Update some comments on stap-probe.c
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
CommitLineData
55aa24fb
SDJ
1/* SystemTap probe support for GDB.
2
42a4f53d 3 Copyright (C) 2012-2019 Free Software Foundation, Inc.
55aa24fb
SDJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "stap-probe.h"
22#include "probe.h"
0747795c 23#include "common/vec.h"
55aa24fb
SDJ
24#include "ui-out.h"
25#include "objfiles.h"
26#include "arch-utils.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "filenames.h"
30#include "value.h"
55aa24fb
SDJ
31#include "ax.h"
32#include "ax-gdb.h"
33#include "complaints.h"
34#include "cli/cli-utils.h"
35#include "linespec.h"
36#include "user-regs.h"
37#include "parser-defs.h"
38#include "language.h"
39#include "elf-bfd.h"
40
41#include <ctype.h>
42
43/* The name of the SystemTap section where we will find information about
44 the probes. */
45
46#define STAP_BASE_SECTION_NAME ".stapsdt.base"
47
55aa24fb
SDJ
48/* Should we display debug information for the probe's argument expression
49 parsing? */
50
ccce17b0 51static unsigned int stap_expression_debug = 0;
55aa24fb
SDJ
52
53/* The various possibilities of bitness defined for a probe's argument.
54
55 The relationship is:
56
57 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
30a1e6cc
SDJ
58 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
59 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
60 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
61 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
55aa24fb
SDJ
62 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
63 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
64 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
65 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
66
67enum stap_arg_bitness
68{
69 STAP_ARG_BITNESS_UNDEFINED,
30a1e6cc
SDJ
70 STAP_ARG_BITNESS_8BIT_UNSIGNED,
71 STAP_ARG_BITNESS_8BIT_SIGNED,
72 STAP_ARG_BITNESS_16BIT_UNSIGNED,
73 STAP_ARG_BITNESS_16BIT_SIGNED,
55aa24fb
SDJ
74 STAP_ARG_BITNESS_32BIT_UNSIGNED,
75 STAP_ARG_BITNESS_32BIT_SIGNED,
76 STAP_ARG_BITNESS_64BIT_UNSIGNED,
77 STAP_ARG_BITNESS_64BIT_SIGNED,
78};
79
80/* The following structure represents a single argument for the probe. */
81
82struct stap_probe_arg
83{
0e9ae10f
SDJ
84 /* Constructor for stap_probe_arg. */
85 stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_,
86 expression_up &&aexpr_)
87 : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_))
88 {}
89
55aa24fb
SDJ
90 /* The bitness of this argument. */
91 enum stap_arg_bitness bitness;
92
93 /* The corresponding `struct type *' to the bitness. */
94 struct type *atype;
95
96 /* The argument converted to an internal GDB expression. */
0e9ae10f 97 expression_up aexpr;
55aa24fb
SDJ
98};
99
0e9ae10f 100/* Class that implements the static probe methods for "stap" probes. */
55aa24fb 101
0e9ae10f 102class stap_static_probe_ops : public static_probe_ops
55aa24fb 103{
0e9ae10f
SDJ
104public:
105 /* See probe.h. */
106 bool is_linespec (const char **linespecp) const override;
55aa24fb 107
0e9ae10f 108 /* See probe.h. */
814cf43a 109 void get_probes (std::vector<std::unique_ptr<probe>> *probesp,
0e9ae10f
SDJ
110 struct objfile *objfile) const override;
111
112 /* See probe.h. */
113 const char *type_name () const override;
114
115 /* See probe.h. */
116 std::vector<struct info_probe_column> gen_info_probes_table_header
117 () const override;
118};
119
120/* SystemTap static_probe_ops. */
121
3dcfdc58 122const stap_static_probe_ops stap_static_probe_ops {};
0e9ae10f
SDJ
123
124class stap_probe : public probe
125{
126public:
127 /* Constructor for stap_probe. */
128 stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_,
129 struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text)
130 : probe (std::move (name_), std::move (provider_), address_, arch_),
131 m_sem_addr (sem_addr),
132 m_have_parsed_args (false), m_unparsed_args_text (args_text)
133 {}
134
135 /* See probe.h. */
136 CORE_ADDR get_relocated_address (struct objfile *objfile) override;
137
138 /* See probe.h. */
139 unsigned get_argument_count (struct frame_info *frame) override;
140
141 /* See probe.h. */
142 bool can_evaluate_arguments () const override;
143
144 /* See probe.h. */
145 struct value *evaluate_argument (unsigned n,
146 struct frame_info *frame) override;
147
148 /* See probe.h. */
149 void compile_to_ax (struct agent_expr *aexpr,
150 struct axs_value *axs_value,
151 unsigned n) override;
152
153 /* See probe.h. */
154 void set_semaphore (struct objfile *objfile,
155 struct gdbarch *gdbarch) override;
156
157 /* See probe.h. */
158 void clear_semaphore (struct objfile *objfile,
159 struct gdbarch *gdbarch) override;
160
161 /* See probe.h. */
162 const static_probe_ops *get_static_ops () const override;
163
164 /* See probe.h. */
165 std::vector<const char *> gen_info_probes_table_values () const override;
166
167 /* Return argument N of probe.
168
169 If the probe's arguments have not been parsed yet, parse them. If
170 there are no arguments, throw an exception (error). Otherwise,
171 return the requested argument. */
172 struct stap_probe_arg *get_arg_by_number (unsigned n,
173 struct gdbarch *gdbarch)
174 {
175 if (!m_have_parsed_args)
176 this->parse_arguments (gdbarch);
177
178 gdb_assert (m_have_parsed_args);
179 if (m_parsed_args.empty ())
180 internal_error (__FILE__, __LINE__,
181 _("Probe '%s' apparently does not have arguments, but \n"
182 "GDB is requesting its argument number %u anyway. "
183 "This should not happen. Please report this bug."),
184 this->get_name ().c_str (), n);
185
186 if (n > m_parsed_args.size ())
187 internal_error (__FILE__, __LINE__,
188 _("Probe '%s' has %d arguments, but GDB is requesting\n"
189 "argument %u. This should not happen. Please\n"
190 "report this bug."),
191 this->get_name ().c_str (),
192 (int) m_parsed_args.size (), n);
193
194 return &m_parsed_args[n];
195 }
196
197 /* Function which parses an argument string from the probe,
198 correctly splitting the arguments and storing their information
199 in properly ways.
200
201 Consider the following argument string (x86 syntax):
202
203 `4@%eax 4@$10'
204
205 We have two arguments, `%eax' and `$10', both with 32-bit
206 unsigned bitness. This function basically handles them, properly
207 filling some structures with this information. */
208 void parse_arguments (struct gdbarch *gdbarch);
209
210private:
55aa24fb 211 /* If the probe has a semaphore associated, then this is the value of
729662a5 212 it, relative to SECT_OFF_DATA. */
0e9ae10f 213 CORE_ADDR m_sem_addr;
55aa24fb 214
0e9ae10f
SDJ
215 /* True if the arguments have been parsed. */
216 bool m_have_parsed_args;
97c2dca0 217
0e9ae10f
SDJ
218 /* The text version of the probe's arguments, unparsed. */
219 const char *m_unparsed_args_text;
55aa24fb 220
0e9ae10f
SDJ
221 /* Information about each argument. This is an array of `stap_probe_arg',
222 with each entry representing one argument. This is only valid if
223 M_ARGS_PARSED is true. */
224 std::vector<struct stap_probe_arg> m_parsed_args;
55aa24fb
SDJ
225};
226
227/* When parsing the arguments, we have to establish different precedences
228 for the various kinds of asm operators. This enumeration represents those
229 precedences.
