* tracepoint.h (set_traceframe_number)
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6 2008, 2009, 2010 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
c906108c
SS
55
56/* Prototypes for local functions */
57
96baa820 58static void signals_info (char *, int);
c906108c 59
96baa820 60static void handle_command (char *, int);
c906108c 61
96baa820 62static void sig_print_info (enum target_signal);
c906108c 63
96baa820 64static void sig_print_header (void);
c906108c 65
74b7792f 66static void resume_cleanups (void *);
c906108c 67
96baa820 68static int hook_stop_stub (void *);
c906108c 69
96baa820
JM
70static int restore_selected_frame (void *);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
4e1c45ea 77static int currently_stepping (struct thread_info *tp);
96baa820 78
b3444185
PA
79static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
a7212384 81
96baa820
JM
82static void xdb_handle_command (char *args, int from_tty);
83
6a6b96b9 84static int prepare_to_proceed (int);
ea67f13b 85
96baa820 86void _initialize_infrun (void);
43ff13b4 87
e58b0e63
PA
88void nullify_last_target_wait_ptid (void);
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a 110
6c95b8df
PA
111/* Default behavior is to detach newly forked processes (legacy). */
112int detach_fork = 1;
113
237fc4c9
PA
114int debug_displaced = 0;
115static void
116show_debug_displaced (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
120}
121
527159b7 122static int debug_infrun = 0;
920d2a44
AC
123static void
124show_debug_infrun (struct ui_file *file, int from_tty,
125 struct cmd_list_element *c, const char *value)
126{
127 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
128}
527159b7 129
d4f3574e
SS
130/* If the program uses ELF-style shared libraries, then calls to
131 functions in shared libraries go through stubs, which live in a
132 table called the PLT (Procedure Linkage Table). The first time the
133 function is called, the stub sends control to the dynamic linker,
134 which looks up the function's real address, patches the stub so
135 that future calls will go directly to the function, and then passes
136 control to the function.
137
138 If we are stepping at the source level, we don't want to see any of
139 this --- we just want to skip over the stub and the dynamic linker.
140 The simple approach is to single-step until control leaves the
141 dynamic linker.
142
ca557f44
AC
143 However, on some systems (e.g., Red Hat's 5.2 distribution) the
144 dynamic linker calls functions in the shared C library, so you
145 can't tell from the PC alone whether the dynamic linker is still
146 running. In this case, we use a step-resume breakpoint to get us
147 past the dynamic linker, as if we were using "next" to step over a
148 function call.
d4f3574e 149
cfd8ab24 150 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
151 linker code or not. Normally, this means we single-step. However,
152 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
153 address where we can place a step-resume breakpoint to get past the
154 linker's symbol resolution function.
155
cfd8ab24 156 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
157 pretty portable way, by comparing the PC against the address ranges
158 of the dynamic linker's sections.
159
160 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
161 it depends on internal details of the dynamic linker. It's usually
162 not too hard to figure out where to put a breakpoint, but it
163 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
164 sanity checking. If it can't figure things out, returning zero and
165 getting the (possibly confusing) stepping behavior is better than
166 signalling an error, which will obscure the change in the
167 inferior's state. */
c906108c 168
c906108c
SS
169/* This function returns TRUE if pc is the address of an instruction
170 that lies within the dynamic linker (such as the event hook, or the
171 dld itself).
172
173 This function must be used only when a dynamic linker event has
174 been caught, and the inferior is being stepped out of the hook, or
175 undefined results are guaranteed. */
176
177#ifndef SOLIB_IN_DYNAMIC_LINKER
178#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
179#endif
180
c2c6d25f 181
7a292a7a
SS
182/* Convert the #defines into values. This is temporary until wfi control
183 flow is completely sorted out. */
184
692590c1
MS
185#ifndef CANNOT_STEP_HW_WATCHPOINTS
186#define CANNOT_STEP_HW_WATCHPOINTS 0
187#else
188#undef CANNOT_STEP_HW_WATCHPOINTS
189#define CANNOT_STEP_HW_WATCHPOINTS 1
190#endif
191
c906108c
SS
192/* Tables of how to react to signals; the user sets them. */
193
194static unsigned char *signal_stop;
195static unsigned char *signal_print;
196static unsigned char *signal_program;
197
198#define SET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 1; \
204 } while (0)
205
206#define UNSET_SIGS(nsigs,sigs,flags) \
207 do { \
208 int signum = (nsigs); \
209 while (signum-- > 0) \
210 if ((sigs)[signum]) \
211 (flags)[signum] = 0; \
212 } while (0)
213
39f77062
KB
214/* Value to pass to target_resume() to cause all threads to resume */
215
edb3359d 216#define RESUME_ALL minus_one_ptid
c906108c
SS
217
218/* Command list pointer for the "stop" placeholder. */
219
220static struct cmd_list_element *stop_command;
221
c906108c
SS
222/* Function inferior was in as of last step command. */
223
224static struct symbol *step_start_function;
225
c906108c
SS
226/* Nonzero if we want to give control to the user when we're notified
227 of shared library events by the dynamic linker. */
228static int stop_on_solib_events;
920d2a44
AC
229static void
230show_stop_on_solib_events (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
234 value);
235}
c906108c 236
c906108c
SS
237/* Nonzero means expecting a trace trap
238 and should stop the inferior and return silently when it happens. */
239
240int stop_after_trap;
241
642fd101
DE
242/* Save register contents here when executing a "finish" command or are
243 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
244 Thus this contains the return value from the called function (assuming
245 values are returned in a register). */
246
72cec141 247struct regcache *stop_registers;
c906108c 248
c906108c
SS
249/* Nonzero after stop if current stack frame should be printed. */
250
251static int stop_print_frame;
252
e02bc4cc 253/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
254 returned by target_wait()/deprecated_target_wait_hook(). This
255 information is returned by get_last_target_status(). */
39f77062 256static ptid_t target_last_wait_ptid;
e02bc4cc
DS
257static struct target_waitstatus target_last_waitstatus;
258
0d1e5fa7
PA
259static void context_switch (ptid_t ptid);
260
4e1c45ea 261void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
262
263void init_infwait_state (void);
a474d7c2 264
53904c9e
AC
265static const char follow_fork_mode_child[] = "child";
266static const char follow_fork_mode_parent[] = "parent";
267
488f131b 268static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
269 follow_fork_mode_child,
270 follow_fork_mode_parent,
271 NULL
ef346e04 272};
c906108c 273
53904c9e 274static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
275static void
276show_follow_fork_mode_string (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278{
279 fprintf_filtered (file, _("\
280Debugger response to a program call of fork or vfork is \"%s\".\n"),
281 value);
282}
c906108c
SS
283\f
284
e58b0e63
PA
285/* Tell the target to follow the fork we're stopped at. Returns true
286 if the inferior should be resumed; false, if the target for some
287 reason decided it's best not to resume. */
288
6604731b 289static int
4ef3f3be 290follow_fork (void)
c906108c 291{
ea1dd7bc 292 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
293 int should_resume = 1;
294 struct thread_info *tp;
295
296 /* Copy user stepping state to the new inferior thread. FIXME: the
297 followed fork child thread should have a copy of most of the
4e3990f4
DE
298 parent thread structure's run control related fields, not just these.
299 Initialized to avoid "may be used uninitialized" warnings from gcc. */
300 struct breakpoint *step_resume_breakpoint = NULL;
301 CORE_ADDR step_range_start = 0;
302 CORE_ADDR step_range_end = 0;
303 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
304
305 if (!non_stop)
306 {
307 ptid_t wait_ptid;
308 struct target_waitstatus wait_status;
309
310 /* Get the last target status returned by target_wait(). */
311 get_last_target_status (&wait_ptid, &wait_status);
312
313 /* If not stopped at a fork event, then there's nothing else to
314 do. */
315 if (wait_status.kind != TARGET_WAITKIND_FORKED
316 && wait_status.kind != TARGET_WAITKIND_VFORKED)
317 return 1;
318
319 /* Check if we switched over from WAIT_PTID, since the event was
320 reported. */
321 if (!ptid_equal (wait_ptid, minus_one_ptid)
322 && !ptid_equal (inferior_ptid, wait_ptid))
323 {
324 /* We did. Switch back to WAIT_PTID thread, to tell the
325 target to follow it (in either direction). We'll
326 afterwards refuse to resume, and inform the user what
327 happened. */
328 switch_to_thread (wait_ptid);
329 should_resume = 0;
330 }
331 }
332
333 tp = inferior_thread ();
334
335 /* If there were any forks/vforks that were caught and are now to be
336 followed, then do so now. */
337 switch (tp->pending_follow.kind)
338 {
339 case TARGET_WAITKIND_FORKED:
340 case TARGET_WAITKIND_VFORKED:
341 {
342 ptid_t parent, child;
343
344 /* If the user did a next/step, etc, over a fork call,
345 preserve the stepping state in the fork child. */
346 if (follow_child && should_resume)
347 {
348 step_resume_breakpoint
349 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
350 step_range_start = tp->step_range_start;
351 step_range_end = tp->step_range_end;
352 step_frame_id = tp->step_frame_id;
353
354 /* For now, delete the parent's sr breakpoint, otherwise,
355 parent/child sr breakpoints are considered duplicates,
356 and the child version will not be installed. Remove
357 this when the breakpoints module becomes aware of
358 inferiors and address spaces. */
359 delete_step_resume_breakpoint (tp);
360 tp->step_range_start = 0;
361 tp->step_range_end = 0;
362 tp->step_frame_id = null_frame_id;
363 }
364
365 parent = inferior_ptid;
366 child = tp->pending_follow.value.related_pid;
367
368 /* Tell the target to do whatever is necessary to follow
369 either parent or child. */
370 if (target_follow_fork (follow_child))
371 {
372 /* Target refused to follow, or there's some other reason
373 we shouldn't resume. */
374 should_resume = 0;
375 }
376 else
377 {
378 /* This pending follow fork event is now handled, one way
379 or another. The previous selected thread may be gone
380 from the lists by now, but if it is still around, need
381 to clear the pending follow request. */
e09875d4 382 tp = find_thread_ptid (parent);
e58b0e63
PA
383 if (tp)
384 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
385
386 /* This makes sure we don't try to apply the "Switched
387 over from WAIT_PID" logic above. */
388 nullify_last_target_wait_ptid ();
389
390 /* If we followed the child, switch to it... */
391 if (follow_child)
392 {
393 switch_to_thread (child);
394
395 /* ... and preserve the stepping state, in case the
396 user was stepping over the fork call. */
397 if (should_resume)
398 {
399 tp = inferior_thread ();
400 tp->step_resume_breakpoint = step_resume_breakpoint;
401 tp->step_range_start = step_range_start;
402 tp->step_range_end = step_range_end;
403 tp->step_frame_id = step_frame_id;
404 }
405 else
406 {
407 /* If we get here, it was because we're trying to
408 resume from a fork catchpoint, but, the user
409 has switched threads away from the thread that
410 forked. In that case, the resume command
411 issued is most likely not applicable to the
412 child, so just warn, and refuse to resume. */
413 warning (_("\
414Not resuming: switched threads before following fork child.\n"));
415 }
416
417 /* Reset breakpoints in the child as appropriate. */
418 follow_inferior_reset_breakpoints ();
419 }
420 else
421 switch_to_thread (parent);
422 }
423 }
424 break;
425 case TARGET_WAITKIND_SPURIOUS:
426 /* Nothing to follow. */
427 break;
428 default:
429 internal_error (__FILE__, __LINE__,
430 "Unexpected pending_follow.kind %d\n",
431 tp->pending_follow.kind);
432 break;
433 }
c906108c 434
e58b0e63 435 return should_resume;
c906108c
SS
436}
437
6604731b
DJ
438void
439follow_inferior_reset_breakpoints (void)
c906108c 440{
4e1c45ea
PA
441 struct thread_info *tp = inferior_thread ();
442
6604731b
DJ
443 /* Was there a step_resume breakpoint? (There was if the user
444 did a "next" at the fork() call.) If so, explicitly reset its
445 thread number.
446
447 step_resumes are a form of bp that are made to be per-thread.
448 Since we created the step_resume bp when the parent process
449 was being debugged, and now are switching to the child process,
450 from the breakpoint package's viewpoint, that's a switch of
451 "threads". We must update the bp's notion of which thread
452 it is for, or it'll be ignored when it triggers. */
453
4e1c45ea
PA
454 if (tp->step_resume_breakpoint)
455 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
456
457 /* Reinsert all breakpoints in the child. The user may have set
458 breakpoints after catching the fork, in which case those
459 were never set in the child, but only in the parent. This makes
460 sure the inserted breakpoints match the breakpoint list. */
461
462 breakpoint_re_set ();
463 insert_breakpoints ();
c906108c 464}
c906108c 465
6c95b8df
PA
466/* The child has exited or execed: resume threads of the parent the
467 user wanted to be executing. */
468
469static int
470proceed_after_vfork_done (struct thread_info *thread,
471 void *arg)
472{
473 int pid = * (int *) arg;
474
475 if (ptid_get_pid (thread->ptid) == pid
476 && is_running (thread->ptid)
477 && !is_executing (thread->ptid)
478 && !thread->stop_requested
479 && thread->stop_signal == TARGET_SIGNAL_0)
480 {
481 if (debug_infrun)
482 fprintf_unfiltered (gdb_stdlog,
483 "infrun: resuming vfork parent thread %s\n",
484 target_pid_to_str (thread->ptid));
485
486 switch_to_thread (thread->ptid);
487 clear_proceed_status ();
488 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
489 }
490
491 return 0;
492}
493
494/* Called whenever we notice an exec or exit event, to handle
495 detaching or resuming a vfork parent. */
496
497static void
498handle_vfork_child_exec_or_exit (int exec)
499{
500 struct inferior *inf = current_inferior ();
501
502 if (inf->vfork_parent)
503 {
504 int resume_parent = -1;
505
506 /* This exec or exit marks the end of the shared memory region
507 between the parent and the child. If the user wanted to
508 detach from the parent, now is the time. */
509
510 if (inf->vfork_parent->pending_detach)
511 {
512 struct thread_info *tp;
513 struct cleanup *old_chain;
514 struct program_space *pspace;
515 struct address_space *aspace;
516
517 /* follow-fork child, detach-on-fork on */
518
519 old_chain = make_cleanup_restore_current_thread ();
520
521 /* We're letting loose of the parent. */
522 tp = any_live_thread_of_process (inf->vfork_parent->pid);
523 switch_to_thread (tp->ptid);
524
525 /* We're about to detach from the parent, which implicitly
526 removes breakpoints from its address space. There's a
527 catch here: we want to reuse the spaces for the child,
528 but, parent/child are still sharing the pspace at this
529 point, although the exec in reality makes the kernel give
530 the child a fresh set of new pages. The problem here is
531 that the breakpoints module being unaware of this, would
532 likely chose the child process to write to the parent
533 address space. Swapping the child temporarily away from
534 the spaces has the desired effect. Yes, this is "sort
535 of" a hack. */
536
537 pspace = inf->pspace;
538 aspace = inf->aspace;
539 inf->aspace = NULL;
540 inf->pspace = NULL;
541
542 if (debug_infrun || info_verbose)
543 {
544 target_terminal_ours ();
545
546 if (exec)
547 fprintf_filtered (gdb_stdlog,
548 "Detaching vfork parent process %d after child exec.\n",
549 inf->vfork_parent->pid);
550 else
551 fprintf_filtered (gdb_stdlog,
552 "Detaching vfork parent process %d after child exit.\n",
553 inf->vfork_parent->pid);
554 }
555
556 target_detach (NULL, 0);
557
558 /* Put it back. */
559 inf->pspace = pspace;
560 inf->aspace = aspace;
561
562 do_cleanups (old_chain);
563 }
564 else if (exec)
565 {
566 /* We're staying attached to the parent, so, really give the
567 child a new address space. */
568 inf->pspace = add_program_space (maybe_new_address_space ());
569 inf->aspace = inf->pspace->aspace;
570 inf->removable = 1;
571 set_current_program_space (inf->pspace);
572
573 resume_parent = inf->vfork_parent->pid;
574
575 /* Break the bonds. */
576 inf->vfork_parent->vfork_child = NULL;
577 }
578 else
579 {
580 struct cleanup *old_chain;
581 struct program_space *pspace;
582
583 /* If this is a vfork child exiting, then the pspace and
584 aspaces were shared with the parent. Since we're
585 reporting the process exit, we'll be mourning all that is
586 found in the address space, and switching to null_ptid,
587 preparing to start a new inferior. But, since we don't
588 want to clobber the parent's address/program spaces, we
589 go ahead and create a new one for this exiting
590 inferior. */
591
592 /* Switch to null_ptid, so that clone_program_space doesn't want
593 to read the selected frame of a dead process. */
594 old_chain = save_inferior_ptid ();
595 inferior_ptid = null_ptid;
596
597 /* This inferior is dead, so avoid giving the breakpoints
598 module the option to write through to it (cloning a
599 program space resets breakpoints). */
600 inf->aspace = NULL;
601 inf->pspace = NULL;
602 pspace = add_program_space (maybe_new_address_space ());
603 set_current_program_space (pspace);
604 inf->removable = 1;
605 clone_program_space (pspace, inf->vfork_parent->pspace);
606 inf->pspace = pspace;
607 inf->aspace = pspace->aspace;
608
609 /* Put back inferior_ptid. We'll continue mourning this
610 inferior. */
611 do_cleanups (old_chain);
612
613 resume_parent = inf->vfork_parent->pid;
614 /* Break the bonds. */
615 inf->vfork_parent->vfork_child = NULL;
616 }
617
618 inf->vfork_parent = NULL;
619
620 gdb_assert (current_program_space == inf->pspace);
621
622 if (non_stop && resume_parent != -1)
623 {
624 /* If the user wanted the parent to be running, let it go
625 free now. */
626 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
627
628 if (debug_infrun)
629 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
630 resume_parent);
631
632 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
633
634 do_cleanups (old_chain);
635 }
636 }
637}
638
639/* Enum strings for "set|show displaced-stepping". */
640
641static const char follow_exec_mode_new[] = "new";
642static const char follow_exec_mode_same[] = "same";
643static const char *follow_exec_mode_names[] =
644{
645 follow_exec_mode_new,
646 follow_exec_mode_same,
647 NULL,
648};
649
650static const char *follow_exec_mode_string = follow_exec_mode_same;
651static void
652show_follow_exec_mode_string (struct ui_file *file, int from_tty,
653 struct cmd_list_element *c, const char *value)
654{
655 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
656}
657
1adeb98a
FN
658/* EXECD_PATHNAME is assumed to be non-NULL. */
659
c906108c 660static void
3a3e9ee3 661follow_exec (ptid_t pid, char *execd_pathname)
c906108c 662{
7a292a7a 663 struct target_ops *tgt;
4e1c45ea 664 struct thread_info *th = inferior_thread ();
6c95b8df 665 struct inferior *inf = current_inferior ();
7a292a7a 666
c906108c
SS
667 /* This is an exec event that we actually wish to pay attention to.
668 Refresh our symbol table to the newly exec'd program, remove any
669 momentary bp's, etc.
670
671 If there are breakpoints, they aren't really inserted now,
672 since the exec() transformed our inferior into a fresh set
673 of instructions.
674
675 We want to preserve symbolic breakpoints on the list, since
676 we have hopes that they can be reset after the new a.out's
677 symbol table is read.
678
679 However, any "raw" breakpoints must be removed from the list
680 (e.g., the solib bp's), since their address is probably invalid
681 now.
682
683 And, we DON'T want to call delete_breakpoints() here, since
684 that may write the bp's "shadow contents" (the instruction
685 value that was overwritten witha TRAP instruction). Since
686 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
687
688 mark_breakpoints_out ();
689
c906108c
SS
690 update_breakpoints_after_exec ();
691
692 /* If there was one, it's gone now. We cannot truly step-to-next
693 statement through an exec(). */
4e1c45ea
PA
694 th->step_resume_breakpoint = NULL;
695 th->step_range_start = 0;
696 th->step_range_end = 0;
c906108c 697
a75724bc
PA
698 /* The target reports the exec event to the main thread, even if
699 some other thread does the exec, and even if the main thread was
700 already stopped --- if debugging in non-stop mode, it's possible
701 the user had the main thread held stopped in the previous image
702 --- release it now. This is the same behavior as step-over-exec
703 with scheduler-locking on in all-stop mode. */
704 th->stop_requested = 0;
705
c906108c 706 /* What is this a.out's name? */
6c95b8df
PA
707 printf_unfiltered (_("%s is executing new program: %s\n"),
708 target_pid_to_str (inferior_ptid),
709 execd_pathname);
c906108c
SS
710
711 /* We've followed the inferior through an exec. Therefore, the
712 inferior has essentially been killed & reborn. */
7a292a7a 713
c906108c 714 gdb_flush (gdb_stdout);
6ca15a4b
PA
715
716 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
717
718 if (gdb_sysroot && *gdb_sysroot)
719 {
720 char *name = alloca (strlen (gdb_sysroot)
721 + strlen (execd_pathname)
722 + 1);
723 strcpy (name, gdb_sysroot);
724 strcat (name, execd_pathname);
725 execd_pathname = name;
726 }
c906108c 727
cce9b6bf
PA
728 /* Reset the shared library package. This ensures that we get a
729 shlib event when the child reaches "_start", at which point the
730 dld will have had a chance to initialize the child. */
731 /* Also, loading a symbol file below may trigger symbol lookups, and
732 we don't want those to be satisfied by the libraries of the
733 previous incarnation of this process. */
734 no_shared_libraries (NULL, 0);
735
6c95b8df
PA
736 if (follow_exec_mode_string == follow_exec_mode_new)
737 {
738 struct program_space *pspace;
739 struct inferior *new_inf;
740
741 /* The user wants to keep the old inferior and program spaces
742 around. Create a new fresh one, and switch to it. */
743
744 inf = add_inferior (current_inferior ()->pid);
745 pspace = add_program_space (maybe_new_address_space ());
746 inf->pspace = pspace;
747 inf->aspace = pspace->aspace;
748
749 exit_inferior_num_silent (current_inferior ()->num);
750
751 set_current_inferior (inf);
752 set_current_program_space (pspace);
753 }
754
755 gdb_assert (current_program_space == inf->pspace);
756
757 /* That a.out is now the one to use. */
758 exec_file_attach (execd_pathname, 0);
759
cce9b6bf 760 /* Load the main file's symbols. */
1adeb98a 761 symbol_file_add_main (execd_pathname, 0);
c906108c 762
7a292a7a 763#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 764 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 765#else
268a4a75 766 solib_create_inferior_hook (0);
7a292a7a 767#endif
c906108c 768
4efc6507
DE
769 jit_inferior_created_hook ();
770
c906108c
SS
771 /* Reinsert all breakpoints. (Those which were symbolic have
772 been reset to the proper address in the new a.out, thanks
773 to symbol_file_command...) */
774 insert_breakpoints ();
775
776 /* The next resume of this inferior should bring it to the shlib
777 startup breakpoints. (If the user had also set bp's on
778 "main" from the old (parent) process, then they'll auto-
779 matically get reset there in the new process.) */
c906108c
SS
780}
781
782/* Non-zero if we just simulating a single-step. This is needed
783 because we cannot remove the breakpoints in the inferior process
784 until after the `wait' in `wait_for_inferior'. */
785static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
786
787/* The thread we inserted single-step breakpoints for. */
788static ptid_t singlestep_ptid;
789
fd48f117
DJ
790/* PC when we started this single-step. */
791static CORE_ADDR singlestep_pc;
792
9f976b41
DJ
793/* If another thread hit the singlestep breakpoint, we save the original
794 thread here so that we can resume single-stepping it later. */
795static ptid_t saved_singlestep_ptid;
796static int stepping_past_singlestep_breakpoint;
6a6b96b9 797
ca67fcb8
VP
798/* If not equal to null_ptid, this means that after stepping over breakpoint
799 is finished, we need to switch to deferred_step_ptid, and step it.
800
801 The use case is when one thread has hit a breakpoint, and then the user
802 has switched to another thread and issued 'step'. We need to step over
803 breakpoint in the thread which hit the breakpoint, but then continue
804 stepping the thread user has selected. */
805static ptid_t deferred_step_ptid;
c906108c 806\f
237fc4c9
PA
807/* Displaced stepping. */
808
809/* In non-stop debugging mode, we must take special care to manage
810 breakpoints properly; in particular, the traditional strategy for
811 stepping a thread past a breakpoint it has hit is unsuitable.
812 'Displaced stepping' is a tactic for stepping one thread past a
813 breakpoint it has hit while ensuring that other threads running
814 concurrently will hit the breakpoint as they should.
815
816 The traditional way to step a thread T off a breakpoint in a
817 multi-threaded program in all-stop mode is as follows:
818
819 a0) Initially, all threads are stopped, and breakpoints are not
820 inserted.
821 a1) We single-step T, leaving breakpoints uninserted.
822 a2) We insert breakpoints, and resume all threads.
823
824 In non-stop debugging, however, this strategy is unsuitable: we
825 don't want to have to stop all threads in the system in order to
826 continue or step T past a breakpoint. Instead, we use displaced
827 stepping:
828
829 n0) Initially, T is stopped, other threads are running, and
830 breakpoints are inserted.
831 n1) We copy the instruction "under" the breakpoint to a separate
832 location, outside the main code stream, making any adjustments
833 to the instruction, register, and memory state as directed by
834 T's architecture.
835 n2) We single-step T over the instruction at its new location.
836 n3) We adjust the resulting register and memory state as directed
837 by T's architecture. This includes resetting T's PC to point
838 back into the main instruction stream.
839 n4) We resume T.
840
841 This approach depends on the following gdbarch methods:
842
843 - gdbarch_max_insn_length and gdbarch_displaced_step_location
844 indicate where to copy the instruction, and how much space must
845 be reserved there. We use these in step n1.
846
847 - gdbarch_displaced_step_copy_insn copies a instruction to a new
848 address, and makes any necessary adjustments to the instruction,
849 register contents, and memory. We use this in step n1.
850
851 - gdbarch_displaced_step_fixup adjusts registers and memory after
852 we have successfuly single-stepped the instruction, to yield the
853 same effect the instruction would have had if we had executed it
854 at its original address. We use this in step n3.
855
856 - gdbarch_displaced_step_free_closure provides cleanup.
857
858 The gdbarch_displaced_step_copy_insn and
859 gdbarch_displaced_step_fixup functions must be written so that
860 copying an instruction with gdbarch_displaced_step_copy_insn,
861 single-stepping across the copied instruction, and then applying
862 gdbarch_displaced_insn_fixup should have the same effects on the
863 thread's memory and registers as stepping the instruction in place
864 would have. Exactly which responsibilities fall to the copy and
865 which fall to the fixup is up to the author of those functions.
866
867 See the comments in gdbarch.sh for details.
868
869 Note that displaced stepping and software single-step cannot
870 currently be used in combination, although with some care I think
871 they could be made to. Software single-step works by placing
872 breakpoints on all possible subsequent instructions; if the
873 displaced instruction is a PC-relative jump, those breakpoints
874 could fall in very strange places --- on pages that aren't
875 executable, or at addresses that are not proper instruction
876 boundaries. (We do generally let other threads run while we wait
877 to hit the software single-step breakpoint, and they might
878 encounter such a corrupted instruction.) One way to work around
879 this would be to have gdbarch_displaced_step_copy_insn fully
880 simulate the effect of PC-relative instructions (and return NULL)
881 on architectures that use software single-stepping.
