import gdb-1999-07-07 post reformat
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#if !defined (TARGET_H)
22#define TARGET_H
23
24/* This include file defines the interface between the main part
25 of the debugger, and the part which is target-specific, or
26 specific to the communications interface between us and the
27 target.
28
29 A TARGET is an interface between the debugger and a particular
30 kind of file or process. Targets can be STACKED in STRATA,
31 so that more than one target can potentially respond to a request.
32 In particular, memory accesses will walk down the stack of targets
33 until they find a target that is interested in handling that particular
34 address. STRATA are artificial boundaries on the stack, within
35 which particular kinds of targets live. Strata exist so that
36 people don't get confused by pushing e.g. a process target and then
37 a file target, and wondering why they can't see the current values
38 of variables any more (the file target is handling them and they
39 never get to the process target). So when you push a file target,
40 it goes into the file stratum, which is always below the process
41 stratum. */
42
43#include "bfd.h"
44#include "symtab.h"
45
46enum strata {
47 dummy_stratum, /* The lowest of the low */
48 file_stratum, /* Executable files, etc */
49 core_stratum, /* Core dump files */
50 download_stratum, /* Downloading of remote targets */
51 process_stratum /* Executing processes */
52};
53
54enum thread_control_capabilities {
55 tc_none = 0, /* Default: can't control thread execution. */
56 tc_schedlock = 1, /* Can lock the thread scheduler. */
57 tc_switch = 2 /* Can switch the running thread on demand. */
58};
59
60/* Stuff for target_wait. */
61
62/* Generally, what has the program done? */
63enum target_waitkind {
64 /* The program has exited. The exit status is in value.integer. */
65 TARGET_WAITKIND_EXITED,
66
67 /* The program has stopped with a signal. Which signal is in value.sig. */
68 TARGET_WAITKIND_STOPPED,
69
70 /* The program has terminated with a signal. Which signal is in
71 value.sig. */
72 TARGET_WAITKIND_SIGNALLED,
73
74 /* The program is letting us know that it dynamically loaded something
75 (e.g. it called load(2) on AIX). */
76 TARGET_WAITKIND_LOADED,
77
78 /* The program has forked. A "related" process' ID is in value.related_pid.
79 I.e., if the child forks, value.related_pid is the parent's ID.
80 */
81 TARGET_WAITKIND_FORKED,
82
83 /* The program has vforked. A "related" process's ID is in value.related_pid.
84 */
85 TARGET_WAITKIND_VFORKED,
86
87 /* The program has exec'ed a new executable file. The new file's pathname
88 is pointed to by value.execd_pathname.
89 */
90 TARGET_WAITKIND_EXECD,
91
92 /* The program has entered or returned from a system call. On HP-UX, this
93 is used in the hardware watchpoint implementation. The syscall's unique
94 integer ID number is in value.syscall_id;
95 */
96 TARGET_WAITKIND_SYSCALL_ENTRY,
97 TARGET_WAITKIND_SYSCALL_RETURN,
98
99 /* Nothing happened, but we stopped anyway. This perhaps should be handled
100 within target_wait, but I'm not sure target_wait should be resuming the
101 inferior. */
102 TARGET_WAITKIND_SPURIOUS
103 };
104
105/* The numbering of these signals is chosen to match traditional unix
106 signals (insofar as various unices use the same numbers, anyway).
107 It is also the numbering of the GDB remote protocol. Other remote
108 protocols, if they use a different numbering, should make sure to
cd0fc7c3 109 translate appropriately.
c906108c 110
cd0fc7c3
SS
111 Since these numbers have actually made it out into other software
112 (stubs, etc.), you mustn't disturb the assigned numbering. If you
113 need to add new signals here, add them to the end of the explicitly
114 numbered signals.
115
116 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
117 (1) This set of signals represents a widely-accepted attempt to
118 represent events of this sort in a portable fashion, (2) we want a
119 signal to make it from wait to child_wait to the user intact, (3) many
120 remote protocols use a similar encoding. However, it is
121 recognized that this set of signals has limitations (such as not
122 distinguishing between various kinds of SIGSEGV, or not
123 distinguishing hitting a breakpoint from finishing a single step).
