2011-04-27 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
c906108c
SS
57
58/* Prototypes for local functions */
59
96baa820 60static void signals_info (char *, int);
c906108c 61
96baa820 62static void handle_command (char *, int);
c906108c 63
96baa820 64static void sig_print_info (enum target_signal);
c906108c 65
96baa820 66static void sig_print_header (void);
c906108c 67
74b7792f 68static void resume_cleanups (void *);
c906108c 69
96baa820 70static int hook_stop_stub (void *);
c906108c 71
96baa820
JM
72static int restore_selected_frame (void *);
73
4ef3f3be 74static int follow_fork (void);
96baa820
JM
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
b3444185
PA
81static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
a7212384 83
96baa820
JM
84static void xdb_handle_command (char *args, int from_tty);
85
6a6b96b9 86static int prepare_to_proceed (int);
ea67f13b 87
33d62d64
JK
88static void print_exited_reason (int exitstatus);
89
90static void print_signal_exited_reason (enum target_signal siggnal);
91
92static void print_no_history_reason (void);
93
94static void print_signal_received_reason (enum target_signal siggnal);
95
96static void print_end_stepping_range_reason (void);
97
96baa820 98void _initialize_infrun (void);
43ff13b4 99
e58b0e63
PA
100void nullify_last_target_wait_ptid (void);
101
5fbbeb29
CF
102/* When set, stop the 'step' command if we enter a function which has
103 no line number information. The normal behavior is that we step
104 over such function. */
105int step_stop_if_no_debug = 0;
920d2a44
AC
106static void
107show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
111}
5fbbeb29 112
1777feb0 113/* In asynchronous mode, but simulating synchronous execution. */
96baa820 114
43ff13b4
JM
115int sync_execution = 0;
116
c906108c
SS
117/* wait_for_inferior and normal_stop use this to notify the user
118 when the inferior stopped in a different thread than it had been
96baa820
JM
119 running in. */
120
39f77062 121static ptid_t previous_inferior_ptid;
7a292a7a 122
6c95b8df
PA
123/* Default behavior is to detach newly forked processes (legacy). */
124int detach_fork = 1;
125
237fc4c9
PA
126int debug_displaced = 0;
127static void
128show_debug_displaced (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130{
131 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
132}
133
628fe4e4 134int debug_infrun = 0;
920d2a44
AC
135static void
136show_debug_infrun (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
140}
527159b7 141
d4f3574e
SS
142/* If the program uses ELF-style shared libraries, then calls to
143 functions in shared libraries go through stubs, which live in a
144 table called the PLT (Procedure Linkage Table). The first time the
145 function is called, the stub sends control to the dynamic linker,
146 which looks up the function's real address, patches the stub so
147 that future calls will go directly to the function, and then passes
148 control to the function.
149
150 If we are stepping at the source level, we don't want to see any of
151 this --- we just want to skip over the stub and the dynamic linker.
152 The simple approach is to single-step until control leaves the
153 dynamic linker.
154
ca557f44
AC
155 However, on some systems (e.g., Red Hat's 5.2 distribution) the
156 dynamic linker calls functions in the shared C library, so you
157 can't tell from the PC alone whether the dynamic linker is still
158 running. In this case, we use a step-resume breakpoint to get us
159 past the dynamic linker, as if we were using "next" to step over a
160 function call.
d4f3574e 161
cfd8ab24 162 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
163 linker code or not. Normally, this means we single-step. However,
164 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
165 address where we can place a step-resume breakpoint to get past the
166 linker's symbol resolution function.
167
cfd8ab24 168 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
169 pretty portable way, by comparing the PC against the address ranges
170 of the dynamic linker's sections.
171
172 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
173 it depends on internal details of the dynamic linker. It's usually
174 not too hard to figure out where to put a breakpoint, but it
175 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
176 sanity checking. If it can't figure things out, returning zero and
177 getting the (possibly confusing) stepping behavior is better than
178 signalling an error, which will obscure the change in the
179 inferior's state. */
c906108c 180
c906108c
SS
181/* This function returns TRUE if pc is the address of an instruction
182 that lies within the dynamic linker (such as the event hook, or the
183 dld itself).
184
185 This function must be used only when a dynamic linker event has
186 been caught, and the inferior is being stepped out of the hook, or
187 undefined results are guaranteed. */
188
189#ifndef SOLIB_IN_DYNAMIC_LINKER
190#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
191#endif
192
d914c394
SS
193/* "Observer mode" is somewhat like a more extreme version of
194 non-stop, in which all GDB operations that might affect the
195 target's execution have been disabled. */
196
197static int non_stop_1 = 0;
198
199int observer_mode = 0;
200static int observer_mode_1 = 0;
201
202static void
203set_observer_mode (char *args, int from_tty,
204 struct cmd_list_element *c)
205{
206 extern int pagination_enabled;
207
208 if (target_has_execution)
209 {
210 observer_mode_1 = observer_mode;
211 error (_("Cannot change this setting while the inferior is running."));
212 }
213
214 observer_mode = observer_mode_1;
215
216 may_write_registers = !observer_mode;
217 may_write_memory = !observer_mode;
218 may_insert_breakpoints = !observer_mode;
219 may_insert_tracepoints = !observer_mode;
220 /* We can insert fast tracepoints in or out of observer mode,
221 but enable them if we're going into this mode. */
222 if (observer_mode)
223 may_insert_fast_tracepoints = 1;
224 may_stop = !observer_mode;
225 update_target_permissions ();
226
227 /* Going *into* observer mode we must force non-stop, then
228 going out we leave it that way. */
229 if (observer_mode)
230 {
231 target_async_permitted = 1;
232 pagination_enabled = 0;
233 non_stop = non_stop_1 = 1;
234 }
235
236 if (from_tty)
237 printf_filtered (_("Observer mode is now %s.\n"),
238 (observer_mode ? "on" : "off"));
239}
240
241static void
242show_observer_mode (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
245 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
246}
247
248/* This updates the value of observer mode based on changes in
249 permissions. Note that we are deliberately ignoring the values of
250 may-write-registers and may-write-memory, since the user may have
251 reason to enable these during a session, for instance to turn on a
252 debugging-related global. */
253
254void
255update_observer_mode (void)
256{
257 int newval;
258
259 newval = (!may_insert_breakpoints
260 && !may_insert_tracepoints
261 && may_insert_fast_tracepoints
262 && !may_stop
263 && non_stop);
264
265 /* Let the user know if things change. */
266 if (newval != observer_mode)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (newval ? "on" : "off"));
269
270 observer_mode = observer_mode_1 = newval;
271}
c2c6d25f 272
c906108c
SS
273/* Tables of how to react to signals; the user sets them. */
274
275static unsigned char *signal_stop;
276static unsigned char *signal_print;
277static unsigned char *signal_program;
278
279#define SET_SIGS(nsigs,sigs,flags) \
280 do { \
281 int signum = (nsigs); \
282 while (signum-- > 0) \
283 if ((sigs)[signum]) \
284 (flags)[signum] = 1; \
285 } while (0)
286
287#define UNSET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 0; \
293 } while (0)
294
1777feb0 295/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 296
edb3359d 297#define RESUME_ALL minus_one_ptid
c906108c
SS
298
299/* Command list pointer for the "stop" placeholder. */
300
301static struct cmd_list_element *stop_command;
302
c906108c
SS
303/* Function inferior was in as of last step command. */
304
305static struct symbol *step_start_function;
306
c906108c
SS
307/* Nonzero if we want to give control to the user when we're notified
308 of shared library events by the dynamic linker. */
628fe4e4 309int stop_on_solib_events;
920d2a44
AC
310static void
311show_stop_on_solib_events (struct ui_file *file, int from_tty,
312 struct cmd_list_element *c, const char *value)
313{
314 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
315 value);
316}
c906108c 317
c906108c
SS
318/* Nonzero means expecting a trace trap
319 and should stop the inferior and return silently when it happens. */
320
321int stop_after_trap;
322
642fd101
DE
323/* Save register contents here when executing a "finish" command or are
324 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
325 Thus this contains the return value from the called function (assuming
326 values are returned in a register). */
327
72cec141 328struct regcache *stop_registers;
c906108c 329
c906108c
SS
330/* Nonzero after stop if current stack frame should be printed. */
331
332static int stop_print_frame;
333
e02bc4cc 334/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
335 returned by target_wait()/deprecated_target_wait_hook(). This
336 information is returned by get_last_target_status(). */
39f77062 337static ptid_t target_last_wait_ptid;
e02bc4cc
DS
338static struct target_waitstatus target_last_waitstatus;
339
0d1e5fa7
PA
340static void context_switch (ptid_t ptid);
341
4e1c45ea 342void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
343
344void init_infwait_state (void);
a474d7c2 345
53904c9e
AC
346static const char follow_fork_mode_child[] = "child";
347static const char follow_fork_mode_parent[] = "parent";
348
488f131b 349static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
350 follow_fork_mode_child,
351 follow_fork_mode_parent,
352 NULL
ef346e04 353};
c906108c 354
53904c9e 355static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
356static void
357show_follow_fork_mode_string (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
3e43a32a
MS
360 fprintf_filtered (file,
361 _("Debugger response to a program "
362 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
363 value);
364}
c906108c
SS
365\f
366
e58b0e63
PA
367/* Tell the target to follow the fork we're stopped at. Returns true
368 if the inferior should be resumed; false, if the target for some
369 reason decided it's best not to resume. */
370
6604731b 371static int
4ef3f3be 372follow_fork (void)
c906108c 373{
ea1dd7bc 374 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
375 int should_resume = 1;
376 struct thread_info *tp;
377
378 /* Copy user stepping state to the new inferior thread. FIXME: the
379 followed fork child thread should have a copy of most of the
4e3990f4
DE
380 parent thread structure's run control related fields, not just these.
381 Initialized to avoid "may be used uninitialized" warnings from gcc. */
382 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 383 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
384 CORE_ADDR step_range_start = 0;
385 CORE_ADDR step_range_end = 0;
386 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
387
388 if (!non_stop)
389 {
390 ptid_t wait_ptid;
391 struct target_waitstatus wait_status;
392
393 /* Get the last target status returned by target_wait(). */
394 get_last_target_status (&wait_ptid, &wait_status);
395
396 /* If not stopped at a fork event, then there's nothing else to
397 do. */
398 if (wait_status.kind != TARGET_WAITKIND_FORKED
399 && wait_status.kind != TARGET_WAITKIND_VFORKED)
400 return 1;
401
402 /* Check if we switched over from WAIT_PTID, since the event was
403 reported. */
404 if (!ptid_equal (wait_ptid, minus_one_ptid)
405 && !ptid_equal (inferior_ptid, wait_ptid))
406 {
407 /* We did. Switch back to WAIT_PTID thread, to tell the
408 target to follow it (in either direction). We'll
409 afterwards refuse to resume, and inform the user what
410 happened. */
411 switch_to_thread (wait_ptid);
412 should_resume = 0;
413 }
414 }
415
416 tp = inferior_thread ();
417
418 /* If there were any forks/vforks that were caught and are now to be
419 followed, then do so now. */
420 switch (tp->pending_follow.kind)
421 {
422 case TARGET_WAITKIND_FORKED:
423 case TARGET_WAITKIND_VFORKED:
424 {
425 ptid_t parent, child;
426
427 /* If the user did a next/step, etc, over a fork call,
428 preserve the stepping state in the fork child. */
429 if (follow_child && should_resume)
430 {
8358c15c
JK
431 step_resume_breakpoint = clone_momentary_breakpoint
432 (tp->control.step_resume_breakpoint);
16c381f0
JK
433 step_range_start = tp->control.step_range_start;
434 step_range_end = tp->control.step_range_end;
435 step_frame_id = tp->control.step_frame_id;
186c406b
TT
436 exception_resume_breakpoint
437 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
438
439 /* For now, delete the parent's sr breakpoint, otherwise,
440 parent/child sr breakpoints are considered duplicates,
441 and the child version will not be installed. Remove
442 this when the breakpoints module becomes aware of
443 inferiors and address spaces. */
444 delete_step_resume_breakpoint (tp);
16c381f0
JK
445 tp->control.step_range_start = 0;
446 tp->control.step_range_end = 0;
447 tp->control.step_frame_id = null_frame_id;
186c406b 448 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
449 }
450
451 parent = inferior_ptid;
452 child = tp->pending_follow.value.related_pid;
453
454 /* Tell the target to do whatever is necessary to follow
455 either parent or child. */
456 if (target_follow_fork (follow_child))
457 {
458 /* Target refused to follow, or there's some other reason
459 we shouldn't resume. */
460 should_resume = 0;
461 }
462 else
463 {
464 /* This pending follow fork event is now handled, one way
465 or another. The previous selected thread may be gone
466 from the lists by now, but if it is still around, need
467 to clear the pending follow request. */
e09875d4 468 tp = find_thread_ptid (parent);
e58b0e63
PA
469 if (tp)
470 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
471
472 /* This makes sure we don't try to apply the "Switched
473 over from WAIT_PID" logic above. */
474 nullify_last_target_wait_ptid ();
475
1777feb0 476 /* If we followed the child, switch to it... */
e58b0e63
PA
477 if (follow_child)
478 {
479 switch_to_thread (child);
480
481 /* ... and preserve the stepping state, in case the
482 user was stepping over the fork call. */
483 if (should_resume)
484 {
485 tp = inferior_thread ();
8358c15c
JK
486 tp->control.step_resume_breakpoint
487 = step_resume_breakpoint;
16c381f0
JK
488 tp->control.step_range_start = step_range_start;
489 tp->control.step_range_end = step_range_end;
490 tp->control.step_frame_id = step_frame_id;
186c406b
TT
491 tp->control.exception_resume_breakpoint
492 = exception_resume_breakpoint;
e58b0e63
PA
493 }
494 else
495 {
496 /* If we get here, it was because we're trying to
497 resume from a fork catchpoint, but, the user
498 has switched threads away from the thread that
499 forked. In that case, the resume command
500 issued is most likely not applicable to the
501 child, so just warn, and refuse to resume. */
3e43a32a
MS
502 warning (_("Not resuming: switched threads "
503 "before following fork child.\n"));
e58b0e63
PA
504 }
505
506 /* Reset breakpoints in the child as appropriate. */
507 follow_inferior_reset_breakpoints ();
508 }
509 else
510 switch_to_thread (parent);
511 }
512 }
513 break;
514 case TARGET_WAITKIND_SPURIOUS:
515 /* Nothing to follow. */
516 break;
517 default:
518 internal_error (__FILE__, __LINE__,
519 "Unexpected pending_follow.kind %d\n",
520 tp->pending_follow.kind);
521 break;
522 }
c906108c 523
e58b0e63 524 return should_resume;
c906108c
SS
525}
526
6604731b
DJ
527void
528follow_inferior_reset_breakpoints (void)
c906108c 529{
4e1c45ea
PA
530 struct thread_info *tp = inferior_thread ();
531
6604731b
DJ
532 /* Was there a step_resume breakpoint? (There was if the user
533 did a "next" at the fork() call.) If so, explicitly reset its
534 thread number.
535
536 step_resumes are a form of bp that are made to be per-thread.
537 Since we created the step_resume bp when the parent process
538 was being debugged, and now are switching to the child process,
539 from the breakpoint package's viewpoint, that's a switch of
540 "threads". We must update the bp's notion of which thread
541 it is for, or it'll be ignored when it triggers. */
542
8358c15c
JK
543 if (tp->control.step_resume_breakpoint)
544 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 545
186c406b
TT
546 if (tp->control.exception_resume_breakpoint)
547 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
548
6604731b
DJ
549 /* Reinsert all breakpoints in the child. The user may have set
550 breakpoints after catching the fork, in which case those
551 were never set in the child, but only in the parent. This makes
552 sure the inserted breakpoints match the breakpoint list. */
553
554 breakpoint_re_set ();
555 insert_breakpoints ();
c906108c 556}
c906108c 557
6c95b8df
PA
558/* The child has exited or execed: resume threads of the parent the
559 user wanted to be executing. */
560
561static int
562proceed_after_vfork_done (struct thread_info *thread,
563 void *arg)
564{
565 int pid = * (int *) arg;
566
567 if (ptid_get_pid (thread->ptid) == pid
568 && is_running (thread->ptid)
569 && !is_executing (thread->ptid)
570 && !thread->stop_requested
16c381f0 571 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
572 {
573 if (debug_infrun)
574 fprintf_unfiltered (gdb_stdlog,
575 "infrun: resuming vfork parent thread %s\n",
576 target_pid_to_str (thread->ptid));
577
578 switch_to_thread (thread->ptid);
579 clear_proceed_status ();
580 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
581 }
582
583 return 0;
584}
585
586/* Called whenever we notice an exec or exit event, to handle
587 detaching or resuming a vfork parent. */
588
589static void
590handle_vfork_child_exec_or_exit (int exec)
591{
592 struct inferior *inf = current_inferior ();
593
594 if (inf->vfork_parent)
595 {
596 int resume_parent = -1;
597
598 /* This exec or exit marks the end of the shared memory region
599 between the parent and the child. If the user wanted to
600 detach from the parent, now is the time. */
601
602 if (inf->vfork_parent->pending_detach)
603 {
604 struct thread_info *tp;
605 struct cleanup *old_chain;
606 struct program_space *pspace;
607 struct address_space *aspace;
608
1777feb0 609 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
610
611 old_chain = make_cleanup_restore_current_thread ();
612
613 /* We're letting loose of the parent. */
614 tp = any_live_thread_of_process (inf->vfork_parent->pid);
615 switch_to_thread (tp->ptid);
616
617 /* We're about to detach from the parent, which implicitly
618 removes breakpoints from its address space. There's a
619 catch here: we want to reuse the spaces for the child,
620 but, parent/child are still sharing the pspace at this
621 point, although the exec in reality makes the kernel give
622 the child a fresh set of new pages. The problem here is
623 that the breakpoints module being unaware of this, would
624 likely chose the child process to write to the parent
625 address space. Swapping the child temporarily away from
626 the spaces has the desired effect. Yes, this is "sort
627 of" a hack. */
628
629 pspace = inf->pspace;
630 aspace = inf->aspace;
631 inf->aspace = NULL;
632 inf->pspace = NULL;
633
634 if (debug_infrun || info_verbose)
635 {
636 target_terminal_ours ();
637
638 if (exec)
639 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
640 "Detaching vfork parent process "
641 "%d after child exec.\n",
6c95b8df
PA
642 inf->vfork_parent->pid);
643 else
644 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
645 "Detaching vfork parent process "
646 "%d after child exit.\n",
6c95b8df
PA
647 inf->vfork_parent->pid);
648 }
649
650 target_detach (NULL, 0);
651
652 /* Put it back. */
653 inf->pspace = pspace;
654 inf->aspace = aspace;
655
656 do_cleanups (old_chain);
657 }
658 else if (exec)
659 {
660 /* We're staying attached to the parent, so, really give the
661 child a new address space. */
662 inf->pspace = add_program_space (maybe_new_address_space ());
663 inf->aspace = inf->pspace->aspace;
664 inf->removable = 1;
665 set_current_program_space (inf->pspace);
666
667 resume_parent = inf->vfork_parent->pid;
668
669 /* Break the bonds. */
670 inf->vfork_parent->vfork_child = NULL;
671 }
672 else
673 {
674 struct cleanup *old_chain;
675 struct program_space *pspace;
676
677 /* If this is a vfork child exiting, then the pspace and
678 aspaces were shared with the parent. Since we're
679 reporting the process exit, we'll be mourning all that is
680 found in the address space, and switching to null_ptid,
681 preparing to start a new inferior. But, since we don't
682 want to clobber the parent's address/program spaces, we
683 go ahead and create a new one for this exiting
684 inferior. */
685
686 /* Switch to null_ptid, so that clone_program_space doesn't want
687 to read the selected frame of a dead process. */
688 old_chain = save_inferior_ptid ();
689 inferior_ptid = null_ptid;
690
691 /* This inferior is dead, so avoid giving the breakpoints
692 module the option to write through to it (cloning a
693 program space resets breakpoints). */
694 inf->aspace = NULL;
695 inf->pspace = NULL;
696 pspace = add_program_space (maybe_new_address_space ());
697 set_current_program_space (pspace);
698 inf->removable = 1;
699 clone_program_space (pspace, inf->vfork_parent->pspace);
700 inf->pspace = pspace;
701 inf->aspace = pspace->aspace;
702
703 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 704 inferior. */
6c95b8df
PA
705 do_cleanups (old_chain);
706
707 resume_parent = inf->vfork_parent->pid;
708 /* Break the bonds. */
709 inf->vfork_parent->vfork_child = NULL;
710 }
711
712 inf->vfork_parent = NULL;
713
714 gdb_assert (current_program_space == inf->pspace);
715
716 if (non_stop && resume_parent != -1)
717 {
718 /* If the user wanted the parent to be running, let it go
719 free now. */
720 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
721
722 if (debug_infrun)
3e43a32a
MS
723 fprintf_unfiltered (gdb_stdlog,
724 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
725 resume_parent);
726
727 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
728
729 do_cleanups (old_chain);
730 }
731 }
732}
733
734/* Enum strings for "set|show displaced-stepping". */
735
736static const char follow_exec_mode_new[] = "new";
737static const char follow_exec_mode_same[] = "same";
738static const char *follow_exec_mode_names[] =
739{
740 follow_exec_mode_new,
741 follow_exec_mode_same,
742 NULL,
743};
744
745static const char *follow_exec_mode_string = follow_exec_mode_same;
746static void
747show_follow_exec_mode_string (struct ui_file *file, int from_tty,
748 struct cmd_list_element *c, const char *value)
749{
750 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
751}
752
1777feb0 753/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 754
c906108c 755static void
3a3e9ee3 756follow_exec (ptid_t pid, char *execd_pathname)
c906108c 757{
4e1c45ea 758 struct thread_info *th = inferior_thread ();
6c95b8df 759 struct inferior *inf = current_inferior ();
7a292a7a 760
c906108c
SS
761 /* This is an exec event that we actually wish to pay attention to.
762 Refresh our symbol table to the newly exec'd program, remove any
763 momentary bp's, etc.
764
765 If there are breakpoints, they aren't really inserted now,
766 since the exec() transformed our inferior into a fresh set
767 of instructions.
768
769 We want to preserve symbolic breakpoints on the list, since
770 we have hopes that they can be reset after the new a.out's
771 symbol table is read.
772
773 However, any "raw" breakpoints must be removed from the list
774 (e.g., the solib bp's), since their address is probably invalid
775 now.
776
777 And, we DON'T want to call delete_breakpoints() here, since
778 that may write the bp's "shadow contents" (the instruction
779 value that was overwritten witha TRAP instruction). Since
1777feb0 780 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
781
782 mark_breakpoints_out ();
783
c906108c
SS
784 update_breakpoints_after_exec ();
785
786 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 787 statement through an exec(). */
8358c15c 788 th->control.step_resume_breakpoint = NULL;
186c406b 789 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
790 th->control.step_range_start = 0;
791 th->control.step_range_end = 0;
c906108c 792
a75724bc
PA
793 /* The target reports the exec event to the main thread, even if
794 some other thread does the exec, and even if the main thread was
795 already stopped --- if debugging in non-stop mode, it's possible
796 the user had the main thread held stopped in the previous image
797 --- release it now. This is the same behavior as step-over-exec
798 with scheduler-locking on in all-stop mode. */
799 th->stop_requested = 0;
800
1777feb0 801 /* What is this a.out's name? */
6c95b8df
PA
802 printf_unfiltered (_("%s is executing new program: %s\n"),
803 target_pid_to_str (inferior_ptid),
804 execd_pathname);
c906108c
SS
805
806 /* We've followed the inferior through an exec. Therefore, the
1777feb0 807 inferior has essentially been killed & reborn. */
7a292a7a 808
c906108c 809 gdb_flush (gdb_stdout);
6ca15a4b
PA
810
811 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
812
813 if (gdb_sysroot && *gdb_sysroot)
814 {
815 char *name = alloca (strlen (gdb_sysroot)
816 + strlen (execd_pathname)
817 + 1);
abbb1732 818
e85a822c
DJ
819 strcpy (name, gdb_sysroot);
820 strcat (name, execd_pathname);
821 execd_pathname = name;
822 }
c906108c 823
cce9b6bf
PA
824 /* Reset the shared library package. This ensures that we get a
825 shlib event when the child reaches "_start", at which point the
826 dld will have had a chance to initialize the child. */
827 /* Also, loading a symbol file below may trigger symbol lookups, and
828 we don't want those to be satisfied by the libraries of the
829 previous incarnation of this process. */
830 no_shared_libraries (NULL, 0);
831
6c95b8df
PA
832 if (follow_exec_mode_string == follow_exec_mode_new)
833 {
834 struct program_space *pspace;
6c95b8df
PA
835
836 /* The user wants to keep the old inferior and program spaces
837 around. Create a new fresh one, and switch to it. */
838
839 inf = add_inferior (current_inferior ()->pid);
840 pspace = add_program_space (maybe_new_address_space ());
841 inf->pspace = pspace;
842 inf->aspace = pspace->aspace;
843
844 exit_inferior_num_silent (current_inferior ()->num);
845
846 set_current_inferior (inf);
847 set_current_program_space (pspace);
848 }
849
850 gdb_assert (current_program_space == inf->pspace);
851
1777feb0 852 /* That a.out is now the one to use. */
6c95b8df
PA
853 exec_file_attach (execd_pathname, 0);
854
c1e56572
JK
855 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
856 (Position Independent Executable) main symbol file will get applied by
857 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
858 the breakpoints with the zero displacement. */
859
860 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
861 NULL, 0);
862
863 set_initial_language ();
c906108c 864
7a292a7a 865#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 866 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 867#else
268a4a75 868 solib_create_inferior_hook (0);
7a292a7a 869#endif
c906108c 870
4efc6507
DE
871 jit_inferior_created_hook ();
872
c1e56572
JK
873 breakpoint_re_set ();
874
c906108c
SS
875 /* Reinsert all breakpoints. (Those which were symbolic have
876 been reset to the proper address in the new a.out, thanks
1777feb0 877 to symbol_file_command...). */
c906108c
SS
878 insert_breakpoints ();
879
880 /* The next resume of this inferior should bring it to the shlib
881 startup breakpoints. (If the user had also set bp's on
882 "main" from the old (parent) process, then they'll auto-
1777feb0 883 matically get reset there in the new process.). */
c906108c
SS
884}
885
886/* Non-zero if we just simulating a single-step. This is needed
887 because we cannot remove the breakpoints in the inferior process
888 until after the `wait' in `wait_for_inferior'. */
889static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
890
891/* The thread we inserted single-step breakpoints for. */
892static ptid_t singlestep_ptid;
893
fd48f117
DJ
894/* PC when we started this single-step. */
895static CORE_ADDR singlestep_pc;
896
9f976b41
DJ
897/* If another thread hit the singlestep breakpoint, we save the original
898 thread here so that we can resume single-stepping it later. */
899static ptid_t saved_singlestep_ptid;
900static int stepping_past_singlestep_breakpoint;
6a6b96b9 901
ca67fcb8
VP
902/* If not equal to null_ptid, this means that after stepping over breakpoint
903 is finished, we need to switch to deferred_step_ptid, and step it.
904
905 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 906 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
907 breakpoint in the thread which hit the breakpoint, but then continue
908 stepping the thread user has selected. */
909static ptid_t deferred_step_ptid;
c906108c 910\f
237fc4c9
PA
911/* Displaced stepping. */
912
913/* In non-stop debugging mode, we must take special care to manage
914 breakpoints properly; in particular, the traditional strategy for
915 stepping a thread past a breakpoint it has hit is unsuitable.
916 'Displaced stepping' is a tactic for stepping one thread past a
917 breakpoint it has hit while ensuring that other threads running
918 concurrently will hit the breakpoint as they should.
919
920 The traditional way to step a thread T off a breakpoint in a
921 multi-threaded program in all-stop mode is as follows:
922
923 a0) Initially, all threads are stopped, and breakpoints are not
924 inserted.
925 a1) We single-step T, leaving breakpoints uninserted.
926 a2) We insert breakpoints, and resume all threads.
927
928 In non-stop debugging, however, this strategy is unsuitable: we
929 don't want to have to stop all threads in the system in order to
930 continue or step T past a breakpoint. Instead, we use displaced
931 stepping:
932
933 n0) Initially, T is stopped, other threads are running, and
934 breakpoints are inserted.
935 n1) We copy the instruction "under" the breakpoint to a separate
936 location, outside the main code stream, making any adjustments
937 to the instruction, register, and memory state as directed by
938 T's architecture.
939 n2) We single-step T over the instruction at its new location.
940 n3) We adjust the resulting register and memory state as directed
941 by T's architecture. This includes resetting T's PC to point
942 back into the main instruction stream.
943 n4) We resume T.
944
945 This approach depends on the following gdbarch methods:
946
947 - gdbarch_max_insn_length and gdbarch_displaced_step_location
948 indicate where to copy the instruction, and how much space must
949 be reserved there. We use these in step n1.
950
951 - gdbarch_displaced_step_copy_insn copies a instruction to a new
952 address, and makes any necessary adjustments to the instruction,
953 register contents, and memory. We use this in step n1.
954
955 - gdbarch_displaced_step_fixup adjusts registers and memory after
956 we have successfuly single-stepped the instruction, to yield the
957 same effect the instruction would have had if we had executed it
958 at its original address. We use this in step n3.
959
960 - gdbarch_displaced_step_free_closure provides cleanup.
961
962 The gdbarch_displaced_step_copy_insn and
963 gdbarch_displaced_step_fixup functions must be written so that
964 copying an instruction with gdbarch_displaced_step_copy_insn,
965 single-stepping across the copied instruction, and then applying
966 gdbarch_displaced_insn_fixup should have the same effects on the
967 thread's memory and registers as stepping the instruction in place
968 would have. Exactly which responsibilities fall to the copy and
969 which fall to the fixup is up to the author of those functions.
