static const int hppa32_num_regs = 128;
48static const int hppa64_num_regs = 96;
49
61a12cfa
JK
50/* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58/* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
7c46b9fb
RC
81/* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 87static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 88
1777feb0 89/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
90#define MASK_5 0x1f
91#define MASK_11 0x7ff
92#define MASK_14 0x3fff
93#define MASK_21 0x1fffff
94
e2ac8128
JB
95/* Sizes (in bytes) of the native unwind entries. */
96#define UNWIND_ENTRY_SIZE 16
97#define STUB_UNWIND_ENTRY_SIZE 8
98
c906108c 99/* Routines to extract various sized constants out of hppa
1777feb0 100 instructions. */
c906108c
SS
101
102/* This assumes that no garbage lies outside of the lower bits of
1777feb0 103 value. */
c906108c 104
63807e1d 105static int
abc485a1 106hppa_sign_extend (unsigned val, unsigned bits)
c906108c 107{
66c6502d 108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
c906108c
SS
109}
110
1777feb0 111/* For many immediate values the sign bit is the low bit! */
c906108c 112
63807e1d 113static int
abc485a1 114hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 115{
66c6502d 116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
c906108c
SS
117}
118
e2ac8128 119/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 120 (MSB = 0). */
e2ac8128 121
abc485a1
RC
122int
123hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
124{
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126}
127
1777feb0 128/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 129
abc485a1
RC
130int
131hppa_extract_5_load (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
134}
135
1777feb0 136/* Extract the immediate field from a break instruction. */
c906108c 137
abc485a1
RC
138unsigned
139hppa_extract_5r_store (unsigned word)
c906108c
SS
140{
141 return (word & MASK_5);
142}
143
1777feb0 144/* Extract the immediate field from a {sr}sm instruction. */
c906108c 145
abc485a1
RC
146unsigned
147hppa_extract_5R_store (unsigned word)
c906108c
SS
148{
149 return (word >> 16 & MASK_5);
150}
151
1777feb0 152/* Extract a 14 bit immediate field. */
c906108c 153
abc485a1
RC
154int
155hppa_extract_14 (unsigned word)
c906108c 156{
abc485a1 157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
158}
159
1777feb0 160/* Extract a 21 bit constant. */
c906108c 161
abc485a1
RC
162int
163hppa_extract_21 (unsigned word)
c906108c
SS
164{
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
abc485a1 169 val = hppa_get_field (word, 20, 20);
c906108c 170 val <<= 11;
abc485a1 171 val |= hppa_get_field (word, 9, 19);
c906108c 172 val <<= 2;
abc485a1 173 val |= hppa_get_field (word, 5, 6);
c906108c 174 val <<= 5;
abc485a1 175 val |= hppa_get_field (word, 0, 4);
c906108c 176 val <<= 2;
abc485a1
RC
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
179}
180
c906108c 181/* extract a 17 bit constant from branch instructions, returning the
1777feb0 182 19 bit signed value. */
c906108c 183
abc485a1
RC
184int
185hppa_extract_17 (unsigned word)
c906108c 186{
abc485a1
RC
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
190 (word & 0x1) << 16, 17) << 2;
191}
3388d7ff
RC
192
193CORE_ADDR
194hppa_symbol_address(const char *sym)
195{
3b7344d5 196 struct bound_minimal_symbol minsym;
3388d7ff
RC
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 199 if (minsym.minsym)
77e371c0 200 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
201 else
202 return (CORE_ADDR)-1;
203}
77d18ded 204
61a12cfa 205static struct hppa_objfile_private *
77d18ded
RC
206hppa_init_objfile_priv_data (struct objfile *objfile)
207{
208 struct hppa_objfile_private *priv;
209
210 priv = (struct hppa_objfile_private *)
211 obstack_alloc (&objfile->objfile_obstack,
212 sizeof (struct hppa_objfile_private));
213 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
214 memset (priv, 0, sizeof (*priv));
215
216 return priv;
217}
c906108c
SS
218\f
219
220/* Compare the start address for two unwind entries returning 1 if
221 the first address is larger than the second, -1 if the second is
222 larger than the first, and zero if they are equal. */
223
224static int
fba45db2 225compare_unwind_entries (const void *arg1, const void *arg2)
c906108c 226{
9a3c8263
SM
227 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
228 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
c906108c
SS
229
230 if (a->region_start > b->region_start)
231 return 1;
232 else if (a->region_start < b->region_start)
233 return -1;
234 else
235 return 0;
236}
237
53a5351d 238static void
fdd72f95 239record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 240{
fdd72f95 241 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 242 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
243 {
244 bfd_vma value = section->vma - section->filepos;
245 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
246
247 if (value < *low_text_segment_address)
248 *low_text_segment_address = value;
249 }
53a5351d
JM
250}
251
c906108c 252static void
fba45db2 253internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 254 asection *section, unsigned int entries,
241fd515 255 size_t size, CORE_ADDR text_offset)
c906108c
SS
256{
257 /* We will read the unwind entries into temporary memory, then
258 fill in the actual unwind table. */
fdd72f95 259
c906108c
SS
260 if (size > 0)
261 {
5db8bbe5 262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
263 unsigned long tmp;
264 unsigned i;
224c3ddb 265 char *buf = (char *) alloca (size);
fdd72f95 266 CORE_ADDR low_text_segment_address;
c906108c 267
fdd72f95 268 /* For ELF targets, then unwinds are supposed to
1777feb0 269 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
270
271 Note that when loading a shared library (text_offset != 0) the
272 unwinds are already relative to the text_offset that will be
273 passed in. */
5db8bbe5 274 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 275 {
fdd72f95
RC
276 low_text_segment_address = -1;
277
53a5351d 278 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
279 record_text_segment_lowaddr,
280 &low_text_segment_address);
53a5351d 281
fdd72f95 282 text_offset = low_text_segment_address;
53a5351d 283 }
5db8bbe5 284 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 285 {
5db8bbe5 286 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 287 }
53a5351d 288
c906108c
SS
289 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
290
291 /* Now internalize the information being careful to handle host/target
c5aa993b 292 endian issues. */
c906108c
SS
293 for (i = 0; i < entries; i++)
294 {
295 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 296 (bfd_byte *) buf);
c906108c
SS
297 table[i].region_start += text_offset;
298 buf += 4;
c5aa993b 299 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
300 table[i].region_end += text_offset;
301 buf += 4;
c5aa993b 302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
303 buf += 4;
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 308 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 318 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
319 table[i].cxx_info = (tmp >> 8) & 0x1;
320 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
321 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 322 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
323 table[i].Save_SP = (tmp >> 4) & 0x1;
324 table[i].Save_RP = (tmp >> 3) & 0x1;
325 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 326 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 327 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
329 buf += 4;
330 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
331 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
332 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
333 table[i].alloca_frame = (tmp >> 28) & 0x1;
334 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
335 table[i].Total_frame_size = tmp & 0x7ffffff;
336
1777feb0 337 /* Stub unwinds are handled elsewhere. */
c906108c
SS
338 table[i].stub_unwind.stub_type = 0;
339 table[i].stub_unwind.padding = 0;
340 }
341 }
342}
343
344/* Read in the backtrace information stored in the `$UNWIND_START$' section of
345 the object file. This info is used mainly by find_unwind_entry() to find
346 out the stack frame size and frame pointer used by procedures. We put
347 everything on the psymbol obstack in the objfile so that it automatically
348 gets freed when the objfile is destroyed. */
349
350static void
fba45db2 351read_unwind_info (struct objfile *objfile)
c906108c 352{
d4f3574e 353 asection *unwind_sec, *stub_unwind_sec;
241fd515 354 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 355 unsigned index, unwind_entries;
c906108c
SS
356 unsigned stub_entries, total_entries;
357 CORE_ADDR text_offset;
7c46b9fb
RC
358 struct hppa_unwind_info *ui;
359 struct hppa_objfile_private *obj_private;
c906108c 360
a99dad3d 361 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
362 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
363 sizeof (struct hppa_unwind_info));
c906108c
SS
364
365 ui->table = NULL;
366 ui->cache = NULL;
367 ui->last = -1;
368
d4f3574e
SS
369 /* For reasons unknown the HP PA64 tools generate multiple unwinder
370 sections in a single executable. So we just iterate over every
371 section in the BFD looking for unwinder sections intead of trying
1777feb0 372 to do a lookup with bfd_get_section_by_name.
c906108c 373
d4f3574e
SS
374 First determine the total size of the unwind tables so that we
375 can allocate memory in a nice big hunk. */
376 total_entries = 0;
377 for (unwind_sec = objfile->obfd->sections;
378 unwind_sec;
379 unwind_sec = unwind_sec->next)
c906108c 380 {
d4f3574e
SS
381 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
382 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
383 {
384 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
385 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 386
d4f3574e
SS
387 total_entries += unwind_entries;
388 }
c906108c
SS
389 }
390
d4f3574e 391 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 392 use stub unwinds at the current time. */
d4f3574e
SS
393 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
394
c906108c
SS
395 if (stub_unwind_sec)
396 {
397 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
398 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
399 }
400 else
401 {
402 stub_unwind_size = 0;
403 stub_entries = 0;
404 }
405
406 /* Compute total number of unwind entries and their total size. */
d4f3574e 407 total_entries += stub_entries;
c906108c
SS
408 total_size = total_entries * sizeof (struct unwind_table_entry);
409
410 /* Allocate memory for the unwind table. */
411 ui->table = (struct unwind_table_entry *)
8b92e4d5 412 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 413 ui->last = total_entries - 1;
c906108c 414
d4f3574e
SS
415 /* Now read in each unwind section and internalize the standard unwind
416 entries. */
c906108c 417 index = 0;
d4f3574e
SS
418 for (unwind_sec = objfile->obfd->sections;
419 unwind_sec;
420 unwind_sec = unwind_sec->next)
421 {
422 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
423 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
424 {
425 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
426 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
427
428 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
429 unwind_entries, unwind_size, text_offset);
430 index += unwind_entries;
431 }
432 }
433
434 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
435 if (stub_unwind_size > 0)
436 {
437 unsigned int i;
224c3ddb 438 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
439
440 /* Read in the stub unwind entries. */
441 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
442 0, stub_unwind_size);
443
444 /* Now convert them into regular unwind entries. */
445 for (i = 0; i < stub_entries; i++, index++)
446 {
447 /* Clear out the next unwind entry. */
448 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
449
1777feb0 450 /* Convert offset & size into region_start and region_end.