124 So in the future we may get around this either by adding additional
125 signals for breakpoint, single-step, etc., or by adding signal
126 codes; the latter seems more in the spirit of what BSD, System V,
127 etc. are doing to address these issues. */
128
129/* For an explanation of what each signal means, see
130 target_signal_to_string. */
131
132enum target_signal {
133 /* Used some places (e.g. stop_signal) to record the concept that
134 there is no signal. */
135 TARGET_SIGNAL_0 = 0,
136 TARGET_SIGNAL_FIRST = 0,
137 TARGET_SIGNAL_HUP = 1,
138 TARGET_SIGNAL_INT = 2,
139 TARGET_SIGNAL_QUIT = 3,
140 TARGET_SIGNAL_ILL = 4,
141 TARGET_SIGNAL_TRAP = 5,
142 TARGET_SIGNAL_ABRT = 6,
143 TARGET_SIGNAL_EMT = 7,
144 TARGET_SIGNAL_FPE = 8,
145 TARGET_SIGNAL_KILL = 9,
146 TARGET_SIGNAL_BUS = 10,
147 TARGET_SIGNAL_SEGV = 11,
148 TARGET_SIGNAL_SYS = 12,
149 TARGET_SIGNAL_PIPE = 13,
150 TARGET_SIGNAL_ALRM = 14,
151 TARGET_SIGNAL_TERM = 15,
152 TARGET_SIGNAL_URG = 16,
153 TARGET_SIGNAL_STOP = 17,
154 TARGET_SIGNAL_TSTP = 18,
155 TARGET_SIGNAL_CONT = 19,
156 TARGET_SIGNAL_CHLD = 20,
157 TARGET_SIGNAL_TTIN = 21,
158 TARGET_SIGNAL_TTOU = 22,
159 TARGET_SIGNAL_IO = 23,
160 TARGET_SIGNAL_XCPU = 24,
161 TARGET_SIGNAL_XFSZ = 25,
162 TARGET_SIGNAL_VTALRM = 26,
163 TARGET_SIGNAL_PROF = 27,
164 TARGET_SIGNAL_WINCH = 28,
165 TARGET_SIGNAL_LOST = 29,
166 TARGET_SIGNAL_USR1 = 30,
167 TARGET_SIGNAL_USR2 = 31,
168 TARGET_SIGNAL_PWR = 32,
169 /* Similar to SIGIO. Perhaps they should have the same number. */
170 TARGET_SIGNAL_POLL = 33,
171 TARGET_SIGNAL_WIND = 34,
172 TARGET_SIGNAL_PHONE = 35,
173 TARGET_SIGNAL_WAITING = 36,
174 TARGET_SIGNAL_LWP = 37,
175 TARGET_SIGNAL_DANGER = 38,
176 TARGET_SIGNAL_GRANT = 39,
177 TARGET_SIGNAL_RETRACT = 40,
178 TARGET_SIGNAL_MSG = 41,
179 TARGET_SIGNAL_SOUND = 42,
180 TARGET_SIGNAL_SAK = 43,
181 TARGET_SIGNAL_PRIO = 44,
182 TARGET_SIGNAL_REALTIME_33 = 45,
183 TARGET_SIGNAL_REALTIME_34 = 46,
184 TARGET_SIGNAL_REALTIME_35 = 47,
185 TARGET_SIGNAL_REALTIME_36 = 48,
186 TARGET_SIGNAL_REALTIME_37 = 49,
187 TARGET_SIGNAL_REALTIME_38 = 50,
188 TARGET_SIGNAL_REALTIME_39 = 51,
189 TARGET_SIGNAL_REALTIME_40 = 52,
190 TARGET_SIGNAL_REALTIME_41 = 53,
191 TARGET_SIGNAL_REALTIME_42 = 54,
192 TARGET_SIGNAL_REALTIME_43 = 55,
193 TARGET_SIGNAL_REALTIME_44 = 56,
194 TARGET_SIGNAL_REALTIME_45 = 57,
195 TARGET_SIGNAL_REALTIME_46 = 58,
196 TARGET_SIGNAL_REALTIME_47 = 59,
197 TARGET_SIGNAL_REALTIME_48 = 60,
198 TARGET_SIGNAL_REALTIME_49 = 61,
199 TARGET_SIGNAL_REALTIME_50 = 62,
200 TARGET_SIGNAL_REALTIME_51 = 63,
201 TARGET_SIGNAL_REALTIME_52 = 64,
202 TARGET_SIGNAL_REALTIME_53 = 65,
203 TARGET_SIGNAL_REALTIME_54 = 66,
204 TARGET_SIGNAL_REALTIME_55 = 67,
205 TARGET_SIGNAL_REALTIME_56 = 68,
206 TARGET_SIGNAL_REALTIME_57 = 69,
207 TARGET_SIGNAL_REALTIME_58 = 70,
208 TARGET_SIGNAL_REALTIME_59 = 71,
209 TARGET_SIGNAL_REALTIME_60 = 72,
210 TARGET_SIGNAL_REALTIME_61 = 73,
211 TARGET_SIGNAL_REALTIME_62 = 74,
212 TARGET_SIGNAL_REALTIME_63 = 75,
cd0fc7c3
SS
213
214 /* Used internally by Solaris threads. See signal(5) on Solaris. */
215 TARGET_SIGNAL_CANCEL = 76,
216
c906108c
SS
217#if defined(MACH) || defined(__MACH__)
218 /* Mach exceptions */
7a292a7a
SS
219 TARGET_EXC_BAD_ACCESS,
220 TARGET_EXC_BAD_INSTRUCTION,
221 TARGET_EXC_ARITHMETIC,
222 TARGET_EXC_EMULATION,
223 TARGET_EXC_SOFTWARE,
224 TARGET_EXC_BREAKPOINT,
c906108c 225#endif
7a292a7a
SS
226 TARGET_SIGNAL_INFO,
227
c906108c
SS
228 /* Some signal we don't know about. */
229 TARGET_SIGNAL_UNKNOWN,
230
231 /* Use whatever signal we use when one is not specifically specified
232 (for passing to proceed and so on). */
233 TARGET_SIGNAL_DEFAULT,
234
235 /* Last and unused enum value, for sizing arrays, etc. */
236 TARGET_SIGNAL_LAST
237};
238
239struct target_waitstatus {
240 enum target_waitkind kind;
241
242 /* Forked child pid, execd pathname, exit status or signal number. */
243 union {
244 int integer;
245 enum target_signal sig;
246 int related_pid;
247 char * execd_pathname;
248 int syscall_id;
249 } value;
250};
251
252/* Return the string for a signal. */
253extern char *target_signal_to_string PARAMS ((enum target_signal));
254
255/* Return the name (SIGHUP, etc.) for a signal. */
256extern char *target_signal_to_name PARAMS ((enum target_signal));
257
258/* Given a name (SIGHUP, etc.), return its signal. */
259enum target_signal target_signal_from_name PARAMS ((char *));
260
261\f
262/* If certain kinds of activity happen, target_wait should perform
263 callbacks. */
264/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
265 on TARGET_ACTIVITY_FD. */
266extern int target_activity_fd;
267/* Returns zero to leave the inferior alone, one to interrupt it. */
268extern int (*target_activity_function) PARAMS ((void));
269\f
270struct target_ops
271{
272 char *to_shortname; /* Name this target type */
273 char *to_longname; /* Name for printing */
274 char *to_doc; /* Documentation. Does not include trailing
275 newline, and starts with a one-line descrip-
276 tion (probably similar to to_longname). */
277 void (*to_open) PARAMS ((char *, int));
278 void (*to_close) PARAMS ((int));
279 void (*to_attach) PARAMS ((char *, int));
280 void (*to_post_attach) PARAMS ((int));
281 void (*to_require_attach) PARAMS ((char *, int));
282 void (*to_detach) PARAMS ((char *, int));
283 void (*to_require_detach) PARAMS ((int, char *, int));
284 void (*to_resume) PARAMS ((int, int, enum target_signal));
285 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
286 void (*to_post_wait) PARAMS ((int, int));
287 void (*to_fetch_registers) PARAMS ((int));
288 void (*to_store_registers) PARAMS ((int));
289 void (*to_prepare_to_store) PARAMS ((void));
290
291 /* Transfer LEN bytes of memory between GDB address MYADDR and
292 target address MEMADDR. If WRITE, transfer them to the target, else
293 transfer them from the target. TARGET is the target from which we
294 get this function.