230
231 This logic behind this is available at
232 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
233 the command "info '(as)Infix Ops'". */
234
235enum stap_operand_prec
236{
237 /* Lowest precedence, used for non-recognized operands or for the beginning
238 of the parsing process. */
239 STAP_OPERAND_PREC_NONE = 0,
240
241 /* Precedence of logical OR. */
242 STAP_OPERAND_PREC_LOGICAL_OR,
243
244 /* Precedence of logical AND. */
245 STAP_OPERAND_PREC_LOGICAL_AND,
246
247 /* Precedence of additive (plus, minus) and comparative (equal, less,
248 greater-than, etc) operands. */
249 STAP_OPERAND_PREC_ADD_CMP,
250
251 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
252 logical NOT). */
253 STAP_OPERAND_PREC_BITWISE,
254
255 /* Precedence of multiplicative operands (multiplication, division,
256 remainder, left shift and right shift). */
257 STAP_OPERAND_PREC_MUL
258};
259
af2d9bee 260static void stap_parse_argument_1 (struct stap_parse_info *p, bool has_lhs,
55aa24fb
SDJ
261 enum stap_operand_prec prec);
262
263static void stap_parse_argument_conditionally (struct stap_parse_info *p);
264
af2d9bee 265/* Returns true if *S is an operator, false otherwise. */
55aa24fb 266
af2d9bee 267static bool stap_is_operator (const char *op);
55aa24fb
SDJ
268
269static void
270show_stapexpressiondebug (struct ui_file *file, int from_tty,
271 struct cmd_list_element *c, const char *value)
272{
273 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
274 value);
275}
276
277/* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
278 if the operator code was not recognized. */
279
280static enum stap_operand_prec
281stap_get_operator_prec (enum exp_opcode op)
282{
283 switch (op)
284 {
285 case BINOP_LOGICAL_OR:
286 return STAP_OPERAND_PREC_LOGICAL_OR;
287
288 case BINOP_LOGICAL_AND:
289 return STAP_OPERAND_PREC_LOGICAL_AND;
290
291 case BINOP_ADD:
292 case BINOP_SUB:
293 case BINOP_EQUAL:
294 case BINOP_NOTEQUAL:
295 case BINOP_LESS:
296 case BINOP_LEQ:
297 case BINOP_GTR:
298 case BINOP_GEQ:
299 return STAP_OPERAND_PREC_ADD_CMP;
300
301 case BINOP_BITWISE_IOR:
302 case BINOP_BITWISE_AND:
303 case BINOP_BITWISE_XOR:
304 case UNOP_LOGICAL_NOT:
305 return STAP_OPERAND_PREC_BITWISE;
306
307 case BINOP_MUL:
308 case BINOP_DIV:
309 case BINOP_REM:
310 case BINOP_LSH:
311 case BINOP_RSH:
312 return STAP_OPERAND_PREC_MUL;
313
314 default:
315 return STAP_OPERAND_PREC_NONE;
316 }
317}
318
3ca58cde
SDJ
319/* Given S, read the operator in it. Return the EXP_OPCODE which
320 represents the operator detected, or throw an error if no operator
321 was found. */
55aa24fb 322
fcf57f19
SDJ
323static enum exp_opcode
324stap_get_opcode (const char **s)
55aa24fb
SDJ
325{
326 const char c = **s;
fcf57f19 327 enum exp_opcode op;
55aa24fb
SDJ
328
329 *s += 1;
330
331 switch (c)
332 {
333 case '*':
fcf57f19 334 op = BINOP_MUL;
55aa24fb
SDJ
335 break;
336
337 case '/':
fcf57f19 338 op = BINOP_DIV;
55aa24fb
SDJ
339 break;
340
341 case '%':
fcf57f19 342 op = BINOP_REM;
55aa24fb
SDJ
343 break;
344
345 case '<':
fcf57f19 346 op = BINOP_LESS;
55aa24fb
SDJ
347 if (**s == '<')
348 {
349 *s += 1;
fcf57f19 350 op = BINOP_LSH;
55aa24fb
SDJ
351 }
352 else if (**s == '=')
353 {
354 *s += 1;
fcf57f19 355 op = BINOP_LEQ;
55aa24fb
SDJ
356 }
357 else if (**s == '>')
358 {
359 *s += 1;
fcf57f19 360 op = BINOP_NOTEQUAL;
55aa24fb
SDJ
361 }
362 break;
363
364 case '>':
fcf57f19 365 op = BINOP_GTR;
55aa24fb
SDJ
366 if (**s == '>')
367 {
368 *s += 1;
fcf57f19 369 op = BINOP_RSH;
55aa24fb
SDJ
370 }
371 else if (**s == '=')
372 {
373 *s += 1;
fcf57f19 374 op = BINOP_GEQ;
55aa24fb
SDJ
375 }
376 break;
377
378 case '|':
fcf57f19 379 op = BINOP_BITWISE_IOR;
55aa24fb
SDJ
380 if (**s == '|')
381 {
382 *s += 1;
fcf57f19 383 op = BINOP_LOGICAL_OR;
55aa24fb
SDJ
384 }
385 break;
386
387 case '&':
fcf57f19 388 op = BINOP_BITWISE_AND;
55aa24fb
SDJ
389 if (**s == '&')
390 {
391 *s += 1;
fcf57f19 392 op = BINOP_LOGICAL_AND;
55aa24fb
SDJ
393 }
394 break;
395
396 case '^':
fcf57f19 397 op = BINOP_BITWISE_XOR;
55aa24fb
SDJ
398 break;
399
400 case '!':
fcf57f19 401 op = UNOP_LOGICAL_NOT;
55aa24fb
SDJ
402 break;
403
404 case '+':
fcf57f19 405 op = BINOP_ADD;
55aa24fb
SDJ
406 break;
407
408 case '-':
fcf57f19 409 op = BINOP_SUB;
55aa24fb
SDJ
410 break;
411
412 case '=':
fcf57f19
SDJ
413 gdb_assert (**s == '=');
414 op = BINOP_EQUAL;
55aa24fb
SDJ
415 break;
416
417 default:
f469e8ce
SDJ
418 error (_("Invalid opcode in expression `%s' for SystemTap"
419 "probe"), *s);
55aa24fb
SDJ
420 }
421
fcf57f19 422 return op;
55aa24fb
SDJ
423}
424
425/* Given the bitness of the argument, represented by B, return the
3ca58cde
SDJ
426 corresponding `struct type *', or throw an error if B is
427 unknown. */
55aa24fb
SDJ
428
429static struct type *
430stap_get_expected_argument_type (struct gdbarch *gdbarch,
f469e8ce 431 enum stap_arg_bitness b,
0e9ae10f 432 const char *probe_name)
55aa24fb
SDJ
433{
434 switch (b)
435 {
436 case STAP_ARG_BITNESS_UNDEFINED:
437 if (gdbarch_addr_bit (gdbarch) == 32)
438 return builtin_type (gdbarch)->builtin_uint32;
439 else
440 return builtin_type (gdbarch)->builtin_uint64;
441
30a1e6cc
SDJ
442 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
443 return builtin_type (gdbarch)->builtin_uint8;
444
445 case STAP_ARG_BITNESS_8BIT_SIGNED:
446 return builtin_type (gdbarch)->builtin_int8;
447
448 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
449 return builtin_type (gdbarch)->builtin_uint16;
450
451 case STAP_ARG_BITNESS_16BIT_SIGNED:
452 return builtin_type (gdbarch)->builtin_int16;
453
55aa24fb
SDJ
454 case STAP_ARG_BITNESS_32BIT_SIGNED:
455 return builtin_type (gdbarch)->builtin_int32;
456
457 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
458 return builtin_type (gdbarch)->builtin_uint32;
459
460 case STAP_ARG_BITNESS_64BIT_SIGNED:
461 return builtin_type (gdbarch)->builtin_int64;
462
463 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
464 return builtin_type (gdbarch)->builtin_uint64;
465
466 default:
0e9ae10f 467 error (_("Undefined bitness for probe '%s'."), probe_name);
55aa24fb
SDJ
468 break;
469 }
470}
471
05c0465e
SDJ
472/* Helper function to check for a generic list of prefixes. GDBARCH
473 is the current gdbarch being used. S is the expression being
474 analyzed. If R is not NULL, it will be used to return the found
475 prefix. PREFIXES is the list of expected prefixes.