c906108c
SS
451 Stuff away the stub type into "reserved" fields. */
452 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
453 (bfd_byte *) buf);
454 ui->table[index].region_start += text_offset;
455 buf += 4;
456 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 457 (bfd_byte *) buf);
c906108c
SS
458 buf += 2;
459 ui->table[index].region_end
c5aa993b
JM
460 = ui->table[index].region_start + 4 *
461 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
462 buf += 2;
463 }
464
465 }
466
467 /* Unwind table needs to be kept sorted. */
468 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
469 compare_unwind_entries);
470
471 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
472 obj_private = (struct hppa_objfile_private *)
473 objfile_data (objfile, hppa_objfile_priv_data);
474 if (obj_private == NULL)
77d18ded
RC
475 obj_private = hppa_init_objfile_priv_data (objfile);
476
c906108c
SS
477 obj_private->unwind_info = ui;
478}
479
480/* Lookup the unwind (stack backtrace) info for the given PC. We search all
481 of the objfiles seeking the unwind table entry for this PC. Each objfile
482 contains a sorted list of struct unwind_table_entry. Since we do a binary
483 search of the unwind tables, we depend upon them to be sorted. */
484
485struct unwind_table_entry *
fba45db2 486find_unwind_entry (CORE_ADDR pc)
c906108c
SS
487{
488 int first, middle, last;
489 struct objfile *objfile;
7c46b9fb 490 struct hppa_objfile_private *priv;
c906108c 491
369aa520 492 if (hppa_debug)
5af949e3
UW
493 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
494 hex_string (pc));
369aa520 495
1777feb0 496 /* A function at address 0? Not in HP-UX! */
c906108c 497 if (pc == (CORE_ADDR) 0)
369aa520
RC
498 {
499 if (hppa_debug)
500 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
501 return NULL;
502 }
c906108c
SS
503
504 ALL_OBJFILES (objfile)
c5aa993b 505 {
7c46b9fb 506 struct hppa_unwind_info *ui;
c5aa993b 507 ui = NULL;
9a3c8263
SM
508 priv = ((struct hppa_objfile_private *)
509 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb
RC
510 if (priv)
511 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 512
c5aa993b
JM
513 if (!ui)
514 {
515 read_unwind_info (objfile);
9a3c8263
SM
516 priv = ((struct hppa_objfile_private *)
517 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb 518 if (priv == NULL)
8a3fe4f8 519 error (_("Internal error reading unwind information."));
7c46b9fb 520 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 521 }
c906108c 522
1777feb0 523 /* First, check the cache. */
c906108c 524
c5aa993b
JM
525 if (ui->cache
526 && pc >= ui->cache->region_start
527 && pc <= ui->cache->region_end)
369aa520
RC
528 {
529 if (hppa_debug)
5af949e3
UW
530 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
531 hex_string ((uintptr_t) ui->cache));
369aa520
RC
532 return ui->cache;
533 }
c906108c 534
1777feb0 535 /* Not in the cache, do a binary search. */
c906108c 536
c5aa993b
JM
537 first = 0;
538 last = ui->last;
c906108c 539
c5aa993b
JM
540 while (first <= last)
541 {
542 middle = (first + last) / 2;
543 if (pc >= ui->table[middle].region_start
544 && pc <= ui->table[middle].region_end)
545 {
546 ui->cache = &ui->table[middle];
369aa520 547 if (hppa_debug)
5af949e3
UW
548 fprintf_unfiltered (gdb_stdlog, "%s }\n",
549 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
550 return &ui->table[middle];
551 }
c906108c 552
c5aa993b
JM
553 if (pc < ui->table[middle].region_start)
554 last = middle - 1;
555 else
556 first = middle + 1;
557 }
558 } /* ALL_OBJFILES() */
369aa520
RC
559
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
562
c906108c
SS
563 return NULL;
564}
565
c9cf6e20
MG
566/* Implement the stack_frame_destroyed_p gdbarch method.
567
568 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 569 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
570
571 We do not assume that the epilogue is at the end of a function as we can
572 also have return sequences in the middle of a function. */
c9cf6e20 573
1fb24930 574static int
c9cf6e20 575hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 576{
e17a4113 577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
578 unsigned long status;
579 unsigned int inst;
e362b510 580 gdb_byte buf[4];
1fb24930 581
8defab1a 582 status = target_read_memory (pc, buf, 4);
1fb24930
RC
583 if (status != 0)
584 return 0;
585
e17a4113 586 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
587
588 /* The most common way to perform a stack adjustment ldo X(sp),sp
589 We are destroying a stack frame if the offset is negative. */
590 if ((inst & 0xffffc000) == 0x37de0000
591 && hppa_extract_14 (inst) < 0)
592 return 1;
593
594 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
595 if (((inst & 0x0fc010e0) == 0x0fc010e0
596 || (inst & 0x0fc010e0) == 0x0fc010e0)
597 && hppa_extract_14 (inst) < 0)
598 return 1;
599
600 /* bv %r0(%rp) or bv,n %r0(%rp) */
601 if (inst == 0xe840c000 || inst == 0xe840c002)
602 return 1;
603
604 return 0;
605}
606
04180708 607constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
598cc9dc 608
04180708 609typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
aaab4dba 610
e23457df
AC
611/* Return the name of a register. */
612
4a302917 613static const char *
d93859e2 614hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df 615{
a121b7c1 616 static const char *names[] = {
e23457df
AC
617 "flags", "r1", "rp", "r3",
618 "r4", "r5", "r6", "r7",
619 "r8", "r9", "r10", "r11",
620 "r12", "r13", "r14", "r15",
621 "r16", "r17", "r18", "r19",
622 "r20", "r21", "r22", "r23",
623 "r24", "r25", "r26", "dp",
624 "ret0", "ret1", "sp", "r31",
625 "sar", "pcoqh", "pcsqh", "pcoqt",
626 "pcsqt", "eiem", "iir", "isr",
627 "ior", "ipsw", "goto", "sr4",
628 "sr0", "sr1", "sr2", "sr3",
629 "sr5", "sr6", "sr7", "cr0",
630 "cr8", "cr9", "ccr", "cr12",
631 "cr13", "cr24", "cr25", "cr26",
632 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
633 "fpsr", "fpe1", "fpe2", "fpe3",
634 "fpe4", "fpe5", "fpe6", "fpe7",
635 "fr4", "fr4R", "fr5", "fr5R",
636 "fr6", "fr6R", "fr7", "fr7R",
637 "fr8", "fr8R", "fr9", "fr9R",
638 "fr10", "fr10R", "fr11", "fr11R",
639 "fr12", "fr12R", "fr13", "fr13R",
640 "fr14", "fr14R", "fr15", "fr15R",
641 "fr16", "fr16R", "fr17", "fr17R",
642 "fr18", "fr18R", "fr19", "fr19R",
643 "fr20", "fr20R", "fr21", "fr21R",
644 "fr22", "fr22R", "fr23", "fr23R",
645 "fr24", "fr24R", "fr25", "fr25R",
646 "fr26", "fr26R", "fr27", "fr27R",
647 "fr28", "fr28R", "fr29", "fr29R",
648 "fr30", "fr30R", "fr31", "fr31R"
649 };
650 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
651 return NULL;
652 else
653 return names[i];
654}
655
4a302917 656static const char *
d93859e2 657hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df 658{
a121b7c1 659 static const char *names[] = {
e23457df
AC
660 "flags", "r1", "rp", "r3",
661 "r4", "r5", "r6", "r7",
662 "r8", "r9", "r10", "r11",
663 "r12", "r13", "r14", "r15",
664 "r16", "r17", "r18", "r19",
665 "r20", "r21", "r22", "r23",
666 "r24", "r25", "r26", "dp",
667 "ret0", "ret1", "sp", "r31",
668 "sar", "pcoqh", "pcsqh", "pcoqt",
669 "pcsqt", "eiem", "iir", "isr",
670 "ior", "ipsw", "goto", "sr4",
671 "sr0", "sr1", "sr2", "sr3",
672 "sr5", "sr6", "sr7", "cr0",
673 "cr8", "cr9", "ccr", "cr12",
674 "cr13", "cr24", "cr25", "cr26",
675 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
676 "fpsr", "fpe1", "fpe2", "fpe3",
677 "fr4", "fr5", "fr6", "fr7",
678 "fr8", "fr9", "fr10", "fr11",
679 "fr12", "fr13", "fr14", "fr15",
680 "fr16", "fr17", "fr18", "fr19",
681 "fr20", "fr21", "fr22", "fr23",
682 "fr24", "fr25", "fr26", "fr27",
683 "fr28", "fr29", "fr30", "fr31"
684 };
685 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
686 return NULL;
687 else
688 return names[i];
689}
690
85c83e99 691/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 692static int
d3f73121 693hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 694{
85c83e99 695 /* The general registers and the sar are the same in both sets. */
0fde2c53 696 if (reg >= 0 && reg <= 32)
1ef7fcb5
RC
697 return reg;
698
699 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 700 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
701 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
702
1ef7fcb5
RC
703 return -1;
704}
705
79508e1e
AC
706/* This function pushes a stack frame with arguments as part of the
707 inferior function calling mechanism.
708
709 This is the version of the function for the 32-bit PA machines, in
710 which later arguments appear at lower addresses. (The stack always
711 grows towards higher addresses.)
712
713 We simply allocate the appropriate amount of stack space and put
714 arguments into their proper slots. */
715
4a302917 716static CORE_ADDR
7d9b040b 717hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
718 struct regcache *regcache, CORE_ADDR bp_addr,
719 int nargs, struct value **args, CORE_ADDR sp,
720 int struct_return, CORE_ADDR struct_addr)
721{
e17a4113
UW
722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
723
79508e1e
AC
724 /* Stack base address at which any pass-by-reference parameters are
725 stored. */
726 CORE_ADDR struct_end = 0;
727 /* Stack base address at which the first parameter is stored. */
728 CORE_ADDR param_end = 0;
729
79508e1e
AC
730 /* Two passes. First pass computes the location of everything,
731 second pass writes the bytes out. */
732 int write_pass;
d49771ef
RC
733
734 /* Global pointer (r19) of the function we are trying to call. */
735 CORE_ADDR gp;
736
737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
738
79508e1e
AC
739 for (write_pass = 0; write_pass < 2; write_pass++)
740 {
1797a8f6 741 CORE_ADDR struct_ptr = 0;
1777feb0 742 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
743 struct_ptr is adjusted for each argument below, so the first
744 argument will end up at sp-36. */
745 CORE_ADDR param_ptr = 32;
79508e1e 746 int i;
2a6228ef
RC
747 int small_struct = 0;
748
79508e1e
AC
749 for (i = 0; i < nargs; i++)
750 {
751 struct value *arg = args[i];
4991999e 752 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
753 /* The corresponding parameter that is pushed onto the
754 stack, and [possibly] passed in a register. */
948f8e3d 755 gdb_byte param_val[8];
79508e1e
AC
756 int param_len;
757 memset (param_val, 0, sizeof param_val);
758 if (TYPE_LENGTH (type) > 8)
759 {
760 /* Large parameter, pass by reference. Store the value
761 in "struct" area and then pass its address. */
762 param_len = 4;
1797a8f6 763 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 764 if (write_pass)
0fd88904 765 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 766 TYPE_LENGTH (type));
e17a4113
UW
767 store_unsigned_integer (param_val, 4, byte_order,
768 struct_end - struct_ptr);
79508e1e
AC
769 }
770 else if (TYPE_CODE (type) == TYPE_CODE_INT
771 || TYPE_CODE (type) == TYPE_CODE_ENUM)
772 {
773 /* Integer value store, right aligned. "unpack_long"
774 takes care of any sign-extension problems. */
775 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 776 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 777 unpack_long (type,
0fd88904 778 value_contents (arg)));
79508e1e 779 }
2a6228ef
RC
780 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
781 {
782 /* Floating point value store, right aligned. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 784 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 785 }
79508e1e
AC
786 else
787 {
79508e1e 788 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
789
790 /* Small struct value are stored right-aligned. */
79508e1e 791 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 792 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
793
794 /* Structures of size 5, 6 and 7 bytes are special in that
795 the higher-ordered word is stored in the lower-ordered
796 argument, and even though it is a 8-byte quantity the
797 registers need not be 8-byte aligned. */
1b07b470 798 if (param_len > 4 && param_len < 8)
2a6228ef 799 small_struct = 1;
79508e1e 800 }
2a6228ef 801
1797a8f6 802 param_ptr += param_len;
2a6228ef
RC
803 if (param_len == 8 && !small_struct)
804 param_ptr = align_up (param_ptr, 8);
805
806 /* First 4 non-FP arguments are passed in gr26-gr23.