970
971 See the comments in gdbarch.sh for details.
972
973 Note that displaced stepping and software single-step cannot
974 currently be used in combination, although with some care I think
975 they could be made to. Software single-step works by placing
976 breakpoints on all possible subsequent instructions; if the
977 displaced instruction is a PC-relative jump, those breakpoints
978 could fall in very strange places --- on pages that aren't
979 executable, or at addresses that are not proper instruction
980 boundaries. (We do generally let other threads run while we wait
981 to hit the software single-step breakpoint, and they might
982 encounter such a corrupted instruction.) One way to work around
983 this would be to have gdbarch_displaced_step_copy_insn fully
984 simulate the effect of PC-relative instructions (and return NULL)
985 on architectures that use software single-stepping.
986
987 In non-stop mode, we can have independent and simultaneous step
988 requests, so more than one thread may need to simultaneously step
989 over a breakpoint. The current implementation assumes there is
990 only one scratch space per process. In this case, we have to
991 serialize access to the scratch space. If thread A wants to step
992 over a breakpoint, but we are currently waiting for some other
993 thread to complete a displaced step, we leave thread A stopped and
994 place it in the displaced_step_request_queue. Whenever a displaced
995 step finishes, we pick the next thread in the queue and start a new
996 displaced step operation on it. See displaced_step_prepare and
997 displaced_step_fixup for details. */
998
237fc4c9
PA
999struct displaced_step_request
1000{
1001 ptid_t ptid;
1002 struct displaced_step_request *next;
1003};
1004
fc1cf338
PA
1005/* Per-inferior displaced stepping state. */
1006struct displaced_step_inferior_state
1007{
1008 /* Pointer to next in linked list. */
1009 struct displaced_step_inferior_state *next;
1010
1011 /* The process this displaced step state refers to. */
1012 int pid;
1013
1014 /* A queue of pending displaced stepping requests. One entry per
1015 thread that needs to do a displaced step. */
1016 struct displaced_step_request *step_request_queue;
1017
1018 /* If this is not null_ptid, this is the thread carrying out a
1019 displaced single-step in process PID. This thread's state will
1020 require fixing up once it has completed its step. */
1021 ptid_t step_ptid;
1022
1023 /* The architecture the thread had when we stepped it. */
1024 struct gdbarch *step_gdbarch;
1025
1026 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1027 for post-step cleanup. */
1028 struct displaced_step_closure *step_closure;
1029
1030 /* The address of the original instruction, and the copy we
1031 made. */
1032 CORE_ADDR step_original, step_copy;
1033
1034 /* Saved contents of copy area. */
1035 gdb_byte *step_saved_copy;
1036};
1037
1038/* The list of states of processes involved in displaced stepping
1039 presently. */
1040static struct displaced_step_inferior_state *displaced_step_inferior_states;
1041
1042/* Get the displaced stepping state of process PID. */
1043
1044static struct displaced_step_inferior_state *
1045get_displaced_stepping_state (int pid)
1046{
1047 struct displaced_step_inferior_state *state;
1048
1049 for (state = displaced_step_inferior_states;
1050 state != NULL;
1051 state = state->next)
1052 if (state->pid == pid)
1053 return state;
1054
1055 return NULL;
1056}
1057
1058/* Add a new displaced stepping state for process PID to the displaced
1059 stepping state list, or return a pointer to an already existing
1060 entry, if it already exists. Never returns NULL. */
1061
1062static struct displaced_step_inferior_state *
1063add_displaced_stepping_state (int pid)
1064{
1065 struct displaced_step_inferior_state *state;
1066
1067 for (state = displaced_step_inferior_states;
1068 state != NULL;
1069 state = state->next)
1070 if (state->pid == pid)
1071 return state;
237fc4c9 1072
fc1cf338
PA
1073 state = xcalloc (1, sizeof (*state));
1074 state->pid = pid;
1075 state->next = displaced_step_inferior_states;
1076 displaced_step_inferior_states = state;
237fc4c9 1077
fc1cf338
PA
1078 return state;
1079}
1080
a42244db
YQ
1081/* If inferior is in displaced stepping, and ADDR equals to starting address
1082 of copy area, return corresponding displaced_step_closure. Otherwise,
1083 return NULL. */
1084
1085struct displaced_step_closure*
1086get_displaced_step_closure_by_addr (CORE_ADDR addr)
1087{
1088 struct displaced_step_inferior_state *displaced
1089 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1090
1091 /* If checking the mode of displaced instruction in copy area. */
1092 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1093 && (displaced->step_copy == addr))
1094 return displaced->step_closure;
1095
1096 return NULL;
1097}
1098
fc1cf338 1099/* Remove the displaced stepping state of process PID. */
237fc4c9 1100
fc1cf338
PA
1101static void
1102remove_displaced_stepping_state (int pid)
1103{
1104 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1105
fc1cf338
PA
1106 gdb_assert (pid != 0);
1107
1108 it = displaced_step_inferior_states;
1109 prev_next_p = &displaced_step_inferior_states;
1110 while (it)
1111 {
1112 if (it->pid == pid)
1113 {
1114 *prev_next_p = it->next;
1115 xfree (it);
1116 return;
1117 }
1118
1119 prev_next_p = &it->next;
1120 it = *prev_next_p;
1121 }
1122}
1123
1124static void
1125infrun_inferior_exit (struct inferior *inf)
1126{
1127 remove_displaced_stepping_state (inf->pid);
1128}
237fc4c9 1129
fff08868
HZ
1130/* Enum strings for "set|show displaced-stepping". */
1131
1132static const char can_use_displaced_stepping_auto[] = "auto";
1133static const char can_use_displaced_stepping_on[] = "on";
1134static const char can_use_displaced_stepping_off[] = "off";
1135static const char *can_use_displaced_stepping_enum[] =
1136{
1137 can_use_displaced_stepping_auto,
1138 can_use_displaced_stepping_on,
1139 can_use_displaced_stepping_off,
1140 NULL,
1141};
1142
1143/* If ON, and the architecture supports it, GDB will use displaced
1144 stepping to step over breakpoints. If OFF, or if the architecture
1145 doesn't support it, GDB will instead use the traditional
1146 hold-and-step approach. If AUTO (which is the default), GDB will
1147 decide which technique to use to step over breakpoints depending on
1148 which of all-stop or non-stop mode is active --- displaced stepping
1149 in non-stop mode; hold-and-step in all-stop mode. */
1150
1151static const char *can_use_displaced_stepping =
1152 can_use_displaced_stepping_auto;
1153
237fc4c9
PA
1154static void
1155show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1156 struct cmd_list_element *c,
1157 const char *value)
1158{
fff08868 1159 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1160 fprintf_filtered (file,
1161 _("Debugger's willingness to use displaced stepping "
1162 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1163 value, non_stop ? "on" : "off");
1164 else
3e43a32a
MS
1165 fprintf_filtered (file,
1166 _("Debugger's willingness to use displaced stepping "
1167 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1168}
1169
fff08868
HZ
1170/* Return non-zero if displaced stepping can/should be used to step
1171 over breakpoints. */
1172
237fc4c9
PA
1173static int
1174use_displaced_stepping (struct gdbarch *gdbarch)
1175{
fff08868
HZ
1176 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1177 && non_stop)
1178 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1179 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1180 && !RECORD_IS_USED);
237fc4c9
PA
1181}
1182
1183/* Clean out any stray displaced stepping state. */
1184static void
fc1cf338 1185displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1186{
1187 /* Indicate that there is no cleanup pending. */
fc1cf338 1188 displaced->step_ptid = null_ptid;
237fc4c9 1189
fc1cf338 1190 if (displaced->step_closure)
237fc4c9 1191 {
fc1cf338
PA
1192 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1193 displaced->step_closure);
1194 displaced->step_closure = NULL;
237fc4c9
PA
1195 }
1196}
1197
1198static void
fc1cf338 1199displaced_step_clear_cleanup (void *arg)
237fc4c9 1200{
fc1cf338
PA
1201 struct displaced_step_inferior_state *state = arg;
1202
1203 displaced_step_clear (state);
237fc4c9
PA
1204}
1205
1206/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1207void
1208displaced_step_dump_bytes (struct ui_file *file,
1209 const gdb_byte *buf,
1210 size_t len)
1211{
1212 int i;
1213
1214 for (i = 0; i < len; i++)
1215 fprintf_unfiltered (file, "%02x ", buf[i]);
1216 fputs_unfiltered ("\n", file);
1217}
1218
1219/* Prepare to single-step, using displaced stepping.
1220
1221 Note that we cannot use displaced stepping when we have a signal to
1222 deliver. If we have a signal to deliver and an instruction to step
1223 over, then after the step, there will be no indication from the
1224 target whether the thread entered a signal handler or ignored the
1225 signal and stepped over the instruction successfully --- both cases
1226 result in a simple SIGTRAP. In the first case we mustn't do a
1227 fixup, and in the second case we must --- but we can't tell which.
1228 Comments in the code for 'random signals' in handle_inferior_event
1229 explain how we handle this case instead.
1230
1231 Returns 1 if preparing was successful -- this thread is going to be
1232 stepped now; or 0 if displaced stepping this thread got queued. */
1233static int
1234displaced_step_prepare (ptid_t ptid)
1235{
ad53cd71 1236 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1237 struct regcache *regcache = get_thread_regcache (ptid);
1238 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1239 CORE_ADDR original, copy;
1240 ULONGEST len;
1241 struct displaced_step_closure *closure;
fc1cf338 1242 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1243
1244 /* We should never reach this function if the architecture does not
1245 support displaced stepping. */
1246 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1247
fc1cf338
PA
1248 /* We have to displaced step one thread at a time, as we only have
1249 access to a single scratch space per inferior. */
237fc4c9 1250
fc1cf338
PA
1251 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1252
1253 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1254 {
1255 /* Already waiting for a displaced step to finish. Defer this
1256 request and place in queue. */
1257 struct displaced_step_request *req, *new_req;
1258
1259 if (debug_displaced)
1260 fprintf_unfiltered (gdb_stdlog,
1261 "displaced: defering step of %s\n",
1262 target_pid_to_str (ptid));
1263
1264 new_req = xmalloc (sizeof (*new_req));
1265 new_req->ptid = ptid;
1266 new_req->next = NULL;
1267
fc1cf338 1268 if (displaced->step_request_queue)
237fc4c9 1269 {
fc1cf338 1270 for (req = displaced->step_request_queue;
237fc4c9
PA
1271 req && req->next;
1272 req = req->next)
1273 ;
1274 req->next = new_req;
1275 }
1276 else
fc1cf338 1277 displaced->step_request_queue = new_req;
237fc4c9
PA
1278
1279 return 0;
1280 }
1281 else
1282 {
1283 if (debug_displaced)
1284 fprintf_unfiltered (gdb_stdlog,
1285 "displaced: stepping %s now\n",
1286 target_pid_to_str (ptid));
1287 }
1288
fc1cf338 1289 displaced_step_clear (displaced);
237fc4c9 1290
ad53cd71
PA
1291 old_cleanups = save_inferior_ptid ();
1292 inferior_ptid = ptid;
1293
515630c5 1294 original = regcache_read_pc (regcache);
237fc4c9
PA
1295
1296 copy = gdbarch_displaced_step_location (gdbarch);
1297 len = gdbarch_max_insn_length (gdbarch);
1298
1299 /* Save the original contents of the copy area. */
fc1cf338 1300 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1301 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1302 &displaced->step_saved_copy);
1303 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1304 if (debug_displaced)
1305 {
5af949e3
UW
1306 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1307 paddress (gdbarch, copy));
fc1cf338
PA
1308 displaced_step_dump_bytes (gdb_stdlog,
1309 displaced->step_saved_copy,
1310 len);
237fc4c9
PA
1311 };
1312
1313 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1314 original, copy, regcache);
237fc4c9
PA
1315
1316 /* We don't support the fully-simulated case at present. */
1317 gdb_assert (closure);
1318
9f5a595d
UW
1319 /* Save the information we need to fix things up if the step
1320 succeeds. */
fc1cf338
PA
1321 displaced->step_ptid = ptid;
1322 displaced->step_gdbarch = gdbarch;
1323 displaced->step_closure = closure;
1324 displaced->step_original = original;
1325 displaced->step_copy = copy;
9f5a595d 1326
fc1cf338 1327 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1328
1329 /* Resume execution at the copy. */
515630c5 1330 regcache_write_pc (regcache, copy);
237fc4c9 1331
ad53cd71
PA
1332 discard_cleanups (ignore_cleanups);
1333
1334 do_cleanups (old_cleanups);
237fc4c9
PA
1335
1336 if (debug_displaced)
5af949e3
UW
1337 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1338 paddress (gdbarch, copy));
237fc4c9 1339
237fc4c9
PA
1340 return 1;
1341}
1342
237fc4c9 1343static void
3e43a32a
MS
1344write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1345 const gdb_byte *myaddr, int len)
237fc4c9
PA
1346{
1347 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1348
237fc4c9
PA
1349 inferior_ptid = ptid;
1350 write_memory (memaddr, myaddr, len);
1351 do_cleanups (ptid_cleanup);
1352}
1353
1354static void
1355displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1356{
1357 struct cleanup *old_cleanups;
fc1cf338
PA
1358 struct displaced_step_inferior_state *displaced
1359 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1360
1361 /* Was any thread of this process doing a displaced step? */
1362 if (displaced == NULL)
1363 return;
237fc4c9
PA
1364
1365 /* Was this event for the pid we displaced? */
fc1cf338
PA
1366 if (ptid_equal (displaced->step_ptid, null_ptid)
1367 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1368 return;
1369
fc1cf338 1370 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1371
1372 /* Restore the contents of the copy area. */
1373 {
fc1cf338 1374 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1375
fc1cf338
PA
1376 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1377 displaced->step_saved_copy, len);
237fc4c9 1378 if (debug_displaced)
5af949e3 1379 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1380 paddress (displaced->step_gdbarch,
1381 displaced->step_copy));
237fc4c9
PA
1382 }
1383
1384 /* Did the instruction complete successfully? */
1385 if (signal == TARGET_SIGNAL_TRAP)
1386 {
1387 /* Fix up the resulting state. */
fc1cf338
PA
1388 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1389 displaced->step_closure,
1390 displaced->step_original,
1391 displaced->step_copy,
1392 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1393 }
1394 else
1395 {
1396 /* Since the instruction didn't complete, all we can do is
1397 relocate the PC. */
515630c5
UW
1398 struct regcache *regcache = get_thread_regcache (event_ptid);
1399 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1400
fc1cf338 1401 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1402 regcache_write_pc (regcache, pc);
237fc4c9
PA
1403 }
1404
1405 do_cleanups (old_cleanups);
1406
fc1cf338 1407 displaced->step_ptid = null_ptid;
1c5cfe86 1408
237fc4c9 1409 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1410 one now. Leave the state object around, since we're likely to
1411 need it again soon. */
1412 while (displaced->step_request_queue)
237fc4c9
PA
1413 {
1414 struct displaced_step_request *head;
1415 ptid_t ptid;
5af949e3 1416 struct regcache *regcache;
929dfd4f 1417 struct gdbarch *gdbarch;
1c5cfe86 1418 CORE_ADDR actual_pc;
6c95b8df 1419 struct address_space *aspace;
237fc4c9 1420
fc1cf338 1421 head = displaced->step_request_queue;
237fc4c9 1422 ptid = head->ptid;
fc1cf338 1423 displaced->step_request_queue = head->next;
237fc4c9
PA
1424 xfree (head);
1425
ad53cd71
PA
1426 context_switch (ptid);
1427
5af949e3
UW
1428 regcache = get_thread_regcache (ptid);
1429 actual_pc = regcache_read_pc (regcache);
6c95b8df 1430 aspace = get_regcache_aspace (regcache);
1c5cfe86 1431
6c95b8df 1432 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1433 {
1c5cfe86
PA
1434 if (debug_displaced)
1435 fprintf_unfiltered (gdb_stdlog,
1436 "displaced: stepping queued %s now\n",
1437 target_pid_to_str (ptid));
1438
1439 displaced_step_prepare (ptid);
1440
929dfd4f
JB
1441 gdbarch = get_regcache_arch (regcache);
1442
1c5cfe86
PA
1443 if (debug_displaced)
1444 {
929dfd4f 1445 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1446 gdb_byte buf[4];
1447
5af949e3
UW
1448 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1449 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1450 read_memory (actual_pc, buf, sizeof (buf));
1451 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1452 }
1453
fc1cf338
PA
1454 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1455 displaced->step_closure))
929dfd4f 1456 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1457 else
1458 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1459
1460 /* Done, we're stepping a thread. */
1461 break;
ad53cd71 1462 }
1c5cfe86
PA
1463 else
1464 {
1465 int step;
1466 struct thread_info *tp = inferior_thread ();
1467
1468 /* The breakpoint we were sitting under has since been
1469 removed. */
16c381f0 1470 tp->control.trap_expected = 0;
1c5cfe86
PA
1471
1472 /* Go back to what we were trying to do. */
1473 step = currently_stepping (tp);
ad53cd71 1474
1c5cfe86 1475 if (debug_displaced)
3e43a32a
MS
1476 fprintf_unfiltered (gdb_stdlog,
1477 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1478 target_pid_to_str (tp->ptid), step);
1479
1480 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1481 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1482
1483 /* This request was discarded. See if there's any other
1484 thread waiting for its turn. */
1485 }
237fc4c9
PA
1486 }
1487}
1488
5231c1fd
PA
1489/* Update global variables holding ptids to hold NEW_PTID if they were
1490 holding OLD_PTID. */
1491static void
1492infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1493{
1494 struct displaced_step_request *it;
fc1cf338 1495 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1496
1497 if (ptid_equal (inferior_ptid, old_ptid))
1498 inferior_ptid = new_ptid;
1499
1500 if (ptid_equal (singlestep_ptid, old_ptid))
1501 singlestep_ptid = new_ptid;
1502
5231c1fd
PA
1503 if (ptid_equal (deferred_step_ptid, old_ptid))
1504 deferred_step_ptid = new_ptid;
1505
fc1cf338
PA
1506 for (displaced = displaced_step_inferior_states;
1507 displaced;
1508 displaced = displaced->next)
1509 {
1510 if (ptid_equal (displaced->step_ptid, old_ptid))
1511 displaced->step_ptid = new_ptid;
1512
1513 for (it = displaced->step_request_queue; it; it = it->next)
1514 if (ptid_equal (it->ptid, old_ptid))
1515 it->ptid = new_ptid;
1516 }
5231c1fd
PA
1517}
1518
237fc4c9
PA
1519\f
1520/* Resuming. */
c906108c
SS
1521
1522/* Things to clean up if we QUIT out of resume (). */
c906108c 1523static void
74b7792f 1524resume_cleanups (void *ignore)
c906108c
SS
1525{
1526 normal_stop ();
1527}
1528
53904c9e
AC
1529static const char schedlock_off[] = "off";
1530static const char schedlock_on[] = "on";
1531static const char schedlock_step[] = "step";
488f131b 1532static const char *scheduler_enums[] = {
ef346e04
AC
1533 schedlock_off,
1534 schedlock_on,
1535 schedlock_step,
1536 NULL
1537};
920d2a44
AC
1538static const char *scheduler_mode = schedlock_off;
1539static void
1540show_scheduler_mode (struct ui_file *file, int from_tty,
1541 struct cmd_list_element *c, const char *value)
1542{
3e43a32a
MS
1543 fprintf_filtered (file,
1544 _("Mode for locking scheduler "
1545 "during execution is \"%s\".\n"),
920d2a44
AC
1546 value);
1547}
c906108c
SS
1548
1549static void
96baa820 1550set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1551{
eefe576e
AC
1552 if (!target_can_lock_scheduler)
1553 {
1554 scheduler_mode = schedlock_off;
1555 error (_("Target '%s' cannot support this command."), target_shortname);
1556 }
c906108c
SS
1557}
1558
d4db2f36
PA
1559/* True if execution commands resume all threads of all processes by
1560 default; otherwise, resume only threads of the current inferior
1561 process. */
1562int sched_multi = 0;
1563
2facfe5c
DD
1564/* Try to setup for software single stepping over the specified location.
1565 Return 1 if target_resume() should use hardware single step.
1566
1567 GDBARCH the current gdbarch.
1568 PC the location to step over. */
1569
1570static int
1571maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1572{
1573 int hw_step = 1;
1574
f02253f1
HZ
1575 if (execution_direction == EXEC_FORWARD
1576 && gdbarch_software_single_step_p (gdbarch)
99e40580 1577 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1578 {
99e40580
UW
1579 hw_step = 0;
1580 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1581 `wait_for_inferior'. */
99e40580
UW
1582 singlestep_breakpoints_inserted_p = 1;
1583 singlestep_ptid = inferior_ptid;
1584 singlestep_pc = pc;
2facfe5c
DD
1585 }
1586 return hw_step;
1587}
c906108c
SS
1588
1589/* Resume the inferior, but allow a QUIT. This is useful if the user
1590 wants to interrupt some lengthy single-stepping operation
1591 (for child processes, the SIGINT goes to the inferior, and so
1592 we get a SIGINT random_signal, but for remote debugging and perhaps
1593 other targets, that's not true).
1594
1595 STEP nonzero if we should step (zero to continue instead).
1596 SIG is the signal to give the inferior (zero for none). */
1597void
96baa820 1598resume (int step, enum target_signal sig)
c906108c
SS
1599{
1600 int should_resume = 1;
74b7792f 1601 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1602 struct regcache *regcache = get_current_regcache ();
1603 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1604 struct thread_info *tp = inferior_thread ();
515630c5 1605 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1606 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1607
c906108c
SS
1608 QUIT;
1609
74609e71
YQ
1610 if (current_inferior ()->waiting_for_vfork_done)
1611 {
48f9886d
PA
1612 /* Don't try to single-step a vfork parent that is waiting for
1613 the child to get out of the shared memory region (by exec'ing
1614 or exiting). This is particularly important on software
1615 single-step archs, as the child process would trip on the
1616 software single step breakpoint inserted for the parent
1617 process. Since the parent will not actually execute any
1618 instruction until the child is out of the shared region (such
1619 are vfork's semantics), it is safe to simply continue it.
1620 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1621 the parent, and tell it to `keep_going', which automatically
1622 re-sets it stepping. */
74609e71
YQ
1623 if (debug_infrun)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "infrun: resume : clear step\n");
1626 step = 0;
1627 }
1628
527159b7 1629 if (debug_infrun)
237fc4c9
PA
1630 fprintf_unfiltered (gdb_stdlog,
1631 "infrun: resume (step=%d, signal=%d), "
4e1c45ea 1632 "trap_expected=%d\n",
16c381f0 1633 step, sig, tp->control.trap_expected);
c906108c 1634
c2c6d25f
JM
1635 /* Normally, by the time we reach `resume', the breakpoints are either
1636 removed or inserted, as appropriate. The exception is if we're sitting
1637 at a permanent breakpoint; we need to step over it, but permanent
1638 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1639 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1640 {
515630c5
UW
1641 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1642 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1643 else
ac74f770
MS
1644 error (_("\
1645The program is stopped at a permanent breakpoint, but GDB does not know\n\
1646how to step past a permanent breakpoint on this architecture. Try using\n\
1647a command like `return' or `jump' to continue execution."));
6d350bb5 1648 }
c2c6d25f 1649
237fc4c9
PA
1650 /* If enabled, step over breakpoints by executing a copy of the
1651 instruction at a different address.
1652
1653 We can't use displaced stepping when we have a signal to deliver;
1654 the comments for displaced_step_prepare explain why. The
1655 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1656 signals' explain what we do instead.
1657
1658 We can't use displaced stepping when we are waiting for vfork_done
1659 event, displaced stepping breaks the vfork child similarly as single
1660 step software breakpoint. */
515630c5 1661 if (use_displaced_stepping (gdbarch)
16c381f0 1662 && (tp->control.trap_expected
929dfd4f 1663 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1664 && sig == TARGET_SIGNAL_0
1665 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1666 {
fc1cf338
PA
1667 struct displaced_step_inferior_state *displaced;
1668
237fc4c9 1669 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1670 {
1671 /* Got placed in displaced stepping queue. Will be resumed
1672 later when all the currently queued displaced stepping
7f7efbd9
VP
1673 requests finish. The thread is not executing at this point,
1674 and the call to set_executing will be made later. But we
1675 need to call set_running here, since from frontend point of view,
1676 the thread is running. */
1677 set_running (inferior_ptid, 1);
d56b7306
VP
1678 discard_cleanups (old_cleanups);
1679 return;
1680 }
99e40580 1681
fc1cf338
PA
1682 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1683 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1684 displaced->step_closure);
237fc4c9
PA
1685 }
1686
2facfe5c 1687 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1688 else if (step)
2facfe5c 1689 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1690
c906108c
SS
1691 if (should_resume)
1692 {
39f77062 1693 ptid_t resume_ptid;
dfcd3bfb 1694
cd76b0b7
VP
1695 /* If STEP is set, it's a request to use hardware stepping
1696 facilities. But in that case, we should never
1697 use singlestep breakpoint. */
1698 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1699
d4db2f36
PA
1700 /* Decide the set of threads to ask the target to resume. Start
1701 by assuming everything will be resumed, than narrow the set
1702 by applying increasingly restricting conditions. */
1703
1704 /* By default, resume all threads of all processes. */
1705 resume_ptid = RESUME_ALL;
1706
1707 /* Maybe resume only all threads of the current process. */
1708 if (!sched_multi && target_supports_multi_process ())
1709 {
1710 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1711 }
1712
1713 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1714 if (singlestep_breakpoints_inserted_p
1715 && stepping_past_singlestep_breakpoint)
c906108c 1716 {
cd76b0b7
VP
1717 /* The situation here is as follows. In thread T1 we wanted to
1718 single-step. Lacking hardware single-stepping we've
1719 set breakpoint at the PC of the next instruction -- call it
1720 P. After resuming, we've hit that breakpoint in thread T2.
1721 Now we've removed original breakpoint, inserted breakpoint
1722 at P+1, and try to step to advance T2 past breakpoint.
1723 We need to step only T2, as if T1 is allowed to freely run,
1724 it can run past P, and if other threads are allowed to run,
1725 they can hit breakpoint at P+1, and nested hits of single-step
1726 breakpoints is not something we'd want -- that's complicated
1727 to support, and has no value. */
1728 resume_ptid = inferior_ptid;
1729 }
d4db2f36 1730 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1731 && tp->control.trap_expected)
cd76b0b7 1732 {
74960c60
VP
1733 /* We're allowing a thread to run past a breakpoint it has
1734 hit, by single-stepping the thread with the breakpoint
1735 removed. In which case, we need to single-step only this
1736 thread, and keep others stopped, as they can miss this
1737 breakpoint if allowed to run.
1738
1739 The current code actually removes all breakpoints when
1740 doing this, not just the one being stepped over, so if we
1741 let other threads run, we can actually miss any
1742 breakpoint, not just the one at PC. */
ef5cf84e 1743 resume_ptid = inferior_ptid;
c906108c 1744 }
d4db2f36 1745 else if (non_stop)
94cc34af
PA
1746 {
1747 /* With non-stop mode on, threads are always handled
1748 individually. */
1749 resume_ptid = inferior_ptid;
1750 }
1751 else if ((scheduler_mode == schedlock_on)
1752 || (scheduler_mode == schedlock_step
1753 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1754 {
1777feb0 1755 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1756 resume_ptid = inferior_ptid;
c906108c 1757 }
ef5cf84e 1758
515630c5 1759 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1760 {
1761 /* Most targets can step a breakpoint instruction, thus
1762 executing it normally. But if this one cannot, just
1763 continue and we will hit it anyway. */
6c95b8df 1764 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1765 step = 0;
1766 }
237fc4c9
PA
1767
1768 if (debug_displaced
515630c5 1769 && use_displaced_stepping (gdbarch)
16c381f0 1770 && tp->control.trap_expected)
237fc4c9 1771 {
515630c5 1772 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1773 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1774 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1775 gdb_byte buf[4];
1776
5af949e3
UW
1777 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1778 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1779 read_memory (actual_pc, buf, sizeof (buf));
1780 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1781 }
1782
e58b0e63
PA
1783 /* Install inferior's terminal modes. */
1784 target_terminal_inferior ();
1785
2020b7ab
PA
1786 /* Avoid confusing the next resume, if the next stop/resume
1787 happens to apply to another thread. */
16c381f0 1788 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1789
1790 target_resume (resume_ptid, step, sig);
c906108c
SS
1791 }
1792
1793 discard_cleanups (old_cleanups);
1794}
1795\f
237fc4c9 1796/* Proceeding. */
c906108c
SS
1797
1798/* Clear out all variables saying what to do when inferior is continued.
1799 First do this, then set the ones you want, then call `proceed'. */
1800
a7212384
UW
1801static void
1802clear_proceed_status_thread (struct thread_info *tp)
c906108c 1803{
a7212384
UW
1804 if (debug_infrun)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "infrun: clear_proceed_status_thread (%s)\n",
1807 target_pid_to_str (tp->ptid));
d6b48e9c 1808
16c381f0
JK
1809 tp->control.trap_expected = 0;
1810 tp->control.step_range_start = 0;
1811 tp->control.step_range_end = 0;
1812 tp->control.step_frame_id = null_frame_id;
1813 tp->control.step_stack_frame_id = null_frame_id;
1814 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1815 tp->stop_requested = 0;
4e1c45ea 1816
16c381f0 1817 tp->control.stop_step = 0;
32400beb 1818
16c381f0 1819 tp->control.proceed_to_finish = 0;
414c69f7 1820
a7212384 1821 /* Discard any remaining commands or status from previous stop. */
16c381f0 1822 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1823}
32400beb 1824
a7212384
UW
1825static int
1826clear_proceed_status_callback (struct thread_info *tp, void *data)
1827{
1828 if (is_exited (tp->ptid))
1829 return 0;
d6b48e9c 1830
a7212384
UW
1831 clear_proceed_status_thread (tp);
1832 return 0;
1833}
1834
1835void
1836clear_proceed_status (void)
1837{
6c95b8df
PA
1838 if (!non_stop)
1839 {
1840 /* In all-stop mode, delete the per-thread status of all
1841 threads, even if inferior_ptid is null_ptid, there may be
1842 threads on the list. E.g., we may be launching a new
1843 process, while selecting the executable. */
1844 iterate_over_threads (clear_proceed_status_callback, NULL);
1845 }
1846
a7212384
UW
1847 if (!ptid_equal (inferior_ptid, null_ptid))
1848 {
1849 struct inferior *inferior;
1850
1851 if (non_stop)
1852 {
6c95b8df
PA
1853 /* If in non-stop mode, only delete the per-thread status of
1854 the current thread. */
a7212384
UW
1855 clear_proceed_status_thread (inferior_thread ());
1856 }
6c95b8df 1857
d6b48e9c 1858 inferior = current_inferior ();
16c381f0 1859 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1860 }
1861
c906108c 1862 stop_after_trap = 0;
f3b1572e
PA
1863
1864 observer_notify_about_to_proceed ();
c906108c 1865
d5c31457
UW
1866 if (stop_registers)
1867 {
1868 regcache_xfree (stop_registers);
1869 stop_registers = NULL;
1870 }
c906108c
SS
1871}
1872
5a437975
DE
1873/* Check the current thread against the thread that reported the most recent
1874 event. If a step-over is required return TRUE and set the current thread
1875 to the old thread. Otherwise return FALSE.