476
477 This function does a case-insensitive match.
478
af2d9bee 479 Return true if any prefix has been found, false otherwise. */
05c0465e 480
af2d9bee 481static bool
05c0465e
SDJ
482stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
483 const char **r, const char *const *prefixes)
484{
485 const char *const *p;
486
487 if (prefixes == NULL)
488 {
489 if (r != NULL)
490 *r = "";
491
af2d9bee 492 return true;
05c0465e
SDJ
493 }
494
495 for (p = prefixes; *p != NULL; ++p)
97c2dca0
SDJ
496 if (strncasecmp (s, *p, strlen (*p)) == 0)
497 {
498 if (r != NULL)
499 *r = *p;
05c0465e 500
af2d9bee 501 return true;
97c2dca0 502 }
05c0465e 503
af2d9bee 504 return false;
05c0465e
SDJ
505}
506
af2d9bee
SDJ
507/* Return true if S points to a register prefix, false otherwise. For
508 a description of the arguments, look at stap_is_generic_prefix. */
05c0465e 509
af2d9bee 510static bool
05c0465e
SDJ
511stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
512 const char **r)
513{
514 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
515
516 return stap_is_generic_prefix (gdbarch, s, r, t);
517}
518
af2d9bee 519/* Return true if S points to a register indirection prefix, false
05c0465e
SDJ
520 otherwise. For a description of the arguments, look at
521 stap_is_generic_prefix. */
522
af2d9bee 523static bool
05c0465e
SDJ
524stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
525 const char **r)
526{
527 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
528
529 return stap_is_generic_prefix (gdbarch, s, r, t);
530}
531
af2d9bee
SDJ
532/* Return true if S points to an integer prefix, false otherwise. For
533 a description of the arguments, look at stap_is_generic_prefix.
05c0465e
SDJ
534
535 This function takes care of analyzing whether we are dealing with
536 an expected integer prefix, or, if there is no integer prefix to be
537 expected, whether we are dealing with a digit. It does a
538 case-insensitive match. */
539
af2d9bee 540static bool
05c0465e
SDJ
541stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
542 const char **r)
543{
544 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
545 const char *const *p;
546
547 if (t == NULL)
548 {
549 /* A NULL value here means that integers do not have a prefix.
550 We just check for a digit then. */
551 if (r != NULL)
552 *r = "";
553
af2d9bee 554 return isdigit (*s) > 0;
05c0465e
SDJ
555 }
556
557 for (p = t; *p != NULL; ++p)
558 {
559 size_t len = strlen (*p);
560
561 if ((len == 0 && isdigit (*s))
562 || (len > 0 && strncasecmp (s, *p, len) == 0))
563 {
564 /* Integers may or may not have a prefix. The "len == 0"
565 check covers the case when integers do not have a prefix
566 (therefore, we just check if we have a digit). The call
567 to "strncasecmp" covers the case when they have a
568 prefix. */
569 if (r != NULL)
570 *r = *p;
571
af2d9bee 572 return true;
05c0465e
SDJ
573 }
574 }
575
af2d9bee 576 return false;
05c0465e
SDJ
577}
578
579/* Helper function to check for a generic list of suffixes. If we are
580 not expecting any suffixes, then it just returns 1. If we are
af2d9bee
SDJ
581 expecting at least one suffix, then it returns true if a suffix has
582 been found, false otherwise. GDBARCH is the current gdbarch being
05c0465e
SDJ
583 used. S is the expression being analyzed. If R is not NULL, it
584 will be used to return the found suffix. SUFFIXES is the list of
585 expected suffixes. This function does a case-insensitive
586 match. */
587
af2d9bee 588static bool
05c0465e
SDJ
589stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
590 const char **r, const char *const *suffixes)
591{
592 const char *const *p;
af2d9bee 593 bool found = false;
05c0465e
SDJ
594
595 if (suffixes == NULL)
596 {
597 if (r != NULL)
598 *r = "";
599
af2d9bee 600 return true;
05c0465e
SDJ
601 }
602
603 for (p = suffixes; *p != NULL; ++p)
604 if (strncasecmp (s, *p, strlen (*p)) == 0)
605 {
606 if (r != NULL)
607 *r = *p;
608
af2d9bee 609 found = true;
05c0465e
SDJ
610 break;
611 }
612
613 return found;
614}
615
af2d9bee
SDJ
616/* Return true if S points to an integer suffix, false otherwise. For
617 a description of the arguments, look at
05c0465e
SDJ
618 stap_generic_check_suffix. */
619
af2d9bee 620static bool
05c0465e
SDJ
621stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
622 const char **r)
623{
624 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
625
626 return stap_generic_check_suffix (gdbarch, s, r, p);
627}
628
af2d9bee
SDJ
629/* Return true if S points to a register suffix, false otherwise. For
630 a description of the arguments, look at
05c0465e
SDJ
631 stap_generic_check_suffix. */
632
af2d9bee 633static bool
05c0465e
SDJ
634stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
635 const char **r)
636{
637 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
638
639 return stap_generic_check_suffix (gdbarch, s, r, p);
640}
641
af2d9bee 642/* Return true if S points to a register indirection suffix, false
05c0465e
SDJ
643 otherwise. For a description of the arguments, look at
644 stap_generic_check_suffix. */
645
af2d9bee 646static bool
05c0465e
SDJ
647stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
648 const char **r)
649{
650 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
651
652 return stap_generic_check_suffix (gdbarch, s, r, p);
653}
654
55aa24fb
SDJ
655/* Function responsible for parsing a register operand according to
656 SystemTap parlance. Assuming:
657
658 RP = register prefix
659 RS = register suffix
660 RIP = register indirection prefix
661 RIS = register indirection suffix
662
663 Then a register operand can be:
664
665 [RIP] [RP] REGISTER [RS] [RIS]
666
667 This function takes care of a register's indirection, displacement and
668 direct access. It also takes into consideration the fact that some
669 registers are named differently inside and outside GDB, e.g., PPC's
670 general-purpose registers are represented by integers in the assembly
671 language (e.g., `15' is the 15th general-purpose register), but inside
672 GDB they have a prefix (the letter `r') appended. */
673
674static void
675stap_parse_register_operand (struct stap_parse_info *p)
676{
677 /* Simple flag to indicate whether we have seen a minus signal before
678 certain number. */
af2d9bee 679 bool got_minus = false;
55aa24fb
SDJ
680 /* Flags to indicate whether this register access is being displaced and/or
681 indirected. */
af2d9bee
SDJ
682 bool disp_p = false;
683 bool indirect_p = false;
55aa24fb 684 struct gdbarch *gdbarch = p->gdbarch;
55aa24fb
SDJ
685 /* Needed to generate the register name as a part of an expression. */
686 struct stoken str;
55aa24fb
SDJ
687 /* Variables used to extract the register name from the probe's
688 argument. */
689 const char *start;
690 char *regname;
691 int len;
55aa24fb 692 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
55aa24fb 693 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
55aa24fb 694 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
55aa24fb 695 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
05c0465e
SDJ
696 const char *reg_prefix;
697 const char *reg_ind_prefix;
698 const char *reg_suffix;
699 const char *reg_ind_suffix;
55aa24fb
SDJ
700
701 /* Checking for a displacement argument. */
702 if (*p->arg == '+')
703 {
704 /* If it's a plus sign, we don't need to do anything, just advance the
705 pointer. */
706 ++p->arg;
707 }
708
709 if (*p->arg == '-')