807 First 4 32-bit FP arguments are passed in fr4L-fr7L.
808 First 2 64-bit FP arguments are passed in fr5 and fr7.
809
810 The rest go on the stack, starting at sp-36, towards lower
811 addresses. 8-byte arguments must be aligned to a 8-byte
812 stack boundary. */
79508e1e
AC
813 if (write_pass)
814 {
1797a8f6 815 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
816
817 /* There are some cases when we don't know the type
818 expected by the callee (e.g. for variadic functions), so
819 pass the parameters in both general and fp regs. */
820 if (param_ptr <= 48)
79508e1e 821 {
2a6228ef
RC
822 int grreg = 26 - (param_ptr - 36) / 4;
823 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
824 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
825
826 regcache_cooked_write (regcache, grreg, param_val);
827 regcache_cooked_write (regcache, fpLreg, param_val);
828
79508e1e 829 if (param_len > 4)
2a6228ef
RC
830 {
831 regcache_cooked_write (regcache, grreg + 1,
832 param_val + 4);
833
834 regcache_cooked_write (regcache, fpreg, param_val);
835 regcache_cooked_write (regcache, fpreg + 1,
836 param_val + 4);
837 }
79508e1e
AC
838 }
839 }
840 }
841
842 /* Update the various stack pointers. */
843 if (!write_pass)
844 {
2a6228ef 845 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
846 /* PARAM_PTR already accounts for all the arguments passed
847 by the user. However, the ABI mandates minimum stack
848 space allocations for outgoing arguments. The ABI also
849 mandates minimum stack alignments which we must
850 preserve. */
2a6228ef 851 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
852 }
853 }
854
855 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 856 address. */
79508e1e 857 if (struct_return)
9c9acae0 858 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 859
e38c262f 860 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
861
862 if (gp != 0)
9c9acae0 863 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 864
79508e1e 865 /* Set the return address. */
77d18ded
RC
866 if (!gdbarch_push_dummy_code_p (gdbarch))
867 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 868
c4557624 869 /* Update the Stack Pointer. */
34f75cc1 870 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 871
2a6228ef 872 return param_end;
79508e1e
AC
873}
874
38ca4e0c
MK
875/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
876 Runtime Architecture for PA-RISC 2.0", which is distributed as part
877 as of the HP-UX Software Transition Kit (STK). This implementation
878 is based on version 3.3, dated October 6, 1997. */
2f690297 879
38ca4e0c 880/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 881
38ca4e0c
MK
882static int
883hppa64_integral_or_pointer_p (const struct type *type)
884{
885 switch (TYPE_CODE (type))
886 {
887 case TYPE_CODE_INT:
888 case TYPE_CODE_BOOL:
889 case TYPE_CODE_CHAR:
890 case TYPE_CODE_ENUM:
891 case TYPE_CODE_RANGE:
892 {
893 int len = TYPE_LENGTH (type);
894 return (len == 1 || len == 2 || len == 4 || len == 8);
895 }
896 case TYPE_CODE_PTR:
897 case TYPE_CODE_REF:
aa006118 898 case TYPE_CODE_RVALUE_REF:
38ca4e0c
MK
899 return (TYPE_LENGTH (type) == 8);
900 default:
901 break;
902 }
903
904 return 0;
905}
906
907/* Check whether TYPE is a "Floating Scalar Type". */
908
909static int
910hppa64_floating_p (const struct type *type)
911{
912 switch (TYPE_CODE (type))
913 {
914 case TYPE_CODE_FLT:
915 {
916 int len = TYPE_LENGTH (type);
917 return (len == 4 || len == 8 || len == 16);
918 }
919 default:
920 break;
921 }
922
923 return 0;
924}
2f690297 925
1218e655
RC
926/* If CODE points to a function entry address, try to look up the corresponding
927 function descriptor and return its address instead. If CODE is not a
928 function entry address, then just return it unchanged. */
929static CORE_ADDR
e17a4113 930hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 931{
e17a4113 932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
933 struct obj_section *sec, *opd;
934
935 sec = find_pc_section (code);
936
937 if (!sec)
938 return code;
939
940 /* If CODE is in a data section, assume it's already a fptr. */
941 if (!(sec->the_bfd_section->flags & SEC_CODE))
942 return code;
943
944 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
945 {
946 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 947 break;
1218e655
RC
948 }
949
950 if (opd < sec->objfile->sections_end)
951 {
952 CORE_ADDR addr;
953
aded6f54
PA
954 for (addr = obj_section_addr (opd);
955 addr < obj_section_endaddr (opd);
956 addr += 2 * 8)
957 {
1218e655 958 ULONGEST opdaddr;
948f8e3d 959 gdb_byte tmp[8];
1218e655
RC
960
961 if (target_read_memory (addr, tmp, sizeof (tmp)))
962 break;
e17a4113 963 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 964
aded6f54 965 if (opdaddr == code)
1218e655
RC
966 return addr - 16;
967 }
968 }
969
970 return code;
971}
972
4a302917 973static CORE_ADDR
7d9b040b 974hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
975 struct regcache *regcache, CORE_ADDR bp_addr,
976 int nargs, struct value **args, CORE_ADDR sp,
977 int struct_return, CORE_ADDR struct_addr)
978{
38ca4e0c 979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
981 int i, offset = 0;
982 CORE_ADDR gp;
2f690297 983
38ca4e0c
MK
984 /* "The outgoing parameter area [...] must be aligned at a 16-byte
985 boundary." */
986 sp = align_up (sp, 16);
2f690297 987
38ca4e0c
MK
988 for (i = 0; i < nargs; i++)
989 {
990 struct value *arg = args[i];
991 struct type *type = value_type (arg);
992 int len = TYPE_LENGTH (type);
0fd88904 993 const bfd_byte *valbuf;
1218e655 994 bfd_byte fptrbuf[8];
38ca4e0c 995 int regnum;
2f690297 996
38ca4e0c
MK
997 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
998 offset = align_up (offset, 8);
77d18ded 999
38ca4e0c 1000 if (hppa64_integral_or_pointer_p (type))
2f690297 1001 {
38ca4e0c
MK
1002 /* "Integral scalar parameters smaller than 64 bits are
1003 padded on the left (i.e., the value is in the
1004 least-significant bits of the 64-bit storage unit, and
1005 the high-order bits are undefined)." Therefore we can
1006 safely sign-extend them. */
1007 if (len < 8)
449e1137 1008 {
df4df182 1009 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1010 len = 8;
1011 }
1012 }
1013 else if (hppa64_floating_p (type))
1014 {
1015 if (len > 8)
1016 {
1017 /* "Quad-precision (128-bit) floating-point scalar
1018 parameters are aligned on a 16-byte boundary." */
1019 offset = align_up (offset, 16);
1020
1021 /* "Double-extended- and quad-precision floating-point
1022 parameters within the first 64 bytes of the parameter
1023 list are always passed in general registers." */
449e1137
AC
1024 }
1025 else
1026 {
38ca4e0c 1027 if (len == 4)
449e1137 1028 {
38ca4e0c
MK
1029 /* "Single-precision (32-bit) floating-point scalar
1030 parameters are padded on the left with 32 bits of
1031 garbage (i.e., the floating-point value is in the
1032 least-significant 32 bits of a 64-bit storage
1033 unit)." */
1034 offset += 4;
449e1137 1035 }
38ca4e0c
MK
1036
1037 /* "Single- and double-precision floating-point
1038 parameters in this area are passed according to the
1039 available formal parameter information in a function
1040 prototype. [...] If no prototype is in scope,
1041 floating-point parameters must be passed both in the
1042 corresponding general registers and in the
1043 corresponding floating-point registers." */
1044 regnum = HPPA64_FP4_REGNUM + offset / 8;
1045
1046 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1047 {
38ca4e0c
MK
1048 /* "Single-precision floating-point parameters, when
1049 passed in floating-point registers, are passed in
1050 the right halves of the floating point registers;
1051 the left halves are unused." */
1052 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1053 len, value_contents (arg));
449e1137
AC
1054 }
1055 }
2f690297 1056 }
38ca4e0c 1057 else
2f690297 1058 {
38ca4e0c
MK
1059 if (len > 8)
1060 {
1061 /* "Aggregates larger than 8 bytes are aligned on a
1062 16-byte boundary, possibly leaving an unused argument
1777feb0 1063 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1064 they are padded on the right (with garbage), to a
1065 multiple of 8 bytes." */
1066 offset = align_up (offset, 16);
1067 }
1068 }
1069
1218e655
RC
1070 /* If we are passing a function pointer, make sure we pass a function
1071 descriptor instead of the function entry address. */
1072 if (TYPE_CODE (type) == TYPE_CODE_PTR
1073 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1074 {
1075 ULONGEST codeptr, fptr;
1076
1077 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1078 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1079 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1080 fptr);
1218e655
RC
1081 valbuf = fptrbuf;
1082 }
1083 else
1084 {
1085 valbuf = value_contents (arg);
1086 }
1087
38ca4e0c 1088 /* Always store the argument in memory. */
1218e655 1089 write_memory (sp + offset, valbuf, len);
38ca4e0c 1090
38ca4e0c
MK
1091 regnum = HPPA_ARG0_REGNUM - offset / 8;
1092 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1093 {
1094 regcache_cooked_write_part (regcache, regnum,
325fac50
PA
1095 offset % 8, std::min (len, 8), valbuf);
1096 offset += std::min (len, 8);
1097 valbuf += std::min (len, 8);
1098 len -= std::min (len, 8);
38ca4e0c 1099 regnum--;
2f690297 1100 }
38ca4e0c
MK
1101
1102 offset += len;
2f690297
AC
1103 }
1104
38ca4e0c
MK
1105 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1106 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1107
1108 /* Allocate the outgoing parameter area. Make sure the outgoing
1109 parameter area is multiple of 16 bytes in length. */
325fac50 1110 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
38ca4e0c
MK
1111
1112 /* Allocate 32-bytes of scratch space. The documentation doesn't
1113 mention this, but it seems to be needed. */
1114 sp += 32;
1115
1116 /* Allocate the frame marker area. */
1117 sp += 16;
1118
1119 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1120 its address. */
2f690297 1121 if (struct_return)
38ca4e0c 1122 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1123
38ca4e0c 1124 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1125 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1126 if (gp != 0)
38ca4e0c 1127 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1128
38ca4e0c 1129 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1130 if (!gdbarch_push_dummy_code_p (gdbarch))
1131 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1132
38ca4e0c
MK
1133 /* Set up GR30 to hold the stack pointer (sp). */
1134 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1135
38ca4e0c 1136 return sp;
2f690297 1137}
38ca4e0c 1138\f
2f690297 1139
08a27113
MK
1140/* Handle 32/64-bit struct return conventions. */
1141
1142static enum return_value_convention
6a3a010b 1143hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1144 struct type *type, struct regcache *regcache,
e127f0db 1145 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1146{
1147 if (TYPE_LENGTH (type) <= 2 * 4)
1148 {
1149 /* The value always lives in the right hand end of the register
1150 (or register pair)? */
1151 int b;
1152 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1153 int part = TYPE_LENGTH (type) % 4;
1154 /* The left hand register contains only part of the value,
1155 transfer that first so that the rest can be xfered as entire
1156 4-byte registers. */
1157 if (part > 0)
1158 {
1159 if (readbuf != NULL)
1160 regcache_cooked_read_part (regcache, reg, 4 - part,
1161 part, readbuf);
1162 if (writebuf != NULL)
1163 regcache_cooked_write_part (regcache, reg, 4 - part,
1164 part, writebuf);
1165 reg++;
1166 }
1167 /* Now transfer the remaining register values. */
1168 for (b = part; b < TYPE_LENGTH (type); b += 4)
1169 {
1170 if (readbuf != NULL)
e127f0db 1171 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1172 if (writebuf != NULL)
e127f0db 1173 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1174 reg++;
1175 }
1176 return RETURN_VALUE_REGISTER_CONVENTION;
1177 }
1178 else
1179 return RETURN_VALUE_STRUCT_CONVENTION;
1180}
1181
1182static enum return_value_convention
6a3a010b 1183hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1184 struct type *type, struct regcache *regcache,
e127f0db 1185 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1186{
1187 int len = TYPE_LENGTH (type);
1188 int regnum, offset;
1189
bad43aa5 1190 if (len > 16)
08a27113
MK
1191 {
1192 /* All return values larget than 128 bits must be aggregate
1193 return values. */
9738b034
MK
1194 gdb_assert (!hppa64_integral_or_pointer_p (type));
1195 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1196
1197 /* "Aggregate return values larger than 128 bits are returned in
1198 a buffer allocated by the caller. The address of the buffer
1199 must be passed in GR 28." */
1200 return RETURN_VALUE_STRUCT_CONVENTION;
1201 }
1202
1203 if (hppa64_integral_or_pointer_p (type))
1204 {
1205 /* "Integral return values are returned in GR 28. Values
1206 smaller than 64 bits are padded on the left (with garbage)." */
1207 regnum = HPPA_RET0_REGNUM;
1208 offset = 8 - len;
1209 }
1210 else if (hppa64_floating_p (type))
1211 {
1212 if (len > 8)
1213 {
1214 /* "Double-extended- and quad-precision floating-point
1215 values are returned in GRs 28 and 29. The sign,
1216 exponent, and most-significant bits of the mantissa are
1217 returned in GR 28; the least-significant bits of the
1218 mantissa are passed in GR 29. For double-extended
1219 precision values, GR 29 is padded on the right with 48
1220 bits of garbage." */
1221 regnum = HPPA_RET0_REGNUM;
1222 offset = 0;
1223 }
1224 else
1225 {
1226 /* "Single-precision and double-precision floating-point
1227 return values are returned in FR 4R (single precision) or
1228 FR 4 (double-precision)." */
1229 regnum = HPPA64_FP4_REGNUM;
1230 offset = 8 - len;
1231 }
1232 }
1233 else
1234 {
1235 /* "Aggregate return values up to 64 bits in size are returned
1236 in GR 28. Aggregates smaller than 64 bits are left aligned
1237 in the register; the pad bits on the right are undefined."