1876
1777feb0 1877 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1878
1879static int
6a6b96b9 1880prepare_to_proceed (int step)
ea67f13b
DJ
1881{
1882 ptid_t wait_ptid;
1883 struct target_waitstatus wait_status;
5a437975
DE
1884 int schedlock_enabled;
1885
1886 /* With non-stop mode on, threads are always handled individually. */
1887 gdb_assert (! non_stop);
ea67f13b
DJ
1888
1889 /* Get the last target status returned by target_wait(). */
1890 get_last_target_status (&wait_ptid, &wait_status);
1891
6a6b96b9 1892 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1893 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1894 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1895 && wait_status.value.sig != TARGET_SIGNAL_ILL
1896 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1897 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1898 {
1899 return 0;
1900 }
1901
5a437975
DE
1902 schedlock_enabled = (scheduler_mode == schedlock_on
1903 || (scheduler_mode == schedlock_step
1904 && step));
1905
d4db2f36
PA
1906 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1907 if (schedlock_enabled)
1908 return 0;
1909
1910 /* Don't switch over if we're about to resume some other process
1911 other than WAIT_PTID's, and schedule-multiple is off. */
1912 if (!sched_multi
1913 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1914 return 0;
1915
6a6b96b9 1916 /* Switched over from WAIT_PID. */
ea67f13b 1917 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1918 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1919 {
515630c5
UW
1920 struct regcache *regcache = get_thread_regcache (wait_ptid);
1921
6c95b8df
PA
1922 if (breakpoint_here_p (get_regcache_aspace (regcache),
1923 regcache_read_pc (regcache)))
ea67f13b 1924 {
515630c5
UW
1925 /* If stepping, remember current thread to switch back to. */
1926 if (step)
1927 deferred_step_ptid = inferior_ptid;
ea67f13b 1928
515630c5
UW
1929 /* Switch back to WAIT_PID thread. */
1930 switch_to_thread (wait_ptid);
6a6b96b9 1931
515630c5
UW
1932 /* We return 1 to indicate that there is a breakpoint here,
1933 so we need to step over it before continuing to avoid
1777feb0 1934 hitting it straight away. */
515630c5
UW
1935 return 1;
1936 }
ea67f13b
DJ
1937 }
1938
1939 return 0;
ea67f13b 1940}
e4846b08 1941
c906108c
SS
1942/* Basic routine for continuing the program in various fashions.
1943
1944 ADDR is the address to resume at, or -1 for resume where stopped.
1945 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1946 or -1 for act according to how it stopped.
c906108c 1947 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1948 -1 means return after that and print nothing.
1949 You should probably set various step_... variables
1950 before calling here, if you are stepping.
c906108c
SS
1951
1952 You should call clear_proceed_status before calling proceed. */
1953
1954void
96baa820 1955proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1956{
e58b0e63
PA
1957 struct regcache *regcache;
1958 struct gdbarch *gdbarch;
4e1c45ea 1959 struct thread_info *tp;
e58b0e63 1960 CORE_ADDR pc;
6c95b8df 1961 struct address_space *aspace;
c906108c
SS
1962 int oneproc = 0;
1963
e58b0e63
PA
1964 /* If we're stopped at a fork/vfork, follow the branch set by the
1965 "set follow-fork-mode" command; otherwise, we'll just proceed
1966 resuming the current thread. */
1967 if (!follow_fork ())
1968 {
1969 /* The target for some reason decided not to resume. */
1970 normal_stop ();
1971 return;
1972 }
1973
1974 regcache = get_current_regcache ();
1975 gdbarch = get_regcache_arch (regcache);
6c95b8df 1976 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1977 pc = regcache_read_pc (regcache);
1978
c906108c 1979 if (step > 0)
515630c5 1980 step_start_function = find_pc_function (pc);
c906108c
SS
1981 if (step < 0)
1982 stop_after_trap = 1;
1983
2acceee2 1984 if (addr == (CORE_ADDR) -1)
c906108c 1985 {
6c95b8df 1986 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1987 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1988 /* There is a breakpoint at the address we will resume at,
1989 step one instruction before inserting breakpoints so that
1990 we do not stop right away (and report a second hit at this
b2175913
MS
1991 breakpoint).
1992
1993 Note, we don't do this in reverse, because we won't
1994 actually be executing the breakpoint insn anyway.
1995 We'll be (un-)executing the previous instruction. */
1996
c906108c 1997 oneproc = 1;
515630c5
UW
1998 else if (gdbarch_single_step_through_delay_p (gdbarch)
1999 && gdbarch_single_step_through_delay (gdbarch,
2000 get_current_frame ()))
3352ef37
AC
2001 /* We stepped onto an instruction that needs to be stepped
2002 again before re-inserting the breakpoint, do so. */
c906108c
SS
2003 oneproc = 1;
2004 }
2005 else
2006 {
515630c5 2007 regcache_write_pc (regcache, addr);
c906108c
SS
2008 }
2009
527159b7 2010 if (debug_infrun)
8a9de0e4 2011 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2012 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2013 paddress (gdbarch, addr), siggnal, step);
527159b7 2014
94cc34af
PA
2015 if (non_stop)
2016 /* In non-stop, each thread is handled individually. The context
2017 must already be set to the right thread here. */
2018 ;
2019 else
2020 {
2021 /* In a multi-threaded task we may select another thread and
2022 then continue or step.
c906108c 2023
94cc34af
PA
2024 But if the old thread was stopped at a breakpoint, it will
2025 immediately cause another breakpoint stop without any
2026 execution (i.e. it will report a breakpoint hit incorrectly).
2027 So we must step over it first.
c906108c 2028
94cc34af
PA
2029 prepare_to_proceed checks the current thread against the
2030 thread that reported the most recent event. If a step-over
2031 is required it returns TRUE and sets the current thread to
1777feb0 2032 the old thread. */
94cc34af
PA
2033 if (prepare_to_proceed (step))
2034 oneproc = 1;
2035 }
c906108c 2036
4e1c45ea
PA
2037 /* prepare_to_proceed may change the current thread. */
2038 tp = inferior_thread ();
2039
c906108c 2040 if (oneproc)
74960c60 2041 {
16c381f0 2042 tp->control.trap_expected = 1;
237fc4c9
PA
2043 /* If displaced stepping is enabled, we can step over the
2044 breakpoint without hitting it, so leave all breakpoints
2045 inserted. Otherwise we need to disable all breakpoints, step
2046 one instruction, and then re-add them when that step is
2047 finished. */
515630c5 2048 if (!use_displaced_stepping (gdbarch))
237fc4c9 2049 remove_breakpoints ();
74960c60 2050 }
237fc4c9
PA
2051
2052 /* We can insert breakpoints if we're not trying to step over one,
2053 or if we are stepping over one but we're using displaced stepping
2054 to do so. */
16c381f0 2055 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
c36b740a 2056 insert_breakpoints ();
c906108c 2057
2020b7ab
PA
2058 if (!non_stop)
2059 {
2060 /* Pass the last stop signal to the thread we're resuming,
2061 irrespective of whether the current thread is the thread that
2062 got the last event or not. This was historically GDB's
2063 behaviour before keeping a stop_signal per thread. */
2064
2065 struct thread_info *last_thread;
2066 ptid_t last_ptid;
2067 struct target_waitstatus last_status;
2068
2069 get_last_target_status (&last_ptid, &last_status);
2070 if (!ptid_equal (inferior_ptid, last_ptid)
2071 && !ptid_equal (last_ptid, null_ptid)
2072 && !ptid_equal (last_ptid, minus_one_ptid))
2073 {
e09875d4 2074 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2075 if (last_thread)
2076 {
16c381f0
JK
2077 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2078 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2079 }
2080 }
2081 }
2082
c906108c 2083 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2084 tp->suspend.stop_signal = siggnal;
c906108c
SS
2085 /* If this signal should not be seen by program,
2086 give it zero. Used for debugging signals. */
16c381f0
JK
2087 else if (!signal_program[tp->suspend.stop_signal])
2088 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2089
2090 annotate_starting ();
2091
2092 /* Make sure that output from GDB appears before output from the
2093 inferior. */
2094 gdb_flush (gdb_stdout);
2095
e4846b08
JJ
2096 /* Refresh prev_pc value just prior to resuming. This used to be
2097 done in stop_stepping, however, setting prev_pc there did not handle
2098 scenarios such as inferior function calls or returning from
2099 a function via the return command. In those cases, the prev_pc
2100 value was not set properly for subsequent commands. The prev_pc value
2101 is used to initialize the starting line number in the ecs. With an
2102 invalid value, the gdb next command ends up stopping at the position
2103 represented by the next line table entry past our start position.
2104 On platforms that generate one line table entry per line, this
2105 is not a problem. However, on the ia64, the compiler generates
2106 extraneous line table entries that do not increase the line number.
2107 When we issue the gdb next command on the ia64 after an inferior call
2108 or a return command, we often end up a few instructions forward, still
2109 within the original line we started.
2110
d5cd6034
JB
2111 An attempt was made to refresh the prev_pc at the same time the
2112 execution_control_state is initialized (for instance, just before
2113 waiting for an inferior event). But this approach did not work
2114 because of platforms that use ptrace, where the pc register cannot
2115 be read unless the inferior is stopped. At that point, we are not
2116 guaranteed the inferior is stopped and so the regcache_read_pc() call
2117 can fail. Setting the prev_pc value here ensures the value is updated
2118 correctly when the inferior is stopped. */
4e1c45ea 2119 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2120
59f0d5d9 2121 /* Fill in with reasonable starting values. */
4e1c45ea 2122 init_thread_stepping_state (tp);
59f0d5d9 2123
59f0d5d9
PA
2124 /* Reset to normal state. */
2125 init_infwait_state ();
2126
c906108c 2127 /* Resume inferior. */
16c381f0 2128 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2129
2130 /* Wait for it to stop (if not standalone)
2131 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2132 /* Do this only if we are not using the event loop, or if the target
1777feb0 2133 does not support asynchronous execution. */
362646f5 2134 if (!target_can_async_p ())
43ff13b4 2135 {
ae123ec6 2136 wait_for_inferior (0);
43ff13b4
JM
2137 normal_stop ();
2138 }
c906108c 2139}
c906108c
SS
2140\f
2141
2142/* Start remote-debugging of a machine over a serial link. */
96baa820 2143
c906108c 2144void
8621d6a9 2145start_remote (int from_tty)
c906108c 2146{
d6b48e9c 2147 struct inferior *inferior;
d6b48e9c 2148
abbb1732 2149 init_wait_for_inferior ();
d6b48e9c 2150 inferior = current_inferior ();
16c381f0 2151 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2152
1777feb0 2153 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2154 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2155 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2156 nothing is returned (instead of just blocking). Because of this,
2157 targets expecting an immediate response need to, internally, set
2158 things up so that the target_wait() is forced to eventually
1777feb0 2159 timeout. */
6426a772
JM
2160 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2161 differentiate to its caller what the state of the target is after
2162 the initial open has been performed. Here we're assuming that
2163 the target has stopped. It should be possible to eventually have
2164 target_open() return to the caller an indication that the target
2165 is currently running and GDB state should be set to the same as
1777feb0 2166 for an async run. */
ae123ec6 2167 wait_for_inferior (0);
8621d6a9
DJ
2168
2169 /* Now that the inferior has stopped, do any bookkeeping like
2170 loading shared libraries. We want to do this before normal_stop,
2171 so that the displayed frame is up to date. */
2172 post_create_inferior (&current_target, from_tty);
2173
6426a772 2174 normal_stop ();
c906108c
SS
2175}
2176
2177/* Initialize static vars when a new inferior begins. */
2178
2179void
96baa820 2180init_wait_for_inferior (void)
c906108c
SS
2181{
2182 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2183
c906108c
SS
2184 breakpoint_init_inferior (inf_starting);
2185
c906108c 2186 clear_proceed_status ();
9f976b41
DJ
2187
2188 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2189 deferred_step_ptid = null_ptid;
ca005067
DJ
2190
2191 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2192
0d1e5fa7
PA
2193 previous_inferior_ptid = null_ptid;
2194 init_infwait_state ();
2195
edb3359d
DJ
2196 /* Discard any skipped inlined frames. */
2197 clear_inline_frame_state (minus_one_ptid);
c906108c 2198}
237fc4c9 2199
c906108c 2200\f
b83266a0
SS
2201/* This enum encodes possible reasons for doing a target_wait, so that
2202 wfi can call target_wait in one place. (Ultimately the call will be
2203 moved out of the infinite loop entirely.) */
2204
c5aa993b
JM
2205enum infwait_states
2206{
cd0fc7c3
SS
2207 infwait_normal_state,
2208 infwait_thread_hop_state,
d983da9c 2209 infwait_step_watch_state,
cd0fc7c3 2210 infwait_nonstep_watch_state
b83266a0
SS
2211};
2212
0d1e5fa7
PA
2213/* The PTID we'll do a target_wait on.*/
2214ptid_t waiton_ptid;
2215
2216/* Current inferior wait state. */
2217enum infwait_states infwait_state;
cd0fc7c3 2218
0d1e5fa7
PA
2219/* Data to be passed around while handling an event. This data is
2220 discarded between events. */
c5aa993b 2221struct execution_control_state
488f131b 2222{
0d1e5fa7 2223 ptid_t ptid;
4e1c45ea
PA
2224 /* The thread that got the event, if this was a thread event; NULL
2225 otherwise. */
2226 struct thread_info *event_thread;
2227
488f131b 2228 struct target_waitstatus ws;
488f131b
JB
2229 int random_signal;
2230 CORE_ADDR stop_func_start;
2231 CORE_ADDR stop_func_end;
2232 char *stop_func_name;
488f131b 2233 int new_thread_event;
488f131b
JB
2234 int wait_some_more;
2235};
2236
ec9499be 2237static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2238
568d6575
UW
2239static void handle_step_into_function (struct gdbarch *gdbarch,
2240 struct execution_control_state *ecs);
2241static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2242 struct execution_control_state *ecs);
3e43a32a 2243static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
14e60db5 2244static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
3e43a32a
MS
2245static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
2246 struct symtab_and_line ,
2247 struct frame_id);
a6d9a66e 2248static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
186c406b
TT
2249static void check_exception_resume (struct execution_control_state *,
2250 struct frame_info *, struct symbol *);
611c83ae 2251
104c1213
JM
2252static void stop_stepping (struct execution_control_state *ecs);
2253static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2254static void keep_going (struct execution_control_state *ecs);
104c1213 2255
252fbfc8
PA
2256/* Callback for iterate over threads. If the thread is stopped, but
2257 the user/frontend doesn't know about that yet, go through
2258 normal_stop, as if the thread had just stopped now. ARG points at
2259 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2260 ptid_is_pid(PTID) is true, applies to all threads of the process
2261 pointed at by PTID. Otherwise, apply only to the thread pointed by
2262 PTID. */
2263
2264static int
2265infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2266{
2267 ptid_t ptid = * (ptid_t *) arg;
2268
2269 if ((ptid_equal (info->ptid, ptid)
2270 || ptid_equal (minus_one_ptid, ptid)
2271 || (ptid_is_pid (ptid)
2272 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2273 && is_running (info->ptid)
2274 && !is_executing (info->ptid))
2275 {
2276 struct cleanup *old_chain;
2277 struct execution_control_state ecss;
2278 struct execution_control_state *ecs = &ecss;
2279
2280 memset (ecs, 0, sizeof (*ecs));
2281
2282 old_chain = make_cleanup_restore_current_thread ();
2283
2284 switch_to_thread (info->ptid);
2285
2286 /* Go through handle_inferior_event/normal_stop, so we always
2287 have consistent output as if the stop event had been
2288 reported. */
2289 ecs->ptid = info->ptid;
e09875d4 2290 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2291 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2292 ecs->ws.value.sig = TARGET_SIGNAL_0;
2293
2294 handle_inferior_event (ecs);
2295
2296 if (!ecs->wait_some_more)
2297 {
2298 struct thread_info *tp;
2299
2300 normal_stop ();
2301
2302 /* Finish off the continuations. The continations
2303 themselves are responsible for realising the thread
2304 didn't finish what it was supposed to do. */
2305 tp = inferior_thread ();
2306 do_all_intermediate_continuations_thread (tp);
2307 do_all_continuations_thread (tp);
2308 }
2309
2310 do_cleanups (old_chain);
2311 }
2312
2313 return 0;
2314}
2315
2316/* This function is attached as a "thread_stop_requested" observer.
2317 Cleanup local state that assumed the PTID was to be resumed, and
2318 report the stop to the frontend. */
2319
2c0b251b 2320static void
252fbfc8
PA
2321infrun_thread_stop_requested (ptid_t ptid)
2322{
fc1cf338 2323 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2324
2325 /* PTID was requested to stop. Remove it from the displaced
2326 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2327
2328 for (displaced = displaced_step_inferior_states;
2329 displaced;
2330 displaced = displaced->next)
252fbfc8 2331 {
fc1cf338 2332 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2333
fc1cf338
PA
2334 it = displaced->step_request_queue;
2335 prev_next_p = &displaced->step_request_queue;
2336 while (it)
252fbfc8 2337 {
fc1cf338
PA
2338 if (ptid_match (it->ptid, ptid))
2339 {
2340 *prev_next_p = it->next;
2341 it->next = NULL;
2342 xfree (it);
2343 }
252fbfc8 2344 else
fc1cf338
PA
2345 {
2346 prev_next_p = &it->next;
2347 }
252fbfc8 2348
fc1cf338 2349 it = *prev_next_p;
252fbfc8 2350 }
252fbfc8
PA
2351 }
2352
2353 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2354}
2355
a07daef3
PA
2356static void
2357infrun_thread_thread_exit (struct thread_info *tp, int silent)
2358{
2359 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2360 nullify_last_target_wait_ptid ();
2361}
2362
4e1c45ea
PA
2363/* Callback for iterate_over_threads. */
2364
2365static int
2366delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2367{
2368 if (is_exited (info->ptid))
2369 return 0;
2370
2371 delete_step_resume_breakpoint (info);
186c406b 2372 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2373 return 0;
2374}
2375
2376/* In all-stop, delete the step resume breakpoint of any thread that
2377 had one. In non-stop, delete the step resume breakpoint of the
2378 thread that just stopped. */
2379
2380static void
2381delete_step_thread_step_resume_breakpoint (void)
2382{
2383 if (!target_has_execution
2384 || ptid_equal (inferior_ptid, null_ptid))
2385 /* If the inferior has exited, we have already deleted the step
2386 resume breakpoints out of GDB's lists. */
2387 return;
2388
2389 if (non_stop)
2390 {
2391 /* If in non-stop mode, only delete the step-resume or
2392 longjmp-resume breakpoint of the thread that just stopped
2393 stepping. */
2394 struct thread_info *tp = inferior_thread ();
abbb1732 2395
4e1c45ea 2396 delete_step_resume_breakpoint (tp);
186c406b 2397 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2398 }
2399 else
2400 /* In all-stop mode, delete all step-resume and longjmp-resume
2401 breakpoints of any thread that had them. */
2402 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2403}
2404
1777feb0 2405/* A cleanup wrapper. */
4e1c45ea
PA
2406
2407static void
2408delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2409{
2410 delete_step_thread_step_resume_breakpoint ();
2411}
2412
223698f8
DE
2413/* Pretty print the results of target_wait, for debugging purposes. */
2414
2415static void
2416print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2417 const struct target_waitstatus *ws)
2418{
2419 char *status_string = target_waitstatus_to_string (ws);
2420 struct ui_file *tmp_stream = mem_fileopen ();
2421 char *text;
223698f8
DE
2422
2423 /* The text is split over several lines because it was getting too long.
2424 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2425 output as a unit; we want only one timestamp printed if debug_timestamp
2426 is set. */
2427
2428 fprintf_unfiltered (tmp_stream,
2429 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2430 if (PIDGET (waiton_ptid) != -1)
2431 fprintf_unfiltered (tmp_stream,
2432 " [%s]", target_pid_to_str (waiton_ptid));
2433 fprintf_unfiltered (tmp_stream, ", status) =\n");
2434 fprintf_unfiltered (tmp_stream,
2435 "infrun: %d [%s],\n",
2436 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2437 fprintf_unfiltered (tmp_stream,
2438 "infrun: %s\n",
2439 status_string);
2440
759ef836 2441 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2442
2443 /* This uses %s in part to handle %'s in the text, but also to avoid
2444 a gcc error: the format attribute requires a string literal. */
2445 fprintf_unfiltered (gdb_stdlog, "%s", text);
2446
2447 xfree (status_string);
2448 xfree (text);
2449 ui_file_delete (tmp_stream);
2450}
2451
24291992
PA
2452/* Prepare and stabilize the inferior for detaching it. E.g.,
2453 detaching while a thread is displaced stepping is a recipe for
2454 crashing it, as nothing would readjust the PC out of the scratch
2455 pad. */
2456
2457void
2458prepare_for_detach (void)
2459{
2460 struct inferior *inf = current_inferior ();
2461 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2462 struct cleanup *old_chain_1;
2463 struct displaced_step_inferior_state *displaced;
2464
2465 displaced = get_displaced_stepping_state (inf->pid);
2466
2467 /* Is any thread of this process displaced stepping? If not,
2468 there's nothing else to do. */
2469 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2470 return;
2471
2472 if (debug_infrun)
2473 fprintf_unfiltered (gdb_stdlog,
2474 "displaced-stepping in-process while detaching");
2475
2476 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2477 inf->detaching = 1;
2478
2479 while (!ptid_equal (displaced->step_ptid, null_ptid))
2480 {
2481 struct cleanup *old_chain_2;
2482 struct execution_control_state ecss;
2483 struct execution_control_state *ecs;
2484
2485 ecs = &ecss;
2486 memset (ecs, 0, sizeof (*ecs));
2487
2488 overlay_cache_invalid = 1;
2489
2490 /* We have to invalidate the registers BEFORE calling
2491 target_wait because they can be loaded from the target while
2492 in target_wait. This makes remote debugging a bit more
2493 efficient for those targets that provide critical registers
1777feb0 2494 as part of their normal status mechanism. */
24291992
PA
2495
2496 registers_changed ();
2497
2498 if (deprecated_target_wait_hook)
2499 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2500 else
2501 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2502
2503 if (debug_infrun)
2504 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2505
2506 /* If an error happens while handling the event, propagate GDB's
2507 knowledge of the executing state to the frontend/user running
2508 state. */
3e43a32a
MS
2509 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2510 &minus_one_ptid);
24291992 2511
4d533103
PA
2512 /* In non-stop mode, each thread is handled individually.
2513 Switch early, so the global state is set correctly for this
2514 thread. */
2515 if (non_stop
2516 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2517 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2518 context_switch (ecs->ptid);
2519
24291992
PA
2520 /* Now figure out what to do with the result of the result. */
2521 handle_inferior_event (ecs);
2522
2523 /* No error, don't finish the state yet. */
2524 discard_cleanups (old_chain_2);
2525
2526 /* Breakpoints and watchpoints are not installed on the target
2527 at this point, and signals are passed directly to the
2528 inferior, so this must mean the process is gone. */
2529 if (!ecs->wait_some_more)
2530 {
2531 discard_cleanups (old_chain_1);
2532 error (_("Program exited while detaching"));
2533 }
2534 }
2535
2536 discard_cleanups (old_chain_1);
2537}
2538
cd0fc7c3 2539/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2540
2541 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2542 as if they were SIGTRAP signals. This can be useful during
2543 the startup sequence on some targets such as HP/UX, where
2544 we receive an EXEC event instead of the expected SIGTRAP.
2545
cd0fc7c3
SS
2546 If inferior gets a signal, we may decide to start it up again
2547 instead of returning. That is why there is a loop in this function.
2548 When this function actually returns it means the inferior
2549 should be left stopped and GDB should read more commands. */
2550
2551void
ae123ec6 2552wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2553{
2554 struct cleanup *old_cleanups;
0d1e5fa7 2555 struct execution_control_state ecss;
cd0fc7c3 2556 struct execution_control_state *ecs;
c906108c 2557
527159b7 2558 if (debug_infrun)
ae123ec6
JB
2559 fprintf_unfiltered
2560 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2561 treat_exec_as_sigtrap);
527159b7 2562
4e1c45ea
PA
2563 old_cleanups =
2564 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2565
cd0fc7c3 2566 ecs = &ecss;
0d1e5fa7
PA
2567 memset (ecs, 0, sizeof (*ecs));
2568
e0bb1c1c
PA
2569 /* We'll update this if & when we switch to a new thread. */
2570 previous_inferior_ptid = inferior_ptid;
2571
c906108c
SS
2572 while (1)
2573 {
29f49a6a
PA
2574 struct cleanup *old_chain;
2575
ec9499be
UW
2576 /* We have to invalidate the registers BEFORE calling target_wait
2577 because they can be loaded from the target while in target_wait.
2578 This makes remote debugging a bit more efficient for those
2579 targets that provide critical registers as part of their normal
1777feb0 2580 status mechanism. */
ec9499be
UW
2581
2582 overlay_cache_invalid = 1;
2583 registers_changed ();
2584
9a4105ab 2585 if (deprecated_target_wait_hook)
47608cb1 2586 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2587 else
47608cb1 2588 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2589
f00150c9 2590 if (debug_infrun)
223698f8 2591 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2592
ae123ec6
JB
2593 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2594 {
2595 xfree (ecs->ws.value.execd_pathname);
2596 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2597 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2598 }
2599
29f49a6a
PA
2600 /* If an error happens while handling the event, propagate GDB's
2601 knowledge of the executing state to the frontend/user running
2602 state. */
2603 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2604
a96d9b2e
SDJ
2605 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2606 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2607 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2608
cd0fc7c3
SS
2609 /* Now figure out what to do with the result of the result. */
2610 handle_inferior_event (ecs);
c906108c 2611
29f49a6a
PA
2612 /* No error, don't finish the state yet. */
2613 discard_cleanups (old_chain);
2614
cd0fc7c3
SS
2615 if (!ecs->wait_some_more)
2616 break;
2617 }
4e1c45ea 2618
cd0fc7c3
SS
2619 do_cleanups (old_cleanups);
2620}
c906108c 2621
1777feb0 2622/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2623 event loop whenever a change of state is detected on the file
1777feb0
MS
2624 descriptor corresponding to the target. It can be called more than
2625 once to complete a single execution command. In such cases we need
2626 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2627 that this function is called for a single execution command, then
2628 report to the user that the inferior has stopped, and do the
1777feb0 2629 necessary cleanups. */
43ff13b4
JM
2630
2631void
fba45db2 2632fetch_inferior_event (void *client_data)
43ff13b4 2633{
0d1e5fa7 2634 struct execution_control_state ecss;
a474d7c2 2635 struct execution_control_state *ecs = &ecss;
4f8d22e3 2636 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2637 struct cleanup *ts_old_chain;
4f8d22e3 2638 int was_sync = sync_execution;
43ff13b4 2639
0d1e5fa7
PA
2640 memset (ecs, 0, sizeof (*ecs));
2641
ec9499be
UW
2642 /* We'll update this if & when we switch to a new thread. */
2643 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2644
c5187ac6
PA
2645 /* We're handling a live event, so make sure we're doing live
2646 debugging. If we're looking at traceframes while the target is
2647 running, we're going to need to get back to that mode after
2648 handling the event. */
2649 if (non_stop)
2650 {
2651 make_cleanup_restore_current_traceframe ();
e6e4e701 2652 set_current_traceframe (-1);
c5187ac6
PA
2653 }
2654
4f8d22e3
PA
2655 if (non_stop)
2656 /* In non-stop mode, the user/frontend should not notice a thread
2657 switch due to internal events. Make sure we reverse to the
2658 user selected thread and frame after handling the event and
2659 running any breakpoint commands. */
2660 make_cleanup_restore_current_thread ();
2661
59f0d5d9
PA
2662 /* We have to invalidate the registers BEFORE calling target_wait
2663 because they can be loaded from the target while in target_wait.
