gdb: Don't skip prologue for explicit line breakpoints in assembler
[deliverable/binutils-gdb.git] / gdb / target-memory.c
CommitLineData
a76d924d
DJ
1/* Parts of target interface that deal with accessing memory and memory-like
2 objects.
3
42a4f53d 4 Copyright (C) 2006-2019 Free Software Foundation, Inc.
a76d924d
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
a76d924d
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
a76d924d
DJ
20
21#include "defs.h"
0747795c 22#include "common/vec.h"
a76d924d
DJ
23#include "target.h"
24#include "memory-map.h"
25
0747795c 26#include "common/gdb_sys_time.h"
325fac50 27#include <algorithm>
a76d924d 28
55089490
TT
29static bool
30compare_block_starting_address (const memory_write_request &a_req,
31 const memory_write_request &b_req)
a76d924d 32{
55089490 33 return a_req.begin < b_req.begin;
a76d924d
DJ
34}
35
36/* Adds to RESULT all memory write requests from BLOCK that are
37 in [BEGIN, END) range.
38
39 If any memory request is only partially in the specified range,
40 that part of the memory request will be added. */
41
42static void
55089490
TT
43claim_memory (const std::vector<memory_write_request> &blocks,
44 std::vector<memory_write_request> *result,
a76d924d
DJ
45 ULONGEST begin,
46 ULONGEST end)
47{
a76d924d
DJ
48 ULONGEST claimed_begin;
49 ULONGEST claimed_end;
a76d924d 50
55089490 51 for (const memory_write_request &r : blocks)
a76d924d
DJ
52 {
53 /* If the request doesn't overlap [BEGIN, END), skip it. We
54 must handle END == 0 meaning the top of memory; we don't yet
55 check for R->end == 0, which would also mean the top of
56 memory, but there's an assertion in
57 target_write_memory_blocks which checks for that. */
58
55089490 59 if (begin >= r.end)
a76d924d 60 continue;
55089490 61 if (end != 0 && end <= r.begin)
a76d924d
DJ
62 continue;
63
55089490 64 claimed_begin = std::max (begin, r.begin);
a76d924d 65 if (end == 0)
55089490 66 claimed_end = r.end;
a76d924d 67 else
55089490 68 claimed_end = std::min (end, r.end);
a76d924d 69
55089490
TT
70 if (claimed_begin == r.begin && claimed_end == r.end)
71 result->push_back (r);
a76d924d
DJ
72 else
73 {
55089490
TT
74 struct memory_write_request n = r;
75
76 n.begin = claimed_begin;
77 n.end = claimed_end;
78 n.data += claimed_begin - r.begin;
5d502164 79
55089490 80 result->push_back (n);
a76d924d
DJ
81 }
82 }
83}
84
85/* Given a vector of struct memory_write_request objects in BLOCKS,
86 add memory requests for flash memory into FLASH_BLOCKS, and for
87 regular memory to REGULAR_BLOCKS. */
88
89static void
55089490
TT
90split_regular_and_flash_blocks (const std::vector<memory_write_request> &blocks,
91 std::vector<memory_write_request> *regular_blocks,
92 std::vector<memory_write_request> *flash_blocks)
a76d924d
DJ
93{
94 struct mem_region *region;
95 CORE_ADDR cur_address;
96
97 /* This implementation runs in O(length(regions)*length(blocks)) time.
98 However, in most cases the number of blocks will be small, so this does
99 not matter.