1238
1239 "Aggregate return values between 65 and 128 bits are returned
1240 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1241 the remaining bits are placed, left aligned, in GR 29. The
1242 pad bits on the right of GR 29 (if any) are undefined." */
1243 regnum = HPPA_RET0_REGNUM;
1244 offset = 0;
1245 }
1246
1247 if (readbuf)
1248 {
08a27113
MK
1249 while (len > 0)
1250 {
1251 regcache_cooked_read_part (regcache, regnum, offset,
325fac50
PA
1252 std::min (len, 8), readbuf);
1253 readbuf += std::min (len, 8);
1254 len -= std::min (len, 8);
08a27113
MK
1255 regnum++;
1256 }
1257 }
1258
1259 if (writebuf)
1260 {
08a27113
MK
1261 while (len > 0)
1262 {
1263 regcache_cooked_write_part (regcache, regnum, offset,
325fac50
PA
1264 std::min (len, 8), writebuf);
1265 writebuf += std::min (len, 8);
1266 len -= std::min (len, 8);
08a27113
MK
1267 regnum++;
1268 }
1269 }
1270
1271 return RETURN_VALUE_REGISTER_CONVENTION;
1272}
1273\f
1274
d49771ef 1275static CORE_ADDR
a7aad9aa 1276hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1277 struct target_ops *targ)
1278{
1279 if (addr & 2)
1280 {
0dfff4cb 1281 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1282 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1283 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1284 }
1285
1286 return addr;
1287}
1288
1797a8f6
AC
1289static CORE_ADDR
1290hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1291{
1292 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1293 and not _bit_)! */
1294 return align_up (addr, 64);
1295}
1296
2f690297
AC
1297/* Force all frames to 16-byte alignment. Better safe than sorry. */
1298
1299static CORE_ADDR
1797a8f6 1300hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1301{
1302 /* Just always 16-byte align. */
1303 return align_up (addr, 16);
1304}
1305
cc72850f 1306CORE_ADDR
61a1198a 1307hppa_read_pc (struct regcache *regcache)
c906108c 1308{
cc72850f 1309 ULONGEST ipsw;
61a1198a 1310 ULONGEST pc;
c906108c 1311
61a1198a
UW
1312 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1313 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1314
1315 /* If the current instruction is nullified, then we are effectively
1316 still executing the previous instruction. Pretend we are still
cc72850f
MK
1317 there. This is needed when single stepping; if the nullified
1318 instruction is on a different line, we don't want GDB to think
1319 we've stepped onto that line. */
fe46cd3a
RC
1320 if (ipsw & 0x00200000)
1321 pc -= 4;
1322
cc72850f 1323 return pc & ~0x3;
c906108c
SS
1324}
1325
cc72850f 1326void
61a1198a 1327hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1328{
61a1198a
UW
1329 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1330 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1331}
1332
c906108c 1333/* For the given instruction (INST), return any adjustment it makes
1777feb0 1334 to the stack pointer or zero for no adjustment.
c906108c
SS
1335
1336 This only handles instructions commonly found in prologues. */
1337
1338static int
fba45db2 1339prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1340{
1341 /* This must persist across calls. */
1342 static int save_high21;
1343
1344 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1345 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1346 return hppa_extract_14 (inst);
c906108c
SS
1347
1348 /* stwm X,D(sp) */
1349 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1350 return hppa_extract_14 (inst);
c906108c 1351
104c1213
JM
1352 /* std,ma X,D(sp) */
1353 if ((inst & 0xffe00008) == 0x73c00008)
66c6502d 1354 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1355
e22b26cb 1356 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1357 save high bits in save_high21 for later use. */
e22b26cb 1358 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1359 {
abc485a1 1360 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1361 return 0;
1362 }
1363
1364 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1365 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1366
1367 /* fstws as used by the HP compilers. */
1368 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1369 return hppa_extract_5_load (inst);
c906108c
SS
1370
1371 /* No adjustment. */
1372 return 0;
1373}
1374
1375/* Return nonzero if INST is a branch of some kind, else return zero. */
1376
1377static int
fba45db2 1378is_branch (unsigned long inst)
c906108c
SS
1379{
1380 switch (inst >> 26)
1381 {
1382 case 0x20:
1383 case 0x21:
1384 case 0x22:
1385 case 0x23:
7be570e7 1386 case 0x27:
c906108c
SS
1387 case 0x28:
1388 case 0x29:
1389 case 0x2a:
1390 case 0x2b:
7be570e7 1391 case 0x2f:
c906108c
SS
1392 case 0x30:
1393 case 0x31:
1394 case 0x32:
1395 case 0x33:
1396 case 0x38:
1397 case 0x39:
1398 case 0x3a:
7be570e7 1399 case 0x3b:
c906108c
SS
1400 return 1;
1401
1402 default:
1403 return 0;
1404 }
1405}
1406
1407/* Return the register number for a GR which is saved by INST or
b35018fd 1408 zero if INST does not save a GR.
c906108c 1409
b35018fd 1410 Referenced from:
7be570e7 1411
b35018fd
CG
1412 parisc 1.1:
1413 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1414
b35018fd
CG
1415 parisc 2.0:
1416 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1417
b35018fd
CG
1418 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1419 on page 106 in parisc 2.0, all instructions for storing values from
1420 the general registers are:
c5aa993b 1421
b35018fd
CG
1422 Store: stb, sth, stw, std (according to Chapter 7, they
1423 are only in both "inst >> 26" and "inst >> 6".
1424 Store Absolute: stwa, stda (according to Chapter 7, they are only
1425 in "inst >> 6".
1426 Store Bytes: stby, stdby (according to Chapter 7, they are
1427 only in "inst >> 6").
1428
1429 For (inst >> 26), according to Chapter 7:
1430
1431 The effective memory reference address is formed by the addition
1432 of an immediate displacement to a base value.
1433
1434 - stb: 0x18, store a byte from a general register.
1435
1436 - sth: 0x19, store a halfword from a general register.
1437
1438 - stw: 0x1a, store a word from a general register.
1439
1440 - stwm: 0x1b, store a word from a general register and perform base
1441 register modification (2.0 will still treate it as stw).
1442
1443 - std: 0x1c, store a doubleword from a general register (2.0 only).
1444
1445 - stw: 0x1f, store a word from a general register (2.0 only).
1446
1447 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1448
1449 The effective memory reference address is formed by the addition
1450 of an index value to a base value specified in the instruction.
1451
1452 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1453
1454 - sth: 0x09, store a halfword from a general register (1.1 calls
1455 sths).
1456
1457 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1458
1459 - std: 0x0b: store a doubleword from a general register (2.0 only)
1460
1461 Implement fast byte moves (stores) to unaligned word or doubleword
1462 destination.
1463
1464 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1465
1466 - stdby: 0x0d for unaligned doubleword (2.0 only).
1467
1468 Store a word or doubleword using an absolute memory address formed
1469 using short or long displacement or indexed
1470
1471 - stwa: 0x0e, store a word from a general register to an absolute
1472 address (1.0 calls stwas).
1473
1474 - stda: 0x0f, store a doubleword from a general register to an
1475 absolute address (2.0 only). */
1476
1477static int
1478inst_saves_gr (unsigned long inst)
1479{
1480 switch ((inst >> 26) & 0x0f)
1481 {
1482 case 0x03:
1483 switch ((inst >> 6) & 0x0f)
1484 {
1485 case 0x08:
1486 case 0x09:
1487 case 0x0a:
1488 case 0x0b:
1489 case 0x0c:
1490 case 0x0d:
1491 case 0x0e:
1492 case 0x0f:
1493 return hppa_extract_5R_store (inst);
1494 default:
1495 return 0;
1496 }
1497 case 0x18:
1498 case 0x19:
1499 case 0x1a:
1500 case 0x1b:
1501 case 0x1c:
1502 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1503 case 0x1f:
1504 return hppa_extract_5R_store (inst);
1505 default:
1506 return 0;
1507 }
c906108c
SS
1508}
1509
1510/* Return the register number for a FR which is saved by INST or
1511 zero it INST does not save a FR.
1512
1513 Note we only care about full 64bit register stores (that's the only
1514 kind of stores the prologue will use).
1515
1516 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1517
1518static int
fba45db2 1519inst_saves_fr (unsigned long inst)
c906108c 1520{
1777feb0 1521 /* Is this an FSTD? */
c906108c 1522 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1523 return hppa_extract_5r_store (inst);
7be570e7 1524 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1525 return hppa_extract_5R_store (inst);
1777feb0 1526 /* Is this an FSTW? */
c906108c 1527 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1528 return hppa_extract_5r_store (inst);
7be570e7 1529 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1530 return hppa_extract_5R_store (inst);
c906108c
SS
1531 return 0;
1532}
1533
1534/* Advance PC across any function entry prologue instructions
1777feb0 1535 to reach some "real" code.
c906108c
SS
1536
1537 Use information in the unwind table to determine what exactly should
1538 be in the prologue. */
1539
1540
a71f8c30 1541static CORE_ADDR
be8626e0
MD
1542skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1543 int stop_before_branch)
c906108c 1544{
e17a4113 1545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1546 gdb_byte buf[4];
c906108c
SS
1547 CORE_ADDR orig_pc = pc;
1548 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1549 unsigned long args_stored, status, i, restart_gr, restart_fr;
1550 struct unwind_table_entry *u;
a71f8c30 1551 int final_iteration;
c906108c
SS
1552
1553 restart_gr = 0;
1554 restart_fr = 0;
1555
1556restart:
1557 u = find_unwind_entry (pc);
1558 if (!u)
1559 return pc;
1560
1777feb0 1561 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1562 if ((pc & ~0x3) != u->region_start)
1563 return pc;
1564
1565 /* This is how much of a frame adjustment we need to account for. */
1566 stack_remaining = u->Total_frame_size << 3;
1567
1568 /* Magic register saves we want to know about. */
1569 save_rp = u->Save_RP;
1570 save_sp = u->Save_SP;
1571
1572 /* An indication that args may be stored into the stack. Unfortunately
1573 the HPUX compilers tend to set this in cases where no args were
1574 stored too!. */
1575 args_stored = 1;
1576
1577 /* Turn the Entry_GR field into a bitmask. */
1578 save_gr = 0;
1579 for (i = 3; i < u->Entry_GR + 3; i++)
1580 {
1581 /* Frame pointer gets saved into a special location. */
eded0a31 1582 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1583 continue;
1584
1585 save_gr |= (1 << i);
1586 }
1587 save_gr &= ~restart_gr;
1588
1589 /* Turn the Entry_FR field into a bitmask too. */
1590 save_fr = 0;
1591 for (i = 12; i < u->Entry_FR + 12; i++)
1592 save_fr |= (1 << i);
1593 save_fr &= ~restart_fr;
1594
a71f8c30
RC
1595 final_iteration = 0;
1596
c906108c
SS
1597 /* Loop until we find everything of interest or hit a branch.
1598
1599 For unoptimized GCC code and for any HP CC code this will never ever
1600 examine any user instructions.
1601
1602 For optimzied GCC code we're faced with problems. GCC will schedule
1603 its prologue and make prologue instructions available for delay slot
1604 filling. The end result is user code gets mixed in with the prologue
1605 and a prologue instruction may be in the delay slot of the first branch
1606 or call.