710 {
af2d9bee 711 got_minus = true;
55aa24fb
SDJ
712 ++p->arg;
713 }
714
715 if (isdigit (*p->arg))
716 {
717 /* The value of the displacement. */
718 long displacement;
a0bcdaa7 719 char *endp;
55aa24fb 720
af2d9bee 721 disp_p = true;
a0bcdaa7
PA
722 displacement = strtol (p->arg, &endp, 10);
723 p->arg = endp;
55aa24fb
SDJ
724
725 /* Generating the expression for the displacement. */
410a0ff2
SDJ
726 write_exp_elt_opcode (&p->pstate, OP_LONG);
727 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
728 write_exp_elt_longcst (&p->pstate, displacement);
729 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 730 if (got_minus)
410a0ff2 731 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
732 }
733
734 /* Getting rid of register indirection prefix. */
05c0465e 735 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
55aa24fb 736 {
af2d9bee 737 indirect_p = true;
05c0465e 738 p->arg += strlen (reg_ind_prefix);
55aa24fb
SDJ
739 }
740
741 if (disp_p && !indirect_p)
742 error (_("Invalid register displacement syntax on expression `%s'."),
743 p->saved_arg);
744
745 /* Getting rid of register prefix. */
05c0465e
SDJ
746 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
747 p->arg += strlen (reg_prefix);
55aa24fb
SDJ
748
749 /* Now we should have only the register name. Let's extract it and get
750 the associated number. */
751 start = p->arg;
752
753 /* We assume the register name is composed by letters and numbers. */
754 while (isalnum (*p->arg))
755 ++p->arg;
756
757 len = p->arg - start;
758
224c3ddb 759 regname = (char *) alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
55aa24fb
SDJ
760 regname[0] = '\0';
761
762 /* We only add the GDB's register prefix/suffix if we are dealing with
763 a numeric register. */
764 if (gdb_reg_prefix && isdigit (*start))
765 {
766 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
767 strncpy (regname + gdb_reg_prefix_len, start, len);
768
769 if (gdb_reg_suffix)
770 strncpy (regname + gdb_reg_prefix_len + len,
771 gdb_reg_suffix, gdb_reg_suffix_len);
772
773 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
774 }
775 else
776 strncpy (regname, start, len);
777
778 regname[len] = '\0';
779
780 /* Is this a valid register name? */
781 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
782 error (_("Invalid register name `%s' on expression `%s'."),
783 regname, p->saved_arg);
784
410a0ff2 785 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
786 str.ptr = regname;
787 str.length = len;
410a0ff2
SDJ
788 write_exp_string (&p->pstate, str);
789 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
790
791 if (indirect_p)
792 {
793 if (disp_p)
410a0ff2 794 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
795
796 /* Casting to the expected type. */
410a0ff2
SDJ
797 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
798 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
799 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 800
410a0ff2 801 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
802 }
803
804 /* Getting rid of the register name suffix. */
05c0465e
SDJ
805 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
806 p->arg += strlen (reg_suffix);
807 else
808 error (_("Missing register name suffix on expression `%s'."),
809 p->saved_arg);
55aa24fb
SDJ
810
811 /* Getting rid of the register indirection suffix. */
05c0465e 812 if (indirect_p)
55aa24fb 813 {
05c0465e
SDJ
814 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
815 &reg_ind_suffix))
816 p->arg += strlen (reg_ind_suffix);
817 else
818 error (_("Missing indirection suffix on expression `%s'."),
819 p->saved_arg);
55aa24fb
SDJ
820 }
821}
822
823/* This function is responsible for parsing a single operand.
824
825 A single operand can be:
826
827 - an unary operation (e.g., `-5', `~2', or even with subexpressions
828 like `-(2 + 1)')
829 - a register displacement, which will be treated as a register
830 operand (e.g., `-4(%eax)' on x86)
831 - a numeric constant, or
832 - a register operand (see function `stap_parse_register_operand')
833
834 The function also calls special-handling functions to deal with
835 unrecognized operands, allowing arch-specific parsers to be
836 created. */
837
838static void
839stap_parse_single_operand (struct stap_parse_info *p)
840{
841 struct gdbarch *gdbarch = p->gdbarch;
05c0465e 842 const char *int_prefix = NULL;
55aa24fb
SDJ
843
844 /* We first try to parse this token as a "special token". */
845 if (gdbarch_stap_parse_special_token_p (gdbarch))
97c2dca0
SDJ
846 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
847 {
848 /* If the return value of the above function is not zero,
849 it means it successfully parsed the special token.
55aa24fb 850
97c2dca0
SDJ
851 If it is NULL, we try to parse it using our method. */
852 return;
853 }
55aa24fb
SDJ
854
855 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
856 {
857 char c = *p->arg;
55aa24fb
SDJ
858 /* We use this variable to do a lookahead. */
859 const char *tmp = p->arg;
af2d9bee 860 bool has_digit = false;
55aa24fb 861
97c2dca0 862 /* Skipping signal. */
55aa24fb
SDJ
863 ++tmp;
864
865 /* This is an unary operation. Here is a list of allowed tokens
866 here:
867
868 - numeric literal;
869 - number (from register displacement)
870 - subexpression (beginning with `(')
871
872 We handle the register displacement here, and the other cases
873 recursively. */
874 if (p->inside_paren_p)
f1735a53 875 tmp = skip_spaces (tmp);
55aa24fb 876
474ca4f6 877 while (isdigit (*tmp))
a0bcdaa7 878 {
474ca4f6
SDJ
879 /* We skip the digit here because we are only interested in
880 knowing what kind of unary operation this is. The digit
881 will be handled by one of the functions that will be
882 called below ('stap_parse_argument_conditionally' or
883 'stap_parse_register_operand'). */
884 ++tmp;
af2d9bee 885 has_digit = true;
a0bcdaa7 886 }
55aa24fb 887
474ca4f6
SDJ
888 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
889 NULL))
55aa24fb
SDJ
890 {
891 /* If we are here, it means it is a displacement. The only
892 operations allowed here are `-' and `+'. */
893 if (c == '~')
894 error (_("Invalid operator `%c' for register displacement "
895 "on expression `%s'."), c, p->saved_arg);
896
897 stap_parse_register_operand (p);
898 }
474ca4f6
SDJ
899 else
900 {
901 /* This is not a displacement. We skip the operator, and
902 deal with it when the recursion returns. */
903 ++p->arg;
904 stap_parse_argument_conditionally (p);
905 if (c == '-')
906 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
907 else if (c == '~')
908 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
909 }
55aa24fb
SDJ
910 }
911 else if (isdigit (*p->arg))
912 {
913 /* A temporary variable, needed for lookahead. */
914 const char *tmp = p->arg;
a0bcdaa7 915 char *endp;
55aa24fb
SDJ
916 long number;
917
05c0465e
SDJ
918 /* We can be dealing with a numeric constant, or with a register
919 displacement. */
a0bcdaa7
PA
920 number = strtol (tmp, &endp, 10);
921 tmp = endp;
55aa24fb
SDJ
922
923 if (p->inside_paren_p)
f1735a53 924 tmp = skip_spaces (tmp);
05c0465e
SDJ
925
926 /* If "stap_is_integer_prefix" returns true, it means we can
927 accept integers without a prefix here. But we also need to
928 check whether the next token (i.e., "tmp") is not a register
929 indirection prefix. */
930 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
931 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb 932 {