100
101 Note also that it's extremely unlikely that a memory write request
102 will span more than one memory region, however for safety we handle
103 such situations. */
104
105 cur_address = 0;
106 while (1)
107 {
55089490 108 std::vector<memory_write_request> *r;
a76d924d 109
5d502164 110 region = lookup_mem_region (cur_address);
a76d924d
DJ
111 r = region->attrib.mode == MEM_FLASH ? flash_blocks : regular_blocks;
112 cur_address = region->hi;
113 claim_memory (blocks, r, region->lo, region->hi);
114
115 if (cur_address == 0)
116 break;
117 }
118}
119
120/* Given an ADDRESS, if BEGIN is non-NULL this function sets *BEGIN
121 to the start of the flash block containing the address. Similarly,
122 if END is non-NULL *END will be set to the address one past the end
123 of the block containing the address. */
124
125static void
126block_boundaries (CORE_ADDR address, CORE_ADDR *begin, CORE_ADDR *end)
127{
128 struct mem_region *region;
129 unsigned blocksize;
d9b477e3 130 CORE_ADDR offset_in_region;
a76d924d
DJ
131
132 region = lookup_mem_region (address);
133 gdb_assert (region->attrib.mode == MEM_FLASH);
134 blocksize = region->attrib.blocksize;
d9b477e3
KB
135
136 offset_in_region = address - region->lo;
137
a76d924d 138 if (begin)
d9b477e3 139 *begin = region->lo + offset_in_region / blocksize * blocksize;
a76d924d 140 if (end)
d9b477e3 141 *end = region->lo + (offset_in_region + blocksize - 1) / blocksize * blocksize;
a76d924d
DJ
142}
143
144/* Given the list of memory requests to be WRITTEN, this function
145 returns write requests covering each group of flash blocks which must
146 be erased. */
147
55089490
TT
148static std::vector<memory_write_request>
149blocks_to_erase (const std::vector<memory_write_request> &written)
a76d924d 150{
55089490 151 std::vector<memory_write_request> result;
a76d924d 152
55089490 153 for (const memory_write_request &request : written)
a76d924d
DJ
154 {
155 CORE_ADDR begin, end;
156
55089490
TT
157 block_boundaries (request.begin, &begin, 0);
158 block_boundaries (request.end - 1, 0, &end);
a76d924d 159
55089490
TT
160 if (!result.empty () && result.back ().end >= begin)
161 result.back ().end = end;
a76d924d 162 else
55089490 163 result.emplace_back (begin, end);
a76d924d
DJ
164 }
165
166 return result;
167}
168
169/* Given ERASED_BLOCKS, a list of blocks that will be erased with
170 flash erase commands, and WRITTEN_BLOCKS, the list of memory
171 addresses that will be written, compute the set of memory addresses
172 that will be erased but not rewritten (e.g. padding within a block
173 which is only partially filled by "load"). */
174
55089490
TT
175static std::vector<memory_write_request>
176compute_garbled_blocks (const std::vector<memory_write_request> &erased_blocks,
177 const std::vector<memory_write_request> &written_blocks)
a76d924d 178{
55089490 179 std::vector<memory_write_request> result;
a76d924d 180
55089490
TT
181 unsigned j;
182 unsigned je = written_blocks.size ();
a76d924d
DJ
183
184 /* Look at each erased memory_write_request in turn, and
185 see what part of it is subsequently written to.
186
187 This implementation is O(length(erased) * length(written)). If
188 the lists are sorted at this point it could be rewritten more
189 efficiently, but the complexity is not generally worthwhile. */
190
55089490 191 for (const memory_write_request &erased_iter : erased_blocks)
a76d924d
DJ
192 {
193 /* Make a deep copy -- it will be modified inside the loop, but
194 we don't want to modify original vector. */
55089490 195 struct memory_write_request erased = erased_iter;
a76d924d
DJ
196
197 for (j = 0; j != je;)
198 {
55089490 199 const memory_write_request *written = &written_blocks[j];
a76d924d
DJ
200
201 /* Now try various cases. */
202
203 /* If WRITTEN is fully to the left of ERASED, check the next
204 written memory_write_request. */
205 if (written->end <= erased.begin)
206 {
207 ++j;
208 continue;
209 }
210
211 /* If WRITTEN is fully to the right of ERASED, then ERASED
212 is not written at all. WRITTEN might affect other
213 blocks. */
214 if (written->begin >= erased.end)
215 {
55089490 216 result.push_back (erased);
a76d924d
DJ
217 goto next_erased;
218 }
219
220 /* If all of ERASED is completely written, we can move on to
221 the next erased region. */
222 if (written->begin <= erased.begin
223 && written->end >= erased.end)
224 {
225 goto next_erased;
226 }
227
228 /* If there is an unwritten part at the beginning of ERASED,
229 then we should record that part and try this inner loop
230 again for the remainder. */
231 if (written->begin > erased.begin)
232 {
55089490 233 result.emplace_back (erased.begin, written->begin);
a76d924d
DJ
234 erased.begin = written->begin;
235 continue;
236 }
237
238 /* If there is an unwritten part at the end of ERASED, we
239 forget about the part that was written to and wait to see