295
296 Return value, N, is one of the following:
297
298 0 means that we can't handle this. If errno has been set, it is the
299 error which prevented us from doing it (FIXME: What about bfd_error?).
300
301 positive (call it N) means that we have transferred N bytes
302 starting at MEMADDR. We might be able to handle more bytes
303 beyond this length, but no promises.
304
305 negative (call its absolute value N) means that we cannot
306 transfer right at MEMADDR, but we could transfer at least
307 something at MEMADDR + N. */
308
309 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
310 int len, int write,
311 struct target_ops * target));
312
313#if 0
314 /* Enable this after 4.12. */
315
316 /* Search target memory. Start at STARTADDR and take LEN bytes of
317 target memory, and them with MASK, and compare to DATA. If they
318 match, set *ADDR_FOUND to the address we found it at, store the data
319 we found at LEN bytes starting at DATA_FOUND, and return. If
320 not, add INCREMENT to the search address and keep trying until
321 the search address is outside of the range [LORANGE,HIRANGE).
322
323 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
324 void (*to_search) PARAMS ((int len, char *data, char *mask,
325 CORE_ADDR startaddr, int increment,
326 CORE_ADDR lorange, CORE_ADDR hirange,
327 CORE_ADDR *addr_found, char *data_found));
328
329#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
330 (*current_target.to_search) (len, data, mask, startaddr, increment, \
331 lorange, hirange, addr_found, data_found)
332#endif /* 0 */
333
334 void (*to_files_info) PARAMS ((struct target_ops *));
335 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
336 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
337 void (*to_terminal_init) PARAMS ((void));
338 void (*to_terminal_inferior) PARAMS ((void));
339 void (*to_terminal_ours_for_output) PARAMS ((void));
340 void (*to_terminal_ours) PARAMS ((void));
341 void (*to_terminal_info) PARAMS ((char *, int));
342 void (*to_kill) PARAMS ((void));
343 void (*to_load) PARAMS ((char *, int));
344 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
345 void (*to_create_inferior) PARAMS ((char *, char *, char **));
346 void (*to_post_startup_inferior) PARAMS ((int));
347 void (*to_acknowledge_created_inferior) PARAMS ((int));
348 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
349 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
350 int (*to_insert_fork_catchpoint) PARAMS ((int));
351 int (*to_remove_fork_catchpoint) PARAMS ((int));
352 int (*to_insert_vfork_catchpoint) PARAMS ((int));
353 int (*to_remove_vfork_catchpoint) PARAMS ((int));
354 int (*to_has_forked) PARAMS ((int, int *));
355 int (*to_has_vforked) PARAMS ((int, int *));
356 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
357 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
358 int (*to_insert_exec_catchpoint) PARAMS ((int));
359 int (*to_remove_exec_catchpoint) PARAMS ((int));
360 int (*to_has_execd) PARAMS ((int, char **));
361 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
362 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
363 int (*to_has_exited) PARAMS ((int, int, int *));
364 void (*to_mourn_inferior) PARAMS ((void));
365 int (*to_can_run) PARAMS ((void));
366 void (*to_notice_signals) PARAMS ((int pid));
367 int (*to_thread_alive) PARAMS ((int pid));
b83266a0 368 void (*to_find_new_threads) PARAMS ((void));
c906108c
SS
369 void (*to_stop) PARAMS ((void));
370 int (*to_query) PARAMS ((int/*char*/, char *, char *, int *));
371 struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
372 struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
373 char * (*to_pid_to_exec_file) PARAMS ((int pid));
374 char * (*to_core_file_to_sym_file) PARAMS ((char *));
375 enum strata to_stratum;
376 struct target_ops
377 *DONT_USE; /* formerly to_next */
378 int to_has_all_memory;
379 int to_has_memory;
380 int to_has_stack;
381 int to_has_registers;
382 int to_has_execution;
383 int to_has_thread_control; /* control thread execution */
43ff13b4 384 int to_has_async_exec;
c906108c
SS
385 struct section_table
386 *to_sections;
387 struct section_table
388 *to_sections_end;
389 int to_magic;
390 /* Need sub-structure for target machine related rather than comm related? */
391};
392
393/* Magic number for checking ops size. If a struct doesn't end with this
394 number, somebody changed the declaration but didn't change all the
395 places that initialize one. */
396
397#define OPS_MAGIC 3840
398
399/* The ops structure for our "current" target process. This should
400 never be NULL. If there is no target, it points to the dummy_target. */
401
402extern struct target_ops current_target;
403
404/* An item on the target stack. */
405
406struct target_stack_item
407{
408 struct target_stack_item *next;
409 struct target_ops *target_ops;
410};
411
412/* The target stack. */
413
414extern struct target_stack_item *target_stack;
415
416/* Define easy words for doing these operations on our current target. */
417
418#define target_shortname (current_target.to_shortname)
419#define target_longname (current_target.to_longname)
420
421/* The open routine takes the rest of the parameters from the command,
422 and (if successful) pushes a new target onto the stack.