05c0465e
SDJ
933 const char *int_suffix;
934
55aa24fb 935 /* We are dealing with a numeric constant. */
410a0ff2
SDJ
936 write_exp_elt_opcode (&p->pstate, OP_LONG);
937 write_exp_elt_type (&p->pstate,
938 builtin_type (gdbarch)->builtin_long);
939 write_exp_elt_longcst (&p->pstate, number);
940 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb
SDJ
941
942 p->arg = tmp;
943
05c0465e
SDJ
944 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
945 p->arg += strlen (int_suffix);
946 else
947 error (_("Invalid constant suffix on expression `%s'."),
948 p->saved_arg);
55aa24fb 949 }
05c0465e 950 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb
SDJ
951 stap_parse_register_operand (p);
952 else
953 error (_("Unknown numeric token on expression `%s'."),
954 p->saved_arg);
955 }
05c0465e 956 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
55aa24fb
SDJ
957 {
958 /* We are dealing with a numeric constant. */
959 long number;
a0bcdaa7 960 char *endp;
05c0465e 961 const char *int_suffix;
55aa24fb 962
05c0465e 963 p->arg += strlen (int_prefix);
a0bcdaa7
PA
964 number = strtol (p->arg, &endp, 10);
965 p->arg = endp;
55aa24fb 966
410a0ff2
SDJ
967 write_exp_elt_opcode (&p->pstate, OP_LONG);
968 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
969 write_exp_elt_longcst (&p->pstate, number);
970 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 971
05c0465e
SDJ
972 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
973 p->arg += strlen (int_suffix);
974 else
975 error (_("Invalid constant suffix on expression `%s'."),
976 p->saved_arg);
55aa24fb 977 }
05c0465e
SDJ
978 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
979 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
55aa24fb
SDJ
980 stap_parse_register_operand (p);
981 else
982 error (_("Operator `%c' not recognized on expression `%s'."),
983 *p->arg, p->saved_arg);
984}
985
986/* This function parses an argument conditionally, based on single or
987 non-single operands. A non-single operand would be a parenthesized
988 expression (e.g., `(2 + 1)'), and a single operand is anything that
989 starts with `-', `~', `+' (i.e., unary operators), a digit, or
990 something recognized by `gdbarch_stap_is_single_operand'. */
991
992static void
993stap_parse_argument_conditionally (struct stap_parse_info *p)
994{
97c2dca0
SDJ
995 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
996
55aa24fb
SDJ
997 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
998 || isdigit (*p->arg)
999 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
1000 stap_parse_single_operand (p);
1001 else if (*p->arg == '(')
1002 {
1003 /* We are dealing with a parenthesized operand. It means we
1004 have to parse it as it was a separate expression, without
1005 left-side or precedence. */
1006 ++p->arg;
f1735a53 1007 p->arg = skip_spaces (p->arg);
55aa24fb
SDJ
1008 ++p->inside_paren_p;
1009
1010 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
1011
1012 --p->inside_paren_p;
1013 if (*p->arg != ')')
1014 error (_("Missign close-paren on expression `%s'."),
1015 p->saved_arg);
1016
1017 ++p->arg;
1018 if (p->inside_paren_p)
f1735a53 1019 p->arg = skip_spaces (p->arg);
55aa24fb
SDJ
1020 }
1021 else
1022 error (_("Cannot parse expression `%s'."), p->saved_arg);
1023}
1024
1025/* Helper function for `stap_parse_argument'. Please, see its comments to
1026 better understand what this function does. */
1027
1028static void
af2d9bee 1029stap_parse_argument_1 (struct stap_parse_info *p, bool has_lhs,
55aa24fb
SDJ
1030 enum stap_operand_prec prec)
1031{
1032 /* This is an operator-precedence parser.
1033
1034 We work with left- and right-sides of expressions, and
1035 parse them depending on the precedence of the operators
1036 we find. */
1037
97c2dca0
SDJ
1038 gdb_assert (p->arg != NULL);
1039
55aa24fb 1040 if (p->inside_paren_p)
f1735a53 1041 p->arg = skip_spaces (p->arg);
55aa24fb
SDJ
1042
1043 if (!has_lhs)
1044 {
1045 /* We were called without a left-side, either because this is the
1046 first call, or because we were called to parse a parenthesized
1047 expression. It doesn't really matter; we have to parse the
1048 left-side in order to continue the process. */
1049 stap_parse_argument_conditionally (p);
1050 }
1051
1052 /* Start to parse the right-side, and to "join" left and right sides
1053 depending on the operation specified.
1054
1055 This loop shall continue until we run out of characters in the input,
1056 or until we find a close-parenthesis, which means that we've reached
1057 the end of a sub-expression. */
97c2dca0 1058 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
55aa24fb
SDJ
1059 {
1060 const char *tmp_exp_buf;
1061 enum exp_opcode opcode;
1062 enum stap_operand_prec cur_prec;
1063
fcf57f19 1064 if (!stap_is_operator (p->arg))
55aa24fb
SDJ
1065 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
1066 p->saved_arg);
1067
1068 /* We have to save the current value of the expression buffer because
1069 the `stap_get_opcode' modifies it in order to get the current
1070 operator. If this operator's precedence is lower than PREC, we
1071 should return and not advance the expression buffer pointer. */
1072 tmp_exp_buf = p->arg;
fcf57f19 1073 opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
1074
1075 cur_prec = stap_get_operator_prec (opcode);
1076 if (cur_prec < prec)
1077 {
1078 /* If the precedence of the operator that we are seeing now is
1079 lower than the precedence of the first operator seen before
1080 this parsing process began, it means we should stop parsing
1081 and return. */
1082 break;
1083 }
1084
1085 p->arg = tmp_exp_buf;
1086 if (p->inside_paren_p)
f1735a53 1087 p->arg = skip_spaces (p->arg);
55aa24fb
SDJ
1088
1089 /* Parse the right-side of the expression. */
1090 stap_parse_argument_conditionally (p);
1091
1092 /* While we still have operators, try to parse another
1093 right-side, but using the current right-side as a left-side. */
97c2dca0 1094 while (*p->arg != '\0' && stap_is_operator (p->arg))
55aa24fb
SDJ
1095 {
1096 enum exp_opcode lookahead_opcode;
1097 enum stap_operand_prec lookahead_prec;
1098
1099 /* Saving the current expression buffer position. The explanation
1100 is the same as above. */
1101 tmp_exp_buf = p->arg;
fcf57f19 1102 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
1103 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1104
1105 if (lookahead_prec <= prec)
1106 {
1107 /* If we are dealing with an operator whose precedence is lower
1108 than the first one, just abandon the attempt. */
1109 break;
1110 }
1111
1112 /* Parse the right-side of the expression, but since we already
1113 have a left-side at this point, set `has_lhs' to 1. */
1114 stap_parse_argument_1 (p, 1, lookahead_prec);
1115 }
1116
410a0ff2 1117 write_exp_elt_opcode (&p->pstate, opcode);
55aa24fb
SDJ
1118 }
1119}
1120
1121/* Parse a probe's argument.
1122
1123 Assuming that:
1124
1125 LP = literal integer prefix
1126 LS = literal integer suffix
1127
1128 RP = register prefix
1129 RS = register suffix
1130
1131 RIP = register indirection prefix
1132 RIS = register indirection suffix
1133
1134 This routine assumes that arguments' tokens are of the form:
1135
1136 - [LP] NUMBER [LS]
1137 - [RP] REGISTER [RS]
1138 - [RIP] [RP] REGISTER [RS] [RIS]
1139 - If we find a number without LP, we try to parse it as a literal integer
1140 constant (if LP == NULL), or as a register displacement.