1607
1608 Some unexpected things are expected with debugging optimized code, so
1609 we allow this routine to walk past user instructions in optimized
1610 GCC code. */
1611 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1612 || args_stored)
1613 {
1614 unsigned int reg_num;
1615 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1616 unsigned long old_save_rp, old_save_sp, next_inst;
1617
1618 /* Save copies of all the triggers so we can compare them later
c5aa993b 1619 (only for HPC). */
c906108c
SS
1620 old_save_gr = save_gr;
1621 old_save_fr = save_fr;
1622 old_save_rp = save_rp;
1623 old_save_sp = save_sp;
1624 old_stack_remaining = stack_remaining;
1625
8defab1a 1626 status = target_read_memory (pc, buf, 4);
e17a4113 1627 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1628
c906108c
SS
1629 /* Yow! */
1630 if (status != 0)
1631 return pc;
1632
1633 /* Note the interesting effects of this instruction. */
1634 stack_remaining -= prologue_inst_adjust_sp (inst);
1635
7be570e7
JM
1636 /* There are limited ways to store the return pointer into the
1637 stack. */
c4c79048 1638 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1639 save_rp = 0;
1640
104c1213 1641 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1642 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1643 if ((inst & 0xffffc000) == 0x6fc10000
1644 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1645 save_sp = 0;
1646
6426a772
JM
1647 /* Are we loading some register with an offset from the argument
1648 pointer? */
1649 if ((inst & 0xffe00000) == 0x37a00000
1650 || (inst & 0xffffffe0) == 0x081d0240)
1651 {
1652 pc += 4;
1653 continue;
1654 }
1655
c906108c
SS
1656 /* Account for general and floating-point register saves. */
1657 reg_num = inst_saves_gr (inst);
1658 save_gr &= ~(1 << reg_num);
1659
1660 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1661 Unfortunately args_stored only tells us that some arguments
1662 where stored into the stack. Not how many or what kind!
c906108c 1663
c5aa993b
JM
1664 This is a kludge as on the HP compiler sets this bit and it
1665 never does prologue scheduling. So once we see one, skip past
1666 all of them. We have similar code for the fp arg stores below.
c906108c 1667
c5aa993b
JM
1668 FIXME. Can still die if we have a mix of GR and FR argument
1669 stores! */
be8626e0 1670 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1671 && reg_num <= 26)
c906108c 1672 {
be8626e0 1673 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1674 && reg_num <= 26)
c906108c
SS
1675 {
1676 pc += 4;
8defab1a 1677 status = target_read_memory (pc, buf, 4);
e17a4113 1678 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1679 if (status != 0)
1680 return pc;
1681 reg_num = inst_saves_gr (inst);
1682 }
1683 args_stored = 0;
1684 continue;
1685 }
1686
1687 reg_num = inst_saves_fr (inst);
1688 save_fr &= ~(1 << reg_num);
1689
8defab1a 1690 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1691 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1692
c906108c
SS
1693 /* Yow! */
1694 if (status != 0)
1695 return pc;
1696
1697 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1698 save. */
c906108c
SS
1699 if ((inst & 0xfc000000) == 0x34000000
1700 && inst_saves_fr (next_inst) >= 4
819844ad 1701 && inst_saves_fr (next_inst)
be8626e0 1702 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1703 {
1704 /* So we drop into the code below in a reasonable state. */
1705 reg_num = inst_saves_fr (next_inst);
1706 pc -= 4;
1707 }
1708
1709 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1710 This is a kludge as on the HP compiler sets this bit and it
1711 never does prologue scheduling. So once we see one, skip past
1712 all of them. */
819844ad 1713 if (reg_num >= 4
be8626e0 1714 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1715 {
819844ad
UW
1716 while (reg_num >= 4
1717 && reg_num
be8626e0 1718 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1719 {
1720 pc += 8;
8defab1a 1721 status = target_read_memory (pc, buf, 4);
e17a4113 1722 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1723 if (status != 0)
1724 return pc;
1725 if ((inst & 0xfc000000) != 0x34000000)
1726 break;
8defab1a 1727 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1728 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1729 if (status != 0)
1730 return pc;
1731 reg_num = inst_saves_fr (next_inst);
1732 }
1733 args_stored = 0;
1734 continue;
1735 }
1736
1737 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1738 instruction is in the delay slot of the first call/branch. */
a71f8c30 1739 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1740 break;
1741
1742 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1743 arguments were stored into the stack (boo hiss). This could
1744 cause this code to then skip a bunch of user insns (up to the
1745 first branch).
1746
1747 To combat this we try to identify when args_stored was bogusly
1748 set and clear it. We only do this when args_stored is nonzero,
1749 all other resources are accounted for, and nothing changed on
1750 this pass. */
c906108c 1751 if (args_stored
c5aa993b 1752 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1753 && old_save_gr == save_gr && old_save_fr == save_fr
1754 && old_save_rp == save_rp && old_save_sp == save_sp
1755 && old_stack_remaining == stack_remaining)
1756 break;
c5aa993b 1757
c906108c
SS
1758 /* Bump the PC. */
1759 pc += 4;
a71f8c30
RC
1760
1761 /* !stop_before_branch, so also look at the insn in the delay slot
1762 of the branch. */
1763 if (final_iteration)
1764 break;
1765 if (is_branch (inst))
1766 final_iteration = 1;
c906108c
SS
1767 }
1768
1769 /* We've got a tenative location for the end of the prologue. However
1770 because of limitations in the unwind descriptor mechanism we may
1771 have went too far into user code looking for the save of a register
1772 that does not exist. So, if there registers we expected to be saved
1773 but never were, mask them out and restart.
1774
1775 This should only happen in optimized code, and should be very rare. */
c5aa993b 1776 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1777 {
1778 pc = orig_pc;
1779 restart_gr = save_gr;
1780 restart_fr = save_fr;
1781 goto restart;
1782 }
1783
1784 return pc;
1785}
1786
1787
7be570e7
JM
1788/* Return the address of the PC after the last prologue instruction if
1789 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1790
1791static CORE_ADDR
fba45db2 1792after_prologue (CORE_ADDR pc)
c906108c
SS
1793{
1794 struct symtab_and_line sal;
1795 CORE_ADDR func_addr, func_end;
c906108c 1796
7be570e7
JM
1797 /* If we can not find the symbol in the partial symbol table, then
1798 there is no hope we can determine the function's start address
1799 with this code. */
c906108c 1800 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1801 return 0;
c906108c 1802
7be570e7 1803 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1804 sal = find_pc_line (func_addr, 0);
1805
7be570e7
JM
1806 /* There are only two cases to consider. First, the end of the source line
1807 is within the function bounds. In that case we return the end of the
1808 source line. Second is the end of the source line extends beyond the
1809 bounds of the current function. We need to use the slow code to
1777feb0 1810 examine instructions in that case.
c906108c 1811
7be570e7
JM
1812 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1813 the wrong thing to do. In fact, it should be entirely possible for this
1814 function to always return zero since the slow instruction scanning code
1815 is supposed to *always* work. If it does not, then it is a bug. */
1816 if (sal.end < func_end)
1817 return sal.end;
c5aa993b 1818 else
7be570e7 1819 return 0;
c906108c
SS
1820}
1821
1822/* To skip prologues, I use this predicate. Returns either PC itself
1823 if the code at PC does not look like a function prologue; otherwise
1777feb0 1824 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1825
1826 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1827 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1828 we might not want to skip all the insns because a prologue insn may
1829 appear in the delay slot of the first branch, and we don't want to
1830 skip over the branch in that case. */
c906108c 1831
8d153463 1832static CORE_ADDR
6093d2eb 1833hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1834{
c5aa993b 1835 CORE_ADDR post_prologue_pc;
c906108c 1836
c5aa993b
JM
1837 /* See if we can determine the end of the prologue via the symbol table.
1838 If so, then return either PC, or the PC after the prologue, whichever
1839 is greater. */
c906108c 1840
c5aa993b 1841 post_prologue_pc = after_prologue (pc);
c906108c 1842
7be570e7
JM
1843 /* If after_prologue returned a useful address, then use it. Else
1844 fall back on the instruction skipping code.
1845
1846 Some folks have claimed this causes problems because the breakpoint
1847 may be the first instruction of the prologue. If that happens, then
1848 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b 1849 if (post_prologue_pc != 0)
325fac50 1850 return std::max (pc, post_prologue_pc);
c5aa993b 1851 else
be8626e0 1852 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1853}
1854
29d375ac 1855/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1856
29d375ac 1857static struct unwind_table_entry *
227e86ad 1858hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1859{
227e86ad 1860 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1861
1862 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1863 result of get_frame_address_in_block implies a problem.
93d42b30 1864 The bits should have been removed earlier, before the return
c7ce8faa 1865 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1866 if it isn't, it should be fixed. Then this call can be
1867 removed. */
227e86ad 1868 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1869 return find_unwind_entry (pc);
1870}
1871
26d08f08
AC
1872struct hppa_frame_cache
1873{
1874 CORE_ADDR base;
1875 struct trad_frame_saved_reg *saved_regs;
1876};
1877
1878static struct hppa_frame_cache *
227e86ad 1879hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1880{
227e86ad 1881 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1883 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1884 struct hppa_frame_cache *cache;
1885 long saved_gr_mask;
1886 long saved_fr_mask;
26d08f08
AC
1887 long frame_size;
1888 struct unwind_table_entry *u;
9f7194c3 1889 CORE_ADDR prologue_end;
50b2f48a 1890 int fp_in_r1 = 0;
26d08f08
AC
1891 int i;
1892
369aa520
RC
1893 if (hppa_debug)
1894 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1895 frame_relative_level(this_frame));
369aa520 1896
26d08f08 1897 if ((*this_cache) != NULL)
369aa520
RC
1898 {
1899 if (hppa_debug)
5af949e3
UW
1900 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1901 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 1902 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1903 }
26d08f08
AC
1904 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1905 (*this_cache) = cache;
227e86ad 1906 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1907
1908 /* Yow! */
227e86ad 1909 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1910 if (!u)
369aa520
RC
1911 {
1912 if (hppa_debug)
1913 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
9a3c8263 1914 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1915 }
26d08f08
AC
1916
1917 /* Turn the Entry_GR field into a bitmask. */
1918 saved_gr_mask = 0;
1919 for (i = 3; i < u->Entry_GR + 3; i++)
1920 {
1921 /* Frame pointer gets saved into a special location. */
eded0a31 1922 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1923 continue;
1924
1925 saved_gr_mask |= (1 << i);
1926 }
1927
1928 /* Turn the Entry_FR field into a bitmask too. */
1929 saved_fr_mask = 0;
1930 for (i = 12; i < u->Entry_FR + 12; i++)
1931 saved_fr_mask |= (1 << i);
1932
1933 /* Loop until we find everything of interest or hit a branch.
1934
1935 For unoptimized GCC code and for any HP CC code this will never ever
1936 examine any user instructions.
1937
1938 For optimized GCC code we're faced with problems. GCC will schedule
1939 its prologue and make prologue instructions available for delay slot
1940 filling. The end result is user code gets mixed in with the prologue
1941 and a prologue instruction may be in the delay slot of the first branch
1942 or call.
1943
1944 Some unexpected things are expected with debugging optimized code, so
1945 we allow this routine to walk past user instructions in optimized
1946 GCC code. */
1947 {
1948 int final_iteration = 0;
46acf081 1949 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1950 int looking_for_sp = u->Save_SP;
1951 int looking_for_rp = u->Save_RP;
1952 int fp_loc = -1;
9f7194c3 1953
a71f8c30 1954 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1955 skip_prologue_using_sal, in case we stepped into a function without
1956 symbol information. hppa_skip_prologue also bounds the returned
1957 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1958 function.
a71f8c30
RC
1959
1960 We used to call hppa_skip_prologue to find the end of the prologue,
1961 but if some non-prologue instructions get scheduled into the prologue,
1962 and the program is compiled with debug information, the "easy" way
1963 in hppa_skip_prologue will return a prologue end that is too early
1964 for us to notice any potential frame adjustments. */
d5c27f81 1965
ef02daa9
DJ
1966 /* We used to use get_frame_func to locate the beginning of the
1967 function to pass to skip_prologue. However, when objects are
1968 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1969 function (or 0). We can do better than that by using unwind records.
46acf081 1970 This only works if the Region_description of the unwind record
1777feb0 1971 indicates that it includes the entry point of the function.