423 Targets should supply this routine, if only to provide an error message. */
424#define target_open(name, from_tty) \
425 (*current_target.to_open) (name, from_tty)
426
427/* Does whatever cleanup is required for a target that we are no longer
428 going to be calling. Argument says whether we are quitting gdb and
429 should not get hung in case of errors, or whether we want a clean
430 termination even if it takes a while. This routine is automatically
431 always called just before a routine is popped off the target stack.
432 Closing file descriptors and freeing memory are typical things it should
433 do. */
434
435#define target_close(quitting) \
436 (*current_target.to_close) (quitting)
437
438/* Attaches to a process on the target side. Arguments are as passed
439 to the `attach' command by the user. This routine can be called
440 when the target is not on the target-stack, if the target_can_run
441 routine returns 1; in that case, it must push itself onto the stack.
442 Upon exit, the target should be ready for normal operations, and
443 should be ready to deliver the status of the process immediately
444 (without waiting) to an upcoming target_wait call. */
445
446#define target_attach(args, from_tty) \
447 (*current_target.to_attach) (args, from_tty)
448
449/* The target_attach operation places a process under debugger control,
450 and stops the process.
451
452 This operation provides a target-specific hook that allows the
453 necessary bookkeeping to be performed after an attach completes.
454 */
455#define target_post_attach(pid) \
456 (*current_target.to_post_attach) (pid)
457
458/* Attaches to a process on the target side, if not already attached.
459 (If already attached, takes no action.)
460
461 This operation can be used to follow the child process of a fork.
462 On some targets, such child processes of an original inferior process
463 are automatically under debugger control, and thus do not require an
464 actual attach operation. */
465
466#define target_require_attach(args, from_tty) \
467 (*current_target.to_require_attach) (args, from_tty)
468
469/* Takes a program previously attached to and detaches it.
470 The program may resume execution (some targets do, some don't) and will
471 no longer stop on signals, etc. We better not have left any breakpoints
472 in the program or it'll die when it hits one. ARGS is arguments
473 typed by the user (e.g. a signal to send the process). FROM_TTY
474 says whether to be verbose or not. */
475
476extern void
477target_detach PARAMS ((char *, int));
478
479/* Detaches from a process on the target side, if not already dettached.
480 (If already detached, takes no action.)
481
482 This operation can be used to follow the parent process of a fork.
483 On some targets, such child processes of an original inferior process
484 are automatically under debugger control, and thus do require an actual
485 detach operation.
486
487 PID is the process id of the child to detach from.
488 ARGS is arguments typed by the user (e.g. a signal to send the process).
489 FROM_TTY says whether to be verbose or not. */
490
491#define target_require_detach(pid, args, from_tty) \
492 (*current_target.to_require_detach) (pid, args, from_tty)
493
494/* Resume execution of the target process PID. STEP says whether to
495 single-step or to run free; SIGGNAL is the signal to be given to
496 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
497 pass TARGET_SIGNAL_DEFAULT. */
498
499#define target_resume(pid, step, siggnal) \
500 (*current_target.to_resume) (pid, step, siggnal)
501
502/* Wait for process pid to do something. Pid = -1 to wait for any pid
503 to do something. Return pid of child, or -1 in case of error;
504 store status through argument pointer STATUS. Note that it is
505 *not* OK to return_to_top_level out of target_wait without popping
506 the debugging target from the stack; GDB isn't prepared to get back
507 to the prompt with a debugging target but without the frame cache,
508 stop_pc, etc., set up. */
509
510#define target_wait(pid, status) \
511 (*current_target.to_wait) (pid, status)
512
513/* The target_wait operation waits for a process event to occur, and
514 thereby stop the process.
515
516 On some targets, certain events may happen in sequences. gdb's
517 correct response to any single event of such a sequence may require
518 knowledge of what earlier events in the sequence have been seen.
519
520 This operation provides a target-specific hook that allows the
521 necessary bookkeeping to be performed to track such sequences.
522 */
523
524#define target_post_wait(pid, status) \
525 (*current_target.to_post_wait) (pid, status)
526
527/* Fetch register REGNO, or all regs if regno == -1. No result. */
528
529#define target_fetch_registers(regno) \
530 (*current_target.to_fetch_registers) (regno)
531
532/* Store at least register REGNO, or all regs if REGNO == -1.