1141 - We count parenthesis, and only skip whitespaces if we are inside them.
1142 - If we find an operator, we skip it.
1143
1144 This function can also call a special function that will try to match
0e9ae10f
SDJ
1145 unknown tokens. It will return the expression_up generated from
1146 parsing the argument. */
55aa24fb 1147
0e9ae10f 1148static expression_up
55aa24fb
SDJ
1149stap_parse_argument (const char **arg, struct type *atype,
1150 struct gdbarch *gdbarch)
1151{
55aa24fb 1152 /* We need to initialize the expression buffer, in order to begin
f7088df3
SDJ
1153 our parsing efforts. We use language_c here because we may need
1154 to do pointer arithmetics. */
1201a264 1155 struct stap_parse_info p (*arg, atype, language_def (language_c),
e9d9f57e 1156 gdbarch);
55aa24fb
SDJ
1157
1158 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1159
55aa24fb
SDJ
1160 gdb_assert (p.inside_paren_p == 0);
1161
1162 /* Casting the final expression to the appropriate type. */
410a0ff2
SDJ
1163 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1164 write_exp_elt_type (&p.pstate, atype);
1165 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
55aa24fb 1166
f1735a53 1167 p.arg = skip_spaces (p.arg);
55aa24fb
SDJ
1168 *arg = p.arg;
1169
e9d9f57e 1170 return p.pstate.release ();
55aa24fb
SDJ
1171}
1172
0e9ae10f 1173/* Implementation of 'parse_arguments' method. */
55aa24fb 1174
0e9ae10f
SDJ
1175void
1176stap_probe::parse_arguments (struct gdbarch *gdbarch)
55aa24fb
SDJ
1177{
1178 const char *cur;
55aa24fb 1179
0e9ae10f
SDJ
1180 gdb_assert (!m_have_parsed_args);
1181 cur = m_unparsed_args_text;
1182 m_have_parsed_args = true;
55aa24fb 1183
97c2dca0 1184 if (cur == NULL || *cur == '\0' || *cur == ':')
55aa24fb
SDJ
1185 return;
1186
97c2dca0 1187 while (*cur != '\0')
55aa24fb 1188 {
0e9ae10f
SDJ
1189 enum stap_arg_bitness bitness;
1190 bool got_minus = false;
55aa24fb
SDJ
1191
1192 /* We expect to find something like:
1193
1194 N@OP
1195
30a1e6cc 1196 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
55aa24fb
SDJ
1197 we check it here. If we don't find it, go to the next
1198 state. */
f33da99a
SDJ
1199 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1200 || (isdigit (cur[0]) && cur[1] == '@'))
55aa24fb
SDJ
1201 {
1202 if (*cur == '-')
1203 {
1204 /* Discard the `-'. */
1205 ++cur;
0e9ae10f 1206 got_minus = true;
55aa24fb
SDJ
1207 }
1208
30a1e6cc
SDJ
1209 /* Defining the bitness. */
1210 switch (*cur)
55aa24fb 1211 {
30a1e6cc 1212 case '1':
0e9ae10f
SDJ
1213 bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1214 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
30a1e6cc
SDJ
1215 break;
1216
1217 case '2':
0e9ae10f
SDJ
1218 bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1219 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
30a1e6cc
SDJ
1220 break;
1221
1222 case '4':
0e9ae10f
SDJ
1223 bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1224 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
30a1e6cc
SDJ
1225 break;
1226
1227 case '8':
0e9ae10f
SDJ
1228 bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1229 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
30a1e6cc
SDJ
1230 break;
1231
1232 default:
1233 {
1234 /* We have an error, because we don't expect anything
1235 except 1, 2, 4 and 8. */
1236 warning (_("unrecognized bitness %s%c' for probe `%s'"),
0e9ae10f
SDJ
1237 got_minus ? "`-" : "`", *cur,
1238 this->get_name ().c_str ());
30a1e6cc
SDJ
1239 return;
1240 }
55aa24fb 1241 }
55aa24fb
SDJ
1242 /* Discard the number and the `@' sign. */
1243 cur += 2;
1244 }
f33da99a 1245 else
0e9ae10f 1246 bitness = STAP_ARG_BITNESS_UNDEFINED;
f33da99a 1247
0e9ae10f
SDJ
1248 struct type *atype
1249 = stap_get_expected_argument_type (gdbarch, bitness,
1250 this->get_name ().c_str ());
55aa24fb 1251
0e9ae10f 1252 expression_up expr = stap_parse_argument (&cur, atype, gdbarch);
55aa24fb
SDJ
1253
1254 if (stap_expression_debug)
0e9ae10f 1255 dump_raw_expression (expr.get (), gdb_stdlog,
55aa24fb
SDJ
1256 "before conversion to prefix form");
1257
0e9ae10f 1258 prefixify_expression (expr.get ());
55aa24fb
SDJ
1259
1260 if (stap_expression_debug)
0e9ae10f 1261 dump_prefix_expression (expr.get (), gdb_stdlog);
55aa24fb 1262
0e9ae10f 1263 m_parsed_args.emplace_back (bitness, atype, std::move (expr));
55aa24fb
SDJ
1264
1265 /* Start it over again. */
f1735a53 1266 cur = skip_spaces (cur);
55aa24fb
SDJ
1267 }
1268}
1269
685de8c2
SDJ
1270/* Helper function to relocate an address. */
1271
1272static CORE_ADDR
1273relocate_address (CORE_ADDR address, struct objfile *objfile)
1274{
1275 return address + ANOFFSET (objfile->section_offsets,
1276 SECT_OFF_DATA (objfile));
1277}
1278
0e9ae10f 1279/* Implementation of the get_relocated_address method. */
729662a5 1280
0e9ae10f
SDJ
1281CORE_ADDR
1282stap_probe::get_relocated_address (struct objfile *objfile)
729662a5 1283{
685de8c2 1284 return relocate_address (this->get_address (), objfile);
729662a5
TT
1285}
1286
55aa24fb
SDJ
1287/* Given PROBE, returns the number of arguments present in that probe's
1288 argument string. */
1289
0e9ae10f
SDJ
1290unsigned
1291stap_probe::get_argument_count (struct frame_info *frame)
55aa24fb 1292{
08a6411c 1293 struct gdbarch *gdbarch = get_frame_arch (frame);
55aa24fb 1294
0e9ae10f 1295 if (!m_have_parsed_args)
25f9533e 1296 {
0e9ae10f
SDJ
1297 if (this->can_evaluate_arguments ())
1298 this->parse_arguments (gdbarch);
25f9533e
SDJ
1299 else
1300 {
af2d9bee 1301 static bool have_warned_stap_incomplete = false;
25f9533e
SDJ
1302
1303 if (!have_warned_stap_incomplete)
1304 {
1305 warning (_(
1306"The SystemTap SDT probe support is not fully implemented on this target;\n"
1307"you will not be able to inspect the arguments of the probes.\n"
1308"Please report a bug against GDB requesting a port to this target."));
af2d9bee 1309 have_warned_stap_incomplete = true;
25f9533e
SDJ
1310 }
1311
1312 /* Marking the arguments as "already parsed". */
0e9ae10f 1313 m_have_parsed_args = true;
25f9533e
SDJ
1314 }
1315 }
55aa24fb 1316
0e9ae10f
SDJ
1317 gdb_assert (m_have_parsed_args);
1318 return m_parsed_args.size ();
55aa24fb
SDJ
1319}
1320
af2d9bee
SDJ
1321/* Return true if OP is a valid operator inside a probe argument, or
1322 false otherwise. */
55aa24fb 1323
af2d9bee 1324static bool
fcf57f19 1325stap_is_operator (const char *op)
55aa24fb 1326{
af2d9bee 1327 bool ret = true;
fcf57f19
SDJ
1328
1329 switch (*op)
1330 {
1331 case '*':
1332 case '/':
1333 case '%':
1334 case '^':
1335 case '!':
1336 case '+':
1337 case '-':
1338 case '<':
1339 case '>':
1340 case '|':
1341 case '&':
1342 break;
1343
1344 case '=':
1345 if (op[1] != '=')
af2d9bee 1346 ret = false;
fcf57f19
SDJ
1347 break;
1348
1349 default:
1350 /* We didn't find any operator. */
af2d9bee 1351 ret = false;
fcf57f19
SDJ
1352 }
1353
1354 return ret;
55aa24fb
SDJ
1355}
1356
0e9ae10f 1357/* Implement the `can_evaluate_arguments' method. */
f469e8ce 1358
0e9ae10f
SDJ
1359bool
1360stap_probe::can_evaluate_arguments () const
25f9533e 1361{
0e9ae10f 1362 struct gdbarch *gdbarch = this->get_gdbarch ();
25f9533e
SDJ
1363
1364 /* For SystemTap probes, we have to guarantee that the method
1365 stap_is_single_operand is defined on gdbarch. If it is not, then it
1366 means that argument evaluation is not implemented on this target. */
1367 return gdbarch_stap_is_single_operand_p (gdbarch);
1368}
1369
55aa24fb
SDJ
1370/* Evaluate the probe's argument N (indexed from 0), returning a value