46acf081
RC
1972 HP compilers sometimes generate unwind records for regions that
1973 do not include the entry or exit point of a function. GNU tools
1974 do not do this. */
1975
1976 if ((u->Region_description & 0x2) == 0)
1977 start_pc = u->region_start;
1978 else
227e86ad 1979 start_pc = get_frame_func (this_frame);
d5c27f81 1980
be8626e0 1981 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1982 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1983
1984 if (prologue_end != 0 && end_pc > prologue_end)
1985 end_pc = prologue_end;
1986
26d08f08 1987 frame_size = 0;
9f7194c3 1988
46acf081 1989 for (pc = start_pc;
26d08f08
AC
1990 ((saved_gr_mask || saved_fr_mask
1991 || looking_for_sp || looking_for_rp
1992 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1993 && pc < end_pc);
26d08f08
AC
1994 pc += 4)
1995 {
1996 int reg;
e362b510 1997 gdb_byte buf4[4];
4a302917
RC
1998 long inst;
1999
227e86ad 2000 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 2001 {
5af949e3
UW
2002 error (_("Cannot read instruction at %s."),
2003 paddress (gdbarch, pc));
9a3c8263 2004 return (struct hppa_frame_cache *) (*this_cache);
4a302917
RC
2005 }
2006
e17a4113 2007 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2008
26d08f08
AC
2009 /* Note the interesting effects of this instruction. */
2010 frame_size += prologue_inst_adjust_sp (inst);
2011
2012 /* There are limited ways to store the return pointer into the
2013 stack. */
2014 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2015 {
2016 looking_for_rp = 0;
34f75cc1 2017 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2018 }
dfaf8edb
MK
2019 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2020 {
2021 looking_for_rp = 0;
2022 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2023 }
c4c79048
RC
2024 else if (inst == 0x0fc212c1
2025 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2026 {
2027 looking_for_rp = 0;
34f75cc1 2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2029 }
2030
2031 /* Check to see if we saved SP into the stack. This also
2032 happens to indicate the location of the saved frame
2033 pointer. */
2034 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2035 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2036 {
2037 looking_for_sp = 0;
eded0a31 2038 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2039 }
50b2f48a
RC
2040 else if (inst == 0x08030241) /* copy %r3, %r1 */
2041 {
2042 fp_in_r1 = 1;
2043 }
26d08f08
AC
2044
2045 /* Account for general and floating-point register saves. */
2046 reg = inst_saves_gr (inst);
2047 if (reg >= 3 && reg <= 18
eded0a31 2048 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2049 {
2050 saved_gr_mask &= ~(1 << reg);
abc485a1 2051 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2052 /* stwm with a positive displacement is a _post_
2053 _modify_. */
2054 cache->saved_regs[reg].addr = 0;
2055 else if ((inst & 0xfc00000c) == 0x70000008)
2056 /* A std has explicit post_modify forms. */
2057 cache->saved_regs[reg].addr = 0;
2058 else
2059 {
2060 CORE_ADDR offset;
2061
2062 if ((inst >> 26) == 0x1c)
66c6502d 2063 offset = (inst & 0x1 ? -(1 << 13) : 0)
1777feb0 2064 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2065 else if ((inst >> 26) == 0x03)
abc485a1 2066 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2067 else
abc485a1 2068 offset = hppa_extract_14 (inst);
26d08f08
AC
2069
2070 /* Handle code with and without frame pointers. */
2071 if (u->Save_SP)
2072 cache->saved_regs[reg].addr = offset;
2073 else
1777feb0
MS
2074 cache->saved_regs[reg].addr
2075 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2076 }
2077 }
2078
2079 /* GCC handles callee saved FP regs a little differently.
2080
2081 It emits an instruction to put the value of the start of
2082 the FP store area into %r1. It then uses fstds,ma with a
2083 basereg of %r1 for the stores.
2084
2085 HP CC emits them at the current stack pointer modifying the
2086 stack pointer as it stores each register. */
2087
2088 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2089 if ((inst & 0xffffc000) == 0x34610000
2090 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2091 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2092
2093 reg = inst_saves_fr (inst);
2094 if (reg >= 12 && reg <= 21)
2095 {
2096 /* Note +4 braindamage below is necessary because the FP
2097 status registers are internally 8 registers rather than
2098 the expected 4 registers. */
2099 saved_fr_mask &= ~(1 << reg);
2100 if (fp_loc == -1)
2101 {
2102 /* 1st HP CC FP register store. After this
2103 instruction we've set enough state that the GCC and
2104 HPCC code are both handled in the same manner. */
34f75cc1 2105 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2106 fp_loc = 8;
2107 }
2108 else
2109 {
eded0a31 2110 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2111 fp_loc += 8;
2112 }
2113 }
2114
1777feb0 2115 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2116 if (final_iteration)
2117 break;
2118 /* We want to look precisely one instruction beyond the branch
2119 if we have not found everything yet. */
2120 if (is_branch (inst))
2121 final_iteration = 1;
2122 }
2123 }
2124
2125 {
2126 /* The frame base always represents the value of %sp at entry to
2127 the current function (and is thus equivalent to the "saved"
2128 stack pointer. */
227e86ad
JB
2129 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2130 HPPA_SP_REGNUM);
ed70ba00 2131 CORE_ADDR fp;
9f7194c3
RC
2132
2133 if (hppa_debug)
5af949e3
UW
2134 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2135 "prologue_end=%s) ",
2136 paddress (gdbarch, this_sp),
2137 paddress (gdbarch, get_frame_pc (this_frame)),
2138 paddress (gdbarch, prologue_end));
9f7194c3 2139
ed70ba00
RC
2140 /* Check to see if a frame pointer is available, and use it for
2141 frame unwinding if it is.
2142
2143 There are some situations where we need to rely on the frame
2144 pointer to do stack unwinding. For example, if a function calls
2145 alloca (), the stack pointer can get adjusted inside the body of
2146 the function. In this case, the ABI requires that the compiler
2147 maintain a frame pointer for the function.
2148
2149 The unwind record has a flag (alloca_frame) that indicates that
2150 a function has a variable frame; unfortunately, gcc/binutils
2151 does not set this flag. Instead, whenever a frame pointer is used
2152 and saved on the stack, the Save_SP flag is set. We use this to
2153 decide whether to use the frame pointer for unwinding.
2154
ed70ba00
RC
2155 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2156 instead of Save_SP. */
2157
227e86ad 2158 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2159
6fcecea0 2160 if (u->alloca_frame)
46acf081 2161 fp -= u->Total_frame_size << 3;
ed70ba00 2162
227e86ad 2163 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2164 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2165 {
2166 cache->base = fp;
2167
2168 if (hppa_debug)
5af949e3
UW
2169 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2170 paddress (gdbarch, cache->base));
ed70ba00 2171 }
1658da49
RC
2172 else if (u->Save_SP
2173 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2174 {
9f7194c3
RC
2175 /* Both we're expecting the SP to be saved and the SP has been
2176 saved. The entry SP value is saved at this frame's SP
2177 address. */
e17a4113 2178 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2179
2180 if (hppa_debug)
5af949e3
UW
2181 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2182 paddress (gdbarch, cache->base));
9f7194c3 2183 }
26d08f08 2184 else
9f7194c3 2185 {
1658da49
RC
2186 /* The prologue has been slowly allocating stack space. Adjust
2187 the SP back. */
2188 cache->base = this_sp - frame_size;
9f7194c3 2189 if (hppa_debug)
5af949e3
UW
2190 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2191 paddress (gdbarch, cache->base));
9f7194c3
RC
2192
2193 }
eded0a31 2194 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2195 }
2196
412275d5
AC
2197 /* The PC is found in the "return register", "Millicode" uses "r31"
2198 as the return register while normal code uses "rp". */
26d08f08 2199 if (u->Millicode)
9f7194c3 2200 {
5859efe5 2201 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2202 {
2203 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2204 if (hppa_debug)
2205 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2206 }
9f7194c3
RC
2207 else
2208 {
227e86ad 2209 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2210 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2211 if (hppa_debug)
2212 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2213 }
2214 }
26d08f08 2215 else
9f7194c3 2216 {
34f75cc1 2217 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2218 {
2219 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2220 cache->saved_regs[HPPA_RP_REGNUM];
2221 if (hppa_debug)
2222 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2223 }
9f7194c3
RC
2224 else
2225 {
227e86ad
JB
2226 ULONGEST rp = get_frame_register_unsigned (this_frame,
2227 HPPA_RP_REGNUM);
34f75cc1 2228 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2229 if (hppa_debug)
2230 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2231 }
2232 }
26d08f08 2233
50b2f48a
RC
2234 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2235 frame. However, there is a one-insn window where we haven't saved it
2236 yet, but we've already clobbered it. Detect this case and fix it up.
2237
2238 The prologue sequence for frame-pointer functions is:
2239 0: stw %rp, -20(%sp)
2240 4: copy %r3, %r1
2241 8: copy %sp, %r3
2242 c: stw,ma %r1, XX(%sp)
2243
2244 So if we are at offset c, the r3 value that we want is not yet saved
2245 on the stack, but it's been overwritten. The prologue analyzer will
2246 set fp_in_r1 when it sees the copy insn so we know to get the value
2247 from r1 instead. */
2248 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2249 && fp_in_r1)
2250 {
227e86ad 2251 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2252 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2253 }
1658da49 2254
26d08f08
AC
2255 {
2256 /* Convert all the offsets into addresses. */
2257 int reg;
65c5db89 2258 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2259 {
2260 if (trad_frame_addr_p (cache->saved_regs, reg))
2261 cache->saved_regs[reg].addr += cache->base;
2262 }
2263 }
2264
f77a2124 2265 {
f77a2124
RC
2266 struct gdbarch_tdep *tdep;
2267
f77a2124
RC
2268 tdep = gdbarch_tdep (gdbarch);
2269
2270 if (tdep->unwind_adjust_stub)
227e86ad 2271 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2272 }
2273
369aa520 2274 if (hppa_debug)
5af949e3
UW
2275 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2276 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 2277 return (struct hppa_frame_cache *) (*this_cache);
26d08f08
AC
2278}
2279
2280static void
227e86ad
JB
2281hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2282 struct frame_id *this_id)
26d08f08 2283{
d5c27f81 2284 struct hppa_frame_cache *info;
d5c27f81
RC
2285 struct unwind_table_entry *u;
2286
227e86ad
JB
2287 info = hppa_frame_cache (this_frame, this_cache);
2288 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2289
2290 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2291}
2292
227e86ad
JB
2293static struct value *
2294hppa_frame_prev_register (struct frame_info *this_frame,
2295 void **this_cache, int regnum)
26d08f08 2296{
227e86ad
JB
2297 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2298
1777feb0
MS
2299 return hppa_frame_prev_register_helper (this_frame,
2300 info->saved_regs, regnum);
227e86ad
JB
2301}
2302
2303static int
2304hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2305 struct frame_info *this_frame, void **this_cache)
2306{
2307 if (hppa_find_unwind_entry_in_block (this_frame))
2308 return 1;
2309
2310 return 0;
0da28f8a
RC
2311}
2312
2313static const struct frame_unwind hppa_frame_unwind =
2314{
2315 NORMAL_FRAME,
8fbca658 2316 default_frame_unwind_stop_reason,
0da28f8a 2317 hppa_frame_this_id,
227e86ad
JB
2318 hppa_frame_prev_register,
2319 NULL,
2320 hppa_frame_unwind_sniffer
0da28f8a
RC
2321};
2322
0da28f8a
RC
2323/* This is a generic fallback frame unwinder that kicks in if we fail all
2324 the other ones. Normally we would expect the stub and regular unwinder
2325 to work, but in some cases we might hit a function that just doesn't
2326 have any unwind information available. In this case we try to do
2327 unwinding solely based on code reading. This is obviously going to be
2328 slow, so only use this as a last resort. Currently this will only
2329 identify the stack and pc for the frame. */
2330
2331static struct hppa_frame_cache *
227e86ad 2332hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2333{
e17a4113
UW