533 It can store as many registers as it wants to, so target_prepare_to_store
534 must have been previously called. Calls error() if there are problems. */
535
536#define target_store_registers(regs) \
537 (*current_target.to_store_registers) (regs)
538
539/* Get ready to modify the registers array. On machines which store
540 individual registers, this doesn't need to do anything. On machines
541 which store all the registers in one fell swoop, this makes sure
542 that REGISTERS contains all the registers from the program being
543 debugged. */
544
545#define target_prepare_to_store() \
546 (*current_target.to_prepare_to_store) ()
547
548extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
549
550extern int
551target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
552
553extern int
554target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
555 asection *bfd_section));
556
557extern int
558target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
559
560extern int
561target_write_memory PARAMS ((CORE_ADDR, char *, int));
562
563extern int
564xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
565
566extern int
567child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
568
569extern char *
570child_pid_to_exec_file PARAMS ((int));
571
572extern char *
573child_core_file_to_sym_file PARAMS ((char *));
574
575#if defined(CHILD_POST_ATTACH)
576extern void
577child_post_attach PARAMS ((int));
578#endif
579
580extern void
581child_post_wait PARAMS ((int, int));
582
583extern void
584child_post_startup_inferior PARAMS ((int));
585
586extern void
587child_acknowledge_created_inferior PARAMS ((int));
588
589extern void
590child_clone_and_follow_inferior PARAMS ((int, int *));
591
592extern void
593child_post_follow_inferior_by_clone PARAMS ((void));
594
595extern int
596child_insert_fork_catchpoint PARAMS ((int));
597
598extern int
599child_remove_fork_catchpoint PARAMS ((int));
600
601extern int
602child_insert_vfork_catchpoint PARAMS ((int));
603
604extern int
605child_remove_vfork_catchpoint PARAMS ((int));
606
607extern int
608child_has_forked PARAMS ((int, int *));
609
610extern int
611child_has_vforked PARAMS ((int, int *));
612
613extern void
614child_acknowledge_created_inferior PARAMS ((int));
615
616extern int
617child_can_follow_vfork_prior_to_exec PARAMS ((void));
618
619extern void
620child_post_follow_vfork PARAMS ((int, int, int, int));
621
622extern int
623child_insert_exec_catchpoint PARAMS ((int));
624
625extern int
626child_remove_exec_catchpoint PARAMS ((int));
627
628extern int
629child_has_execd PARAMS ((int, char **));
630
631extern int
632child_reported_exec_events_per_exec_call PARAMS ((void));
633
634extern int
635child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
636
637extern int
638child_has_exited PARAMS ((int, int, int *));
639
640extern int
641child_thread_alive PARAMS ((int));
642
643/* From exec.c */
644
645extern void
646print_section_info PARAMS ((struct target_ops *, bfd *));
647
648/* Print a line about the current target. */
649
650#define target_files_info() \
651 (*current_target.to_files_info) (&current_target)
652
653/* Insert a breakpoint at address ADDR in the target machine.
654 SAVE is a pointer to memory allocated for saving the
655 target contents. It is guaranteed by the caller to be long enough
656 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
657 an errno value. */
658
659#define target_insert_breakpoint(addr, save) \
660 (*current_target.to_insert_breakpoint) (addr, save)
661
662/* Remove a breakpoint at address ADDR in the target machine.
663 SAVE is a pointer to the same save area
664 that was previously passed to target_insert_breakpoint.
665 Result is 0 for success, or an errno value. */
666
667#define target_remove_breakpoint(addr, save) \
668 (*current_target.to_remove_breakpoint) (addr, save)
669
670/* Initialize the terminal settings we record for the inferior,
671 before we actually run the inferior. */
672
673#define target_terminal_init() \
674 (*current_target.to_terminal_init) ()
675
676/* Put the inferior's terminal settings into effect.
677 This is preparation for starting or resuming the inferior. */
678
679#define target_terminal_inferior() \
680 (*current_target.to_terminal_inferior) ()
681
682/* Put some of our terminal settings into effect,
683 enough to get proper results from our output,
684 but do not change into or out of RAW mode
685 so that no input is discarded.
686
687 After doing this, either terminal_ours or terminal_inferior
688 should be called to get back to a normal state of affairs. */
689
690#define target_terminal_ours_for_output() \
691 (*current_target.to_terminal_ours_for_output) ()
692
693/* Put our terminal settings into effect.
694 First record the inferior's terminal settings
695 so they can be restored properly later. */
696
697#define target_terminal_ours() \
698 (*current_target.to_terminal_ours) ()
699
700/* Print useful information about our terminal status, if such a thing
701 exists. */
702
703#define target_terminal_info(arg, from_tty) \
704 (*current_target.to_terminal_info) (arg, from_tty)
705
706/* Kill the inferior process. Make it go away. */
707
708#define target_kill() \
709 (*current_target.to_kill) ()
710
711/* Load an executable file into the target process. This is expected to
712 not only bring new code into the target process, but also to update
713 GDB's symbol tables to match. */
714
715#define target_load(arg, from_tty) \
716 (*current_target.to_load) (arg, from_tty)
717
718/* Look up a symbol in the target's symbol table. NAME is the symbol
719 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
720 should be returned. The result is 0 if successful, nonzero if the
721 symbol does not exist in the target environment. This function should
722 not call error() if communication with the target is interrupted, since
723 it is called from symbol reading, but should return nonzero, possibly
724 doing a complain(). */
725
726#define target_lookup_symbol(name, addrp) \
727 (*current_target.to_lookup_symbol) (name, addrp)
728
729/* Start an inferior process and set inferior_pid to its pid.
730 EXEC_FILE is the file to run.
731 ALLARGS is a string containing the arguments to the program.
732 ENV is the environment vector to pass. Errors reported with error().
733 On VxWorks and various standalone systems, we ignore exec_file. */
734
735#define target_create_inferior(exec_file, args, env) \
736 (*current_target.to_create_inferior) (exec_file, args, env)
737
738
739/* Some targets (such as ttrace-based HPUX) don't allow us to request
740 notification of inferior events such as fork and vork immediately
741 after the inferior is created. (This because of how gdb gets an
742 inferior created via invoking a shell to do it. In such a scenario,
743 if the shell init file has commands in it, the shell will fork and
744 exec for each of those commands, and we will see each such fork
745 event. Very bad.)
746
747 Such targets will supply an appropriate definition for this function.
748 */
749#define target_post_startup_inferior(pid) \
750 (*current_target.to_post_startup_inferior) (pid)
751
752/* On some targets, the sequence of starting up an inferior requires
753 some synchronization between gdb and the new inferior process, PID.
754 */
755#define target_acknowledge_created_inferior(pid) \
756 (*current_target.to_acknowledge_created_inferior) (pid)
757
758/* An inferior process has been created via a fork() or similar
759 system call. This function will clone the debugger, then ensure
760 that CHILD_PID is attached to by that debugger.