1371 corresponding to it. Assertion is thrown if N does not exist. */
1372
0e9ae10f
SDJ
1373struct value *
1374stap_probe::evaluate_argument (unsigned n, struct frame_info *frame)
55aa24fb 1375{
55aa24fb
SDJ
1376 struct stap_probe_arg *arg;
1377 int pos = 0;
0e9ae10f 1378 struct gdbarch *gdbarch = get_frame_arch (frame);
55aa24fb 1379
0e9ae10f
SDJ
1380 arg = this->get_arg_by_number (n, gdbarch);
1381 return evaluate_subexp_standard (arg->atype, arg->aexpr.get (), &pos,
1382 EVAL_NORMAL);
55aa24fb
SDJ
1383}
1384
1385/* Compile the probe's argument N (indexed from 0) to agent expression.
1386 Assertion is thrown if N does not exist. */
1387
0e9ae10f
SDJ
1388void
1389stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value,
1390 unsigned n)
55aa24fb 1391{
55aa24fb
SDJ
1392 struct stap_probe_arg *arg;
1393 union exp_element *pc;
1394
0e9ae10f 1395 arg = this->get_arg_by_number (n, expr->gdbarch);
55aa24fb
SDJ
1396
1397 pc = arg->aexpr->elts;
0e9ae10f 1398 gen_expr (arg->aexpr.get (), &pc, expr, value);
55aa24fb
SDJ
1399
1400 require_rvalue (expr, value);
1401 value->type = arg->atype;
1402}
55aa24fb
SDJ
1403\f
1404
55aa24fb 1405/* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
0e9ae10f
SDJ
1406 address. SET is zero if the semaphore should be cleared, or one if
1407 it should be set. This is a helper function for
1408 'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'. */
55aa24fb
SDJ
1409
1410static void
1411stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1412{
1413 gdb_byte bytes[sizeof (LONGEST)];
1414 /* The ABI specifies "unsigned short". */
1415 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1416 ULONGEST value;
1417
1418 if (address == 0)
1419 return;
1420
1421 /* Swallow errors. */
1422 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1423 {
1424 warning (_("Could not read the value of a SystemTap semaphore."));
1425 return;
1426 }
1427
1428 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1429 gdbarch_byte_order (gdbarch));
1430 /* Note that we explicitly don't worry about overflow or
1431 underflow. */
1432 if (set)
1433 ++value;
1434 else
1435 --value;
1436
1437 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1438 gdbarch_byte_order (gdbarch), value);
1439
1440 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1441 warning (_("Could not write the value of a SystemTap semaphore."));
1442}
1443
0e9ae10f 1444/* Implementation of the 'set_semaphore' method.
55aa24fb 1445
0e9ae10f
SDJ
1446 SystemTap semaphores act as reference counters, so calls to this
1447 function must be paired with calls to 'clear_semaphore'.
55aa24fb 1448
0e9ae10f
SDJ
1449 This function and 'clear_semaphore' race with another tool
1450 changing the probes, but that is too rare to care. */
1451
1452void
1453stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
55aa24fb 1454{
685de8c2 1455 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch);
0e9ae10f 1456}
55aa24fb 1457
0e9ae10f 1458/* Implementation of the 'clear_semaphore' method. */
55aa24fb 1459
0e9ae10f
SDJ
1460void
1461stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1462{
685de8c2 1463 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch);
55aa24fb
SDJ
1464}
1465
0e9ae10f 1466/* Implementation of the 'get_static_ops' method. */
55aa24fb 1467
0e9ae10f
SDJ
1468const static_probe_ops *
1469stap_probe::get_static_ops () const
1470{
1471 return &stap_static_probe_ops;
1472}
1473
1474/* Implementation of the 'gen_info_probes_table_values' method. */
1475
1476std::vector<const char *>
1477stap_probe::gen_info_probes_table_values () const
55aa24fb 1478{
0e9ae10f 1479 const char *val = NULL;
55aa24fb 1480
0e9ae10f
SDJ
1481 if (m_sem_addr != 0)
1482 val = print_core_address (this->get_gdbarch (), m_sem_addr);
55aa24fb 1483
0e9ae10f 1484 return std::vector<const char *> { val };
55aa24fb
SDJ
1485}
1486
55aa24fb
SDJ
1487/* Helper function that parses the information contained in a
1488 SystemTap's probe. Basically, the information consists in:
1489
1490 - Probe's PC address;
1491 - Link-time section address of `.stapsdt.base' section;
1492 - Link-time address of the semaphore variable, or ZERO if the
1493 probe doesn't have an associated semaphore;
1494 - Probe's provider name;
1495 - Probe's name;
3ca58cde 1496 - Probe's argument format. */
55aa24fb
SDJ
1497
1498static void
1499handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
814cf43a
TT
1500 std::vector<std::unique_ptr<probe>> *probesp,
1501 CORE_ADDR base)
55aa24fb
SDJ
1502{
1503 bfd *abfd = objfile->obfd;
1504 int size = bfd_get_arch_size (abfd) / 8;
1505 struct gdbarch *gdbarch = get_objfile_arch (objfile);
55aa24fb 1506 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
55aa24fb
SDJ
1507
1508 /* Provider and the name of the probe. */
0e9ae10f
SDJ
1509 const char *provider = (const char *) &el->data[3 * size];
1510 const char *name = ((const char *)
1511 memchr (provider, '\0',
1512 (char *) el->data + el->size - provider));
55aa24fb 1513 /* Making sure there is a name. */
0e9ae10f 1514 if (name == NULL)
55aa24fb 1515 {
b98664d3 1516 complaint (_("corrupt probe name when "
4262abfb
JK
1517 "reading `%s'"),
1518 objfile_name (objfile));
55aa24fb
SDJ
1519
1520 /* There is no way to use a probe without a name or a provider, so
1521 returning zero here makes sense. */
1522 return;
1523 }
1524 else
0e9ae10f 1525 ++name;
55aa24fb
SDJ
1526
1527 /* Retrieving the probe's address. */
0e9ae10f 1528 CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type);
55aa24fb
SDJ
1529
1530 /* Link-time sh_addr of `.stapsdt.base' section. */
0e9ae10f 1531 CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type);
55aa24fb
SDJ
1532
1533 /* Semaphore address. */
0e9ae10f 1534 CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
55aa24fb 1535
0e9ae10f
SDJ
1536 address += base - base_ref;
1537 if (sem_addr != 0)
1538 sem_addr += base - base_ref;
55aa24fb
SDJ
1539
1540 /* Arguments. We can only extract the argument format if there is a valid
1541 name for this probe. */
0e9ae10f
SDJ
1542 const char *probe_args = ((const char*)
1543 memchr (name, '\0',
1544 (char *) el->data + el->size - name));
55aa24fb
SDJ
1545
1546 if (probe_args != NULL)
1547 ++probe_args;
1548
97c2dca0 1549 if (probe_args == NULL
0e9ae10f 1550 || (memchr (probe_args, '\0', (char *) el->data + el->size - name)
97c2dca0 1551 != el->data + el->size - 1))
55aa24fb 1552 {
b98664d3 1553 complaint (_("corrupt probe argument when "
4262abfb
JK
1554 "reading `%s'"),
1555 objfile_name (objfile));
55aa24fb
SDJ
1556 /* If the argument string is NULL, it means some problem happened with
1557 it. So we return 0. */
1558 return;
1559 }
1560
0e9ae10f
SDJ
1561 stap_probe *ret = new stap_probe (std::string (name), std::string (provider),
1562 address, gdbarch, sem_addr, probe_args);
55aa24fb
SDJ
1563
1564 /* Successfully created probe. */
814cf43a 1565 probesp->emplace_back (ret);
55aa24fb
SDJ
1566}
1567
1568/* Helper function which tries to find the base address of the SystemTap
1569 base section named STAP_BASE_SECTION_NAME. */
1570
1571static void
1572get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1573{
19ba03f4 1574 asection **ret = (asection **) obj;
55aa24fb
SDJ
1575
1576 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1577 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1578 *ret = sect;
1579}
1580
1581/* Helper function which iterates over every section in the BFD file,
1582 trying to find the base address of the SystemTap base section.