2664 This makes remote debugging a bit more efficient for those
2665 targets that provide critical registers as part of their normal
1777feb0 2666 status mechanism. */
43ff13b4 2667
ec9499be 2668 overlay_cache_invalid = 1;
59f0d5d9 2669 registers_changed ();
43ff13b4 2670
9a4105ab 2671 if (deprecated_target_wait_hook)
a474d7c2 2672 ecs->ptid =
47608cb1 2673 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2674 else
47608cb1 2675 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2676
f00150c9 2677 if (debug_infrun)
223698f8 2678 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2679
94cc34af
PA
2680 if (non_stop
2681 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2682 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2683 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2684 /* In non-stop mode, each thread is handled individually. Switch
2685 early, so the global state is set correctly for this
2686 thread. */
2687 context_switch (ecs->ptid);
2688
29f49a6a
PA
2689 /* If an error happens while handling the event, propagate GDB's
2690 knowledge of the executing state to the frontend/user running
2691 state. */
2692 if (!non_stop)
2693 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2694 else
2695 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2696
43ff13b4 2697 /* Now figure out what to do with the result of the result. */
a474d7c2 2698 handle_inferior_event (ecs);
43ff13b4 2699
a474d7c2 2700 if (!ecs->wait_some_more)
43ff13b4 2701 {
d6b48e9c
PA
2702 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2703
4e1c45ea 2704 delete_step_thread_step_resume_breakpoint ();
f107f563 2705
d6b48e9c 2706 /* We may not find an inferior if this was a process exit. */
16c381f0 2707 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2708 normal_stop ();
2709
af679fd0
PA
2710 if (target_has_execution
2711 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2712 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2713 && ecs->event_thread->step_multi
16c381f0 2714 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2715 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2716 else
2717 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2718 }
4f8d22e3 2719
29f49a6a
PA
2720 /* No error, don't finish the thread states yet. */
2721 discard_cleanups (ts_old_chain);
2722
4f8d22e3
PA
2723 /* Revert thread and frame. */
2724 do_cleanups (old_chain);
2725
2726 /* If the inferior was in sync execution mode, and now isn't,
2727 restore the prompt. */
2728 if (was_sync && !sync_execution)
2729 display_gdb_prompt (0);
43ff13b4
JM
2730}
2731
edb3359d
DJ
2732/* Record the frame and location we're currently stepping through. */
2733void
2734set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2735{
2736 struct thread_info *tp = inferior_thread ();
2737
16c381f0
JK
2738 tp->control.step_frame_id = get_frame_id (frame);
2739 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2740
2741 tp->current_symtab = sal.symtab;
2742 tp->current_line = sal.line;
2743}
2744
0d1e5fa7
PA
2745/* Clear context switchable stepping state. */
2746
2747void
4e1c45ea 2748init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2749{
2750 tss->stepping_over_breakpoint = 0;
2751 tss->step_after_step_resume_breakpoint = 0;
2752 tss->stepping_through_solib_after_catch = 0;
2753 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2754}
2755
e02bc4cc 2756/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2757 target_wait()/deprecated_target_wait_hook(). The data is actually
2758 cached by handle_inferior_event(), which gets called immediately
2759 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2760
2761void
488f131b 2762get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2763{
39f77062 2764 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2765 *status = target_last_waitstatus;
2766}
2767
ac264b3b
MS
2768void
2769nullify_last_target_wait_ptid (void)
2770{
2771 target_last_wait_ptid = minus_one_ptid;
2772}
2773
dcf4fbde 2774/* Switch thread contexts. */
dd80620e
MS
2775
2776static void
0d1e5fa7 2777context_switch (ptid_t ptid)
dd80620e 2778{
fd48f117
DJ
2779 if (debug_infrun)
2780 {
2781 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2782 target_pid_to_str (inferior_ptid));
2783 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2784 target_pid_to_str (ptid));
fd48f117
DJ
2785 }
2786
0d1e5fa7 2787 switch_to_thread (ptid);
dd80620e
MS
2788}
2789
4fa8626c
DJ
2790static void
2791adjust_pc_after_break (struct execution_control_state *ecs)
2792{
24a73cce
UW
2793 struct regcache *regcache;
2794 struct gdbarch *gdbarch;
6c95b8df 2795 struct address_space *aspace;
8aad930b 2796 CORE_ADDR breakpoint_pc;
4fa8626c 2797
4fa8626c
DJ
2798 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2799 we aren't, just return.
9709f61c
DJ
2800
2801 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2802 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2803 implemented by software breakpoints should be handled through the normal
2804 breakpoint layer.
8fb3e588 2805
4fa8626c
DJ
2806 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2807 different signals (SIGILL or SIGEMT for instance), but it is less
2808 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2809 gdbarch_decr_pc_after_break. I don't know any specific target that
2810 generates these signals at breakpoints (the code has been in GDB since at
2811 least 1992) so I can not guess how to handle them here.
8fb3e588 2812
e6cf7916
UW
2813 In earlier versions of GDB, a target with
2814 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2815 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2816 target with both of these set in GDB history, and it seems unlikely to be
2817 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2818
2819 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2820 return;
2821
2822 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2823 return;
2824
4058b839
PA
2825 /* In reverse execution, when a breakpoint is hit, the instruction
2826 under it has already been de-executed. The reported PC always
2827 points at the breakpoint address, so adjusting it further would
2828 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2829 architecture:
2830
2831 B1 0x08000000 : INSN1
2832 B2 0x08000001 : INSN2
2833 0x08000002 : INSN3
2834 PC -> 0x08000003 : INSN4
2835
2836 Say you're stopped at 0x08000003 as above. Reverse continuing
2837 from that point should hit B2 as below. Reading the PC when the
2838 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2839 been de-executed already.
2840
2841 B1 0x08000000 : INSN1
2842 B2 PC -> 0x08000001 : INSN2
2843 0x08000002 : INSN3
2844 0x08000003 : INSN4
2845
2846 We can't apply the same logic as for forward execution, because
2847 we would wrongly adjust the PC to 0x08000000, since there's a
2848 breakpoint at PC - 1. We'd then report a hit on B1, although
2849 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2850 behaviour. */
2851 if (execution_direction == EXEC_REVERSE)
2852 return;
2853
24a73cce
UW
2854 /* If this target does not decrement the PC after breakpoints, then
2855 we have nothing to do. */
2856 regcache = get_thread_regcache (ecs->ptid);
2857 gdbarch = get_regcache_arch (regcache);
2858 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2859 return;
2860
6c95b8df
PA
2861 aspace = get_regcache_aspace (regcache);
2862
8aad930b
AC
2863 /* Find the location where (if we've hit a breakpoint) the
2864 breakpoint would be. */
515630c5
UW
2865 breakpoint_pc = regcache_read_pc (regcache)
2866 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2867
1c5cfe86
PA
2868 /* Check whether there actually is a software breakpoint inserted at
2869 that location.
2870
2871 If in non-stop mode, a race condition is possible where we've
2872 removed a breakpoint, but stop events for that breakpoint were
2873 already queued and arrive later. To suppress those spurious
2874 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2875 and retire them after a number of stop events are reported. */
6c95b8df
PA
2876 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2877 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2878 {
96429cc8 2879 struct cleanup *old_cleanups = NULL;
abbb1732 2880
96429cc8
HZ
2881 if (RECORD_IS_USED)
2882 old_cleanups = record_gdb_operation_disable_set ();
2883
1c0fdd0e
UW
2884 /* When using hardware single-step, a SIGTRAP is reported for both
2885 a completed single-step and a software breakpoint. Need to
2886 differentiate between the two, as the latter needs adjusting
2887 but the former does not.
2888
2889 The SIGTRAP can be due to a completed hardware single-step only if
2890 - we didn't insert software single-step breakpoints
2891 - the thread to be examined is still the current thread
2892 - this thread is currently being stepped
2893
2894 If any of these events did not occur, we must have stopped due
2895 to hitting a software breakpoint, and have to back up to the
2896 breakpoint address.
2897
2898 As a special case, we could have hardware single-stepped a
2899 software breakpoint. In this case (prev_pc == breakpoint_pc),
2900 we also need to back up to the breakpoint address. */
2901
2902 if (singlestep_breakpoints_inserted_p
2903 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2904 || !currently_stepping (ecs->event_thread)
2905 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2906 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2907
2908 if (RECORD_IS_USED)
2909 do_cleanups (old_cleanups);
8aad930b 2910 }
4fa8626c
DJ
2911}
2912
0d1e5fa7
PA
2913void
2914init_infwait_state (void)
2915{
2916 waiton_ptid = pid_to_ptid (-1);
2917 infwait_state = infwait_normal_state;
2918}
2919
94cc34af
PA
2920void
2921error_is_running (void)
2922{
3e43a32a
MS
2923 error (_("Cannot execute this command while "
2924 "the selected thread is running."));
94cc34af
PA
2925}
2926
2927void
2928ensure_not_running (void)
2929{
2930 if (is_running (inferior_ptid))
2931 error_is_running ();
2932}
2933
edb3359d
DJ
2934static int
2935stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2936{
2937 for (frame = get_prev_frame (frame);
2938 frame != NULL;
2939 frame = get_prev_frame (frame))
2940 {
2941 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2942 return 1;
2943 if (get_frame_type (frame) != INLINE_FRAME)
2944 break;
2945 }
2946
2947 return 0;
2948}
2949
a96d9b2e
SDJ
2950/* Auxiliary function that handles syscall entry/return events.
2951 It returns 1 if the inferior should keep going (and GDB
2952 should ignore the event), or 0 if the event deserves to be
2953 processed. */
ca2163eb 2954
a96d9b2e 2955static int
ca2163eb 2956handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2957{
ca2163eb
PA
2958 struct regcache *regcache;
2959 struct gdbarch *gdbarch;
2960 int syscall_number;
2961
2962 if (!ptid_equal (ecs->ptid, inferior_ptid))
2963 context_switch (ecs->ptid);
2964
2965 regcache = get_thread_regcache (ecs->ptid);
2966 gdbarch = get_regcache_arch (regcache);
2967 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2968 stop_pc = regcache_read_pc (regcache);
2969
a96d9b2e
SDJ
2970 target_last_waitstatus.value.syscall_number = syscall_number;
2971
2972 if (catch_syscall_enabled () > 0
2973 && catching_syscall_number (syscall_number) > 0)
2974 {
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2977 syscall_number);
a96d9b2e 2978
16c381f0 2979 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
2980 = bpstat_stop_status (get_regcache_aspace (regcache),
2981 stop_pc, ecs->ptid);
16c381f0
JK
2982 ecs->random_signal
2983 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 2984
ca2163eb
PA
2985 if (!ecs->random_signal)
2986 {
2987 /* Catchpoint hit. */
16c381f0 2988 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
2989 return 0;
2990 }
a96d9b2e 2991 }
ca2163eb
PA
2992
2993 /* If no catchpoint triggered for this, then keep going. */
16c381f0 2994 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
2995 keep_going (ecs);
2996 return 1;
a96d9b2e
SDJ
2997}
2998
cd0fc7c3
SS
2999/* Given an execution control state that has been freshly filled in
3000 by an event from the inferior, figure out what it means and take
3001 appropriate action. */
c906108c 3002
ec9499be 3003static void
96baa820 3004handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3005{
568d6575
UW
3006 struct frame_info *frame;
3007 struct gdbarch *gdbarch;
c8edd8b4 3008 int sw_single_step_trap_p = 0;
d983da9c
DJ
3009 int stopped_by_watchpoint;
3010 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3011 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3012 enum stop_kind stop_soon;
3013
28736962
PA
3014 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3015 {
3016 /* We had an event in the inferior, but we are not interested in
3017 handling it at this level. The lower layers have already
3018 done what needs to be done, if anything.
3019
3020 One of the possible circumstances for this is when the
3021 inferior produces output for the console. The inferior has
3022 not stopped, and we are ignoring the event. Another possible
3023 circumstance is any event which the lower level knows will be
3024 reported multiple times without an intervening resume. */
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3027 prepare_to_wait (ecs);
3028 return;
3029 }
3030
d6b48e9c 3031 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3032 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3033 {
3034 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3035
d6b48e9c 3036 gdb_assert (inf);
16c381f0 3037 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3038 }
3039 else
3040 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3041
1777feb0 3042 /* Cache the last pid/waitstatus. */
39f77062 3043 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3044 target_last_waitstatus = ecs->ws;
e02bc4cc 3045
ca005067 3046 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3047 stop_stack_dummy = STOP_NONE;
ca005067 3048
1777feb0 3049 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3050
3051 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3052 && !ptid_equal (ecs->ptid, minus_one_ptid)
3053 && !in_thread_list (ecs->ptid));
3054
3055 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3056 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3057 add_thread (ecs->ptid);
3058
e09875d4 3059 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3060
3061 /* Dependent on valid ECS->EVENT_THREAD. */
3062 adjust_pc_after_break (ecs);
3063
3064 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3065 reinit_frame_cache ();
3066
28736962
PA
3067 breakpoint_retire_moribund ();
3068
2b009048
DJ
3069 /* First, distinguish signals caused by the debugger from signals
3070 that have to do with the program's own actions. Note that
3071 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3072 on the operating system version. Here we detect when a SIGILL or
3073 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3074 something similar for SIGSEGV, since a SIGSEGV will be generated
3075 when we're trying to execute a breakpoint instruction on a
3076 non-executable stack. This happens for call dummy breakpoints
3077 for architectures like SPARC that place call dummies on the
3078 stack. */
2b009048
DJ
3079 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3080 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3081 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3082 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3083 {
de0a0249
UW
3084 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3085
3086 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3087 regcache_read_pc (regcache)))
3088 {
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: Treating signal as SIGTRAP\n");
3092 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3093 }
2b009048
DJ
3094 }
3095
28736962
PA
3096 /* Mark the non-executing threads accordingly. In all-stop, all
3097 threads of all processes are stopped when we get any event
3098 reported. In non-stop mode, only the event thread stops. If
3099 we're handling a process exit in non-stop mode, there's nothing
3100 to do, as threads of the dead process are gone, and threads of
3101 any other process were left running. */
3102 if (!non_stop)
3103 set_executing (minus_one_ptid, 0);
3104 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3105 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3106 set_executing (inferior_ptid, 0);
8c90c137 3107
0d1e5fa7 3108 switch (infwait_state)
488f131b
JB
3109 {
3110 case infwait_thread_hop_state:
527159b7 3111 if (debug_infrun)
8a9de0e4 3112 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3113 break;
b83266a0 3114
488f131b 3115 case infwait_normal_state:
527159b7 3116 if (debug_infrun)
8a9de0e4 3117 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3118 break;
3119
3120 case infwait_step_watch_state:
3121 if (debug_infrun)
3122 fprintf_unfiltered (gdb_stdlog,
3123 "infrun: infwait_step_watch_state\n");
3124
3125 stepped_after_stopped_by_watchpoint = 1;
488f131b 3126 break;
b83266a0 3127
488f131b 3128 case infwait_nonstep_watch_state:
527159b7 3129 if (debug_infrun)
8a9de0e4
AC
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: infwait_nonstep_watch_state\n");
488f131b 3132 insert_breakpoints ();
c906108c 3133
488f131b
JB
3134 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3135 handle things like signals arriving and other things happening
3136 in combination correctly? */
3137 stepped_after_stopped_by_watchpoint = 1;
3138 break;
65e82032
AC
3139
3140 default:
e2e0b3e5 3141 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3142 }
ec9499be 3143
0d1e5fa7 3144 infwait_state = infwait_normal_state;
ec9499be 3145 waiton_ptid = pid_to_ptid (-1);
c906108c 3146
488f131b
JB
3147 switch (ecs->ws.kind)
3148 {
3149 case TARGET_WAITKIND_LOADED:
527159b7 3150 if (debug_infrun)
8a9de0e4 3151 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3152 /* Ignore gracefully during startup of the inferior, as it might
3153 be the shell which has just loaded some objects, otherwise
3154 add the symbols for the newly loaded objects. Also ignore at
3155 the beginning of an attach or remote session; we will query
3156 the full list of libraries once the connection is
3157 established. */
c0236d92 3158 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3159 {
488f131b
JB
3160 /* Check for any newly added shared libraries if we're
3161 supposed to be adding them automatically. Switch
3162 terminal for any messages produced by
3163 breakpoint_re_set. */
3164 target_terminal_ours_for_output ();
aff6338a 3165 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3166 stack's section table is kept up-to-date. Architectures,
3167 (e.g., PPC64), use the section table to perform
3168 operations such as address => section name and hence
3169 require the table to contain all sections (including
3170 those found in shared libraries). */
b0f4b84b 3171#ifdef SOLIB_ADD
aff6338a 3172 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3173#else
3174 solib_add (NULL, 0, &current_target, auto_solib_add);
3175#endif
488f131b
JB
3176 target_terminal_inferior ();
3177
b0f4b84b
DJ
3178 /* If requested, stop when the dynamic linker notifies
3179 gdb of events. This allows the user to get control
3180 and place breakpoints in initializer routines for
3181 dynamically loaded objects (among other things). */
3182 if (stop_on_solib_events)
3183 {
55409f9d
DJ
3184 /* Make sure we print "Stopped due to solib-event" in
3185 normal_stop. */
3186 stop_print_frame = 1;
3187
b0f4b84b
DJ
3188 stop_stepping (ecs);
3189 return;
3190 }
3191
3192 /* NOTE drow/2007-05-11: This might be a good place to check
3193 for "catch load". */
488f131b 3194 }
b0f4b84b
DJ
3195
3196 /* If we are skipping through a shell, or through shared library
3197 loading that we aren't interested in, resume the program. If
3198 we're running the program normally, also resume. But stop if
3199 we're attaching or setting up a remote connection. */
3200 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3201 {
74960c60
VP
3202 /* Loading of shared libraries might have changed breakpoint
3203 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3204 if (stop_soon == NO_STOP_QUIETLY
3205 && !breakpoints_always_inserted_mode ())
74960c60 3206 insert_breakpoints ();
b0f4b84b
DJ
3207 resume (0, TARGET_SIGNAL_0);
3208 prepare_to_wait (ecs);
3209 return;
3210 }
3211
3212 break;
c5aa993b 3213
488f131b 3214 case TARGET_WAITKIND_SPURIOUS:
527159b7 3215 if (debug_infrun)
8a9de0e4 3216 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3217 resume (0, TARGET_SIGNAL_0);
3218 prepare_to_wait (ecs);
3219 return;
c5aa993b 3220
488f131b 3221 case TARGET_WAITKIND_EXITED:
527159b7 3222 if (debug_infrun)
8a9de0e4 3223 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3224 inferior_ptid = ecs->ptid;
6c95b8df
PA
3225 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3226 set_current_program_space (current_inferior ()->pspace);
3227 handle_vfork_child_exec_or_exit (0);
1777feb0 3228 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3229 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3230
3231 /* Record the exit code in the convenience variable $_exitcode, so
3232 that the user can inspect this again later. */
4fa62494
UW
3233 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3234 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3235 gdb_flush (gdb_stdout);
3236 target_mourn_inferior ();
1c0fdd0e 3237 singlestep_breakpoints_inserted_p = 0;
d03285ec 3238 cancel_single_step_breakpoints ();
488f131b
JB
3239 stop_print_frame = 0;
3240 stop_stepping (ecs);
3241 return;
c5aa993b 3242
488f131b 3243 case TARGET_WAITKIND_SIGNALLED:
527159b7 3244 if (debug_infrun)
8a9de0e4 3245 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3246 inferior_ptid = ecs->ptid;
6c95b8df
PA
3247 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3248 set_current_program_space (current_inferior ()->pspace);
3249 handle_vfork_child_exec_or_exit (0);
488f131b 3250 stop_print_frame = 0;
1777feb0 3251 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3252
488f131b
JB
3253 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3254 reach here unless the inferior is dead. However, for years
3255 target_kill() was called here, which hints that fatal signals aren't
3256 really fatal on some systems. If that's true, then some changes
1777feb0 3257 may be needed. */
488f131b 3258 target_mourn_inferior ();
c906108c 3259
33d62d64 3260 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3261 singlestep_breakpoints_inserted_p = 0;
d03285ec 3262 cancel_single_step_breakpoints ();
488f131b
JB
3263 stop_stepping (ecs);
3264 return;
c906108c 3265
488f131b 3266 /* The following are the only cases in which we keep going;
1777feb0 3267 the above cases end in a continue or goto. */
488f131b 3268 case TARGET_WAITKIND_FORKED:
deb3b17b 3269 case TARGET_WAITKIND_VFORKED:
527159b7 3270 if (debug_infrun)
8a9de0e4 3271 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3272
5a2901d9
DJ
3273 if (!ptid_equal (ecs->ptid, inferior_ptid))
3274 {
0d1e5fa7 3275 context_switch (ecs->ptid);
35f196d9 3276 reinit_frame_cache ();
5a2901d9
DJ
3277 }
3278
b242c3c2
PA
3279 /* Immediately detach breakpoints from the child before there's
3280 any chance of letting the user delete breakpoints from the
3281 breakpoint lists. If we don't do this early, it's easy to
3282 leave left over traps in the child, vis: "break foo; catch
3283 fork; c; <fork>; del; c; <child calls foo>". We only follow
3284 the fork on the last `continue', and by that time the
3285 breakpoint at "foo" is long gone from the breakpoint table.
3286 If we vforked, then we don't need to unpatch here, since both
3287 parent and child are sharing the same memory pages; we'll
3288 need to unpatch at follow/detach time instead to be certain
3289 that new breakpoints added between catchpoint hit time and
3290 vfork follow are detached. */
3291 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3292 {
3293 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3294
3295 /* This won't actually modify the breakpoint list, but will
3296 physically remove the breakpoints from the child. */
3297 detach_breakpoints (child_pid);
3298 }
3299
d03285ec
UW
3300 if (singlestep_breakpoints_inserted_p)
3301 {
1777feb0 3302 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3303 remove_single_step_breakpoints ();
3304 singlestep_breakpoints_inserted_p = 0;
3305 }
3306
e58b0e63
PA
3307 /* In case the event is caught by a catchpoint, remember that
3308 the event is to be followed at the next resume of the thread,
3309 and not immediately. */
3310 ecs->event_thread->pending_follow = ecs->ws;
3311
fb14de7b 3312 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3313
16c381f0 3314 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3315 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3316 stop_pc, ecs->ptid);
675bf4cb 3317
67822962
PA
3318 /* Note that we're interested in knowing the bpstat actually
3319 causes a stop, not just if it may explain the signal.
3320 Software watchpoints, for example, always appear in the
3321 bpstat. */
16c381f0
JK
3322 ecs->random_signal
3323 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3324
3325 /* If no catchpoint triggered for this, then keep going. */
3326 if (ecs->random_signal)
3327 {
6c95b8df
PA
3328 ptid_t parent;
3329 ptid_t child;
e58b0e63 3330 int should_resume;
3e43a32a
MS
3331 int follow_child
3332 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3333
16c381f0 3334 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3335
3336 should_resume = follow_fork ();
3337
6c95b8df
PA
3338 parent = ecs->ptid;
3339 child = ecs->ws.value.related_pid;
3340
3341 /* In non-stop mode, also resume the other branch. */
3342 if (non_stop && !detach_fork)
3343 {
3344 if (follow_child)
3345 switch_to_thread (parent);
3346 else
3347 switch_to_thread (child);
3348
3349 ecs->event_thread = inferior_thread ();
3350 ecs->ptid = inferior_ptid;
3351 keep_going (ecs);
3352 }
3353
3354 if (follow_child)
3355 switch_to_thread (child);
3356 else
3357 switch_to_thread (parent);
3358
e58b0e63
PA
3359 ecs->event_thread = inferior_thread ();
3360 ecs->ptid = inferior_ptid;
3361
3362 if (should_resume)
3363 keep_going (ecs);
3364 else
3365 stop_stepping (ecs);
04e68871
DJ
3366 return;
3367 }
16c381f0 3368 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3369 goto process_event_stop_test;
3370
6c95b8df
PA
3371 case TARGET_WAITKIND_VFORK_DONE:
3372 /* Done with the shared memory region. Re-insert breakpoints in
3373 the parent, and keep going. */
3374
3375 if (debug_infrun)
3e43a32a
MS
3376 fprintf_unfiltered (gdb_stdlog,
3377 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3378
3379 if (!ptid_equal (ecs->ptid, inferior_ptid))
3380 context_switch (ecs->ptid);
3381
3382 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3383 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3384 /* This also takes care of reinserting breakpoints in the
3385 previously locked inferior. */
3386 keep_going (ecs);
3387 return;
3388
488f131b 3389 case TARGET_WAITKIND_EXECD:
527159b7 3390 if (debug_infrun)
fc5261f2 3391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3392
5a2901d9
DJ
3393 if (!ptid_equal (ecs->ptid, inferior_ptid))
3394 {
0d1e5fa7 3395 context_switch (ecs->ptid);
35f196d9 3396 reinit_frame_cache ();
5a2901d9
DJ
3397 }
3398
d03285ec
UW
3399 singlestep_breakpoints_inserted_p = 0;
3400 cancel_single_step_breakpoints ();
3401
fb14de7b 3402 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3403
6c95b8df
PA
3404 /* Do whatever is necessary to the parent branch of the vfork. */
3405 handle_vfork_child_exec_or_exit (1);
3406
795e548f
PA
3407 /* This causes the eventpoints and symbol table to be reset.
3408 Must do this now, before trying to determine whether to
3409 stop. */
71b43ef8 3410 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3411
16c381f0 3412 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3413 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3414 stop_pc, ecs->ptid);
16c381f0
JK
3415 ecs->random_signal
3416 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3417
71b43ef8
PA
3418 /* Note that this may be referenced from inside
3419 bpstat_stop_status above, through inferior_has_execd. */
3420 xfree (ecs->ws.value.execd_pathname);
3421 ecs->ws.value.execd_pathname = NULL;
3422
04e68871
DJ
3423 /* If no catchpoint triggered for this, then keep going. */
3424 if (ecs->random_signal)
3425 {
16c381f0 3426 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3427 keep_going (ecs);
3428 return;
3429 }
16c381f0 3430 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3431 goto process_event_stop_test;
3432
b4dc5ffa
MK
3433 /* Be careful not to try to gather much state about a thread
3434 that's in a syscall. It's frequently a losing proposition. */
488f131b 3435 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3436 if (debug_infrun)
3e43a32a
MS
3437 fprintf_unfiltered (gdb_stdlog,
3438 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3439 /* Getting the current syscall number. */
ca2163eb 3440 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3441 return;
3442 goto process_event_stop_test;
c906108c 3443
488f131b
JB
3444 /* Before examining the threads further, step this thread to
3445 get it entirely out of the syscall. (We get notice of the
3446 event when the thread is just on the verge of exiting a
3447 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3448 into user code.) */
488f131b 3449 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3450 if (debug_infrun)
3e43a32a
MS
3451 fprintf_unfiltered (gdb_stdlog,
3452 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3453 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3454 return;
3455 goto process_event_stop_test;
c906108c 3456
488f131b 3457 case TARGET_WAITKIND_STOPPED:
527159b7 3458 if (debug_infrun)
8a9de0e4 3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3460 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3461 break;
c906108c 3462
b2175913
MS
3463 case TARGET_WAITKIND_NO_HISTORY:
3464 /* Reverse execution: target ran out of history info. */
fb14de7b 3465 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3466 print_no_history_reason ();
b2175913
MS
3467 stop_stepping (ecs);
3468 return;
488f131b 3469 }
c906108c 3470
488f131b
JB
3471 if (ecs->new_thread_event)
3472 {
94cc34af
PA
3473 if (non_stop)
3474 /* Non-stop assumes that the target handles adding new threads
3475 to the thread list. */
3e43a32a
MS
3476 internal_error (__FILE__, __LINE__,
3477 "targets should add new threads to the thread "
3478 "list themselves in non-stop mode.");
94cc34af
PA
3479
3480 /* We may want to consider not doing a resume here in order to
3481 give the user a chance to play with the new thread. It might
3482 be good to make that a user-settable option. */
3483
3484 /* At this point, all threads are stopped (happens automatically
3485 in either the OS or the native code). Therefore we need to
3486 continue all threads in order to make progress. */
3487
173853dc
PA
3488 if (!ptid_equal (ecs->ptid, inferior_ptid))
3489 context_switch (ecs->ptid);
488f131b
JB
3490 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3491 prepare_to_wait (ecs);
3492 return;
3493 }
c906108c 3494
2020b7ab 3495 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3496 {
3497 /* Do we need to clean up the state of a thread that has
3498 completed a displaced single-step? (Doing so usually affects
3499 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3500 displaced_step_fixup (ecs->ptid,
3501 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3502
3503 /* If we either finished a single-step or hit a breakpoint, but
3504 the user wanted this thread to be stopped, pretend we got a
3505 SIG0 (generic unsignaled stop). */
3506
3507 if (ecs->event_thread->stop_requested
16c381f0
JK
3508 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3509 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3510 }
237fc4c9 3511
515630c5 3512 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3513
527159b7 3514 if (debug_infrun)
237fc4c9 3515 {
5af949e3
UW
3516 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3517 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3518 struct cleanup *old_chain = save_inferior_ptid ();
3519
3520 inferior_ptid = ecs->ptid;
5af949e3
UW
3521
3522 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3523 paddress (gdbarch, stop_pc));
d92524f1 3524 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3525 {
3526 CORE_ADDR addr;
abbb1732 3527
237fc4c9
PA
3528 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3529
3530 if (target_stopped_data_address (&current_target, &addr))
3531 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3532 "infrun: stopped data address = %s\n",
3533 paddress (gdbarch, addr));
237fc4c9
PA
3534 else
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: (no data address available)\n");
3537 }
7f82dfc7
JK
3538
3539 do_cleanups (old_chain);
237fc4c9 3540 }
527159b7 3541
9f976b41
DJ
3542 if (stepping_past_singlestep_breakpoint)
3543 {
1c0fdd0e 3544 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3545 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3546 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3547
3548 stepping_past_singlestep_breakpoint = 0;
3549
3550 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3551 breakpoint, or stopped for some other reason. It would be nice if
3552 we could tell, but we can't reliably. */
16c381f0 3553 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3554 {
527159b7 3555 if (debug_infrun)
3e43a32a
MS
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: stepping_past_"
3558 "singlestep_breakpoint\n");
9f976b41 3559 /* Pull the single step breakpoints out of the target. */
e0cd558a 3560 remove_single_step_breakpoints ();
9f976b41
DJ
3561 singlestep_breakpoints_inserted_p = 0;
3562
3563 ecs->random_signal = 0;
16c381f0 3564 ecs->event_thread->control.trap_expected = 0;
9f976b41 3565
0d1e5fa7 3566 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3567 if (deprecated_context_hook)
3568 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3569
3570 resume (1, TARGET_SIGNAL_0);
3571 prepare_to_wait (ecs);
3572 return;
3573 }
3574 }
3575
ca67fcb8 3576 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3577 {
94cc34af
PA
3578 /* In non-stop mode, there's never a deferred_step_ptid set. */
3579 gdb_assert (!non_stop);
3580
6a6b96b9
UW
3581 /* If we stopped for some other reason than single-stepping, ignore
3582 the fact that we were supposed to switch back. */
16c381f0 3583 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3584 {
3585 if (debug_infrun)
3586 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3587 "infrun: handling deferred step\n");
6a6b96b9
UW
3588
3589 /* Pull the single step breakpoints out of the target. */
3590 if (singlestep_breakpoints_inserted_p)
3591 {
3592 remove_single_step_breakpoints ();
3593 singlestep_breakpoints_inserted_p = 0;
3594 }
3595
3596 /* Note: We do not call context_switch at this point, as the
3597 context is already set up for stepping the original thread. */
ca67fcb8
VP
3598 switch_to_thread (deferred_step_ptid);
3599 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3600 /* Suppress spurious "Switching to ..." message. */
3601 previous_inferior_ptid = inferior_ptid;
3602
3603 resume (1, TARGET_SIGNAL_0);
3604 prepare_to_wait (ecs);
3605 return;
3606 }
ca67fcb8
VP
3607
3608 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3609 }
3610
488f131b
JB
3611 /* See if a thread hit a thread-specific breakpoint that was meant for
3612 another thread. If so, then step that thread past the breakpoint,
3613 and continue it. */
3614
16c381f0 3615 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3616 {
9f976b41 3617 int thread_hop_needed = 0;
cf00dfa7
VP
3618 struct address_space *aspace =
3619 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3620
f8d40ec8 3621 /* Check if a regular breakpoint has been hit before checking
1777feb0 3622 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3623 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3624 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3625 {
c5aa993b 3626 ecs->random_signal = 0;
6c95b8df 3627 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3628 thread_hop_needed = 1;
3629 }
1c0fdd0e 3630 else if (singlestep_breakpoints_inserted_p)
9f976b41 3631 {
fd48f117
DJ
3632 /* We have not context switched yet, so this should be true
3633 no matter which thread hit the singlestep breakpoint. */
3634 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3635 if (debug_infrun)
3636 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3637 "trap for %s\n",
3638 target_pid_to_str (ecs->ptid));
3639
9f976b41
DJ
3640 ecs->random_signal = 0;
3641 /* The call to in_thread_list is necessary because PTIDs sometimes
3642 change when we go from single-threaded to multi-threaded. If
3643 the singlestep_ptid is still in the list, assume that it is
3644 really different from ecs->ptid. */
3645 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3646 && in_thread_list (singlestep_ptid))
3647 {
fd48f117
DJ
3648 /* If the PC of the thread we were trying to single-step
3649 has changed, discard this event (which we were going
3650 to ignore anyway), and pretend we saw that thread
3651 trap. This prevents us continuously moving the
3652 single-step breakpoint forward, one instruction at a
3653 time. If the PC has changed, then the thread we were
3654 trying to single-step has trapped or been signalled,
3655 but the event has not been reported to GDB yet.