882
883 In non-stop mode, we can have independent and simultaneous step
884 requests, so more than one thread may need to simultaneously step
885 over a breakpoint. The current implementation assumes there is
886 only one scratch space per process. In this case, we have to
887 serialize access to the scratch space. If thread A wants to step
888 over a breakpoint, but we are currently waiting for some other
889 thread to complete a displaced step, we leave thread A stopped and
890 place it in the displaced_step_request_queue. Whenever a displaced
891 step finishes, we pick the next thread in the queue and start a new
892 displaced step operation on it. See displaced_step_prepare and
893 displaced_step_fixup for details. */
894
895/* If this is not null_ptid, this is the thread carrying out a
896 displaced single-step. This thread's state will require fixing up
897 once it has completed its step. */
898static ptid_t displaced_step_ptid;
899
900struct displaced_step_request
901{
902 ptid_t ptid;
903 struct displaced_step_request *next;
904};
905
906/* A queue of pending displaced stepping requests. */
907struct displaced_step_request *displaced_step_request_queue;
908
909/* The architecture the thread had when we stepped it. */
910static struct gdbarch *displaced_step_gdbarch;
911
912/* The closure provided gdbarch_displaced_step_copy_insn, to be used
913 for post-step cleanup. */
914static struct displaced_step_closure *displaced_step_closure;
915
916/* The address of the original instruction, and the copy we made. */
917static CORE_ADDR displaced_step_original, displaced_step_copy;
918
919/* Saved contents of copy area. */
920static gdb_byte *displaced_step_saved_copy;
921
fff08868
HZ
922/* Enum strings for "set|show displaced-stepping". */
923
924static const char can_use_displaced_stepping_auto[] = "auto";
925static const char can_use_displaced_stepping_on[] = "on";
926static const char can_use_displaced_stepping_off[] = "off";
927static const char *can_use_displaced_stepping_enum[] =
928{
929 can_use_displaced_stepping_auto,
930 can_use_displaced_stepping_on,
931 can_use_displaced_stepping_off,
932 NULL,
933};
934
935/* If ON, and the architecture supports it, GDB will use displaced
936 stepping to step over breakpoints. If OFF, or if the architecture
937 doesn't support it, GDB will instead use the traditional
938 hold-and-step approach. If AUTO (which is the default), GDB will
939 decide which technique to use to step over breakpoints depending on
940 which of all-stop or non-stop mode is active --- displaced stepping
941 in non-stop mode; hold-and-step in all-stop mode. */
942
943static const char *can_use_displaced_stepping =
944 can_use_displaced_stepping_auto;
945
237fc4c9
PA
946static void
947show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
948 struct cmd_list_element *c,
949 const char *value)
950{
fff08868
HZ
951 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
952 fprintf_filtered (file, _("\
953Debugger's willingness to use displaced stepping to step over \
954breakpoints is %s (currently %s).\n"),
955 value, non_stop ? "on" : "off");
956 else
957 fprintf_filtered (file, _("\
958Debugger's willingness to use displaced stepping to step over \
959breakpoints is %s.\n"), value);
237fc4c9
PA
960}
961
fff08868
HZ
962/* Return non-zero if displaced stepping can/should be used to step
963 over breakpoints. */
964
237fc4c9
PA
965static int
966use_displaced_stepping (struct gdbarch *gdbarch)
967{
fff08868
HZ
968 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
969 && non_stop)
970 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
971 && gdbarch_displaced_step_copy_insn_p (gdbarch)
972 && !RECORD_IS_USED);
237fc4c9
PA
973}
974
975/* Clean out any stray displaced stepping state. */
976static void
977displaced_step_clear (void)
978{
979 /* Indicate that there is no cleanup pending. */
980 displaced_step_ptid = null_ptid;
981
982 if (displaced_step_closure)
983 {
984 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
985 displaced_step_closure);
986 displaced_step_closure = NULL;
987 }
988}
989
990static void
9f5a595d 991displaced_step_clear_cleanup (void *ignore)
237fc4c9 992{
9f5a595d 993 displaced_step_clear ();
237fc4c9
PA
994}
995
996/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
997void
998displaced_step_dump_bytes (struct ui_file *file,
999 const gdb_byte *buf,
1000 size_t len)
1001{
1002 int i;
1003
1004 for (i = 0; i < len; i++)
1005 fprintf_unfiltered (file, "%02x ", buf[i]);
1006 fputs_unfiltered ("\n", file);
1007}
1008
1009/* Prepare to single-step, using displaced stepping.
1010
1011 Note that we cannot use displaced stepping when we have a signal to
1012 deliver. If we have a signal to deliver and an instruction to step
1013 over, then after the step, there will be no indication from the
1014 target whether the thread entered a signal handler or ignored the
1015 signal and stepped over the instruction successfully --- both cases
1016 result in a simple SIGTRAP. In the first case we mustn't do a
1017 fixup, and in the second case we must --- but we can't tell which.
1018 Comments in the code for 'random signals' in handle_inferior_event
1019 explain how we handle this case instead.
1020
1021 Returns 1 if preparing was successful -- this thread is going to be
1022 stepped now; or 0 if displaced stepping this thread got queued. */
1023static int
1024displaced_step_prepare (ptid_t ptid)
1025{
ad53cd71 1026 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1027 struct regcache *regcache = get_thread_regcache (ptid);
1028 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1029 CORE_ADDR original, copy;
1030 ULONGEST len;
1031 struct displaced_step_closure *closure;
1032
1033 /* We should never reach this function if the architecture does not
1034 support displaced stepping. */
1035 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1036
1037 /* For the first cut, we're displaced stepping one thread at a
1038 time. */
1039
1040 if (!ptid_equal (displaced_step_ptid, null_ptid))
1041 {
1042 /* Already waiting for a displaced step to finish. Defer this
1043 request and place in queue. */
1044 struct displaced_step_request *req, *new_req;
1045
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "displaced: defering step of %s\n",
1049 target_pid_to_str (ptid));
1050
1051 new_req = xmalloc (sizeof (*new_req));
1052 new_req->ptid = ptid;
1053 new_req->next = NULL;
1054
1055 if (displaced_step_request_queue)
1056 {
1057 for (req = displaced_step_request_queue;
1058 req && req->next;
1059 req = req->next)
1060 ;
1061 req->next = new_req;
1062 }
1063 else
1064 displaced_step_request_queue = new_req;
1065
1066 return 0;
1067 }
1068 else
1069 {
1070 if (debug_displaced)
1071 fprintf_unfiltered (gdb_stdlog,
1072 "displaced: stepping %s now\n",
1073 target_pid_to_str (ptid));
1074 }
1075
1076 displaced_step_clear ();
1077
ad53cd71
PA
1078 old_cleanups = save_inferior_ptid ();
1079 inferior_ptid = ptid;
1080
515630c5 1081 original = regcache_read_pc (regcache);
237fc4c9
PA
1082
1083 copy = gdbarch_displaced_step_location (gdbarch);
1084 len = gdbarch_max_insn_length (gdbarch);
1085
1086 /* Save the original contents of the copy area. */
1087 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
1088 ignore_cleanups = make_cleanup (free_current_contents,
1089 &displaced_step_saved_copy);
237fc4c9
PA
1090 read_memory (copy, displaced_step_saved_copy, len);
1091 if (debug_displaced)
1092 {
5af949e3
UW
1093 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1094 paddress (gdbarch, copy));
237fc4c9
PA
1095 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
1096 };
1097
1098 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1099 original, copy, regcache);
237fc4c9
PA
1100
1101 /* We don't support the fully-simulated case at present. */
1102 gdb_assert (closure);
1103
9f5a595d
UW
1104 /* Save the information we need to fix things up if the step
1105 succeeds. */
1106 displaced_step_ptid = ptid;
1107 displaced_step_gdbarch = gdbarch;
1108 displaced_step_closure = closure;
1109 displaced_step_original = original;
1110 displaced_step_copy = copy;
1111
1112 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
1113
1114 /* Resume execution at the copy. */
515630c5 1115 regcache_write_pc (regcache, copy);
237fc4c9 1116
ad53cd71
PA
1117 discard_cleanups (ignore_cleanups);
1118
1119 do_cleanups (old_cleanups);
237fc4c9
PA
1120
1121 if (debug_displaced)
5af949e3
UW
1122 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1123 paddress (gdbarch, copy));
237fc4c9 1124
237fc4c9
PA
1125 return 1;
1126}
1127
237fc4c9
PA
1128static void
1129write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1130{
1131 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1132 inferior_ptid = ptid;
1133 write_memory (memaddr, myaddr, len);
1134 do_cleanups (ptid_cleanup);
1135}
1136
1137static void
1138displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1139{
1140 struct cleanup *old_cleanups;
1141
1142 /* Was this event for the pid we displaced? */
1143 if (ptid_equal (displaced_step_ptid, null_ptid)
1144 || ! ptid_equal (displaced_step_ptid, event_ptid))
1145 return;
1146
1147 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
1148
1149 /* Restore the contents of the copy area. */
1150 {
1151 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
1152 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
1153 displaced_step_saved_copy, len);
1154 if (debug_displaced)
5af949e3
UW
1155 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1156 paddress (displaced_step_gdbarch,
1157 displaced_step_copy));
237fc4c9
PA
1158 }
1159
1160 /* Did the instruction complete successfully? */
1161 if (signal == TARGET_SIGNAL_TRAP)
1162 {
1163 /* Fix up the resulting state. */
1164 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
1165 displaced_step_closure,
1166 displaced_step_original,
1167 displaced_step_copy,
1168 get_thread_regcache (displaced_step_ptid));
1169 }
1170 else
1171 {
1172 /* Since the instruction didn't complete, all we can do is
1173 relocate the PC. */
515630c5
UW
1174 struct regcache *regcache = get_thread_regcache (event_ptid);
1175 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 1176 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 1177 regcache_write_pc (regcache, pc);
237fc4c9
PA
1178 }
1179
1180 do_cleanups (old_cleanups);
1181
1c5cfe86
PA
1182 displaced_step_ptid = null_ptid;
1183
237fc4c9
PA
1184 /* Are there any pending displaced stepping requests? If so, run
1185 one now. */
1c5cfe86 1186 while (displaced_step_request_queue)
237fc4c9
PA
1187 {
1188 struct displaced_step_request *head;
1189 ptid_t ptid;
5af949e3 1190 struct regcache *regcache;
929dfd4f 1191 struct gdbarch *gdbarch;
1c5cfe86 1192 CORE_ADDR actual_pc;
6c95b8df 1193 struct address_space *aspace;
237fc4c9
PA
1194
1195 head = displaced_step_request_queue;
1196 ptid = head->ptid;
1197 displaced_step_request_queue = head->next;
1198 xfree (head);
1199
ad53cd71
PA
1200 context_switch (ptid);
1201
5af949e3
UW
1202 regcache = get_thread_regcache (ptid);
1203 actual_pc = regcache_read_pc (regcache);
6c95b8df 1204 aspace = get_regcache_aspace (regcache);
1c5cfe86 1205
6c95b8df 1206 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1207 {
1c5cfe86
PA
1208 if (debug_displaced)
1209 fprintf_unfiltered (gdb_stdlog,
1210 "displaced: stepping queued %s now\n",
1211 target_pid_to_str (ptid));
1212
1213 displaced_step_prepare (ptid);
1214
929dfd4f
JB
1215 gdbarch = get_regcache_arch (regcache);
1216
1c5cfe86
PA
1217 if (debug_displaced)
1218 {
929dfd4f 1219 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1220 gdb_byte buf[4];
1221
5af949e3
UW
1222 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1223 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1224 read_memory (actual_pc, buf, sizeof (buf));
1225 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1226 }
1227
99e40580
UW
1228 if (gdbarch_displaced_step_hw_singlestep
1229 (gdbarch, displaced_step_closure))
929dfd4f 1230 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1231 else
1232 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1233
1234 /* Done, we're stepping a thread. */
1235 break;
ad53cd71 1236 }
1c5cfe86
PA
1237 else
1238 {
1239 int step;
1240 struct thread_info *tp = inferior_thread ();
1241
1242 /* The breakpoint we were sitting under has since been
1243 removed. */
1244 tp->trap_expected = 0;
1245
1246 /* Go back to what we were trying to do. */
1247 step = currently_stepping (tp);
ad53cd71 1248
1c5cfe86
PA
1249 if (debug_displaced)
1250 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1251 target_pid_to_str (tp->ptid), step);
1252
1253 target_resume (ptid, step, TARGET_SIGNAL_0);
1254 tp->stop_signal = TARGET_SIGNAL_0;
1255
1256 /* This request was discarded. See if there's any other
1257 thread waiting for its turn. */
1258 }
237fc4c9
PA
1259 }
1260}
1261
5231c1fd
PA
1262/* Update global variables holding ptids to hold NEW_PTID if they were
1263 holding OLD_PTID. */
1264static void
1265infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1266{
1267 struct displaced_step_request *it;
1268
1269 if (ptid_equal (inferior_ptid, old_ptid))
1270 inferior_ptid = new_ptid;
1271
1272 if (ptid_equal (singlestep_ptid, old_ptid))
1273 singlestep_ptid = new_ptid;
1274
1275 if (ptid_equal (displaced_step_ptid, old_ptid))
1276 displaced_step_ptid = new_ptid;
1277
1278 if (ptid_equal (deferred_step_ptid, old_ptid))
1279 deferred_step_ptid = new_ptid;
1280
1281 for (it = displaced_step_request_queue; it; it = it->next)
1282 if (ptid_equal (it->ptid, old_ptid))
1283 it->ptid = new_ptid;
1284}
1285
237fc4c9
PA
1286\f
1287/* Resuming. */
c906108c
SS
1288
1289/* Things to clean up if we QUIT out of resume (). */
c906108c 1290static void
74b7792f 1291resume_cleanups (void *ignore)
c906108c
SS
1292{
1293 normal_stop ();
1294}
1295
53904c9e
AC
1296static const char schedlock_off[] = "off";
1297static const char schedlock_on[] = "on";
1298static const char schedlock_step[] = "step";
488f131b 1299static const char *scheduler_enums[] = {
ef346e04
AC
1300 schedlock_off,
1301 schedlock_on,
1302 schedlock_step,
1303 NULL
1304};
920d2a44
AC
1305static const char *scheduler_mode = schedlock_off;
1306static void
1307show_scheduler_mode (struct ui_file *file, int from_tty,
1308 struct cmd_list_element *c, const char *value)
1309{
1310 fprintf_filtered (file, _("\
1311Mode for locking scheduler during execution is \"%s\".\n"),
1312 value);
1313}
c906108c
SS
1314
1315static void
96baa820 1316set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1317{
eefe576e
AC
1318 if (!target_can_lock_scheduler)
1319 {
1320 scheduler_mode = schedlock_off;
1321 error (_("Target '%s' cannot support this command."), target_shortname);
1322 }
c906108c
SS
1323}
1324
d4db2f36
PA
1325/* True if execution commands resume all threads of all processes by
1326 default; otherwise, resume only threads of the current inferior
1327 process. */
1328int sched_multi = 0;
1329
2facfe5c
DD
1330/* Try to setup for software single stepping over the specified location.
1331 Return 1 if target_resume() should use hardware single step.
1332
1333 GDBARCH the current gdbarch.
1334 PC the location to step over. */
1335
1336static int
1337maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1338{
1339 int hw_step = 1;
1340
99e40580
UW
1341 if (gdbarch_software_single_step_p (gdbarch)
1342 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1343 {
99e40580
UW
1344 hw_step = 0;
1345 /* Do not pull these breakpoints until after a `wait' in
1346 `wait_for_inferior' */
1347 singlestep_breakpoints_inserted_p = 1;
1348 singlestep_ptid = inferior_ptid;
1349 singlestep_pc = pc;
2facfe5c
DD
1350 }
1351 return hw_step;
1352}
c906108c
SS
1353
1354/* Resume the inferior, but allow a QUIT. This is useful if the user
1355 wants to interrupt some lengthy single-stepping operation
1356 (for child processes, the SIGINT goes to the inferior, and so
1357 we get a SIGINT random_signal, but for remote debugging and perhaps
1358 other targets, that's not true).
1359
1360 STEP nonzero if we should step (zero to continue instead).
1361 SIG is the signal to give the inferior (zero for none). */
1362void
96baa820 1363resume (int step, enum target_signal sig)
c906108c
SS
1364{
1365 int should_resume = 1;
74b7792f 1366 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1367 struct regcache *regcache = get_current_regcache ();
1368 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1369 struct thread_info *tp = inferior_thread ();
515630c5 1370 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1371 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1372
c906108c
SS
1373 QUIT;
1374
527159b7 1375 if (debug_infrun)
237fc4c9
PA
1376 fprintf_unfiltered (gdb_stdlog,
1377 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1378 "trap_expected=%d\n",
1379 step, sig, tp->trap_expected);
c906108c 1380
692590c1
MS
1381 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1382 over an instruction that causes a page fault without triggering
1383 a hardware watchpoint. The kernel properly notices that it shouldn't
1384 stop, because the hardware watchpoint is not triggered, but it forgets
1385 the step request and continues the program normally.
1386 Work around the problem by removing hardware watchpoints if a step is
1387 requested, GDB will check for a hardware watchpoint trigger after the
1388 step anyway. */
c36b740a 1389 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1390 remove_hw_watchpoints ();
488f131b 1391
692590c1 1392
c2c6d25f
JM
1393 /* Normally, by the time we reach `resume', the breakpoints are either
1394 removed or inserted, as appropriate. The exception is if we're sitting
1395 at a permanent breakpoint; we need to step over it, but permanent
1396 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1397 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1398 {
515630c5
UW
1399 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1400 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1401 else
1402 error (_("\
1403The program is stopped at a permanent breakpoint, but GDB does not know\n\
1404how to step past a permanent breakpoint on this architecture. Try using\n\
1405a command like `return' or `jump' to continue execution."));
1406 }
c2c6d25f 1407
237fc4c9
PA
1408 /* If enabled, step over breakpoints by executing a copy of the
1409 instruction at a different address.
1410
1411 We can't use displaced stepping when we have a signal to deliver;
1412 the comments for displaced_step_prepare explain why. The
1413 comments in the handle_inferior event for dealing with 'random
1414 signals' explain what we do instead. */
515630c5 1415 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1416 && (tp->trap_expected
1417 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1418 && sig == TARGET_SIGNAL_0)
1419 {
1420 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1421 {
1422 /* Got placed in displaced stepping queue. Will be resumed
1423 later when all the currently queued displaced stepping
7f7efbd9
VP
1424 requests finish. The thread is not executing at this point,
1425 and the call to set_executing will be made later. But we
1426 need to call set_running here, since from frontend point of view,
1427 the thread is running. */
1428 set_running (inferior_ptid, 1);
d56b7306
VP
1429 discard_cleanups (old_cleanups);
1430 return;
1431 }
99e40580
UW
1432
1433 step = gdbarch_displaced_step_hw_singlestep
1434 (gdbarch, displaced_step_closure);
237fc4c9
PA
1435 }
1436
2facfe5c 1437 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1438 else if (step)
2facfe5c 1439 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1440
c906108c
SS
1441 if (should_resume)
1442 {
39f77062 1443 ptid_t resume_ptid;
dfcd3bfb 1444
cd76b0b7
VP
1445 /* If STEP is set, it's a request to use hardware stepping
1446 facilities. But in that case, we should never
1447 use singlestep breakpoint. */
1448 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1449
d4db2f36
PA
1450 /* Decide the set of threads to ask the target to resume. Start
1451 by assuming everything will be resumed, than narrow the set
1452 by applying increasingly restricting conditions. */
1453
1454 /* By default, resume all threads of all processes. */
1455 resume_ptid = RESUME_ALL;
1456
1457 /* Maybe resume only all threads of the current process. */
1458 if (!sched_multi && target_supports_multi_process ())
1459 {
1460 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1461 }
1462
1463 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1464 if (singlestep_breakpoints_inserted_p
1465 && stepping_past_singlestep_breakpoint)
c906108c 1466 {
cd76b0b7
VP
1467 /* The situation here is as follows. In thread T1 we wanted to
1468 single-step. Lacking hardware single-stepping we've
1469 set breakpoint at the PC of the next instruction -- call it
1470 P. After resuming, we've hit that breakpoint in thread T2.
1471 Now we've removed original breakpoint, inserted breakpoint
1472 at P+1, and try to step to advance T2 past breakpoint.
1473 We need to step only T2, as if T1 is allowed to freely run,
1474 it can run past P, and if other threads are allowed to run,
1475 they can hit breakpoint at P+1, and nested hits of single-step
1476 breakpoints is not something we'd want -- that's complicated
1477 to support, and has no value. */
1478 resume_ptid = inferior_ptid;
1479 }
d4db2f36
PA
1480 else if ((step || singlestep_breakpoints_inserted_p)
1481 && tp->trap_expected)
cd76b0b7 1482 {
74960c60
VP
1483 /* We're allowing a thread to run past a breakpoint it has
1484 hit, by single-stepping the thread with the breakpoint
1485 removed. In which case, we need to single-step only this
1486 thread, and keep others stopped, as they can miss this
1487 breakpoint if allowed to run.
1488
1489 The current code actually removes all breakpoints when
1490 doing this, not just the one being stepped over, so if we
1491 let other threads run, we can actually miss any
1492 breakpoint, not just the one at PC. */
ef5cf84e 1493 resume_ptid = inferior_ptid;
c906108c 1494 }
d4db2f36 1495 else if (non_stop)
94cc34af
PA
1496 {
1497 /* With non-stop mode on, threads are always handled
1498 individually. */
1499 resume_ptid = inferior_ptid;
1500 }
1501 else if ((scheduler_mode == schedlock_on)
1502 || (scheduler_mode == schedlock_step
1503 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1504 {
ef5cf84e 1505 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1506 resume_ptid = inferior_ptid;
c906108c 1507 }
ef5cf84e 1508
515630c5 1509 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1510 {
1511 /* Most targets can step a breakpoint instruction, thus
1512 executing it normally. But if this one cannot, just
1513 continue and we will hit it anyway. */
6c95b8df 1514 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1515 step = 0;
1516 }
237fc4c9
PA
1517
1518 if (debug_displaced
515630c5 1519 && use_displaced_stepping (gdbarch)
4e1c45ea 1520 && tp->trap_expected)
237fc4c9 1521 {
515630c5 1522 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1523 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1524 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1525 gdb_byte buf[4];
1526
5af949e3
UW
1527 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1528 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1529 read_memory (actual_pc, buf, sizeof (buf));
1530 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1531 }
1532
e58b0e63
PA
1533 /* Install inferior's terminal modes. */
1534 target_terminal_inferior ();
1535
2020b7ab
PA
1536 /* Avoid confusing the next resume, if the next stop/resume
1537 happens to apply to another thread. */
1538 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1539
1540 target_resume (resume_ptid, step, sig);
c906108c
SS
1541 }
1542
1543 discard_cleanups (old_cleanups);
1544}
1545\f
237fc4c9 1546/* Proceeding. */
c906108c
SS
1547
1548/* Clear out all variables saying what to do when inferior is continued.
1549 First do this, then set the ones you want, then call `proceed'. */
1550
a7212384
UW
1551static void
1552clear_proceed_status_thread (struct thread_info *tp)
c906108c 1553{
a7212384
UW
1554 if (debug_infrun)
1555 fprintf_unfiltered (gdb_stdlog,
1556 "infrun: clear_proceed_status_thread (%s)\n",
1557 target_pid_to_str (tp->ptid));
d6b48e9c 1558
a7212384
UW
1559 tp->trap_expected = 0;
1560 tp->step_range_start = 0;
1561 tp->step_range_end = 0;
1562 tp->step_frame_id = null_frame_id;
edb3359d 1563 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1564 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1565 tp->stop_requested = 0;
4e1c45ea 1566
a7212384 1567 tp->stop_step = 0;
32400beb 1568
a7212384 1569 tp->proceed_to_finish = 0;
414c69f7 1570
a7212384
UW
1571 /* Discard any remaining commands or status from previous stop. */
1572 bpstat_clear (&tp->stop_bpstat);
1573}
32400beb 1574
a7212384
UW
1575static int
1576clear_proceed_status_callback (struct thread_info *tp, void *data)
1577{
1578 if (is_exited (tp->ptid))
1579 return 0;
d6b48e9c 1580
a7212384
UW
1581 clear_proceed_status_thread (tp);
1582 return 0;
1583}
1584
1585void
1586clear_proceed_status (void)
1587{
6c95b8df
PA
1588 if (!non_stop)
1589 {
1590 /* In all-stop mode, delete the per-thread status of all
1591 threads, even if inferior_ptid is null_ptid, there may be
1592 threads on the list. E.g., we may be launching a new
1593 process, while selecting the executable. */
1594 iterate_over_threads (clear_proceed_status_callback, NULL);
1595 }
1596
a7212384
UW
1597 if (!ptid_equal (inferior_ptid, null_ptid))
1598 {
1599 struct inferior *inferior;
1600
1601 if (non_stop)
1602 {
6c95b8df
PA
1603 /* If in non-stop mode, only delete the per-thread status of
1604 the current thread. */
a7212384
UW
1605 clear_proceed_status_thread (inferior_thread ());
1606 }
6c95b8df 1607
d6b48e9c
PA
1608 inferior = current_inferior ();
1609 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1610 }
1611
c906108c 1612 stop_after_trap = 0;
f3b1572e
PA
1613
1614 observer_notify_about_to_proceed ();
c906108c 1615
d5c31457
UW
1616 if (stop_registers)
1617 {
1618 regcache_xfree (stop_registers);
1619 stop_registers = NULL;
1620 }
c906108c
SS
1621}
1622
5a437975
DE
1623/* Check the current thread against the thread that reported the most recent
1624 event. If a step-over is required return TRUE and set the current thread
1625 to the old thread. Otherwise return FALSE.
1626
1627 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1628
1629static int
6a6b96b9 1630prepare_to_proceed (int step)
ea67f13b
DJ
1631{
1632 ptid_t wait_ptid;
1633 struct target_waitstatus wait_status;
5a437975
DE
1634 int schedlock_enabled;
1635
1636 /* With non-stop mode on, threads are always handled individually. */
1637 gdb_assert (! non_stop);
ea67f13b
DJ
1638
1639 /* Get the last target status returned by target_wait(). */
1640 get_last_target_status (&wait_ptid, &wait_status);
1641
6a6b96b9 1642 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1643 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1644 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1645 && wait_status.value.sig != TARGET_SIGNAL_ILL
1646 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1647 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1648 {
1649 return 0;
1650 }
1651
5a437975
DE
1652 schedlock_enabled = (scheduler_mode == schedlock_on
1653 || (scheduler_mode == schedlock_step
1654 && step));
1655
d4db2f36
PA
1656 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1657 if (schedlock_enabled)
1658 return 0;
1659
1660 /* Don't switch over if we're about to resume some other process
1661 other than WAIT_PTID's, and schedule-multiple is off. */
1662 if (!sched_multi
1663 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1664 return 0;
1665
6a6b96b9 1666 /* Switched over from WAIT_PID. */
ea67f13b 1667 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1668 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1669 {
515630c5
UW
1670 struct regcache *regcache = get_thread_regcache (wait_ptid);
1671
6c95b8df
PA
1672 if (breakpoint_here_p (get_regcache_aspace (regcache),
1673 regcache_read_pc (regcache)))
ea67f13b 1674 {
515630c5
UW
1675 /* If stepping, remember current thread to switch back to. */
1676 if (step)
1677 deferred_step_ptid = inferior_ptid;
ea67f13b 1678
515630c5
UW
1679 /* Switch back to WAIT_PID thread. */
1680 switch_to_thread (wait_ptid);
6a6b96b9 1681
515630c5
UW
1682 /* We return 1 to indicate that there is a breakpoint here,
1683 so we need to step over it before continuing to avoid
1684 hitting it straight away. */
1685 return 1;
1686 }
ea67f13b
DJ
1687 }
1688
1689 return 0;
ea67f13b 1690}
e4846b08 1691
c906108c
SS
1692/* Basic routine for continuing the program in various fashions.