761
762 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
763 and FALSE otherwise. (The original and clone debuggers can use this
764 to determine which they are, if need be.)
765
766 (This is not a terribly useful feature without a GUI to prevent
767 the two debuggers from competing for shell input.)
768 */
769#define target_clone_and_follow_inferior(child_pid,followed_child) \
770 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
771
772/* This operation is intended to be used as the last in a sequence of
773 steps taken when following both parent and child of a fork. This
774 is used by a clone of the debugger, which will follow the child.
775
776 The original debugger has detached from this process, and the
777 clone has attached to it.
778
779 On some targets, this requires a bit of cleanup to make it work
780 correctly.
781 */
782#define target_post_follow_inferior_by_clone() \
783 (*current_target.to_post_follow_inferior_by_clone) ()
784
785/* On some targets, we can catch an inferior fork or vfork event when it
786 occurs. These functions insert/remove an already-created catchpoint for
787 such events.
788 */
789#define target_insert_fork_catchpoint(pid) \
790 (*current_target.to_insert_fork_catchpoint) (pid)
791
792#define target_remove_fork_catchpoint(pid) \
793 (*current_target.to_remove_fork_catchpoint) (pid)
794
795#define target_insert_vfork_catchpoint(pid) \
796 (*current_target.to_insert_vfork_catchpoint) (pid)
797
798#define target_remove_vfork_catchpoint(pid) \
799 (*current_target.to_remove_vfork_catchpoint) (pid)
800
801/* Returns TRUE if PID has invoked the fork() system call. And,
802 also sets CHILD_PID to the process id of the other ("child")
803 inferior process that was created by that call.
804 */
805#define target_has_forked(pid,child_pid) \
806 (*current_target.to_has_forked) (pid,child_pid)
807
808/* Returns TRUE if PID has invoked the vfork() system call. And,
809 also sets CHILD_PID to the process id of the other ("child")
810 inferior process that was created by that call.
811 */
812#define target_has_vforked(pid,child_pid) \
813 (*current_target.to_has_vforked) (pid,child_pid)
814
815/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
816 anything to a vforked child before it subsequently calls exec().
817 On such platforms, we say that the debugger cannot "follow" the
818 child until it has vforked.
819
820 This function should be defined to return 1 by those targets
821 which can allow the debugger to immediately follow a vforked
822 child, and 0 if they cannot.
823 */
824#define target_can_follow_vfork_prior_to_exec() \
825 (*current_target.to_can_follow_vfork_prior_to_exec) ()
826
827/* An inferior process has been created via a vfork() system call.
828 The debugger has followed the parent, the child, or both. The
829 process of setting up for that follow may have required some
830 target-specific trickery to track the sequence of reported events.
831 If so, this function should be defined by those targets that
832 require the debugger to perform cleanup or initialization after
833 the vfork follow.
834 */
835#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
836 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
837
838/* On some targets, we can catch an inferior exec event when it
839 occurs. These functions insert/remove an already-created catchpoint
840 for such events.
841 */
842#define target_insert_exec_catchpoint(pid) \
843 (*current_target.to_insert_exec_catchpoint) (pid)
844
845#define target_remove_exec_catchpoint(pid) \
846 (*current_target.to_remove_exec_catchpoint) (pid)
847
848/* Returns TRUE if PID has invoked a flavor of the exec() system call.
849 And, also sets EXECD_PATHNAME to the pathname of the executable file
850 that was passed to exec(), and is now being executed.
851 */
852#define target_has_execd(pid,execd_pathname) \
853 (*current_target.to_has_execd) (pid,execd_pathname)
854
855/* Returns the number of exec events that are reported when a process
856 invokes a flavor of the exec() system call on this target, if exec
857 events are being reported.
858 */
859#define target_reported_exec_events_per_exec_call() \
860 (*current_target.to_reported_exec_events_per_exec_call) ()
861
862/* Returns TRUE if PID has reported a syscall event. And, also sets
863 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
864 the unique integer ID of the syscall.
865 */
866#define target_has_syscall_event(pid,kind,syscall_id) \
867 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
868
869/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
870 exit code of PID, if any.
871 */
872#define target_has_exited(pid,wait_status,exit_status) \
873 (*current_target.to_has_exited) (pid,wait_status,exit_status)
874
875/* The debugger has completed a blocking wait() call. There is now
876 some process event that must be processed. This function should
877 be defined by those targets that require the debugger to perform
878 cleanup or internal state changes in response to the process event.
879 */
880
881/* The inferior process has died. Do what is right. */
882
883#define target_mourn_inferior() \
884 (*current_target.to_mourn_inferior) ()
885
886/* Does target have enough data to do a run or attach command? */
887
888#define target_can_run(t) \
889 ((t)->to_can_run) ()
890
891/* post process changes to signal handling in the inferior. */
892
893#define target_notice_signals(pid) \
894 (*current_target.to_notice_signals) (pid)
895
896/* Check to see if a thread is still alive. */
897
898#define target_thread_alive(pid) \
899 (*current_target.to_thread_alive) (pid)
900
b83266a0
SS
901/* Query for new threads and add them to the thread list. */
902
903#define target_find_new_threads() \
904 do { \
905 if (current_target.to_find_new_threads) \
906 (*current_target.to_find_new_threads) (); \
907 } while (0);
908
c906108c
SS
909/* Make target stop in a continuable fashion. (For instance, under Unix, this
910 should act like SIGSTOP). This function is normally used by GUIs to
911 implement a stop button. */
912
913#define target_stop current_target.to_stop
914
915/* Queries the target side for some information. The first argument is a
916 letter specifying the type of the query, which is used to determine who
917 should process it. The second argument is a string that specifies which
918 information is desired and the third is a buffer that carries back the
919 response from the target side. The fourth parameter is the size of the
920 output buffer supplied. */
921
922#define target_query(query_type, query, resp_buffer, bufffer_size) \
923 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
924
925/* Get the symbol information for a breakpointable routine called when
926 an exception event occurs.