3656
3657 There might be some cases where this loses signal
3658 information, if a signal has arrived at exactly the
3659 same time that the PC changed, but this is the best
3660 we can do with the information available. Perhaps we
3661 should arrange to report all events for all threads
3662 when they stop, or to re-poll the remote looking for
3663 this particular thread (i.e. temporarily enable
3664 schedlock). */
515630c5
UW
3665
3666 CORE_ADDR new_singlestep_pc
3667 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3668
3669 if (new_singlestep_pc != singlestep_pc)
fd48f117 3670 {
2020b7ab
PA
3671 enum target_signal stop_signal;
3672
fd48f117
DJ
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3675 " but expected thread advanced also\n");
3676
3677 /* The current context still belongs to
3678 singlestep_ptid. Don't swap here, since that's
3679 the context we want to use. Just fudge our
3680 state and continue. */
16c381f0
JK
3681 stop_signal = ecs->event_thread->suspend.stop_signal;
3682 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3683 ecs->ptid = singlestep_ptid;
e09875d4 3684 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3685 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3686 stop_pc = new_singlestep_pc;
fd48f117
DJ
3687 }
3688 else
3689 {
3690 if (debug_infrun)
3691 fprintf_unfiltered (gdb_stdlog,
3692 "infrun: unexpected thread\n");
3693
3694 thread_hop_needed = 1;
3695 stepping_past_singlestep_breakpoint = 1;
3696 saved_singlestep_ptid = singlestep_ptid;
3697 }
9f976b41
DJ
3698 }
3699 }
3700
3701 if (thread_hop_needed)
8fb3e588 3702 {
9f5a595d 3703 struct regcache *thread_regcache;
237fc4c9 3704 int remove_status = 0;
8fb3e588 3705
527159b7 3706 if (debug_infrun)
8a9de0e4 3707 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3708
b3444185
PA
3709 /* Switch context before touching inferior memory, the
3710 previous thread may have exited. */
3711 if (!ptid_equal (inferior_ptid, ecs->ptid))
3712 context_switch (ecs->ptid);
3713
8fb3e588 3714 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3715 Just continue. */
8fb3e588 3716
1c0fdd0e 3717 if (singlestep_breakpoints_inserted_p)
488f131b 3718 {
1777feb0 3719 /* Pull the single step breakpoints out of the target. */
e0cd558a 3720 remove_single_step_breakpoints ();
8fb3e588
AC
3721 singlestep_breakpoints_inserted_p = 0;
3722 }
3723
237fc4c9
PA
3724 /* If the arch can displace step, don't remove the
3725 breakpoints. */
9f5a595d
UW
3726 thread_regcache = get_thread_regcache (ecs->ptid);
3727 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3728 remove_status = remove_breakpoints ();
3729
8fb3e588
AC
3730 /* Did we fail to remove breakpoints? If so, try
3731 to set the PC past the bp. (There's at least
3732 one situation in which we can fail to remove
3733 the bp's: On HP-UX's that use ttrace, we can't
3734 change the address space of a vforking child
3735 process until the child exits (well, okay, not
1777feb0 3736 then either :-) or execs. */
8fb3e588 3737 if (remove_status != 0)
9d9cd7ac 3738 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3739 else
3740 { /* Single step */
94cc34af
PA
3741 if (!non_stop)
3742 {
3743 /* Only need to require the next event from this
3744 thread in all-stop mode. */
3745 waiton_ptid = ecs->ptid;
3746 infwait_state = infwait_thread_hop_state;
3747 }
8fb3e588 3748
4e1c45ea 3749 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3750 keep_going (ecs);
8fb3e588
AC
3751 return;
3752 }
488f131b 3753 }
1c0fdd0e 3754 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3755 {
3756 sw_single_step_trap_p = 1;
3757 ecs->random_signal = 0;
3758 }
488f131b
JB
3759 }
3760 else
3761 ecs->random_signal = 1;
c906108c 3762
488f131b 3763 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3764 so, then switch to that thread. */
3765 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3766 {
527159b7 3767 if (debug_infrun)
8a9de0e4 3768 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3769
0d1e5fa7 3770 context_switch (ecs->ptid);
c5aa993b 3771
9a4105ab
AC
3772 if (deprecated_context_hook)
3773 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3774 }
c906108c 3775
568d6575
UW
3776 /* At this point, get hold of the now-current thread's frame. */
3777 frame = get_current_frame ();
3778 gdbarch = get_frame_arch (frame);
3779
1c0fdd0e 3780 if (singlestep_breakpoints_inserted_p)
488f131b 3781 {
1777feb0 3782 /* Pull the single step breakpoints out of the target. */
e0cd558a 3783 remove_single_step_breakpoints ();
488f131b
JB
3784 singlestep_breakpoints_inserted_p = 0;
3785 }
c906108c 3786
d983da9c
DJ
3787 if (stepped_after_stopped_by_watchpoint)
3788 stopped_by_watchpoint = 0;
3789 else
3790 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3791
3792 /* If necessary, step over this watchpoint. We'll be back to display
3793 it in a moment. */
3794 if (stopped_by_watchpoint
d92524f1 3795 && (target_have_steppable_watchpoint
568d6575 3796 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3797 {
488f131b
JB
3798 /* At this point, we are stopped at an instruction which has
3799 attempted to write to a piece of memory under control of
3800 a watchpoint. The instruction hasn't actually executed
3801 yet. If we were to evaluate the watchpoint expression
3802 now, we would get the old value, and therefore no change
3803 would seem to have occurred.
3804
3805 In order to make watchpoints work `right', we really need
3806 to complete the memory write, and then evaluate the
d983da9c
DJ
3807 watchpoint expression. We do this by single-stepping the
3808 target.
3809
3810 It may not be necessary to disable the watchpoint to stop over
3811 it. For example, the PA can (with some kernel cooperation)
3812 single step over a watchpoint without disabling the watchpoint.
3813
3814 It is far more common to need to disable a watchpoint to step
3815 the inferior over it. If we have non-steppable watchpoints,
3816 we must disable the current watchpoint; it's simplest to
3817 disable all watchpoints and breakpoints. */
2facfe5c
DD
3818 int hw_step = 1;
3819
d92524f1 3820 if (!target_have_steppable_watchpoint)
d983da9c 3821 remove_breakpoints ();
2facfe5c 3822 /* Single step */
568d6575 3823 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3824 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3825 waiton_ptid = ecs->ptid;
d92524f1 3826 if (target_have_steppable_watchpoint)
0d1e5fa7 3827 infwait_state = infwait_step_watch_state;
d983da9c 3828 else
0d1e5fa7 3829 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833
488f131b
JB
3834 ecs->stop_func_start = 0;
3835 ecs->stop_func_end = 0;
3836 ecs->stop_func_name = 0;
3837 /* Don't care about return value; stop_func_start and stop_func_name
3838 will both be 0 if it doesn't work. */
3839 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3840 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3841 ecs->stop_func_start
568d6575 3842 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3843 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3844 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3845 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3846 stop_print_frame = 1;
3847 ecs->random_signal = 0;
3848 stopped_by_random_signal = 0;
488f131b 3849
edb3359d
DJ
3850 /* Hide inlined functions starting here, unless we just performed stepi or
3851 nexti. After stepi and nexti, always show the innermost frame (not any
3852 inline function call sites). */
16c381f0 3853 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3854 skip_inline_frames (ecs->ptid);
3855
16c381f0
JK
3856 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3857 && ecs->event_thread->control.trap_expected
568d6575 3858 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3859 && currently_stepping (ecs->event_thread))
3352ef37 3860 {
b50d7442 3861 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 3862 also on an instruction that needs to be stepped multiple
1777feb0 3863 times before it's been fully executing. E.g., architectures
3352ef37
AC
3864 with a delay slot. It needs to be stepped twice, once for
3865 the instruction and once for the delay slot. */
3866 int step_through_delay
568d6575 3867 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3868
527159b7 3869 if (debug_infrun && step_through_delay)
8a9de0e4 3870 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3871 if (ecs->event_thread->control.step_range_end == 0
3872 && step_through_delay)
3352ef37
AC
3873 {
3874 /* The user issued a continue when stopped at a breakpoint.
3875 Set up for another trap and get out of here. */
4e1c45ea 3876 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3877 keep_going (ecs);
3878 return;
3879 }
3880 else if (step_through_delay)
3881 {
3882 /* The user issued a step when stopped at a breakpoint.
3883 Maybe we should stop, maybe we should not - the delay
3884 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3885 case, don't decide that here, just set
3886 ecs->stepping_over_breakpoint, making sure we
3887 single-step again before breakpoints are re-inserted. */
4e1c45ea 3888 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3889 }
3890 }
3891
488f131b
JB
3892 /* Look at the cause of the stop, and decide what to do.
3893 The alternatives are:
0d1e5fa7
PA
3894 1) stop_stepping and return; to really stop and return to the debugger,
3895 2) keep_going and return to start up again
4e1c45ea 3896 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3897 3) set ecs->random_signal to 1, and the decision between 1 and 2
3898 will be made according to the signal handling tables. */
3899
16c381f0 3900 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3901 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3902 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3903 {
16c381f0
JK
3904 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3905 && stop_after_trap)
488f131b 3906 {
527159b7 3907 if (debug_infrun)
8a9de0e4 3908 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3909 stop_print_frame = 0;
3910 stop_stepping (ecs);
3911 return;
3912 }
c54cfec8
EZ
3913
3914 /* This is originated from start_remote(), start_inferior() and
3915 shared libraries hook functions. */
b0f4b84b 3916 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3917 {
527159b7 3918 if (debug_infrun)
8a9de0e4 3919 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3920 stop_stepping (ecs);
3921 return;
3922 }
3923
c54cfec8 3924 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3925 the stop_signal here, because some kernels don't ignore a
3926 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3927 See more comments in inferior.h. On the other hand, if we
a0ef4274 3928 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3929 will handle the SIGSTOP if it should show up later.
3930
3931 Also consider that the attach is complete when we see a
3932 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3933 target extended-remote report it instead of a SIGSTOP
3934 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3935 signal, so this is no exception.
3936
3937 Also consider that the attach is complete when we see a
3938 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3939 the target to stop all threads of the inferior, in case the
3940 low level attach operation doesn't stop them implicitly. If
3941 they weren't stopped implicitly, then the stub will report a
3942 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3943 other than GDB's request. */
a0ef4274 3944 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
3945 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
3946 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3947 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3948 {
3949 stop_stepping (ecs);
16c381f0 3950 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3951 return;
3952 }
3953
fba57f8f 3954 /* See if there is a breakpoint at the current PC. */
16c381f0 3955 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3956 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3957 stop_pc, ecs->ptid);
3958
fba57f8f
VP
3959 /* Following in case break condition called a
3960 function. */
3961 stop_print_frame = 1;
488f131b 3962
db82e815
PA
3963 /* This is where we handle "moribund" watchpoints. Unlike
3964 software breakpoints traps, hardware watchpoint traps are
3965 always distinguishable from random traps. If no high-level
3966 watchpoint is associated with the reported stop data address
3967 anymore, then the bpstat does not explain the signal ---
3968 simply make sure to ignore it if `stopped_by_watchpoint' is
3969 set. */
3970
3971 if (debug_infrun
16c381f0
JK
3972 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3973 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 3974 && stopped_by_watchpoint)
3e43a32a
MS
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: no user watchpoint explains "
3977 "watchpoint SIGTRAP, ignoring\n");
db82e815 3978
73dd234f 3979 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3980 at one stage in the past included checks for an inferior
3981 function call's call dummy's return breakpoint. The original
3982 comment, that went with the test, read:
73dd234f 3983
8fb3e588
AC
3984 ``End of a stack dummy. Some systems (e.g. Sony news) give
3985 another signal besides SIGTRAP, so check here as well as
3986 above.''
73dd234f 3987
8002d778 3988 If someone ever tries to get call dummys on a
73dd234f 3989 non-executable stack to work (where the target would stop
03cebad2
MK
3990 with something like a SIGSEGV), then those tests might need
3991 to be re-instated. Given, however, that the tests were only
73dd234f 3992 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3993 suspect that it won't be the case.
3994
8fb3e588
AC
3995 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3996 be necessary for call dummies on a non-executable stack on
3997 SPARC. */
73dd234f 3998
16c381f0 3999 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4000 ecs->random_signal
16c381f0 4001 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4002 || stopped_by_watchpoint
16c381f0
JK
4003 || ecs->event_thread->control.trap_expected
4004 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4005 && (ecs->event_thread->control.step_resume_breakpoint
4006 == NULL)));
488f131b
JB
4007 else
4008 {
16c381f0
JK
4009 ecs->random_signal = !bpstat_explains_signal
4010 (ecs->event_thread->control.stop_bpstat);
488f131b 4011 if (!ecs->random_signal)
16c381f0 4012 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4013 }
4014 }
4015
4016 /* When we reach this point, we've pretty much decided
4017 that the reason for stopping must've been a random
1777feb0 4018 (unexpected) signal. */
488f131b
JB
4019
4020 else
4021 ecs->random_signal = 1;
488f131b 4022
04e68871 4023process_event_stop_test:
568d6575
UW
4024
4025 /* Re-fetch current thread's frame in case we did a
4026 "goto process_event_stop_test" above. */
4027 frame = get_current_frame ();
4028 gdbarch = get_frame_arch (frame);
4029
488f131b
JB
4030 /* For the program's own signals, act according to
4031 the signal handling tables. */
4032
4033 if (ecs->random_signal)
4034 {
4035 /* Signal not for debugging purposes. */
4036 int printed = 0;
24291992 4037 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4038
527159b7 4039 if (debug_infrun)
2020b7ab 4040 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4041 ecs->event_thread->suspend.stop_signal);
527159b7 4042
488f131b
JB
4043 stopped_by_random_signal = 1;
4044
16c381f0 4045 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4046 {
4047 printed = 1;
4048 target_terminal_ours_for_output ();
16c381f0
JK
4049 print_signal_received_reason
4050 (ecs->event_thread->suspend.stop_signal);
488f131b 4051 }
252fbfc8
PA
4052 /* Always stop on signals if we're either just gaining control
4053 of the program, or the user explicitly requested this thread
4054 to remain stopped. */
d6b48e9c 4055 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4056 || ecs->event_thread->stop_requested
24291992 4057 || (!inf->detaching
16c381f0 4058 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4059 {
4060 stop_stepping (ecs);
4061 return;
4062 }
4063 /* If not going to stop, give terminal back
4064 if we took it away. */
4065 else if (printed)
4066 target_terminal_inferior ();
4067
4068 /* Clear the signal if it should not be passed. */
16c381f0
JK
4069 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4070 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4071
fb14de7b 4072 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4073 && ecs->event_thread->control.trap_expected
8358c15c 4074 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4075 {
4076 /* We were just starting a new sequence, attempting to
4077 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4078 Instead this signal arrives. This signal will take us out
68f53502
AC
4079 of the stepping range so GDB needs to remember to, when
4080 the signal handler returns, resume stepping off that
4081 breakpoint. */
4082 /* To simplify things, "continue" is forced to use the same
4083 code paths as single-step - set a breakpoint at the
4084 signal return address and then, once hit, step off that
4085 breakpoint. */
237fc4c9
PA
4086 if (debug_infrun)
4087 fprintf_unfiltered (gdb_stdlog,
4088 "infrun: signal arrived while stepping over "
4089 "breakpoint\n");
d3169d93 4090
568d6575 4091 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4092 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
4093 keep_going (ecs);
4094 return;
68f53502 4095 }
9d799f85 4096
16c381f0
JK
4097 if (ecs->event_thread->control.step_range_end != 0
4098 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4099 && (ecs->event_thread->control.step_range_start <= stop_pc
4100 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4101 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4102 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4103 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4104 {
4105 /* The inferior is about to take a signal that will take it
4106 out of the single step range. Set a breakpoint at the
4107 current PC (which is presumably where the signal handler
4108 will eventually return) and then allow the inferior to
4109 run free.
4110
4111 Note that this is only needed for a signal delivered
4112 while in the single-step range. Nested signals aren't a
4113 problem as they eventually all return. */
237fc4c9
PA
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog,
4116 "infrun: signal may take us out of "
4117 "single-step range\n");
4118
568d6575 4119 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
4120 keep_going (ecs);
4121 return;
d303a6c7 4122 }
9d799f85
AC
4123
4124 /* Note: step_resume_breakpoint may be non-NULL. This occures
4125 when either there's a nested signal, or when there's a
4126 pending signal enabled just as the signal handler returns
4127 (leaving the inferior at the step-resume-breakpoint without
4128 actually executing it). Either way continue until the
4129 breakpoint is really hit. */
488f131b
JB
4130 keep_going (ecs);
4131 return;
4132 }
4133
4134 /* Handle cases caused by hitting a breakpoint. */
4135 {
4136 CORE_ADDR jmp_buf_pc;
4137 struct bpstat_what what;
4138
16c381f0 4139 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4140
4141 if (what.call_dummy)
4142 {
aa7d318d 4143 stop_stack_dummy = what.call_dummy;
c5aa993b 4144 }
c906108c 4145
628fe4e4
JK
4146 /* If we hit an internal event that triggers symbol changes, the
4147 current frame will be invalidated within bpstat_what (e.g., if
4148 we hit an internal solib event). Re-fetch it. */
4149 frame = get_current_frame ();
4150 gdbarch = get_frame_arch (frame);
4151
488f131b 4152 switch (what.main_action)
c5aa993b 4153 {
488f131b 4154 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4155 /* If we hit the breakpoint at longjmp while stepping, we
4156 install a momentary breakpoint at the target of the
4157 jmp_buf. */
4158
4159 if (debug_infrun)
4160 fprintf_unfiltered (gdb_stdlog,
4161 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4162
4e1c45ea 4163 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4164
186c406b 4165 if (what.is_longjmp)
c5aa993b 4166 {
186c406b
TT
4167 if (!gdbarch_get_longjmp_target_p (gdbarch)
4168 || !gdbarch_get_longjmp_target (gdbarch,
4169 frame, &jmp_buf_pc))
4170 {
4171 if (debug_infrun)
3e43a32a
MS
4172 fprintf_unfiltered (gdb_stdlog,
4173 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4174 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4175 keep_going (ecs);
4176 return;
4177 }
488f131b 4178
186c406b
TT
4179 /* We're going to replace the current step-resume breakpoint
4180 with a longjmp-resume breakpoint. */
4181 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4182
186c406b
TT
4183 /* Insert a breakpoint at resume address. */
4184 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4185 }
4186 else
4187 {
4188 struct symbol *func = get_frame_function (frame);
c906108c 4189
186c406b
TT
4190 if (func)
4191 check_exception_resume (ecs, frame, func);
4192 }
488f131b
JB
4193 keep_going (ecs);
4194 return;
c906108c 4195
488f131b 4196 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4197 if (debug_infrun)
611c83ae
PA
4198 fprintf_unfiltered (gdb_stdlog,
4199 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4200
186c406b
TT
4201 if (what.is_longjmp)
4202 {
4203 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4204 != NULL);
4205 delete_step_resume_breakpoint (ecs->event_thread);
4206 }
4207 else
4208 {
4209 /* There are several cases to consider.
4210
4211 1. The initiating frame no longer exists. In this case
4212 we must stop, because the exception has gone too far.
4213
4214 2. The initiating frame exists, and is the same as the
4215 current frame. We stop, because the exception has been
4216 caught.
4217
4218 3. The initiating frame exists and is different from
4219 the current frame. This means the exception has been
4220 caught beneath the initiating frame, so keep going. */
4221 struct frame_info *init_frame
4222 = frame_find_by_id (ecs->event_thread->initiating_frame);
4223
4224 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4225 != NULL);
4226 delete_exception_resume_breakpoint (ecs->event_thread);
4227
4228 if (init_frame)
4229 {
4230 struct frame_id current_id
4231 = get_frame_id (get_current_frame ());
4232 if (frame_id_eq (current_id,
4233 ecs->event_thread->initiating_frame))
4234 {
4235 /* Case 2. Fall through. */
4236 }
4237 else
4238 {
4239 /* Case 3. */
4240 keep_going (ecs);
4241 return;
4242 }
4243 }
4244
4245 /* For Cases 1 and 2, remove the step-resume breakpoint,
4246 if it exists. */
4247 delete_step_resume_breakpoint (ecs->event_thread);
4248 }
611c83ae 4249
16c381f0 4250 ecs->event_thread->control.stop_step = 1;
33d62d64 4251 print_end_stepping_range_reason ();
611c83ae
PA
4252 stop_stepping (ecs);
4253 return;
488f131b
JB
4254
4255 case BPSTAT_WHAT_SINGLE:
527159b7 4256 if (debug_infrun)
8802d8ed 4257 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4258 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4259 /* Still need to check other stuff, at least the case
4260 where we are stepping and step out of the right range. */
4261 break;
c906108c 4262
488f131b 4263 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4264 if (debug_infrun)
8802d8ed 4265 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4266 stop_print_frame = 1;
c906108c 4267
d303a6c7
AC
4268 /* We are about to nuke the step_resume_breakpointt via the
4269 cleanup chain, so no need to worry about it here. */
c5aa993b 4270
488f131b
JB
4271 stop_stepping (ecs);
4272 return;
c5aa993b 4273
488f131b 4274 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4275 if (debug_infrun)
8802d8ed 4276 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4277 stop_print_frame = 0;
c5aa993b 4278
d303a6c7
AC
4279 /* We are about to nuke the step_resume_breakpoin via the
4280 cleanup chain, so no need to worry about it here. */
c5aa993b 4281
488f131b 4282 stop_stepping (ecs);
e441088d 4283 return;
c5aa993b 4284
488f131b 4285 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4286 if (debug_infrun)
8802d8ed 4287 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4288
4e1c45ea
PA
4289 delete_step_resume_breakpoint (ecs->event_thread);
4290 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4291 {
4292 /* Back when the step-resume breakpoint was inserted, we
4293 were trying to single-step off a breakpoint. Go back
4294 to doing that. */
4e1c45ea
PA
4295 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4296 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4297 keep_going (ecs);
4298 return;
4299 }
b2175913
MS
4300 if (stop_pc == ecs->stop_func_start
4301 && execution_direction == EXEC_REVERSE)
4302 {
4303 /* We are stepping over a function call in reverse, and
4304 just hit the step-resume breakpoint at the start
4305 address of the function. Go back to single-stepping,
4306 which should take us back to the function call. */
4307 ecs->event_thread->stepping_over_breakpoint = 1;
4308 keep_going (ecs);
4309 return;
4310 }
488f131b
JB
4311 break;
4312
488f131b
JB
4313 case BPSTAT_WHAT_KEEP_CHECKING:
4314 break;
4315 }
4316 }
c906108c 4317
488f131b
JB
4318 /* We come here if we hit a breakpoint but should not
4319 stop for it. Possibly we also were stepping
4320 and should stop for that. So fall through and
4321 test for stepping. But, if not stepping,
4322 do not stop. */
c906108c 4323
a7212384
UW
4324 /* In all-stop mode, if we're currently stepping but have stopped in
4325 some other thread, we need to switch back to the stepped thread. */
4326 if (!non_stop)
4327 {
4328 struct thread_info *tp;
abbb1732 4329
b3444185 4330 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4331 ecs->event_thread);
4332 if (tp)
4333 {
4334 /* However, if the current thread is blocked on some internal
4335 breakpoint, and we simply need to step over that breakpoint
4336 to get it going again, do that first. */
16c381f0
JK
4337 if ((ecs->event_thread->control.trap_expected
4338 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4339 || ecs->event_thread->stepping_over_breakpoint)
4340 {
4341 keep_going (ecs);
4342 return;
4343 }
4344
66852e9c
PA
4345 /* If the stepping thread exited, then don't try to switch
4346 back and resume it, which could fail in several different
4347 ways depending on the target. Instead, just keep going.
4348
4349 We can find a stepping dead thread in the thread list in
4350 two cases:
4351
4352 - The target supports thread exit events, and when the
4353 target tries to delete the thread from the thread list,
4354 inferior_ptid pointed at the exiting thread. In such
4355 case, calling delete_thread does not really remove the
4356 thread from the list; instead, the thread is left listed,
4357 with 'exited' state.
4358
4359 - The target's debug interface does not support thread
4360 exit events, and so we have no idea whatsoever if the
4361 previously stepping thread is still alive. For that
4362 reason, we need to synchronously query the target
4363 now. */
b3444185
PA
4364 if (is_exited (tp->ptid)
4365 || !target_thread_alive (tp->ptid))
4366 {
4367 if (debug_infrun)
3e43a32a
MS
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: not switching back to "
4370 "stepped thread, it has vanished\n");
b3444185
PA
4371
4372 delete_thread (tp->ptid);
4373 keep_going (ecs);
4374 return;
4375 }
4376
a7212384
UW
4377 /* Otherwise, we no longer expect a trap in the current thread.
4378 Clear the trap_expected flag before switching back -- this is
4379 what keep_going would do as well, if we called it. */
16c381f0 4380 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4381
4382 if (debug_infrun)
4383 fprintf_unfiltered (gdb_stdlog,
4384 "infrun: switching back to stepped thread\n");
4385
4386 ecs->event_thread = tp;
4387 ecs->ptid = tp->ptid;
4388 context_switch (ecs->ptid);
4389 keep_going (ecs);
4390 return;
4391 }
4392 }
4393
9d1ff73f
MS
4394 /* Are we stepping to get the inferior out of the dynamic linker's
4395 hook (and possibly the dld itself) after catching a shlib
4396 event? */
4e1c45ea 4397 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4398 {
4399#if defined(SOLIB_ADD)
1777feb0 4400 /* Have we reached our destination? If not, keep going. */
488f131b
JB
4401 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4402 {
527159b7 4403 if (debug_infrun)
3e43a32a
MS
4404 fprintf_unfiltered (gdb_stdlog,
4405 "infrun: stepping in dynamic linker\n");
4e1c45ea 4406 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4407 keep_going (ecs);
104c1213 4408 return;
488f131b
JB
4409 }
4410#endif
527159b7 4411 if (debug_infrun)
8a9de0e4 4412 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b 4413 /* Else, stop and report the catchpoint(s) whose triggering
1777feb0 4414 caused us to begin stepping. */
4e1c45ea 4415 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4416 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4417 ecs->event_thread->control.stop_bpstat
347bddb7 4418 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4419 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4420 stop_print_frame = 1;
4421 stop_stepping (ecs);
4422 return;
4423 }
c906108c 4424
8358c15c 4425 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4426 {
527159b7 4427 if (debug_infrun)
d3169d93
DJ
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: step-resume breakpoint is inserted\n");
527159b7 4430
488f131b
JB
4431 /* Having a step-resume breakpoint overrides anything
4432 else having to do with stepping commands until
4433 that breakpoint is reached. */
488f131b
JB
4434 keep_going (ecs);
4435 return;
4436 }
c5aa993b 4437
16c381f0 4438 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4439 {
527159b7 4440 if (debug_infrun)
8a9de0e4 4441 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4442 /* Likewise if we aren't even stepping. */
488f131b
JB
4443 keep_going (ecs);
4444 return;
4445 }
c5aa993b 4446
4b7703ad
JB
4447 /* Re-fetch current thread's frame in case the code above caused
4448 the frame cache to be re-initialized, making our FRAME variable
4449 a dangling pointer. */
4450 frame = get_current_frame ();
628fe4e4 4451 gdbarch = get_frame_arch (frame);
4b7703ad 4452
488f131b 4453 /* If stepping through a line, keep going if still within it.
c906108c 4454
488f131b
JB
4455 Note that step_range_end is the address of the first instruction
4456 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4457 within it!
4458
4459 Note also that during reverse execution, we may be stepping
4460 through a function epilogue and therefore must detect when
4461 the current-frame changes in the middle of a line. */
4462
16c381f0
JK
4463 if (stop_pc >= ecs->event_thread->control.step_range_start
4464 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4465 && (execution_direction != EXEC_REVERSE
388a8562 4466 || frame_id_eq (get_frame_id (frame),
16c381f0 4467 ecs->event_thread->control.step_frame_id)))
488f131b 4468 {
527159b7 4469 if (debug_infrun)
5af949e3
UW
4470 fprintf_unfiltered
4471 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4472 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4473 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4474
4475 /* When stepping backward, stop at beginning of line range
4476 (unless it's the function entry point, in which case
4477 keep going back to the call point). */
16c381f0 4478 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4479 && stop_pc != ecs->stop_func_start
4480 && execution_direction == EXEC_REVERSE)
4481 {
16c381f0 4482 ecs->event_thread->control.stop_step = 1;
33d62d64 4483 print_end_stepping_range_reason ();
b2175913
MS
4484 stop_stepping (ecs);
4485 }
4486 else
4487 keep_going (ecs);
4488
488f131b
JB
4489 return;
4490 }
c5aa993b 4491
488f131b 4492 /* We stepped out of the stepping range. */
c906108c 4493
488f131b 4494 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4495 loader dynamic symbol resolution code...