1693
1694 ADDR is the address to resume at, or -1 for resume where stopped.
1695 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1696 or -1 for act according to how it stopped.
c906108c 1697 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1698 -1 means return after that and print nothing.
1699 You should probably set various step_... variables
1700 before calling here, if you are stepping.
c906108c
SS
1701
1702 You should call clear_proceed_status before calling proceed. */
1703
1704void
96baa820 1705proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1706{
e58b0e63
PA
1707 struct regcache *regcache;
1708 struct gdbarch *gdbarch;
4e1c45ea 1709 struct thread_info *tp;
e58b0e63 1710 CORE_ADDR pc;
6c95b8df 1711 struct address_space *aspace;
c906108c
SS
1712 int oneproc = 0;
1713
e58b0e63
PA
1714 /* If we're stopped at a fork/vfork, follow the branch set by the
1715 "set follow-fork-mode" command; otherwise, we'll just proceed
1716 resuming the current thread. */
1717 if (!follow_fork ())
1718 {
1719 /* The target for some reason decided not to resume. */
1720 normal_stop ();
1721 return;
1722 }
1723
1724 regcache = get_current_regcache ();
1725 gdbarch = get_regcache_arch (regcache);
6c95b8df 1726 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1727 pc = regcache_read_pc (regcache);
1728
c906108c 1729 if (step > 0)
515630c5 1730 step_start_function = find_pc_function (pc);
c906108c
SS
1731 if (step < 0)
1732 stop_after_trap = 1;
1733
2acceee2 1734 if (addr == (CORE_ADDR) -1)
c906108c 1735 {
6c95b8df 1736 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1737 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1738 /* There is a breakpoint at the address we will resume at,
1739 step one instruction before inserting breakpoints so that
1740 we do not stop right away (and report a second hit at this
b2175913
MS
1741 breakpoint).
1742
1743 Note, we don't do this in reverse, because we won't
1744 actually be executing the breakpoint insn anyway.
1745 We'll be (un-)executing the previous instruction. */
1746
c906108c 1747 oneproc = 1;
515630c5
UW
1748 else if (gdbarch_single_step_through_delay_p (gdbarch)
1749 && gdbarch_single_step_through_delay (gdbarch,
1750 get_current_frame ()))
3352ef37
AC
1751 /* We stepped onto an instruction that needs to be stepped
1752 again before re-inserting the breakpoint, do so. */
c906108c
SS
1753 oneproc = 1;
1754 }
1755 else
1756 {
515630c5 1757 regcache_write_pc (regcache, addr);
c906108c
SS
1758 }
1759
527159b7 1760 if (debug_infrun)
8a9de0e4 1761 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1762 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1763 paddress (gdbarch, addr), siggnal, step);
527159b7 1764
06cd862c
PA
1765 /* We're handling a live event, so make sure we're doing live
1766 debugging. If we're looking at traceframes while the target is
1767 running, we're going to need to get back to that mode after
1768 handling the event. */
1769 if (non_stop)
1770 {
1771 make_cleanup_restore_current_traceframe ();
1772 set_traceframe_number (-1);
1773 }
1774
94cc34af
PA
1775 if (non_stop)
1776 /* In non-stop, each thread is handled individually. The context
1777 must already be set to the right thread here. */
1778 ;
1779 else
1780 {
1781 /* In a multi-threaded task we may select another thread and
1782 then continue or step.
c906108c 1783
94cc34af
PA
1784 But if the old thread was stopped at a breakpoint, it will
1785 immediately cause another breakpoint stop without any
1786 execution (i.e. it will report a breakpoint hit incorrectly).
1787 So we must step over it first.
c906108c 1788
94cc34af
PA
1789 prepare_to_proceed checks the current thread against the
1790 thread that reported the most recent event. If a step-over
1791 is required it returns TRUE and sets the current thread to
1792 the old thread. */
1793 if (prepare_to_proceed (step))
1794 oneproc = 1;
1795 }
c906108c 1796
4e1c45ea
PA
1797 /* prepare_to_proceed may change the current thread. */
1798 tp = inferior_thread ();
1799
c906108c 1800 if (oneproc)
74960c60 1801 {
4e1c45ea 1802 tp->trap_expected = 1;
237fc4c9
PA
1803 /* If displaced stepping is enabled, we can step over the
1804 breakpoint without hitting it, so leave all breakpoints
1805 inserted. Otherwise we need to disable all breakpoints, step
1806 one instruction, and then re-add them when that step is
1807 finished. */
515630c5 1808 if (!use_displaced_stepping (gdbarch))
237fc4c9 1809 remove_breakpoints ();
74960c60 1810 }
237fc4c9
PA
1811
1812 /* We can insert breakpoints if we're not trying to step over one,
1813 or if we are stepping over one but we're using displaced stepping
1814 to do so. */
4e1c45ea 1815 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1816 insert_breakpoints ();
c906108c 1817
2020b7ab
PA
1818 if (!non_stop)
1819 {
1820 /* Pass the last stop signal to the thread we're resuming,
1821 irrespective of whether the current thread is the thread that
1822 got the last event or not. This was historically GDB's
1823 behaviour before keeping a stop_signal per thread. */
1824
1825 struct thread_info *last_thread;
1826 ptid_t last_ptid;
1827 struct target_waitstatus last_status;
1828
1829 get_last_target_status (&last_ptid, &last_status);
1830 if (!ptid_equal (inferior_ptid, last_ptid)
1831 && !ptid_equal (last_ptid, null_ptid)
1832 && !ptid_equal (last_ptid, minus_one_ptid))
1833 {
e09875d4 1834 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1835 if (last_thread)
1836 {
1837 tp->stop_signal = last_thread->stop_signal;
1838 last_thread->stop_signal = TARGET_SIGNAL_0;
1839 }
1840 }
1841 }
1842
c906108c 1843 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1844 tp->stop_signal = siggnal;
c906108c
SS
1845 /* If this signal should not be seen by program,
1846 give it zero. Used for debugging signals. */
2020b7ab
PA
1847 else if (!signal_program[tp->stop_signal])
1848 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1849
1850 annotate_starting ();
1851
1852 /* Make sure that output from GDB appears before output from the
1853 inferior. */
1854 gdb_flush (gdb_stdout);
1855
e4846b08
JJ
1856 /* Refresh prev_pc value just prior to resuming. This used to be
1857 done in stop_stepping, however, setting prev_pc there did not handle
1858 scenarios such as inferior function calls or returning from
1859 a function via the return command. In those cases, the prev_pc
1860 value was not set properly for subsequent commands. The prev_pc value
1861 is used to initialize the starting line number in the ecs. With an
1862 invalid value, the gdb next command ends up stopping at the position
1863 represented by the next line table entry past our start position.
1864 On platforms that generate one line table entry per line, this
1865 is not a problem. However, on the ia64, the compiler generates
1866 extraneous line table entries that do not increase the line number.
1867 When we issue the gdb next command on the ia64 after an inferior call
1868 or a return command, we often end up a few instructions forward, still
1869 within the original line we started.
1870
d5cd6034
JB
1871 An attempt was made to refresh the prev_pc at the same time the
1872 execution_control_state is initialized (for instance, just before
1873 waiting for an inferior event). But this approach did not work
1874 because of platforms that use ptrace, where the pc register cannot
1875 be read unless the inferior is stopped. At that point, we are not
1876 guaranteed the inferior is stopped and so the regcache_read_pc() call
1877 can fail. Setting the prev_pc value here ensures the value is updated
1878 correctly when the inferior is stopped. */
4e1c45ea 1879 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1880
59f0d5d9 1881 /* Fill in with reasonable starting values. */
4e1c45ea 1882 init_thread_stepping_state (tp);
59f0d5d9 1883
59f0d5d9
PA
1884 /* Reset to normal state. */
1885 init_infwait_state ();
1886
c906108c 1887 /* Resume inferior. */
2020b7ab 1888 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1889
1890 /* Wait for it to stop (if not standalone)
1891 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1892 /* Do this only if we are not using the event loop, or if the target
1893 does not support asynchronous execution. */
362646f5 1894 if (!target_can_async_p ())
43ff13b4 1895 {
ae123ec6 1896 wait_for_inferior (0);
43ff13b4
JM
1897 normal_stop ();
1898 }
c906108c 1899}
c906108c
SS
1900\f
1901
1902/* Start remote-debugging of a machine over a serial link. */
96baa820 1903
c906108c 1904void
8621d6a9 1905start_remote (int from_tty)
c906108c 1906{
d6b48e9c 1907 struct inferior *inferior;
c906108c 1908 init_wait_for_inferior ();
d6b48e9c
PA
1909
1910 inferior = current_inferior ();
1911 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1912
6426a772
JM
1913 /* Always go on waiting for the target, regardless of the mode. */
1914 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1915 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1916 nothing is returned (instead of just blocking). Because of this,
1917 targets expecting an immediate response need to, internally, set
1918 things up so that the target_wait() is forced to eventually
1919 timeout. */
1920 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1921 differentiate to its caller what the state of the target is after
1922 the initial open has been performed. Here we're assuming that
1923 the target has stopped. It should be possible to eventually have
1924 target_open() return to the caller an indication that the target
1925 is currently running and GDB state should be set to the same as
1926 for an async run. */
ae123ec6 1927 wait_for_inferior (0);
8621d6a9
DJ
1928
1929 /* Now that the inferior has stopped, do any bookkeeping like
1930 loading shared libraries. We want to do this before normal_stop,
1931 so that the displayed frame is up to date. */
1932 post_create_inferior (&current_target, from_tty);
1933
6426a772 1934 normal_stop ();
c906108c
SS
1935}
1936
1937/* Initialize static vars when a new inferior begins. */
1938
1939void
96baa820 1940init_wait_for_inferior (void)
c906108c
SS
1941{
1942 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1943
c906108c
SS
1944 breakpoint_init_inferior (inf_starting);
1945
c906108c 1946 clear_proceed_status ();
9f976b41
DJ
1947
1948 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1949 deferred_step_ptid = null_ptid;
ca005067
DJ
1950
1951 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1952
0d1e5fa7
PA
1953 previous_inferior_ptid = null_ptid;
1954 init_infwait_state ();
1955
237fc4c9 1956 displaced_step_clear ();
edb3359d
DJ
1957
1958 /* Discard any skipped inlined frames. */
1959 clear_inline_frame_state (minus_one_ptid);
c906108c 1960}
237fc4c9 1961
c906108c 1962\f
b83266a0
SS
1963/* This enum encodes possible reasons for doing a target_wait, so that
1964 wfi can call target_wait in one place. (Ultimately the call will be
1965 moved out of the infinite loop entirely.) */
1966
c5aa993b
JM
1967enum infwait_states
1968{
cd0fc7c3
SS
1969 infwait_normal_state,
1970 infwait_thread_hop_state,
d983da9c 1971 infwait_step_watch_state,
cd0fc7c3 1972 infwait_nonstep_watch_state
b83266a0
SS
1973};
1974
11cf8741
JM
1975/* Why did the inferior stop? Used to print the appropriate messages
1976 to the interface from within handle_inferior_event(). */
1977enum inferior_stop_reason
1978{
11cf8741
JM
1979 /* Step, next, nexti, stepi finished. */
1980 END_STEPPING_RANGE,
11cf8741
JM
1981 /* Inferior terminated by signal. */
1982 SIGNAL_EXITED,
1983 /* Inferior exited. */
1984 EXITED,
1985 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1986 SIGNAL_RECEIVED,
1987 /* Reverse execution -- target ran out of history info. */
1988 NO_HISTORY
11cf8741
JM
1989};
1990
0d1e5fa7
PA
1991/* The PTID we'll do a target_wait on.*/
1992ptid_t waiton_ptid;
1993
1994/* Current inferior wait state. */
1995enum infwait_states infwait_state;
cd0fc7c3 1996
0d1e5fa7
PA
1997/* Data to be passed around while handling an event. This data is
1998 discarded between events. */
c5aa993b 1999struct execution_control_state
488f131b 2000{
0d1e5fa7 2001 ptid_t ptid;
4e1c45ea
PA
2002 /* The thread that got the event, if this was a thread event; NULL
2003 otherwise. */
2004 struct thread_info *event_thread;
2005
488f131b 2006 struct target_waitstatus ws;
488f131b
JB
2007 int random_signal;
2008 CORE_ADDR stop_func_start;
2009 CORE_ADDR stop_func_end;
2010 char *stop_func_name;
488f131b 2011 int new_thread_event;
488f131b
JB
2012 int wait_some_more;
2013};
2014
ec9499be 2015static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2016
568d6575
UW
2017static void handle_step_into_function (struct gdbarch *gdbarch,
2018 struct execution_control_state *ecs);
2019static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2020 struct execution_control_state *ecs);
44cbf7b5 2021static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 2022static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
2023static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2024 struct symtab_and_line sr_sal,
44cbf7b5 2025 struct frame_id sr_id);
a6d9a66e 2026static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 2027
104c1213
JM
2028static void stop_stepping (struct execution_control_state *ecs);
2029static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2030static void keep_going (struct execution_control_state *ecs);
488f131b
JB
2031static void print_stop_reason (enum inferior_stop_reason stop_reason,
2032 int stop_info);
104c1213 2033
252fbfc8
PA
2034/* Callback for iterate over threads. If the thread is stopped, but
2035 the user/frontend doesn't know about that yet, go through
2036 normal_stop, as if the thread had just stopped now. ARG points at
2037 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2038 ptid_is_pid(PTID) is true, applies to all threads of the process
2039 pointed at by PTID. Otherwise, apply only to the thread pointed by
2040 PTID. */
2041
2042static int
2043infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2044{
2045 ptid_t ptid = * (ptid_t *) arg;
2046
2047 if ((ptid_equal (info->ptid, ptid)
2048 || ptid_equal (minus_one_ptid, ptid)
2049 || (ptid_is_pid (ptid)
2050 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2051 && is_running (info->ptid)
2052 && !is_executing (info->ptid))
2053 {
2054 struct cleanup *old_chain;
2055 struct execution_control_state ecss;
2056 struct execution_control_state *ecs = &ecss;
2057
2058 memset (ecs, 0, sizeof (*ecs));
2059
2060 old_chain = make_cleanup_restore_current_thread ();
2061
2062 switch_to_thread (info->ptid);
2063
2064 /* Go through handle_inferior_event/normal_stop, so we always
2065 have consistent output as if the stop event had been
2066 reported. */
2067 ecs->ptid = info->ptid;
e09875d4 2068 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2069 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2070 ecs->ws.value.sig = TARGET_SIGNAL_0;
2071
2072 handle_inferior_event (ecs);
2073
2074 if (!ecs->wait_some_more)
2075 {
2076 struct thread_info *tp;
2077
2078 normal_stop ();
2079
2080 /* Finish off the continuations. The continations
2081 themselves are responsible for realising the thread
2082 didn't finish what it was supposed to do. */
2083 tp = inferior_thread ();
2084 do_all_intermediate_continuations_thread (tp);
2085 do_all_continuations_thread (tp);
2086 }
2087
2088 do_cleanups (old_chain);
2089 }
2090
2091 return 0;
2092}
2093
2094/* This function is attached as a "thread_stop_requested" observer.
2095 Cleanup local state that assumed the PTID was to be resumed, and
2096 report the stop to the frontend. */
2097
2c0b251b 2098static void
252fbfc8
PA
2099infrun_thread_stop_requested (ptid_t ptid)
2100{
2101 struct displaced_step_request *it, *next, *prev = NULL;
2102
2103 /* PTID was requested to stop. Remove it from the displaced
2104 stepping queue, so we don't try to resume it automatically. */
2105 for (it = displaced_step_request_queue; it; it = next)
2106 {
2107 next = it->next;
2108
2109 if (ptid_equal (it->ptid, ptid)
2110 || ptid_equal (minus_one_ptid, ptid)
2111 || (ptid_is_pid (ptid)
2112 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
2113 {
2114 if (displaced_step_request_queue == it)
2115 displaced_step_request_queue = it->next;
2116 else
2117 prev->next = it->next;
2118
2119 xfree (it);
2120 }
2121 else
2122 prev = it;
2123 }
2124
2125 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2126}
2127
a07daef3
PA
2128static void
2129infrun_thread_thread_exit (struct thread_info *tp, int silent)
2130{
2131 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2132 nullify_last_target_wait_ptid ();
2133}
2134
4e1c45ea
PA
2135/* Callback for iterate_over_threads. */
2136
2137static int
2138delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2139{
2140 if (is_exited (info->ptid))
2141 return 0;
2142
2143 delete_step_resume_breakpoint (info);
2144 return 0;
2145}
2146
2147/* In all-stop, delete the step resume breakpoint of any thread that
2148 had one. In non-stop, delete the step resume breakpoint of the
2149 thread that just stopped. */
2150
2151static void
2152delete_step_thread_step_resume_breakpoint (void)
2153{
2154 if (!target_has_execution
2155 || ptid_equal (inferior_ptid, null_ptid))
2156 /* If the inferior has exited, we have already deleted the step
2157 resume breakpoints out of GDB's lists. */
2158 return;
2159
2160 if (non_stop)
2161 {
2162 /* If in non-stop mode, only delete the step-resume or
2163 longjmp-resume breakpoint of the thread that just stopped
2164 stepping. */
2165 struct thread_info *tp = inferior_thread ();
2166 delete_step_resume_breakpoint (tp);
2167 }
2168 else
2169 /* In all-stop mode, delete all step-resume and longjmp-resume
2170 breakpoints of any thread that had them. */
2171 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2172}
2173
2174/* A cleanup wrapper. */
2175
2176static void
2177delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2178{
2179 delete_step_thread_step_resume_breakpoint ();
2180}
2181
223698f8
DE
2182/* Pretty print the results of target_wait, for debugging purposes. */
2183
2184static void
2185print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2186 const struct target_waitstatus *ws)
2187{
2188 char *status_string = target_waitstatus_to_string (ws);
2189 struct ui_file *tmp_stream = mem_fileopen ();
2190 char *text;
223698f8
DE
2191
2192 /* The text is split over several lines because it was getting too long.
2193 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2194 output as a unit; we want only one timestamp printed if debug_timestamp
2195 is set. */
2196
2197 fprintf_unfiltered (tmp_stream,
2198 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2199 if (PIDGET (waiton_ptid) != -1)
2200 fprintf_unfiltered (tmp_stream,
2201 " [%s]", target_pid_to_str (waiton_ptid));
2202 fprintf_unfiltered (tmp_stream, ", status) =\n");
2203 fprintf_unfiltered (tmp_stream,
2204 "infrun: %d [%s],\n",
2205 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2206 fprintf_unfiltered (tmp_stream,
2207 "infrun: %s\n",
2208 status_string);
2209
759ef836 2210 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2211
2212 /* This uses %s in part to handle %'s in the text, but also to avoid
2213 a gcc error: the format attribute requires a string literal. */
2214 fprintf_unfiltered (gdb_stdlog, "%s", text);
2215
2216 xfree (status_string);
2217 xfree (text);
2218 ui_file_delete (tmp_stream);
2219}
2220
cd0fc7c3 2221/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2222
2223 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2224 as if they were SIGTRAP signals. This can be useful during
2225 the startup sequence on some targets such as HP/UX, where
2226 we receive an EXEC event instead of the expected SIGTRAP.
2227
cd0fc7c3
SS
2228 If inferior gets a signal, we may decide to start it up again
2229 instead of returning. That is why there is a loop in this function.
2230 When this function actually returns it means the inferior
2231 should be left stopped and GDB should read more commands. */
2232
2233void
ae123ec6 2234wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2235{
2236 struct cleanup *old_cleanups;
0d1e5fa7 2237 struct execution_control_state ecss;
cd0fc7c3 2238 struct execution_control_state *ecs;
c906108c 2239
527159b7 2240 if (debug_infrun)
ae123ec6
JB
2241 fprintf_unfiltered
2242 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2243 treat_exec_as_sigtrap);
527159b7 2244
4e1c45ea
PA
2245 old_cleanups =
2246 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2247
cd0fc7c3 2248 ecs = &ecss;
0d1e5fa7
PA
2249 memset (ecs, 0, sizeof (*ecs));
2250
e0bb1c1c
PA
2251 /* We'll update this if & when we switch to a new thread. */
2252 previous_inferior_ptid = inferior_ptid;
2253
c906108c
SS
2254 while (1)
2255 {
29f49a6a
PA
2256 struct cleanup *old_chain;
2257
ec9499be
UW
2258 /* We have to invalidate the registers BEFORE calling target_wait
2259 because they can be loaded from the target while in target_wait.
2260 This makes remote debugging a bit more efficient for those
2261 targets that provide critical registers as part of their normal
2262 status mechanism. */
2263
2264 overlay_cache_invalid = 1;
2265 registers_changed ();
2266
9a4105ab 2267 if (deprecated_target_wait_hook)
47608cb1 2268 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2269 else
47608cb1 2270 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2271
f00150c9 2272 if (debug_infrun)
223698f8 2273 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2274
ae123ec6
JB
2275 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2276 {
2277 xfree (ecs->ws.value.execd_pathname);
2278 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2279 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2280 }
2281
29f49a6a
PA
2282 /* If an error happens while handling the event, propagate GDB's
2283 knowledge of the executing state to the frontend/user running
2284 state. */
2285 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2286
a96d9b2e
SDJ
2287 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2288 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2289 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2290
cd0fc7c3
SS
2291 /* Now figure out what to do with the result of the result. */
2292 handle_inferior_event (ecs);
c906108c 2293
29f49a6a
PA
2294 /* No error, don't finish the state yet. */
2295 discard_cleanups (old_chain);
2296
cd0fc7c3
SS
2297 if (!ecs->wait_some_more)
2298 break;
2299 }
4e1c45ea 2300
cd0fc7c3
SS
2301 do_cleanups (old_cleanups);
2302}
c906108c 2303
43ff13b4
JM
2304/* Asynchronous version of wait_for_inferior. It is called by the
2305 event loop whenever a change of state is detected on the file
2306 descriptor corresponding to the target. It can be called more than
2307 once to complete a single execution command. In such cases we need
a474d7c2
PA
2308 to keep the state in a global variable ECSS. If it is the last time
2309 that this function is called for a single execution command, then
2310 report to the user that the inferior has stopped, and do the
2311 necessary cleanups. */
43ff13b4
JM
2312
2313void
fba45db2 2314fetch_inferior_event (void *client_data)
43ff13b4 2315{
0d1e5fa7 2316 struct execution_control_state ecss;
a474d7c2 2317 struct execution_control_state *ecs = &ecss;
4f8d22e3 2318 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2319 struct cleanup *ts_old_chain;
4f8d22e3 2320 int was_sync = sync_execution;
43ff13b4 2321
0d1e5fa7
PA
2322 memset (ecs, 0, sizeof (*ecs));
2323
ec9499be
UW
2324 /* We'll update this if & when we switch to a new thread. */
2325 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2326
4f8d22e3
PA
2327 if (non_stop)
2328 /* In non-stop mode, the user/frontend should not notice a thread
2329 switch due to internal events. Make sure we reverse to the
2330 user selected thread and frame after handling the event and
2331 running any breakpoint commands. */
2332 make_cleanup_restore_current_thread ();
2333
59f0d5d9
PA
2334 /* We have to invalidate the registers BEFORE calling target_wait
2335 because they can be loaded from the target while in target_wait.
2336 This makes remote debugging a bit more efficient for those
2337 targets that provide critical registers as part of their normal
2338 status mechanism. */
43ff13b4 2339
ec9499be 2340 overlay_cache_invalid = 1;
59f0d5d9 2341 registers_changed ();
43ff13b4 2342
9a4105ab 2343 if (deprecated_target_wait_hook)
a474d7c2 2344 ecs->ptid =
47608cb1 2345 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2346 else
47608cb1 2347 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2348
f00150c9 2349 if (debug_infrun)
223698f8 2350 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2351
94cc34af
PA
2352 if (non_stop
2353 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2354 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2355 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2356 /* In non-stop mode, each thread is handled individually. Switch
2357 early, so the global state is set correctly for this
2358 thread. */
2359 context_switch (ecs->ptid);
2360
29f49a6a
PA
2361 /* If an error happens while handling the event, propagate GDB's
2362 knowledge of the executing state to the frontend/user running
2363 state. */
2364 if (!non_stop)
2365 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2366 else
2367 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2368
43ff13b4 2369 /* Now figure out what to do with the result of the result. */
a474d7c2 2370 handle_inferior_event (ecs);
43ff13b4 2371
a474d7c2 2372 if (!ecs->wait_some_more)
43ff13b4 2373 {
d6b48e9c
PA
2374 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2375
4e1c45ea 2376 delete_step_thread_step_resume_breakpoint ();
f107f563 2377
d6b48e9c
PA
2378 /* We may not find an inferior if this was a process exit. */
2379 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2380 normal_stop ();
2381
af679fd0
PA
2382 if (target_has_execution
2383 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2384 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2385 && ecs->event_thread->step_multi
414c69f7 2386 && ecs->event_thread->stop_step)
c2d11a7d
JM
2387 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2388 else
2389 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2390 }
4f8d22e3 2391
29f49a6a
PA
2392 /* No error, don't finish the thread states yet. */
2393 discard_cleanups (ts_old_chain);
2394
4f8d22e3
PA
2395 /* Revert thread and frame. */
2396 do_cleanups (old_chain);
2397
2398 /* If the inferior was in sync execution mode, and now isn't,
2399 restore the prompt. */
2400 if (was_sync && !sync_execution)
2401 display_gdb_prompt (0);
43ff13b4
JM
2402}
2403
edb3359d
DJ
2404/* Record the frame and location we're currently stepping through. */
2405void
2406set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2407{
2408 struct thread_info *tp = inferior_thread ();
2409
2410 tp->step_frame_id = get_frame_id (frame);
2411 tp->step_stack_frame_id = get_stack_frame_id (frame);
2412
2413 tp->current_symtab = sal.symtab;
2414 tp->current_line = sal.line;
2415}
2416
0d1e5fa7
PA
2417/* Clear context switchable stepping state. */
2418
2419void
4e1c45ea 2420init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2421{
2422 tss->stepping_over_breakpoint = 0;
2423 tss->step_after_step_resume_breakpoint = 0;
2424 tss->stepping_through_solib_after_catch = 0;
2425 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2426}
2427
e02bc4cc 2428/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2429 target_wait()/deprecated_target_wait_hook(). The data is actually
2430 cached by handle_inferior_event(), which gets called immediately
2431 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2432
2433void
488f131b 2434get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2435{
39f77062 2436 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2437 *status = target_last_waitstatus;
2438}
2439
ac264b3b
MS
2440void
2441nullify_last_target_wait_ptid (void)
2442{
2443 target_last_wait_ptid = minus_one_ptid;
2444}
2445
dcf4fbde 2446/* Switch thread contexts. */
dd80620e
MS
2447
2448static void
0d1e5fa7 2449context_switch (ptid_t ptid)
dd80620e 2450{
fd48f117
DJ
2451 if (debug_infrun)
2452 {
2453 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2454 target_pid_to_str (inferior_ptid));
2455 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2456 target_pid_to_str (ptid));
fd48f117
DJ
2457 }
2458
0d1e5fa7 2459 switch_to_thread (ptid);
dd80620e
MS
2460}
2461
4fa8626c
DJ
2462static void
2463adjust_pc_after_break (struct execution_control_state *ecs)
2464{
24a73cce
UW
2465 struct regcache *regcache;
2466 struct gdbarch *gdbarch;
6c95b8df 2467 struct address_space *aspace;
8aad930b 2468 CORE_ADDR breakpoint_pc;
4fa8626c 2469
4fa8626c
DJ
2470 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2471 we aren't, just return.
9709f61c
DJ
2472
2473 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2474 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2475 implemented by software breakpoints should be handled through the normal
2476 breakpoint layer.