927 Intended mainly for C++, and for those
928 platforms/implementations where such a callback mechanism is available,
929 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
930 different mechanisms for debugging exceptions. */
931
932#define target_enable_exception_callback(kind, enable) \
933 (*current_target.to_enable_exception_callback) (kind, enable)
934
935/* Get the current exception event kind -- throw or catch, etc. */
936
937#define target_get_current_exception_event() \
938 (*current_target.to_get_current_exception_event) ()
939
940/* Pointer to next target in the chain, e.g. a core file and an exec file. */
941
942#define target_next \
943 (current_target.to_next)
944
945/* Does the target include all of memory, or only part of it? This
946 determines whether we look up the target chain for other parts of
947 memory if this target can't satisfy a request. */
948
949#define target_has_all_memory \
950 (current_target.to_has_all_memory)
951
952/* Does the target include memory? (Dummy targets don't.) */
953
954#define target_has_memory \
955 (current_target.to_has_memory)
956
957/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
958 we start a process.) */
959
960#define target_has_stack \
961 (current_target.to_has_stack)
962
963/* Does the target have registers? (Exec files don't.) */
964
965#define target_has_registers \
966 (current_target.to_has_registers)
967
968/* Does the target have execution? Can we make it jump (through
969 hoops), or pop its stack a few times? FIXME: If this is to work that
970 way, it needs to check whether an inferior actually exists.
971 remote-udi.c and probably other targets can be the current target
972 when the inferior doesn't actually exist at the moment. Right now
973 this just tells us whether this target is *capable* of execution. */
974
975#define target_has_execution \
976 (current_target.to_has_execution)
977
978/* Can the target support the debugger control of thread execution?
979 a) Can it lock the thread scheduler?
980 b) Can it switch the currently running thread? */
981
982#define target_can_lock_scheduler \
983 (current_target.to_has_thread_control & tc_schedlock)
984
985#define target_can_switch_threads \
986 (current_target.to_has_thread_control & tc_switch)
987
43ff13b4
JM
988/* Does the target support asynchronous execution? */
989#define target_has_async \
990 (current_target.to_has_async_exec)
991
c906108c
SS
992extern void target_link PARAMS ((char *, CORE_ADDR *));
993
994/* Converts a process id to a string. Usually, the string just contains
995 `process xyz', but on some systems it may contain
996 `process xyz thread abc'. */
997
998#ifndef target_pid_to_str
999#define target_pid_to_str(PID) \
1000 normal_pid_to_str (PID)
1001extern char *normal_pid_to_str PARAMS ((int pid));
1002#endif
1003
1004#ifndef target_tid_to_str
1005#define target_tid_to_str(PID) \
1006 normal_pid_to_str (PID)
1007extern char *normal_pid_to_str PARAMS ((int pid));
1008#endif
1009
1010
1011#ifndef target_new_objfile
1012#define target_new_objfile(OBJFILE)
1013#endif
1014
1015#ifndef target_pid_or_tid_to_str
1016#define target_pid_or_tid_to_str(ID) \
1017 normal_pid_to_str (ID)
1018#endif
1019
1020/* Attempts to find the pathname of the executable file
1021 that was run to create a specified process.
1022
1023 The process PID must be stopped when this operation is used.
1024
1025 If the executable file cannot be determined, NULL is returned.
1026
1027 Else, a pointer to a character string containing the pathname
1028 is returned. This string should be copied into a buffer by
1029 the client if the string will not be immediately used, or if
1030 it must persist.
1031 */
1032
1033#define target_pid_to_exec_file(pid) \
1034 (current_target.to_pid_to_exec_file) (pid)
1035
1036/* Hook to call target-dependant code after reading in a new symbol table. */
1037
1038#ifndef TARGET_SYMFILE_POSTREAD
1039#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1040#endif
1041
1042/* Hook to call target dependant code just after inferior target process has
1043 started. */
1044
1045#ifndef TARGET_CREATE_INFERIOR_HOOK
1046#define TARGET_CREATE_INFERIOR_HOOK(PID)
1047#endif
1048
1049/* Hardware watchpoint interfaces. */
1050
1051/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1052 write). */
1053
1054#ifndef STOPPED_BY_WATCHPOINT
1055#define STOPPED_BY_WATCHPOINT(w) 0
1056#endif
1057
1058/* HP-UX supplies these operations, which respectively disable and enable
1059 the memory page-protections that are used to implement hardware watchpoints
1060 on that platform. See wait_for_inferior's use of these.
1061 */
1062#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1063#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1064#endif
1065
1066#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1067#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1068#endif
1069
1070/* Provide defaults for systems that don't support hardware watchpoints. */
1071
1072#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1073
1074/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1075 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1076 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1077 (including this one?). OTHERTYPE is who knows what... */
1078
1079#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1080
1081#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1082#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1083 (LONGEST)(byte_count) <= REGISTER_SIZE
1084#endif
1085
1086/* However, some addresses may not be profitable to use hardware to watch,
1087 or may be difficult to understand when the addressed object is out of
1088 scope, and hence should be unwatched. On some targets, this may have
1089 severe performance penalties, such that we might as well use regular
1090 watchpoints, and save (possibly precious) hardware watchpoints for other
1091 locations.