4496
4497 EXEC_FORWARD: we keep on single stepping until we exit the run
4498 time loader code and reach the callee's address.
4499
4500 EXEC_REVERSE: we've already executed the callee (backward), and
4501 the runtime loader code is handled just like any other
4502 undebuggable function call. Now we need only keep stepping
4503 backward through the trampoline code, and that's handled further
4504 down, so there is nothing for us to do here. */
4505
4506 if (execution_direction != EXEC_REVERSE
16c381f0 4507 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4508 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4509 {
4c8c40e6 4510 CORE_ADDR pc_after_resolver =
568d6575 4511 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4512
527159b7 4513 if (debug_infrun)
3e43a32a
MS
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: stepped into dynsym resolve code\n");
527159b7 4516
488f131b
JB
4517 if (pc_after_resolver)
4518 {
4519 /* Set up a step-resume breakpoint at the address
4520 indicated by SKIP_SOLIB_RESOLVER. */
4521 struct symtab_and_line sr_sal;
abbb1732 4522
fe39c653 4523 init_sal (&sr_sal);
488f131b 4524 sr_sal.pc = pc_after_resolver;
6c95b8df 4525 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4526
a6d9a66e
UW
4527 insert_step_resume_breakpoint_at_sal (gdbarch,
4528 sr_sal, null_frame_id);
c5aa993b 4529 }
c906108c 4530
488f131b
JB
4531 keep_going (ecs);
4532 return;
4533 }
c906108c 4534
16c381f0
JK
4535 if (ecs->event_thread->control.step_range_end != 1
4536 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4537 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4538 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4539 {
527159b7 4540 if (debug_infrun)
3e43a32a
MS
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: stepped into signal trampoline\n");
42edda50 4543 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4544 a signal trampoline (either by a signal being delivered or by
4545 the signal handler returning). Just single-step until the
4546 inferior leaves the trampoline (either by calling the handler
4547 or returning). */
488f131b
JB
4548 keep_going (ecs);
4549 return;
4550 }
c906108c 4551
c17eaafe
DJ
4552 /* Check for subroutine calls. The check for the current frame
4553 equalling the step ID is not necessary - the check of the
4554 previous frame's ID is sufficient - but it is a common case and
4555 cheaper than checking the previous frame's ID.
14e60db5
DJ
4556
4557 NOTE: frame_id_eq will never report two invalid frame IDs as
4558 being equal, so to get into this block, both the current and
4559 previous frame must have valid frame IDs. */
005ca36a
JB
4560 /* The outer_frame_id check is a heuristic to detect stepping
4561 through startup code. If we step over an instruction which
4562 sets the stack pointer from an invalid value to a valid value,
4563 we may detect that as a subroutine call from the mythical
4564 "outermost" function. This could be fixed by marking
4565 outermost frames as !stack_p,code_p,special_p. Then the
4566 initial outermost frame, before sp was valid, would
ce6cca6d 4567 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4568 for more. */
edb3359d 4569 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4570 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4571 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4572 ecs->event_thread->control.step_stack_frame_id)
4573 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4574 outer_frame_id)
4575 || step_start_function != find_pc_function (stop_pc))))
488f131b 4576 {
95918acb 4577 CORE_ADDR real_stop_pc;
8fb3e588 4578
527159b7 4579 if (debug_infrun)
8a9de0e4 4580 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4581
16c381f0
JK
4582 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4583 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4584 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4585 ecs->stop_func_start)))
95918acb
AC
4586 {
4587 /* I presume that step_over_calls is only 0 when we're
4588 supposed to be stepping at the assembly language level
4589 ("stepi"). Just stop. */
4590 /* Also, maybe we just did a "nexti" inside a prolog, so we
4591 thought it was a subroutine call but it was not. Stop as
4592 well. FENN */
388a8562 4593 /* And this works the same backward as frontward. MVS */
16c381f0 4594 ecs->event_thread->control.stop_step = 1;
33d62d64 4595 print_end_stepping_range_reason ();
95918acb
AC
4596 stop_stepping (ecs);
4597 return;
4598 }
8fb3e588 4599
388a8562
MS
4600 /* Reverse stepping through solib trampolines. */
4601
4602 if (execution_direction == EXEC_REVERSE
16c381f0 4603 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4604 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4605 || (ecs->stop_func_start == 0
4606 && in_solib_dynsym_resolve_code (stop_pc))))
4607 {
4608 /* Any solib trampoline code can be handled in reverse
4609 by simply continuing to single-step. We have already
4610 executed the solib function (backwards), and a few
4611 steps will take us back through the trampoline to the
4612 caller. */
4613 keep_going (ecs);
4614 return;
4615 }
4616
16c381f0 4617 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4618 {
b2175913
MS
4619 /* We're doing a "next".
4620
4621 Normal (forward) execution: set a breakpoint at the
4622 callee's return address (the address at which the caller
4623 will resume).
4624
4625 Reverse (backward) execution. set the step-resume
4626 breakpoint at the start of the function that we just
4627 stepped into (backwards), and continue to there. When we
6130d0b7 4628 get there, we'll need to single-step back to the caller. */
b2175913
MS
4629
4630 if (execution_direction == EXEC_REVERSE)
4631 {
4632 struct symtab_and_line sr_sal;
3067f6e5 4633
388a8562
MS
4634 /* Normal function call return (static or dynamic). */
4635 init_sal (&sr_sal);
4636 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4637 sr_sal.pspace = get_frame_program_space (frame);
4638 insert_step_resume_breakpoint_at_sal (gdbarch,
4639 sr_sal, null_frame_id);
b2175913
MS
4640 }
4641 else
568d6575 4642 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4643
8567c30f
AC
4644 keep_going (ecs);
4645 return;
4646 }
a53c66de 4647
95918acb 4648 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4649 calling routine and the real function), locate the real
4650 function. That's what tells us (a) whether we want to step
4651 into it at all, and (b) what prologue we want to run to the
4652 end of, if we do step into it. */
568d6575 4653 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4654 if (real_stop_pc == 0)
568d6575 4655 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4656 if (real_stop_pc != 0)
4657 ecs->stop_func_start = real_stop_pc;
8fb3e588 4658
db5f024e 4659 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4660 {
4661 struct symtab_and_line sr_sal;
abbb1732 4662
1b2bfbb9
RC
4663 init_sal (&sr_sal);
4664 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4665 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4666
a6d9a66e
UW
4667 insert_step_resume_breakpoint_at_sal (gdbarch,
4668 sr_sal, null_frame_id);
8fb3e588
AC
4669 keep_going (ecs);
4670 return;
1b2bfbb9
RC
4671 }
4672
95918acb 4673 /* If we have line number information for the function we are
8fb3e588 4674 thinking of stepping into, step into it.
95918acb 4675
8fb3e588
AC
4676 If there are several symtabs at that PC (e.g. with include
4677 files), just want to know whether *any* of them have line
4678 numbers. find_pc_line handles this. */
95918acb
AC
4679 {
4680 struct symtab_and_line tmp_sal;
8fb3e588 4681
95918acb
AC
4682 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4683 if (tmp_sal.line != 0)
4684 {
b2175913 4685 if (execution_direction == EXEC_REVERSE)
568d6575 4686 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4687 else
568d6575 4688 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4689 return;
4690 }
4691 }
4692
4693 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4694 set, we stop the step so that the user has a chance to switch
4695 in assembly mode. */
16c381f0 4696 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4697 && step_stop_if_no_debug)
95918acb 4698 {
16c381f0 4699 ecs->event_thread->control.stop_step = 1;
33d62d64 4700 print_end_stepping_range_reason ();
95918acb
AC
4701 stop_stepping (ecs);
4702 return;
4703 }
4704
b2175913
MS
4705 if (execution_direction == EXEC_REVERSE)
4706 {
4707 /* Set a breakpoint at callee's start address.
4708 From there we can step once and be back in the caller. */
4709 struct symtab_and_line sr_sal;
abbb1732 4710
b2175913
MS
4711 init_sal (&sr_sal);
4712 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4713 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4714 insert_step_resume_breakpoint_at_sal (gdbarch,
4715 sr_sal, null_frame_id);
b2175913
MS
4716 }
4717 else
4718 /* Set a breakpoint at callee's return address (the address
4719 at which the caller will resume). */
568d6575 4720 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4721
95918acb 4722 keep_going (ecs);
488f131b 4723 return;
488f131b 4724 }
c906108c 4725
fdd654f3
MS
4726 /* Reverse stepping through solib trampolines. */
4727
4728 if (execution_direction == EXEC_REVERSE
16c381f0 4729 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4730 {
4731 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4732 || (ecs->stop_func_start == 0
4733 && in_solib_dynsym_resolve_code (stop_pc)))
4734 {
4735 /* Any solib trampoline code can be handled in reverse
4736 by simply continuing to single-step. We have already
4737 executed the solib function (backwards), and a few
4738 steps will take us back through the trampoline to the
4739 caller. */
4740 keep_going (ecs);
4741 return;
4742 }
4743 else if (in_solib_dynsym_resolve_code (stop_pc))
4744 {
4745 /* Stepped backward into the solib dynsym resolver.
4746 Set a breakpoint at its start and continue, then
4747 one more step will take us out. */
4748 struct symtab_and_line sr_sal;
abbb1732 4749
fdd654f3
MS
4750 init_sal (&sr_sal);
4751 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4752 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4753 insert_step_resume_breakpoint_at_sal (gdbarch,
4754 sr_sal, null_frame_id);
4755 keep_going (ecs);
4756 return;
4757 }
4758 }
4759
488f131b
JB
4760 /* If we're in the return path from a shared library trampoline,
4761 we want to proceed through the trampoline when stepping. */
568d6575 4762 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4763 stop_pc, ecs->stop_func_name))
488f131b 4764 {
488f131b 4765 /* Determine where this trampoline returns. */
52f729a7 4766 CORE_ADDR real_stop_pc;
abbb1732 4767
568d6575 4768 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4769
527159b7 4770 if (debug_infrun)
3e43a32a
MS
4771 fprintf_unfiltered (gdb_stdlog,
4772 "infrun: stepped into solib return tramp\n");
527159b7 4773
488f131b 4774 /* Only proceed through if we know where it's going. */
d764a824 4775 if (real_stop_pc)
488f131b 4776 {
1777feb0 4777 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4778 struct symtab_and_line sr_sal;
4779
fe39c653 4780 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4781 sr_sal.pc = real_stop_pc;
488f131b 4782 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4783 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4784
4785 /* Do not specify what the fp should be when we stop since
4786 on some machines the prologue is where the new fp value
4787 is established. */
a6d9a66e
UW
4788 insert_step_resume_breakpoint_at_sal (gdbarch,
4789 sr_sal, null_frame_id);
c906108c 4790
488f131b
JB
4791 /* Restart without fiddling with the step ranges or
4792 other state. */
4793 keep_going (ecs);
4794 return;
4795 }
4796 }
c906108c 4797
2afb61aa 4798 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4799
1b2bfbb9
RC
4800 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4801 the trampoline processing logic, however, there are some trampolines
4802 that have no names, so we should do trampoline handling first. */
16c381f0 4803 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4804 && ecs->stop_func_name == NULL
2afb61aa 4805 && stop_pc_sal.line == 0)
1b2bfbb9 4806 {
527159b7 4807 if (debug_infrun)
3e43a32a
MS
4808 fprintf_unfiltered (gdb_stdlog,
4809 "infrun: stepped into undebuggable function\n");
527159b7 4810
1b2bfbb9 4811 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4812 undebuggable function (where there is no debugging information
4813 and no line number corresponding to the address where the
1b2bfbb9
RC
4814 inferior stopped). Since we want to skip this kind of code,
4815 we keep going until the inferior returns from this
14e60db5
DJ
4816 function - unless the user has asked us not to (via
4817 set step-mode) or we no longer know how to get back
4818 to the call site. */
4819 if (step_stop_if_no_debug
c7ce8faa 4820 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4821 {
4822 /* If we have no line number and the step-stop-if-no-debug
4823 is set, we stop the step so that the user has a chance to
4824 switch in assembly mode. */
16c381f0 4825 ecs->event_thread->control.stop_step = 1;
33d62d64 4826 print_end_stepping_range_reason ();
1b2bfbb9
RC
4827 stop_stepping (ecs);
4828 return;
4829 }
4830 else
4831 {
4832 /* Set a breakpoint at callee's return address (the address
4833 at which the caller will resume). */
568d6575 4834 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4835 keep_going (ecs);
4836 return;
4837 }
4838 }
4839
16c381f0 4840 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4841 {
4842 /* It is stepi or nexti. We always want to stop stepping after
4843 one instruction. */
527159b7 4844 if (debug_infrun)
8a9de0e4 4845 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4846 ecs->event_thread->control.stop_step = 1;
33d62d64 4847 print_end_stepping_range_reason ();
1b2bfbb9
RC
4848 stop_stepping (ecs);
4849 return;
4850 }
4851
2afb61aa 4852 if (stop_pc_sal.line == 0)
488f131b
JB
4853 {
4854 /* We have no line number information. That means to stop
4855 stepping (does this always happen right after one instruction,
4856 when we do "s" in a function with no line numbers,
4857 or can this happen as a result of a return or longjmp?). */
527159b7 4858 if (debug_infrun)
8a9de0e4 4859 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 4860 ecs->event_thread->control.stop_step = 1;
33d62d64 4861 print_end_stepping_range_reason ();
488f131b
JB
4862 stop_stepping (ecs);
4863 return;
4864 }
c906108c 4865
edb3359d
DJ
4866 /* Look for "calls" to inlined functions, part one. If the inline
4867 frame machinery detected some skipped call sites, we have entered
4868 a new inline function. */
4869
4870 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4871 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
4872 && inline_skipped_frames (ecs->ptid))
4873 {
4874 struct symtab_and_line call_sal;
4875
4876 if (debug_infrun)
4877 fprintf_unfiltered (gdb_stdlog,
4878 "infrun: stepped into inlined function\n");
4879
4880 find_frame_sal (get_current_frame (), &call_sal);
4881
16c381f0 4882 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
4883 {
4884 /* For "step", we're going to stop. But if the call site
4885 for this inlined function is on the same source line as
4886 we were previously stepping, go down into the function
4887 first. Otherwise stop at the call site. */
4888
4889 if (call_sal.line == ecs->event_thread->current_line
4890 && call_sal.symtab == ecs->event_thread->current_symtab)
4891 step_into_inline_frame (ecs->ptid);
4892
16c381f0 4893 ecs->event_thread->control.stop_step = 1;
33d62d64 4894 print_end_stepping_range_reason ();
edb3359d
DJ
4895 stop_stepping (ecs);
4896 return;
4897 }
4898 else
4899 {
4900 /* For "next", we should stop at the call site if it is on a
4901 different source line. Otherwise continue through the
4902 inlined function. */
4903 if (call_sal.line == ecs->event_thread->current_line
4904 && call_sal.symtab == ecs->event_thread->current_symtab)
4905 keep_going (ecs);
4906 else
4907 {
16c381f0 4908 ecs->event_thread->control.stop_step = 1;
33d62d64 4909 print_end_stepping_range_reason ();
edb3359d
DJ
4910 stop_stepping (ecs);
4911 }
4912 return;
4913 }
4914 }
4915
4916 /* Look for "calls" to inlined functions, part two. If we are still
4917 in the same real function we were stepping through, but we have
4918 to go further up to find the exact frame ID, we are stepping
4919 through a more inlined call beyond its call site. */
4920
4921 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4922 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4923 ecs->event_thread->control.step_frame_id)
edb3359d 4924 && stepped_in_from (get_current_frame (),
16c381f0 4925 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
4926 {
4927 if (debug_infrun)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "infrun: stepping through inlined function\n");
4930
16c381f0 4931 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
4932 keep_going (ecs);
4933 else
4934 {
16c381f0 4935 ecs->event_thread->control.stop_step = 1;
33d62d64 4936 print_end_stepping_range_reason ();
edb3359d
DJ
4937 stop_stepping (ecs);
4938 }
4939 return;
4940 }
4941
2afb61aa 4942 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4943 && (ecs->event_thread->current_line != stop_pc_sal.line
4944 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4945 {
4946 /* We are at the start of a different line. So stop. Note that
4947 we don't stop if we step into the middle of a different line.
4948 That is said to make things like for (;;) statements work
4949 better. */
527159b7 4950 if (debug_infrun)
3e43a32a
MS
4951 fprintf_unfiltered (gdb_stdlog,
4952 "infrun: stepped to a different line\n");
16c381f0 4953 ecs->event_thread->control.stop_step = 1;
33d62d64 4954 print_end_stepping_range_reason ();
488f131b
JB
4955 stop_stepping (ecs);
4956 return;
4957 }
c906108c 4958
488f131b 4959 /* We aren't done stepping.
c906108c 4960
488f131b
JB
4961 Optimize by setting the stepping range to the line.
4962 (We might not be in the original line, but if we entered a
4963 new line in mid-statement, we continue stepping. This makes
4964 things like for(;;) statements work better.) */
c906108c 4965
16c381f0
JK
4966 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
4967 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 4968 set_step_info (frame, stop_pc_sal);
488f131b 4969
527159b7 4970 if (debug_infrun)
8a9de0e4 4971 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4972 keep_going (ecs);
104c1213
JM
4973}
4974
b3444185 4975/* Is thread TP in the middle of single-stepping? */
104c1213 4976
a289b8f6 4977static int
b3444185 4978currently_stepping (struct thread_info *tp)
a7212384 4979{
8358c15c
JK
4980 return ((tp->control.step_range_end
4981 && tp->control.step_resume_breakpoint == NULL)
4982 || tp->control.trap_expected
4983 || tp->stepping_through_solib_after_catch
4984 || bpstat_should_step ());
a7212384
UW
4985}
4986
b3444185
PA
4987/* Returns true if any thread *but* the one passed in "data" is in the
4988 middle of stepping or of handling a "next". */
a7212384 4989
104c1213 4990static int
b3444185 4991currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4992{
b3444185
PA
4993 if (tp == data)
4994 return 0;
4995
16c381f0
JK
4996 return (tp->control.step_range_end
4997 || tp->control.trap_expected
b3444185 4998 || tp->stepping_through_solib_after_catch);
104c1213 4999}
c906108c 5000
b2175913
MS
5001/* Inferior has stepped into a subroutine call with source code that
5002 we should not step over. Do step to the first line of code in
5003 it. */
c2c6d25f
JM
5004
5005static void
568d6575
UW
5006handle_step_into_function (struct gdbarch *gdbarch,
5007 struct execution_control_state *ecs)
c2c6d25f
JM
5008{
5009 struct symtab *s;
2afb61aa 5010 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
5011
5012 s = find_pc_symtab (stop_pc);
5013 if (s && s->language != language_asm)
568d6575 5014 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5015 ecs->stop_func_start);
c2c6d25f 5016
2afb61aa 5017 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5018 /* Use the step_resume_break to step until the end of the prologue,
5019 even if that involves jumps (as it seems to on the vax under
5020 4.2). */
5021 /* If the prologue ends in the middle of a source line, continue to
5022 the end of that source line (if it is still within the function).
5023 Otherwise, just go to end of prologue. */
2afb61aa
PA
5024 if (stop_func_sal.end
5025 && stop_func_sal.pc != ecs->stop_func_start
5026 && stop_func_sal.end < ecs->stop_func_end)
5027 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5028
2dbd5e30
KB
5029 /* Architectures which require breakpoint adjustment might not be able
5030 to place a breakpoint at the computed address. If so, the test
5031 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5032 ecs->stop_func_start to an address at which a breakpoint may be
5033 legitimately placed.
8fb3e588 5034
2dbd5e30
KB
5035 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5036 made, GDB will enter an infinite loop when stepping through
5037 optimized code consisting of VLIW instructions which contain
5038 subinstructions corresponding to different source lines. On
5039 FR-V, it's not permitted to place a breakpoint on any but the
5040 first subinstruction of a VLIW instruction. When a breakpoint is
5041 set, GDB will adjust the breakpoint address to the beginning of
5042 the VLIW instruction. Thus, we need to make the corresponding
5043 adjustment here when computing the stop address. */
8fb3e588 5044
568d6575 5045 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5046 {
5047 ecs->stop_func_start
568d6575 5048 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5049 ecs->stop_func_start);
2dbd5e30
KB
5050 }
5051
c2c6d25f
JM
5052 if (ecs->stop_func_start == stop_pc)
5053 {
5054 /* We are already there: stop now. */
16c381f0 5055 ecs->event_thread->control.stop_step = 1;
33d62d64 5056 print_end_stepping_range_reason ();
c2c6d25f
JM
5057 stop_stepping (ecs);
5058 return;
5059 }
5060 else
5061 {
5062 /* Put the step-breakpoint there and go until there. */
fe39c653 5063 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5064 sr_sal.pc = ecs->stop_func_start;
5065 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5066 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5067
c2c6d25f 5068 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5069 some machines the prologue is where the new fp value is
5070 established. */
a6d9a66e 5071 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5072
5073 /* And make sure stepping stops right away then. */
16c381f0
JK
5074 ecs->event_thread->control.step_range_end
5075 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5076 }
5077 keep_going (ecs);
5078}
d4f3574e 5079
b2175913
MS
5080/* Inferior has stepped backward into a subroutine call with source
5081 code that we should not step over. Do step to the beginning of the
5082 last line of code in it. */
5083
5084static void
568d6575
UW
5085handle_step_into_function_backward (struct gdbarch *gdbarch,
5086 struct execution_control_state *ecs)
b2175913
MS
5087{
5088 struct symtab *s;
167e4384 5089 struct symtab_and_line stop_func_sal;
b2175913
MS
5090
5091 s = find_pc_symtab (stop_pc);
5092 if (s && s->language != language_asm)
568d6575 5093 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5094 ecs->stop_func_start);
5095
5096 stop_func_sal = find_pc_line (stop_pc, 0);
5097
5098 /* OK, we're just going to keep stepping here. */
5099 if (stop_func_sal.pc == stop_pc)
5100 {
5101 /* We're there already. Just stop stepping now. */
16c381f0 5102 ecs->event_thread->control.stop_step = 1;
33d62d64 5103 print_end_stepping_range_reason ();
b2175913
MS
5104 stop_stepping (ecs);
5105 }
5106 else
5107 {
5108 /* Else just reset the step range and keep going.
5109 No step-resume breakpoint, they don't work for
5110 epilogues, which can have multiple entry paths. */
16c381f0
JK
5111 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5112 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5113 keep_going (ecs);
5114 }
5115 return;
5116}
5117
d3169d93 5118/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5119 This is used to both functions and to skip over code. */
5120
5121static void
a6d9a66e
UW
5122insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5123 struct symtab_and_line sr_sal,
44cbf7b5
AC
5124 struct frame_id sr_id)
5125{
611c83ae
PA
5126 /* There should never be more than one step-resume or longjmp-resume
5127 breakpoint per thread, so we should never be setting a new
44cbf7b5 5128 step_resume_breakpoint when one is already active. */
8358c15c 5129 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
d3169d93
DJ
5130
5131 if (debug_infrun)
5132 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5133 "infrun: inserting step-resume breakpoint at %s\n",
5134 paddress (gdbarch, sr_sal.pc));
d3169d93 5135
8358c15c 5136 inferior_thread ()->control.step_resume_breakpoint
a6d9a66e 5137 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 5138}
7ce450bd 5139
d3169d93 5140/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 5141 to skip a potential signal handler.
7ce450bd 5142
14e60db5
DJ
5143 This is called with the interrupted function's frame. The signal
5144 handler, when it returns, will resume the interrupted function at
5145 RETURN_FRAME.pc. */
d303a6c7
AC
5146
5147static void
44cbf7b5 5148insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5149{
5150 struct symtab_and_line sr_sal;
a6d9a66e 5151 struct gdbarch *gdbarch;
d303a6c7 5152
f4c1edd8 5153 gdb_assert (return_frame != NULL);
d303a6c7
AC
5154 init_sal (&sr_sal); /* initialize to zeros */
5155
a6d9a66e 5156 gdbarch = get_frame_arch (return_frame);
568d6575 5157 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5158 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5159 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5160
a6d9a66e
UW
5161 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5162 get_stack_frame_id (return_frame));
d303a6c7
AC
5163}
5164
14e60db5
DJ
5165/* Similar to insert_step_resume_breakpoint_at_frame, except
5166 but a breakpoint at the previous frame's PC. This is used to
5167 skip a function after stepping into it (for "next" or if the called
5168 function has no debugging information).
5169
5170 The current function has almost always been reached by single
5171 stepping a call or return instruction. NEXT_FRAME belongs to the
5172 current function, and the breakpoint will be set at the caller's
5173 resume address.
5174
5175 This is a separate function rather than reusing
5176 insert_step_resume_breakpoint_at_frame in order to avoid
5177 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5178 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5179
5180static void
5181insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5182{
5183 struct symtab_and_line sr_sal;
a6d9a66e 5184 struct gdbarch *gdbarch;
14e60db5
DJ
5185
5186 /* We shouldn't have gotten here if we don't know where the call site
5187 is. */
c7ce8faa 5188 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5189
5190 init_sal (&sr_sal); /* initialize to zeros */
5191
a6d9a66e 5192 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5193 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5194 frame_unwind_caller_pc (next_frame));
14e60db5 5195 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5196 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5197
a6d9a66e 5198 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5199 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5200}
5201
611c83ae
PA
5202/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5203 new breakpoint at the target of a jmp_buf. The handling of
5204 longjmp-resume uses the same mechanisms used for handling
5205 "step-resume" breakpoints. */
5206
5207static void
a6d9a66e 5208insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5209{
5210 /* There should never be more than one step-resume or longjmp-resume
5211 breakpoint per thread, so we should never be setting a new
5212 longjmp_resume_breakpoint when one is already active. */
8358c15c 5213 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5214
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5217 "infrun: inserting longjmp-resume breakpoint at %s\n",
5218 paddress (gdbarch, pc));
611c83ae 5219
8358c15c 5220 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5221 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5222}
5223
186c406b
TT
5224/* Insert an exception resume breakpoint. TP is the thread throwing
5225 the exception. The block B is the block of the unwinder debug hook
5226 function. FRAME is the frame corresponding to the call to this
5227 function. SYM is the symbol of the function argument holding the
5228 target PC of the exception. */
5229
5230static void
5231insert_exception_resume_breakpoint (struct thread_info *tp,
5232 struct block *b,
5233 struct frame_info *frame,
5234 struct symbol *sym)
5235{
5236 struct gdb_exception e;
5237
5238 /* We want to ignore errors here. */
5239 TRY_CATCH (e, RETURN_MASK_ERROR)
5240 {
5241 struct symbol *vsym;
5242 struct value *value;
5243 CORE_ADDR handler;
5244 struct breakpoint *bp;
5245
5246 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5247 value = read_var_value (vsym, frame);
5248 /* If the value was optimized out, revert to the old behavior. */
5249 if (! value_optimized_out (value))
5250 {
5251 handler = value_as_address (value);
5252
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "infrun: exception resume at %lx\n",
5256 (unsigned long) handler);
5257
5258 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5259 handler, bp_exception_resume);
5260 bp->thread = tp->num;
5261 inferior_thread ()->control.exception_resume_breakpoint = bp;
5262 }
5263 }
5264}
5265
5266/* This is called when an exception has been intercepted. Check to
5267 see whether the exception's destination is of interest, and if so,
5268 set an exception resume breakpoint there. */
5269
5270static void
5271check_exception_resume (struct execution_control_state *ecs,
5272 struct frame_info *frame, struct symbol *func)
5273{
5274 struct gdb_exception e;
5275
5276 TRY_CATCH (e, RETURN_MASK_ERROR)
5277 {
5278 struct block *b;
5279 struct dict_iterator iter;
5280 struct symbol *sym;
5281 int argno = 0;
5282
5283 /* The exception breakpoint is a thread-specific breakpoint on
5284 the unwinder's debug hook, declared as:
5285
5286 void _Unwind_DebugHook (void *cfa, void *handler);
5287
5288 The CFA argument indicates the frame to which control is
5289 about to be transferred. HANDLER is the destination PC.