8fb3e588 2477
4fa8626c
DJ
2478 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2479 different signals (SIGILL or SIGEMT for instance), but it is less
2480 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2481 gdbarch_decr_pc_after_break. I don't know any specific target that
2482 generates these signals at breakpoints (the code has been in GDB since at
2483 least 1992) so I can not guess how to handle them here.
8fb3e588 2484
e6cf7916
UW
2485 In earlier versions of GDB, a target with
2486 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2487 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2488 target with both of these set in GDB history, and it seems unlikely to be
2489 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2490
2491 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2492 return;
2493
2494 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2495 return;
2496
4058b839
PA
2497 /* In reverse execution, when a breakpoint is hit, the instruction
2498 under it has already been de-executed. The reported PC always
2499 points at the breakpoint address, so adjusting it further would
2500 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2501 architecture:
2502
2503 B1 0x08000000 : INSN1
2504 B2 0x08000001 : INSN2
2505 0x08000002 : INSN3
2506 PC -> 0x08000003 : INSN4
2507
2508 Say you're stopped at 0x08000003 as above. Reverse continuing
2509 from that point should hit B2 as below. Reading the PC when the
2510 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2511 been de-executed already.
2512
2513 B1 0x08000000 : INSN1
2514 B2 PC -> 0x08000001 : INSN2
2515 0x08000002 : INSN3
2516 0x08000003 : INSN4
2517
2518 We can't apply the same logic as for forward execution, because
2519 we would wrongly adjust the PC to 0x08000000, since there's a
2520 breakpoint at PC - 1. We'd then report a hit on B1, although
2521 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2522 behaviour. */
2523 if (execution_direction == EXEC_REVERSE)
2524 return;
2525
24a73cce
UW
2526 /* If this target does not decrement the PC after breakpoints, then
2527 we have nothing to do. */
2528 regcache = get_thread_regcache (ecs->ptid);
2529 gdbarch = get_regcache_arch (regcache);
2530 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2531 return;
2532
6c95b8df
PA
2533 aspace = get_regcache_aspace (regcache);
2534
8aad930b
AC
2535 /* Find the location where (if we've hit a breakpoint) the
2536 breakpoint would be. */
515630c5
UW
2537 breakpoint_pc = regcache_read_pc (regcache)
2538 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2539
1c5cfe86
PA
2540 /* Check whether there actually is a software breakpoint inserted at
2541 that location.
2542
2543 If in non-stop mode, a race condition is possible where we've
2544 removed a breakpoint, but stop events for that breakpoint were
2545 already queued and arrive later. To suppress those spurious
2546 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2547 and retire them after a number of stop events are reported. */
6c95b8df
PA
2548 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2549 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2550 {
96429cc8
HZ
2551 struct cleanup *old_cleanups = NULL;
2552 if (RECORD_IS_USED)
2553 old_cleanups = record_gdb_operation_disable_set ();
2554
1c0fdd0e
UW
2555 /* When using hardware single-step, a SIGTRAP is reported for both
2556 a completed single-step and a software breakpoint. Need to
2557 differentiate between the two, as the latter needs adjusting
2558 but the former does not.
2559
2560 The SIGTRAP can be due to a completed hardware single-step only if
2561 - we didn't insert software single-step breakpoints
2562 - the thread to be examined is still the current thread
2563 - this thread is currently being stepped
2564
2565 If any of these events did not occur, we must have stopped due
2566 to hitting a software breakpoint, and have to back up to the
2567 breakpoint address.
2568
2569 As a special case, we could have hardware single-stepped a
2570 software breakpoint. In this case (prev_pc == breakpoint_pc),
2571 we also need to back up to the breakpoint address. */
2572
2573 if (singlestep_breakpoints_inserted_p
2574 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2575 || !currently_stepping (ecs->event_thread)
2576 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2577 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2578
2579 if (RECORD_IS_USED)
2580 do_cleanups (old_cleanups);
8aad930b 2581 }
4fa8626c
DJ
2582}
2583
0d1e5fa7
PA
2584void
2585init_infwait_state (void)
2586{
2587 waiton_ptid = pid_to_ptid (-1);
2588 infwait_state = infwait_normal_state;
2589}
2590
94cc34af
PA
2591void
2592error_is_running (void)
2593{
2594 error (_("\
2595Cannot execute this command while the selected thread is running."));
2596}
2597
2598void
2599ensure_not_running (void)
2600{
2601 if (is_running (inferior_ptid))
2602 error_is_running ();
2603}
2604
edb3359d
DJ
2605static int
2606stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2607{
2608 for (frame = get_prev_frame (frame);
2609 frame != NULL;
2610 frame = get_prev_frame (frame))
2611 {
2612 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2613 return 1;
2614 if (get_frame_type (frame) != INLINE_FRAME)
2615 break;
2616 }
2617
2618 return 0;
2619}
2620
a96d9b2e
SDJ
2621/* Auxiliary function that handles syscall entry/return events.
2622 It returns 1 if the inferior should keep going (and GDB
2623 should ignore the event), or 0 if the event deserves to be
2624 processed. */
ca2163eb 2625
a96d9b2e 2626static int
ca2163eb 2627handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2628{
ca2163eb
PA
2629 struct regcache *regcache;
2630 struct gdbarch *gdbarch;
2631 int syscall_number;
2632
2633 if (!ptid_equal (ecs->ptid, inferior_ptid))
2634 context_switch (ecs->ptid);
2635
2636 regcache = get_thread_regcache (ecs->ptid);
2637 gdbarch = get_regcache_arch (regcache);
2638 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2639 stop_pc = regcache_read_pc (regcache);
2640
a96d9b2e
SDJ
2641 target_last_waitstatus.value.syscall_number = syscall_number;
2642
2643 if (catch_syscall_enabled () > 0
2644 && catching_syscall_number (syscall_number) > 0)
2645 {
2646 if (debug_infrun)
2647 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2648 syscall_number);
a96d9b2e 2649
6c95b8df
PA
2650 ecs->event_thread->stop_bpstat
2651 = bpstat_stop_status (get_regcache_aspace (regcache),
2652 stop_pc, ecs->ptid);
a96d9b2e
SDJ
2653 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2654
ca2163eb
PA
2655 if (!ecs->random_signal)
2656 {
2657 /* Catchpoint hit. */
2658 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2659 return 0;
2660 }
a96d9b2e 2661 }
ca2163eb
PA
2662
2663 /* If no catchpoint triggered for this, then keep going. */
2664 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2665 keep_going (ecs);
2666 return 1;
a96d9b2e
SDJ
2667}
2668
cd0fc7c3
SS
2669/* Given an execution control state that has been freshly filled in
2670 by an event from the inferior, figure out what it means and take
2671 appropriate action. */
c906108c 2672
ec9499be 2673static void
96baa820 2674handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2675{
568d6575
UW
2676 struct frame_info *frame;
2677 struct gdbarch *gdbarch;
c8edd8b4 2678 int sw_single_step_trap_p = 0;
d983da9c
DJ
2679 int stopped_by_watchpoint;
2680 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2681 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2682 enum stop_kind stop_soon;
2683
28736962
PA
2684 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2685 {
2686 /* We had an event in the inferior, but we are not interested in
2687 handling it at this level. The lower layers have already
2688 done what needs to be done, if anything.
2689
2690 One of the possible circumstances for this is when the
2691 inferior produces output for the console. The inferior has
2692 not stopped, and we are ignoring the event. Another possible
2693 circumstance is any event which the lower level knows will be
2694 reported multiple times without an intervening resume. */
2695 if (debug_infrun)
2696 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2697 prepare_to_wait (ecs);
2698 return;
2699 }
2700
d6b48e9c 2701 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 2702 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
2703 {
2704 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2705 gdb_assert (inf);
2706 stop_soon = inf->stop_soon;
2707 }
2708 else
2709 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2710
e02bc4cc 2711 /* Cache the last pid/waitstatus. */
39f77062 2712 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2713 target_last_waitstatus = ecs->ws;
e02bc4cc 2714
ca005067
DJ
2715 /* Always clear state belonging to the previous time we stopped. */
2716 stop_stack_dummy = 0;
2717
8c90c137
LM
2718 /* If it's a new process, add it to the thread database */
2719
2720 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2721 && !ptid_equal (ecs->ptid, minus_one_ptid)
2722 && !in_thread_list (ecs->ptid));
2723
2724 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2725 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2726 add_thread (ecs->ptid);
2727
e09875d4 2728 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2729
2730 /* Dependent on valid ECS->EVENT_THREAD. */
2731 adjust_pc_after_break (ecs);
2732
2733 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2734 reinit_frame_cache ();
2735
28736962
PA
2736 breakpoint_retire_moribund ();
2737
2b009048
DJ
2738 /* First, distinguish signals caused by the debugger from signals
2739 that have to do with the program's own actions. Note that
2740 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2741 on the operating system version. Here we detect when a SIGILL or
2742 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2743 something similar for SIGSEGV, since a SIGSEGV will be generated
2744 when we're trying to execute a breakpoint instruction on a
2745 non-executable stack. This happens for call dummy breakpoints
2746 for architectures like SPARC that place call dummies on the
2747 stack. */
2b009048
DJ
2748 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
2749 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
2750 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 2751 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 2752 {
de0a0249
UW
2753 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2754
2755 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2756 regcache_read_pc (regcache)))
2757 {
2758 if (debug_infrun)
2759 fprintf_unfiltered (gdb_stdlog,
2760 "infrun: Treating signal as SIGTRAP\n");
2761 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2762 }
2b009048
DJ
2763 }
2764
28736962
PA
2765 /* Mark the non-executing threads accordingly. In all-stop, all
2766 threads of all processes are stopped when we get any event
2767 reported. In non-stop mode, only the event thread stops. If
2768 we're handling a process exit in non-stop mode, there's nothing
2769 to do, as threads of the dead process are gone, and threads of
2770 any other process were left running. */
2771 if (!non_stop)
2772 set_executing (minus_one_ptid, 0);
2773 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2774 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2775 set_executing (inferior_ptid, 0);
8c90c137 2776
0d1e5fa7 2777 switch (infwait_state)
488f131b
JB
2778 {
2779 case infwait_thread_hop_state:
527159b7 2780 if (debug_infrun)
8a9de0e4 2781 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2782 break;
b83266a0 2783
488f131b 2784 case infwait_normal_state:
527159b7 2785 if (debug_infrun)
8a9de0e4 2786 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2787 break;
2788
2789 case infwait_step_watch_state:
2790 if (debug_infrun)
2791 fprintf_unfiltered (gdb_stdlog,
2792 "infrun: infwait_step_watch_state\n");
2793
2794 stepped_after_stopped_by_watchpoint = 1;
488f131b 2795 break;
b83266a0 2796
488f131b 2797 case infwait_nonstep_watch_state:
527159b7 2798 if (debug_infrun)
8a9de0e4
AC
2799 fprintf_unfiltered (gdb_stdlog,
2800 "infrun: infwait_nonstep_watch_state\n");
488f131b 2801 insert_breakpoints ();
c906108c 2802
488f131b
JB
2803 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2804 handle things like signals arriving and other things happening
2805 in combination correctly? */
2806 stepped_after_stopped_by_watchpoint = 1;
2807 break;
65e82032
AC
2808
2809 default:
e2e0b3e5 2810 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2811 }
ec9499be 2812
0d1e5fa7 2813 infwait_state = infwait_normal_state;
ec9499be 2814 waiton_ptid = pid_to_ptid (-1);
c906108c 2815
488f131b
JB
2816 switch (ecs->ws.kind)
2817 {
2818 case TARGET_WAITKIND_LOADED:
527159b7 2819 if (debug_infrun)
8a9de0e4 2820 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2821 /* Ignore gracefully during startup of the inferior, as it might
2822 be the shell which has just loaded some objects, otherwise
2823 add the symbols for the newly loaded objects. Also ignore at
2824 the beginning of an attach or remote session; we will query
2825 the full list of libraries once the connection is
2826 established. */
c0236d92 2827 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2828 {
488f131b
JB
2829 /* Check for any newly added shared libraries if we're
2830 supposed to be adding them automatically. Switch
2831 terminal for any messages produced by
2832 breakpoint_re_set. */
2833 target_terminal_ours_for_output ();
aff6338a 2834 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2835 stack's section table is kept up-to-date. Architectures,
2836 (e.g., PPC64), use the section table to perform
2837 operations such as address => section name and hence
2838 require the table to contain all sections (including
2839 those found in shared libraries). */
b0f4b84b 2840#ifdef SOLIB_ADD
aff6338a 2841 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2842#else
2843 solib_add (NULL, 0, &current_target, auto_solib_add);
2844#endif
488f131b
JB
2845 target_terminal_inferior ();
2846
b0f4b84b
DJ
2847 /* If requested, stop when the dynamic linker notifies
2848 gdb of events. This allows the user to get control
2849 and place breakpoints in initializer routines for
2850 dynamically loaded objects (among other things). */
2851 if (stop_on_solib_events)
2852 {
55409f9d
DJ
2853 /* Make sure we print "Stopped due to solib-event" in
2854 normal_stop. */
2855 stop_print_frame = 1;
2856
b0f4b84b
DJ
2857 stop_stepping (ecs);
2858 return;
2859 }
2860
2861 /* NOTE drow/2007-05-11: This might be a good place to check
2862 for "catch load". */
488f131b 2863 }
b0f4b84b
DJ
2864
2865 /* If we are skipping through a shell, or through shared library
2866 loading that we aren't interested in, resume the program. If
2867 we're running the program normally, also resume. But stop if
2868 we're attaching or setting up a remote connection. */
2869 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2870 {
74960c60
VP
2871 /* Loading of shared libraries might have changed breakpoint
2872 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2873 if (stop_soon == NO_STOP_QUIETLY
2874 && !breakpoints_always_inserted_mode ())
74960c60 2875 insert_breakpoints ();
b0f4b84b
DJ
2876 resume (0, TARGET_SIGNAL_0);
2877 prepare_to_wait (ecs);
2878 return;
2879 }
2880
2881 break;
c5aa993b 2882
488f131b 2883 case TARGET_WAITKIND_SPURIOUS:
527159b7 2884 if (debug_infrun)
8a9de0e4 2885 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2886 resume (0, TARGET_SIGNAL_0);
2887 prepare_to_wait (ecs);
2888 return;
c5aa993b 2889
488f131b 2890 case TARGET_WAITKIND_EXITED:
527159b7 2891 if (debug_infrun)
8a9de0e4 2892 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2893 inferior_ptid = ecs->ptid;
6c95b8df
PA
2894 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2895 set_current_program_space (current_inferior ()->pspace);
2896 handle_vfork_child_exec_or_exit (0);
488f131b
JB
2897 target_terminal_ours (); /* Must do this before mourn anyway */
2898 print_stop_reason (EXITED, ecs->ws.value.integer);
2899
2900 /* Record the exit code in the convenience variable $_exitcode, so
2901 that the user can inspect this again later. */
4fa62494
UW
2902 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2903 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2904 gdb_flush (gdb_stdout);
2905 target_mourn_inferior ();
1c0fdd0e 2906 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2907 stop_print_frame = 0;
2908 stop_stepping (ecs);
2909 return;
c5aa993b 2910
488f131b 2911 case TARGET_WAITKIND_SIGNALLED:
527159b7 2912 if (debug_infrun)
8a9de0e4 2913 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2914 inferior_ptid = ecs->ptid;
6c95b8df
PA
2915 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2916 set_current_program_space (current_inferior ()->pspace);
2917 handle_vfork_child_exec_or_exit (0);
488f131b 2918 stop_print_frame = 0;
488f131b 2919 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2920
488f131b
JB
2921 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2922 reach here unless the inferior is dead. However, for years
2923 target_kill() was called here, which hints that fatal signals aren't
2924 really fatal on some systems. If that's true, then some changes
2925 may be needed. */
2926 target_mourn_inferior ();
c906108c 2927
2020b7ab 2928 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2929 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2930 stop_stepping (ecs);
2931 return;
c906108c 2932
488f131b
JB
2933 /* The following are the only cases in which we keep going;
2934 the above cases end in a continue or goto. */
2935 case TARGET_WAITKIND_FORKED:
deb3b17b 2936 case TARGET_WAITKIND_VFORKED:
527159b7 2937 if (debug_infrun)
8a9de0e4 2938 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2939
5a2901d9
DJ
2940 if (!ptid_equal (ecs->ptid, inferior_ptid))
2941 {
0d1e5fa7 2942 context_switch (ecs->ptid);
35f196d9 2943 reinit_frame_cache ();
5a2901d9
DJ
2944 }
2945
b242c3c2
PA
2946 /* Immediately detach breakpoints from the child before there's
2947 any chance of letting the user delete breakpoints from the
2948 breakpoint lists. If we don't do this early, it's easy to
2949 leave left over traps in the child, vis: "break foo; catch
2950 fork; c; <fork>; del; c; <child calls foo>". We only follow
2951 the fork on the last `continue', and by that time the
2952 breakpoint at "foo" is long gone from the breakpoint table.
2953 If we vforked, then we don't need to unpatch here, since both
2954 parent and child are sharing the same memory pages; we'll
2955 need to unpatch at follow/detach time instead to be certain
2956 that new breakpoints added between catchpoint hit time and
2957 vfork follow are detached. */
2958 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2959 {
2960 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2961
2962 /* This won't actually modify the breakpoint list, but will
2963 physically remove the breakpoints from the child. */
2964 detach_breakpoints (child_pid);
2965 }
2966
e58b0e63
PA
2967 /* In case the event is caught by a catchpoint, remember that
2968 the event is to be followed at the next resume of the thread,
2969 and not immediately. */
2970 ecs->event_thread->pending_follow = ecs->ws;
2971
fb14de7b 2972 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2973
6c95b8df
PA
2974 ecs->event_thread->stop_bpstat
2975 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
2976 stop_pc, ecs->ptid);
675bf4cb 2977
67822962
PA
2978 /* Note that we're interested in knowing the bpstat actually
2979 causes a stop, not just if it may explain the signal.
2980 Software watchpoints, for example, always appear in the
2981 bpstat. */
2982 ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
04e68871
DJ
2983
2984 /* If no catchpoint triggered for this, then keep going. */
2985 if (ecs->random_signal)
2986 {
6c95b8df
PA
2987 ptid_t parent;
2988 ptid_t child;
e58b0e63 2989 int should_resume;
6c95b8df 2990 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 2991
2020b7ab 2992 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2993
2994 should_resume = follow_fork ();
2995
6c95b8df
PA
2996 parent = ecs->ptid;
2997 child = ecs->ws.value.related_pid;
2998
2999 /* In non-stop mode, also resume the other branch. */
3000 if (non_stop && !detach_fork)
3001 {
3002 if (follow_child)
3003 switch_to_thread (parent);
3004 else
3005 switch_to_thread (child);
3006
3007 ecs->event_thread = inferior_thread ();
3008 ecs->ptid = inferior_ptid;
3009 keep_going (ecs);
3010 }
3011
3012 if (follow_child)
3013 switch_to_thread (child);
3014 else
3015 switch_to_thread (parent);
3016
e58b0e63
PA
3017 ecs->event_thread = inferior_thread ();
3018 ecs->ptid = inferior_ptid;
3019
3020 if (should_resume)
3021 keep_going (ecs);
3022 else
3023 stop_stepping (ecs);
04e68871
DJ
3024 return;
3025 }
2020b7ab 3026 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3027 goto process_event_stop_test;
3028
6c95b8df
PA
3029 case TARGET_WAITKIND_VFORK_DONE:
3030 /* Done with the shared memory region. Re-insert breakpoints in
3031 the parent, and keep going. */
3032
3033 if (debug_infrun)
3034 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3035
3036 if (!ptid_equal (ecs->ptid, inferior_ptid))
3037 context_switch (ecs->ptid);
3038
3039 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3040 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3041 /* This also takes care of reinserting breakpoints in the
3042 previously locked inferior. */
3043 keep_going (ecs);
3044 return;
3045
488f131b 3046 case TARGET_WAITKIND_EXECD:
527159b7 3047 if (debug_infrun)
fc5261f2 3048 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3049
5a2901d9
DJ
3050 if (!ptid_equal (ecs->ptid, inferior_ptid))
3051 {
0d1e5fa7 3052 context_switch (ecs->ptid);
35f196d9 3053 reinit_frame_cache ();
5a2901d9
DJ
3054 }
3055
fb14de7b 3056 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3057
6c95b8df
PA
3058 /* Do whatever is necessary to the parent branch of the vfork. */
3059 handle_vfork_child_exec_or_exit (1);
3060
795e548f
PA
3061 /* This causes the eventpoints and symbol table to be reset.
3062 Must do this now, before trying to determine whether to
3063 stop. */
71b43ef8 3064 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3065
6c95b8df
PA
3066 ecs->event_thread->stop_bpstat
3067 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3068 stop_pc, ecs->ptid);
795e548f
PA
3069 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3070
71b43ef8
PA
3071 /* Note that this may be referenced from inside
3072 bpstat_stop_status above, through inferior_has_execd. */
3073 xfree (ecs->ws.value.execd_pathname);
3074 ecs->ws.value.execd_pathname = NULL;
3075
04e68871
DJ
3076 /* If no catchpoint triggered for this, then keep going. */
3077 if (ecs->random_signal)
3078 {
2020b7ab 3079 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3080 keep_going (ecs);
3081 return;
3082 }
2020b7ab 3083 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3084 goto process_event_stop_test;
3085
b4dc5ffa
MK
3086 /* Be careful not to try to gather much state about a thread
3087 that's in a syscall. It's frequently a losing proposition. */
488f131b 3088 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3089 if (debug_infrun)
8a9de0e4 3090 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e 3091 /* Getting the current syscall number */
ca2163eb 3092 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3093 return;
3094 goto process_event_stop_test;
c906108c 3095
488f131b
JB
3096 /* Before examining the threads further, step this thread to
3097 get it entirely out of the syscall. (We get notice of the
3098 event when the thread is just on the verge of exiting a
3099 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3100 into user code.) */
488f131b 3101 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3102 if (debug_infrun)
8a9de0e4 3103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3104 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3105 return;
3106 goto process_event_stop_test;
c906108c 3107
488f131b 3108 case TARGET_WAITKIND_STOPPED:
527159b7 3109 if (debug_infrun)
8a9de0e4 3110 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 3111 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 3112 break;
c906108c 3113
b2175913
MS
3114 case TARGET_WAITKIND_NO_HISTORY:
3115 /* Reverse execution: target ran out of history info. */
fb14de7b 3116 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
3117 print_stop_reason (NO_HISTORY, 0);
3118 stop_stepping (ecs);
3119 return;
488f131b 3120 }
c906108c 3121
488f131b
JB
3122 if (ecs->new_thread_event)
3123 {
94cc34af
PA
3124 if (non_stop)
3125 /* Non-stop assumes that the target handles adding new threads
3126 to the thread list. */
3127 internal_error (__FILE__, __LINE__, "\
3128targets should add new threads to the thread list themselves in non-stop mode.");
3129
3130 /* We may want to consider not doing a resume here in order to
3131 give the user a chance to play with the new thread. It might
3132 be good to make that a user-settable option. */
3133
3134 /* At this point, all threads are stopped (happens automatically
3135 in either the OS or the native code). Therefore we need to
3136 continue all threads in order to make progress. */
3137
173853dc
PA
3138 if (!ptid_equal (ecs->ptid, inferior_ptid))
3139 context_switch (ecs->ptid);
488f131b
JB
3140 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3141 prepare_to_wait (ecs);
3142 return;
3143 }
c906108c 3144
2020b7ab 3145 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3146 {
3147 /* Do we need to clean up the state of a thread that has
3148 completed a displaced single-step? (Doing so usually affects
3149 the PC, so do it here, before we set stop_pc.) */
3150 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3151
3152 /* If we either finished a single-step or hit a breakpoint, but
3153 the user wanted this thread to be stopped, pretend we got a
3154 SIG0 (generic unsignaled stop). */
3155
3156 if (ecs->event_thread->stop_requested
3157 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3158 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3159 }
237fc4c9 3160
515630c5 3161 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3162
527159b7 3163 if (debug_infrun)
237fc4c9 3164 {
5af949e3
UW
3165 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3166 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3167 struct cleanup *old_chain = save_inferior_ptid ();
3168
3169 inferior_ptid = ecs->ptid;
5af949e3
UW
3170
3171 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3172 paddress (gdbarch, stop_pc));
d92524f1 3173 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3174 {
3175 CORE_ADDR addr;
3176 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3177
3178 if (target_stopped_data_address (&current_target, &addr))
3179 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3180 "infrun: stopped data address = %s\n",
3181 paddress (gdbarch, addr));
237fc4c9
PA
3182 else
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: (no data address available)\n");
3185 }
7f82dfc7
JK
3186
3187 do_cleanups (old_chain);
237fc4c9 3188 }
527159b7 3189
9f976b41
DJ
3190 if (stepping_past_singlestep_breakpoint)
3191 {
1c0fdd0e 3192 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3193 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3194 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3195
3196 stepping_past_singlestep_breakpoint = 0;
3197
3198 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3199 breakpoint, or stopped for some other reason. It would be nice if
3200 we could tell, but we can't reliably. */
2020b7ab 3201 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3202 {
527159b7 3203 if (debug_infrun)
8a9de0e4 3204 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 3205 /* Pull the single step breakpoints out of the target. */
e0cd558a 3206 remove_single_step_breakpoints ();
9f976b41
DJ
3207 singlestep_breakpoints_inserted_p = 0;
3208
3209 ecs->random_signal = 0;
79626f8a 3210 ecs->event_thread->trap_expected = 0;
9f976b41 3211
0d1e5fa7 3212 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3213 if (deprecated_context_hook)
3214 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3215
3216 resume (1, TARGET_SIGNAL_0);
3217 prepare_to_wait (ecs);
3218 return;
3219 }
3220 }
3221
ca67fcb8 3222 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3223 {
94cc34af
PA
3224 /* In non-stop mode, there's never a deferred_step_ptid set. */
3225 gdb_assert (!non_stop);
3226
6a6b96b9
UW
3227 /* If we stopped for some other reason than single-stepping, ignore
3228 the fact that we were supposed to switch back. */
2020b7ab 3229 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3230 {
3231 if (debug_infrun)
3232 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3233 "infrun: handling deferred step\n");
6a6b96b9
UW
3234
3235 /* Pull the single step breakpoints out of the target. */
3236 if (singlestep_breakpoints_inserted_p)
3237 {
3238 remove_single_step_breakpoints ();
3239 singlestep_breakpoints_inserted_p = 0;
3240 }
3241
3242 /* Note: We do not call context_switch at this point, as the
3243 context is already set up for stepping the original thread. */
ca67fcb8
VP
3244 switch_to_thread (deferred_step_ptid);
3245 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3246 /* Suppress spurious "Switching to ..." message. */
3247 previous_inferior_ptid = inferior_ptid;
3248
3249 resume (1, TARGET_SIGNAL_0);
3250 prepare_to_wait (ecs);
3251 return;
3252 }
ca67fcb8
VP
3253
3254 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3255 }
3256
488f131b
JB
3257 /* See if a thread hit a thread-specific breakpoint that was meant for
3258 another thread. If so, then step that thread past the breakpoint,
3259 and continue it. */
3260
2020b7ab 3261 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3262 {
9f976b41 3263 int thread_hop_needed = 0;
cf00dfa7
VP
3264 struct address_space *aspace =
3265 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3266
f8d40ec8
JB
3267 /* Check if a regular breakpoint has been hit before checking
3268 for a potential single step breakpoint. Otherwise, GDB will
3269 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3270 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3271 {
c5aa993b 3272 ecs->random_signal = 0;
6c95b8df 3273 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3274 thread_hop_needed = 1;
3275 }
1c0fdd0e 3276 else if (singlestep_breakpoints_inserted_p)
9f976b41 3277 {
fd48f117
DJ
3278 /* We have not context switched yet, so this should be true
3279 no matter which thread hit the singlestep breakpoint. */
3280 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3283 "trap for %s\n",
3284 target_pid_to_str (ecs->ptid));
3285
9f976b41
DJ
3286 ecs->random_signal = 0;
3287 /* The call to in_thread_list is necessary because PTIDs sometimes
3288 change when we go from single-threaded to multi-threaded. If
3289 the singlestep_ptid is still in the list, assume that it is
3290 really different from ecs->ptid. */
3291 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3292 && in_thread_list (singlestep_ptid))
3293 {
fd48f117
DJ
3294 /* If the PC of the thread we were trying to single-step
3295 has changed, discard this event (which we were going
3296 to ignore anyway), and pretend we saw that thread
3297 trap. This prevents us continuously moving the
3298 single-step breakpoint forward, one instruction at a
3299 time. If the PC has changed, then the thread we were
3300 trying to single-step has trapped or been signalled,
3301 but the event has not been reported to GDB yet.