2334 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2336 struct hppa_frame_cache *cache;
4ba6a975
MK
2337 unsigned int frame_size = 0;
2338 int found_rp = 0;
2339 CORE_ADDR start_pc;
0da28f8a 2340
d5c27f81 2341 if (hppa_debug)
4ba6a975
MK
2342 fprintf_unfiltered (gdb_stdlog,
2343 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2344 frame_relative_level (this_frame));
d5c27f81 2345
0da28f8a
RC
2346 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2347 (*this_cache) = cache;
227e86ad 2348 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2349
227e86ad 2350 start_pc = get_frame_func (this_frame);
4ba6a975 2351 if (start_pc)
0da28f8a 2352 {
227e86ad 2353 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2354 CORE_ADDR pc;
0da28f8a 2355
4ba6a975
MK
2356 for (pc = start_pc; pc < cur_pc; pc += 4)
2357 {
2358 unsigned int insn;
0da28f8a 2359
e17a4113 2360 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2361 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2362
4ba6a975
MK
2363 /* There are limited ways to store the return pointer into the
2364 stack. */
2365 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2366 {
2367 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2368 found_rp = 1;
2369 }
c4c79048
RC
2370 else if (insn == 0x0fc212c1
2371 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2372 {
2373 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2374 found_rp = 1;
2375 }
2376 }
412275d5 2377 }
0da28f8a 2378
d5c27f81 2379 if (hppa_debug)
4ba6a975
MK
2380 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2381 frame_size, found_rp);
d5c27f81 2382
227e86ad 2383 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2384 cache->base -= frame_size;
6d1be3f1 2385 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2386
2387 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2388 {
2389 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2390 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2391 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2392 }
412275d5
AC
2393 else
2394 {
4ba6a975 2395 ULONGEST rp;
227e86ad 2396 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2397 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2398 }
0da28f8a
RC
2399
2400 return cache;
26d08f08
AC
2401}
2402
0da28f8a 2403static void
227e86ad 2404hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2405 struct frame_id *this_id)
2406{
2407 struct hppa_frame_cache *info =
227e86ad
JB
2408 hppa_fallback_frame_cache (this_frame, this_cache);
2409
2410 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2411}
2412
227e86ad
JB
2413static struct value *
2414hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2415 void **this_cache, int regnum)
0da28f8a 2416{
1777feb0
MS
2417 struct hppa_frame_cache *info
2418 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2419
1777feb0
MS
2420 return hppa_frame_prev_register_helper (this_frame,
2421 info->saved_regs, regnum);
0da28f8a
RC
2422}
2423
2424static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2425{
2426 NORMAL_FRAME,
8fbca658 2427 default_frame_unwind_stop_reason,
0da28f8a 2428 hppa_fallback_frame_this_id,
227e86ad
JB
2429 hppa_fallback_frame_prev_register,
2430 NULL,
2431 default_frame_sniffer
26d08f08
AC
2432};
2433
7f07c5b6
RC
2434/* Stub frames, used for all kinds of call stubs. */
2435struct hppa_stub_unwind_cache
2436{
2437 CORE_ADDR base;
2438 struct trad_frame_saved_reg *saved_regs;
2439};
2440
2441static struct hppa_stub_unwind_cache *
227e86ad 2442hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2443 void **this_cache)
2444{
227e86ad 2445 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2446 struct hppa_stub_unwind_cache *info;
22b0923d 2447 struct unwind_table_entry *u;
7f07c5b6
RC
2448
2449 if (*this_cache)
9a3c8263 2450 return (struct hppa_stub_unwind_cache *) *this_cache;
7f07c5b6
RC
2451
2452 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2453 *this_cache = info;
227e86ad 2454 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2455
227e86ad 2456 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2457
22b0923d
RC
2458 /* By default we assume that stubs do not change the rp. */
2459 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2460
7f07c5b6
RC
2461 return info;
2462}
2463
2464static void
227e86ad 2465hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2466 void **this_prologue_cache,
2467 struct frame_id *this_id)
2468{
2469 struct hppa_stub_unwind_cache *info
227e86ad 2470 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2471
2472 if (info)
227e86ad 2473 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2474}
2475
227e86ad
JB
2476static struct value *
2477hppa_stub_frame_prev_register (struct frame_info *this_frame,
2478 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2479{
2480 struct hppa_stub_unwind_cache *info
227e86ad 2481 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2482
227e86ad 2483 if (info == NULL)
8a3fe4f8 2484 error (_("Requesting registers from null frame."));
7f07c5b6 2485
1777feb0
MS
2486 return hppa_frame_prev_register_helper (this_frame,
2487 info->saved_regs, regnum);
227e86ad 2488}
7f07c5b6 2489
227e86ad
JB
2490static int
2491hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2492 struct frame_info *this_frame,
2493 void **this_cache)
7f07c5b6 2494{
227e86ad
JB
2495 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2496 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2498
6d1be3f1 2499 if (pc == 0
84674fe1 2500 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2501 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2502 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2503 return 1;
2504 return 0;
7f07c5b6
RC
2505}
2506
227e86ad
JB
2507static const struct frame_unwind hppa_stub_frame_unwind = {
2508 NORMAL_FRAME,
8fbca658 2509 default_frame_unwind_stop_reason,
227e86ad
JB
2510 hppa_stub_frame_this_id,
2511 hppa_stub_frame_prev_register,
2512 NULL,
2513 hppa_stub_unwind_sniffer
2514};
2515
26d08f08 2516static struct frame_id
227e86ad 2517hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2518{
227e86ad
JB
2519 return frame_id_build (get_frame_register_unsigned (this_frame,
2520 HPPA_SP_REGNUM),
2521 get_frame_pc (this_frame));
26d08f08
AC
2522}
2523
cc72850f 2524CORE_ADDR
26d08f08
AC
2525hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2526{
fe46cd3a
RC
2527 ULONGEST ipsw;
2528 CORE_ADDR pc;
2529
cc72850f
MK
2530 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2531 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2532
2533 /* If the current instruction is nullified, then we are effectively
2534 still executing the previous instruction. Pretend we are still
cc72850f
MK
2535 there. This is needed when single stepping; if the nullified
2536 instruction is on a different line, we don't want GDB to think
2537 we've stepped onto that line. */
fe46cd3a
RC
2538 if (ipsw & 0x00200000)
2539 pc -= 4;
2540
cc72850f 2541 return pc & ~0x3;
26d08f08
AC
2542}
2543
ff644745
JB
2544/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2545 Return NULL if no such symbol was found. */
2546
3b7344d5 2547struct bound_minimal_symbol
ff644745
JB
2548hppa_lookup_stub_minimal_symbol (const char *name,
2549 enum unwind_stub_types stub_type)
2550{
2551 struct objfile *objfile;
2552 struct minimal_symbol *msym;
3b7344d5 2553 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2554
2555 ALL_MSYMBOLS (objfile, msym)
2556 {
efd66ac6 2557 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2558 {
2559 struct unwind_table_entry *u;
2560
efd66ac6 2561 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2562 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2563 {
2564 result.objfile = objfile;
2565 result.minsym = msym;
2566 return result;
2567 }
ff644745
JB
2568 }
2569 }
2570
3b7344d5 2571 return result;
ff644745
JB
2572}
2573
c906108c 2574static void
fba45db2 2575unwind_command (char *exp, int from_tty)
c906108c
SS
2576{
2577 CORE_ADDR address;
2578 struct unwind_table_entry *u;
2579
2580 /* If we have an expression, evaluate it and use it as the address. */
2581
2582 if (exp != 0 && *exp != 0)
2583 address = parse_and_eval_address (exp);
2584 else
2585 return;
2586
2587 u = find_unwind_entry (address);
2588
2589 if (!u)
2590 {
2591 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2592 return;
2593 }
2594
3329c4b5 2595 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2596
5af949e3 2597 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2598 gdb_flush (gdb_stdout);
c906108c 2599
5af949e3 2600 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2601 gdb_flush (gdb_stdout);
c906108c 2602
c906108c 2603#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2604
2605 printf_unfiltered ("\n\tflags =");
2606 pif (Cannot_unwind);
2607 pif (Millicode);
2608 pif (Millicode_save_sr0);
2609 pif (Entry_SR);
2610 pif (Args_stored);
2611 pif (Variable_Frame);
2612 pif (Separate_Package_Body);
2613 pif (Frame_Extension_Millicode);
2614 pif (Stack_Overflow_Check);
2615 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2616 pif (sr4export);
2617 pif (cxx_info);
2618 pif (cxx_try_catch);
2619 pif (sched_entry_seq);
c906108c
SS
2620 pif (Save_SP);
2621 pif (Save_RP);
2622 pif (Save_MRP_in_frame);
6fcecea0 2623 pif (save_r19);
c906108c
SS
2624 pif (Cleanup_defined);
2625 pif (MPE_XL_interrupt_marker);
2626 pif (HP_UX_interrupt_marker);
2627 pif (Large_frame);
6fcecea0 2628 pif (alloca_frame);
c906108c
SS
2629
2630 putchar_unfiltered ('\n');
2631
c906108c 2632#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2633
2634 pin (Region_description);
2635 pin (Entry_FR);
2636 pin (Entry_GR);
2637 pin (Total_frame_size);
57dac9e1
RC
2638
2639 if (u->stub_unwind.stub_type)
2640 {
2641 printf_unfiltered ("\tstub type = ");
2642 switch (u->stub_unwind.stub_type)
2643 {
2644 case LONG_BRANCH:
2645 printf_unfiltered ("long branch\n");
2646 break;
2647 case PARAMETER_RELOCATION:
2648 printf_unfiltered ("parameter relocation\n");
2649 break;
2650 case EXPORT:
2651 printf_unfiltered ("export\n");
2652 break;
2653 case IMPORT:
2654 printf_unfiltered ("import\n");
2655 break;
2656 case IMPORT_SHLIB:
2657 printf_unfiltered ("import shlib\n");
2658 break;
2659 default:
2660 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2661 }
2662 }
c906108c 2663}
c906108c 2664
38ca4e0c
MK
2665/* Return the GDB type object for the "standard" data type of data in
2666 register REGNUM. */
d709c020 2667
eded0a31 2668static struct type *
38ca4e0c 2669hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2670{
38ca4e0c 2671 if (regnum < HPPA_FP4_REGNUM)
df4df182 2672 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2673 else
27067745 2674 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2675}
2676
eded0a31 2677static struct type *
38ca4e0c 2678hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2679{
38ca4e0c 2680 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2681 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2682 else
27067745 2683 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2684}
2685
38ca4e0c
MK
2686/* Return non-zero if REGNUM is not a register available to the user
2687 through ptrace/ttrace. */
d709c020 2688
8d153463 2689static int
64a3914f 2690hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2691{
2692 return (regnum == 0
34f75cc1
RC
2693 || regnum == HPPA_PCSQ_HEAD_REGNUM
2694 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2695 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2696}
d709c020 2697
d037d088 2698static int
64a3914f 2699hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2700{
2701 /* cr26 and cr27 are readable (but not writable) from userspace. */
2702 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2703 return 0;
2704 else
64a3914f 2705 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2706}
2707
38ca4e0c 2708static int
64a3914f 2709hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2710{
2711 return (regnum == 0
2712 || regnum == HPPA_PCSQ_HEAD_REGNUM
2713 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2714 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2715}
2716
d037d088 2717static int
64a3914f 2718hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2719{
2720 /* cr26 and cr27 are readable (but not writable) from userspace. */
2721 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2722 return 0;
2723 else
64a3914f 2724 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2725}
2726
8d153463 2727static CORE_ADDR
85ddcc70 2728hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2729{
2730 /* The low two bits of the PC on the PA contain the privilege level.
2731 Some genius implementing a (non-GCC) compiler apparently decided
2732 this means that "addresses" in a text section therefore include a
2733 privilege level, and thus symbol tables should contain these bits.