5290
5291 We ignore the CFA and set a temporary breakpoint at HANDLER.
5292 This is not extremely efficient but it avoids issues in gdb
5293 with computing the DWARF CFA, and it also works even in weird
5294 cases such as throwing an exception from inside a signal
5295 handler. */
5296
5297 b = SYMBOL_BLOCK_VALUE (func);
5298 ALL_BLOCK_SYMBOLS (b, iter, sym)
5299 {
5300 if (!SYMBOL_IS_ARGUMENT (sym))
5301 continue;
5302
5303 if (argno == 0)
5304 ++argno;
5305 else
5306 {
5307 insert_exception_resume_breakpoint (ecs->event_thread,
5308 b, frame, sym);
5309 break;
5310 }
5311 }
5312 }
5313}
5314
104c1213
JM
5315static void
5316stop_stepping (struct execution_control_state *ecs)
5317{
527159b7 5318 if (debug_infrun)
8a9de0e4 5319 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5320
cd0fc7c3
SS
5321 /* Let callers know we don't want to wait for the inferior anymore. */
5322 ecs->wait_some_more = 0;
5323}
5324
d4f3574e
SS
5325/* This function handles various cases where we need to continue
5326 waiting for the inferior. */
1777feb0 5327/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5328
5329static void
5330keep_going (struct execution_control_state *ecs)
5331{
c4dbc9af
PA
5332 /* Make sure normal_stop is called if we get a QUIT handled before
5333 reaching resume. */
5334 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5335
d4f3574e 5336 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5337 ecs->event_thread->prev_pc
5338 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5339
d4f3574e
SS
5340 /* If we did not do break;, it means we should keep running the
5341 inferior and not return to debugger. */
5342
16c381f0
JK
5343 if (ecs->event_thread->control.trap_expected
5344 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5345 {
5346 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5347 the inferior, else we'd not get here) and we haven't yet
5348 gotten our trap. Simply continue. */
c4dbc9af
PA
5349
5350 discard_cleanups (old_cleanups);
2020b7ab 5351 resume (currently_stepping (ecs->event_thread),
16c381f0 5352 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5353 }
5354 else
5355 {
5356 /* Either the trap was not expected, but we are continuing
488f131b
JB
5357 anyway (the user asked that this signal be passed to the
5358 child)
5359 -- or --
5360 The signal was SIGTRAP, e.g. it was our signal, but we
5361 decided we should resume from it.
d4f3574e 5362
c36b740a 5363 We're going to run this baby now!
d4f3574e 5364
c36b740a
VP
5365 Note that insert_breakpoints won't try to re-insert
5366 already inserted breakpoints. Therefore, we don't
5367 care if breakpoints were already inserted, or not. */
5368
4e1c45ea 5369 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5370 {
9f5a595d 5371 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5372
9f5a595d 5373 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5374 /* Since we can't do a displaced step, we have to remove
5375 the breakpoint while we step it. To keep things
5376 simple, we remove them all. */
5377 remove_breakpoints ();
45e8c884
VP
5378 }
5379 else
d4f3574e 5380 {
e236ba44 5381 struct gdb_exception e;
abbb1732 5382
569631c6
UW
5383 /* Stop stepping when inserting breakpoints
5384 has failed. */
e236ba44
VP
5385 TRY_CATCH (e, RETURN_MASK_ERROR)
5386 {
5387 insert_breakpoints ();
5388 }
5389 if (e.reason < 0)
d4f3574e 5390 {
97bd5475 5391 exception_print (gdb_stderr, e);
d4f3574e
SS
5392 stop_stepping (ecs);
5393 return;
5394 }
d4f3574e
SS
5395 }
5396
16c381f0
JK
5397 ecs->event_thread->control.trap_expected
5398 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5399
5400 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5401 specifies that such a signal should be delivered to the
5402 target program).
5403
5404 Typically, this would occure when a user is debugging a
5405 target monitor on a simulator: the target monitor sets a
5406 breakpoint; the simulator encounters this break-point and
5407 halts the simulation handing control to GDB; GDB, noteing
5408 that the break-point isn't valid, returns control back to the
5409 simulator; the simulator then delivers the hardware
1777feb0 5410 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5411
16c381f0
JK
5412 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5413 && !signal_program[ecs->event_thread->suspend.stop_signal])
5414 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5415
c4dbc9af 5416 discard_cleanups (old_cleanups);
2020b7ab 5417 resume (currently_stepping (ecs->event_thread),
16c381f0 5418 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5419 }
5420
488f131b 5421 prepare_to_wait (ecs);
d4f3574e
SS
5422}
5423
104c1213
JM
5424/* This function normally comes after a resume, before
5425 handle_inferior_event exits. It takes care of any last bits of
5426 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5427
104c1213
JM
5428static void
5429prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5430{
527159b7 5431 if (debug_infrun)
8a9de0e4 5432 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5433
104c1213
JM
5434 /* This is the old end of the while loop. Let everybody know we
5435 want to wait for the inferior some more and get called again
5436 soon. */
5437 ecs->wait_some_more = 1;
c906108c 5438}
11cf8741 5439
33d62d64
JK
5440/* Several print_*_reason functions to print why the inferior has stopped.
5441 We always print something when the inferior exits, or receives a signal.
5442 The rest of the cases are dealt with later on in normal_stop and
5443 print_it_typical. Ideally there should be a call to one of these
5444 print_*_reason functions functions from handle_inferior_event each time
5445 stop_stepping is called. */
5446
5447/* Print why the inferior has stopped.
5448 We are done with a step/next/si/ni command, print why the inferior has
5449 stopped. For now print nothing. Print a message only if not in the middle
5450 of doing a "step n" operation for n > 1. */
5451
5452static void
5453print_end_stepping_range_reason (void)
5454{
16c381f0
JK
5455 if ((!inferior_thread ()->step_multi
5456 || !inferior_thread ()->control.stop_step)
33d62d64
JK
5457 && ui_out_is_mi_like_p (uiout))
5458 ui_out_field_string (uiout, "reason",
5459 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5460}
5461
5462/* The inferior was terminated by a signal, print why it stopped. */
5463
11cf8741 5464static void
33d62d64 5465print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5466{
33d62d64
JK
5467 annotate_signalled ();
5468 if (ui_out_is_mi_like_p (uiout))
5469 ui_out_field_string
5470 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5471 ui_out_text (uiout, "\nProgram terminated with signal ");
5472 annotate_signal_name ();
5473 ui_out_field_string (uiout, "signal-name",
5474 target_signal_to_name (siggnal));
5475 annotate_signal_name_end ();
5476 ui_out_text (uiout, ", ");
5477 annotate_signal_string ();
5478 ui_out_field_string (uiout, "signal-meaning",
5479 target_signal_to_string (siggnal));
5480 annotate_signal_string_end ();
5481 ui_out_text (uiout, ".\n");
5482 ui_out_text (uiout, "The program no longer exists.\n");
5483}
5484
5485/* The inferior program is finished, print why it stopped. */
5486
5487static void
5488print_exited_reason (int exitstatus)
5489{
fda326dd
TT
5490 struct inferior *inf = current_inferior ();
5491 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5492
33d62d64
JK
5493 annotate_exited (exitstatus);
5494 if (exitstatus)
5495 {
5496 if (ui_out_is_mi_like_p (uiout))
5497 ui_out_field_string (uiout, "reason",
5498 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5499 ui_out_text (uiout, "[Inferior ");
5500 ui_out_text (uiout, plongest (inf->num));
5501 ui_out_text (uiout, " (");
5502 ui_out_text (uiout, pidstr);
5503 ui_out_text (uiout, ") exited with code ");
33d62d64 5504 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5505 ui_out_text (uiout, "]\n");
33d62d64
JK
5506 }
5507 else
11cf8741 5508 {
9dc5e2a9 5509 if (ui_out_is_mi_like_p (uiout))
034dad6f 5510 ui_out_field_string
33d62d64 5511 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5512 ui_out_text (uiout, "[Inferior ");
5513 ui_out_text (uiout, plongest (inf->num));
5514 ui_out_text (uiout, " (");
5515 ui_out_text (uiout, pidstr);
5516 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5517 }
5518 /* Support the --return-child-result option. */
5519 return_child_result_value = exitstatus;
5520}
5521
5522/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5523 tells us to print about it. */
33d62d64
JK
5524
5525static void
5526print_signal_received_reason (enum target_signal siggnal)
5527{
5528 annotate_signal ();
5529
5530 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5531 {
5532 struct thread_info *t = inferior_thread ();
5533
5534 ui_out_text (uiout, "\n[");
5535 ui_out_field_string (uiout, "thread-name",
5536 target_pid_to_str (t->ptid));
5537 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5538 ui_out_text (uiout, " stopped");
5539 }
5540 else
5541 {
5542 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5543 annotate_signal_name ();
33d62d64
JK
5544 if (ui_out_is_mi_like_p (uiout))
5545 ui_out_field_string
5546 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5547 ui_out_field_string (uiout, "signal-name",
33d62d64 5548 target_signal_to_name (siggnal));
8b93c638
JM
5549 annotate_signal_name_end ();
5550 ui_out_text (uiout, ", ");
5551 annotate_signal_string ();
488f131b 5552 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5553 target_signal_to_string (siggnal));
8b93c638 5554 annotate_signal_string_end ();
33d62d64
JK
5555 }
5556 ui_out_text (uiout, ".\n");
5557}
252fbfc8 5558
33d62d64
JK
5559/* Reverse execution: target ran out of history info, print why the inferior
5560 has stopped. */
252fbfc8 5561
33d62d64
JK
5562static void
5563print_no_history_reason (void)
5564{
5565 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5566}
43ff13b4 5567
c906108c
SS
5568/* Here to return control to GDB when the inferior stops for real.
5569 Print appropriate messages, remove breakpoints, give terminal our modes.
5570
5571 STOP_PRINT_FRAME nonzero means print the executing frame
5572 (pc, function, args, file, line number and line text).
5573 BREAKPOINTS_FAILED nonzero means stop was due to error
5574 attempting to insert breakpoints. */
5575
5576void
96baa820 5577normal_stop (void)
c906108c 5578{
73b65bb0
DJ
5579 struct target_waitstatus last;
5580 ptid_t last_ptid;
29f49a6a 5581 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5582
5583 get_last_target_status (&last_ptid, &last);
5584
29f49a6a
PA
5585 /* If an exception is thrown from this point on, make sure to
5586 propagate GDB's knowledge of the executing state to the
5587 frontend/user running state. A QUIT is an easy exception to see
5588 here, so do this before any filtered output. */
c35b1492
PA
5589 if (!non_stop)
5590 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5591 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5592 && last.kind != TARGET_WAITKIND_EXITED)
5593 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5594
4f8d22e3
PA
5595 /* In non-stop mode, we don't want GDB to switch threads behind the
5596 user's back, to avoid races where the user is typing a command to
5597 apply to thread x, but GDB switches to thread y before the user
5598 finishes entering the command. */
5599
c906108c
SS
5600 /* As with the notification of thread events, we want to delay
5601 notifying the user that we've switched thread context until
5602 the inferior actually stops.
5603
73b65bb0
DJ
5604 There's no point in saying anything if the inferior has exited.
5605 Note that SIGNALLED here means "exited with a signal", not
5606 "received a signal". */
4f8d22e3
PA
5607 if (!non_stop
5608 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5609 && target_has_execution
5610 && last.kind != TARGET_WAITKIND_SIGNALLED
5611 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5612 {
5613 target_terminal_ours_for_output ();
a3f17187 5614 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5615 target_pid_to_str (inferior_ptid));
b8fa951a 5616 annotate_thread_changed ();
39f77062 5617 previous_inferior_ptid = inferior_ptid;
c906108c 5618 }
c906108c 5619
74960c60 5620 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5621 {
5622 if (remove_breakpoints ())
5623 {
5624 target_terminal_ours_for_output ();
3e43a32a
MS
5625 printf_filtered (_("Cannot remove breakpoints because "
5626 "program is no longer writable.\nFurther "
5627 "execution is probably impossible.\n"));
c906108c
SS
5628 }
5629 }
c906108c 5630
c906108c
SS
5631 /* If an auto-display called a function and that got a signal,
5632 delete that auto-display to avoid an infinite recursion. */
5633
5634 if (stopped_by_random_signal)
5635 disable_current_display ();
5636
5637 /* Don't print a message if in the middle of doing a "step n"
5638 operation for n > 1 */
af679fd0
PA
5639 if (target_has_execution
5640 && last.kind != TARGET_WAITKIND_SIGNALLED
5641 && last.kind != TARGET_WAITKIND_EXITED
5642 && inferior_thread ()->step_multi
16c381f0 5643 && inferior_thread ()->control.stop_step)
c906108c
SS
5644 goto done;
5645
5646 target_terminal_ours ();
5647
7abfe014
DJ
5648 /* Set the current source location. This will also happen if we
5649 display the frame below, but the current SAL will be incorrect
5650 during a user hook-stop function. */
d729566a 5651 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5652 set_current_sal_from_frame (get_current_frame (), 1);
5653
dd7e2d2b
PA
5654 /* Let the user/frontend see the threads as stopped. */
5655 do_cleanups (old_chain);
5656
5657 /* Look up the hook_stop and run it (CLI internally handles problem
5658 of stop_command's pre-hook not existing). */
5659 if (stop_command)
5660 catch_errors (hook_stop_stub, stop_command,
5661 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5662
d729566a 5663 if (!has_stack_frames ())
d51fd4c8 5664 goto done;
c906108c 5665
32400beb
PA
5666 if (last.kind == TARGET_WAITKIND_SIGNALLED
5667 || last.kind == TARGET_WAITKIND_EXITED)
5668 goto done;
5669
c906108c
SS
5670 /* Select innermost stack frame - i.e., current frame is frame 0,
5671 and current location is based on that.
5672 Don't do this on return from a stack dummy routine,
1777feb0 5673 or if the program has exited. */
c906108c
SS
5674
5675 if (!stop_stack_dummy)
5676 {
0f7d239c 5677 select_frame (get_current_frame ());
c906108c
SS
5678
5679 /* Print current location without a level number, if
c5aa993b
JM
5680 we have changed functions or hit a breakpoint.
5681 Print source line if we have one.
5682 bpstat_print() contains the logic deciding in detail
1777feb0 5683 what to print, based on the event(s) that just occurred. */
c906108c 5684
d01a8610
AS
5685 /* If --batch-silent is enabled then there's no need to print the current
5686 source location, and to try risks causing an error message about
5687 missing source files. */
5688 if (stop_print_frame && !batch_silent)
c906108c
SS
5689 {
5690 int bpstat_ret;
5691 int source_flag;
917317f4 5692 int do_frame_printing = 1;
347bddb7 5693 struct thread_info *tp = inferior_thread ();
c906108c 5694
16c381f0 5695 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5696 switch (bpstat_ret)
5697 {
5698 case PRINT_UNKNOWN:
b0f4b84b
DJ
5699 /* If we had hit a shared library event breakpoint,
5700 bpstat_print would print out this message. If we hit
5701 an OS-level shared library event, do the same
5702 thing. */
5703 if (last.kind == TARGET_WAITKIND_LOADED)
5704 {
5705 printf_filtered (_("Stopped due to shared library event\n"));
5706 source_flag = SRC_LINE; /* something bogus */
5707 do_frame_printing = 0;
5708 break;
5709 }
5710
aa0cd9c1 5711 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5712 (or should) carry around the function and does (or
5713 should) use that when doing a frame comparison. */
16c381f0
JK
5714 if (tp->control.stop_step
5715 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5716 get_frame_id (get_current_frame ()))
917317f4 5717 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5718 source_flag = SRC_LINE; /* Finished step, just
5719 print source line. */
917317f4 5720 else
1777feb0
MS
5721 source_flag = SRC_AND_LOC; /* Print location and
5722 source line. */
917317f4
JM
5723 break;
5724 case PRINT_SRC_AND_LOC:
1777feb0
MS
5725 source_flag = SRC_AND_LOC; /* Print location and
5726 source line. */
917317f4
JM
5727 break;
5728 case PRINT_SRC_ONLY:
c5394b80 5729 source_flag = SRC_LINE;
917317f4
JM
5730 break;
5731 case PRINT_NOTHING:
488f131b 5732 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5733 do_frame_printing = 0;
5734 break;
5735 default:
e2e0b3e5 5736 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5737 }
c906108c
SS
5738
5739 /* The behavior of this routine with respect to the source
5740 flag is:
c5394b80
JM
5741 SRC_LINE: Print only source line
5742 LOCATION: Print only location
1777feb0 5743 SRC_AND_LOC: Print location and source line. */
917317f4 5744 if (do_frame_printing)
b04f3ab4 5745 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5746
5747 /* Display the auto-display expressions. */
5748 do_displays ();
5749 }
5750 }
5751
5752 /* Save the function value return registers, if we care.
5753 We might be about to restore their previous contents. */
16c381f0 5754 if (inferior_thread ()->control.proceed_to_finish)
d5c31457
UW
5755 {
5756 /* This should not be necessary. */
5757 if (stop_registers)
5758 regcache_xfree (stop_registers);
5759
5760 /* NB: The copy goes through to the target picking up the value of
5761 all the registers. */
5762 stop_registers = regcache_dup (get_current_regcache ());
5763 }
c906108c 5764
aa7d318d 5765 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5766 {
b89667eb
DE
5767 /* Pop the empty frame that contains the stack dummy.
5768 This also restores inferior state prior to the call
16c381f0 5769 (struct infcall_suspend_state). */
b89667eb 5770 struct frame_info *frame = get_current_frame ();
abbb1732 5771
b89667eb
DE
5772 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5773 frame_pop (frame);
3e43a32a
MS
5774 /* frame_pop() calls reinit_frame_cache as the last thing it
5775 does which means there's currently no selected frame. We
5776 don't need to re-establish a selected frame if the dummy call
5777 returns normally, that will be done by
5778 restore_infcall_control_state. However, we do have to handle
5779 the case where the dummy call is returning after being
5780 stopped (e.g. the dummy call previously hit a breakpoint).
5781 We can't know which case we have so just always re-establish
5782 a selected frame here. */
0f7d239c 5783 select_frame (get_current_frame ());
c906108c
SS
5784 }
5785
c906108c
SS
5786done:
5787 annotate_stopped ();
41d2bdb4
PA
5788
5789 /* Suppress the stop observer if we're in the middle of:
5790
5791 - a step n (n > 1), as there still more steps to be done.
5792
5793 - a "finish" command, as the observer will be called in
5794 finish_command_continuation, so it can include the inferior
5795 function's return value.
5796
5797 - calling an inferior function, as we pretend we inferior didn't
5798 run at all. The return value of the call is handled by the
5799 expression evaluator, through call_function_by_hand. */
5800
5801 if (!target_has_execution
5802 || last.kind == TARGET_WAITKIND_SIGNALLED
5803 || last.kind == TARGET_WAITKIND_EXITED
5804 || (!inferior_thread ()->step_multi
16c381f0
JK
5805 && !(inferior_thread ()->control.stop_bpstat
5806 && inferior_thread ()->control.proceed_to_finish)
5807 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5808 {
5809 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5810 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5811 stop_print_frame);
347bddb7 5812 else
1d33d6ba 5813 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5814 }
347bddb7 5815
48844aa6
PA
5816 if (target_has_execution)
5817 {
5818 if (last.kind != TARGET_WAITKIND_SIGNALLED
5819 && last.kind != TARGET_WAITKIND_EXITED)
5820 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5821 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5822 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5823 }
6c95b8df
PA
5824
5825 /* Try to get rid of automatically added inferiors that are no
5826 longer needed. Keeping those around slows down things linearly.
5827 Note that this never removes the current inferior. */
5828 prune_inferiors ();
c906108c
SS
5829}
5830
5831static int
96baa820 5832hook_stop_stub (void *cmd)
c906108c 5833{
5913bcb0 5834 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5835 return (0);
5836}
5837\f
c5aa993b 5838int
96baa820 5839signal_stop_state (int signo)
c906108c 5840{
d6b48e9c 5841 return signal_stop[signo];
c906108c
SS
5842}
5843
c5aa993b 5844int
96baa820 5845signal_print_state (int signo)
c906108c
SS
5846{
5847 return signal_print[signo];
5848}
5849
c5aa993b 5850int
96baa820 5851signal_pass_state (int signo)
c906108c
SS
5852{
5853 return signal_program[signo];
5854}
5855
488f131b 5856int
7bda5e4a 5857signal_stop_update (int signo, int state)
d4f3574e
SS
5858{
5859 int ret = signal_stop[signo];
abbb1732 5860
d4f3574e
SS
5861 signal_stop[signo] = state;
5862 return ret;
5863}
5864
488f131b 5865int
7bda5e4a 5866signal_print_update (int signo, int state)
d4f3574e
SS
5867{
5868 int ret = signal_print[signo];
abbb1732 5869
d4f3574e
SS
5870 signal_print[signo] = state;
5871 return ret;
5872}
5873
488f131b 5874int
7bda5e4a 5875signal_pass_update (int signo, int state)
d4f3574e
SS
5876{
5877 int ret = signal_program[signo];
abbb1732 5878
d4f3574e
SS
5879 signal_program[signo] = state;
5880 return ret;
5881}
5882
c906108c 5883static void
96baa820 5884sig_print_header (void)
c906108c 5885{
3e43a32a
MS
5886 printf_filtered (_("Signal Stop\tPrint\tPass "
5887 "to program\tDescription\n"));
c906108c
SS
5888}
5889
5890static void
96baa820 5891sig_print_info (enum target_signal oursig)
c906108c 5892{
54363045 5893 const char *name = target_signal_to_name (oursig);
c906108c 5894 int name_padding = 13 - strlen (name);
96baa820 5895
c906108c
SS
5896 if (name_padding <= 0)
5897 name_padding = 0;
5898
5899 printf_filtered ("%s", name);
488f131b 5900 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5901 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5902 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5903 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5904 printf_filtered ("%s\n", target_signal_to_string (oursig));
5905}
5906
5907/* Specify how various signals in the inferior should be handled. */
5908
5909static void
96baa820 5910handle_command (char *args, int from_tty)
c906108c
SS
5911{
5912 char **argv;
5913 int digits, wordlen;
5914 int sigfirst, signum, siglast;
5915 enum target_signal oursig;
5916 int allsigs;
5917 int nsigs;
5918 unsigned char *sigs;
5919 struct cleanup *old_chain;
5920
5921 if (args == NULL)
5922 {
e2e0b3e5 5923 error_no_arg (_("signal to handle"));
c906108c
SS
5924 }
5925
1777feb0 5926 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
5927
5928 nsigs = (int) TARGET_SIGNAL_LAST;
5929 sigs = (unsigned char *) alloca (nsigs);
5930 memset (sigs, 0, nsigs);
5931
1777feb0 5932 /* Break the command line up into args. */
c906108c 5933
d1a41061 5934 argv = gdb_buildargv (args);
7a292a7a 5935 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5936
5937 /* Walk through the args, looking for signal oursigs, signal names, and
5938 actions. Signal numbers and signal names may be interspersed with
5939 actions, with the actions being performed for all signals cumulatively
1777feb0 5940 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
5941
5942 while (*argv != NULL)
5943 {
5944 wordlen = strlen (*argv);
5945 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5946 {;
5947 }
5948 allsigs = 0;
5949 sigfirst = siglast = -1;
5950
5951 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5952 {
5953 /* Apply action to all signals except those used by the
1777feb0 5954 debugger. Silently skip those. */
c906108c
SS
5955 allsigs = 1;
5956 sigfirst = 0;
5957 siglast = nsigs - 1;
5958 }
5959 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5960 {
5961 SET_SIGS (nsigs, sigs, signal_stop);
5962 SET_SIGS (nsigs, sigs, signal_print);
5963 }
5964 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5965 {
5966 UNSET_SIGS (nsigs, sigs, signal_program);
5967 }
5968 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5969 {
5970 SET_SIGS (nsigs, sigs, signal_print);
5971 }
5972 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5973 {
5974 SET_SIGS (nsigs, sigs, signal_program);
5975 }
5976 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5977 {
5978 UNSET_SIGS (nsigs, sigs, signal_stop);
5979 }
5980 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5981 {
5982 SET_SIGS (nsigs, sigs, signal_program);
5983 }
5984 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5985 {
5986 UNSET_SIGS (nsigs, sigs, signal_print);
5987 UNSET_SIGS (nsigs, sigs, signal_stop);
5988 }
5989 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5990 {
5991 UNSET_SIGS (nsigs, sigs, signal_program);
5992 }
5993 else if (digits > 0)
5994 {
5995 /* It is numeric. The numeric signal refers to our own
5996 internal signal numbering from target.h, not to host/target
5997 signal number. This is a feature; users really should be
5998 using symbolic names anyway, and the common ones like
5999 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6000
6001 sigfirst = siglast = (int)
6002 target_signal_from_command (atoi (*argv));
6003 if ((*argv)[digits] == '-')
6004 {
6005 siglast = (int)
6006 target_signal_from_command (atoi ((*argv) + digits + 1));
6007 }
6008 if (sigfirst > siglast)
6009 {
1777feb0 6010 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6011 signum = sigfirst;
6012 sigfirst = siglast;
6013 siglast = signum;
6014 }
6015 }
6016 else
6017 {
6018 oursig = target_signal_from_name (*argv);
6019 if (oursig != TARGET_SIGNAL_UNKNOWN)
6020 {
6021 sigfirst = siglast = (int) oursig;
6022 }
6023 else
6024 {
6025 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6026 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6027 }
6028 }
6029
6030 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6031 which signals to apply actions to. */
c906108c
SS
6032
6033 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6034 {
6035 switch ((enum target_signal) signum)
6036 {
6037 case TARGET_SIGNAL_TRAP:
6038 case TARGET_SIGNAL_INT:
6039 if (!allsigs && !sigs[signum])
6040 {
9e2f0ad4 6041 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6042Are you sure you want to change it? "),
6043 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6044 {
6045 sigs[signum] = 1;
6046 }
6047 else
6048 {
a3f17187 6049 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6050 gdb_flush (gdb_stdout);
6051 }
6052 }
6053 break;
6054 case TARGET_SIGNAL_0:
6055 case TARGET_SIGNAL_DEFAULT:
6056 case TARGET_SIGNAL_UNKNOWN:
6057 /* Make sure that "all" doesn't print these. */
6058 break;
6059 default:
6060 sigs[signum] = 1;
6061 break;
6062 }
6063 }
6064
6065 argv++;
6066 }
6067
3a031f65
PA
6068 for (signum = 0; signum < nsigs; signum++)
6069 if (sigs[signum])
6070 {
6071 target_notice_signals (inferior_ptid);
c906108c 6072
3a031f65
PA
6073 if (from_tty)
6074 {
6075 /* Show the results. */
6076 sig_print_header ();
6077 for (; signum < nsigs; signum++)
6078 if (sigs[signum])
6079 sig_print_info (signum);
6080 }
6081
6082 break;
6083 }
c906108c
SS
6084
6085 do_cleanups (old_chain);
6086}
6087
6088static void
96baa820 6089xdb_handle_command (char *args, int from_tty)
c906108c
SS
6090{
6091 char **argv;
6092 struct cleanup *old_chain;
6093
d1a41061
PP
6094 if (args == NULL)
6095 error_no_arg (_("xdb command"));
6096
1777feb0 6097 /* Break the command line up into args. */
c906108c 6098
d1a41061 6099 argv = gdb_buildargv (args);
7a292a7a 6100 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6101 if (argv[1] != (char *) NULL)
6102 {
6103 char *argBuf;
6104 int bufLen;
6105
6106 bufLen = strlen (argv[0]) + 20;
6107 argBuf = (char *) xmalloc (bufLen);
6108 if (argBuf)
6109 {
6110 int validFlag = 1;
6111 enum target_signal oursig;
6112
6113 oursig = target_signal_from_name (argv[0]);
6114 memset (argBuf, 0, bufLen);
6115 if (strcmp (argv[1], "Q") == 0)
6116 sprintf (argBuf, "%s %s", argv[0], "noprint");
6117 else
6118 {
6119 if (strcmp (argv[1], "s") == 0)
6120 {
6121 if (!signal_stop[oursig])
6122 sprintf (argBuf, "%s %s", argv[0], "stop");
6123 else
6124 sprintf (argBuf, "%s %s", argv[0], "nostop");
6125 }
6126 else if (strcmp (argv[1], "i") == 0)
6127 {
6128 if (!signal_program[oursig])
6129 sprintf (argBuf, "%s %s", argv[0], "pass");
6130 else
6131 sprintf (argBuf, "%s %s", argv[0], "nopass");
6132 }
6133 else if (strcmp (argv[1], "r") == 0)
6134 {
6135 if (!signal_print[oursig])
6136 sprintf (argBuf, "%s %s", argv[0], "print");
6137 else
6138 sprintf (argBuf, "%s %s", argv[0], "noprint");
6139 }
6140 else
6141 validFlag = 0;
6142 }
6143 if (validFlag)
6144 handle_command (argBuf, from_tty);
6145 else
a3f17187 6146 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6147 if (argBuf)
b8c9b27d 6148 xfree (argBuf);
c906108c
SS
6149 }
6150 }
6151 do_cleanups (old_chain);
6152}
6153
6154/* Print current contents of the tables set by the handle command.
6155 It is possible we should just be printing signals actually used
6156 by the current target (but for things to work right when switching
6157 targets, all signals should be in the signal tables). */
6158
6159static void
96baa820 6160signals_info (char *signum_exp, int from_tty)
c906108c
SS
6161{
6162 enum target_signal oursig;
abbb1732 6163
c906108c
SS
6164 sig_print_header ();
6165
6166 if (signum_exp)
6167 {
6168 /* First see if this is a symbol name. */
6169 oursig = target_signal_from_name (signum_exp);
6170 if (oursig == TARGET_SIGNAL_UNKNOWN)
6171 {
6172 /* No, try numeric. */
6173 oursig =
bb518678 6174 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6175 }
6176 sig_print_info (oursig);
6177 return;
6178 }
6179
6180 printf_filtered ("\n");
6181 /* These ugly casts brought to you by the native VAX compiler. */
6182 for (oursig = TARGET_SIGNAL_FIRST;
6183 (int) oursig < (int) TARGET_SIGNAL_LAST;
6184 oursig = (enum target_signal) ((int) oursig + 1))
6185 {
6186 QUIT;
6187
6188 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6189 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6190 sig_print_info (oursig);
6191 }
6192
3e43a32a
MS
6193 printf_filtered (_("\nUse the \"handle\" command "
6194 "to change these tables.\n"));
c906108c 6195}
4aa995e1
PA
6196
6197/* The $_siginfo convenience variable is a bit special. We don't know
6198 for sure the type of the value until we actually have a chance to
7a9dd1b2 6199 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6200 also dependent on which thread you have selected.
6201
6202 1. making $_siginfo be an internalvar that creates a new value on
6203 access.