1092 */
1093#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1094#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1095#endif
1096
1097
1098/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1099 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1100 success, non-zero for failure. */
1101
1102#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1103#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1104
1105#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1106
1107#ifndef target_insert_hw_breakpoint
1108#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1109#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1110#endif
1111
1112#ifndef target_stopped_data_address
1113#define target_stopped_data_address() 0
1114#endif
1115
1116/* If defined, then we need to decr pc by this much after a hardware break-
1117 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1118
1119#ifndef DECR_PC_AFTER_HW_BREAK
1120#define DECR_PC_AFTER_HW_BREAK 0
1121#endif
1122
1123/* Sometimes gdb may pick up what appears to be a valid target address
1124 from a minimal symbol, but the value really means, essentially,
1125 "This is an index into a table which is populated when the inferior
1126 is run. Therefore, do not attempt to use this as a PC."
1127 */
1128#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1129#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1130#endif
1131
1132/* This will only be defined by a target that supports catching vfork events,
1133 such as HP-UX.
1134
1135 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1136 child process after it has exec'd, causes the parent process to resume as
1137 well. To prevent the parent from running spontaneously, such targets should
1138 define this to a function that prevents that from happening.
1139 */
1140#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1141#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1142#endif
1143
1144/* This will only be defined by a target that supports catching vfork events,
1145 such as HP-UX.
1146
1147 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1148 process must be resumed when it delivers its exec event, before the parent
1149 vfork event will be delivered to us.
1150 */
1151#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1152#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1153#endif
1154
1155/* Routines for maintenance of the target structures...
1156
1157 add_target: Add a target to the list of all possible targets.
1158
1159 push_target: Make this target the top of the stack of currently used
1160 targets, within its particular stratum of the stack. Result
1161 is 0 if now atop the stack, nonzero if not on top (maybe
1162 should warn user).
1163
1164 unpush_target: Remove this from the stack of currently used targets,
1165 no matter where it is on the list. Returns 0 if no
1166 change, 1 if removed from stack.
1167
1168 pop_target: Remove the top thing on the stack of current targets. */
1169
1170extern void
1171add_target PARAMS ((struct target_ops *));
1172
1173extern int
1174push_target PARAMS ((struct target_ops *));
1175
1176extern int
1177unpush_target PARAMS ((struct target_ops *));
1178
1179extern void
1180target_preopen PARAMS ((int));
1181
1182extern void
1183pop_target PARAMS ((void));
1184
1185/* Struct section_table maps address ranges to file sections. It is
1186 mostly used with BFD files, but can be used without (e.g. for handling
1187 raw disks, or files not in formats handled by BFD). */
1188
1189struct section_table {
1190 CORE_ADDR addr; /* Lowest address in section */
1191 CORE_ADDR endaddr; /* 1+highest address in section */
1192
1193 sec_ptr the_bfd_section;
1194
1195 bfd *bfd; /* BFD file pointer */
1196};
1197
1198/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1199 Returns 0 if OK, 1 on error. */
1200
1201extern int
1202build_section_table PARAMS ((bfd *, struct section_table **,
1203 struct section_table **));
1204
1205/* From mem-break.c */
1206
1207extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1208
1209extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1210
1211extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1212#ifndef BREAKPOINT_FROM_PC
1213#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1214#endif
1215
1216
1217/* From target.c */
1218
1219extern void
1220initialize_targets PARAMS ((void));
1221
1222extern void
1223noprocess PARAMS ((void));
1224
1225extern void
1226find_default_attach PARAMS ((char *, int));
1227
1228void
1229find_default_require_attach PARAMS ((char *, int));
1230
1231void
1232find_default_require_detach PARAMS ((int, char *, int));
1233
1234extern void
1235find_default_create_inferior PARAMS ((char *, char *, char **));
1236
1237void
1238find_default_clone_and_follow_inferior PARAMS ((int, int *));
1239
7a292a7a
SS
1240extern struct target_ops *find_run_target PARAMS ((void));
1241
c906108c
SS
1242extern struct target_ops *
1243find_core_target PARAMS ((void));
1244\f
1245/* Stuff that should be shared among the various remote targets. */
1246
1247/* Debugging level. 0 is off, and non-zero values mean to print some debug
1248 information (higher values, more information). */
1249extern int remote_debug;
1250
1251/* Speed in bits per second, or -1 which means don't mess with the speed. */
1252extern int baud_rate;
1253/* Timeout limit for response from target. */
1254extern int remote_timeout;
1255
1256extern asection *target_memory_bfd_section;
1257\f
1258/* Functions for helping to write a native target. */
1259
1260/* This is for native targets which use a unix/POSIX-style waitstatus. */
1261extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1262
1263/* Convert between host signal numbers and enum target_signal's. */
1264extern enum target_signal target_signal_from_host PARAMS ((int));
1265extern int target_signal_to_host PARAMS ((enum target_signal));
1266
1267/* Convert from a number used in a GDB command to an enum target_signal. */
1268extern enum target_signal target_signal_from_command PARAMS ((int));
1269
1270/* Any target can call this to switch to remote protocol (in remote.c). */
1271extern void push_remote_target PARAMS ((char *name, int from_tty));
1272\f
1273/* Imported from machine dependent code */
1274
1275#ifndef SOFTWARE_SINGLE_STEP_P
1276#define SOFTWARE_SINGLE_STEP_P 0
1277#define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1278#endif /* SOFTWARE_SINGLE_STEP_P */
1279
1280/* Blank target vector entries are initialized to target_ignore. */
1281void target_ignore PARAMS ((void));
1282
1283/* Macro for getting target's idea of a frame pointer.
1284 FIXME: GDB's whole scheme for dealing with "frames" and
1285 "frame pointers" needs a serious shakedown. */
1286#ifndef TARGET_VIRTUAL_FRAME_POINTER
1287#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1288 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1289#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1290
1291#endif /* !defined (TARGET_H) */
This page took 0.109086 seconds and 4 git commands to generate.