240 if the next write request writes more of ERASED. We can't
241 push it yet. */
242 if (written->end < erased.end)
243 {
244 erased.begin = written->end;
245 ++j;
246 continue;
247 }
248 }
249
250 /* If we ran out of write requests without doing anything about
251 ERASED, then that means it's really erased. */
55089490 252 result.push_back (erased);
a76d924d
DJ
253
254 next_erased:
255 ;
256 }
257
258 return result;
259}
260
a76d924d 261int
55089490 262target_write_memory_blocks (const std::vector<memory_write_request> &requests,
a76d924d
DJ
263 enum flash_preserve_mode preserve_flash_p,
264 void (*progress_cb) (ULONGEST, void *))
265{
55089490 266 std::vector<memory_write_request> blocks = requests;
55089490
TT
267 std::vector<memory_write_request> regular;
268 std::vector<memory_write_request> flash;
269 std::vector<memory_write_request> erased, garbled;
a76d924d
DJ
270
271 /* END == 0 would represent wraparound: a write to the very last
272 byte of the address space. This file was not written with that
273 possibility in mind. This is fixable, but a lot of work for a
274 rare problem; so for now, fail noisily here instead of obscurely
275 later. */
55089490
TT
276 for (const memory_write_request &iter : requests)
277 gdb_assert (iter.end != 0);
a76d924d
DJ
278
279 /* Sort the blocks by their start address. */
55089490 280 std::sort (blocks.begin (), blocks.end (), compare_block_starting_address);
a76d924d
DJ
281
282 /* Split blocks into list of regular memory blocks,
c378eb4e 283 and list of flash memory blocks. */
a76d924d
DJ
284 split_regular_and_flash_blocks (blocks, &regular, &flash);
285
286 /* If a variable is added to forbid flash write, even during "load",
287 it should be checked here. Similarly, if this function is used
288 for other situations besides "load" in which writing to flash
289 is undesirable, that should be checked here. */
290
291 /* Find flash blocks to erase. */
292 erased = blocks_to_erase (flash);
a76d924d
DJ
293
294 /* Find what flash regions will be erased, and not overwritten; then
295 either preserve or discard the old contents. */
296 garbled = compute_garbled_blocks (erased, flash);
a76d924d 297
55089490
TT
298 std::vector<gdb::unique_xmalloc_ptr<gdb_byte>> mem_holders;
299 if (!garbled.empty ())
a76d924d
DJ
300 {
301 if (preserve_flash_p == flash_preserve)
302 {
a76d924d
DJ
303 /* Read in regions that must be preserved and add them to
304 the list of blocks we read. */
55089490 305 for (memory_write_request &iter : garbled)
a76d924d 306 {
55089490
TT
307 gdb_assert (iter.data == NULL);
308 gdb::unique_xmalloc_ptr<gdb_byte> holder
309 ((gdb_byte *) xmalloc (iter.end - iter.begin));
310 iter.data = holder.get ();
311 mem_holders.push_back (std::move (holder));
312 int err = target_read_memory (iter.begin, iter.data,
313 iter.end - iter.begin);
a76d924d 314 if (err != 0)
55089490 315 return err;
a76d924d 316
55089490 317 flash.push_back (iter);
a76d924d
DJ
318 }
319
55089490
TT
320 std::sort (flash.begin (), flash.end (),
321 compare_block_starting_address);
a76d924d
DJ
322 }
323 }
324
325 /* We could coalesce adjacent memory blocks here, to reduce the
326 number of write requests for small sections. However, we would
327 have to reallocate and copy the data pointers, which could be
328 large; large sections are more common in loadable objects than
329 large numbers of small sections (although the reverse can be true
330 in object files). So, we issue at least one write request per
331 passed struct memory_write_request. The remote stub will still
332 have the opportunity to batch flash requests. */
333
334 /* Write regular blocks. */
55089490 335 for (const memory_write_request &iter : regular)
a76d924d
DJ
336 {
337 LONGEST len;
338
8b88a78e 339 len = target_write_with_progress (current_top_target (),
a76d924d 340 TARGET_OBJECT_MEMORY, NULL,
55089490
TT
341 iter.data, iter.begin,
342 iter.end - iter.begin,
343 progress_cb, iter.baton);
344 if (len < (LONGEST) (iter.end - iter.begin))
a76d924d
DJ
345 {
346 /* Call error? */
55089490 347 return -1;
a76d924d
DJ
348 }
349 }
350
55089490 351 if (!erased.empty ())
a76d924d
DJ
352 {
353 /* Erase all pages. */
55089490
TT
354 for (const memory_write_request &iter : erased)
355 target_flash_erase (iter.begin, iter.end - iter.begin);
a76d924d
DJ
356
357 /* Write flash data. */
55089490 358 for (const memory_write_request &iter : flash)
a76d924d
DJ
359 {
360 LONGEST len;
361
8b88a78e 362 len = target_write_with_progress (current_top_target (),
a76d924d 363 TARGET_OBJECT_FLASH, NULL,
55089490
TT
364 iter.data, iter.begin,
365 iter.end - iter.begin,
366 progress_cb, iter.baton);
367 if (len < (LONGEST) (iter.end - iter.begin))
a76d924d
DJ
368 error (_("Error writing data to flash"));
369 }
370
371 target_flash_done ();
372 }
373
55089490 374 return 0;
a76d924d 375}
This page took 1.396775 seconds and 4 git commands to generate.