3302
3303 There might be some cases where this loses signal
3304 information, if a signal has arrived at exactly the
3305 same time that the PC changed, but this is the best
3306 we can do with the information available. Perhaps we
3307 should arrange to report all events for all threads
3308 when they stop, or to re-poll the remote looking for
3309 this particular thread (i.e. temporarily enable
3310 schedlock). */
515630c5
UW
3311
3312 CORE_ADDR new_singlestep_pc
3313 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3314
3315 if (new_singlestep_pc != singlestep_pc)
fd48f117 3316 {
2020b7ab
PA
3317 enum target_signal stop_signal;
3318
fd48f117
DJ
3319 if (debug_infrun)
3320 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3321 " but expected thread advanced also\n");
3322
3323 /* The current context still belongs to
3324 singlestep_ptid. Don't swap here, since that's
3325 the context we want to use. Just fudge our
3326 state and continue. */
2020b7ab
PA
3327 stop_signal = ecs->event_thread->stop_signal;
3328 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 3329 ecs->ptid = singlestep_ptid;
e09875d4 3330 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 3331 ecs->event_thread->stop_signal = stop_signal;
515630c5 3332 stop_pc = new_singlestep_pc;
fd48f117
DJ
3333 }
3334 else
3335 {
3336 if (debug_infrun)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "infrun: unexpected thread\n");
3339
3340 thread_hop_needed = 1;
3341 stepping_past_singlestep_breakpoint = 1;
3342 saved_singlestep_ptid = singlestep_ptid;
3343 }
9f976b41
DJ
3344 }
3345 }
3346
3347 if (thread_hop_needed)
8fb3e588 3348 {
9f5a595d 3349 struct regcache *thread_regcache;
237fc4c9 3350 int remove_status = 0;
8fb3e588 3351
527159b7 3352 if (debug_infrun)
8a9de0e4 3353 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3354
b3444185
PA
3355 /* Switch context before touching inferior memory, the
3356 previous thread may have exited. */
3357 if (!ptid_equal (inferior_ptid, ecs->ptid))
3358 context_switch (ecs->ptid);
3359
8fb3e588
AC
3360 /* Saw a breakpoint, but it was hit by the wrong thread.
3361 Just continue. */
3362
1c0fdd0e 3363 if (singlestep_breakpoints_inserted_p)
488f131b 3364 {
8fb3e588 3365 /* Pull the single step breakpoints out of the target. */
e0cd558a 3366 remove_single_step_breakpoints ();
8fb3e588
AC
3367 singlestep_breakpoints_inserted_p = 0;
3368 }
3369
237fc4c9
PA
3370 /* If the arch can displace step, don't remove the
3371 breakpoints. */
9f5a595d
UW
3372 thread_regcache = get_thread_regcache (ecs->ptid);
3373 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3374 remove_status = remove_breakpoints ();
3375
8fb3e588
AC
3376 /* Did we fail to remove breakpoints? If so, try
3377 to set the PC past the bp. (There's at least
3378 one situation in which we can fail to remove
3379 the bp's: On HP-UX's that use ttrace, we can't
3380 change the address space of a vforking child
3381 process until the child exits (well, okay, not
3382 then either :-) or execs. */
3383 if (remove_status != 0)
9d9cd7ac 3384 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3385 else
3386 { /* Single step */
94cc34af
PA
3387 if (!non_stop)
3388 {
3389 /* Only need to require the next event from this
3390 thread in all-stop mode. */
3391 waiton_ptid = ecs->ptid;
3392 infwait_state = infwait_thread_hop_state;
3393 }
8fb3e588 3394
4e1c45ea 3395 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3396 keep_going (ecs);
8fb3e588
AC
3397 return;
3398 }
488f131b 3399 }
1c0fdd0e 3400 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3401 {
3402 sw_single_step_trap_p = 1;
3403 ecs->random_signal = 0;
3404 }
488f131b
JB
3405 }
3406 else
3407 ecs->random_signal = 1;
c906108c 3408
488f131b 3409 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3410 so, then switch to that thread. */
3411 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3412 {
527159b7 3413 if (debug_infrun)
8a9de0e4 3414 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3415
0d1e5fa7 3416 context_switch (ecs->ptid);
c5aa993b 3417
9a4105ab
AC
3418 if (deprecated_context_hook)
3419 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3420 }
c906108c 3421
568d6575
UW
3422 /* At this point, get hold of the now-current thread's frame. */
3423 frame = get_current_frame ();
3424 gdbarch = get_frame_arch (frame);
3425
1c0fdd0e 3426 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3427 {
3428 /* Pull the single step breakpoints out of the target. */
e0cd558a 3429 remove_single_step_breakpoints ();
488f131b
JB
3430 singlestep_breakpoints_inserted_p = 0;
3431 }
c906108c 3432
d983da9c
DJ
3433 if (stepped_after_stopped_by_watchpoint)
3434 stopped_by_watchpoint = 0;
3435 else
3436 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3437
3438 /* If necessary, step over this watchpoint. We'll be back to display
3439 it in a moment. */
3440 if (stopped_by_watchpoint
d92524f1 3441 && (target_have_steppable_watchpoint
568d6575 3442 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3443 {
488f131b
JB
3444 /* At this point, we are stopped at an instruction which has
3445 attempted to write to a piece of memory under control of
3446 a watchpoint. The instruction hasn't actually executed
3447 yet. If we were to evaluate the watchpoint expression
3448 now, we would get the old value, and therefore no change
3449 would seem to have occurred.
3450
3451 In order to make watchpoints work `right', we really need
3452 to complete the memory write, and then evaluate the
d983da9c
DJ
3453 watchpoint expression. We do this by single-stepping the
3454 target.
3455
3456 It may not be necessary to disable the watchpoint to stop over
3457 it. For example, the PA can (with some kernel cooperation)
3458 single step over a watchpoint without disabling the watchpoint.
3459
3460 It is far more common to need to disable a watchpoint to step
3461 the inferior over it. If we have non-steppable watchpoints,
3462 we must disable the current watchpoint; it's simplest to
3463 disable all watchpoints and breakpoints. */
2facfe5c
DD
3464 int hw_step = 1;
3465
d92524f1 3466 if (!target_have_steppable_watchpoint)
d983da9c 3467 remove_breakpoints ();
2facfe5c 3468 /* Single step */
568d6575 3469 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3470 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3471 waiton_ptid = ecs->ptid;
d92524f1 3472 if (target_have_steppable_watchpoint)
0d1e5fa7 3473 infwait_state = infwait_step_watch_state;
d983da9c 3474 else
0d1e5fa7 3475 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3476 prepare_to_wait (ecs);
3477 return;
3478 }
3479
488f131b
JB
3480 ecs->stop_func_start = 0;
3481 ecs->stop_func_end = 0;
3482 ecs->stop_func_name = 0;
3483 /* Don't care about return value; stop_func_start and stop_func_name
3484 will both be 0 if it doesn't work. */
3485 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3486 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3487 ecs->stop_func_start
568d6575 3488 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3489 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3490 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3491 ecs->event_thread->stop_step = 0;
488f131b
JB
3492 stop_print_frame = 1;
3493 ecs->random_signal = 0;
3494 stopped_by_random_signal = 0;
488f131b 3495
edb3359d
DJ
3496 /* Hide inlined functions starting here, unless we just performed stepi or
3497 nexti. After stepi and nexti, always show the innermost frame (not any
3498 inline function call sites). */
3499 if (ecs->event_thread->step_range_end != 1)
3500 skip_inline_frames (ecs->ptid);
3501
2020b7ab 3502 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3503 && ecs->event_thread->trap_expected
568d6575 3504 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3505 && currently_stepping (ecs->event_thread))
3352ef37 3506 {
b50d7442 3507 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3508 also on an instruction that needs to be stepped multiple
3509 times before it's been fully executing. E.g., architectures
3510 with a delay slot. It needs to be stepped twice, once for
3511 the instruction and once for the delay slot. */
3512 int step_through_delay
568d6575 3513 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3514 if (debug_infrun && step_through_delay)
8a9de0e4 3515 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3516 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3517 {
3518 /* The user issued a continue when stopped at a breakpoint.
3519 Set up for another trap and get out of here. */
4e1c45ea 3520 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3521 keep_going (ecs);
3522 return;
3523 }
3524 else if (step_through_delay)
3525 {
3526 /* The user issued a step when stopped at a breakpoint.
3527 Maybe we should stop, maybe we should not - the delay
3528 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3529 case, don't decide that here, just set
3530 ecs->stepping_over_breakpoint, making sure we
3531 single-step again before breakpoints are re-inserted. */
4e1c45ea 3532 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3533 }
3534 }
3535
488f131b
JB
3536 /* Look at the cause of the stop, and decide what to do.
3537 The alternatives are:
0d1e5fa7
PA
3538 1) stop_stepping and return; to really stop and return to the debugger,
3539 2) keep_going and return to start up again
4e1c45ea 3540 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3541 3) set ecs->random_signal to 1, and the decision between 1 and 2
3542 will be made according to the signal handling tables. */
3543
2020b7ab 3544 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3545 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3546 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3547 {
2020b7ab 3548 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3549 {
527159b7 3550 if (debug_infrun)
8a9de0e4 3551 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3552 stop_print_frame = 0;
3553 stop_stepping (ecs);
3554 return;
3555 }
c54cfec8
EZ
3556
3557 /* This is originated from start_remote(), start_inferior() and
3558 shared libraries hook functions. */
b0f4b84b 3559 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3560 {
527159b7 3561 if (debug_infrun)
8a9de0e4 3562 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3563 stop_stepping (ecs);
3564 return;
3565 }
3566
c54cfec8 3567 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3568 the stop_signal here, because some kernels don't ignore a
3569 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3570 See more comments in inferior.h. On the other hand, if we
a0ef4274 3571 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3572 will handle the SIGSTOP if it should show up later.
3573
3574 Also consider that the attach is complete when we see a
3575 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3576 target extended-remote report it instead of a SIGSTOP
3577 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3578 signal, so this is no exception.
3579
3580 Also consider that the attach is complete when we see a
3581 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3582 the target to stop all threads of the inferior, in case the
3583 low level attach operation doesn't stop them implicitly. If
3584 they weren't stopped implicitly, then the stub will report a
3585 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3586 other than GDB's request. */
a0ef4274 3587 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3588 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3589 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3590 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3591 {
3592 stop_stepping (ecs);
2020b7ab 3593 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3594 return;
3595 }
3596
fba57f8f 3597 /* See if there is a breakpoint at the current PC. */
6c95b8df
PA
3598 ecs->event_thread->stop_bpstat
3599 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3600 stop_pc, ecs->ptid);
3601
fba57f8f
VP
3602 /* Following in case break condition called a
3603 function. */
3604 stop_print_frame = 1;
488f131b 3605
db82e815
PA
3606 /* This is where we handle "moribund" watchpoints. Unlike
3607 software breakpoints traps, hardware watchpoint traps are
3608 always distinguishable from random traps. If no high-level
3609 watchpoint is associated with the reported stop data address
3610 anymore, then the bpstat does not explain the signal ---
3611 simply make sure to ignore it if `stopped_by_watchpoint' is
3612 set. */
3613
3614 if (debug_infrun
3615 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3616 && !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3617 && stopped_by_watchpoint)
3618 fprintf_unfiltered (gdb_stdlog, "\
3619infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3620
73dd234f 3621 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3622 at one stage in the past included checks for an inferior
3623 function call's call dummy's return breakpoint. The original
3624 comment, that went with the test, read:
73dd234f 3625
8fb3e588
AC
3626 ``End of a stack dummy. Some systems (e.g. Sony news) give
3627 another signal besides SIGTRAP, so check here as well as
3628 above.''
73dd234f 3629
8002d778 3630 If someone ever tries to get call dummys on a
73dd234f 3631 non-executable stack to work (where the target would stop
03cebad2
MK
3632 with something like a SIGSEGV), then those tests might need
3633 to be re-instated. Given, however, that the tests were only
73dd234f 3634 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3635 suspect that it won't be the case.
3636
8fb3e588
AC
3637 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3638 be necessary for call dummies on a non-executable stack on
3639 SPARC. */
73dd234f 3640
2020b7ab 3641 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3642 ecs->random_signal
347bddb7 3643 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
db82e815 3644 || stopped_by_watchpoint
4e1c45ea
PA
3645 || ecs->event_thread->trap_expected
3646 || (ecs->event_thread->step_range_end
3647 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3648 else
3649 {
347bddb7 3650 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3651 if (!ecs->random_signal)
2020b7ab 3652 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3653 }
3654 }
3655
3656 /* When we reach this point, we've pretty much decided
3657 that the reason for stopping must've been a random
3658 (unexpected) signal. */
3659
3660 else
3661 ecs->random_signal = 1;
488f131b 3662
04e68871 3663process_event_stop_test:
568d6575
UW
3664
3665 /* Re-fetch current thread's frame in case we did a
3666 "goto process_event_stop_test" above. */
3667 frame = get_current_frame ();
3668 gdbarch = get_frame_arch (frame);
3669
488f131b
JB
3670 /* For the program's own signals, act according to
3671 the signal handling tables. */
3672
3673 if (ecs->random_signal)
3674 {
3675 /* Signal not for debugging purposes. */
3676 int printed = 0;
3677
527159b7 3678 if (debug_infrun)
2020b7ab
PA
3679 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3680 ecs->event_thread->stop_signal);
527159b7 3681
488f131b
JB
3682 stopped_by_random_signal = 1;
3683
2020b7ab 3684 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3685 {
3686 printed = 1;
3687 target_terminal_ours_for_output ();
2020b7ab 3688 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3689 }
252fbfc8
PA
3690 /* Always stop on signals if we're either just gaining control
3691 of the program, or the user explicitly requested this thread
3692 to remain stopped. */
d6b48e9c 3693 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3694 || ecs->event_thread->stop_requested
d6b48e9c 3695 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3696 {
3697 stop_stepping (ecs);
3698 return;
3699 }
3700 /* If not going to stop, give terminal back
3701 if we took it away. */
3702 else if (printed)
3703 target_terminal_inferior ();
3704
3705 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3706 if (signal_program[ecs->event_thread->stop_signal] == 0)
3707 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3708
fb14de7b 3709 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3710 && ecs->event_thread->trap_expected
3711 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3712 {
3713 /* We were just starting a new sequence, attempting to
3714 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3715 Instead this signal arrives. This signal will take us out
68f53502
AC
3716 of the stepping range so GDB needs to remember to, when
3717 the signal handler returns, resume stepping off that
3718 breakpoint. */
3719 /* To simplify things, "continue" is forced to use the same
3720 code paths as single-step - set a breakpoint at the
3721 signal return address and then, once hit, step off that
3722 breakpoint. */
237fc4c9
PA
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: signal arrived while stepping over "
3726 "breakpoint\n");
d3169d93 3727
568d6575 3728 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3729 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3730 keep_going (ecs);
3731 return;
68f53502 3732 }
9d799f85 3733
4e1c45ea 3734 if (ecs->event_thread->step_range_end != 0
2020b7ab 3735 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3736 && (ecs->event_thread->step_range_start <= stop_pc
3737 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3738 && frame_id_eq (get_stack_frame_id (frame),
3739 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3740 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3741 {
3742 /* The inferior is about to take a signal that will take it
3743 out of the single step range. Set a breakpoint at the
3744 current PC (which is presumably where the signal handler
3745 will eventually return) and then allow the inferior to
3746 run free.
3747
3748 Note that this is only needed for a signal delivered
3749 while in the single-step range. Nested signals aren't a
3750 problem as they eventually all return. */
237fc4c9
PA
3751 if (debug_infrun)
3752 fprintf_unfiltered (gdb_stdlog,
3753 "infrun: signal may take us out of "
3754 "single-step range\n");
3755
568d6575 3756 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3757 keep_going (ecs);
3758 return;
d303a6c7 3759 }
9d799f85
AC
3760
3761 /* Note: step_resume_breakpoint may be non-NULL. This occures
3762 when either there's a nested signal, or when there's a
3763 pending signal enabled just as the signal handler returns
3764 (leaving the inferior at the step-resume-breakpoint without
3765 actually executing it). Either way continue until the
3766 breakpoint is really hit. */
488f131b
JB
3767 keep_going (ecs);
3768 return;
3769 }
3770
3771 /* Handle cases caused by hitting a breakpoint. */
3772 {
3773 CORE_ADDR jmp_buf_pc;
3774 struct bpstat_what what;
3775
347bddb7 3776 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3777
3778 if (what.call_dummy)
3779 {
3780 stop_stack_dummy = 1;
c5aa993b 3781 }
c906108c 3782
488f131b 3783 switch (what.main_action)
c5aa993b 3784 {
488f131b 3785 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3786 /* If we hit the breakpoint at longjmp while stepping, we
3787 install a momentary breakpoint at the target of the
3788 jmp_buf. */
3789
3790 if (debug_infrun)
3791 fprintf_unfiltered (gdb_stdlog,
3792 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3793
4e1c45ea 3794 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3795
568d6575
UW
3796 if (!gdbarch_get_longjmp_target_p (gdbarch)
3797 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3798 {
611c83ae
PA
3799 if (debug_infrun)
3800 fprintf_unfiltered (gdb_stdlog, "\
3801infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3802 keep_going (ecs);
104c1213 3803 return;
c5aa993b 3804 }
488f131b 3805
611c83ae
PA
3806 /* We're going to replace the current step-resume breakpoint
3807 with a longjmp-resume breakpoint. */
4e1c45ea 3808 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3809
3810 /* Insert a breakpoint at resume address. */
a6d9a66e 3811 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3812
488f131b
JB
3813 keep_going (ecs);
3814 return;
c906108c 3815
488f131b 3816 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3817 if (debug_infrun)
611c83ae
PA
3818 fprintf_unfiltered (gdb_stdlog,
3819 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3820
4e1c45ea
PA
3821 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3822 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3823
414c69f7 3824 ecs->event_thread->stop_step = 1;
611c83ae
PA
3825 print_stop_reason (END_STEPPING_RANGE, 0);
3826 stop_stepping (ecs);
3827 return;
488f131b
JB
3828
3829 case BPSTAT_WHAT_SINGLE:
527159b7 3830 if (debug_infrun)
8802d8ed 3831 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3832 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3833 /* Still need to check other stuff, at least the case
3834 where we are stepping and step out of the right range. */
3835 break;
c906108c 3836
488f131b 3837 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3838 if (debug_infrun)
8802d8ed 3839 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3840 stop_print_frame = 1;
c906108c 3841
d303a6c7
AC
3842 /* We are about to nuke the step_resume_breakpointt via the
3843 cleanup chain, so no need to worry about it here. */
c5aa993b 3844
488f131b
JB
3845 stop_stepping (ecs);
3846 return;
c5aa993b 3847
488f131b 3848 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3849 if (debug_infrun)
8802d8ed 3850 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3851 stop_print_frame = 0;
c5aa993b 3852
d303a6c7
AC
3853 /* We are about to nuke the step_resume_breakpoin via the
3854 cleanup chain, so no need to worry about it here. */
c5aa993b 3855
488f131b 3856 stop_stepping (ecs);
e441088d 3857 return;
c5aa993b 3858
488f131b 3859 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3860 if (debug_infrun)
8802d8ed 3861 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3862
4e1c45ea
PA
3863 delete_step_resume_breakpoint (ecs->event_thread);
3864 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3865 {
3866 /* Back when the step-resume breakpoint was inserted, we
3867 were trying to single-step off a breakpoint. Go back
3868 to doing that. */
4e1c45ea
PA
3869 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3870 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3871 keep_going (ecs);
3872 return;
3873 }
b2175913
MS
3874 if (stop_pc == ecs->stop_func_start
3875 && execution_direction == EXEC_REVERSE)
3876 {
3877 /* We are stepping over a function call in reverse, and
3878 just hit the step-resume breakpoint at the start
3879 address of the function. Go back to single-stepping,
3880 which should take us back to the function call. */
3881 ecs->event_thread->stepping_over_breakpoint = 1;
3882 keep_going (ecs);
3883 return;
3884 }
488f131b
JB
3885 break;
3886
488f131b 3887 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3888 {
527159b7 3889 if (debug_infrun)
8802d8ed 3890 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3891
3892 /* Check for any newly added shared libraries if we're
3893 supposed to be adding them automatically. Switch
3894 terminal for any messages produced by
3895 breakpoint_re_set. */
3896 target_terminal_ours_for_output ();
aff6338a 3897 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3898 stack's section table is kept up-to-date. Architectures,
3899 (e.g., PPC64), use the section table to perform
3900 operations such as address => section name and hence
3901 require the table to contain all sections (including
3902 those found in shared libraries). */
a77053c2 3903#ifdef SOLIB_ADD
aff6338a 3904 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3905#else
3906 solib_add (NULL, 0, &current_target, auto_solib_add);
3907#endif
488f131b
JB
3908 target_terminal_inferior ();
3909
488f131b
JB
3910 /* If requested, stop when the dynamic linker notifies
3911 gdb of events. This allows the user to get control
3912 and place breakpoints in initializer routines for
3913 dynamically loaded objects (among other things). */
877522db 3914 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3915 {
488f131b 3916 stop_stepping (ecs);
d4f3574e
SS
3917 return;
3918 }
c5aa993b 3919 else
c5aa993b 3920 {
488f131b 3921 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3922 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3923 break;
c5aa993b 3924 }
488f131b 3925 }
488f131b 3926 break;
4efc6507
DE
3927
3928 case BPSTAT_WHAT_CHECK_JIT:
3929 if (debug_infrun)
3930 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3931
3932 /* Switch terminal for any messages produced by breakpoint_re_set. */
3933 target_terminal_ours_for_output ();
3934
0756c555 3935 jit_event_handler (gdbarch);
4efc6507
DE
3936
3937 target_terminal_inferior ();
3938
3939 /* We want to step over this breakpoint, then keep going. */
3940 ecs->event_thread->stepping_over_breakpoint = 1;
3941
3942 break;
c906108c 3943
488f131b
JB
3944 case BPSTAT_WHAT_LAST:
3945 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3946
488f131b
JB
3947 case BPSTAT_WHAT_KEEP_CHECKING:
3948 break;
3949 }
3950 }
c906108c 3951
488f131b
JB
3952 /* We come here if we hit a breakpoint but should not
3953 stop for it. Possibly we also were stepping
3954 and should stop for that. So fall through and
3955 test for stepping. But, if not stepping,
3956 do not stop. */
c906108c 3957
a7212384
UW
3958 /* In all-stop mode, if we're currently stepping but have stopped in
3959 some other thread, we need to switch back to the stepped thread. */
3960 if (!non_stop)
3961 {
3962 struct thread_info *tp;
b3444185 3963 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3964 ecs->event_thread);
3965 if (tp)
3966 {
3967 /* However, if the current thread is blocked on some internal
3968 breakpoint, and we simply need to step over that breakpoint
3969 to get it going again, do that first. */
3970 if ((ecs->event_thread->trap_expected
3971 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3972 || ecs->event_thread->stepping_over_breakpoint)
3973 {
3974 keep_going (ecs);
3975 return;
3976 }
3977
66852e9c
PA
3978 /* If the stepping thread exited, then don't try to switch
3979 back and resume it, which could fail in several different
3980 ways depending on the target. Instead, just keep going.
3981
3982 We can find a stepping dead thread in the thread list in
3983 two cases:
3984
3985 - The target supports thread exit events, and when the
3986 target tries to delete the thread from the thread list,
3987 inferior_ptid pointed at the exiting thread. In such
3988 case, calling delete_thread does not really remove the
3989 thread from the list; instead, the thread is left listed,
3990 with 'exited' state.
3991
3992 - The target's debug interface does not support thread
3993 exit events, and so we have no idea whatsoever if the
3994 previously stepping thread is still alive. For that
3995 reason, we need to synchronously query the target
3996 now. */
b3444185
PA
3997 if (is_exited (tp->ptid)
3998 || !target_thread_alive (tp->ptid))
3999 {
4000 if (debug_infrun)
4001 fprintf_unfiltered (gdb_stdlog, "\
4002infrun: not switching back to stepped thread, it has vanished\n");
4003
4004 delete_thread (tp->ptid);
4005 keep_going (ecs);
4006 return;
4007 }
4008
a7212384
UW
4009 /* Otherwise, we no longer expect a trap in the current thread.
4010 Clear the trap_expected flag before switching back -- this is
4011 what keep_going would do as well, if we called it. */
4012 ecs->event_thread->trap_expected = 0;
4013
4014 if (debug_infrun)
4015 fprintf_unfiltered (gdb_stdlog,
4016 "infrun: switching back to stepped thread\n");
4017
4018 ecs->event_thread = tp;
4019 ecs->ptid = tp->ptid;
4020 context_switch (ecs->ptid);
4021 keep_going (ecs);
4022 return;
4023 }
4024 }
4025
9d1ff73f
MS
4026 /* Are we stepping to get the inferior out of the dynamic linker's
4027 hook (and possibly the dld itself) after catching a shlib
4028 event? */
4e1c45ea 4029 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4030 {
4031#if defined(SOLIB_ADD)
4032 /* Have we reached our destination? If not, keep going. */
4033 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4034 {
527159b7 4035 if (debug_infrun)
8a9de0e4 4036 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 4037 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4038 keep_going (ecs);
104c1213 4039 return;
488f131b
JB
4040 }
4041#endif
527159b7 4042 if (debug_infrun)
8a9de0e4 4043 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
4044 /* Else, stop and report the catchpoint(s) whose triggering
4045 caused us to begin stepping. */
4e1c45ea 4046 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
4047 bpstat_clear (&ecs->event_thread->stop_bpstat);
4048 ecs->event_thread->stop_bpstat
4049 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4050 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4051 stop_print_frame = 1;
4052 stop_stepping (ecs);
4053 return;
4054 }
c906108c 4055
4e1c45ea 4056 if (ecs->event_thread->step_resume_breakpoint)
488f131b 4057 {
527159b7 4058 if (debug_infrun)
d3169d93
DJ
4059 fprintf_unfiltered (gdb_stdlog,
4060 "infrun: step-resume breakpoint is inserted\n");
527159b7 4061
488f131b
JB
4062 /* Having a step-resume breakpoint overrides anything
4063 else having to do with stepping commands until
4064 that breakpoint is reached. */
488f131b
JB
4065 keep_going (ecs);
4066 return;
4067 }
c5aa993b 4068
4e1c45ea 4069 if (ecs->event_thread->step_range_end == 0)
488f131b 4070 {
527159b7 4071 if (debug_infrun)
8a9de0e4 4072 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4073 /* Likewise if we aren't even stepping. */
488f131b
JB
4074 keep_going (ecs);
4075 return;
4076 }
c5aa993b 4077
4b7703ad
JB
4078 /* Re-fetch current thread's frame in case the code above caused
4079 the frame cache to be re-initialized, making our FRAME variable
4080 a dangling pointer. */
4081 frame = get_current_frame ();
4082
488f131b 4083 /* If stepping through a line, keep going if still within it.
c906108c 4084
488f131b
JB
4085 Note that step_range_end is the address of the first instruction
4086 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4087 within it!