1583 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1584
1585static int
1586get_stap_base_address (bfd *obfd, bfd_vma *base)
1587{
1588 asection *ret = NULL;
1589
1590 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1591
97c2dca0 1592 if (ret == NULL)
55aa24fb 1593 {
b98664d3 1594 complaint (_("could not obtain base address for "
55aa24fb
SDJ
1595 "SystemTap section on objfile `%s'."),
1596 obfd->filename);
1597 return 0;
1598 }
1599
97c2dca0 1600 if (base != NULL)
55aa24fb
SDJ
1601 *base = ret->vma;
1602
1603 return 1;
1604}
1605
0e9ae10f 1606/* Implementation of the 'is_linespec' method. */
55aa24fb 1607
0e9ae10f
SDJ
1608bool
1609stap_static_probe_ops::is_linespec (const char **linespecp) const
1610{
1611 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1612
1613 return probe_is_linespec_by_keyword (linespecp, keywords);
1614}
1615
1616/* Implementation of the 'get_probes' method. */
1617
1618void
814cf43a
TT
1619stap_static_probe_ops::get_probes
1620 (std::vector<std::unique_ptr<probe>> *probesp,
1621 struct objfile *objfile) const
55aa24fb
SDJ
1622{
1623 /* If we are here, then this is the first time we are parsing the
1624 SystemTap probe's information. We basically have to count how many
1625 probes the objfile has, and then fill in the necessary information
1626 for each one. */
1627 bfd *obfd = objfile->obfd;
1628 bfd_vma base;
1629 struct sdt_note *iter;
aaa63a31 1630 unsigned save_probesp_len = probesp->size ();
55aa24fb 1631
d7333987
SDJ
1632 if (objfile->separate_debug_objfile_backlink != NULL)
1633 {
1634 /* This is a .debug file, not the objfile itself. */
1635 return;
1636 }
1637
97c2dca0 1638 if (elf_tdata (obfd)->sdt_note_head == NULL)
55aa24fb
SDJ
1639 {
1640 /* There isn't any probe here. */
1641 return;
1642 }
1643
1644 if (!get_stap_base_address (obfd, &base))
1645 {
1646 /* There was an error finding the base address for the section.
1647 Just return NULL. */
1648 return;
1649 }
1650
1651 /* Parsing each probe's information. */
97c2dca0
SDJ
1652 for (iter = elf_tdata (obfd)->sdt_note_head;
1653 iter != NULL;
1654 iter = iter->next)
55aa24fb
SDJ
1655 {
1656 /* We first have to handle all the information about the
1657 probe which is present in the section. */
1658 handle_stap_probe (objfile, iter, probesp, base);
1659 }
1660
aaa63a31 1661 if (save_probesp_len == probesp->size ())
55aa24fb
SDJ
1662 {
1663 /* If we are here, it means we have failed to parse every known
1664 probe. */
b98664d3 1665 complaint (_("could not parse SystemTap probe(s) "
55aa24fb
SDJ
1666 "from inferior"));
1667 return;
1668 }
1669}
1670
6f9b8491
JM
1671/* Implementation of the type_name method. */
1672
0e9ae10f
SDJ
1673const char *
1674stap_static_probe_ops::type_name () const
6f9b8491 1675{
6f9b8491
JM
1676 return "stap";
1677}
1678
0e9ae10f 1679/* Implementation of the 'gen_info_probes_table_header' method. */
55aa24fb 1680
0e9ae10f
SDJ
1681std::vector<struct info_probe_column>
1682stap_static_probe_ops::gen_info_probes_table_header () const
55aa24fb 1683{
0e9ae10f 1684 struct info_probe_column stap_probe_column;
55aa24fb
SDJ
1685
1686 stap_probe_column.field_name = "semaphore";
1687 stap_probe_column.print_name = _("Semaphore");
1688
0e9ae10f 1689 return std::vector<struct info_probe_column> { stap_probe_column };
55aa24fb
SDJ
1690}
1691
55aa24fb
SDJ
1692/* Implementation of the `info probes stap' command. */
1693
1694static void
884beb0c 1695info_probes_stap_command (const char *arg, int from_tty)
55aa24fb 1696{
0e9ae10f 1697 info_probes_for_spops (arg, from_tty, &stap_static_probe_ops);
55aa24fb
SDJ
1698}
1699
55aa24fb
SDJ
1700void
1701_initialize_stap_probe (void)
1702{
0e9ae10f 1703 all_static_probe_ops.push_back (&stap_static_probe_ops);
55aa24fb 1704
ccce17b0
YQ
1705 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1706 &stap_expression_debug,
1707 _("Set SystemTap expression debugging."),
1708 _("Show SystemTap expression debugging."),
1709 _("When non-zero, the internal representation "
1710 "of SystemTap expressions will be printed."),
1711 NULL,
1712 show_stapexpressiondebug,
1713 &setdebuglist, &showdebuglist);
55aa24fb 1714
55aa24fb
SDJ
1715 add_cmd ("stap", class_info, info_probes_stap_command,
1716 _("\
1717Show information about SystemTap static probes.\n\
1718Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1719Each argument is a regular expression, used to select probes.\n\
1720PROVIDER matches probe provider names.\n\
1721NAME matches the probe names.\n\
1722OBJECT matches the executable or shared library name."),
1723 info_probes_cmdlist_get ());
1724
1725}
This page took 1.008438 seconds and 4 git commands to generate.