6204
6205 2. making the value of $_siginfo be an lval_computed value. */
6206
6207/* This function implements the lval_computed support for reading a
6208 $_siginfo value. */
6209
6210static void
6211siginfo_value_read (struct value *v)
6212{
6213 LONGEST transferred;
6214
6215 transferred =
6216 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6217 NULL,
6218 value_contents_all_raw (v),
6219 value_offset (v),
6220 TYPE_LENGTH (value_type (v)));
6221
6222 if (transferred != TYPE_LENGTH (value_type (v)))
6223 error (_("Unable to read siginfo"));
6224}
6225
6226/* This function implements the lval_computed support for writing a
6227 $_siginfo value. */
6228
6229static void
6230siginfo_value_write (struct value *v, struct value *fromval)
6231{
6232 LONGEST transferred;
6233
6234 transferred = target_write (&current_target,
6235 TARGET_OBJECT_SIGNAL_INFO,
6236 NULL,
6237 value_contents_all_raw (fromval),
6238 value_offset (v),
6239 TYPE_LENGTH (value_type (fromval)));
6240
6241 if (transferred != TYPE_LENGTH (value_type (fromval)))
6242 error (_("Unable to write siginfo"));
6243}
6244
6245static struct lval_funcs siginfo_value_funcs =
6246 {
6247 siginfo_value_read,
6248 siginfo_value_write
6249 };
6250
6251/* Return a new value with the correct type for the siginfo object of
78267919
UW
6252 the current thread using architecture GDBARCH. Return a void value
6253 if there's no object available. */
4aa995e1 6254
2c0b251b 6255static struct value *
78267919 6256siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6257{
4aa995e1 6258 if (target_has_stack
78267919
UW
6259 && !ptid_equal (inferior_ptid, null_ptid)
6260 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6261 {
78267919 6262 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6263
78267919 6264 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6265 }
6266
78267919 6267 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6268}
6269
c906108c 6270\f
16c381f0
JK
6271/* infcall_suspend_state contains state about the program itself like its
6272 registers and any signal it received when it last stopped.
6273 This state must be restored regardless of how the inferior function call
6274 ends (either successfully, or after it hits a breakpoint or signal)
6275 if the program is to properly continue where it left off. */
6276
6277struct infcall_suspend_state
7a292a7a 6278{
16c381f0
JK
6279 struct thread_suspend_state thread_suspend;
6280 struct inferior_suspend_state inferior_suspend;
6281
6282 /* Other fields: */
7a292a7a 6283 CORE_ADDR stop_pc;
b89667eb 6284 struct regcache *registers;
1736ad11 6285
35515841 6286 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6287 struct gdbarch *siginfo_gdbarch;
6288
6289 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6290 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6291 content would be invalid. */
6292 gdb_byte *siginfo_data;
b89667eb
DE
6293};
6294
16c381f0
JK
6295struct infcall_suspend_state *
6296save_infcall_suspend_state (void)
b89667eb 6297{
16c381f0 6298 struct infcall_suspend_state *inf_state;
b89667eb 6299 struct thread_info *tp = inferior_thread ();
16c381f0 6300 struct inferior *inf = current_inferior ();
1736ad11
JK
6301 struct regcache *regcache = get_current_regcache ();
6302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6303 gdb_byte *siginfo_data = NULL;
6304
6305 if (gdbarch_get_siginfo_type_p (gdbarch))
6306 {
6307 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6308 size_t len = TYPE_LENGTH (type);
6309 struct cleanup *back_to;
6310
6311 siginfo_data = xmalloc (len);
6312 back_to = make_cleanup (xfree, siginfo_data);
6313
6314 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6315 siginfo_data, 0, len) == len)
6316 discard_cleanups (back_to);
6317 else
6318 {
6319 /* Errors ignored. */
6320 do_cleanups (back_to);
6321 siginfo_data = NULL;
6322 }
6323 }
6324
16c381f0 6325 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6326
6327 if (siginfo_data)
6328 {
6329 inf_state->siginfo_gdbarch = gdbarch;
6330 inf_state->siginfo_data = siginfo_data;
6331 }
b89667eb 6332
16c381f0
JK
6333 inf_state->thread_suspend = tp->suspend;
6334 inf_state->inferior_suspend = inf->suspend;
6335
35515841
JK
6336 /* run_inferior_call will not use the signal due to its `proceed' call with
6337 TARGET_SIGNAL_0 anyway. */
16c381f0 6338 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6339
b89667eb
DE
6340 inf_state->stop_pc = stop_pc;
6341
1736ad11 6342 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6343
6344 return inf_state;
6345}
6346
6347/* Restore inferior session state to INF_STATE. */
6348
6349void
16c381f0 6350restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6351{
6352 struct thread_info *tp = inferior_thread ();
16c381f0 6353 struct inferior *inf = current_inferior ();
1736ad11
JK
6354 struct regcache *regcache = get_current_regcache ();
6355 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6356
16c381f0
JK
6357 tp->suspend = inf_state->thread_suspend;
6358 inf->suspend = inf_state->inferior_suspend;
6359
b89667eb
DE
6360 stop_pc = inf_state->stop_pc;
6361
1736ad11
JK
6362 if (inf_state->siginfo_gdbarch == gdbarch)
6363 {
6364 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6365 size_t len = TYPE_LENGTH (type);
6366
6367 /* Errors ignored. */
6368 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6369 inf_state->siginfo_data, 0, len);
6370 }
6371
b89667eb
DE
6372 /* The inferior can be gone if the user types "print exit(0)"
6373 (and perhaps other times). */
6374 if (target_has_execution)
6375 /* NB: The register write goes through to the target. */
1736ad11 6376 regcache_cpy (regcache, inf_state->registers);
803b5f95 6377
16c381f0 6378 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6379}
6380
6381static void
16c381f0 6382do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6383{
16c381f0 6384 restore_infcall_suspend_state (state);
b89667eb
DE
6385}
6386
6387struct cleanup *
16c381f0
JK
6388make_cleanup_restore_infcall_suspend_state
6389 (struct infcall_suspend_state *inf_state)
b89667eb 6390{
16c381f0 6391 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6392}
6393
6394void
16c381f0 6395discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6396{
6397 regcache_xfree (inf_state->registers);
803b5f95 6398 xfree (inf_state->siginfo_data);
b89667eb
DE
6399 xfree (inf_state);
6400}
6401
6402struct regcache *
16c381f0 6403get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6404{
6405 return inf_state->registers;
6406}
6407
16c381f0
JK
6408/* infcall_control_state contains state regarding gdb's control of the
6409 inferior itself like stepping control. It also contains session state like
6410 the user's currently selected frame. */
b89667eb 6411
16c381f0 6412struct infcall_control_state
b89667eb 6413{
16c381f0
JK
6414 struct thread_control_state thread_control;
6415 struct inferior_control_state inferior_control;
d82142e2
JK
6416
6417 /* Other fields: */
6418 enum stop_stack_kind stop_stack_dummy;
6419 int stopped_by_random_signal;
7a292a7a 6420 int stop_after_trap;
7a292a7a 6421
b89667eb 6422 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6423 struct frame_id selected_frame_id;
7a292a7a
SS
6424};
6425
c906108c 6426/* Save all of the information associated with the inferior<==>gdb
b89667eb 6427 connection. */
c906108c 6428
16c381f0
JK
6429struct infcall_control_state *
6430save_infcall_control_state (void)
c906108c 6431{
16c381f0 6432 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6433 struct thread_info *tp = inferior_thread ();
d6b48e9c 6434 struct inferior *inf = current_inferior ();
7a292a7a 6435
16c381f0
JK
6436 inf_status->thread_control = tp->control;
6437 inf_status->inferior_control = inf->control;
d82142e2 6438
8358c15c 6439 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6440 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6441
16c381f0
JK
6442 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6443 chain. If caller's caller is walking the chain, they'll be happier if we
6444 hand them back the original chain when restore_infcall_control_state is
6445 called. */
6446 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6447
6448 /* Other fields: */
6449 inf_status->stop_stack_dummy = stop_stack_dummy;
6450 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6451 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6452
206415a3 6453 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6454
7a292a7a 6455 return inf_status;
c906108c
SS
6456}
6457
c906108c 6458static int
96baa820 6459restore_selected_frame (void *args)
c906108c 6460{
488f131b 6461 struct frame_id *fid = (struct frame_id *) args;
c906108c 6462 struct frame_info *frame;
c906108c 6463
101dcfbe 6464 frame = frame_find_by_id (*fid);
c906108c 6465
aa0cd9c1
AC
6466 /* If inf_status->selected_frame_id is NULL, there was no previously
6467 selected frame. */
101dcfbe 6468 if (frame == NULL)
c906108c 6469 {
8a3fe4f8 6470 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6471 return 0;
6472 }
6473
0f7d239c 6474 select_frame (frame);
c906108c
SS
6475
6476 return (1);
6477}
6478
b89667eb
DE
6479/* Restore inferior session state to INF_STATUS. */
6480
c906108c 6481void
16c381f0 6482restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6483{
4e1c45ea 6484 struct thread_info *tp = inferior_thread ();
d6b48e9c 6485 struct inferior *inf = current_inferior ();
4e1c45ea 6486
8358c15c
JK
6487 if (tp->control.step_resume_breakpoint)
6488 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6489
5b79abe7
TT
6490 if (tp->control.exception_resume_breakpoint)
6491 tp->control.exception_resume_breakpoint->disposition
6492 = disp_del_at_next_stop;
6493
d82142e2 6494 /* Handle the bpstat_copy of the chain. */
16c381f0 6495 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6496
16c381f0
JK
6497 tp->control = inf_status->thread_control;
6498 inf->control = inf_status->inferior_control;
d82142e2
JK
6499
6500 /* Other fields: */
6501 stop_stack_dummy = inf_status->stop_stack_dummy;
6502 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6503 stop_after_trap = inf_status->stop_after_trap;
c906108c 6504
b89667eb 6505 if (target_has_stack)
c906108c 6506 {
c906108c 6507 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6508 walking the stack might encounter a garbage pointer and
6509 error() trying to dereference it. */
488f131b
JB
6510 if (catch_errors
6511 (restore_selected_frame, &inf_status->selected_frame_id,
6512 "Unable to restore previously selected frame:\n",
6513 RETURN_MASK_ERROR) == 0)
c906108c
SS
6514 /* Error in restoring the selected frame. Select the innermost
6515 frame. */
0f7d239c 6516 select_frame (get_current_frame ());
c906108c 6517 }
c906108c 6518
72cec141 6519 xfree (inf_status);
7a292a7a 6520}
c906108c 6521
74b7792f 6522static void
16c381f0 6523do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6524{
16c381f0 6525 restore_infcall_control_state (sts);
74b7792f
AC
6526}
6527
6528struct cleanup *
16c381f0
JK
6529make_cleanup_restore_infcall_control_state
6530 (struct infcall_control_state *inf_status)
74b7792f 6531{
16c381f0 6532 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6533}
6534
c906108c 6535void
16c381f0 6536discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6537{
8358c15c
JK
6538 if (inf_status->thread_control.step_resume_breakpoint)
6539 inf_status->thread_control.step_resume_breakpoint->disposition
6540 = disp_del_at_next_stop;
6541
5b79abe7
TT
6542 if (inf_status->thread_control.exception_resume_breakpoint)
6543 inf_status->thread_control.exception_resume_breakpoint->disposition
6544 = disp_del_at_next_stop;
6545
1777feb0 6546 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6547 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6548
72cec141 6549 xfree (inf_status);
7a292a7a 6550}
b89667eb 6551\f
47932f85 6552int
3a3e9ee3 6553inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6554{
6555 struct target_waitstatus last;
6556 ptid_t last_ptid;
6557
6558 get_last_target_status (&last_ptid, &last);
6559
6560 if (last.kind != TARGET_WAITKIND_FORKED)
6561 return 0;
6562
3a3e9ee3 6563 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6564 return 0;
6565
6566 *child_pid = last.value.related_pid;
6567 return 1;
6568}
6569
6570int
3a3e9ee3 6571inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6572{
6573 struct target_waitstatus last;
6574 ptid_t last_ptid;
6575
6576 get_last_target_status (&last_ptid, &last);
6577
6578 if (last.kind != TARGET_WAITKIND_VFORKED)
6579 return 0;
6580
3a3e9ee3 6581 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6582 return 0;
6583
6584 *child_pid = last.value.related_pid;
6585 return 1;
6586}
6587
6588int
3a3e9ee3 6589inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6590{
6591 struct target_waitstatus last;
6592 ptid_t last_ptid;
6593
6594 get_last_target_status (&last_ptid, &last);
6595
6596 if (last.kind != TARGET_WAITKIND_EXECD)
6597 return 0;
6598
3a3e9ee3 6599 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6600 return 0;
6601
6602 *execd_pathname = xstrdup (last.value.execd_pathname);
6603 return 1;
6604}
6605
a96d9b2e
SDJ
6606int
6607inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6608{
6609 struct target_waitstatus last;
6610 ptid_t last_ptid;
6611
6612 get_last_target_status (&last_ptid, &last);
6613
6614 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6615 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6616 return 0;
6617
6618 if (!ptid_equal (last_ptid, pid))
6619 return 0;
6620
6621 *syscall_number = last.value.syscall_number;
6622 return 1;
6623}
6624
ca6724c1
KB
6625/* Oft used ptids */
6626ptid_t null_ptid;
6627ptid_t minus_one_ptid;
6628
6629/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6630
ca6724c1
KB
6631ptid_t
6632ptid_build (int pid, long lwp, long tid)
6633{
6634 ptid_t ptid;
6635
6636 ptid.pid = pid;
6637 ptid.lwp = lwp;
6638 ptid.tid = tid;
6639 return ptid;
6640}
6641
6642/* Create a ptid from just a pid. */
6643
6644ptid_t
6645pid_to_ptid (int pid)
6646{
6647 return ptid_build (pid, 0, 0);
6648}
6649
6650/* Fetch the pid (process id) component from a ptid. */
6651
6652int
6653ptid_get_pid (ptid_t ptid)
6654{
6655 return ptid.pid;
6656}
6657
6658/* Fetch the lwp (lightweight process) component from a ptid. */
6659
6660long
6661ptid_get_lwp (ptid_t ptid)
6662{
6663 return ptid.lwp;
6664}
6665
6666/* Fetch the tid (thread id) component from a ptid. */
6667
6668long
6669ptid_get_tid (ptid_t ptid)
6670{
6671 return ptid.tid;
6672}
6673
6674/* ptid_equal() is used to test equality of two ptids. */
6675
6676int
6677ptid_equal (ptid_t ptid1, ptid_t ptid2)
6678{
6679 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6680 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6681}
6682
252fbfc8
PA
6683/* Returns true if PTID represents a process. */
6684
6685int
6686ptid_is_pid (ptid_t ptid)
6687{
6688 if (ptid_equal (minus_one_ptid, ptid))
6689 return 0;
6690 if (ptid_equal (null_ptid, ptid))
6691 return 0;
6692
6693 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6694}
6695
0723dbf5
PA
6696int
6697ptid_match (ptid_t ptid, ptid_t filter)
6698{
0723dbf5
PA
6699 if (ptid_equal (filter, minus_one_ptid))
6700 return 1;
6701 if (ptid_is_pid (filter)
6702 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6703 return 1;
6704 else if (ptid_equal (ptid, filter))
6705 return 1;
6706
6707 return 0;
6708}
6709
ca6724c1
KB
6710/* restore_inferior_ptid() will be used by the cleanup machinery
6711 to restore the inferior_ptid value saved in a call to
6712 save_inferior_ptid(). */
ce696e05
KB
6713
6714static void
6715restore_inferior_ptid (void *arg)
6716{
6717 ptid_t *saved_ptid_ptr = arg;
abbb1732 6718
ce696e05
KB
6719 inferior_ptid = *saved_ptid_ptr;
6720 xfree (arg);
6721}
6722
6723/* Save the value of inferior_ptid so that it may be restored by a
6724 later call to do_cleanups(). Returns the struct cleanup pointer
6725 needed for later doing the cleanup. */
6726
6727struct cleanup *
6728save_inferior_ptid (void)
6729{
6730 ptid_t *saved_ptid_ptr;
6731
6732 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6733 *saved_ptid_ptr = inferior_ptid;
6734 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6735}
c5aa993b 6736\f
488f131b 6737
b2175913
MS
6738/* User interface for reverse debugging:
6739 Set exec-direction / show exec-direction commands
6740 (returns error unless target implements to_set_exec_direction method). */
6741
6742enum exec_direction_kind execution_direction = EXEC_FORWARD;
6743static const char exec_forward[] = "forward";
6744static const char exec_reverse[] = "reverse";
6745static const char *exec_direction = exec_forward;
6746static const char *exec_direction_names[] = {
6747 exec_forward,
6748 exec_reverse,
6749 NULL
6750};
6751
6752static void
6753set_exec_direction_func (char *args, int from_tty,
6754 struct cmd_list_element *cmd)
6755{
6756 if (target_can_execute_reverse)
6757 {
6758 if (!strcmp (exec_direction, exec_forward))
6759 execution_direction = EXEC_FORWARD;
6760 else if (!strcmp (exec_direction, exec_reverse))
6761 execution_direction = EXEC_REVERSE;
6762 }
8bbed405
MS
6763 else
6764 {
6765 exec_direction = exec_forward;
6766 error (_("Target does not support this operation."));
6767 }
b2175913
MS
6768}
6769
6770static void
6771show_exec_direction_func (struct ui_file *out, int from_tty,
6772 struct cmd_list_element *cmd, const char *value)
6773{
6774 switch (execution_direction) {
6775 case EXEC_FORWARD:
6776 fprintf_filtered (out, _("Forward.\n"));
6777 break;
6778 case EXEC_REVERSE:
6779 fprintf_filtered (out, _("Reverse.\n"));
6780 break;
6781 case EXEC_ERROR:
6782 default:
3e43a32a
MS
6783 fprintf_filtered (out, _("Forward (target `%s' does not "
6784 "support exec-direction).\n"),
b2175913
MS
6785 target_shortname);
6786 break;
6787 }
6788}
6789
6790/* User interface for non-stop mode. */
6791
ad52ddc6 6792int non_stop = 0;
ad52ddc6
PA
6793
6794static void
6795set_non_stop (char *args, int from_tty,
6796 struct cmd_list_element *c)
6797{
6798 if (target_has_execution)
6799 {
6800 non_stop_1 = non_stop;
6801 error (_("Cannot change this setting while the inferior is running."));
6802 }
6803
6804 non_stop = non_stop_1;
6805}
6806
6807static void
6808show_non_stop (struct ui_file *file, int from_tty,
6809 struct cmd_list_element *c, const char *value)
6810{
6811 fprintf_filtered (file,
6812 _("Controlling the inferior in non-stop mode is %s.\n"),
6813 value);
6814}
6815
d4db2f36
PA
6816static void
6817show_schedule_multiple (struct ui_file *file, int from_tty,
6818 struct cmd_list_element *c, const char *value)
6819{
3e43a32a
MS
6820 fprintf_filtered (file, _("Resuming the execution of threads "
6821 "of all processes is %s.\n"), value);
d4db2f36 6822}
ad52ddc6 6823
c906108c 6824void
96baa820 6825_initialize_infrun (void)
c906108c 6826{
52f0bd74
AC
6827 int i;
6828 int numsigs;
c906108c 6829
1bedd215
AC
6830 add_info ("signals", signals_info, _("\
6831What debugger does when program gets various signals.\n\
6832Specify a signal as argument to print info on that signal only."));
c906108c
SS
6833 add_info_alias ("handle", "signals", 0);
6834
1bedd215
AC
6835 add_com ("handle", class_run, handle_command, _("\
6836Specify how to handle a signal.\n\
c906108c
SS
6837Args are signals and actions to apply to those signals.\n\
6838Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6839from 1-15 are allowed for compatibility with old versions of GDB.\n\
6840Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6841The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6842used by the debugger, typically SIGTRAP and SIGINT.\n\
6843Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6844\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6845Stop means reenter debugger if this signal happens (implies print).\n\
6846Print means print a message if this signal happens.\n\
6847Pass means let program see this signal; otherwise program doesn't know.\n\
6848Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6849Pass and Stop may be combined."));
c906108c
SS
6850 if (xdb_commands)
6851 {
1bedd215
AC
6852 add_com ("lz", class_info, signals_info, _("\
6853What debugger does when program gets various signals.\n\
6854Specify a signal as argument to print info on that signal only."));
6855 add_com ("z", class_run, xdb_handle_command, _("\
6856Specify how to handle a signal.\n\
c906108c
SS
6857Args are signals and actions to apply to those signals.\n\
6858Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6859from 1-15 are allowed for compatibility with old versions of GDB.\n\
6860Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6861The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6862used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6863Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6864\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6865nopass), \"Q\" (noprint)\n\
6866Stop means reenter debugger if this signal happens (implies print).\n\
6867Print means print a message if this signal happens.\n\
6868Pass means let program see this signal; otherwise program doesn't know.\n\
6869Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6870Pass and Stop may be combined."));
c906108c
SS
6871 }
6872
6873 if (!dbx_commands)
1a966eab
AC
6874 stop_command = add_cmd ("stop", class_obscure,
6875 not_just_help_class_command, _("\
6876There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6877This allows you to set a list of commands to be run each time execution\n\
1a966eab 6878of the program stops."), &cmdlist);
c906108c 6879
85c07804
AC
6880 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6881Set inferior debugging."), _("\
6882Show inferior debugging."), _("\
6883When non-zero, inferior specific debugging is enabled."),
6884 NULL,
920d2a44 6885 show_debug_infrun,
85c07804 6886 &setdebuglist, &showdebuglist);
527159b7 6887
3e43a32a
MS
6888 add_setshow_boolean_cmd ("displaced", class_maintenance,
6889 &debug_displaced, _("\
237fc4c9
PA
6890Set displaced stepping debugging."), _("\
6891Show displaced stepping debugging."), _("\
6892When non-zero, displaced stepping specific debugging is enabled."),
6893 NULL,
6894 show_debug_displaced,
6895 &setdebuglist, &showdebuglist);
6896
ad52ddc6
PA
6897 add_setshow_boolean_cmd ("non-stop", no_class,
6898 &non_stop_1, _("\
6899Set whether gdb controls the inferior in non-stop mode."), _("\
6900Show whether gdb controls the inferior in non-stop mode."), _("\
6901When debugging a multi-threaded program and this setting is\n\
6902off (the default, also called all-stop mode), when one thread stops\n\
6903(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6904all other threads in the program while you interact with the thread of\n\
6905interest. When you continue or step a thread, you can allow the other\n\
6906threads to run, or have them remain stopped, but while you inspect any\n\
6907thread's state, all threads stop.\n\
6908\n\
6909In non-stop mode, when one thread stops, other threads can continue\n\
6910to run freely. You'll be able to step each thread independently,\n\
6911leave it stopped or free to run as needed."),
6912 set_non_stop,
6913 show_non_stop,
6914 &setlist,
6915 &showlist);
6916
c906108c 6917 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6918 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6919 signal_print = (unsigned char *)
6920 xmalloc (sizeof (signal_print[0]) * numsigs);
6921 signal_program = (unsigned char *)
6922 xmalloc (sizeof (signal_program[0]) * numsigs);
6923 for (i = 0; i < numsigs; i++)
6924 {
6925 signal_stop[i] = 1;
6926 signal_print[i] = 1;
6927 signal_program[i] = 1;
6928 }
6929
6930 /* Signals caused by debugger's own actions
6931 should not be given to the program afterwards. */
6932 signal_program[TARGET_SIGNAL_TRAP] = 0;
6933 signal_program[TARGET_SIGNAL_INT] = 0;
6934
6935 /* Signals that are not errors should not normally enter the debugger. */
6936 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6937 signal_print[TARGET_SIGNAL_ALRM] = 0;
6938 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6939 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6940 signal_stop[TARGET_SIGNAL_PROF] = 0;
6941 signal_print[TARGET_SIGNAL_PROF] = 0;
6942 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6943 signal_print[TARGET_SIGNAL_CHLD] = 0;
6944 signal_stop[TARGET_SIGNAL_IO] = 0;
6945 signal_print[TARGET_SIGNAL_IO] = 0;
6946 signal_stop[TARGET_SIGNAL_POLL] = 0;
6947 signal_print[TARGET_SIGNAL_POLL] = 0;
6948 signal_stop[TARGET_SIGNAL_URG] = 0;
6949 signal_print[TARGET_SIGNAL_URG] = 0;
6950 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6951 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
6952 signal_stop[TARGET_SIGNAL_PRIO] = 0;
6953 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 6954
cd0fc7c3
SS
6955 /* These signals are used internally by user-level thread
6956 implementations. (See signal(5) on Solaris.) Like the above
6957 signals, a healthy program receives and handles them as part of
6958 its normal operation. */
6959 signal_stop[TARGET_SIGNAL_LWP] = 0;
6960 signal_print[TARGET_SIGNAL_LWP] = 0;
6961 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6962 signal_print[TARGET_SIGNAL_WAITING] = 0;
6963 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6964 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6965
85c07804
AC
6966 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6967 &stop_on_solib_events, _("\
6968Set stopping for shared library events."), _("\
6969Show stopping for shared library events."), _("\
c906108c
SS
6970If nonzero, gdb will give control to the user when the dynamic linker\n\
6971notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6972to the user would be loading/unloading of a new library."),
6973 NULL,
920d2a44 6974 show_stop_on_solib_events,
85c07804 6975 &setlist, &showlist);
c906108c 6976
7ab04401
AC
6977 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6978 follow_fork_mode_kind_names,
6979 &follow_fork_mode_string, _("\
6980Set debugger response to a program call of fork or vfork."), _("\
6981Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6982A fork or vfork creates a new process. follow-fork-mode can be:\n\
6983 parent - the original process is debugged after a fork\n\
6984 child - the new process is debugged after a fork\n\
ea1dd7bc 6985The unfollowed process will continue to run.\n\
7ab04401
AC
6986By default, the debugger will follow the parent process."),
6987 NULL,
920d2a44 6988 show_follow_fork_mode_string,
7ab04401
AC
6989 &setlist, &showlist);
6990
6c95b8df
PA
6991 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6992 follow_exec_mode_names,
6993 &follow_exec_mode_string, _("\
6994Set debugger response to a program call of exec."), _("\
6995Show debugger response to a program call of exec."), _("\
6996An exec call replaces the program image of a process.\n\
6997\n\
6998follow-exec-mode can be:\n\
6999\n\
cce7e648 7000 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7001to this new inferior. The program the process was running before\n\
7002the exec call can be restarted afterwards by restarting the original\n\
7003inferior.\n\
7004\n\
7005 same - the debugger keeps the process bound to the same inferior.\n\
7006The new executable image replaces the previous executable loaded in\n\
7007the inferior. Restarting the inferior after the exec call restarts\n\
7008the executable the process was running after the exec call.\n\
7009\n\
7010By default, the debugger will use the same inferior."),
7011 NULL,
7012 show_follow_exec_mode_string,
7013 &setlist, &showlist);
7014
7ab04401
AC
7015 add_setshow_enum_cmd ("scheduler-locking", class_run,
7016 scheduler_enums, &scheduler_mode, _("\
7017Set mode for locking scheduler during execution."), _("\
7018Show mode for locking scheduler during execution."), _("\
c906108c
SS
7019off == no locking (threads may preempt at any time)\n\
7020on == full locking (no thread except the current thread may run)\n\
7021step == scheduler locked during every single-step operation.\n\
7022 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7023 Other threads may run while stepping over a function call ('next')."),
7024 set_schedlock_func, /* traps on target vector */
920d2a44 7025 show_scheduler_mode,
7ab04401 7026 &setlist, &showlist);
5fbbeb29 7027
d4db2f36
PA
7028 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7029Set mode for resuming threads of all processes."), _("\
7030Show mode for resuming threads of all processes."), _("\
7031When on, execution commands (such as 'continue' or 'next') resume all\n\
7032threads of all processes. When off (which is the default), execution\n\
7033commands only resume the threads of the current process. The set of\n\
7034threads that are resumed is further refined by the scheduler-locking\n\
7035mode (see help set scheduler-locking)."),
7036 NULL,
7037 show_schedule_multiple,
7038 &setlist, &showlist);
7039
5bf193a2
AC
7040 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7041Set mode of the step operation."), _("\
7042Show mode of the step operation."), _("\
7043When set, doing a step over a function without debug line information\n\
7044will stop at the first instruction of that function. Otherwise, the\n\
7045function is skipped and the step command stops at a different source line."),
7046 NULL,
920d2a44 7047 show_step_stop_if_no_debug,
5bf193a2 7048 &setlist, &showlist);
ca6724c1 7049
fff08868
HZ
7050 add_setshow_enum_cmd ("displaced-stepping", class_run,
7051 can_use_displaced_stepping_enum,
7052 &can_use_displaced_stepping, _("\
237fc4c9
PA
7053Set debugger's willingness to use displaced stepping."), _("\
7054Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7055If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7056supported by the target architecture. If off, gdb will not use displaced\n\
7057stepping to step over breakpoints, even if such is supported by the target\n\
7058architecture. If auto (which is the default), gdb will use displaced stepping\n\
7059if the target architecture supports it and non-stop mode is active, but will not\n\
7060use it in all-stop mode (see help set non-stop)."),
7061 NULL,
7062 show_can_use_displaced_stepping,
7063 &setlist, &showlist);
237fc4c9 7064
b2175913
MS
7065 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7066 &exec_direction, _("Set direction of execution.\n\
7067Options are 'forward' or 'reverse'."),
7068 _("Show direction of execution (forward/reverse)."),
7069 _("Tells gdb whether to execute forward or backward."),
7070 set_exec_direction_func, show_exec_direction_func,
7071 &setlist, &showlist);
7072
6c95b8df
PA
7073 /* Set/show detach-on-fork: user-settable mode. */
7074
7075 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7076Set whether gdb will detach the child of a fork."), _("\
7077Show whether gdb will detach the child of a fork."), _("\
7078Tells gdb whether to detach the child of a fork."),
7079 NULL, NULL, &setlist, &showlist);
7080
ca6724c1
KB
7081 /* ptid initializations */
7082 null_ptid = ptid_build (0, 0, 0);
7083 minus_one_ptid = ptid_build (-1, 0, 0);
7084 inferior_ptid = null_ptid;
7085 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7086
7087 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7088 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7089 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7090 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7091
7092 /* Explicitly create without lookup, since that tries to create a
7093 value with a void typed value, and when we get here, gdbarch
7094 isn't initialized yet. At this point, we're quite sure there
7095 isn't another convenience variable of the same name. */
7096 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7097
7098 add_setshow_boolean_cmd ("observer", no_class,
7099 &observer_mode_1, _("\
7100Set whether gdb controls the inferior in observer mode."), _("\
7101Show whether gdb controls the inferior in observer mode."), _("\
7102In observer mode, GDB can get data from the inferior, but not\n\
7103affect its execution. Registers and memory may not be changed,\n\
7104breakpoints may not be set, and the program cannot be interrupted\n\
7105or signalled."),
7106 set_observer_mode,
7107 show_observer_mode,
7108 &setlist,
7109 &showlist);
c906108c 7110}
This page took 1.424154 seconds and 4 git commands to generate.