4088
4089 Note also that during reverse execution, we may be stepping
4090 through a function epilogue and therefore must detect when
4091 the current-frame changes in the middle of a line. */
4092
4e1c45ea 4093 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
4094 && stop_pc < ecs->event_thread->step_range_end
4095 && (execution_direction != EXEC_REVERSE
388a8562 4096 || frame_id_eq (get_frame_id (frame),
31410e84 4097 ecs->event_thread->step_frame_id)))
488f131b 4098 {
527159b7 4099 if (debug_infrun)
5af949e3
UW
4100 fprintf_unfiltered
4101 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4102 paddress (gdbarch, ecs->event_thread->step_range_start),
4103 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
4104
4105 /* When stepping backward, stop at beginning of line range
4106 (unless it's the function entry point, in which case
4107 keep going back to the call point). */
4108 if (stop_pc == ecs->event_thread->step_range_start
4109 && stop_pc != ecs->stop_func_start
4110 && execution_direction == EXEC_REVERSE)
4111 {
4112 ecs->event_thread->stop_step = 1;
4113 print_stop_reason (END_STEPPING_RANGE, 0);
4114 stop_stepping (ecs);
4115 }
4116 else
4117 keep_going (ecs);
4118
488f131b
JB
4119 return;
4120 }
c5aa993b 4121
488f131b 4122 /* We stepped out of the stepping range. */
c906108c 4123
488f131b 4124 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4125 loader dynamic symbol resolution code...
4126
4127 EXEC_FORWARD: we keep on single stepping until we exit the run
4128 time loader code and reach the callee's address.
4129
4130 EXEC_REVERSE: we've already executed the callee (backward), and
4131 the runtime loader code is handled just like any other
4132 undebuggable function call. Now we need only keep stepping
4133 backward through the trampoline code, and that's handled further
4134 down, so there is nothing for us to do here. */
4135
4136 if (execution_direction != EXEC_REVERSE
4137 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4138 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4139 {
4c8c40e6 4140 CORE_ADDR pc_after_resolver =
568d6575 4141 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4142
527159b7 4143 if (debug_infrun)
8a9de0e4 4144 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 4145
488f131b
JB
4146 if (pc_after_resolver)
4147 {
4148 /* Set up a step-resume breakpoint at the address
4149 indicated by SKIP_SOLIB_RESOLVER. */
4150 struct symtab_and_line sr_sal;
fe39c653 4151 init_sal (&sr_sal);
488f131b 4152 sr_sal.pc = pc_after_resolver;
6c95b8df 4153 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4154
a6d9a66e
UW
4155 insert_step_resume_breakpoint_at_sal (gdbarch,
4156 sr_sal, null_frame_id);
c5aa993b 4157 }
c906108c 4158
488f131b
JB
4159 keep_going (ecs);
4160 return;
4161 }
c906108c 4162
4e1c45ea 4163 if (ecs->event_thread->step_range_end != 1
078130d0
PA
4164 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4165 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 4166 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4167 {
527159b7 4168 if (debug_infrun)
8a9de0e4 4169 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 4170 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4171 a signal trampoline (either by a signal being delivered or by
4172 the signal handler returning). Just single-step until the
4173 inferior leaves the trampoline (either by calling the handler
4174 or returning). */
488f131b
JB
4175 keep_going (ecs);
4176 return;
4177 }
c906108c 4178
c17eaafe
DJ
4179 /* Check for subroutine calls. The check for the current frame
4180 equalling the step ID is not necessary - the check of the
4181 previous frame's ID is sufficient - but it is a common case and
4182 cheaper than checking the previous frame's ID.
14e60db5
DJ
4183
4184 NOTE: frame_id_eq will never report two invalid frame IDs as
4185 being equal, so to get into this block, both the current and
4186 previous frame must have valid frame IDs. */
005ca36a
JB
4187 /* The outer_frame_id check is a heuristic to detect stepping
4188 through startup code. If we step over an instruction which
4189 sets the stack pointer from an invalid value to a valid value,
4190 we may detect that as a subroutine call from the mythical
4191 "outermost" function. This could be fixed by marking
4192 outermost frames as !stack_p,code_p,special_p. Then the
4193 initial outermost frame, before sp was valid, would
ce6cca6d 4194 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4195 for more. */
edb3359d
DJ
4196 if (!frame_id_eq (get_stack_frame_id (frame),
4197 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
4198 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4199 ecs->event_thread->step_stack_frame_id)
4200 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4201 outer_frame_id)
4202 || step_start_function != find_pc_function (stop_pc))))
488f131b 4203 {
95918acb 4204 CORE_ADDR real_stop_pc;
8fb3e588 4205
527159b7 4206 if (debug_infrun)
8a9de0e4 4207 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4208
078130d0 4209 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 4210 || ((ecs->event_thread->step_range_end == 1)
d80b854b 4211 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4212 ecs->stop_func_start)))
95918acb
AC
4213 {
4214 /* I presume that step_over_calls is only 0 when we're
4215 supposed to be stepping at the assembly language level
4216 ("stepi"). Just stop. */
4217 /* Also, maybe we just did a "nexti" inside a prolog, so we
4218 thought it was a subroutine call but it was not. Stop as
4219 well. FENN */
388a8562 4220 /* And this works the same backward as frontward. MVS */
414c69f7 4221 ecs->event_thread->stop_step = 1;
95918acb
AC
4222 print_stop_reason (END_STEPPING_RANGE, 0);
4223 stop_stepping (ecs);
4224 return;
4225 }
8fb3e588 4226
388a8562
MS
4227 /* Reverse stepping through solib trampolines. */
4228
4229 if (execution_direction == EXEC_REVERSE
fdd654f3 4230 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
4231 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4232 || (ecs->stop_func_start == 0
4233 && in_solib_dynsym_resolve_code (stop_pc))))
4234 {
4235 /* Any solib trampoline code can be handled in reverse
4236 by simply continuing to single-step. We have already
4237 executed the solib function (backwards), and a few
4238 steps will take us back through the trampoline to the
4239 caller. */
4240 keep_going (ecs);
4241 return;
4242 }
4243
078130d0 4244 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 4245 {
b2175913
MS
4246 /* We're doing a "next".
4247
4248 Normal (forward) execution: set a breakpoint at the
4249 callee's return address (the address at which the caller
4250 will resume).
4251
4252 Reverse (backward) execution. set the step-resume
4253 breakpoint at the start of the function that we just
4254 stepped into (backwards), and continue to there. When we
6130d0b7 4255 get there, we'll need to single-step back to the caller. */
b2175913
MS
4256
4257 if (execution_direction == EXEC_REVERSE)
4258 {
4259 struct symtab_and_line sr_sal;
3067f6e5 4260
388a8562
MS
4261 /* Normal function call return (static or dynamic). */
4262 init_sal (&sr_sal);
4263 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4264 sr_sal.pspace = get_frame_program_space (frame);
4265 insert_step_resume_breakpoint_at_sal (gdbarch,
4266 sr_sal, null_frame_id);
b2175913
MS
4267 }
4268 else
568d6575 4269 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4270
8567c30f
AC
4271 keep_going (ecs);
4272 return;
4273 }
a53c66de 4274
95918acb 4275 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4276 calling routine and the real function), locate the real
4277 function. That's what tells us (a) whether we want to step
4278 into it at all, and (b) what prologue we want to run to the
4279 end of, if we do step into it. */
568d6575 4280 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4281 if (real_stop_pc == 0)
568d6575 4282 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4283 if (real_stop_pc != 0)
4284 ecs->stop_func_start = real_stop_pc;
8fb3e588 4285
db5f024e 4286 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4287 {
4288 struct symtab_and_line sr_sal;
4289 init_sal (&sr_sal);
4290 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4291 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4292
a6d9a66e
UW
4293 insert_step_resume_breakpoint_at_sal (gdbarch,
4294 sr_sal, null_frame_id);
8fb3e588
AC
4295 keep_going (ecs);
4296 return;
1b2bfbb9
RC
4297 }
4298
95918acb 4299 /* If we have line number information for the function we are
8fb3e588 4300 thinking of stepping into, step into it.
95918acb 4301
8fb3e588
AC
4302 If there are several symtabs at that PC (e.g. with include
4303 files), just want to know whether *any* of them have line
4304 numbers. find_pc_line handles this. */
95918acb
AC
4305 {
4306 struct symtab_and_line tmp_sal;
8fb3e588 4307
95918acb 4308 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
9d1807c3 4309 tmp_sal.pspace = get_frame_program_space (frame);
95918acb
AC
4310 if (tmp_sal.line != 0)
4311 {
b2175913 4312 if (execution_direction == EXEC_REVERSE)
568d6575 4313 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4314 else
568d6575 4315 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4316 return;
4317 }
4318 }
4319
4320 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4321 set, we stop the step so that the user has a chance to switch
4322 in assembly mode. */
078130d0
PA
4323 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4324 && step_stop_if_no_debug)
95918acb 4325 {
414c69f7 4326 ecs->event_thread->stop_step = 1;
95918acb
AC
4327 print_stop_reason (END_STEPPING_RANGE, 0);
4328 stop_stepping (ecs);
4329 return;
4330 }
4331
b2175913
MS
4332 if (execution_direction == EXEC_REVERSE)
4333 {
4334 /* Set a breakpoint at callee's start address.
4335 From there we can step once and be back in the caller. */
4336 struct symtab_and_line sr_sal;
4337 init_sal (&sr_sal);
4338 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4339 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4340 insert_step_resume_breakpoint_at_sal (gdbarch,
4341 sr_sal, null_frame_id);
b2175913
MS
4342 }
4343 else
4344 /* Set a breakpoint at callee's return address (the address
4345 at which the caller will resume). */
568d6575 4346 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4347
95918acb 4348 keep_going (ecs);
488f131b 4349 return;
488f131b 4350 }
c906108c 4351
fdd654f3
MS
4352 /* Reverse stepping through solib trampolines. */
4353
4354 if (execution_direction == EXEC_REVERSE
4355 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4356 {
4357 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4358 || (ecs->stop_func_start == 0
4359 && in_solib_dynsym_resolve_code (stop_pc)))
4360 {
4361 /* Any solib trampoline code can be handled in reverse
4362 by simply continuing to single-step. We have already
4363 executed the solib function (backwards), and a few
4364 steps will take us back through the trampoline to the
4365 caller. */
4366 keep_going (ecs);
4367 return;
4368 }
4369 else if (in_solib_dynsym_resolve_code (stop_pc))
4370 {
4371 /* Stepped backward into the solib dynsym resolver.
4372 Set a breakpoint at its start and continue, then
4373 one more step will take us out. */
4374 struct symtab_and_line sr_sal;
4375 init_sal (&sr_sal);
4376 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4377 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4378 insert_step_resume_breakpoint_at_sal (gdbarch,
4379 sr_sal, null_frame_id);
4380 keep_going (ecs);
4381 return;
4382 }
4383 }
4384
488f131b
JB
4385 /* If we're in the return path from a shared library trampoline,
4386 we want to proceed through the trampoline when stepping. */
568d6575 4387 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4388 stop_pc, ecs->stop_func_name))
488f131b 4389 {
488f131b 4390 /* Determine where this trampoline returns. */
52f729a7 4391 CORE_ADDR real_stop_pc;
568d6575 4392 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4393
527159b7 4394 if (debug_infrun)
8a9de0e4 4395 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4396
488f131b 4397 /* Only proceed through if we know where it's going. */
d764a824 4398 if (real_stop_pc)
488f131b
JB
4399 {
4400 /* And put the step-breakpoint there and go until there. */
4401 struct symtab_and_line sr_sal;
4402
fe39c653 4403 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4404 sr_sal.pc = real_stop_pc;
488f131b 4405 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4406 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4407
4408 /* Do not specify what the fp should be when we stop since
4409 on some machines the prologue is where the new fp value
4410 is established. */
a6d9a66e
UW
4411 insert_step_resume_breakpoint_at_sal (gdbarch,
4412 sr_sal, null_frame_id);
c906108c 4413
488f131b
JB
4414 /* Restart without fiddling with the step ranges or
4415 other state. */
4416 keep_going (ecs);
4417 return;
4418 }
4419 }
c906108c 4420
2afb61aa 4421 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4422
1b2bfbb9
RC
4423 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4424 the trampoline processing logic, however, there are some trampolines
4425 that have no names, so we should do trampoline handling first. */
078130d0 4426 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4427 && ecs->stop_func_name == NULL
2afb61aa 4428 && stop_pc_sal.line == 0)
1b2bfbb9 4429 {
527159b7 4430 if (debug_infrun)
8a9de0e4 4431 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4432
1b2bfbb9 4433 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4434 undebuggable function (where there is no debugging information
4435 and no line number corresponding to the address where the
1b2bfbb9
RC
4436 inferior stopped). Since we want to skip this kind of code,
4437 we keep going until the inferior returns from this
14e60db5
DJ
4438 function - unless the user has asked us not to (via
4439 set step-mode) or we no longer know how to get back
4440 to the call site. */
4441 if (step_stop_if_no_debug
c7ce8faa 4442 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4443 {
4444 /* If we have no line number and the step-stop-if-no-debug
4445 is set, we stop the step so that the user has a chance to
4446 switch in assembly mode. */
414c69f7 4447 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4448 print_stop_reason (END_STEPPING_RANGE, 0);
4449 stop_stepping (ecs);
4450 return;
4451 }
4452 else
4453 {
4454 /* Set a breakpoint at callee's return address (the address
4455 at which the caller will resume). */
568d6575 4456 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4457 keep_going (ecs);
4458 return;
4459 }
4460 }
4461
4e1c45ea 4462 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4463 {
4464 /* It is stepi or nexti. We always want to stop stepping after
4465 one instruction. */
527159b7 4466 if (debug_infrun)
8a9de0e4 4467 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4468 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4469 print_stop_reason (END_STEPPING_RANGE, 0);
4470 stop_stepping (ecs);
4471 return;
4472 }
4473
2afb61aa 4474 if (stop_pc_sal.line == 0)
488f131b
JB
4475 {
4476 /* We have no line number information. That means to stop
4477 stepping (does this always happen right after one instruction,
4478 when we do "s" in a function with no line numbers,
4479 or can this happen as a result of a return or longjmp?). */
527159b7 4480 if (debug_infrun)
8a9de0e4 4481 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4482 ecs->event_thread->stop_step = 1;
488f131b
JB
4483 print_stop_reason (END_STEPPING_RANGE, 0);
4484 stop_stepping (ecs);
4485 return;
4486 }
c906108c 4487
edb3359d
DJ
4488 /* Look for "calls" to inlined functions, part one. If the inline
4489 frame machinery detected some skipped call sites, we have entered
4490 a new inline function. */
4491
4492 if (frame_id_eq (get_frame_id (get_current_frame ()),
4493 ecs->event_thread->step_frame_id)
4494 && inline_skipped_frames (ecs->ptid))
4495 {
4496 struct symtab_and_line call_sal;
4497
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: stepped into inlined function\n");
4501
4502 find_frame_sal (get_current_frame (), &call_sal);
4503
4504 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4505 {
4506 /* For "step", we're going to stop. But if the call site
4507 for this inlined function is on the same source line as
4508 we were previously stepping, go down into the function
4509 first. Otherwise stop at the call site. */
4510
4511 if (call_sal.line == ecs->event_thread->current_line
4512 && call_sal.symtab == ecs->event_thread->current_symtab)
4513 step_into_inline_frame (ecs->ptid);
4514
4515 ecs->event_thread->stop_step = 1;
4516 print_stop_reason (END_STEPPING_RANGE, 0);
4517 stop_stepping (ecs);
4518 return;
4519 }
4520 else
4521 {
4522 /* For "next", we should stop at the call site if it is on a
4523 different source line. Otherwise continue through the
4524 inlined function. */
4525 if (call_sal.line == ecs->event_thread->current_line
4526 && call_sal.symtab == ecs->event_thread->current_symtab)
4527 keep_going (ecs);
4528 else
4529 {
4530 ecs->event_thread->stop_step = 1;
4531 print_stop_reason (END_STEPPING_RANGE, 0);
4532 stop_stepping (ecs);
4533 }
4534 return;
4535 }
4536 }
4537
4538 /* Look for "calls" to inlined functions, part two. If we are still
4539 in the same real function we were stepping through, but we have
4540 to go further up to find the exact frame ID, we are stepping
4541 through a more inlined call beyond its call site. */
4542
4543 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4544 && !frame_id_eq (get_frame_id (get_current_frame ()),
4545 ecs->event_thread->step_frame_id)
4546 && stepped_in_from (get_current_frame (),
4547 ecs->event_thread->step_frame_id))
4548 {
4549 if (debug_infrun)
4550 fprintf_unfiltered (gdb_stdlog,
4551 "infrun: stepping through inlined function\n");
4552
4553 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4554 keep_going (ecs);
4555 else
4556 {
4557 ecs->event_thread->stop_step = 1;
4558 print_stop_reason (END_STEPPING_RANGE, 0);
4559 stop_stepping (ecs);
4560 }
4561 return;
4562 }
4563
2afb61aa 4564 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4565 && (ecs->event_thread->current_line != stop_pc_sal.line
4566 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4567 {
4568 /* We are at the start of a different line. So stop. Note that
4569 we don't stop if we step into the middle of a different line.
4570 That is said to make things like for (;;) statements work
4571 better. */
527159b7 4572 if (debug_infrun)
8a9de0e4 4573 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4574 ecs->event_thread->stop_step = 1;
488f131b
JB
4575 print_stop_reason (END_STEPPING_RANGE, 0);
4576 stop_stepping (ecs);
4577 return;
4578 }
c906108c 4579
488f131b 4580 /* We aren't done stepping.
c906108c 4581
488f131b
JB
4582 Optimize by setting the stepping range to the line.
4583 (We might not be in the original line, but if we entered a
4584 new line in mid-statement, we continue stepping. This makes
4585 things like for(;;) statements work better.) */
c906108c 4586
4e1c45ea
PA
4587 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4588 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4589 set_step_info (frame, stop_pc_sal);
488f131b 4590
527159b7 4591 if (debug_infrun)
8a9de0e4 4592 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4593 keep_going (ecs);
104c1213
JM
4594}
4595
b3444185 4596/* Is thread TP in the middle of single-stepping? */
104c1213 4597
a7212384 4598static int
b3444185 4599currently_stepping (struct thread_info *tp)
a7212384 4600{
b3444185
PA
4601 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4602 || tp->trap_expected
4603 || tp->stepping_through_solib_after_catch
4604 || bpstat_should_step ());
a7212384
UW
4605}
4606
b3444185
PA
4607/* Returns true if any thread *but* the one passed in "data" is in the
4608 middle of stepping or of handling a "next". */
a7212384 4609
104c1213 4610static int
b3444185 4611currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4612{
b3444185
PA
4613 if (tp == data)
4614 return 0;
4615
4616 return (tp->step_range_end
4617 || tp->trap_expected
4618 || tp->stepping_through_solib_after_catch);
104c1213 4619}
c906108c 4620
b2175913
MS
4621/* Inferior has stepped into a subroutine call with source code that
4622 we should not step over. Do step to the first line of code in
4623 it. */
c2c6d25f
JM
4624
4625static void
568d6575
UW
4626handle_step_into_function (struct gdbarch *gdbarch,
4627 struct execution_control_state *ecs)
c2c6d25f
JM
4628{
4629 struct symtab *s;
2afb61aa 4630 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4631
4632 s = find_pc_symtab (stop_pc);
4633 if (s && s->language != language_asm)
568d6575 4634 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4635 ecs->stop_func_start);
c2c6d25f 4636
2afb61aa 4637 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4638 /* Use the step_resume_break to step until the end of the prologue,
4639 even if that involves jumps (as it seems to on the vax under
4640 4.2). */
4641 /* If the prologue ends in the middle of a source line, continue to
4642 the end of that source line (if it is still within the function).
4643 Otherwise, just go to end of prologue. */
2afb61aa
PA
4644 if (stop_func_sal.end
4645 && stop_func_sal.pc != ecs->stop_func_start
4646 && stop_func_sal.end < ecs->stop_func_end)
4647 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4648
2dbd5e30
KB
4649 /* Architectures which require breakpoint adjustment might not be able
4650 to place a breakpoint at the computed address. If so, the test
4651 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4652 ecs->stop_func_start to an address at which a breakpoint may be
4653 legitimately placed.
8fb3e588 4654
2dbd5e30
KB
4655 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4656 made, GDB will enter an infinite loop when stepping through
4657 optimized code consisting of VLIW instructions which contain
4658 subinstructions corresponding to different source lines. On
4659 FR-V, it's not permitted to place a breakpoint on any but the
4660 first subinstruction of a VLIW instruction. When a breakpoint is
4661 set, GDB will adjust the breakpoint address to the beginning of
4662 the VLIW instruction. Thus, we need to make the corresponding
4663 adjustment here when computing the stop address. */
8fb3e588 4664
568d6575 4665 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4666 {
4667 ecs->stop_func_start
568d6575 4668 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4669 ecs->stop_func_start);
2dbd5e30
KB
4670 }
4671
c2c6d25f
JM
4672 if (ecs->stop_func_start == stop_pc)
4673 {
4674 /* We are already there: stop now. */
414c69f7 4675 ecs->event_thread->stop_step = 1;
488f131b 4676 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4677 stop_stepping (ecs);
4678 return;
4679 }
4680 else
4681 {
4682 /* Put the step-breakpoint there and go until there. */
fe39c653 4683 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4684 sr_sal.pc = ecs->stop_func_start;
4685 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 4686 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 4687
c2c6d25f 4688 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4689 some machines the prologue is where the new fp value is
4690 established. */
a6d9a66e 4691 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4692
4693 /* And make sure stepping stops right away then. */
4e1c45ea 4694 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4695 }
4696 keep_going (ecs);
4697}
d4f3574e 4698
b2175913
MS
4699/* Inferior has stepped backward into a subroutine call with source
4700 code that we should not step over. Do step to the beginning of the
4701 last line of code in it. */
4702
4703static void
568d6575
UW
4704handle_step_into_function_backward (struct gdbarch *gdbarch,
4705 struct execution_control_state *ecs)
b2175913
MS
4706{
4707 struct symtab *s;
4708 struct symtab_and_line stop_func_sal, sr_sal;
4709
4710 s = find_pc_symtab (stop_pc);
4711 if (s && s->language != language_asm)
568d6575 4712 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4713 ecs->stop_func_start);
4714
4715 stop_func_sal = find_pc_line (stop_pc, 0);
4716
4717 /* OK, we're just going to keep stepping here. */
4718 if (stop_func_sal.pc == stop_pc)
4719 {
4720 /* We're there already. Just stop stepping now. */
4721 ecs->event_thread->stop_step = 1;
4722 print_stop_reason (END_STEPPING_RANGE, 0);
4723 stop_stepping (ecs);
4724 }
4725 else
4726 {
4727 /* Else just reset the step range and keep going.
4728 No step-resume breakpoint, they don't work for
4729 epilogues, which can have multiple entry paths. */
4730 ecs->event_thread->step_range_start = stop_func_sal.pc;
4731 ecs->event_thread->step_range_end = stop_func_sal.end;
4732 keep_going (ecs);
4733 }
4734 return;
4735}
4736
d3169d93 4737/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4738 This is used to both functions and to skip over code. */
4739
4740static void
a6d9a66e
UW
4741insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4742 struct symtab_and_line sr_sal,
44cbf7b5
AC
4743 struct frame_id sr_id)
4744{
611c83ae
PA
4745 /* There should never be more than one step-resume or longjmp-resume
4746 breakpoint per thread, so we should never be setting a new
44cbf7b5 4747 step_resume_breakpoint when one is already active. */
4e1c45ea 4748 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4749
4750 if (debug_infrun)
4751 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4752 "infrun: inserting step-resume breakpoint at %s\n",
4753 paddress (gdbarch, sr_sal.pc));
d3169d93 4754
4e1c45ea 4755 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4756 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4757}
7ce450bd 4758
d3169d93 4759/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4760 to skip a potential signal handler.
7ce450bd 4761
14e60db5
DJ
4762 This is called with the interrupted function's frame. The signal
4763 handler, when it returns, will resume the interrupted function at
4764 RETURN_FRAME.pc. */
d303a6c7
AC
4765
4766static void
44cbf7b5 4767insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4768{
4769 struct symtab_and_line sr_sal;
a6d9a66e 4770 struct gdbarch *gdbarch;
d303a6c7 4771
f4c1edd8 4772 gdb_assert (return_frame != NULL);
d303a6c7
AC
4773 init_sal (&sr_sal); /* initialize to zeros */
4774
a6d9a66e 4775 gdbarch = get_frame_arch (return_frame);
568d6575 4776 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 4777 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4778 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 4779
a6d9a66e
UW
4780 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4781 get_stack_frame_id (return_frame));
d303a6c7
AC
4782}
4783
14e60db5
DJ
4784/* Similar to insert_step_resume_breakpoint_at_frame, except
4785 but a breakpoint at the previous frame's PC. This is used to
4786 skip a function after stepping into it (for "next" or if the called
4787 function has no debugging information).
4788
4789 The current function has almost always been reached by single
4790 stepping a call or return instruction. NEXT_FRAME belongs to the
4791 current function, and the breakpoint will be set at the caller's
4792 resume address.
4793
4794 This is a separate function rather than reusing
4795 insert_step_resume_breakpoint_at_frame in order to avoid
4796 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4797 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4798
4799static void
4800insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4801{
4802 struct symtab_and_line sr_sal;
a6d9a66e 4803 struct gdbarch *gdbarch;
14e60db5
DJ
4804
4805 /* We shouldn't have gotten here if we don't know where the call site
4806 is. */
c7ce8faa 4807 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4808
4809 init_sal (&sr_sal); /* initialize to zeros */
4810
a6d9a66e 4811 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4812 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4813 frame_unwind_caller_pc (next_frame));
14e60db5 4814 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4815 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 4816
a6d9a66e 4817 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4818 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4819}
4820
611c83ae
PA
4821/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4822 new breakpoint at the target of a jmp_buf. The handling of
4823 longjmp-resume uses the same mechanisms used for handling
4824 "step-resume" breakpoints. */
4825
4826static void
a6d9a66e 4827insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4828{
4829 /* There should never be more than one step-resume or longjmp-resume
4830 breakpoint per thread, so we should never be setting a new
4831 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4832 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4833
4834 if (debug_infrun)
4835 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4836 "infrun: inserting longjmp-resume breakpoint at %s\n",
4837 paddress (gdbarch, pc));
611c83ae 4838
4e1c45ea 4839 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4840 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4841}
4842
104c1213
JM
4843static void
4844stop_stepping (struct execution_control_state *ecs)
4845{
527159b7 4846 if (debug_infrun)
8a9de0e4 4847 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4848
cd0fc7c3
SS
4849 /* Let callers know we don't want to wait for the inferior anymore. */
4850 ecs->wait_some_more = 0;
4851}
4852
d4f3574e
SS
4853/* This function handles various cases where we need to continue
4854 waiting for the inferior. */
4855/* (Used to be the keep_going: label in the old wait_for_inferior) */
4856
4857static void
4858keep_going (struct execution_control_state *ecs)
4859{
c4dbc9af
PA
4860 /* Make sure normal_stop is called if we get a QUIT handled before
4861 reaching resume. */
4862 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
4863
d4f3574e 4864 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4865 ecs->event_thread->prev_pc
4866 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4867
d4f3574e
SS
4868 /* If we did not do break;, it means we should keep running the
4869 inferior and not return to debugger. */
4870
2020b7ab
PA
4871 if (ecs->event_thread->trap_expected
4872 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4873 {
4874 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4875 the inferior, else we'd not get here) and we haven't yet
4876 gotten our trap. Simply continue. */
c4dbc9af
PA
4877
4878 discard_cleanups (old_cleanups);
2020b7ab
PA
4879 resume (currently_stepping (ecs->event_thread),
4880 ecs->event_thread->stop_signal);
d4f3574e
SS
4881 }
4882 else
4883 {
4884 /* Either the trap was not expected, but we are continuing
488f131b
JB
4885 anyway (the user asked that this signal be passed to the
4886 child)
4887 -- or --
4888 The signal was SIGTRAP, e.g. it was our signal, but we
4889 decided we should resume from it.
d4f3574e 4890
c36b740a 4891 We're going to run this baby now!
d4f3574e 4892
c36b740a
VP
4893 Note that insert_breakpoints won't try to re-insert
4894 already inserted breakpoints. Therefore, we don't
4895 care if breakpoints were already inserted, or not. */
4896
4e1c45ea 4897 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4898 {
9f5a595d
UW
4899 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4900 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4901 /* Since we can't do a displaced step, we have to remove
4902 the breakpoint while we step it. To keep things
4903 simple, we remove them all. */
4904 remove_breakpoints ();
45e8c884
VP
4905 }
4906 else
d4f3574e 4907 {
e236ba44 4908 struct gdb_exception e;
569631c6
UW
4909 /* Stop stepping when inserting breakpoints
4910 has failed. */
e236ba44
VP
4911 TRY_CATCH (e, RETURN_MASK_ERROR)
4912 {
4913 insert_breakpoints ();
4914 }
4915 if (e.reason < 0)
d4f3574e 4916 {
97bd5475 4917 exception_print (gdb_stderr, e);
d4f3574e
SS
4918 stop_stepping (ecs);
4919 return;
4920 }
d4f3574e
SS
4921 }
4922
4e1c45ea 4923 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4924
4925 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4926 specifies that such a signal should be delivered to the
4927 target program).