2734 This seems like a bonehead thing to do--anyway, it seems to work
2735 for our purposes to just ignore those bits. */
2736
2737 return (addr &= ~0x3);
2738}
2739
e127f0db
MK
2740/* Get the ARGIth function argument for the current function. */
2741
4a302917 2742static CORE_ADDR
143985b7
AF
2743hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2744 struct type *type)
2745{
e127f0db 2746 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2747}
2748
05d1431c 2749static enum register_status
0f8d9d59 2750hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2751 int regnum, gdb_byte *buf)
0f8d9d59 2752{
05d1431c
PA
2753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2754 ULONGEST tmp;
2755 enum register_status status;
0f8d9d59 2756
05d1431c
PA
2757 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2758 if (status == REG_VALID)
2759 {
2760 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2761 tmp &= ~0x3;
2762 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2763 }
2764 return status;
0f8d9d59
RC
2765}
2766
d49771ef 2767static CORE_ADDR
e38c262f 2768hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2769{
2770 return 0;
2771}
2772
227e86ad
JB
2773struct value *
2774hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2775 struct trad_frame_saved_reg saved_regs[],
227e86ad 2776 int regnum)
0da28f8a 2777{
227e86ad 2778 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2779 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2780
8693c419
MK
2781 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2782 {
227e86ad
JB
2783 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2784 CORE_ADDR pc;
2785 struct value *pcoq_val =
2786 trad_frame_get_prev_register (this_frame, saved_regs,
2787 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2788
e17a4113
UW
2789 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2790 size, byte_order);
227e86ad 2791 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2792 }
0da28f8a 2793
227e86ad 2794 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2795}
8693c419 2796\f
0da28f8a 2797
34f55018
MK
2798/* An instruction to match. */
2799struct insn_pattern
2800{
2801 unsigned int data; /* See if it matches this.... */
2802 unsigned int mask; /* ... with this mask. */
2803};
2804
2805/* See bfd/elf32-hppa.c */
2806static struct insn_pattern hppa_long_branch_stub[] = {
2807 /* ldil LR'xxx,%r1 */
2808 { 0x20200000, 0xffe00000 },
2809 /* be,n RR'xxx(%sr4,%r1) */
2810 { 0xe0202002, 0xffe02002 },
2811 { 0, 0 }
2812};
2813
2814static struct insn_pattern hppa_long_branch_pic_stub[] = {
2815 /* b,l .+8, %r1 */
2816 { 0xe8200000, 0xffe00000 },
2817 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2818 { 0x28200000, 0xffe00000 },
2819 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2820 { 0xe0202002, 0xffe02002 },
2821 { 0, 0 }
2822};
2823
2824static struct insn_pattern hppa_import_stub[] = {
2825 /* addil LR'xxx, %dp */
2826 { 0x2b600000, 0xffe00000 },
2827 /* ldw RR'xxx(%r1), %r21 */
2828 { 0x48350000, 0xffffb000 },
2829 /* bv %r0(%r21) */
2830 { 0xeaa0c000, 0xffffffff },
2831 /* ldw RR'xxx+4(%r1), %r19 */
2832 { 0x48330000, 0xffffb000 },
2833 { 0, 0 }
2834};
2835
2836static struct insn_pattern hppa_import_pic_stub[] = {
2837 /* addil LR'xxx,%r19 */
2838 { 0x2a600000, 0xffe00000 },
2839 /* ldw RR'xxx(%r1),%r21 */
2840 { 0x48350000, 0xffffb000 },
2841 /* bv %r0(%r21) */
2842 { 0xeaa0c000, 0xffffffff },
2843 /* ldw RR'xxx+4(%r1),%r19 */
2844 { 0x48330000, 0xffffb000 },
2845 { 0, 0 },
2846};
2847
2848static struct insn_pattern hppa_plt_stub[] = {
2849 /* b,l 1b, %r20 - 1b is 3 insns before here */
2850 { 0xea9f1fdd, 0xffffffff },
2851 /* depi 0,31,2,%r20 */
2852 { 0xd6801c1e, 0xffffffff },
2853 { 0, 0 }
34f55018
MK
2854};
2855
2856/* Maximum number of instructions on the patterns above. */
2857#define HPPA_MAX_INSN_PATTERN_LEN 4
2858
2859/* Return non-zero if the instructions at PC match the series
2860 described in PATTERN, or zero otherwise. PATTERN is an array of
2861 'struct insn_pattern' objects, terminated by an entry whose mask is
2862 zero.
2863
2864 When the match is successful, fill INSN[i] with what PATTERN[i]
2865 matched. */
2866
2867static int
e17a4113
UW
2868hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2869 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2870{
e17a4113 2871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2872 CORE_ADDR npc = pc;
2873 int i;
2874
2875 for (i = 0; pattern[i].mask; i++)
2876 {
2877 gdb_byte buf[HPPA_INSN_SIZE];
2878
8defab1a 2879 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2880 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2881 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2882 npc += 4;
2883 else
2884 return 0;
2885 }
2886
2887 return 1;
2888}
2889
2890/* This relaxed version of the insstruction matcher allows us to match
2891 from somewhere inside the pattern, by looking backwards in the
2892 instruction scheme. */
2893
2894static int
e17a4113
UW
2895hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2896 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2897{
2898 int offset, len = 0;
2899
2900 while (pattern[len].mask)
2901 len++;
2902
2903 for (offset = 0; offset < len; offset++)
e17a4113
UW
2904 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2905 pattern, insn))
34f55018
MK
2906 return 1;
2907
2908 return 0;
2909}
2910
2911static int
2912hppa_in_dyncall (CORE_ADDR pc)
2913{
2914 struct unwind_table_entry *u;
2915
2916 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2917 if (!u)
2918 return 0;
2919
2920 return (pc >= u->region_start && pc <= u->region_end);
2921}
2922
2923int
3e5d3a5a 2924hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2925{
2926 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2927 struct unwind_table_entry *u;
2928
3e5d3a5a 2929 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2930 return 1;
2931
2932 /* The GNU toolchain produces linker stubs without unwind
2933 information. Since the pattern matching for linker stubs can be
2934 quite slow, so bail out if we do have an unwind entry. */
2935
2936 u = find_unwind_entry (pc);
806e23c0 2937 if (u != NULL)
34f55018
MK
2938 return 0;
2939
e17a4113
UW
2940 return
2941 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2942 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2943 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2944 || hppa_match_insns_relaxed (gdbarch, pc,
2945 hppa_long_branch_pic_stub, insn));
34f55018
MK
2946}
2947
2948/* This code skips several kind of "trampolines" used on PA-RISC
2949 systems: $$dyncall, import stubs and PLT stubs. */
2950
2951CORE_ADDR
52f729a7 2952hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2953{
0dfff4cb
UW
2954 struct gdbarch *gdbarch = get_frame_arch (frame);
2955 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2956
34f55018
MK
2957 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2958 int dp_rel;
2959
2960 /* $$dyncall handles both PLABELs and direct addresses. */
2961 if (hppa_in_dyncall (pc))
2962 {
52f729a7 2963 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2964
2965 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2966 if (pc & 0x2)
0dfff4cb 2967 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2968
2969 return pc;
2970 }
2971
e17a4113
UW
2972 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2973 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2974 {
2975 /* Extract the target address from the addil/ldw sequence. */
2976 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2977
2978 if (dp_rel)
52f729a7 2979 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2980 else
52f729a7 2981 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2982
2983 /* fallthrough */
2984 }
2985
3e5d3a5a 2986 if (in_plt_section (pc))
34f55018 2987 {
0dfff4cb 2988 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
2989
2990 /* If the PLT slot has not yet been resolved, the target will be
2991 the PLT stub. */
3e5d3a5a 2992 if (in_plt_section (pc))
34f55018
MK
2993 {
2994 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 2995 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 2996 {
5af949e3
UW
2997 warning (_("Cannot resolve PLT stub at %s."),
2998 paddress (gdbarch, pc));
34f55018
MK
2999 return 0;
3000 }
3001
3002 /* This should point to the fixup routine. */
0dfff4cb 3003 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
3004 }
3005 }
3006
3007 return pc;
3008}
3009\f
3010
8e8b2dba
MC
3011/* Here is a table of C type sizes on hppa with various compiles
3012 and options. I measured this on PA 9000/800 with HP-UX 11.11
3013 and these compilers:
3014
3015 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3016 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3017 /opt/aCC/bin/aCC B3910B A.03.45
3018 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3019
3020 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3021 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3022 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3023 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3024 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3025 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3026 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3027 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3028
3029 Each line is:
3030
3031 compiler and options
3032 char, short, int, long, long long
3033 float, double, long double
3034 char *, void (*)()
3035
3036 So all these compilers use either ILP32 or LP64 model.
3037 TODO: gcc has more options so it needs more investigation.
3038
a2379359
MC
3039 For floating point types, see:
3040
3041 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3042 HP-UX floating-point guide, hpux 11.00
3043
8e8b2dba
MC
3044 -- chastain 2003-12-18 */
3045
e6e68f1f
JB
3046static struct gdbarch *
3047hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3048{
3ff7cf9e 3049 struct gdbarch_tdep *tdep;
e6e68f1f
JB
3050 struct gdbarch *gdbarch;
3051
3052 /* find a candidate among the list of pre-declared architectures. */
3053 arches = gdbarch_list_lookup_by_info (arches, &info);
3054 if (arches != NULL)
3055 return (arches->gdbarch);
3056
3057 /* If none found, then allocate and initialize one. */
41bf6aca 3058 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3059 gdbarch = gdbarch_alloc (&info, tdep);
3060
3061 /* Determine from the bfd_arch_info structure if we are dealing with
3062 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3063 then default to a 32bit machine. */
3064 if (info.bfd_arch_info != NULL)
3065 tdep->bytes_per_address =
3066 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3067 else
3068 tdep->bytes_per_address = 4;
3069
d49771ef
RC
3070 tdep->find_global_pointer = hppa_find_global_pointer;
3071
3ff7cf9e
JB
3072 /* Some parts of the gdbarch vector depend on whether we are running
3073 on a 32 bits or 64 bits target. */
3074 switch (tdep->bytes_per_address)
3075 {
3076 case 4:
3077 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3078 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3079 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3080 set_gdbarch_cannot_store_register (gdbarch,
3081 hppa32_cannot_store_register);
3082 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3083 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3084 break;
3085 case 8:
3086 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3087 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3088 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3089 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3090 set_gdbarch_cannot_store_register (gdbarch,
3091 hppa64_cannot_store_register);
3092 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3093 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3094 break;
3095 default:
e2e0b3e5 3096 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3097 tdep->bytes_per_address);
3098 }
3099
3ff7cf9e 3100 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3101 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3102
8e8b2dba
MC
3103 /* The following gdbarch vector elements are the same in both ILP32
3104 and LP64, but might show differences some day. */
3105 set_gdbarch_long_long_bit (gdbarch, 64);
3106 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3107 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3108
3ff7cf9e
JB
3109 /* The following gdbarch vector elements do not depend on the address
3110 size, or in any other gdbarch element previously set. */
60383d10 3111 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3112 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3113 hppa_stack_frame_destroyed_p);
a2a84a72 3114 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3115 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3116 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3117 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3118 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3119 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3120 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3121
143985b7
AF
3122 /* Helper for function argument information. */
3123 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3124
3a3bc038
AC
3125 /* When a hardware watchpoint triggers, we'll move the inferior past
3126 it by removing all eventpoints; stepping past the instruction
3127 that caused the trigger; reinserting eventpoints; and checking
3128 whether any watched location changed. */
3129 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3130
5979bc46 3131 /* Inferior function call methods. */
fca7aa43 3132 switch (tdep->bytes_per_address)
5979bc46 3133 {
fca7aa43
AC
3134 case 4:
3135 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3136 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3137 set_gdbarch_convert_from_func_ptr_addr
3138 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3139 break;
3140 case 8:
782eae8b
AC
3141 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3142 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3143 break;
782eae8b 3144 default:
e2e0b3e5 3145 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3146 }
3147
3148 /* Struct return methods. */
fca7aa43 3149 switch (tdep->bytes_per_address)
fad850b2 3150 {
fca7aa43
AC
3151 case 4:
3152 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3153 break;
3154 case 8:
782eae8b 3155 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3156 break;
fca7aa43 3157 default:
e2e0b3e5 3158 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3159 }
7f07c5b6 3160
04180708
YQ
3161 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3162 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
7f07c5b6 3163 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3164
5979bc46 3165 /* Frame unwind methods. */
227e86ad 3166 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3167 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3168
50306a9d
RC
3169 /* Hook in ABI-specific overrides, if they have been registered. */
3170 gdbarch_init_osabi (info, gdbarch);
3171
7f07c5b6 3172 /* Hook in the default unwinders. */
227e86ad
JB
3173 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3174 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3175 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3176
e6e68f1f
JB
3177 return gdbarch;
3178}
3179
3180static void
464963c9 3181hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3182{
464963c9 3183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3184
3185 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3186 tdep->bytes_per_address);
3187 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3188}
3189
4facf7e8
JB
3190void
3191_initialize_hppa_tdep (void)
3192{
e6e68f1f 3193 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3194
7c46b9fb
RC
3195 hppa_objfile_priv_data = register_objfile_data ();
3196
4facf7e8 3197 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3198 _("Print unwind table entry at given address."),
4facf7e8
JB
3199 &maintenanceprintlist);
3200
1777feb0 3201 /* Debug this files internals. */
7915a72c
AC
3202 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3203Set whether hppa target specific debugging information should be displayed."),
3204 _("\
3205Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3206This flag controls whether hppa target specific debugging information is\n\
3207displayed. This information is particularly useful for debugging frame\n\
7915a72c 3208unwinding problems."),
2c5b56ce 3209 NULL,
7915a72c 3210 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3211 &setdebuglist, &showdebuglist);
4facf7e8 3212}
This page took 2.01147 seconds and 4 git commands to generate.