4928
4929 Typically, this would occure when a user is debugging a
4930 target monitor on a simulator: the target monitor sets a
4931 breakpoint; the simulator encounters this break-point and
4932 halts the simulation handing control to GDB; GDB, noteing
4933 that the break-point isn't valid, returns control back to the
4934 simulator; the simulator then delivers the hardware
4935 equivalent of a SIGNAL_TRAP to the program being debugged. */
4936
2020b7ab
PA
4937 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4938 && !signal_program[ecs->event_thread->stop_signal])
4939 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4940
c4dbc9af 4941 discard_cleanups (old_cleanups);
2020b7ab
PA
4942 resume (currently_stepping (ecs->event_thread),
4943 ecs->event_thread->stop_signal);
d4f3574e
SS
4944 }
4945
488f131b 4946 prepare_to_wait (ecs);
d4f3574e
SS
4947}
4948
104c1213
JM
4949/* This function normally comes after a resume, before
4950 handle_inferior_event exits. It takes care of any last bits of
4951 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4952
104c1213
JM
4953static void
4954prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4955{
527159b7 4956 if (debug_infrun)
8a9de0e4 4957 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 4958
104c1213
JM
4959 /* This is the old end of the while loop. Let everybody know we
4960 want to wait for the inferior some more and get called again
4961 soon. */
4962 ecs->wait_some_more = 1;
c906108c 4963}
11cf8741
JM
4964
4965/* Print why the inferior has stopped. We always print something when
4966 the inferior exits, or receives a signal. The rest of the cases are
4967 dealt with later on in normal_stop() and print_it_typical(). Ideally
4968 there should be a call to this function from handle_inferior_event()
4969 each time stop_stepping() is called.*/
4970static void
4971print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4972{
4973 switch (stop_reason)
4974 {
11cf8741
JM
4975 case END_STEPPING_RANGE:
4976 /* We are done with a step/next/si/ni command. */
4977 /* For now print nothing. */
fb40c209 4978 /* Print a message only if not in the middle of doing a "step n"
488f131b 4979 operation for n > 1 */
414c69f7
PA
4980 if (!inferior_thread ()->step_multi
4981 || !inferior_thread ()->stop_step)
9dc5e2a9 4982 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4983 ui_out_field_string
4984 (uiout, "reason",
4985 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4986 break;
11cf8741
JM
4987 case SIGNAL_EXITED:
4988 /* The inferior was terminated by a signal. */
8b93c638 4989 annotate_signalled ();
9dc5e2a9 4990 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4991 ui_out_field_string
4992 (uiout, "reason",
4993 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4994 ui_out_text (uiout, "\nProgram terminated with signal ");
4995 annotate_signal_name ();
488f131b
JB
4996 ui_out_field_string (uiout, "signal-name",
4997 target_signal_to_name (stop_info));
8b93c638
JM
4998 annotate_signal_name_end ();
4999 ui_out_text (uiout, ", ");
5000 annotate_signal_string ();
488f131b
JB
5001 ui_out_field_string (uiout, "signal-meaning",
5002 target_signal_to_string (stop_info));
8b93c638
JM
5003 annotate_signal_string_end ();
5004 ui_out_text (uiout, ".\n");
5005 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
5006 break;
5007 case EXITED:
5008 /* The inferior program is finished. */
8b93c638
JM
5009 annotate_exited (stop_info);
5010 if (stop_info)
5011 {
9dc5e2a9 5012 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5013 ui_out_field_string (uiout, "reason",
5014 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 5015 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
5016 ui_out_field_fmt (uiout, "exit-code", "0%o",
5017 (unsigned int) stop_info);
8b93c638
JM
5018 ui_out_text (uiout, ".\n");
5019 }
5020 else
5021 {
9dc5e2a9 5022 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5023 ui_out_field_string
5024 (uiout, "reason",
5025 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
5026 ui_out_text (uiout, "\nProgram exited normally.\n");
5027 }
f17517ea
AS
5028 /* Support the --return-child-result option. */
5029 return_child_result_value = stop_info;
11cf8741
JM
5030 break;
5031 case SIGNAL_RECEIVED:
252fbfc8
PA
5032 /* Signal received. The signal table tells us to print about
5033 it. */
8b93c638 5034 annotate_signal ();
252fbfc8
PA
5035
5036 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5037 {
5038 struct thread_info *t = inferior_thread ();
5039
5040 ui_out_text (uiout, "\n[");
5041 ui_out_field_string (uiout, "thread-name",
5042 target_pid_to_str (t->ptid));
5043 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5044 ui_out_text (uiout, " stopped");
5045 }
5046 else
5047 {
5048 ui_out_text (uiout, "\nProgram received signal ");
5049 annotate_signal_name ();
5050 if (ui_out_is_mi_like_p (uiout))
5051 ui_out_field_string
5052 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5053 ui_out_field_string (uiout, "signal-name",
5054 target_signal_to_name (stop_info));
5055 annotate_signal_name_end ();
5056 ui_out_text (uiout, ", ");
5057 annotate_signal_string ();
5058 ui_out_field_string (uiout, "signal-meaning",
5059 target_signal_to_string (stop_info));
5060 annotate_signal_string_end ();
5061 }
8b93c638 5062 ui_out_text (uiout, ".\n");
11cf8741 5063 break;
b2175913
MS
5064 case NO_HISTORY:
5065 /* Reverse execution: target ran out of history info. */
5066 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5067 break;
11cf8741 5068 default:
8e65ff28 5069 internal_error (__FILE__, __LINE__,
e2e0b3e5 5070 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
5071 break;
5072 }
5073}
c906108c 5074\f
43ff13b4 5075
c906108c
SS
5076/* Here to return control to GDB when the inferior stops for real.
5077 Print appropriate messages, remove breakpoints, give terminal our modes.
5078
5079 STOP_PRINT_FRAME nonzero means print the executing frame
5080 (pc, function, args, file, line number and line text).
5081 BREAKPOINTS_FAILED nonzero means stop was due to error
5082 attempting to insert breakpoints. */
5083
5084void
96baa820 5085normal_stop (void)
c906108c 5086{
73b65bb0
DJ
5087 struct target_waitstatus last;
5088 ptid_t last_ptid;
29f49a6a 5089 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5090
5091 get_last_target_status (&last_ptid, &last);
5092
29f49a6a
PA
5093 /* If an exception is thrown from this point on, make sure to
5094 propagate GDB's knowledge of the executing state to the
5095 frontend/user running state. A QUIT is an easy exception to see
5096 here, so do this before any filtered output. */
c35b1492
PA
5097 if (!non_stop)
5098 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5099 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5100 && last.kind != TARGET_WAITKIND_EXITED)
5101 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5102
4f8d22e3
PA
5103 /* In non-stop mode, we don't want GDB to switch threads behind the
5104 user's back, to avoid races where the user is typing a command to
5105 apply to thread x, but GDB switches to thread y before the user
5106 finishes entering the command. */
5107
c906108c
SS
5108 /* As with the notification of thread events, we want to delay
5109 notifying the user that we've switched thread context until
5110 the inferior actually stops.
5111
73b65bb0
DJ
5112 There's no point in saying anything if the inferior has exited.
5113 Note that SIGNALLED here means "exited with a signal", not
5114 "received a signal". */
4f8d22e3
PA
5115 if (!non_stop
5116 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5117 && target_has_execution
5118 && last.kind != TARGET_WAITKIND_SIGNALLED
5119 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5120 {
5121 target_terminal_ours_for_output ();
a3f17187 5122 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5123 target_pid_to_str (inferior_ptid));
b8fa951a 5124 annotate_thread_changed ();
39f77062 5125 previous_inferior_ptid = inferior_ptid;
c906108c 5126 }
c906108c 5127
74960c60 5128 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5129 {
5130 if (remove_breakpoints ())
5131 {
5132 target_terminal_ours_for_output ();
a3f17187
AC
5133 printf_filtered (_("\
5134Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 5135Further execution is probably impossible.\n"));
c906108c
SS
5136 }
5137 }
c906108c 5138
c906108c
SS
5139 /* If an auto-display called a function and that got a signal,
5140 delete that auto-display to avoid an infinite recursion. */
5141
5142 if (stopped_by_random_signal)
5143 disable_current_display ();
5144
5145 /* Don't print a message if in the middle of doing a "step n"
5146 operation for n > 1 */
af679fd0
PA
5147 if (target_has_execution
5148 && last.kind != TARGET_WAITKIND_SIGNALLED
5149 && last.kind != TARGET_WAITKIND_EXITED
5150 && inferior_thread ()->step_multi
414c69f7 5151 && inferior_thread ()->stop_step)
c906108c
SS
5152 goto done;
5153
5154 target_terminal_ours ();
5155
7abfe014
DJ
5156 /* Set the current source location. This will also happen if we
5157 display the frame below, but the current SAL will be incorrect
5158 during a user hook-stop function. */
d729566a 5159 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5160 set_current_sal_from_frame (get_current_frame (), 1);
5161
dd7e2d2b
PA
5162 /* Let the user/frontend see the threads as stopped. */
5163 do_cleanups (old_chain);
5164
5165 /* Look up the hook_stop and run it (CLI internally handles problem
5166 of stop_command's pre-hook not existing). */
5167 if (stop_command)
5168 catch_errors (hook_stop_stub, stop_command,
5169 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5170
d729566a 5171 if (!has_stack_frames ())
d51fd4c8 5172 goto done;
c906108c 5173
32400beb
PA
5174 if (last.kind == TARGET_WAITKIND_SIGNALLED
5175 || last.kind == TARGET_WAITKIND_EXITED)
5176 goto done;
5177
c906108c
SS
5178 /* Select innermost stack frame - i.e., current frame is frame 0,
5179 and current location is based on that.
5180 Don't do this on return from a stack dummy routine,
5181 or if the program has exited. */
5182
5183 if (!stop_stack_dummy)
5184 {
0f7d239c 5185 select_frame (get_current_frame ());
c906108c
SS
5186
5187 /* Print current location without a level number, if
c5aa993b
JM
5188 we have changed functions or hit a breakpoint.
5189 Print source line if we have one.
5190 bpstat_print() contains the logic deciding in detail
5191 what to print, based on the event(s) that just occurred. */
c906108c 5192
d01a8610
AS
5193 /* If --batch-silent is enabled then there's no need to print the current
5194 source location, and to try risks causing an error message about
5195 missing source files. */
5196 if (stop_print_frame && !batch_silent)
c906108c
SS
5197 {
5198 int bpstat_ret;
5199 int source_flag;
917317f4 5200 int do_frame_printing = 1;
347bddb7 5201 struct thread_info *tp = inferior_thread ();
c906108c 5202
347bddb7 5203 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
5204 switch (bpstat_ret)
5205 {
5206 case PRINT_UNKNOWN:
b0f4b84b
DJ
5207 /* If we had hit a shared library event breakpoint,
5208 bpstat_print would print out this message. If we hit
5209 an OS-level shared library event, do the same
5210 thing. */
5211 if (last.kind == TARGET_WAITKIND_LOADED)
5212 {
5213 printf_filtered (_("Stopped due to shared library event\n"));
5214 source_flag = SRC_LINE; /* something bogus */
5215 do_frame_printing = 0;
5216 break;
5217 }
5218
aa0cd9c1 5219 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5220 (or should) carry around the function and does (or
5221 should) use that when doing a frame comparison. */
414c69f7 5222 if (tp->stop_step
347bddb7 5223 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 5224 get_frame_id (get_current_frame ()))
917317f4 5225 && step_start_function == find_pc_function (stop_pc))
488f131b 5226 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 5227 else
488f131b 5228 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5229 break;
5230 case PRINT_SRC_AND_LOC:
488f131b 5231 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5232 break;
5233 case PRINT_SRC_ONLY:
c5394b80 5234 source_flag = SRC_LINE;
917317f4
JM
5235 break;
5236 case PRINT_NOTHING:
488f131b 5237 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5238 do_frame_printing = 0;
5239 break;
5240 default:
e2e0b3e5 5241 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5242 }
c906108c
SS
5243
5244 /* The behavior of this routine with respect to the source
5245 flag is:
c5394b80
JM
5246 SRC_LINE: Print only source line
5247 LOCATION: Print only location
5248 SRC_AND_LOC: Print location and source line */
917317f4 5249 if (do_frame_printing)
b04f3ab4 5250 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5251
5252 /* Display the auto-display expressions. */
5253 do_displays ();
5254 }
5255 }
5256
5257 /* Save the function value return registers, if we care.
5258 We might be about to restore their previous contents. */
32400beb 5259 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
5260 {
5261 /* This should not be necessary. */
5262 if (stop_registers)
5263 regcache_xfree (stop_registers);
5264
5265 /* NB: The copy goes through to the target picking up the value of
5266 all the registers. */
5267 stop_registers = regcache_dup (get_current_regcache ());
5268 }
c906108c
SS
5269
5270 if (stop_stack_dummy)
5271 {
b89667eb
DE
5272 /* Pop the empty frame that contains the stack dummy.
5273 This also restores inferior state prior to the call
5274 (struct inferior_thread_state). */
5275 struct frame_info *frame = get_current_frame ();
5276 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5277 frame_pop (frame);
5278 /* frame_pop() calls reinit_frame_cache as the last thing it does
5279 which means there's currently no selected frame. We don't need
5280 to re-establish a selected frame if the dummy call returns normally,
5281 that will be done by restore_inferior_status. However, we do have
5282 to handle the case where the dummy call is returning after being
5283 stopped (e.g. the dummy call previously hit a breakpoint). We
5284 can't know which case we have so just always re-establish a
5285 selected frame here. */
0f7d239c 5286 select_frame (get_current_frame ());
c906108c
SS
5287 }
5288
c906108c
SS
5289done:
5290 annotate_stopped ();
41d2bdb4
PA
5291
5292 /* Suppress the stop observer if we're in the middle of:
5293
5294 - a step n (n > 1), as there still more steps to be done.
5295
5296 - a "finish" command, as the observer will be called in
5297 finish_command_continuation, so it can include the inferior
5298 function's return value.
5299
5300 - calling an inferior function, as we pretend we inferior didn't
5301 run at all. The return value of the call is handled by the
5302 expression evaluator, through call_function_by_hand. */
5303
5304 if (!target_has_execution
5305 || last.kind == TARGET_WAITKIND_SIGNALLED
5306 || last.kind == TARGET_WAITKIND_EXITED
5307 || (!inferior_thread ()->step_multi
5308 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
5309 && inferior_thread ()->proceed_to_finish)
5310 && !inferior_thread ()->in_infcall))
347bddb7
PA
5311 {
5312 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
5313 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5314 stop_print_frame);
347bddb7 5315 else
1d33d6ba 5316 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5317 }
347bddb7 5318
48844aa6
PA
5319 if (target_has_execution)
5320 {
5321 if (last.kind != TARGET_WAITKIND_SIGNALLED
5322 && last.kind != TARGET_WAITKIND_EXITED)
5323 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5324 Delete any breakpoint that is to be deleted at the next stop. */
5325 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 5326 }
6c95b8df
PA
5327
5328 /* Try to get rid of automatically added inferiors that are no
5329 longer needed. Keeping those around slows down things linearly.
5330 Note that this never removes the current inferior. */
5331 prune_inferiors ();
c906108c
SS
5332}
5333
5334static int
96baa820 5335hook_stop_stub (void *cmd)
c906108c 5336{
5913bcb0 5337 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5338 return (0);
5339}
5340\f
c5aa993b 5341int
96baa820 5342signal_stop_state (int signo)
c906108c 5343{
d6b48e9c 5344 return signal_stop[signo];
c906108c
SS
5345}
5346
c5aa993b 5347int
96baa820 5348signal_print_state (int signo)
c906108c
SS
5349{
5350 return signal_print[signo];
5351}
5352
c5aa993b 5353int
96baa820 5354signal_pass_state (int signo)
c906108c
SS
5355{
5356 return signal_program[signo];
5357}
5358
488f131b 5359int
7bda5e4a 5360signal_stop_update (int signo, int state)
d4f3574e
SS
5361{
5362 int ret = signal_stop[signo];
5363 signal_stop[signo] = state;
5364 return ret;
5365}
5366
488f131b 5367int
7bda5e4a 5368signal_print_update (int signo, int state)
d4f3574e
SS
5369{
5370 int ret = signal_print[signo];
5371 signal_print[signo] = state;
5372 return ret;
5373}
5374
488f131b 5375int
7bda5e4a 5376signal_pass_update (int signo, int state)
d4f3574e
SS
5377{
5378 int ret = signal_program[signo];
5379 signal_program[signo] = state;
5380 return ret;
5381}
5382
c906108c 5383static void
96baa820 5384sig_print_header (void)
c906108c 5385{
a3f17187
AC
5386 printf_filtered (_("\
5387Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5388}
5389
5390static void
96baa820 5391sig_print_info (enum target_signal oursig)
c906108c 5392{
54363045 5393 const char *name = target_signal_to_name (oursig);
c906108c 5394 int name_padding = 13 - strlen (name);
96baa820 5395
c906108c
SS
5396 if (name_padding <= 0)
5397 name_padding = 0;
5398
5399 printf_filtered ("%s", name);
488f131b 5400 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5401 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5402 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5403 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5404 printf_filtered ("%s\n", target_signal_to_string (oursig));
5405}
5406
5407/* Specify how various signals in the inferior should be handled. */
5408
5409static void
96baa820 5410handle_command (char *args, int from_tty)
c906108c
SS
5411{
5412 char **argv;
5413 int digits, wordlen;
5414 int sigfirst, signum, siglast;
5415 enum target_signal oursig;
5416 int allsigs;
5417 int nsigs;
5418 unsigned char *sigs;
5419 struct cleanup *old_chain;
5420
5421 if (args == NULL)
5422 {
e2e0b3e5 5423 error_no_arg (_("signal to handle"));
c906108c
SS
5424 }
5425
5426 /* Allocate and zero an array of flags for which signals to handle. */
5427
5428 nsigs = (int) TARGET_SIGNAL_LAST;
5429 sigs = (unsigned char *) alloca (nsigs);
5430 memset (sigs, 0, nsigs);
5431
5432 /* Break the command line up into args. */
5433
d1a41061 5434 argv = gdb_buildargv (args);
7a292a7a 5435 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5436
5437 /* Walk through the args, looking for signal oursigs, signal names, and
5438 actions. Signal numbers and signal names may be interspersed with
5439 actions, with the actions being performed for all signals cumulatively
5440 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5441
5442 while (*argv != NULL)
5443 {
5444 wordlen = strlen (*argv);
5445 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5446 {;
5447 }
5448 allsigs = 0;
5449 sigfirst = siglast = -1;
5450
5451 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5452 {
5453 /* Apply action to all signals except those used by the
5454 debugger. Silently skip those. */
5455 allsigs = 1;
5456 sigfirst = 0;
5457 siglast = nsigs - 1;
5458 }
5459 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5460 {
5461 SET_SIGS (nsigs, sigs, signal_stop);
5462 SET_SIGS (nsigs, sigs, signal_print);
5463 }
5464 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5465 {
5466 UNSET_SIGS (nsigs, sigs, signal_program);
5467 }
5468 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5469 {
5470 SET_SIGS (nsigs, sigs, signal_print);
5471 }
5472 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5473 {
5474 SET_SIGS (nsigs, sigs, signal_program);
5475 }
5476 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5477 {
5478 UNSET_SIGS (nsigs, sigs, signal_stop);
5479 }
5480 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5481 {
5482 SET_SIGS (nsigs, sigs, signal_program);
5483 }
5484 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5485 {
5486 UNSET_SIGS (nsigs, sigs, signal_print);
5487 UNSET_SIGS (nsigs, sigs, signal_stop);
5488 }
5489 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5490 {
5491 UNSET_SIGS (nsigs, sigs, signal_program);
5492 }
5493 else if (digits > 0)
5494 {
5495 /* It is numeric. The numeric signal refers to our own
5496 internal signal numbering from target.h, not to host/target
5497 signal number. This is a feature; users really should be
5498 using symbolic names anyway, and the common ones like
5499 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5500
5501 sigfirst = siglast = (int)
5502 target_signal_from_command (atoi (*argv));
5503 if ((*argv)[digits] == '-')
5504 {
5505 siglast = (int)
5506 target_signal_from_command (atoi ((*argv) + digits + 1));
5507 }
5508 if (sigfirst > siglast)
5509 {
5510 /* Bet he didn't figure we'd think of this case... */
5511 signum = sigfirst;
5512 sigfirst = siglast;
5513 siglast = signum;
5514 }
5515 }
5516 else
5517 {
5518 oursig = target_signal_from_name (*argv);
5519 if (oursig != TARGET_SIGNAL_UNKNOWN)
5520 {
5521 sigfirst = siglast = (int) oursig;
5522 }
5523 else
5524 {
5525 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5526 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5527 }
5528 }
5529
5530 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5531 which signals to apply actions to. */
c906108c
SS
5532
5533 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5534 {
5535 switch ((enum target_signal) signum)
5536 {
5537 case TARGET_SIGNAL_TRAP:
5538 case TARGET_SIGNAL_INT:
5539 if (!allsigs && !sigs[signum])
5540 {
9e2f0ad4
HZ
5541 if (query (_("%s is used by the debugger.\n\
5542Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5543 {
5544 sigs[signum] = 1;
5545 }
5546 else
5547 {
a3f17187 5548 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5549 gdb_flush (gdb_stdout);
5550 }
5551 }
5552 break;
5553 case TARGET_SIGNAL_0:
5554 case TARGET_SIGNAL_DEFAULT:
5555 case TARGET_SIGNAL_UNKNOWN:
5556 /* Make sure that "all" doesn't print these. */
5557 break;
5558 default:
5559 sigs[signum] = 1;
5560 break;
5561 }
5562 }
5563
5564 argv++;
5565 }
5566
3a031f65
PA
5567 for (signum = 0; signum < nsigs; signum++)
5568 if (sigs[signum])
5569 {
5570 target_notice_signals (inferior_ptid);
c906108c 5571
3a031f65
PA
5572 if (from_tty)
5573 {
5574 /* Show the results. */
5575 sig_print_header ();
5576 for (; signum < nsigs; signum++)
5577 if (sigs[signum])
5578 sig_print_info (signum);
5579 }
5580
5581 break;
5582 }
c906108c
SS
5583
5584 do_cleanups (old_chain);
5585}
5586
5587static void
96baa820 5588xdb_handle_command (char *args, int from_tty)
c906108c
SS
5589{
5590 char **argv;
5591 struct cleanup *old_chain;
5592
d1a41061
PP
5593 if (args == NULL)
5594 error_no_arg (_("xdb command"));
5595
c906108c
SS
5596 /* Break the command line up into args. */
5597
d1a41061 5598 argv = gdb_buildargv (args);
7a292a7a 5599 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5600 if (argv[1] != (char *) NULL)
5601 {
5602 char *argBuf;
5603 int bufLen;
5604
5605 bufLen = strlen (argv[0]) + 20;
5606 argBuf = (char *) xmalloc (bufLen);
5607 if (argBuf)
5608 {
5609 int validFlag = 1;
5610 enum target_signal oursig;
5611
5612 oursig = target_signal_from_name (argv[0]);
5613 memset (argBuf, 0, bufLen);
5614 if (strcmp (argv[1], "Q") == 0)
5615 sprintf (argBuf, "%s %s", argv[0], "noprint");
5616 else
5617 {
5618 if (strcmp (argv[1], "s") == 0)
5619 {
5620 if (!signal_stop[oursig])
5621 sprintf (argBuf, "%s %s", argv[0], "stop");
5622 else
5623 sprintf (argBuf, "%s %s", argv[0], "nostop");
5624 }
5625 else if (strcmp (argv[1], "i") == 0)
5626 {
5627 if (!signal_program[oursig])
5628 sprintf (argBuf, "%s %s", argv[0], "pass");
5629 else
5630 sprintf (argBuf, "%s %s", argv[0], "nopass");
5631 }
5632 else if (strcmp (argv[1], "r") == 0)
5633 {
5634 if (!signal_print[oursig])
5635 sprintf (argBuf, "%s %s", argv[0], "print");
5636 else
5637 sprintf (argBuf, "%s %s", argv[0], "noprint");
5638 }
5639 else
5640 validFlag = 0;
5641 }
5642 if (validFlag)
5643 handle_command (argBuf, from_tty);
5644 else
a3f17187 5645 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5646 if (argBuf)
b8c9b27d 5647 xfree (argBuf);
c906108c
SS
5648 }
5649 }
5650 do_cleanups (old_chain);
5651}
5652
5653/* Print current contents of the tables set by the handle command.
5654 It is possible we should just be printing signals actually used
5655 by the current target (but for things to work right when switching
5656 targets, all signals should be in the signal tables). */
5657
5658static void
96baa820 5659signals_info (char *signum_exp, int from_tty)
c906108c
SS
5660{
5661 enum target_signal oursig;
5662 sig_print_header ();
5663
5664 if (signum_exp)
5665 {
5666 /* First see if this is a symbol name. */
5667 oursig = target_signal_from_name (signum_exp);
5668 if (oursig == TARGET_SIGNAL_UNKNOWN)
5669 {
5670 /* No, try numeric. */
5671 oursig =
bb518678 5672 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5673 }
5674 sig_print_info (oursig);
5675 return;
5676 }
5677
5678 printf_filtered ("\n");
5679 /* These ugly casts brought to you by the native VAX compiler. */
5680 for (oursig = TARGET_SIGNAL_FIRST;
5681 (int) oursig < (int) TARGET_SIGNAL_LAST;
5682 oursig = (enum target_signal) ((int) oursig + 1))
5683 {
5684 QUIT;
5685
5686 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5687 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5688 sig_print_info (oursig);
5689 }
5690
a3f17187 5691 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5692}
4aa995e1
PA
5693
5694/* The $_siginfo convenience variable is a bit special. We don't know
5695 for sure the type of the value until we actually have a chance to
5696 fetch the data. The type can change depending on gdbarch, so it it
5697 also dependent on which thread you have selected.
5698
5699 1. making $_siginfo be an internalvar that creates a new value on
5700 access.
5701
5702 2. making the value of $_siginfo be an lval_computed value. */
5703
5704/* This function implements the lval_computed support for reading a
5705 $_siginfo value. */
5706
5707static void
5708siginfo_value_read (struct value *v)
5709{
5710 LONGEST transferred;
5711
5712 transferred =
5713 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5714 NULL,
5715 value_contents_all_raw (v),
5716 value_offset (v),
5717 TYPE_LENGTH (value_type (v)));
5718
5719 if (transferred != TYPE_LENGTH (value_type (v)))
5720 error (_("Unable to read siginfo"));
5721}
5722
5723/* This function implements the lval_computed support for writing a
5724 $_siginfo value. */
5725
5726static void
5727siginfo_value_write (struct value *v, struct value *fromval)
5728{
5729 LONGEST transferred;
5730
5731 transferred = target_write (&current_target,
5732 TARGET_OBJECT_SIGNAL_INFO,
5733 NULL,
5734 value_contents_all_raw (fromval),
5735 value_offset (v),
5736 TYPE_LENGTH (value_type (fromval)));
5737
5738 if (transferred != TYPE_LENGTH (value_type (fromval)))
5739 error (_("Unable to write siginfo"));
5740}
5741
5742static struct lval_funcs siginfo_value_funcs =
5743 {
5744 siginfo_value_read,
5745 siginfo_value_write
5746 };
5747
5748/* Return a new value with the correct type for the siginfo object of
78267919
UW
5749 the current thread using architecture GDBARCH. Return a void value
5750 if there's no object available. */
4aa995e1 5751
2c0b251b 5752static struct value *
78267919 5753siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5754{
4aa995e1 5755 if (target_has_stack
78267919
UW
5756 && !ptid_equal (inferior_ptid, null_ptid)
5757 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5758 {
78267919
UW
5759 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5760 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5761 }
5762
78267919 5763 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5764}
5765
c906108c 5766\f
b89667eb
DE
5767/* Inferior thread state.
5768 These are details related to the inferior itself, and don't include
5769 things like what frame the user had selected or what gdb was doing
5770 with the target at the time.
5771 For inferior function calls these are things we want to restore
5772 regardless of whether the function call successfully completes
5773 or the dummy frame has to be manually popped. */
5774
5775struct inferior_thread_state
7a292a7a
SS
5776{
5777 enum target_signal stop_signal;
5778 CORE_ADDR stop_pc;
b89667eb
DE
5779 struct regcache *registers;
5780};
5781
5782struct inferior_thread_state *
5783save_inferior_thread_state (void)
5784{
5785 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5786 struct thread_info *tp = inferior_thread ();
5787
5788 inf_state->stop_signal = tp->stop_signal;
5789 inf_state->stop_pc = stop_pc;
5790
5791 inf_state->registers = regcache_dup (get_current_regcache ());
5792
5793 return inf_state;
5794}
5795
5796/* Restore inferior session state to INF_STATE. */
5797
5798void
5799restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5800{
5801 struct thread_info *tp = inferior_thread ();
5802
5803 tp->stop_signal = inf_state->stop_signal;
5804 stop_pc = inf_state->stop_pc;
5805
5806 /* The inferior can be gone if the user types "print exit(0)"
5807 (and perhaps other times). */
5808 if (target_has_execution)
5809 /* NB: The register write goes through to the target. */
5810 regcache_cpy (get_current_regcache (), inf_state->registers);
5811 regcache_xfree (inf_state->registers);
5812 xfree (inf_state);
5813}
5814
5815static void
5816do_restore_inferior_thread_state_cleanup (void *state)
5817{
5818 restore_inferior_thread_state (state);
5819}
5820
5821struct cleanup *
5822make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5823{
5824 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5825}
5826
5827void
5828discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5829{
5830 regcache_xfree (inf_state->registers);
5831 xfree (inf_state);
5832}
5833
5834struct regcache *
5835get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5836{
5837 return inf_state->registers;
5838}
5839
5840/* Session related state for inferior function calls.
5841 These are the additional bits of state that need to be restored
5842 when an inferior function call successfully completes. */
5843
5844struct inferior_status
5845{
7a292a7a
SS
5846 bpstat stop_bpstat;
5847 int stop_step;
5848 int stop_stack_dummy;
5849 int stopped_by_random_signal;
ca67fcb8 5850 int stepping_over_breakpoint;
7a292a7a
SS
5851 CORE_ADDR step_range_start;
5852 CORE_ADDR step_range_end;
aa0cd9c1 5853 struct frame_id step_frame_id;
edb3359d 5854 struct frame_id step_stack_frame_id;
5fbbeb29 5855 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5856 CORE_ADDR step_resume_break_address;
5857 int stop_after_trap;
c0236d92 5858 int stop_soon;
7a292a7a 5859
b89667eb 5860 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5861 struct frame_id selected_frame_id;
5862
7a292a7a 5863 int proceed_to_finish;
c5a4d20b 5864 int in_infcall;
7a292a7a
SS
5865};
5866
c906108c 5867/* Save all of the information associated with the inferior<==>gdb
b89667eb 5868 connection. */
c906108c 5869
7a292a7a 5870struct inferior_status *
b89667eb 5871save_inferior_status (void)
c906108c 5872{
72cec141 5873 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5874 struct thread_info *tp = inferior_thread ();
d6b48e9c 5875 struct inferior *inf = current_inferior ();
7a292a7a 5876
414c69f7 5877 inf_status->stop_step = tp->stop_step;
c906108c
SS
5878 inf_status->stop_stack_dummy = stop_stack_dummy;
5879 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5880 inf_status->stepping_over_breakpoint = tp->trap_expected;
5881 inf_status->step_range_start = tp->step_range_start;
5882 inf_status->step_range_end = tp->step_range_end;
5883 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5884 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5885 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5886 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5887 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5888 /* Save original bpstat chain here; replace it with copy of chain.
5889 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5890 hand them back the original chain when restore_inferior_status is
5891 called. */
347bddb7
PA
5892 inf_status->stop_bpstat = tp->stop_bpstat;
5893 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5894 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5895 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5896
206415a3 5897 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5898
7a292a7a 5899 return inf_status;
c906108c
SS
5900}
5901
c906108c 5902static int
96baa820 5903restore_selected_frame (void *args)
c906108c 5904{
488f131b 5905 struct frame_id *fid = (struct frame_id *) args;
c906108c 5906 struct frame_info *frame;
c906108c 5907
101dcfbe 5908 frame = frame_find_by_id (*fid);
c906108c 5909
aa0cd9c1
AC
5910 /* If inf_status->selected_frame_id is NULL, there was no previously
5911 selected frame. */
101dcfbe 5912 if (frame == NULL)
c906108c 5913 {
8a3fe4f8 5914 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5915 return 0;
5916 }
5917
0f7d239c 5918 select_frame (frame);
c906108c
SS
5919
5920 return (1);
5921}
5922
b89667eb
DE
5923/* Restore inferior session state to INF_STATUS. */
5924
c906108c 5925void
96baa820 5926restore_inferior_status (struct inferior_status *inf_status)
c906108c 5927{
4e1c45ea 5928 struct thread_info *tp = inferior_thread ();
d6b48e9c 5929 struct inferior *inf = current_inferior ();
4e1c45ea 5930
414c69f7 5931 tp->stop_step = inf_status->stop_step;
c906108c
SS
5932 stop_stack_dummy = inf_status->stop_stack_dummy;
5933 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5934 tp->trap_expected = inf_status->stepping_over_breakpoint;
5935 tp->step_range_start = inf_status->step_range_start;
5936 tp->step_range_end = inf_status->step_range_end;
5937 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5938 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5939 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5940 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5941 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5942 bpstat_clear (&tp->stop_bpstat);
5943 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5944 inf_status->stop_bpstat = NULL;
32400beb 5945 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5946 tp->in_infcall = inf_status->in_infcall;
c906108c 5947
b89667eb 5948 if (target_has_stack)
c906108c 5949 {
c906108c 5950 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5951 walking the stack might encounter a garbage pointer and
5952 error() trying to dereference it. */
488f131b
JB
5953 if (catch_errors
5954 (restore_selected_frame, &inf_status->selected_frame_id,
5955 "Unable to restore previously selected frame:\n",
5956 RETURN_MASK_ERROR) == 0)
c906108c
SS
5957 /* Error in restoring the selected frame. Select the innermost
5958 frame. */
0f7d239c 5959 select_frame (get_current_frame ());
c906108c 5960 }
c906108c 5961
72cec141 5962 xfree (inf_status);
7a292a7a 5963}
c906108c 5964
74b7792f
AC
5965static void
5966do_restore_inferior_status_cleanup (void *sts)
5967{
5968 restore_inferior_status (sts);
5969}
5970
5971struct cleanup *
5972make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5973{
5974 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5975}
5976
c906108c 5977void
96baa820 5978discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5979{
5980 /* See save_inferior_status for info on stop_bpstat. */
5981 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5982 xfree (inf_status);
7a292a7a 5983}
b89667eb 5984\f
47932f85 5985int
3a3e9ee3 5986inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5987{
5988 struct target_waitstatus last;
5989 ptid_t last_ptid;
5990
5991 get_last_target_status (&last_ptid, &last);
5992
5993 if (last.kind != TARGET_WAITKIND_FORKED)
5994 return 0;
5995
3a3e9ee3 5996 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5997 return 0;
5998
5999 *child_pid = last.value.related_pid;
6000 return 1;
6001}
6002
6003int
3a3e9ee3 6004inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6005{
6006 struct target_waitstatus last;
6007 ptid_t last_ptid;
6008
6009 get_last_target_status (&last_ptid, &last);
6010
6011 if (last.kind != TARGET_WAITKIND_VFORKED)
6012 return 0;
6013
3a3e9ee3 6014 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6015 return 0;
6016
6017 *child_pid = last.value.related_pid;
6018 return 1;
6019}
6020
6021int
3a3e9ee3 6022inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6023{
6024 struct target_waitstatus last;
6025 ptid_t last_ptid;
6026
6027 get_last_target_status (&last_ptid, &last);
6028
6029 if (last.kind != TARGET_WAITKIND_EXECD)
6030 return 0;
6031
3a3e9ee3 6032 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6033 return 0;
6034
6035 *execd_pathname = xstrdup (last.value.execd_pathname);
6036 return 1;
6037}
6038
a96d9b2e
SDJ
6039int
6040inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6041{
6042 struct target_waitstatus last;
6043 ptid_t last_ptid;
6044
6045 get_last_target_status (&last_ptid, &last);
6046
6047 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6048 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6049 return 0;
6050
6051 if (!ptid_equal (last_ptid, pid))
6052 return 0;
6053
6054 *syscall_number = last.value.syscall_number;
6055 return 1;
6056}
6057
ca6724c1
KB
6058/* Oft used ptids */
6059ptid_t null_ptid;
6060ptid_t minus_one_ptid;
6061
6062/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6063
ca6724c1
KB
6064ptid_t
6065ptid_build (int pid, long lwp, long tid)
6066{
6067 ptid_t ptid;
6068
6069 ptid.pid = pid;
6070 ptid.lwp = lwp;
6071 ptid.tid = tid;
6072 return ptid;
6073}
6074
6075/* Create a ptid from just a pid. */
6076
6077ptid_t
6078pid_to_ptid (int pid)
6079{
6080 return ptid_build (pid, 0, 0);
6081}
6082
6083/* Fetch the pid (process id) component from a ptid. */
6084
6085int
6086ptid_get_pid (ptid_t ptid)
6087{
6088 return ptid.pid;
6089}
6090
6091/* Fetch the lwp (lightweight process) component from a ptid. */
6092
6093long
6094ptid_get_lwp (ptid_t ptid)
6095{
6096 return ptid.lwp;
6097}
6098
6099/* Fetch the tid (thread id) component from a ptid. */
6100
6101long
6102ptid_get_tid (ptid_t ptid)
6103{
6104 return ptid.tid;
6105}
6106
6107/* ptid_equal() is used to test equality of two ptids. */
6108
6109int
6110ptid_equal (ptid_t ptid1, ptid_t ptid2)
6111{
6112 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6113 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6114}
6115
252fbfc8
PA
6116/* Returns true if PTID represents a process. */
6117
6118int
6119ptid_is_pid (ptid_t ptid)
6120{
6121 if (ptid_equal (minus_one_ptid, ptid))
6122 return 0;
6123 if (ptid_equal (null_ptid, ptid))
6124 return 0;
6125
6126 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6127}
6128
ca6724c1
KB
6129/* restore_inferior_ptid() will be used by the cleanup machinery
6130 to restore the inferior_ptid value saved in a call to
6131 save_inferior_ptid(). */
ce696e05
KB
6132
6133static void
6134restore_inferior_ptid (void *arg)
6135{
6136 ptid_t *saved_ptid_ptr = arg;
6137 inferior_ptid = *saved_ptid_ptr;
6138 xfree (arg);
6139}
6140
6141/* Save the value of inferior_ptid so that it may be restored by a
6142 later call to do_cleanups(). Returns the struct cleanup pointer
6143 needed for later doing the cleanup. */
6144
6145struct cleanup *
6146save_inferior_ptid (void)
6147{
6148 ptid_t *saved_ptid_ptr;
6149
6150 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6151 *saved_ptid_ptr = inferior_ptid;
6152 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6153}
c5aa993b 6154\f
488f131b 6155
b2175913
MS
6156/* User interface for reverse debugging:
6157 Set exec-direction / show exec-direction commands
6158 (returns error unless target implements to_set_exec_direction method). */
6159
6160enum exec_direction_kind execution_direction = EXEC_FORWARD;
6161static const char exec_forward[] = "forward";
6162static const char exec_reverse[] = "reverse";
6163static const char *exec_direction = exec_forward;
6164static const char *exec_direction_names[] = {
6165 exec_forward,
6166 exec_reverse,
6167 NULL
6168};
6169
6170static void
6171set_exec_direction_func (char *args, int from_tty,
6172 struct cmd_list_element *cmd)
6173{
6174 if (target_can_execute_reverse)
6175 {
6176 if (!strcmp (exec_direction, exec_forward))
6177 execution_direction = EXEC_FORWARD;
6178 else if (!strcmp (exec_direction, exec_reverse))
6179 execution_direction = EXEC_REVERSE;
6180 }
6181}
6182
6183static void
6184show_exec_direction_func (struct ui_file *out, int from_tty,
6185 struct cmd_list_element *cmd, const char *value)
6186{
6187 switch (execution_direction) {
6188 case EXEC_FORWARD:
6189 fprintf_filtered (out, _("Forward.\n"));
6190 break;
6191 case EXEC_REVERSE:
6192 fprintf_filtered (out, _("Reverse.\n"));
6193 break;
6194 case EXEC_ERROR:
6195 default:
6196 fprintf_filtered (out,
6197 _("Forward (target `%s' does not support exec-direction).\n"),
6198 target_shortname);
6199 break;
6200 }
6201}
6202
6203/* User interface for non-stop mode. */
6204
ad52ddc6
PA
6205int non_stop = 0;
6206static int non_stop_1 = 0;
6207
6208static void
6209set_non_stop (char *args, int from_tty,
6210 struct cmd_list_element *c)
6211{
6212 if (target_has_execution)
6213 {
6214 non_stop_1 = non_stop;
6215 error (_("Cannot change this setting while the inferior is running."));
6216 }
6217
6218 non_stop = non_stop_1;
6219}
6220
6221static void
6222show_non_stop (struct ui_file *file, int from_tty,
6223 struct cmd_list_element *c, const char *value)
6224{
6225 fprintf_filtered (file,
6226 _("Controlling the inferior in non-stop mode is %s.\n"),
6227 value);
6228}
6229
d4db2f36
PA
6230static void
6231show_schedule_multiple (struct ui_file *file, int from_tty,
6232 struct cmd_list_element *c, const char *value)
6233{
6234 fprintf_filtered (file, _("\
6235Resuming the execution of threads of all processes is %s.\n"), value);
6236}
ad52ddc6 6237
c906108c 6238void
96baa820 6239_initialize_infrun (void)
c906108c 6240{
52f0bd74
AC
6241 int i;
6242 int numsigs;
c906108c
SS
6243 struct cmd_list_element *c;
6244
1bedd215
AC
6245 add_info ("signals", signals_info, _("\
6246What debugger does when program gets various signals.\n\
6247Specify a signal as argument to print info on that signal only."));
c906108c
SS
6248 add_info_alias ("handle", "signals", 0);
6249
1bedd215
AC
6250 add_com ("handle", class_run, handle_command, _("\
6251Specify how to handle a signal.\n\
c906108c
SS
6252Args are signals and actions to apply to those signals.\n\
6253Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6254from 1-15 are allowed for compatibility with old versions of GDB.\n\
6255Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6256The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6257used by the debugger, typically SIGTRAP and SIGINT.\n\
6258Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6259\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6260Stop means reenter debugger if this signal happens (implies print).\n\
6261Print means print a message if this signal happens.\n\
6262Pass means let program see this signal; otherwise program doesn't know.\n\
6263Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6264Pass and Stop may be combined."));
c906108c
SS
6265 if (xdb_commands)
6266 {
1bedd215
AC
6267 add_com ("lz", class_info, signals_info, _("\
6268What debugger does when program gets various signals.\n\
6269Specify a signal as argument to print info on that signal only."));
6270 add_com ("z", class_run, xdb_handle_command, _("\
6271Specify how to handle a signal.\n\
c906108c
SS
6272Args are signals and actions to apply to those signals.\n\
6273Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6274from 1-15 are allowed for compatibility with old versions of GDB.\n\
6275Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6276The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6277used by the debugger, typically SIGTRAP and SIGINT.\n\
6278Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
6279\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6280nopass), \"Q\" (noprint)\n\
6281Stop means reenter debugger if this signal happens (implies print).\n\
6282Print means print a message if this signal happens.\n\
6283Pass means let program see this signal; otherwise program doesn't know.\n\
6284Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6285Pass and Stop may be combined."));
c906108c
SS
6286 }
6287
6288 if (!dbx_commands)
1a966eab
AC
6289 stop_command = add_cmd ("stop", class_obscure,
6290 not_just_help_class_command, _("\
6291There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6292This allows you to set a list of commands to be run each time execution\n\
1a966eab 6293of the program stops."), &cmdlist);
c906108c 6294
85c07804
AC
6295 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6296Set inferior debugging."), _("\
6297Show inferior debugging."), _("\
6298When non-zero, inferior specific debugging is enabled."),
6299 NULL,
920d2a44 6300 show_debug_infrun,
85c07804 6301 &setdebuglist, &showdebuglist);
527159b7 6302
237fc4c9
PA
6303 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6304Set displaced stepping debugging."), _("\
6305Show displaced stepping debugging."), _("\
6306When non-zero, displaced stepping specific debugging is enabled."),
6307 NULL,
6308 show_debug_displaced,
6309 &setdebuglist, &showdebuglist);
6310
ad52ddc6
PA
6311 add_setshow_boolean_cmd ("non-stop", no_class,
6312 &non_stop_1, _("\
6313Set whether gdb controls the inferior in non-stop mode."), _("\
6314Show whether gdb controls the inferior in non-stop mode."), _("\
6315When debugging a multi-threaded program and this setting is\n\
6316off (the default, also called all-stop mode), when one thread stops\n\
6317(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6318all other threads in the program while you interact with the thread of\n\
6319interest. When you continue or step a thread, you can allow the other\n\
6320threads to run, or have them remain stopped, but while you inspect any\n\
6321thread's state, all threads stop.\n\
6322\n\
6323In non-stop mode, when one thread stops, other threads can continue\n\
6324to run freely. You'll be able to step each thread independently,\n\
6325leave it stopped or free to run as needed."),
6326 set_non_stop,
6327 show_non_stop,
6328 &setlist,
6329 &showlist);
6330
c906108c 6331 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6332 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6333 signal_print = (unsigned char *)
6334 xmalloc (sizeof (signal_print[0]) * numsigs);
6335 signal_program = (unsigned char *)
6336 xmalloc (sizeof (signal_program[0]) * numsigs);
6337 for (i = 0; i < numsigs; i++)
6338 {
6339 signal_stop[i] = 1;
6340 signal_print[i] = 1;
6341 signal_program[i] = 1;
6342 }
6343
6344 /* Signals caused by debugger's own actions
6345 should not be given to the program afterwards. */
6346 signal_program[TARGET_SIGNAL_TRAP] = 0;
6347 signal_program[TARGET_SIGNAL_INT] = 0;
6348
6349 /* Signals that are not errors should not normally enter the debugger. */
6350 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6351 signal_print[TARGET_SIGNAL_ALRM] = 0;
6352 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6353 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6354 signal_stop[TARGET_SIGNAL_PROF] = 0;
6355 signal_print[TARGET_SIGNAL_PROF] = 0;
6356 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6357 signal_print[TARGET_SIGNAL_CHLD] = 0;
6358 signal_stop[TARGET_SIGNAL_IO] = 0;
6359 signal_print[TARGET_SIGNAL_IO] = 0;
6360 signal_stop[TARGET_SIGNAL_POLL] = 0;
6361 signal_print[TARGET_SIGNAL_POLL] = 0;
6362 signal_stop[TARGET_SIGNAL_URG] = 0;
6363 signal_print[TARGET_SIGNAL_URG] = 0;
6364 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6365 signal_print[TARGET_SIGNAL_WINCH] = 0;
6366
cd0fc7c3
SS
6367 /* These signals are used internally by user-level thread
6368 implementations. (See signal(5) on Solaris.) Like the above
6369 signals, a healthy program receives and handles them as part of
6370 its normal operation. */
6371 signal_stop[TARGET_SIGNAL_LWP] = 0;
6372 signal_print[TARGET_SIGNAL_LWP] = 0;
6373 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6374 signal_print[TARGET_SIGNAL_WAITING] = 0;
6375 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6376 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6377
85c07804
AC
6378 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6379 &stop_on_solib_events, _("\
6380Set stopping for shared library events."), _("\
6381Show stopping for shared library events."), _("\
c906108c
SS
6382If nonzero, gdb will give control to the user when the dynamic linker\n\
6383notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6384to the user would be loading/unloading of a new library."),
6385 NULL,
920d2a44 6386 show_stop_on_solib_events,
85c07804 6387 &setlist, &showlist);
c906108c 6388
7ab04401
AC
6389 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6390 follow_fork_mode_kind_names,
6391 &follow_fork_mode_string, _("\
6392Set debugger response to a program call of fork or vfork."), _("\
6393Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6394A fork or vfork creates a new process. follow-fork-mode can be:\n\
6395 parent - the original process is debugged after a fork\n\
6396 child - the new process is debugged after a fork\n\
ea1dd7bc 6397The unfollowed process will continue to run.\n\
7ab04401
AC
6398By default, the debugger will follow the parent process."),
6399 NULL,
920d2a44 6400 show_follow_fork_mode_string,
7ab04401
AC
6401 &setlist, &showlist);
6402
6c95b8df
PA
6403 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6404 follow_exec_mode_names,
6405 &follow_exec_mode_string, _("\
6406Set debugger response to a program call of exec."), _("\
6407Show debugger response to a program call of exec."), _("\
6408An exec call replaces the program image of a process.\n\
6409\n\
6410follow-exec-mode can be:\n\
6411\n\
6412 new - the debugger creates a new inferior and rebinds the process \n\
6413to this new inferior. The program the process was running before\n\
6414the exec call can be restarted afterwards by restarting the original\n\
6415inferior.\n\
6416\n\
6417 same - the debugger keeps the process bound to the same inferior.\n\
6418The new executable image replaces the previous executable loaded in\n\
6419the inferior. Restarting the inferior after the exec call restarts\n\
6420the executable the process was running after the exec call.\n\
6421\n\
6422By default, the debugger will use the same inferior."),
6423 NULL,
6424 show_follow_exec_mode_string,
6425 &setlist, &showlist);
6426
7ab04401
AC
6427 add_setshow_enum_cmd ("scheduler-locking", class_run,
6428 scheduler_enums, &scheduler_mode, _("\
6429Set mode for locking scheduler during execution."), _("\
6430Show mode for locking scheduler during execution."), _("\
c906108c
SS
6431off == no locking (threads may preempt at any time)\n\
6432on == full locking (no thread except the current thread may run)\n\
6433step == scheduler locked during every single-step operation.\n\
6434 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6435 Other threads may run while stepping over a function call ('next')."),
6436 set_schedlock_func, /* traps on target vector */
920d2a44 6437 show_scheduler_mode,
7ab04401 6438 &setlist, &showlist);
5fbbeb29 6439
d4db2f36
PA
6440 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6441Set mode for resuming threads of all processes."), _("\
6442Show mode for resuming threads of all processes."), _("\
6443When on, execution commands (such as 'continue' or 'next') resume all\n\
6444threads of all processes. When off (which is the default), execution\n\
6445commands only resume the threads of the current process. The set of\n\
6446threads that are resumed is further refined by the scheduler-locking\n\
6447mode (see help set scheduler-locking)."),
6448 NULL,
6449 show_schedule_multiple,
6450 &setlist, &showlist);
6451
5bf193a2
AC
6452 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6453Set mode of the step operation."), _("\
6454Show mode of the step operation."), _("\
6455When set, doing a step over a function without debug line information\n\
6456will stop at the first instruction of that function. Otherwise, the\n\
6457function is skipped and the step command stops at a different source line."),
6458 NULL,
920d2a44 6459 show_step_stop_if_no_debug,
5bf193a2 6460 &setlist, &showlist);
ca6724c1 6461
fff08868
HZ
6462 add_setshow_enum_cmd ("displaced-stepping", class_run,
6463 can_use_displaced_stepping_enum,
6464 &can_use_displaced_stepping, _("\
237fc4c9
PA
6465Set debugger's willingness to use displaced stepping."), _("\
6466Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6467If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6468supported by the target architecture. If off, gdb will not use displaced\n\
6469stepping to step over breakpoints, even if such is supported by the target\n\
6470architecture. If auto (which is the default), gdb will use displaced stepping\n\
6471if the target architecture supports it and non-stop mode is active, but will not\n\
6472use it in all-stop mode (see help set non-stop)."),
6473 NULL,
6474 show_can_use_displaced_stepping,
6475 &setlist, &showlist);
237fc4c9 6476
b2175913
MS
6477 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6478 &exec_direction, _("Set direction of execution.\n\
6479Options are 'forward' or 'reverse'."),
6480 _("Show direction of execution (forward/reverse)."),
6481 _("Tells gdb whether to execute forward or backward."),
6482 set_exec_direction_func, show_exec_direction_func,
6483 &setlist, &showlist);
6484
6c95b8df
PA
6485 /* Set/show detach-on-fork: user-settable mode. */
6486
6487 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6488Set whether gdb will detach the child of a fork."), _("\
6489Show whether gdb will detach the child of a fork."), _("\
6490Tells gdb whether to detach the child of a fork."),
6491 NULL, NULL, &setlist, &showlist);
6492
ca6724c1
KB
6493 /* ptid initializations */
6494 null_ptid = ptid_build (0, 0, 0);
6495 minus_one_ptid = ptid_build (-1, 0, 0);
6496 inferior_ptid = null_ptid;
6497 target_last_wait_ptid = minus_one_ptid;
237fc4c9 6498 displaced_step_ptid = null_ptid;
5231c1fd
PA
6499
6500 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6501 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6502 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
6503
6504 /* Explicitly create without lookup, since that tries to create a
6505 value with a void typed value, and when we get here, gdbarch
6506 isn't initialized yet. At this point, we're quite sure there
6507 isn't another convenience variable of the same name. */
6508 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6509}
This page took 1.513312 seconds and 4 git commands to generate.